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COURSE INTRODUCTION 

Welcome to the second course on mathematical methods in Economics. You 
are coming to this course having already done the first course on 
mathematical methods in Economics. This means that unlike when you met 
the course  BECC 102, this time you already have some insight into how 
mathematics is applied in economic analysis. You are familiar with the use of 
mathematics as a language. You understand how various concepts in 
mathematics are utilized to explain economic processes; you also know how 
different areas of economic analysis invoke specific ideas and concepts in 
mathematics to aid in explanation and analysis. 

This course proceeds further from where course BECC 102 left off. The 
present course takes up further topics in mathematical methods. It has ten 
units spread over four Blocks. The first Block, titled Functions of Several 
Variables, has two Units: unit 1 titled Multivariate Calculus I and unit 2 
titled Multivariate Calculus II. This first block deals with functions where 
one dependent variable is a function of several independent variables. This 
marks a change from what you studied in course BECC 102. This block 
discusses how we can study the change in the dependent variable as a result 
of changes in one or all of the independent variables. For this the block 
discusses techniques of differential calculus, like partial derivatives, total 
differentials, and total derivatives. The first unit discusses the mathematics of 
multivariate calculus, and the second discusses a variety of applications to 
economics, both in microeconomics and macroeconomics. 

The second block is titled Differential Equations. In the last Block of the 
course BECC 102, you had studied difference equations and their 
applications to economics. Like difference equations, differential equations, 
too, are useful to study dynamic processes, that is processes that take place 
over time. However, unlike difference equations which show discrete 
dynamic processes, differential equations are useful to study continuous 
dynamic processes, and are equations that involve derivatives. This block 
also has two units. In the block on difference equations in BECC 102, the 
units were organized as linear and non-linear equations. In the present course, 
the block on differential equations has two units organized as first-order and 
second-order differential equations. Unit 3 is titled First-order Differential 
Equations, and unit 4 is titled Second-order Differential Equations. 

The title of Block 3 in this course is Linear Algebra. As the name suggests 
this deals with topics having to do with linear equations and equation systems 
and their manipulations.  This block has three units. Unit 5 titled Vectors 
and Vector Spaces, discusses vectors,  which are ordered n-tuples of 
numbers. The unit discusses geometric and algebraic properties of vectors. 
The next unit, unit 6 is titled Matrices and Determinants. Matrices are the 
basis of linear algebra.  Determinants are formed from a particular type of 
matrix called square matrices, and are single numbers. The final unit in Block 
3, unit 7, titled Linear Economic Models, brings together the concepts and 



techniques discussed in units 5 and 6, and gives a variety of economic 
applications of linear algebra in economics. 

The final Block of the course is titled Multivariate Optimisation. This 
Block has three units. Unit 8, titled Unconstrained Optimisation,  discusses 
optimization of multivariate functions that are not subject to any constraints. 
The next unit, unit 9 discusses constrained optimization, and has as the title 
Constrained Optimization with Equality Constraints. Thus the constraints 
studied here are linear. The final unit of this Block, and of the course,  unit 10 
titled Duality discusses certain specialized topics related to optimization, 
particularly multivariate optimization, both constrained and unconstrained. 
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BLOCK 1 

FUNCTIONS OF SEVERAL VARIABLES 



BLOCK 1  INTRODUCTION 
The first Block of this course in on calculus. But it is on differential calculus 
applied to multivariate functions. The title of this Block is Functions of 
Several Variables. The Block has two units, titled multivariate Calculus-I 
and multivariate Calculus-II. The first Unit is on the mathematics of 
multivariate Calculus and the second unit discusses economic applications. 

The first Block, titled Functions of Several Variables, has two Units: unit 1 
titled Multivariate Calculus I and unit 2 titled Multivariate Calculus II. 
This first block deals with functions where one dependent variable is a 
function of several independent variables. This marks a change from what 
you studied in course MECC 102. This block discusses how we can study the 
change in the dependent variable as a result of changes in one or all of the 
independent variables. For this the block discusses techniques of differential 
calculus, like partial derivatives, total differentials, and total derivatives. The 
first unit discusses the mathematics of multivariate calculus, and the second 
discusses a variety of applications to economics, both in microeconomics and 
macroeconomics. 
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Multivariate 
Calculus-IUNIT 1 MULTIVARIATE CALCULUS-I 

Structure 

1.0 Aims and Objectives 
1.1 Introduction 
1.2 Functions of Several Variables 
 1.2.1 Functions of Two Independent Variables 

 1.2.2 Level Curves  

 1.2.3 General Multivariate Functions 

1.3 Partial Derivatives 
 1.3.1 First- Order Partial Derivatives  

 1.3.2 Second-Order Partial Derivatives  

1.4 Total Differentials and Total Derivatives 
 1.4.1 Total Differentials 

 1.4.2 Total Derivatives 

1.5 The Chain Rule for Multivariate Functions 
1.6 Implicit functions  
1.7 Homogeneous and Homothetic functions 
1.8 Let Us Sum Up 
1.9  Answers to Check Your Progress Exercises 

1.0 OBJECTIVES 

After reading this unit you will be able to: 

• Describe functions where a dependent variable depends on more than 
one independent variable; 

• Explain the concept of a partial derivative; 

• Discuss the techniques of total differentiation, and obtain total 
derivatives;  

• Explain what homogeneous and homothetic functions are; and 

• Explain the chain rule with regard to functions of more than one variable.  

1.1  INTRODUCTION 

In the course on mathematical methods in economics (BECC 102) that you 
studied in the previous semester, you learnt about differentiation. However, 
there you studied about differentiation of univariate functions, that is, 
functions where the dependent variable is dependent on one independent 
variable. This Unit takes up the case of function of more than one 
independent variable. It also considers differential calculus pertaining to 
multivariate functions. The Unit first discusses the concept of function of 
several variables in section 1.2 Section 1.3 deals with partial derivatives, 
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which means differentiating the function with respect to one independent 
variable, keeping others unchanged. Section 1.4 takes up the case of total 
differentiation, which means the change in the dependent variable as a result 
of changes in all the independent variables. This section also discusses total 
derivatives. The next section, section 1.5 discusses the chain rule that you 
studied in the previous unit, but also somewhat different and new. The 
subsequent section, section 1.6, discusses the differentiation of functions that 
are defined implicitly. Of course, the discussion of implicit function is with 
regard to functions, which when expressed explicitly, would be multivariate. 
This section also discusses the important implicit function theorem. Finally, 
in section 1.7 you are introduced to an important type of multivariate 
functions, called homogeneous functions. Other than the definition of a 
homogeneous function, some important properties are discussed, including a 
theorem called  Euler’s theorem. Homothetic functions are defined as well, 
and their relationship to homogeneous functions is mentioned. 

Let us state explicitly that the present unit discusses the content of all the 
topics and concepts only in mathematical terms. That is, the mathematics of 
these concepts is discussed in the present unit. The next unit, unit 2 is entirely 
devoted to the applications of the ideas in this unit to economics, like the 
theory of the consumer, producer’s theory, markets, macroeconomics, and so 
on. Just understand the content of this unit well, and you will appreciate 
better the matter in the next unit, as well as what you learn in your 
microeconomics and macroeconomics courses. 

1.2  FUNCTION OF SEVERAL VARIABLES 

In this section we introduce you to functions where the dependent variable is 
a function of more than one independent variable. We begin with the simplest 
case where the dependent variable is a function of two independent variables. 
Next we discuss the idea of level curves and finally we take up the general 
case of n- independent variables. 

1.2.1  Functions of Two Independent Variables 

In the course on mathematical methods in economics that you studied in the 
last semester, we have discussed almost exclusively functions of one variable 
�� = �(�)� that is, functions where a variable is dependent on one 
independent variable. But in real life one comes across cases where more 
than one independent variables influence one dependent variable. For 
simplicity, let us begin by considering a function which shows an 
independent variable, say z, being a function of two independent variables, x 
and y. In notation 

( )yxfz ,=  

We can define the above function in the following way. A function f of two 
real variables x and y with domain D is a rule that assigns a specified number 
f(x, y) to each point (x,y) in domain D. In the above function, x and y are 
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Multivariate 
Calculus-Icalled the independent variables, or arguments of the function f. The variable 

z is called the dependent variable. The domain of the function f  is the set of 
all possible ordered pairs of the independent variables, while the range is the 
set of corresponding values of the dependent variable.  In some contexts, z is 
called the endogenous variable while x and y are called exogenous variables. 

Apart from simplicity, one reason for beginning with functions of only two 
variables is that we are able to draw diagrams. We can depict ( )yxf ,  
diagrammatically in three dimensional space by drawing three mutually 
perpendicular axes Ox, Oy and Oz.  Figure 1.1 below shows such a diagram 
depicting a surface in three-dimensional space, and a point  

(x0, y0, z0) on that surface. 

 

 

 

  

 

 

 

 

 

 

 

 

 Now let us suppose that this surface is traced out by the function ( )yxfz ,= , 
and that z is traced out as (x,y) varies over the xy-plane. Then ( )000 , yxfz = . 

1.2.2 Level Curves 

If we have z = f(x,y), the graph of this function in three-dimensional space 
can visualized as being cut by horizontal planes that are parallel to the x y – 
plane. The intersections between the planes and the graph can be projected 
onto the x y – plane. If the intersecting plane is at z = k then the projection 
onto the x y – plane is known as the level curve or contour at height k for the 
function f. the contour or level will consist of points that satisfy the equation 

( ) kyxf =,  

Think of a map. It shows the geographical location of a place (in terms of 
latitudes and longitudes, for example). To show altitude or height, what we 
can do (in maps showing physical properties of places), is to draw a set of 

z 

y 

x 

(x0, y0, z0) 

z0 

x0 
y0 



 

 

Functions of Several 
Variables 

14 

contours or level curves connecting those points on the map that lie at the 
same altitude, or elevation above sea level. So on a two-dimensional map 
(basically representing direction, distance, area, and so on) we can show the 
third dimension (altitude) by drawing a set of level curves. 

