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BLOCK 4  INTRODUCTION 

The fourth Block makes use of differential calculus to discuss one of the 

central concepts in economics, that of optimisation. The first three blocks 

developed concepts that made it possible to fully grasp the material in the 

present block, titled optimisation. The Block has two units. The first unit of the 

Block, Unit 11, titled Concave and Convex Functions. This unit discusses the 

nature of convexity and concavity of functions. This makes use of the concepts 

used in Unit 10 on higher-order derivatives. Concavity and convexity of 

functions are very useful in the study of optimistion, which is ealt with in the 

second unit of this Block. 

Unit 12, titled Optimisation Methods, discusses as the name suggest, the 

optimisation of functions. Optimisation is a generic term that includes 

maximisation as well as minimisation of functions. The unit discusses among 

other things the geometric characterisation of local and global optima, and  

characterisation using calculus. The unit also provides applications of the 

techniques of optimisation to economics. 
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FunctionsUNIT 11 CONCAVE AND CONVEX 

FUNCTIONS* 

Structure 

11.0  Objectives 

11.1  Introduction 

11.2  Convex Set and Convex Functions  

11.2.1  Convex Combination and Convex Sets 

11.2.2  Convex Sets, Convex and Concave Functions 

11.3  Concave and Convex Functions and their Characteristics  

 11.3.1  Concave and Convex Functions 

 11.3.2  Point of Inflection 

11.4  Quasi-Concavity and Quasi-Convexity 

11.5  Economic Applications of Convexity and Concavity  

11.6  Let Us Sum Up 

11.7  Answers to Check Your Progress Exercises 

11.0 OBJECTIVES 

After going through this unit, you will be able to: 

• describe certain important  geometric properties of Convex sets; 

• understand the relation of a convex set with Convex and Concave 

functions; 

• explain concave and convex function along with their characteristics;  

• define  the concept of Quasi-Concavity and Quasi-Convexity; and 

• discuss some Economic applications of Convexity and Concavity. 

11.1  INTRODUCTION 

In the previous Unit, while discussing higher order derivatives, we discussed 

concave and convex function. We saw that concave and convex functions are 

defined in terms of their second-order derivatives. This unit carries forward 

that discussion of concavity and convexity. But along with functions, this unit 

carries the discussion forward to the case of convex sets. We will learn to 

appreciate the importance of convexity, although the crucial importance of 

convexity in Economics will become apparent to you only in the units on 

optimisation. In this unit we will focus on the idea that concavity and convexity 

are to do with the shapes that certain functions have. We shall see that 

concavity and convexity of functions are features decided by the second order 

derivatives of functions. We shall be relating the concept of convexity also to 

the related but rather important concept of quasi-concavity. Throughout, we 

shall also be describing some  important economic applications of convexity.  

We shall take functions, mainly from Microeconomics since you have a course 

on Principles of Microeconomics in this semester, and see which of the 

                                                           

* Contributed by Shri Saugato Sen, SOSS, IGNOU 

 



 

 

Single-Variable 

Optimisation 

196 

important functions that you come across in that course are convex and which 

are concave, and what are the implications of these. 

The unit begins with discussion about convex sets as well as convex functions 

and brings out the relationship between convex sets and convex functions.  The 

unit discusses the relevant geometric properties of convex sets. Following this 

the unit discusses in detail the nature of concave and convex functions and their 

properties. The unit also explains carefully what we understand by quasi-

concavity and how it relates to convexity. After these theoretical discussions, 

the unit describes some Economic applications of convexity. 

11.2 CONVEX SET AND CONVEX FUNCTION 

To understand the geometric properties of functions, we begin with some 

geometric definitions. Before that, recall the definition and properties of sets. 

Also recall various set-theoretic functions you have been familiarised with. In 

the previous unit, we saw the meaning of convexity as applied to functions. We 

must also understand the meaning of convexity as used to describe a set. 

Although convex functions and convex sets are related concept, they are also 

distinct concepts. We should not confuse among the two. 

Let us understand the concept of convex sets. A set S of pointsin R
2
 or R

3
, or in 

other words, a set S in a real vector space, is definedas convex if for any two 

points in the set, the line segment connecting these two points lies entirely in 

the set. A straight line satisfies the requirement of a convex set. A set 

consisting of a single point is also a convex set. The geometric definition of 

convexity also applies to solid geometric figures. For example, a solid cube is a 

convex set, but a hollow cylinder is not. For higher dimensions, the geometric 

properties become less intuitively obvious. 

11.2.1 Convex Combination and Convex Sets 

Now we define the concept of a convex combination of points. A linear 

combination of two points,u and v can be written as 1 2k u k v+ , where k1 and k2 

are numbers. When k1 and k2 both lie in the closed interval [0,1] and add up to 

unity, the linear combination is said to be a convex combination and can be 

written as 

k1u + (1−k1 )v, 0 ≤ k1≤ 1 

In view of the above concept, a convex set may be redefined as follows: a set S 

is said to be a convex set if and only if for any two points 

[ ] and ,  and for every number 0,1u S v S θ∈ ∈ ∈ , it is true that 

( )1w u v Sθ θ= + − ∈ . Put another way, a set Q is convex if, for all 

points v0 and v1 in Q and for every real number λ in the unit interval [0,1], the 

point(1 − λ) v0 + λv1is a member of Q. By mathematical induction, a set Q is 

convex if and only if every convex combination of members of Q also belongs 

to Q. By definition, a convex combination of an indexed subset{v0, v1, . . . , vD} 

of a vector space is any weighted average λ0v0 + λ1v1 + . . . + λDvD, for some 

indexed set of non-negative real numbers {λD} satisfying the equation λ0 + λ1 + 

. . . + λD = 1. 

The definition of a convex set implies that the intersection of two convex sets 

is a convex set. More generally, the intersection of a family of convex sets is a 

convex set.  
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Anything that is hollow or dented, for example, a crescent shape, is non convex 

(Refer figure 11.1). In Figure 11.1 (a), the set Q is convex, since for this, all the 

points of any line segment joining any pair of points of the set (here, v0 and v1) 

will lie inside the given set Q. Whereas, in 11.1 (b), we have a non-convex set 

R. In set R, not all the points of the line segment joining any pair of points of 

the set (here, v2 and v3) lies inside the set R. Trivially, the empty set is convex. 

 

 

 

 

 

 

11.2.2  Convex Set, Convex and Concave Functions 

Comparing the definition of a convex set with that of a convex function, we 

notice that even though the adjective ‘convex’ is used in both, the meaning of 

this word is different in the two contexts. In describing a function the word 

convex denotes how the curve or surface bends itself. i.e., describes the bulge 

in the curve. In the context of a set, the word convex specifies how the points 

in the set are ‘stacked’ together, i.e., how dense is the set. Mathematically, a 

convex set and convex function appear distinct. However, in some sense they 

are not unrelated. We know that for the definition of a convex function, we 

need a convex set for the domain. A convex function is a function with the 

property that the set of points which are on or above its graph is a convex 

function. In terms of the definition of a convex set that we just saw, a function 

is a convex function if it has the property that the chord joining any two points 

on its graph lie on or above the graph (refer Figure 11.2). For a function that is 

convex, the set above the function must be convex.  

Convex functions are described algebraically as follows: a function f is convex 

if and only if  

( )( ) ( ) ( ) ( )1 2 1 2
1 1f x x f x f xα α α α+ − ≤ + − , for any real numbers

1 2, , ,  such that 0 1x x α α≤ ≤ . In the above expression, if the inequality is a 

strict one, the function is strictly convex. For convex functions, a general 

property is that the sum of two convex functions is also a convex function. 