It is the same idea that we apply to the diagrammatical representation of 
functions of two variables. You can think of the graph of a function in three-
dimensional space (as shown on a two-dimensional diagram) as being 
represented by horizontal planes that are parallel to the x-y plane. These 
intersections between the planes and the graph, we project onto the x-y plane. 

At this point, think back to the unit on coordinate geometry that you studied 
in course BECC 102. There you studied that the equation of a line parallel to 
the y-axis is cx = , while the equation of a line parallel to the x-axis is cy =  

In the present context, we are talking of the equation of a plane (because it is 
in three dimensions x-y-z). hence the equation of the plane parallel to the xy-
plane will be, in an analogous fashion, cz = . This shows the projection of 
the intersection of this plane with the graph at height c for z. since ( )yxfz ,=
, this projection  is called the level curve for f at height c. This  level curve 
then consists of all points that satisfy the equation 

( ) cyxf =,  

The level curve thus connects points whose functional values are equal. In the 
above, the level curve connects all the points for which the value of f is c. it is 
the locus of all points, that is, the combination of x and y, for which the value 
of z is equal to c. 

1.2.3  General Multivariate Functions 

In subsection 1.2.1 above, we had discussed about functions of two variables. 
We can extend the discussion to functions in which the dependent variable is 
a function of several independent variables. Let us denote a list of n variables 
by ( )nxxx ,..., 21 We say that the variable x is indexed by i, where i = 
1,2,…,n. This collection of n-variables (each ix is a real number) is called a 
vector. A vector is an ordered n-tuple. This was mentioned in Units 1 and 2 
of course BECC 102 that you studied in the last semester. You will study 
about vectors in much greater detail in Block 3 of the present course. 

Coming back to the vector ( )nxxxx ,..., 21= , suppose a variable z is a function 
of all these n variables. We denote this function as ( )nxxxfz ,...,, 21= . 

One point that presents itself immediately is that now we are in n+ 1 
dimension. Suppose n =2 where n is the number of independent variable. 
This is what we discussed in subsection 1.2.1. There n + 1 was = 3 and we 
could depict f on a diagram. When n is greater than 2, we end up with more 
than 3 dimensions, and the function cannot be depicted diagrammatically. So 
we have to think of the function conceptually and in an abstract manner. 
When a line is generalised to two-dimensions, it is called a plane. Above that 
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Calculus-Iit is called a hyperplane. A general surface in higher dimensions is called a 

hypersurface. Just remember that the function ( )yxfz ,=  , which can as well 
be depicted ( )21, xxfz =  is simply a special case of ( )nxxxfz ,...,, 21= , 
where n = 2. 

1.3  PARTIAL DERIVATIVES  

In your study of derivatives in the course BECC 102, you came to realise that 
differential calculus studies how the dependent variable changes due to a 
change in the independent variable, when the change in the independent 
variable is infinitesimally small.  In that course you studied the derivatives of 
functions of a single independent variable. In this unit we have discussed in 
the section above about functions where the dependent variable is a function 
of several independent variables. So intuitively you can think of exploring the 
idea about how to study changes in the dependent variable due to changes in 
the independent variables. Consider the simplest multivariate function 

( )21, xxfz = . We want to see how  changes  due to changes in x1 and x2. 
Now we can study the change in z when both the independent variables 
change together or when one of them changes and the other does not. Extend 
the idea to a general multivariate function ( )nxxxfz ,...,, 21= . The rest of the 
unit is concerned with a study of such changes. In this section we deal with 
the study of derivatives of the function due to a change in only one of the 
independent variables at a time. Subsequent sections will deal with situations 
of all independent variables changing. When we take derivatives of the 
function with respect to an independent variable, keeping other independent 
variables constant, it is called a partial derivative. Let us begin the study of 
partial derivatives 

1.3.1  First- Order Partial Derivatives 
Consider the function ( )nxxxfz ,...,, 21= . Here let us assume that the variables 
xi (i = 1,2,…,n) are all independent of one another so that each variable can 
individually vary without influencing the other independent variables. 
Suppose there is a change in x1 by Δx1 while x2,…xn all remain unchanged 
(fixed), there will be a corresponding change in z, namely Δz. The quotient 

1x
z

∆
∆  in this case can be expressed as  

( ) ( )
1

21211

1

,...,,...,,
x

xxxfxxxxf
x
z nn

∆
−∆+

=
∆
∆  

If we take the limit of 
1x
z

∆
∆ as Δx1 → 0, the limit we obtain is called the partial 

derivative of  with respect to x1. The term partial derivative is used to 
indicate that the other independent variables are held constant. We can derive 
similar partial derivatives of the function with respect to each of the other 
independent variables. The process of taking partial derivatives is known as 
partial differentiation.   
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We saw in course BECC 102 that derivatives are denoted by the symbol d. 
Thus if we have y = f(x) then the derivative of y with respect to x is denoted 

dx
dy . Partial derivatives are denoted by the symbol ∂. This is a variation of the 

lower-case Greek letter ‘delta’ δ.  Hence we write the above partial derivative 

as 
1x
z

∂
∂  We call this “partial derivative of  with respect to x1. For the generic 

variable xi, we write the partial derivative of with respect to xi  as 
ix

z
∂
∂  

We sometimes write the partial derivative as z
xi∂
∂ .  With such a symbol, the 

ix∂
∂  part can be taken as a mathematical operator symbol showing “taking 

partial derivative (of some function)”. Since z  is a function of xi (i = 

1,2,…,n), we can also denote the partial derivative by 
ix

f
∂
∂ .  We have seen 

earlier that when we have y = f(x), then 
dx
dy  is also sometimes denoted ( )xf ′ . 

In the case of partial derivatives, we sometimes use subscripts to denote the 

partial derivatives. Thus 
ix

f
∂
∂   is sometimes denoted if  

If we denote a function as , say z =f(x, y, w, v), then we can denote the partial 
derivatives as vwyx ffff ,,,  rather than 4321 ,,, ffff  

To sum up, suppose we have ( )nxxxfz ,...,, 21= .  

Then we can depict partial derivative of z with respect to, say x3, by 

3x
z

∂
∂ or 

3x
f

∂
∂ or f

x3∂
∂ or 3f  

Let us now take a few examples to see how partial derivatives are computed. 
For simplicity let us consider functions of two independent variables. To 
compute partial derivatives, remember two things: first, when you take partial 
derivative with respect to one variable, treat the other variable(s) as constant; 
and second, remember that the derivative of a constant equals zero. Also 
remember that if you have a variable multiplied by a constant, then the 
derivative of this product with respect to the variable is the product of the 
constant and the derivative of this variable. For example, (d [cx]/dx =cdx/dx; 
and d[cx2]/dx =2cx).  Moreover, the usual rules of differentiation, like sum 
and difference rules, product and quotient rules, and the composite function 
rules hold in the case of partial derivatives also. 

Example 1 Let ( ) 43, yyxyxf +=  

Partially differentiating with respect to x, 
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Calculus-I( ) ( )43 y

x
yx

x
f

∂
∂

+
∂
∂

=
∂
∂  

 The first term on the right-hand side is yx23 and the second term is zero 
(because y is a constant, and so is y raised to the power 4. 

Thus yx
x
f 23=
∂
∂  

Similarly 

( ) ( ) 3343 4yyxy
y

yx
yy

f
+=

∂
∂

+
∂
∂

=
∂
∂  

Example 2: Given ( ) 2
221

2
121 34, xxxxxxfz ++==  

To find the partial derivatives, we have to remember that when we are 
computing partial derivative with respect to x1, we must treat x2 as constant. 
The variable x2 will drop out if it is an additive constant, such as the third 
term in the above example, but will be retained if it is a multiplicative 
constant, like in the second term in the above example.  

Thus we have: 

211
1

8 xxf
x
z

+==
∂
∂  

Similarly for computing the partial derivative with respect to x2, we treat x1 
as constant. We obtain 

212
2

6xxf
x
z

+==
∂
∂  

Example 3 Given ( ) ( )( )vwwvwfz 234, ++==  

We can obtain the partial derivatives by using the product rule. For partial 
derivative with respect to w, we hold v constant. We obtain 

( )( ) ( )( ) ( )63212334 ++=+++= vwvwwfw  

For partial derivative with respect to v, we hold w constant, and get: 

( )( ) ( ) ( )4223024 +=+++= wvwwfv  

Example 4 Let us see in this example how the quotient rule is used 

Suppose ( ) ( )vwvwz 3/23 2 +−=  

We have ( ) ( )
( ) ( )22

2

22

2

3
943

3
23233

vw
vwvw

vw
vwwvwf

w
z

w +
++−

=
+

−−+
==

∂
∂  

( ) ( )
( )

( )
( )2222

2

3
92

3
2332

vw
ww

vw
vwvwf

v
z

v
+

+−
=

+

−−+−
==

∂
∂  
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In the above we considered first-order partial derivatives. These are partial 
derivatives of the given function with respect to the arguments. A basic point 
about partial derivatives may be made. The first-order partial derivatives are 
themselves functions of the arguments of the original function, that is the 
first-order partial derivatives are themselves the functions of the independent 
variables in the original function.  

Suppose we have ( )21, xxfz =  

Then ( )21
1

1 , xxg
x
ff =

∂
∂

=  and 

( )21
2

2 , xxh
x
ff =

∂
∂

=  

In the above g and h denote functions. 