Also, if a convex function is multiplied by a positive constant, we obtain 

another convex function.  

For a concave function, the set below the function must be convex. Also, the 

inequality in the expression above is reversed in the case of a concave function. 

This we will see in more detail in subsequent sections. 

 

 

Figure 11.1 

(a) A Convex Set 
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(b) Non-convex Set 
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Consider the diagram above. For the function y = f(x), let f be a differentiable 

convex function, and suppose x1<x2 and 0 <α <1, so that ( )1 2
1

o
x x xα α= + − . 

Now, let points P,Q, R and S in the xy-plane be defined as in the above figure. 

Since f  is convex, R cannot lie above S; therefore the slope of the chord PR 

cannot be more than the slope of the chord PQ. This inequality holds even as α 

tends to 1, in which case R approaches P along the curve and the slope of PR 

approaches the slope of  the curve at P. Hence the slope of the curve at P will 

be less than the slope of the chord PQ. Thus, 

( )
( ) ( )2 1

1

2 1

f x f x
f x

x x

−
′ ≤

−
 

Similarly, as α tends to 0, we obtain  

( )
( ) ( )2 1

2

2 1

f x f x
f x

x x

−
′ ≥

−
 

We arrive at a very important property of differentiable convex functions: 

Property 1:If f is a differentiable convex function, then

( ) ( ) ( )f a h f a hf a′+ ≥ + for all a andh.  

Another important property of differentiable convex functions is the following: 

Property 2:A differentiable function f is convex if and only if ( ) ( )f a f b′ ′≤

whenever a ≤ b. 

The discussion of convex and concave using calculus will be continued in the 

next section, but let us end this section with some discussion on concave 

functions from a geometric point of view. 

We say that a function is concave if the set of all points which are on or below 

the graph of the function is a convex set. We may say that a function f is 

concave if and only if –f is convex. Hence from this, we see that the properties 

of a concave function can be derived from the corresponding properties of 

convex functions. Thus,a function f is concave if and only if  

( )( ) ( ) ( ) ( )1 2 1 21 1f x x f x f xα α α α+ − ≥ + −
 

 

Figure 11.2: Convex Function 
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If f is a differentiable concave function, then     

( ) ( ) ( )f a h f a hf a′+ ≤ +  

Also, we say that a function f is strictly concave if –f is strictly convex. 

In the next section we move to a discussion of convex and concave functions 

using properties from calculus, particularly second derivatives.We will see that 

if a differentiable function is strictly convex over some interval, then its second 

derivative is positive over that interval. We will also see that if a differentiable 

function is strictly concave over some interval, then its second derivative is 

negative over that interval.  

Check Your Progress 1 

1) What do you understand by a convex combination? Use the concept of 

convex combination to explain the concept of a convex set. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

2) In what way is the word ‘convex’ as used in the context of a convex set 

different from the way the word convex is used in the context of a convex 

function? 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

3) What is the relation between a convex function and convex set? 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

11.3  CONCAVE AND CONVEX FUNCTIONS AND 

THEIR CHARACTERISTICS 

You will now be asked to recall the basic properties and techniques of 

differentiation that you studied in earlier units in order to understand this 

section. We briefly touched upon the meaning of a convex function in the 

previous section in the context of a convex set. In this section we discuss in 
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detail the concept of convex and concave functions using the tools of 

differential calculus and see what substantial mathematical meaning is imbued 

in the concept of a convex function and how it is useful to understand functions 

in Economics. 

Let us, by way of preamble, mention that convex and concave functions have 

to do with the second derivative of functions. So as background let us recall 

that if we have y = f(x) as a function, then ( )
dx

dy
xf =′ is also a function of x. 

Now if we take the derivative of ( )xf ′ then it is a derivative of the first 

derivative of y and is called the second derivative of y. It is denoted in several 

different ways: ( )xf
dx

yd

dx

xfd

dx

dxdyd
′′

′
or  or  

)]([
or  

)/(
2

2

. 

Just as the first derivative is a function whose derivative can be found (called 

the second derivative), the second derivative, too, is a function whose 

derivative can be found (and is called the third derivative, denoted by ( )xf ′′′ . 

If the first two derivatives of a function exist, we say that the function is twice-

differentiable. Twice-differentiable functions are very useful in Economics.  

11.3.1  Concave and Convex Functions 

Let us first understand how the sign of the first-derivative determines whether a 

function is increasing or decreasing: 

 

  ( ) ( ) ( ) ( )baxfbaxf ,on  increasing is ,on  0 ⇔≥′ . 

Similarly,  ( ) ( ) ( ) ( )baxfbaxf ,on  decreasing is ,on  0 ⇔≤′ . 

Where, symbol “⟺” stands for “if and only if ” expression. 

Now the second derivative is the derivative of the first derivative. The second 

derivative being non-negative in an interval, in analogy to the statement 

above,would mean that the first derivative would be increasing in that interval.  

We can state the relationship between the sign of the second derivative and 

whether the first derivative is increasing or not as below: 

( ) ( ) ( ) ( )baxfbaxf ,on  increasing is ,on  0 ′⇔≥′′  

Similarly,  ( ) ( ) ( ) ( )baxfbaxf ,on  decreasing is ,on  0 ′⇔≤′′ . 

Let us recall that the first derivative measures the slope of the tangent at that 

point on the curve f. Hence, first derivative increasing means that the slope of 

the tangent line is increasing. This means that as x increases, the slope at the 

tangent to the curve f(x) gets progressively steeper. The change in the steepness 

of the tangent line leads us towards the idea of convexity using second-order 

derivatives.  

Let us consider a function f (x) = x
2
. Its first derivative is 2x and the second 

derivative is 2. In the domain x< 0, we have f
`
′(x) = 2x but since x < 0, 2x< 0. 

So in the domain x< 0, f (x) = x
2 

falls. As x increases, the slope falls in absolute 

value which means that since the slope is negative, the value of the slope is 

actually increasing in x. Thus the second derivative is positive. We state that a 
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twice differentiable function f (x)is convex if, at all points on its domain, 

( ) 0≥′′ xf . A twice differentiable function f (x) is strictly convex if ( ) 0>′′ xf , 

except possibly at a single point. For example, consider the function f (x) = x
4
. 

It’s second derivative is 12x
2
, which is positive for all x except x = 0 where the 

second derivative becomes zero. 

Now consider the function f (x) = 10 – x
2
. We see that the first derivative is – 

2x and the second derivative is – 2. Thus this function is decreasing in x for all 

x> 0 and is increasing in      x for all x< 0. The slope, however, is falling for all 

values of x. This means that when f
`
′(x) > 0, it is becoming less steep, while 

when f
`
′(x) < 0 the function is becoming more steep in absolute value, but the 

slope is becoming more negative. Since the function f (x) = 10 – x
2 

has a 

negative second derivative, it has properties that are opposite of those of a 

convex function. It is a concave function. A twice differentiable function f (x) 

is concave if ( ) 0≤′′ xf on all points of its domain. Also, a twice differentiable 

function f (x) is strictly concave if ( ) 0<′′ xf on all points of its domain except 

possibly at a single point. 

Two points can be made here. First, a linear function, since it has a second 

derivative equal to zero, satisfies the condition for both a convex function as 

well as a concave function. Secondly, since multiplying by – 1 reverses an 

inequality, we could say that f (x) is concave if – f (x) is convex, and that f (x) is 

strictly concave if – f (x) is strictly convex. 