We may make a final point about first-order partial derivatives. Suppose we 

have ( )nxxxfz ,...,, 21= . Let us compute 
nx

f
x
f

x
f

∂
∂

∂
∂

∂
∂ ,...,,

21

. The collection of 

these partial derivatives in a collection of n-real numbers for specific values 
of nxxx ,...,, 21 . This collection is an n-tuple or vector. This vector is called a 
gradient vector denoted by ∇  or grad f. 

1.3.2 Second-Order Partial Derivatives 

In the above sub-section we discussed first-order partial derivatives. Let us 
now turn to second-order partial derivatives. Let us consider the function  

( )yxfz ,= . This function can yield two first-order partial derivatives 

x
ff x ∂
∂

= and 
y
ff y ∂
∂

=  

We mentioned towards the end of the previous sub-section that the first-order 
partial derivatives are themselves functions of x and y, that is, 

( )yxgf x ,=  and 

( )yxhf y ,= . 

This means that the functions g and h can themselves be partially 
differentiated with respect to x and with respect to y. Now notice one thing: 

xf is itself a partial derivative and it can be partially differentiated with 
respect to x, and with respect to y. The same is true of fy 

Just as we  have ( )yxg
x

,
∂
∂  ,we can differentiate g(x,y) with respect to y. 

Similarly 

 fy = h(x,y) can be differentiated with respected to x and with respect to y 
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Let us differentiate ( )yxgf x ,=    

We get 






∂
∂

∂
∂

=
∂
∂

x
z

xx
f x  

The right hand side is written 2

2

x
z

∂
∂  

The second order partial derivative of z (or the function f) with respect to x is 
thus written: 

xxf or f x
x

. It’s also written 






∂
∂

∂
∂

∂
∂

x
z

x
or

x
f x  

Similarly, we can have the second-order partial  derivative of z with respect 

to y. We thus have : yyy f
y

f
∂
∂

≡   or  







∂
∂

∂
∂

=
∂
∂

y
z

yy
z
2

2

 

This denotes the rate of change of fy with respect to y, while x is held 
constant 

Please remember that we saw that fx is a function of y, and that fy is a 
function of x as well. 

( )yxgf x ,= , and ( )yxhf y ,=  

Hence we can obtain two more second-order partial derivatives: 

1)   ��� = �
��

���
��

� 

This  is the partial derivative of z first with respect to y and then with 
respect to x. 

2)  ��� = �
��

���
��

� 

This  is the partial derivative of z first with respect to x and then with 
respect to y. 

Two points may be made here: 

1) xyf   is also denoted by ���
����

  and �yx by ���
����

  

2)  the order of differentiation is from right to left (←). For example xyf   

means first differentiate z with respect to.  y  and then  with respect to  x.  
Similarly �yx means first differentiate z  with respect to x  and then with 
respect to y.  The partial derivatives fxy and fyx are called cross-partial 
derivatives. 

Young's Theorem 

In the case of continuous functions with continuous partial derivatives, fxy 
=fyx. This is called Young's Theorem and can be stated as under: 
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The order of cross partial derivatives does not matter. That is, it does not 
matter whether a function is differentiated first with respect to x and then 
again differentiated with respect of y or vice versa. Symbolically: 

��� = ��� 

The above was for the case of second-order derivatives 

Check Your Progress 1 

1) Explain the concepts of (a) A multivariate function (b) Partial derivative. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

2) Find the partial derivatives fx and fy of the functions 

i) f(x, y) = 5x2 + 6y2 

ii) f(x, y) = -10xy2 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

3) Determine all first-order and second-order derivatives for the function 

f(x, y) = 8x3 – 4x2y + 10y2 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 
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Multivariate 
Calculus-I 1.4 TOTAL DIFFERENTIAL AND TOTAL 

DERIVATIVES 

Let us consider again the function ( )yxfz ,=  

The partial derivatives gave us a small change in z when there was a small 
change in x holding y constant, or a small change in y holding x constant. Let 
us now study what happens to z if both x and y were to change. For that we 
turn to the study of differentials 

1.4.1 Total Differential 

 Let us begin by considering a function of a single variable, z =f(x).  for a 
change in x, Δx, the change in z will be Δz.  In the course BECC 102, we have 
seen dz/dx to be the change in z when there is a small unit change in x. so, 
when there is change of  Δx in x the change in z will be: 

x
dx
dzz ∆=∆  

Writing dz for Δz and dx for Δx, we get 

dz
dx
dzdz =  

This dz on the left-hand side is called the differential of z. 

Now let us consider 

If ,z f x y  is a function, then the total differential dz  can be expressed as: 

x x y y x y
z zdz f d f d d d
x y

 approximately 

Let us try to understand it in the following manner. In the above, 
x
z
∂
∂ shows 

the incremental change in z when x changes by a small amount. So the 

change in z due to change of dx  in x is dx
x
z
∂
∂  

Similarly, the change in z due to a change of dy in y is dy
y
z
∂
∂ . Thus the total 

change in z due to change in both x and y of dx and dy respectively is 

x x y y x y
z zdz f d f d d d
x y

 

This is known as the total differential of z. 

The expression dz  shows the increment in the function ,z f x y  when 
there is an infinitesimal increments in x  and well as y . For example 
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if 3 3z x y , then total differential can be expressed as 
2 23 3x x y y x ydz f d f d x d y d  

If we take a general multivariate function 

( )nxxxfz ,...,, 21=  then 

n
n

dx
x
zdx

x
zdx

x
zdz

∂
∂

++
∂
∂

+
∂
∂

= ...2
2

1
1

, or 

∑
=

=+++=
n

i
iinn dxfdxfdxfdxfdz

1
2211 ... (recall the rules and properties of 

summation as discussed in course BECC 102) 

Let us now discuss some rules of differentials. 

Rules of differentials 

The following rules on total differential will be found useful. Let z  and w  
represent two functions of x  and y , then 

1) 0=dk                                                 (constant-function rule) 

2) d w z dw dz                     (Sum-difference rule) 

 
( ) ( )dygdxgdyfdxf yxyx +±+=  

3) .d w z w d z z dw  
( ) ( )dyfdxfzdygdxgw yxyx +++    (Product rule) 

4) 2

.w z dw wdzd
z z

 

 

( ) ( )
2z

dygdxgwdyfdxfz yxyx +−+
=

 
(Quotient Rule) 

5) ( ) dzknzkzd nn 1−=                                     (power-function rule) 

6) The chain rule:  

If z = z(u) and u = u(x) then 

( )( ) ( )duz
du
duzddz ==  

Here du is not an arbitrary increase in u but happens to be a differential 
of u. we have 

( )( ) ( )dxu
dx
dxuddu == . Hence 

( ) ( ) 








= dxu

dx
dz

du
ddz  
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Multivariate 
Calculus-IExample.   

If nz u , where ,u f x y , then 
1n nddz u du nu du

dx
 

Let us now solve some problems on total differentials. 

1) Find du  when 3 2 33 2u x y y  

Answer:. Total differential du  is given by: 
2 29 3x x y y x ydu f d f d x d uy y d  

29 3x yx d y u y d  

2) Find total differentials of the following functions 

a) 
2 2

2 2

x yu
x y

 b) 
2 2x yw e  c) 2 2logu x y  

Answer: a) 
2 2

2 2

x yu
x y

, apply quotient rule 

  
( ) ( )

2z
dygdxgwdyfdxfz yxyx +−+

=  

  

( ) ( ) ( ) ( )
( )222

22222222

yx
yxdyxyxdyx

+

+−−−+  

2 2 2 2

22 2

2 2 2 2x y xdx ydy x y xdx ydy

x y
 

2 2

22 2

4 4xy dx x ydy

x y
 

b) 
2 2x yw e  

Put 2 2u x y  so that    and   u uw e dw e du  (1) 

Also  2 2 2 2du d x d y xdx ydy  (2) 

From (11) and (12), we get 
2 2 2 2 2 2

2 2 2 2x y x y x ydw e xdx ydy xe dx ye dy  

c) 2 2logu x y  

Let us try it by using the formula: 

2 2 2 2

1 2 1 2
x y

x ydu f dx f dy dx dy
x y x y

 

2 2 2 2

2 2x ydx dy
x y x y

 2 2 2 2

22 2 xdu ydyxdx ydy
x y x y
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1.4.2 Total Derivatives 

Let us go back to our familiar function of two variables 

,z f x y  

Here we assume that x and y are independent variables, and also independent 
of each other.  

Consider the case where x and y are not independent variables but are 
dependent variables of other functions, for example, 

( ) ( )thytgx == , , where t is the independent variable. Thus, z is a function of 
x and y; x and y are functions of t.  We want to investigate as to what would 
be the derivative of z with respect to t.  What would be dz/dt? 

We know 
x
z
∂
∂      is the change in z due to a small unit change in x holding y 

constant hence 
dt
dx

x
z
∂
∂  will be the amount of change in u due to a small unit 

change in t, that is transmitted through x. similarly 
dt
dx

y
z
∂
∂  is the amount of 

change in z due to a small unit change in t transmitted through y. 

Hence, the total change in z due to a small unit change in t will be the sum of 
these two effects. We write 

dt
dz =

dt
dx

x
z
∂
∂ +

dt
dx

y
z
∂
∂  

This we can also express as  

dt
dz =

dt
dxf

dt
dxf yx +  

This 
dt
dz  is called the total derivative of z with respect to t. 