Suppose we consider an interval I and assume that f (x) is continuous in I and is 

twice-differentiable in the interior of I (denoted by I
0 

— interior means 

boundary points of the interval are excluded). Then we can state the following 

definitions: 

A function f  is convex on I ( ) 0in   allfor  0 Ixxf ≥′′⇔  

A function f is concave on I ( ) 0in   allfor  0 Ixxf ≤′′⇔  

Till now we have considered convex and concave functions over an interval. It 

would be interesting to see what can be said about convexity and concavity at a 

particular point. The sign of the second derivative at a point x = a  provides 

some useful information.  If ( )af ′′ is positive, then f (x) is changing at an 

increasing rate as x increases through a, and the slope of the tangent to the 

curve y = f (x) increases as we pass through the point x = a. The tangent to the 

curve turns in an anticlockwise direction and the curve is convex from below 

when viewed at this point. On the other hand, if ( )af ′′  is negative, then f (x) 

changes at a decreasing rate, the slope turns in the clockwise direction, and the 

curve is concave from below at the point where x = a.  These results 

concerning the second derivative are independent of the value of ( )af ′  and 

whether the tangent to the curve slopes upwards, downwards or is horizontal at 

the point x = a.  Therefore 

i) ( ) 0≥′′ af implies that the function changes at an increasing rate as the 

function passes through  point a and the function is convex from below at 

the point x = a. 
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ii) ( ) 0≤′′ af implies that the function changes at a decreasing rate as the 

function passes through point a and the function is concave from below at 

the point x = a.  

The numerical value of ( )af ′′ shows how quickly the change in the value of 

f(x) changes and how great is the curvature of the curve y = f(x)at the point x = 

a. 

11.3.2  Points of Inflection 

The functions which we study in Economics sometimes have the property that 

they are convex in some part of the domain but concave in other parts. Such 

points where a function changes from being concave to being convex, or from 

being convex to being concave, are called inflection points. The curve changes 

from one side of the tangent to the other side of the tangent. In short, x = k is an 

inflection point, if ( )xf ′′  changes sign at x = k. We call the point [k, f(k)] an 

inflection point on the graph.  

The point k is an inflection point for a twice-differentiable function f if there is 

an interval (a, b) containing k such that one of the following two conditions 

holds: 

i) ( ) ( ) bxkxfkxaxf <<≤′′<<≥′′  if 0 and  if 0 , or 

ii) ( ) ( ) bxkxfkxaxf <<≥′′<<≤′′  if 0 and  if 0  

The most important property of a point of inflection is that it marks a change in 

curvature, from convex to concave as we move from left to right through the 

point of inflection, or conversely. 

Apart from the change in curvature property, another property of inflection 

points is that an inflection point always corresponds to an extreme value 

(maxima or minima) of the slope of the tangent to the curve. You will of 

course, study maxima and minima in greater detail in the next unit. For any 

function f (x), at the point where the maxima or minima of f(x) occurs, the first 

derivative of f(x) = 0. In the case of inflection, we are talking of the maxima or 

minima of the slope of the tangent to the curve at that point. Now, if we have a 

function f(x), the slope of the tangent to f(x) is ( )xf ′ , then its first derivative is

( )xf ′′ , and this has to be 0. Further the value of ( )xf ′′  must change in sign as x 

increases through the point of inflection. We can thus restate the criteria for a 

point of inflection. If k is a point of inflection, then: 

i)  If k is an inflection point for f (x), then ( ) 0=′′ kf  

ii)  If ( ) 0=′′ kf and )(xf ′′ changes sign at k, then k is an inflection point. 

The first is a necessary condition for a point of inflection, and the second is a 

sufficient one. 

If f(x) has a third derivative then an alternative criterion can be given in terms 

of the third derivative. If ( )kf ′′′ is negative at a point where ( ) 0=′′ kf  then 

( )xf ′  is maximum at x = k (note that we are not saying that f (x) is maximum 

but that ( )xf ′  is maximum). If the third derivative is positive, then ( )xf ′  is 

minimum at x = k. 
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11.4  QUASI-CONCAVITY AND QUASI-

CONVEXITY 

Let us now discuss the concept of quasi-concavity and quasi-convexity. In next 

section, we will get to know the application of concavity and convexity of a 

function in Economics. Before that we discuss here a weaker requirement for 

several Economic situations. This condition is called quasi-concavity and 

quasi-convexity. Quasi-concavity and quasi-convexity, just like concavity and 

convexity, can be either strict or non-strict. What do quasi-concavity and quasi-

convexity mean? Let us look at it geometrically: 

Let x and y be two distinct points in the domain of a function f, and let the 

segment xy in the domain of the function give rise to the arc CD on the graph 

of the function. Suppose point D is higher or equal in height to point C. Then 

the function is said to be quasi-concave if all points on the arc CD (other than 

C and D) are higher than or equal in height at point C. The function f would be 

a quasi-convex one if all points on the arc CD are equal to or lower in height at 

point D. The function f would be strictly quasi-concave (quasi-convex) if all 

points on the arc are strictly higher than point C (lower than point D). We may 

state here that any strictly quasi-concave (strictly quasi-convex) is quasi-

concave (quasi-convex) but the converse is not true. Usually, a quasi-concave 

function that is not concave has a shape like a bell or like a portion of a bell, 

and a quasi-convex has a shape like an inverted bell. A concave function is a 

little like a dome and a convex function like an inverted dome. 

Now let us convert these geometric characterisations into an algebraic 

definition of quasi-concavity and quasi-convexity.  A function f is quasi-

concave if and only if, for any distinct points x and y in the convex set domain 

of f, and for 0 < λ < 1,  

�(�) ≥ �(�) ⇒ �[�� + (1 − �)�] ≥ �(�) 

A function is quasi-convex if and only if, for any distinct points x and y in the 

convex set domain of f, and for 0 < λ < 1, 

( ) ( ) ( ) ( )1f y f x f x y f yλ λ≥ ⇒ + − ≤    

To adapt this definition to strict quasi-concavity and strict quasi-convexity, 

change the weak inequalities into strict inequalities.From these definitions, we 

can state three results: 

Result 1:  If f(x) quasi-concave (strictly quasi-concave), then –f(x) is quasi-

convex (strictly quasi-convex). 

Result 2:  Any concave (convex) function is quasi-concave (quasi-convex) but 

the converse is not true. Similarly any strictly concave (strictly 

convex) function is strictly quasi-concave (strictly quasi-convex) 

but the converse is not true. 

Result 3: If a function f(x) is linear, then it is quasi-concave as well as quasi-

convex. 

Check Your Progress 2 

1) Comment upon the Convexity/concavity of the following functionsover 

the set of non-negative real numbers. 
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i) �(�) = − ��
�� �� + 5� − 10    

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

ii)  �(�) = 5�� − 7� 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

iii)  �(�) = �
�
� 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

2) Describe the concavity and/or convexity of f(x) = 7�� − 42�� + 12� +
97 over its domain? 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

3) The notion of Quasiconcavity is weaker than the notion of Concavity, do 

you agree? 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

4) For what value of pand q will the graph of the function given by 

f(x) = px
3
 + qx

2
 pass through (−1, 1) and has an inflection point at x = 

�
�? 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 
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11.5 ECONOMIC APPLICATIONS OF 

CONVEXITY AND CONCAVITY 

In Economics, convexity is one of the most important mathematical properties. 

For example, in utility maximisation problems, an optimal basket of goods 

occurs where the consumer's convex preference set is supported by his budget 

constraint. For a given utility function, and any reference bundle X (x, y), 

where x and y are the two goods— the set of all the bundles which are at least 

as good as bundle X, is usually assumed to be the upper level set which is the 

convex set. This upper level set consists of the consumer’s indifference curve 

(IC) and all the set of x and y lying above it (Refer shaded region in Figure 

11.3). This assumption of convexity simply means that consumer attains higher 

utility from consuming a convex combination of two goods than the extreme 

bundles, that is, if consumer is indifferent between bundles A and B then she 

prefers the average bundle C, given by � A + (1 − �) B for �∈ [0, 1]to either A 

or B. Convex preferences results in ICs which are convex to the origin.  By 

convexity, C = � A + (1 − �) B lies on a higher indifference curve, for �∈ [0, 

1]. 

  

  

 

 

 

 

 

 

 

If the preference set is convex, then the consumer's set of optimal decisions is a 

convex set, for example, a unique optimal basket (or even a line segment of 

optimal baskets). If a preference set is non-convex, then some prices produce a 

budget supporting two different optimal consumption decisions (for instance, 

happens when consumer faces a choice between two substitutes). The 

indifference curve (IC) shows different combinations of two goods, here x and 

y, giving equal level of satisfaction (or utility) to the consumer. Notice it is 

downward (negative) sloping and convex-shaped. Slope of an IC is the 

Marginal Rate of Substitution (MRS)— the rate at which a consumer is willing 

to trade good x for good y, MRS = 
∆!
∆" or 

#!
#" or  

$%&
$%'

, where MUx and  MUy refer 

to the Marginal utility from consumption of additional units of good x and 

good y, respectively, [MUx = 
(%
("  and MUy = 

(%
(!, for a utility function U(x, y)] 

(refer Figure 11.4).Downward or a negative slope of IC implies that an increase 

in consumption of one good must be accompanied by decrease in consumption 

of another good, so as to keep the satisfaction level constant. 

Convexity of the curve is a reflection of a diminishing MRS, which simply 

means that, as consumption of any one good increases more and more, the 

Figure 11.3: Indifference Curve and Convex Set 

Consumer’s Indifference curve:  

A 

B 

x 

y 
Consumer’s upper-level 

Convex Set C 
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individual will prefer to sacrifice lesser and lesser amounts of consumption of 

the other good, that is  
#�!
#"� ≥ 0. This implies that slope of the tangent to the 

curve declines as we move down the indifference curve (refer Figure 11.5).  

 

 

 

 

 

 

 

 

 

 

 
 

The above property of a downward sloping and a convex-shaped curve also 

holds for an isoquant showing efficient combinations of two inputs (or factors) 

say— labor (L) and capital (K) that produce same level of output. In this case, 

slope is the Marginal Rate of Technical Substitution (MRTS)—the quantity of 

K that a firm is willing to sacrifice for employing an additional quantity of L to 

produce the same level of output. Downward slope results from the assumption 

of positive marginal productivities of the factors, which imply that an increase 

in quantity of a factor leads to positive increase in output. So in order to keep 

output level constant along an isoquant, increasing quantity of one factor must 

be accompanied by decreasing the quantity of other factor. Convexity of an 

isoquant results due to the principle of diminishing MRTS, i.e., MRTS declines 

as we move down on the isoquant. 

Now we consider an Economic application of concavity property. A production 

function Q = f (L, K) gives the amount of output Q that can be produced with 

given inputs (Labour, L and capital, K). The short run production function 

holds one of the factor as fixed (here, we consider K as fixed) and gives the 

total output produced by varying units of L, i.e. Q = f (L). Slope of short-run 

production function, that is, 
#)
#*  is the Marginal Product (MP) of labour, which 

equals the additional output produced by one more labour. The positive slope 

of the curve indicates the fact that MP is never negative (refer Figure 11.6). In 

the initial output range, i.e. till point A, labour additions results in increasing 

returns, that is, MP rises— this can be the result of increasing specialisation. 

However, after point A, additional units of labour input cause diminishing 

returns, that is, MP starts falling. This is depicted by the concave shape of the 

production function after point A. This is what is referred to as the law of 

diminishing marginal returns— as a firm increases more of any one input (here 

L) while holding other input fixed (here K), the MP of the input being added 

 

 Figure 11.4: Slope of an Indifference Curve 

 

IC 

Good x 0 

G
o

o
d

 y
 

∆ x 

∆ + 

MRS = 
∆+
∆, 

Q 

Good x 0 

IC 

G
o

o
d

 y
 

R 

P 

 

 Figure 11.5: Diminishing MRS 
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will eventually decline. Reason for declining MP could be, as more labour is 

employed, increasingly more workers end up sharing fixed units of capital, so 

eventually each worker will be less productive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another important concave function is the Production possibility curve (PPC, 

also called a production possibility frontier, PPF), representing all the possible 

combinations of two goods (here, x and y) that an economy can produce given 

fixed amount of resources and technology, and efficient use of these resources. 

Such a curve is depicted in Figure 11.7. The slope of the PPF (
#!
#") at a given 

point is the amount of good y that would have to be sacrificed to produce an 

additional unit of good x. In other words, it is the opportunity cost of getting an 

additional unit of good x. This opportunity cost equals the absolute value of the 

slope of the PPF. The downward sloping PPF highlights the fact that there is a 

trade-off between the two goods. This demonstrates the principle of scarcity, as 

per which, producing more of good xrequires shifting resources out of good y 

production and thus producing fewer units of good y. The concave shape of the 

curve illustrates the law of increasing opportunity cost, which holds that as an 

economy moves along its PPF in the direction of producing more of a 

particular good, the opportunity cost of additional units of that good will 

increase, that is, the sacrifice of the other good will be more and more. Notice 

in the figure, as we move from point A to B to C to D, the sacrifice for 

additional units of good x in terms of good y is increasing.  
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Check Your Progress 3 

1) Given the following utility functions, determine whether they obey the 

assumption of diminishing MRS: 

i)  U (x, y) = 5x + y 

ii)  U (x, y) = -�� 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

2) Consider an individual for whom extremes are better than averages. What 

would an indifference curve look like? Would it still imply diminishing 

marginal rates of substitution? 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

3) Why is the production possibility downward sloping and concave? 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

PPC/PPF 
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Figure 11.7: Production Possibility Curve 
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11.6  LET US SUM UP 

This was the first of the two units in this fourth Block of your present course. 

The Block is on single-variable optimisation, and this unit has concepts and 

ideas to help you prepare for the next unit on optimisation methods. 

The current unit discussed in detail the very important concept of Convex Sets 

and Convexity. Applications of Concave and Convex functions occur 

frequently in Economics and are a foundation for optimisation, which is a 

central and recurrent idea in Economics. 

The unit began by explaining the idea of a convex combination and then used 

that to introduce you to the concept of a convex set. The unit then moved to a 

description of the relationship between a convex set and a convex function. In 

the next section a calculus based discussion of convex and concave functions 

using second derivatives was presented. It was seen that convex and concave 

functions can be either increasing or decreasing. The conditions and criteria of 

convex and concave functions were presented. This section also presented a 

discussion of inflection points which are points at which the second derivative 

is zero, and the curvature of the curve changes from convex to concave, or 

vice-versa.  

The subsequent section presented a property that may be present in certain 

functions, and which provide a weaker requirement for certain Economic 

conditions. This was the concept of quasi-concavity and quasi-convexity. Both 

geometric and algebraic explanations were provided about the concept of 

quasi-concavity and quasi-convexity. Finally the unit presented the application 

of concavity and convexity in Economics citing examples of Indifference 

curves, isoquants, short-run production function, production possibility curve. 