If we have z = (x, y, u, …)  where x = x(t), y = y(t), u = u(t), … 

Then 
dt
dz +

dt
dx

x
z
∂
∂ +

dt
dx

y
z
∂
∂ + ....+

∂
∂

dt
du

u
z  

Now let us again go back to the function 

,z f x y  

Now instead of thinking of x and y being dependent variables that are 
functions of an independent variable, say, t, let us suppose x is a function of 
y. so our given function is  

,z f x y  

, where ( )ygx =  
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Multivariate 
Calculus-IWe can combine the two functions f and g into a composite function: 

( )[ ]yygfz ,=  

In the above we see that z, x, and y are related as follows: the variable y 
affects z through two channels. It can affect z directly through the function f, 
and indirectly through the function g. thus the variable y is the ultimate 
source of variation in z. The indirect effect of y on z can be represented as 

dy
dx

x
z
∂
∂ . The direct effect is simply fy 

Hence the total derivative of z with respect to y is obtained by combining the 
direct and the indirect effects; 

dy
dz =

dy
dx

x
z
∂
∂ + yf  

It can also be obtained alternatively by simply taking total derivative in the 
usual manner: 

dy
dz =

dy
dx

x
z
∂
∂ +

dy
dy

y
z
∂
∂  

Thus 
dy
dz =

dy
dx

x
z
∂
∂ +

y
z
∂
∂  

Check Your Progress 2 

1) a)  Explain what you understand by total differential. 

b) How are partial derivatives related to total derivatives? 

………………………………………………………………………. 

………………………………………………………………………. 

………………………………………………………………………. 

………………………………………………………………………. 

………………………………………………………………………. 

2) Find total differential of the following functions. 

a) 3 23 2u x y  b) xu
x y

 c) 
1 1
2 2x AL K  

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 
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1.5 THE CHAIN RULE FOR MULTIVARIATE 
FUNCTIONS 

You are aware of the chain rule for function of one variable. It is based on the 
function-of-a-function rule. Let us suppose z is a function of y, and y in turn 
is a function of x. We can depict this as � = ���(�)�. we know in this case 
how to take the derivative of z with respect x: we first take the derivative of z 
with respect to y and then multiply this with the derivative of y with respect 
to x. We can write this as follows:  

��
��

=
��
��

��
��

 

As similar process works in the case of partial derivatives. There is a chain 
rule applicable to the case of partial derivatives as well. We only have to take 
care in following the rules of partial differentiation. We shall try to make this 
clear with the help of some examples.  

Just a matter of notation for the examples: unlike earlier, we denote one 
argument in the function by z. Earlier, we denoted the dependent variable by 
z. Please do not get confused. 

Example 1 

Suppose we have � = �(�, �, �)and here x, y, z are themselves each a 
function of some variable, say t. then we can find ��

��
 as follows: 

��
��

=
��
��

��
��

+
��
��

��
��

+
��
��

��
��

 

Notice that this is just the total derivative that we used in the previous 
section. This gives us occasion to mention that the total derivative is used 
when the variables inside the parentheses (the argument of the function) are 
themselves functions of only one independent variable. In the example above, 
x, y, z are functions of the single variable t. In the next example we consider 
a case where variables that are arguments in the given function, are 
themselves functions of more than one variable. This is where we use the 
chain rule, and have to use partial derivatives for composite function. Just 
study the examples below, and it will become clear. 

Example 2 

If we have � = �(�, �, �) and x, y, z are themselves each a function of 
variable r and s then  

��
��

=
��
��

��
��

+
��
��

��
��

+
��
��

��
��

 

and  
��
��

=
��
��

��
��

+
��
��

��
��

+
��
��

��
��
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Multivariate 
Calculus-IThe next example could also have been depicted using total derivatives as we 

did in the previous section. 

Example 3 

Suppose  � = �(�, �, �) and if  y and z  themselves depend on  x, that is, 
� = �(�), � = �(�). Then 

��
��

=
��
��

+
��
��

��
��

+
��
��

��
��

 

Example 4 

Let  � = �(�, �, �) and if  x depend on  t, y depends on x, and z depends on 
y, that is, � = �(�), � = �(�), � = �(�). Then 

��
��

=
��
��

��
��

+
��
��

��
��

��
��

+
��
��

��
��

��
��

��
��

 

Notice that in the above example, z depends on y, which depends on x, which 
depends on t. Thus z and y ultimately depend on t.  

Example 5 

Suppose � = �(�, �, �) where  x = x (r,s), y = (r), z = z(y).Then  

��
��

=
��
��

��
��

+
��
��

��
��

+
��
��

��
��

��
��

 

and  

��
��

=
��
��

��
��

 

So now you should be able to grasp the technique of the chain rule in the case 
of partial derivatives, and should be able to carefully observe which variable 
depends on which other(s), and carry out the required differentiation. You 
should be able to see from the way the variables are related to each other how 
to use the chain rule, and when to take the total derivatives. 

Let us take one final case and see how the chain rule and total derivatives 
could be combined to obtain the relevant results. 

Example 6 

Suppose ( )21, xxfy =  where 

( )211 , wwgx =      and 

( )212 , wwhx =  

The partial derivatives of y with respect to w1 and w2 are calculated by 
making use of the composite-function rule (chain rule) that we show below. 
Let us begin by taking total differential of y: 

1 2
1 2

y ydy dx dx
x x
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Since we have 1x and 2x  as functions of w1 and w2, we can compute the other 
total differentials: 

2
2

1
1

1

1
1 dw

w
x

dw
w
x

dx
∂
∂

+
∂
∂

=  and 

2
2

2
1

1

2
2 dw

w
x

dw
w
x

dx
∂
∂

+
∂
∂

=  

Substituting for dx1 and dx2 in the equation for the total differential of y, and 
collecting the terms for dw1 and dw2 ,we get 

2
2

2

22

1

1
1

1

2

21

1

1

dw
w
x

x
y

w
x

x
ydw

w
x

x
y

w
x

x
ydy 








∂
∂

∂
∂

+
∂
∂

∂
∂

+







∂
∂

∂
∂

+
∂
∂

∂
∂

=  

1.6  DERIVATIVES OF IMPLICIT FUNCTIONS 

Now let us discuss a type of functions called implicit functions. Suppose we 
take a simple function z =f (x), for example z = 9x3.  Here z is called an 
explicit function of x, because the value of the variable z is explicitly 
dependent on the value of x. If on the other hand, we were to write the 
function as ( ) 0, =xzf it becomes an implicit function relating z with x. so the 
specific function mentioned above can be written in an implicit form as  z – 
9x3 =0.  

We may write a general multivariate function in explicit form as 
( )nxxxfz ,..., 21= . This may be implicitly written as ( ) 0,...,,, 21 =nxxxzF . 

Sometimes we may encounter an equation of the form ( ) 0,..., 21 =nxxxf . 
You must realize that it is implicitly defining a function which, when written 
explicitly may be of the form ( )nxxxfx ,..., 321 = .  

An explicit function can always be expressed in an implicit manner by 
moving the f(.)  to the left-hand-side of the equation, but it is not always 
possible to express an implicit function in an explicit form. When it can be so 
expressed will be the topic of study in Block 3 of this course, when we 
discuss the implicit-function theorem. 

Instead, let us turn to the derivatives of implicit functions. To do this, let us 
recall level curves . Take a function ( ) kxxf =21 , . This, you would recall 
was the equation of a level curve. This is also an implicit  function. We can 
solve this single equation in two unknowns and one of the unknowns can be 
expressed in terms of the other, say, ( )122 xxx =  

We can substitute this back into the implicit function and write  

( )( ) kxxxf ≡121 ,  

The slope of any level curve is the derivative 
1

2

dx
dx

. But this is conceptually 

true only if in the implicit function we have defined x2 as a function of x1. 



 

 
29

Multivariate 
Calculus-IHere we have done so. 

Here our function ( )122 xxx =  is well defined. We can get 
1

2

dx
dx

 by 

differentiating the identity ( )( ) kxxxf ≡121 , , with respect to x1, using the 
chain rule. We get  

0
11

2

21

1

1

≡
∂
∂

≡
∂
∂

+
∂
∂

x
k

dx
dx

x
f

dx
dx

x
f  

,or 0
1

2
21 ≡+

dx
dx

ff  

If we assume 02 ≠x , 

2

1

1

2

f
f

dx
dx −

≡  

This shows that the slope of a level curve at any point is the ratio of the first-
order partial derivatives evaluated at some particular point on the given level 
curve. Let us next consider a general multivariate function. 

Given the implicit function ( ) 0,...,, 21 =nxxxf , the partial derivative of the jth 
argument of the function with respect to the ith argument of the function xi , 

i

j

x
x
∂
∂

  

is obtained by first finding the total differential 0...2211 =+++ nndxfdxfdxf . 

Then we divide by dxi: 

0.........2
2

1
1 =+++++++

i

n
ni

i

j
j

ii dx
dxff

dx
dx

f
dx
dxf

dx
dxf  

We set all differentials other than dxi and dxj equal to zero. Then 

j

i

i

j

i
i

j
j

f
f

dx
dx

f
dx
dx

f

−=⇒

=+ 0

 

1.7  HOMOGENEOUS AND HOMOTHETIC 
FUNCTIONS 

Let us consider a function F of two variables x and y, that is, F(x, y).  This 
function is said to be homogeneous of degree r, if for all x and y in the 
domain, 

( ) ( )yxFyxF r ,, λλλ ≡ . 
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We can extend this definition to a function of n-variables. Suppose 
( )nxxxfz ,...,, 21= . Then f is said to be homogeneous  of degree r if  

( ) ( )n
r

n xxxfxxxf ,...,,,...,, 2121 λλλλ ≡ . 

( , )F x y is linearly homogeneous (homogeneous of degree 1) if and only if 

( , ) xF x y yf
y

 
=  

 
, where ,1x xf F

y y
   

=   
   

 

How do we show this? Let us begin by showing the ‘if’ (sufficiency) part. 