11.7 ANSWERS TO CHECK YOUR PROGRESS 

EXERCISES 

Check Your Progress 1 

1) A convex combination of an indexed subset {v0, v1, . . . , vD} of a vector 

space is any weighted average λ0v0 + λ1v1 + . . . + λDvD, for some indexed 

set of non-negative real numbers {λD} satisfying the equation λ0 + λ1 + . . 

. + λD = 1. A set for which every convex combination lies within the set is 

a convex set. 

2)   Although convex functions and convex sets are related concept, they are 

also distinct concepts. In describing a function the word convex denotes 

how the curve or surface bends itself, that is it talks about the bulge. In 

the context of a set, the word convex specifies how the points in the set 

are ‘stacked’ together, that is how dense is the set. 

3) A convex function is a function with the property that the set of points 

which are on or above its graph is a convex set. In terms of the definition 

of a convex set that we just saw, a function is a convex function if it has 

the property that the chord joining any two points on its graph lies on or 
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above the graph. For a function that is convex, the set above the function 

must be convex. 

Check Your Progress 2 

1)  i) Strictly Concave  

ii)  Strictly Convex 

iii)  Strictly Concave. Hint: f "(x) = − 1
4-�3, has a negative second 

derivative for all non-negative real numbers. 

2) Hint:f '(x) = 21x
2
 − 84x + 12 and f "(x) = 42x –84 

Convexity requires f "(x) > 0 ⟹ 42� –  84> 0 ⟹x> 2. Thus, function is 

strictly convex for all x> 2, and thus strictly concave for all x< 2.  

3) Yes, the notion of quasiconcavity is weaker than the notion of concavity. 

This is because every concave function is quasiconcave, but a quasiconcave 

function may not be concave. 

4) Given that graph pass through (−1,1) ⟹f(−1) = 1⟹ −p + q = 1  …(1) 

Now, f'(x) = 3px
2
 + 2qx and f"(x) = 6px + 2q. 

 f (x) having inflection point at
�
� ⟹  f"(

�
�) = 0   

      ⟹3p+ 2q = 0  …(2) 

Solving equations (1) and (2), we get p = −
�
�, q = 

�
�. 

Check Your Progress 3 

1) i) No, the given utility function portrays constant MRS. Hint: MRS = 
$%&
$%'

 ⟹ �
� 

 ii) Yes, MRS is diminishing for this utility function. Hint: MRS = 
$%&
$%'

 ⟹ !
". As we move down the IC, that is, as consumption of good 

x increases, the denominator gets bigger and MRS decreases. 

2) The indifference curve for such an individual would bend away from the 

origin and not towards it, that is, it will be concave-shaped instead of 

convex. MRS is no longer diminishing along the indifference curve, that is, 

the indifference curve exhibits increasing MRS. 

3) Refer section 11.5 and answer. 

 



 

 

211

Concave and Convex 

FunctionsUNIT 12 OPTIMISATION METHODS* 

Structure 

12.0 Objectives 

12.1 Introduction 

12.2 Global and Local Optima 

 12.2.1 Slope of a Function 

 12.2.2 First Derivative Test and Relative Optima 

12.3 The Problem of Non-Differentiability  

12.4 The Second-Order Derivative and Second-Order Condition for Optimum 

 12.4.1 Interpretation of the Second-Order Derivative 

12.4.2 The Second-Order Derivative Test 

12.5 Economic Applications of Optimisation   

12.6 Let Us Sum Up 

12.7 Answers/Hints to Check Your Progress Exercises 

12.0 OBJECTIVES 

The primary objective of this unit is to characterise Optimal points, which are 

also called ‘extremal points’ and lay down the conditions that need to be 

satisfied to classify a point as an ‘extremum’, either a maximum or a minimum.  

Optimum (plural: optima) is the generic term for maximum and minimum. The 

process of finding an optimum is called optimisation. The basic idea is that a 

decision maker (for example a consumer or a firm) has an objective function 

that the decision-maker is attempting to optimise (that is, maximise or 

minimise). In this unit we shall focus only on objective functions with one 

single decision variable.  Distinction will be made between the ‘local optima’ 

and the ‘global optima’. After reading the unit you shall be able to: 

• define the concept of an extremum point; 

• explain the concepts of objective function and decision variable; 

• discuss the conditions for a point to be classified as maxima or minima; 

and 

• describe some applications of optimisation problems in economics. 

12.1 INTRODUCTION 

The question that needs to be answered at the outset is as follows: What is the 

importance of ‘locating an extrema’ in the context of Economics?  The process 

is important because an economic unit (consumer, producer, etc.) is often faced 

with various different alternatives.  For instance, a consumer has to choose 

from different commodity bundles, or a producer has to choose amongst 

various combinations of factor inputs, viz. Labour, capital, etc.  The economic 

agent has to choose one particular alternative, which very often either 

maximise something (e.g. a producer will maximise profit, a consumer 

maximises her utility) or minimise something (e.g. cost of producing a given 

                                                           

* Contributed by Shri Saugato Sen, SOSS, IGNOU 
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output).  Economically, this process of maximisation or minimisation is 

characterised as a ‘process of optimisation’ or ‘the quest for the best’.  

However, from the standpoint of a mathematician, the location of a ‘maximum’ 

or a ‘minimum’ does not carry forth any notion of optimality. 

To solve an optimisation problem the first task of the economic agent is to 

construct an ‘objective function’.  The dependent variable of this function is the 

so-called ‘object’, which has to be either maximised or minimised.  The 

independent variable(s) of the function are the choice/decision/policy variables 

that can be manipulated by the agent to achieve the desired goal.  The 

optimisation process involves choosing a value of the independent variable that 

will yield an extreme value (‘minimum’ or ‘maximum’ as the case might be) 

for the requisite dependent variable of the objective function.  The process of 

locating an extremum value (either a maximum or a minimum) is discussed in 

the following sections.  Note, only classical technique for locating extreme 

positions, using differential calculus, will be discussed.  For simplicity it will 

be assumed that the objective function consists of a single independent 

variable. 

12.2 GLOBAL AND LOCAL OPTIMA 

Consider the following objective function where ‘f’ is assumed to be a 

continuous differentiable function: 

y = f (x)     ...(i) 

Suppose the relationship between y and x can be graphically represented by 

figure 12.1.  The point at which the graph of the function stops to increase and 

starts declining (see point A) looks like a little hilltop and the value that the 

function attains at this point is the largest it attains in its immediate vicinity.  

Conversely, the point on the graph (see point B) where the function stops 

decreasing and begins increasing look like a little valley and the value that the 

function attains at this point is the minimum in its immediate vicinity. 

Definition 1: If f (x0) ≥ f (x) for all x sufficiently close to x0 then f (x0) is said to 

be a relative maximum.  If f (x0) ≤  f (x) for all x sufficiently close to x0 then f 

(x0) is said to be a relative minimum.  Values that are either relative maxima or 

relative minima are referred to as relative extreme values or relative extrema. 
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Attention needs to be drawn to the term ‘relative’.  A ‘relative’ or ‘local’ 

maximum need not be the ‘absolute’ or ‘global’ maximum.  Similarly, a 

‘relative’ or ‘local’ minimum need not be the ‘absolute’ or ‘global’ minimum.  

This is also evident from the figure12.1. Comparison between points A (x2, y2) 

and C in figure 12.1, reveals that although the former falls in the category of a 

relative maximum, it however is not the maximum value attained by the 

function    y = f (x) overall.  Similarly, compare points B (x1,y1) and D, where 

point B is a relative minimum, but not the smallest value that the function 

attains overall. 