Given: 

( )

( ) ( )

,  ,we have

, ,

xF x y yf
y

x xF x y yf yf F x y
y y

λλ λ λ λ λ
λ

 
=  

 
   

= = = =   
   

 

Now let us show the only if (necessary condition) part: 

Given F(x,y) is linearly homogeneous (homogeneous of degree 1). Then 

( ) ( ), ,F x y F x yλ λ λ= , for any λ 

Put 1
y

λ = . The we have 

( )1,1 ,xF F x y
y y

 
= 

 
 

Thus ( ),1 ,xyF F x y
y

 
= 

 
 

But ,1x xF f
y y

   
=   

   
.  

Hence, ( ), xF x y yf
y

 
=  

 
 

Differentiation of a Homogeneous Function  

A very important property of homogeneous functions is with regard to the 
differentiation of homogeneous functions. 

Let us have a homogeneous function  f(x, y) of degree r. then we have: 

( ) ( )yxfyxf r ,, λλλ ≡  

Differentiating with respect to x we have: 

( ) ( )yxfyxf x
r

x ,, λλλλ = , where 
x
ff x ∂
∂

=  
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Calculus-IIf we divide by λ we get: 

( ) ( )yxfyxf x
r

x ,, 1−= λλλ  

If you notice carefully, the above equation shows that the function xf  is 
homogeneous of degree r – 1. The above holds for the function fy too, where 
fy is the partial derivative with respect to y. the above holds in the case of any 
multivariate homogeneous function.  

This result says that if a function is homogeneous of degree r, then each of its 
partial derivatives is homogeneous of degree r – 1. 

Euler’s equation  

This is a very important property displayed by homogeneous equations. Let  
,z f x y    

 be a homogeneous function of degree r. then the following relation holds as 
an identity: 

rz
y
zy

x
zx =

∂
∂

+
∂
∂  

We can prove this using implicit differentiation and the chain rule: 

Let us have the homogeneous function  

( ) ( )yxfyxf r ,, λλλ ≡     (a) 

Let us partially differentiate the left-hand side of equation (a) with respect to 
λ. We get: 

( ) ( )
λ
λ

λ
λλ

λ
λ

λ
λλ

∂
∂

∂
∂

+
∂
∂

∂
∂ y

y
yxfx

x
yxf ,,  

= yx yfxf λλ +    (b) 

Now let us obtain the partial derivative of the right-hand side of equation (a) 
with respect to l. We now get: 

( ) ( )
λ

λ
λ
λ

∂
∂

+
∂
∂ yxfyxf r

r ,,  

=
( )
( )yxfr

yxfr
r

r

,
0,

1

1

−

−

=

+

λ

λ
   (c) 

Since for equation (a), left-hand side = right hand side, therefore equation (b) 
= equation (c). Hence we have  

yx yfxf λλ + =  ( )yxfr r ,1−λ  
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Now λ can be any number. Let λ be 1. Then, we get Euler’s theorem: 

yx yfxf + = ( )yxrf , , i.e. rz
y
zy

x
zx =

∂
∂

+
∂
∂ `  

The above can be generalised for functions of more than two variables. 

Homothetic Functions 

To understand homothetic function, recall the concept of  function-of-
function, or composite function. Suppose we have y = f(x) and x = g(w), then 
we can write y =f[g(w)] = h(w). We can extend the idea of composite 
function to the case of multivariate function. This we indeed did in this unit, 
specially when looking at partial derivatives of implicit functions, the chain 
rule etc. Using this concept of composite functions in the case of multivariate 
functions, let us try to explain what homothetic functions are.  

If f(x,y) is a homogeneous function, then any function g[f(x,y)] is a 
homothetic function provided g′ is positive. In other words, any positive 
monotonic function of a homogeneous function is a homothetic function. 

Check Your Progress 3 

1) Find the derivative dz/dt, given 

i) Z = x2 – 8xy – y3, where x = 3t and y = 1 – t 

ii) Z = 7 u + vt, where u = 2t2 and v = t + 1 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

2) Consider the following implicit functions. Find dy/dz for each of these 
functions.  

i) F(x,y) = y – 3x4 = 0 

ii) F(x,y) = x2 +y2 -19 =0 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 
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Calculus-I3) Determine whether the following functions are homogeneous. If so, of 

what degree? 

i)  ( ),f x y xy=  

ii)   ( ) 3 3,f x y x xy y= − +  

iii)  ( )
2

, , 2xyf x y w xw
w

= +  

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

1.8 LET US SUM UP 

You just finished reading the first unit of this course. This unit was on the 
mathematics of multivariate functions. The unit began by discussing the 
concept of functions where the dependent variable is a function of more than 
one independent variable. These independent variables are called arguments 
of the function.  You were familiarized with the idea of level curves which 
are contours showing diagrammatically the third variable projected in a two-
variable plane. The unit then discussed the important concept of partial 
derivatives, where the function is differentiated with respect to one variable, 
with the other variables held constant. For second-order cross partial 
derivatives, you learnt about Young’s theorem. Moving on from there, the 
unit went on to discuss total differentials and total derivatives. We saw that 
when we want to investigate what happens to the dependent variable as a 
result of changes in all the independent variables we use total differentials 
and total derivatives. 

Following this, the unit went on to discuss the chain rule. We saw that the 
chain rule in the context of partial derivatives and total derivatives is similar 
to, and yet different from the chain rule in the context of single-variable 
differentiation. Next, the unit discussed implicit functions. You were 
familiarized with the difference between explicit and implicit functions. 
Partial derivatives for implicit functions were discussed.  You learnt about 
the implicit function theorem. The unit then considered implicit functions in 
the context of level curves. You saw how the derivative of one independent 
variable with respect to the other is equal to the negative of the ratio of partial 
derivatives of the dependent variable to each of the independent ones. 

In the end, the unit discussed homogeneous functions. The definition of 
homogeneous functions was given. Certain properties of homogeneous 
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functions were also provided. You were introduced to Euler’s theorem. 
Finally mention was made of homothetic functions, and their relationship to 
homogeneous functions was stated 

1.9 ANSWERS/HINTS TO CHECK YOUR 
PROGRESS EXERCISES 

Check Your Progress 1 

1)  (i) See section 1.2  (ii) see section 1.3 and answer. 

2) (i) fx = 10x ; fy = 12y 

iii) fx = -10y2 ; fy = -20x 

3)  See section 1.3 and answer 

Check Your Progress 2 

1) See section 1.4 and answer. 

2) See section 1.4 and answer. 

Check Your Progress 3 

1) See section 1.5 and answer. 

2) See section 1.6 and answer. 

3) See section 1.7 and answer. 

 



 

 
35

Multivariate 
Calculus-IIUNIT 2 MULTIVARIATE CALCULUS-II 

Structure 

2.0 Aims and Objectives 
2.1 Introduction 
2.2 Applications of Level Curves and Partial Derivatives in Economics 
2.3 Applications of Total Differentials, Total Derivatives and Chain Rule 

in Economics 
2.4 Applications of Implicit Functions in Economics 
2.5 Applications of Homogeneous Functions and Euler’s Theorem in 

Economics 
2.6 Let Us Sum Up 
2.7 Answers to Check Your Progress Exercises 

2.0 AIMS AND OBJECTIVES 

In the previous Unit, you were introduced to the mathematics of multivariate 
calculus. In this unit, we shall discuss some applications of multivariate 
calculus in economics. After going through the unit, you will be able to: 

• State some important curves in economic theory that are level curves; 

• Apply partial derivatives to areas in microeconomic and macroeconomic 
theory; 

• Describe some applications of total differentials and total derivatives in 
economics; 

• Examine how implicit functions may be used in economic theory; and  

• Discuss how homogeneous functions and Euler’s theorem  can be 
applied in economic analysis. 

2.1 INTRODUCTION 

In the previous Unit, you were introduced to multivariate functions, and also 
differential calculus applicable to multivariate functions. There you learnt 
about partial derivatives, about total differentials and total derivatives, about 
implicit functions and differentiation of implicit functions, and about 
homogeneous and homothetic functions and Euler’s theorem.   In unit 1, you 
learnt about the mathematics of these concepts. Here, we intend to discuss 
elements of economic theory to which these concepts are applied. While the 
applications presented here are certainly not exhaustive, we hope you will get 
a flavor of how multivariate calculus is applied in economics. Reading the 
present unit together with unit 1, you will gain an understanding about which 
mathematical concept to invoke to make clear specific economic ideas. For 
instance, from your microeconomics course, you learnt about the importance 
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of marginal utility, marginal costs, marginal revenue etc. In this unit, you will 
learn that partial derivatives are the appropriate device for expressing the idea 
of marginal units in multivariate functions. For each concept that you learnt 
in the previous unit, we present some suitable economics examples. In this 
unit, you shall be getting acquainted with these progressively.  

The unit is organized as follows. In the next section, section 2.2 we discuss 
applications in economics of partial derivatives and level curves.. We mainly 
take examples from microeconomics, specifically from consumer theory and 
theory of the firm; we discuss some macroeconomic examples as well. In the 
section after that, section 2.3 we discuss how total differentials, total 
derivatives and chain rule find applications in economics.  Following this, the 
discussion moves to a discussion of applications of implicit functions in 
economics. In the final section, section 2.5, the unit discusses some 
homogeneous functions found in economics, and discusses an important 
application of Euler’s theorem.  As you study the unit, you will discover that 
many concepts that you have and will encounter in your study of 
microeconomics and macroeconomics are approached from a mathematical 
point of view. You will gain an insight into the structure of microeconomic 
and macroeconomic theory, a structure which is mathematical in nature. You 
will also realise that mathematical concepts are such as to lend themselves 
easily into a language for communicating ideas of economics.  

We strongly urge you to have unit 1 open along with this, the present unit, so 
that you can immediately refresh your learning of the corresponding 
mathematical concept for each economic application we deal with in this 
unit. 

2.2 APPLICATIONS OF LEVEL CURVES AND 
PARTIAL DERIVATIVES IN ECONOMICS 

Recall your study of multivariate functions and level curves in unit 1.  We 
saw multivariate functions can be written as ( )YXfZ ,=   

If the function has n arguments we can write it as   

( )nxxxfz ,...,, 21=  

To understand the applications of such functions in economics, what you 
have to do is think of a situation where a variable depends on more than one 
variable.  

For example, demand of a good x depends upon a variety of factors like its 
own price ����, the prices of related goods ����, money income of the 
consumer (M), his tastes, habits and fashion (i.e. consumer preferences-I) and 
so on. We can represent a demand function as, 

 �� = ����, ��,�, � … �, 
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production/output, L for labour and K for capital. 

Economic situations typically depicted using multivariate functions. For 
simplicity we consider only two-variable analysis. For example in a 
production function, ,p f L K , we assume and capital (K) used in the 
process of production. Similarly, in a utility function, ,u f x y , we assume 
utility (u) depending upon the quantity of two goods x  and y  consumed. 
With the use of partial derivatives we can identify whether two goods are 
competitive or complementary.  

For example think of production, where output of a good depends on two 
factors labor and capital. Let labor be denoted by L and capital by K. let the 
output be denoted by Q. Then we have a production function   

( )KLfQ ,=  

Now suppose we have several inputs, not just two. Let the number of inputs 
be n. Let us denote the collection of n inputs by an n-tuple ( )nxxx ,..., 21  

We can then write the production function as 

( )nxxxfQ ,...,, 21=  

Similarly, we can think of a utility function which shows the utility U that a 
consumer derives from the consumption of two goods X and Y. We can show 
this as  

( )YXfU ,=     

Again, suppose there are n goods Y1,Y2…Yn and the amount  consumed of 
these goods are denoted by  

( )nyyy ,..., 21  

In this case, we can depict the utility function as  

( )nyyyfU ,...,, 21=  

As a final example, this time from macroeconomics, let the money demand 
Md be a function of the interest rate r and income. We can show this as  

Md = g (r, Y ) 

So you understand that in all these functions a dependent variable depends on 
more than one variable. In the rest of the unit, we study how changes in the 
independent variable induce changes in the dependent variable. Sometimes 
we consider the change in one independent variable keeping the others 
constant, and sometimes we consider changes in all the independent variables 
together. 

Now we turn to a discussion of level curves in economics. At this point you 
must remember the discussion in section 1.2.2 of unit 1. You know from that 
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discussion that a level curve shows the curve where the dependent variable is 
fixed at a certain level. If we have a function  Z = f(X,Y), the graph of this 
function in three-dimensional space can be visualized as being cut by 
horizontal planes that are parallel to the x y – plane. The intersections 
between the planes and the graph can be projected onto the x y – plane. If the 
intersecting plane is at z = k then the projection onto the x y – plane is known 
as the level curve or contour at height k for the function f. The contour or 
level will consist of points that satisfy the equation 

( ) kyxf =,  

To understand the economic application, think of the simple production 
function that we just considered 

( )KLfQ ,=  

If we were to depict this graphically, we can show L and K in the x-y plane 
and the output Q vertically on the z –axis. Then the graph of the production 
function Q will be like a ‘hill’ or dome. To think of level curves suppose the 
value of Q is fixed at a level say k. Then the production function will be k = f 
(L, K ). Here k is a constant. The graph of the production function will be a 
‘slice’ on the hill or dome at a height k. If we were to take a different fixed 
value of k, then there will be a ‘slice’ at different height on the dome. To put 
this slightly differently, a level curve for the production function above is the 
locus of all points showing combinations of labour and capital that yield an 
output equal to k. All the combinations of labour and capital that result in the 
same specific output level will be on the same level curve. In 
microeconomics, in the theory, you have come across level curves under the 
name ‘isoquant’. So for a production function (with two factors) each  
isoquant is a different level curve. 

Similarly, consider the simple utility function  ( )YXfU ,=  

If the level of utility were to be fixed at a given level say U then a level 
curve would be produced as the locus of all combinations of X and Y that 
give the same level of utility equal to U . In the context of the theory of the 
consumer that you studied in microeconomic theory, you were familiarized 
with level curves under the name ‘indifference curves’. So for a utility 
function (of two goods), each indifference curve is a different level curve, 
showing a different level of utility. 

Let us now discuss applications of partial derivatives in economics.  Recall 
the discussion on partial derivatives in section 1.3 in unit1.  Now we take 
some functions in economics and see where partial derivatives can be 
applied. If we take the production function above and see by how much the 
output increases if we were to increase labour input by one unit while holding 
capital constant, we will get the marginal product of labour.   So if we have 

( )KLfQ ,=  ,  the marginal product of labour will be L
Q
∂
∂
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Similarly we can have 
K
Q
∂
∂

 

Now consider the utility function  

( )YXfU ,=  

Here, if we increase X by one unit while holding Y constant, the change in 

utility that would result is the marginal utility of X: X
U
∂
∂

 

In a similar manner, we can  have the marginal utility of Y: Y
U
∂
∂  

Let us consider simple solved example from basic microeconomic theory. 

Given the demand function of two goods 1 2 and X X , as 1 1 28 3 11x p p  
and 2 1 22 3 17x p p , find the effect of change in prices of two goods on 
their demand. Interpret the results. 

Alternatively, this example could be thought of being about finding, what is 
called, partial marginal demands (PMD). There are four possibilities. 

1) PMD of 1X , when price of 1X  changes (holding other variables 

constant) 1

1

8x
p

 

2) PMD of 1X , when price of 2X  changes 1

2

3x
p

 

3) PMD of 2X , when price of 2X  changes 2

2

3x
p

 

4) PMD of 2X , when price of 1X  changes 2

1

2x
p

 

Interpretation: 

1) 1

1

8x
p

, shows that when the price of 2X  is held constant, a rise in 

price of 1X , by one unit decreases 1X s  demand by 8 units 

2) 1

2

3x
p

, shows that when the price of 1X  is held constant, a rise in price 

of 2X , by one unit increases the demand of 1X  by 3 units 

3) 2

2

3x
p

, shows that when the price of 1X  is held constant, a rise in 

price of 2X , by one unit decreases 2X s  demand by 3 units 
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4) 2

1

2x
p

, shows that when the price of 1X  is held constant, a rise in price 

of 1X , increases demand for 2X  by 2 units. 

[Note that Price of 1X  is 1p  and price of 2X  is 2p  
Demand of 1X  is 1x  and demand of 2X  is 1x ] 

Two goods x  and y  are complementary when, other things being held 
constant, rise in the price of one (say petrol), decreases the demand for the 
other (say cars). In this case both the cross partial derivatives should be 
negative i.e. 

1

2

0x
p

; 2

1

0x
p

 

On the other hand, two goods X  and Y  are competitive (or substitute 
goods), when other things being held constant, if the increase in the price of 
one (say coffee) increases the demand for the other (say tea). In this case both 
the order partial derivatives should be positive i.e. 

 1

2

0x
p

; 2

1

0x
p

 

Example. 

The demand for functions of two goods 1x  and 2x , find whether the goods 
are complementary or competitive? The functions are: 

1 22 2
1 2 1 2

10 150;x x
p p p p

 where 1p  and 2p  are the prices of 1x  and 2x  

respectively 

From the first function: 1
2 2 2

2 1 2 2 1 2

10 1 10 0x
p p p p p p

 

From the second function: 2
2 2 2

1 2 1 1 1 2

150 1 15 0x
p p p p p p

 

Since both 1

2

x
p

 and 2

1

x
p

 are negative, therefore, the goods are 

complementary. 

Example. 

Find are nature of goods 1x  and 2x  when 

20.20.4
1 1

px p e  and 10.50.6
2 2

px p e  

where 1p  and 2p  represent their respective prices. 

 20.20.41
1 1

2

0.2 0.2 0px p e x
p
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2 2 2
1

0.5 0.5 .5 0p px p e p e x
p

 

Since both the partial derivatives are positive, therefore, the goods 1x  and 2x  
are competitive. 

Application to Partial Elasticities (PE) 

Keeping in mind the formula for point elasticity of demand, we can calculate 
four partial elasticities, for the two demand functions, 

1 1 1 2,x f p p  and 2 2 1 2,x f p p  where 1x  and 2x  represent demand for 
two goods 1X  & 2X  and 1p  & 2p  are their prices. These elasticities are as 
follows. 

a) PE of demand for 1 1 11. .x w r t p e ∗ 1 1

1 1

x p
p x

 

b) PE of demand for 1 2
1 2 12

2 1

. . x px w r t p e
p x

 

c) PE of demand for 2 2
2 2 22

2 2

. . x px w r t p e
p x

 

d) PE of demand for 2 1
2 1 21

1 2

. . x px w r t p e
p x

 

Note: Where as 11e  and 22e  are direct PEs of demand, but 12e  and 21e  are 
cross PEs of demand. 

Let us take some examples to illustrate 

Example 1. Given the demand functions 1.5 .4
1 1 2x p p  and .6 .7

2 1 2x p p , find 
the direct as well as cross partial elasticities. ( 1x  and 2x  are demands 1 2,p p  
are the prices of two goods 1X  and 2X  respectively) 

Sol. a) Direct PEs 
1.5 .4

2.5 .41 1 1 2
11 1 2 1.5 .4 1.5 .4

1 1 1 2 2

1.51.5 1.5x p p p pe p p
p x p p p p

 

.6 .7
.6 1.72 2 2 1 2

22 1 2 .6 0.7 .6 .7
2 2 1 2 1 2

.7.7 .7x p p p pe p p
p x p p p p

 

b) Cross PEs 
1.5 .6 1.5 .4

1 2 1 2 2 1 2
12 1.5 .4 1.5 .4

2 1 1 2 1 2

.4 .4 .4x p p p p p pe
p x p p p p

 

                                                           
∗ 1) In 11e , the LHS 1 stands for 1x  and the RHS 1 stands for 1p  
 2) First write PD to avoid mistakes (only suggestive) 
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Example 2. Demand for a goods x is given as a function of money income 
(M) and price xp  as 1.1 0.7.9x M p . Find price elasticity and income 
elasticity of demand. 