12.2.1 Slope of a Function 

The relative extreme values of a function can also be characterised in terms of 

its slope.  Assume that the total cost (C) incurred by a producer depends on his 

output (Q) alone.  The relationship between total cost and output is represented 

by the inverse S-shaped curve shown in figure 12.2.   

 

  

 

 

 

 

  

  

 

 

Suppose, to begin with, the producer is producing OQ1 level of output at a cost 

of OC1.  This output-cost combination corresponds to point T at the total cost 

curve.  To produce an additional output of Q1Q3, the producer has to increase 

his cost by the amount C1C3, thus ∆C/∆Q = C1C3  / Q1Q3.  Geometrically, this 

is the ratio of the two line segments, BR/TR and is equal to the slope of the 

chord TB.  This ratio measures the average rate of change in cost for a 

particular change in output.  If we vary the magnitude of change in output, 

reducing it to smaller margins, what happens to the total cost?  For example if 

the producer instead of increasing his output to OQ3, increases it to only OQ2, 

then the cost increases by a lower margin of C1C2.  In this case ∆C/∆Q = C1C2  

/ Q1Q2 = slope of the new chord TA.  Now, letting the interval, representing 

∆Q grow progressively smaller (i.e., ∆Q → 0), it more closely approximates a 

single point, in our case Q1.  The resultant increment in output is measured 

from the slope of the line segment TD, i.e., the tangent to the total cost curve at 

point T.   

In other words, at Q1,     
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In general, the slope of a function  f (x) at any point is equivalent to the first 

derivative of the function [symbolically represented as f 
′
(x)] at that point and is 

equal to the slope of the tangent to the function at the requisite point. The first 

derivative of a function plays a significant role in determining the extrema of 

the function without even plotting it graphically.  This brings us to the second 

definition of relative maxima and minima outlined as follows: 

12.2.2  First Derivative Test and Relative Optima 

If the first derivative of a function f (x) at x = x0i.e., if f 
′
(x0) = 0, then the value 

of the function at x0 i.e., f (x0) will be  

i) A relative maximum if the derivative f 
′
(x) changes its sign from  

positive to negative from the immediate left of the point x0to its 

immediate right. 

ii) A relative minimum if the derivative f 
′
(x) changes its sign from negative 

to positive from the immediate left of the point x0to its immediate  

right. 

iii) Neither a relative maximum nor a relative minimum if f 
′
(x) has the same 

sign on both the immediate left and right of the point x0.   

The value of the dependent variable, at which, the first derivative of the 

function is equal to zero i.e. at x0 is referred to as the critical value of x.  The 

value of the function at its critical point i.e.f (x0) is known as the stationary 

value.  The point with the coordinates equal to x0and   f (x0) is accordingly 

called the stationary point.   

Looking back at figure 12.1, it is evident that points A and B are stationary 

points.  Point A is a relative maximum because for all values of x in the 

immediate left of x2, the function is rising (the first derivative of f (x) is 

positive) and for all values of x in the immediate right of x2,the function is 

falling (the first derivative of f (x) is negative).  It is only at x2, the critical 

point, the first derivative of the function is zero and f (x2) is the corresponding 

stationary value.  Note, the slope of the tangent to the function at A i.e. AT is 

parallel to the x-axis and is equal to zero.  Analogously, one can see that point 

B is a point of relative minimum.    

To get a clearer understanding of the process of location of extremum values of 

a function let us turn to the following examples: 

Example 1  y = 50 + 90x – 5x
2
 

Step 1: Find the first derivative of the function. 

 

Step 2: Equate the first derivative of the function to zero 

  

Step 3: Solve for x to obtain the critical value 

The critical value of the function is x = 9 and the corresponding stationary 

value is y = f (9) =455.  

 

( ) 90 10    or   10(9 )f x x x= − −′

10(9 ) 0x− =
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Let us plot the function in Example 1. 

The graph of this function is shown in Figure 3.   

 

Figure 12.3: y = 50 + 90x −−−− 5x
2
 

It is easily verified that for all points in the neighbourhood left of x = 9, the 

function is increasing, implying that its first derivative is positive.  Similarly, 

for all points in the immediate neighbourhood right of x = 9, the function is 

decreasing, implying its first derivative is negative.  This satisfies condition (i) 

of the first derivative test and establishes, the critical value of x = 9 (located in 

the peak of the hill!) as a relative maximum. The corresponding stationary 

value of the function is y = 455. 

Example 2 

 

Step1:  Find the first derivative of the above function. 

 

Step 2: Set the first derivative of the function equal to zero. 

 

Step 3: Solve for x to obtain the critical value. 
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y

x −−−−6 −−−−3 0 3 6 9 10 11 

y −−−−670 −−−−265 50 275 410 455 450 435 
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The critical values of x are x = +1 and x = −−−−1, respectively.  The corresponding 

stationary values of y are f (+1)= 3 and f (−−−−1) = 7, respectively. 

To distinguish between the relative maximum and relative minimum, let us plot 

the function in Example 2. 

 

x −−−−3 −−−−2 −−−−1 0 1 2 3 

y −−−−13 3 7 5 3 7 23 

 

The relationship between x and y is graphically represented in Figure 12.4. 

 

Figure 12.4: y = x
3 −−−− 3x + 5 

It is easy to verify that f 
′
(x) > 0 for x<−−−−1 and f 

′
(x) < 0 for x>−−−−1 in the 

immediate neighbourhood of x = −−−−1.  Hence, the corresponding value of the 

function f (−−−−1) equal to 7 is established as a relative maximum.  Similarly, note 

that f 
′
(x) < 0 for x <1 and f 

′
(x) > 0 for x >1 in the immediate neighbourhood of 

x = 1.  Consequently, the corresponding value of the function f (1) equal to 3 is 

established as a relative minimum. 

Caution: Zero slope while necessary is not sufficient to establish a relative 

extremum.  If the first derivative of a function f (x) is equal to zero at a value of 

x say x0, then this does not automatically ensure that x0 is a relative extremum 

of the function.  

To get a clearer understanding of this issue let us turn to Example 3 

Example 3: Consider the following function whose domain is assumed to be 

the interval [0, α). 

Differentiating with respect to x we get the first derivative as 

-60
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Setting the first derivative of the function equal to zero yields x = 1 as a critical 

value of x.  The corresponding stationary value of y is 10.33.  To ascertain 

whether the stationary value is also a relative extremum we have to perform the 

first derivative test.  The graphic representation of the function in Example 3 is 

as follows: 

x 0 1 2 3 4 5 6 

y 10 10.33 10.66 13 19.33 31.66 52 

The graph of the function is presented in Figure 12.5. 

 

Figure 12.5: y = (1/3)x
3
 - x

2
 +x + 10 

The function attains a zero slope at the point where x = 1.  Even though f 
′
(1) is 

zero-which implies f (1) is a stationary value— the derivative does not change 

its sign from the left -hand side neighbourhood of x = 1 to the other.  In fact, as 

confirmed by the graph, the function is more or less flat in the immediate 

region of x = 1.  On the basis of the first derivative test mentioned earlier it can 

be asserted that the stationary value f (1) = 10.33 is neither a relative maximum 

nor a relative minimum. 

In sum, a relative extremum must be a stationary value (although the reverse is 

not necessarily true).  To find the relative maximum or minimum of a given 

function, the first step would be to find the critical value of the dependent 

variable at which the first derivative of the function is equal to zero.  This will 

enable us to find the stationary values of the function.  To ascertain whether the 

stationary value is also a relative maximum or relative minimum one needs to 

apply the first derivative test. 

Check Your Progress 1 

1) Find the maximum and minimum values of  

a) 23 23 +−= xxy  

………………………………………………………………………………. 

………………………………………………………………………………. 
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b) 21243 234 +−−= xxxy .  

………………………………………………………………………………. 

………………………………………………………………………………. 

………………………………………………………………………………. 

………………………………………………………………………………. 

………………………………………………………………………………. 

12.3 THE PROBLEM OF NON-DIFFERENTIABILITY 

So far we have assumed that the function is a continuous differentiable 

function.  In this section, we will look into two cases where this restrictive 

assumption is relaxed.  

 

 

 

 

 

 

 

 

 

In figures 12.6 and 12.7, we represent relationships between x and y that 

exhibit two important types of irregularities.  In figure 12.6, the function is 

discontinuous at x1.  At x1, the graph has a complete break or discontinuity AB.  

The difficulty is that in this discontinuous stretch, the first derivative of the 

function is not even defined.  It is not possible to draw a unique tangent to the 

curve at these points.  However, note at A, the function attains a maxima i.e., at 

x1 the dependent variably y attains the largest possible value.  A similar kind of 

problem is also encountered in case of the function exhibited in figure 12.7. In 

this case, the graph of the function has a kink at point C corresponding to x2.  

The first derivative of the function is not defined at the kink and there is no 

unique tangent to the curve at x2.  Once again note that the function attains a 

maxima at point C corresponding to x2.  In other words, in the presence of 

discontinuities and kinks the derivative is not defined and hence it is not 

possible to employ the maximisation criteria outlined earlier. 

Hitherto we have only considered first derivative of a function.  In this section 

we will define the second derivative of the function and subsequently see the 

role played by it in determining the relative extrema of a function. 

12.4 THE SECOND ORDER DERIVATIVE AND 

SECOND-ORDER CONDITION FOR OPTIMUM  

Assuming that the first derivative f′(x) is itself a function of x, the second 

derivative of the function is obtained by differentiating this function again with 

Figure 12.6 
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respect to x.  Symbolically, the second derivative is represented as f′′(x).  The 

double prime indicates that the function y = f (x) has been differentiated twice 

with respect to x.  The expression (x) following the double prime indicates that 

the second derivative is also a function of x.  If the second derivative f′′(x) 

exists for all values in the domain, the function f (x) is said to be twice 

differentiable; if, in addition,    f′′(x) is continuous, the function f (x) is said to 

be twice continuously differentiable. 

Example 4: Find the second derivative of the following function 

Step 1: Differentiate the equation in Example 4 with respect to x to find the 

first derivative.  We obtain the following equation: 

Step 2: Now differentiate this equation with respect to x to obtain the second 

derivative of the original function: 

     f ''(x) = 24x + 10 

12.4.1 Interpretation of the Second Order Derivative 

The first derivative of the function i.e.,  f′(x) measures the slope of the function 

or the rate of change of the function.  If the first derivative is positive, i.e., if 

f′(x)> 0, then the function is increasing; and if the derivative is negative i.e., if 

f′(x)<0, then the function is decreasing.  Analogously the second derivative i.e., 

f′′(x) measures the rate of change of the first derivative f′(x).  If the second 

derivative is positive i.e., if f′′(x)>0, then there is an increasing rate of change; 

and when f′′(x)<0, then the rate of change is decreasing.  In other words, the 

second derivative measures the rate of change of the rate of change of the 

original function f (x).   Note that if f ′(x)> 0and f′′(x)> 0,then this means that 

the function has a positive slope which is changing at an increasing rate. In 

other words, the function is said to be increasing at an increasing rate.  

Conversely,if f ′(x)< 0and f′′(x)<0,then this means that the function has a 

negative slope which is changing at a decreasing rate. In other words, the 

function is said to be decreasing at a decreasing rate. 

12.4.2  The Second Order Derivative Test  

This test uses the second derivative of the function in question, hence the name. 

Assume that f (x0) = 0, (so x0 is a critical point!), then 

1) If f′′(x0) > 0 then f (x0) is a relative minimum value. 

2) If f′′(x0)< 0 then f (x0) is a relative maximum value. 

As mentioned earlier, the zero slope condition, in other words f′(x) = 0at x = x0, 

was deemed to be a ‘necessary condition’ for f (x0) to be a relative extremum.  

Since this is based on the first derivative of the function, it is also known as the 

first-order-condition.  Once we verify that the first order condition is satisfied, 

the negative (positive) sign of f′′(x) at x = x0 is sufficient to ensure that x0 

corresponds to a relative maximum (minimum).  Since the sufficiency 

condition is based on the second derivative of the function, it is also referred to 

as the second-order-condition.      

31012)( 2 −+=′ xxxf

10354)( 23 +−+== xxxxfy
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To get a clearer understanding of how the second derivative enables us to 

determine whether the stationary value is a ‘relative maximum’ or a ‘relative 

minimum’, let us look back at figure 12.1.  Recall, the extreme values of this 

function lies in the level stretch, either in the bottom of the hill (point B) or at 

the peak of the hill (point A).  Around the point on the graph corresponding to 

the relative maximum value (point A), the graph is concave down. This makes 

sense, since A (x2, y2) is the highest point on the graph in an interval around x2, 

so the graph must ‘bend down’ away from the peak, making it concave down.  

If we pick any two points in this region of the graph, then the straight line 

joining these two points will lie entirely below the graph except for the two end 

points on the curve. 

This ensures that at x equal to x2, f′′(x2) < 0 is satisfied.  Similarly,around the 

point B (x1, y1) on the graph in figure 12.1, the graph is convex up. Once again, 

this makes sense. This point is the lowest point on the graph in an interval 

around x1, so the graph has to ‘bend up’ away from the point (x1, y1), making it 

convex up.  If we pick any two points in this region of the graph, then the 

straight line joining these two points will lie entirely above the graph except for 

the two end points on the curve. This ensures that at x equal to x1, f′′(x1) > 0 is 

satisfied.     

Let us apply this test to the function in example 2.  We have the critical points 

x = +1 and x = −−−−1, and the first derivative, f′(x) = 33 2 −x . The second 

derivative is then f′′(x) = 6x. Applying the second derivative test to our two 

critical points we find that f′′(1) = +6 (> 0), making f (1) = 3 a relative 

minimum and f′′(−1)= − 6 (< 0) making f (−1) = 7 a relative maximum. 

Similarly, the second order condition proves to be a very useful test to 

determine whether the stationary value obtained in example 3 corresponds to a 

relative extremum without actually plotting the function.  In this case, we 

obtained the first derivative, f′(x) = 122 +− xx and the critical point at x = +1.  

The second derivative is then f′′(x) = 22 −x . Applying the second derivative 

test to our critical point, we find that f′′(+1) = 2 − 2 = 0.  In other words, the 

second-order-condition does not hold at the critical point x = +1, establishing 

that the stationary value    f (+1) = 10.33 is neither a relative maximum nor a 

relative minimum.  

Check Your Progress 2 

1) Find the relative maxima and minima of y by the second-derivative test: 

a)  353
3

1 23 ++−= xxxy  

………………………………………………………………………. 

………………………………………………………………………. 

………………………………………………………………………. 

b)  )0(           
)1( 2

≠
−

= x
x

x
y  

………………………………………………………………………. 

………………………………………………………………………. 