Sol. Given 1.1 0.7.9 xx M p   , xx f M p  

a) Price elasticity of demand x

x

px
p x

 

1.1 1.7
1.1 0.7.7 .9 .7

.9
x

x
x

pM p
M p

 

b) Income elasticity of demand x M
M x

 

.1 0.7
1.1 0.7.9 1.1 1.1

.9x
x

MM p
M p

 

Example 3. From the following demand function, find income and cross 
elasticity of demand when consumer income (m) = Rs.500, price of 

10xx p  and price of 15zz p . 

2

800
5 60 10

x zp p mx . 

a) Cross elasticity of demand z

z

px
p x

 

when 1 10 0 0
60 60z

x
p

. 

 10 15 500800
5 60 10

x  (For m =500, 10, 15x zp p ) 

 1800 2 50 848.25
4

 

is cross 
4

1
60

15
1

1
848.25 3393

 

b) Income elasticity of demand x m
m x

, where 

1 10 0
10 10

x
m

, 500m  and 

848.25x  (already calculated) 

is 1
10me 50 0 50 .0589

848.25 848.25
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We know any marginal function is first derivative of total function. Thus 

Marginal = 
x

d
d

 (Total). Since it is a care of partial derivative dealing with 

functions of two variables, therefore, we will find partial derivatives like 

,u u
x j

 etc. Let us take some examples. 

Example 1. Let the utility function be 7 2u x y . Find the marginal 
utilities with respect to the two goods x  and y  when 5 units of x  and 3 units 
of y  are consumed. 

Sol. Given utility function 7 2u x y  or 

a) MU with respect to 2ux y
x

. 

For 5, 3, 2 3 2 5xx y Mu y  

b) MU with respect to 7uy x
y

. 

For 5, 3, 7 5 7 12yx y Mu x  

Example 2. If the utility function is u ax by c xy , find the ratio of 
marginal utilities of the two goods x  and y . 

Sol. Given: 
1

2u ax by c xy  

2
2 2x

a xy cyu cyMu a
x xy xy

 

2
2 2y

b xy cxu cxMu b
y xy xy

 

Therefore, ratio of 
2 2

2 2
x

s
y

a xy cx b xy cxMuMu
Mu xy xy

 

2
2
a xy cy
b xy cx

 

Application to Production Function 

A production function represent total product (TP). Therefore, marginal 
product will be the 1st partial derivative of TP with respect to one of the 
factors, keeping other factor constant. Therefore, 

a) Marginal Product of Labour (L) TP
L
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b) Marginal Product of Capital (K) TP
K

 

Euler Theorem can also be stated in terms of partial derivatives. If 
,P f L K  is the production function of two factors, labour (L) and capital 

(K), then the Euler Theorem states that 

 P PL K P
L K

 

 L KL MP K MP P  

This is also called product exhaustion theorem or the adding-up problem. It 
states that: 

If all factors are paid according to their marginal product then the total 
product is exhausted. 

That is 0L KP L MP KMP  

Let us now take some illustrations 

Example 1. 

Given the production function 
1

22P LK , where P  is total product, L  is 
labour and K  is capital as factors of production 

1) Find the marginal product of the two factors 

2) Show that Euler Theorem is satisfied 

3) What shall be the payment to labour is 5 units of labour are used, when 
capit remains fired at 20 

Sol. Given TP : 
1 1

2 22.P L K  

i) 
1

1 1 2
2 212

2L
P KMP L K
L L

 

and 
1

1 1 2
2 212

2L
P LMP L K
K K

 

ii) Euler Theorem states that: L KL MP KMP P  

or 
1 1

1 1 1 1 1 12 2
2 2 2 2 2 22K LL K L K K L L K P

L K
 

The Euler Theorem is satisfied. 

iii) When 5L  and 20K , then 
1 1

12 2
2

20 4 2
5L

KMP
L
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A production function is given by 
1 1

3 3Ax y  where x  stands for labour and y  
stands for capital. Answer the following questions 

a) What is the behaviour of each factor? 

b) What is the nature of returns to scale? 

c) Find whether total product is exhausted or not? 

Sol. Given 
1 1

3 3:PF P Ax y  

a) Behaviour of factor's MP means nature of rate of change of MP of that 
factor i.e. 

 and x yMP MP
x y

 

i) 
2 1 2 1
3 3 3 31 1

3 3x
PMP A x y Ax y
x

 

Rate of change of 
2 1
3 31

3x xMP MP Ax y
x x

 

5 1 5 1
3 3 3 31 2 2 0

3 3 9
A x y Ax y  

This shows that as amount of factor x  in creases, its MP decreases, 
when y  is held constant 

ii) 
1 2 1 2
3 3 3 31 1

3 3y
PMP A x y Ax y
y

 

Rate of change of 
1 2
3 31

3y yMP MP Ax y
y y

 

1 5 1 5
3 3 3 31 2 2 0

3 3 9
A x y Ax y  

This shows that as amount of factor y increase, its MP decreases, when x 
is held constant. 

b) To show the nature of returns to scale, we increase both the factors by a 

fixed proportion say ∗. Then the PF becomes 
2 1 1 2
3 3 3 3P̂ Ax y P  

Since power of  is 2 1
3

, therefore, a 20% increase in both the factors 

bring about less than proportionate (i.e. less then 20%) increase in total 

                                                           
∗  read as Lamda is a proportion. If we increase every factor by, say, 20%, than 

20 1 .2
100 5
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product P. That is the production function shows decreasing returns to 
scale. 

c) Let us see if Euler theorem holds good not if x  and y  factors are paid 
according to their MP, then TP should be exhausted i.e. 

or TP – (Payment to factor x  + Payment to factor) zero  

Now payment to 
1 2
3 31

3yy y MP y Ax y  

Similarly payment to 
1 2
3 31

3yy y MP y Ax y  

 
1 1
3 31 1

3 3
Ax y P . 

is total payment 1 1 2
3 3 3

P P P P  

Hence total product is not exhausted. Euler Theorem is not exhausted. 

Example 3. 

Let the production function by a bQ AL K . Find the elasticity of production 
with respect to labour (L) and capital (K). 

Sol. Given: Production function: a bQ AL K  

i) Labour elasticity of Production L
Q Le
L Q

 

1 6
a b

a
a b a b

L a A L KA a L K a
AL K AL K

.  

(which is the exponent of the factor L) 

ii) Capital elasticity of Production K
Q Ke
K Q

 

1
a b

a b
a b a b

K b A L KA bL K b
AL K AL K

. 

Check Your Progress 1 

1)  Given the utility function U = x2y3, find the marginal utilities. Determine 
if the marginal functions are increasing or decreasing. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 
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products. Determine if the marginal functions are increasing or 
decreasing. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

2.3  APPLICATIONS OF TOTAL DIFFERENTIALS, 
TOTAL DERIVATIVES AND CHAIN RULE IN 
ECONOMICS 

In the previous section, you got a lengthy discussion of partial derivatives in 
economics.  In this section we shall look at economic applications of total 
differentials as well as total derivatives in economics.  Before we begin, let us 
introduce two notational points. The first one is that about functions. Suppose 
we have a function z = f (x, y). We can denote it by z =z (x, y ). So the 
function itself we can denote by z instead of by f. This says that there is a 
variable which depends on x and y. We can sometimes talk of the relation 
between z, and x and y without using the equality sign. If we have  z (x, y ) 
you can think of it immediately as being about some variable z which 
depends on x and y. Thus we can talk about money demand Md as Md (r, Y ) 
where r is interest rate and Y is income. This says money demand depends on 
the interest rate and income. We shall be using this notation intermittently in 
the rest of the unit. 

The second point about notation concerns partial derivatives. Take a function 

U = f (x, y). The partial derivative of U with respect to x, 
x
U
∂
∂ can also be 

written Ux. Similarly the partial derivative of U with respect to y can be 
written Uy. The partial derivatives are also sometimes denoted fx and fy.  
Another notation is sometimes used. Suppose we have a function denoted U 
= (x1, x2 ). Then the partial derivative of U with respect to x1 and  x2  is 
sometimes denoted U1 and U2 respectively, or even as f1 and f2 respectively. 

So, having made these basic comments about notation, let us discuss some 
applications of differentials and derivatives to economics. For this section 
too, as for all sections of this unit, you just have to recall the basic concept 
that you learned in Unit 1.  

Consider a saving function  

( )iYSS ,=  where S is saving, Y is income, and i is interest rate. We assume 
that the function is continuous and has partial derivatives. In this saving 
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function, 
Y
S

∂
∂ is the marginal propensity to save. If there is a change in Y, dY, 

the resulting change in S will be approximately dY
Y
S
∂
∂ . Similarly, given a 

change in i, di, we can say that the resultant change in S will be di
i
S
∂
∂ . Thus 

the total change in S due to the change in Y and in i is 

di
i
SdY

Y
SdS

∂
∂

+
∂
∂

=  . In the notation we had mentioned above, we can write 

this as 

diSdYSdS iY +=  

Here dS is the total differential of the saving function. The process of 
obtaining the total differential of a function is called total differentiation.  