………………………………………………………………………. 
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2) If a monopolist has a total cost of cbxaxC ++= 2 and if the demand 

law is
2xp αβ −= , show that the output for maximum revenue is  

αα

βα

33

)(3
2

aba
x −

−+
=

 

……………………………………………………………………..……. 

……………………………………………………………………..……. 

……………………………………………………………………..……. 

……………………………………………………………………..……. 

……………………………………………………………………..……. 

……………………………………………………………………..……. 

12.5 ECONOMIC APPLICATIONS OF 

OPTIMISATION   

We can apply the first and second order conditions depicted earlier to show the 

determination of the optimal level of output a manufacturer needs to produce in 

order to maximise his profits. 

Suppose, the demand faced by a monopolist is a function of the price of the 

product alone 

i.e., Q = f1(P). Hence, the total revenue accruing to the monopolist is R = P.Q = 

R (Q). 

Also, the cost of production for the monopolist is a function of his output i.e.C 

= C (Q). 

The profit generated by the monopolist, by the definition, is his total revenue 

net of total cost of production i.e.π(Q) = R (Q) – C (Q). The monopolist aims 

at producing that level of output that will maximise his profit. Question is how 

does he get to know the optimal level of output? 

The first-order-condition necessitates that the profit function has a zero slope at 

the optimal point. 

Step 1: Differentiate the profit function with respect to Q and equate it to zero.      

0)( =−=Π′=
Π

dQ

dC

dQ

dR
Q

dQ

d
 

MCMR
dQ

dC

dQ

dR
== or       

Where, MR shows the Marginal Revenue earned by the monopolist i.e., the 

increment in revenue (R) due to an increment in his sales (Q).  The Marginal 

Cost, denoted by MC, shows the increment in cost that has to be borne by the 

monopolist in order to produce an additional output.  The first-order condition 

of profit maximisation shows that for an output level to be optimal it is 

necessary that MR = MC at that point.  
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The second-order-order condition requires the following: 

0)(
2

2

2

2

2

2

<−=Π ′′=
Π

dQ

Cd

dQ

Rd
Q

dQ

d
 

or
2

2

2

2

dQ

Cd

dQ

Rd
<  

That is, Slope of MR< Slope of MC at the optimal level of output. 

In sum, the necessary and sufficient condition of profit maximisation requires 

that the monopolist continue producing up to that point corresponding to which 

the Marginal Revenue is equal to the Marginal Cost and also the slope of 

Marginal Revenue function is less than that of his Marginal Cost function. 

A Numerical Application 

Problem: Determine the optimal level of production for a monopolist whose 

demand function is Q = 50 – 0.5P and his total cost function is C = 50 + 40Q.  

Also, what is the maximum profit earned by the monopolist at that point? 

Solution: The linear demand function can be re-written as P = 100 – 2Q.  

Hence, the total revenue function of the monopolist is as follows: 

22100)2100(. QQQQQPR −=−==  

Hence, Q
dQ

dR
MR 4100 −==  

The total cost function is C = 50 + 40Q 

Hence, 40==
dQ

dC
MC  

To find the optimal Q, we implement the first order condition of profit 

maximisation and equate MR with MC 

Hence, 15or      404100 ==− QQ  

To ensure that the second-order-condition of profit maximization holds for this 

level of output we need to differentiate both the MR and MC function with 

respect to Q.   

We obtain slope of MR = 4)4100(
2

2

−=−= Q
dQ

d

dQ

Rd
 and slope of MC =

0
2

2

=
dQ

Cd
 

This shows that the second-order-condition is satisfied at the optimal level of 

output because –4 < 0. 



 

 

223

Concave and Convex 

Functions
Substituting the optimal output level i.e. Q = 15 in the monopolist’s Revenue 

and Cost function we obtain the profit at this point as  

4006501050)()( =−=−=Π QCQR  

Hence solution to the above problem is Q = 15 and π = 400.  

Check Your Progress 3 

1) Assume that an entrepreneur’s short-run total cost function is given by 

661710 23 ++−= qqqC .  Determine the output level at which he 

maximises profit if price of the product is 5 per unit. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

2) A radio manufacturer produces x sets per week at a total cost of Rs  
�

�
�� + 13� + 500.  He is a monopolist and the demand of his market is 

� = 75 −


�
�, where the price is Rs. p per set.  Show that the maximum 

net revenue is obtained when about 30 sets are produced per week.  What 

is the monopoly price? 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

…………………………………………………………………………….. 

3) A purely competitive firm produces output Q by incurring a variable cost 

Rs. V per unit. Its fixed inputs cost the firm a total of Rs. F per period.  

The price of the output is Rs. P.  

a) Write the revenue function, total cost function and the profit 

function. 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 
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b) What is the first-order condition for profit maximisation? Interpret 

the condition economically. 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

c) What economic circumstances would ensure that profit is 

maximised rather than minimised? 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

12.6 LET US SUM UP 

In this unit, we showed how to find stationary point of a function. We have 

tried to familiarise you with optimisation of a real valued function. We have 

taken the case of one independent variable. The unit discussed the concept of 

relative extreme values. First- order condition for optimisation was discussed. 

The problem of non-differentiability was taken up. Subsequently the unit went 

on to discuss second-order derivatives and second-order conditions. Finally, 

some economic applications of optimisation with one variable were discussed. 

12.7 ANSWERS/HINTS TO CHECK YOUR 

PROGRESS EXERSISES 

Check Your Progress 1 

1)  a) Critical points will be 0 and 2. After graphical analyses, you will get 

maximum at x = 0, with maximum value of the function as 2; and 

minimum at x = 2, with minimum value as     – 2. 

b) Critical points will be 0, –1, and 2, with maximum at x = 0 and 

corresponding value of function as 2; minima at x = – 1 and 2 with 

corresponding value of function as – 3 and – 30, respectively. 

Check Your Progress 2 

1) a)  Critical points are x = 1 and x = 5; Function attains relative maxima at x 

= 1 with relative maximum value of the function being 
���


; and it attains 

relative minima at x = 5 with relative minimum value of the function 

being 
���


. 
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b)  Critical points are x = 1 and x = −1; Function attains relative maxima at x 

= −1 with relative maximum value of the function being −4; and it 

attains relative minima at x = 1 with relative minimum value of the 

function being 0. 

Note: Student should be clear with the fact that relative minimum is not 

the minimum possible value of the function, whereas relative maximum 

is not the maximum possible value of the function. 

2) Read section 12.4 and answer. Also recall that a Monopoly firm attains 

equilibrium, or in other words an output level resulting in maximum 

revenue when Marginal Revenue (MR) = Marginal Cost (MC). 

Check Your Progress 3 

1) q = 6 

2) p = 75 

3)  

a) Revenue function (R) : R(Q) = QP ; Total cost function (C) : C(Q) = F 

+ QV ; Profit function (P): P(Q) = R(Q) −C(Q) = QP− (F + QV) = 

Q(P−V)–F 

b) First order condition for profit maximization:  
��(�)

��
= 0 ⟹

��(�)

��
−

��(�)

��
= 0 ⟹ �� = �� 

Thus, profit maximizing competitive firm will choose Q so that 

marginal revenue equals marginal cost. 

c) To make sure that profit is maximized and not minimized, we use the 

second-order condition, 
���( )

� �
< 0 ⟹

�"#

� 
<

�"$

� 
, that is slope of MC 

curve should be greater than that of MR curve. Recall that for a 

competitive firm, MR is constant and equal to the market price, so its 

curve will be a horizontal line at the market price, and thus the marginal 

cost curve should be upward sloping at the equilibrium point. 

 

 

 

 

 

 

 

 

 