In the saving function mentioned above, it is possible that only income 
changes; the interest rate stays constant. In that case, di = 0. So the total 

differential of the saving function becomes dY
Y
SdY

Y
SdS

∂
∂

=+
∂
∂

= 0  

Dividing both sides by dY we get 

Y
S

dY
dS

ii ∂
∂

=







=

 

We can interpret the partial derivative 
Y
S

∂
∂ as the ratio of two differentials dS 

and dY, with the condition that the other variable in the saving function, I, 
remains constant. We could have also had a situation where Y did not 
change, only I did, and obtained 

i
S

di
dS

YY ∂
∂

=







=

 

Now let us consider a function with n arguments. Think of the following 
utility function 

),...,,( 21 nxxxfU = . Note that we can also write this also as 

( )nxxxUU ,...,, 21=  in the notation that we mentioned at the beginning of this 
section. 

Differentiating U  totally, we will get the total differential of U as: 

n
n

dx
x
Udx

x
Udx

x
UdU

∂
∂

++
∂
∂

+
∂
∂

= 2
2

1
1

 

We can also write this as  

∑
=

=++=
n

i
iinn dxUdxUdxUdxUdU

1
2211   
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Multivariate 
Calculus-IIAs a final application of total differential, we will make use of one of the 

rules involving  total differentials that you had studied in the previous unit 
which says  

( ) dvduvud ±=±  

As an illustration of this, consider the basic macroeconomic national income 
equation for a closed economy: GICY ++= , where Y is income, C is 
aggregate private consumption, I is investment and G is government 
expenditure. Then the total differential of Y will be dGdIdCdY ++=  

Now suppose private investment I was a function of the interest rate r. Then 
we would have 

dGdr
r
IdCdY +
∂
∂

+=  

After this discussion of application of total differentials in economics, let us 
discuss the application of total derivatives. To do this, think of the saving 
function ( )iYSS ,=   

We had considered this function above. Earlier, in this function we had 
assumed that income Y and interest rate i are independent variables. But 
suppose that both these variables somehow depend on the money supply M. 
So now we can write the saving function as S = S(Y(M),i(M)). 

Now suppose we would like to see how savings change as a result of the 
money supply. Then we take the total derivative of S with respect to M.  We 
get: 

dM
di

i
S

dM
dY

Y
S

dM
dS

∂
∂

+
∂
∂

=  

In the above, we assume that the only channels through which M affects S are 
through its influence on Y and i, and  that M does not independently 
influence S. However, there may be cases where in a function the arguments 
themselves depend on a variable, and that this variable independently 
influences the dependent variable. For an example, we consider a production 
function, but in a dynamic long-run sense: 

( )tKLQQ ,,=  

This says that output depends not only on inputs capital and labour but on a 
third argument in the function, time, denoted by t. The presence of time in the 
production function suggests that production of the good is affected over time 
by technology, increase in skills, etc. This factor shifts the production 
function. Thus the production function is dynamic and not static. Now capital 
and labour can also change over time, and so we have ( )tKK = and 

( )tLL = . So the production function can be written 

( ) ( )( )ttKtLQQ ,,=  
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We can use total derivative of Q with respect to t to show the rate of change 
of output over time. This will be 

t
Q

dt
dK

K
Q

dt
dL

L
Q

dt
dQ

∂
∂

+
∂
∂

+
∂
∂

=  

Using an alternative notation, we can depict this as  

( ) ( ) tKL QtKQtLQ
dt
dQ

+′+′=  

The above can be considered as an application of chain rule also, although we 
had mentioned in unit 1 that for chain rule to apply, each of the arguments in 
the function should itself be a function of two variables.  Say you have a 
function 

Z = f ( x, y ) and x and y each is a function of r and s. So we have  

( ) ( )( )srysrxfz ,,,=  

We can construct examples from economics. Say a person gets utility by 
being happy when his two children A and B get utility from consumption of 
food, denoted by F,  and clothes denoted by C. Let UA be the utility function 
of A and UB be the utility function of B. Let U be the utility of this person. 

Then we can write: 

( ) ( )[ ]CFUCFUfU BA ,,,=  

Notice that we have not made a distinction between the quantities of food and 
clothes consumed by the two children. 

Suppose we want to see how the utility of this person changes when the 

consumption of clothes changes. This we can find by getting 
dC
dU . This will 

be equal to 
A B

A B
dU U dU U dU
dC U dC U dC

 

We can similarly obtain dU
dF

 to see the change in utility of this person when 

the consumption of food by his children. 

2.4  APPLICATIONS OF IMPLICIT FUNCTIONS 
IN ECONOMICS 

We have till now seen the application of partial derivatives, total differentials 
and total derivatives in economics. In this section, we look at the 
differentiation of implicit functions. For this we would again urge you to read 
the corresponding section on implicit functions in Unit 1, which is section 
1.6.3. 
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Multivariate 
Calculus-IIIf we have a function f ( x, y ), we find that x and y are related implicitly. To 

proceed further with this implicit function, we can introduce a third variable 
z, which is related as a single valued function of x and y: z = g (x, y ). For z = 
k  (a constant ) we get a level curve. So level curves (like indifference curves 
and isoquants in economics) are implicit functions.  

As x and y vary (not necessarily independent of each other), the change in z 
is obtained from the total differential: 

dygdxgdz yx += , where xg is the partial derivative of z with respect to x; 
you understand what yg is 

If the values of x and y are such that the value of z is 0, then
0=+= dygdxgdz yx  

Hence, 
y

x

g
g

dx
dy

−=  

Let us apply this idea of differentiating implicit functions to economics. 
Consider a production function ( )KLfQ ,= . This gives rise to a family of 
isoquants. A specific isoquant will have the equation ( ) cKLf =, , where c is 
a constant. Differentiating this with totally we get  

0=+ KL fdLf . 

This is the approximate relation between changes dL and dK in the inputs 
along the isoquant through ( L, K ). This relation holds at all points on the 
isoquant. Hence the tangent gradient of the isoquant through ( L, K ) is  

K

L

f
f

dL
dK

−=  

The left-hand side 
dL
dK   is called the marginal rate of technical substitution. It 

shows the marginal rate of substitution of capital for labour. 

On the right-hand side, fL and fK are the marginal products of labour and 
capital respectively. 

Thus the marginal rate of technical substitution between capital and labour is 
equal to the negative of the ratio of the marginal product of labour and that of 
capital. 

We can do a similar exercise in the case of consumer theory. Take an 
indifference curve ( )yxfU ,= . Now along each indifference curve, the 
utility remains constant. Thus, for a specific indifference curve, let utility be 
fixed at a level U  

Then, the total differential of this function would be 0=+= dyfdxfUd yx


 



 

 

Functions of Several 
Variables 

52 

From this we get 
y

x

f
f

dx
dy

−=  

The left-hand side is called the marginal rate of substitution of y for x. The 
right-hand side is the ratio of the marginal utility of x to that of y. 

Let us now consider an application of implicit functions in macroeconomics. 
Consider a closed economy. Its basic accounting equation shows that total 
income is a sum of total private consumption, total private spending, and 
government expenditure: 

Y = C + I + G. 

Let consumption be an increasing  function of income, and investment be an 
increasing  function of income, and a decreasing function of the interest rate, 
r. Government spending is assumed to be exogenous. Then we can write the 
above equations as 

( ) ( )

0
0

10
,

<
>

<′<
++=

r

Y

I
I

C
GrYIYCY

 

We can also consider a money market in which the exogenous supply of 
money, M, is equal to the demand for money, L, where L is an increasing 
function of income Y, and a decreasing function of the interest rate, r. 

We can write for the money market the following equilibrium condition 

( )rYLM ,=  

We have now two equations: one for the goods market, and one for the 
money market. Leaving aside the government expenditure, we can consider 
the money supply as the only actual exogenous variable. We can take total 
differentials and get: 

 And for the money market
Y Y r

y r

dY C dY I dY I dr dG

dM L dY L dr

= + − +

= +
 

If we take government spending and money supply to be fixed, then dG and 
dM will be zero, and the model can be solved. 

Check Your Progress 2 

1)  Given a production function  

( ) 0.3 0.5,Y f K L K L= = , find the marginal rate of technical substitution. 

…………………………………………………………………………… 

…………………………………………………………………………… 
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Multivariate 
Calculus-II1) A firm finds that its production function is of the form 

 Q =100K0.25L0.75 

Where Q is output and K and L are capital and labour, respectively. 

i) Show that the equation of the isoquant for Q = 100 is given by  
K = 1/L3 

ii) Show that this isoquant is negatively sloped. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………. 

2) Consider the utility function 

U = XY, where X and Y are two goods consumed 

i) Show that the indifference curves are downward sloping and 
convex. 

ii) Give an economic interpretation to the slope and curvature of the 
indifference curve 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

2.5  APPLICATIONS OF HOMOGENEOUS 
FUNCTIONS AND EULER’S THEOREM IN 
ECONOMICS 

In this final section of the unit, we look at some applications of homogeneous 
functions in economics. For this section in this unit, you must read the 
corresponding section on homogeneous functions and their differentiation in 
unit 1. 

Let us consider a production function F where output Q is a function of two 
inputs labour (L) and capital (K),  that is, Q = F(L, K).  This production 
function is said to be homogeneous of degree r, if for all Land K in the 
domain, 

( ) ( )KLFKLF r ,, λλλ ≡ . 
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We can extend this definition to a production  function of n-inputs x1., x2 
,…,xn  (Q is a function not just of labour and capital but of n inputs denoted 
as above.  Suppose 

( )nxxxfz ,...,, 21= . Then f  is said to be homogeneous  of degree r if  

( ) ( )n
r

n xxxfxxxf ,...,,,...,, 2121 λλλλ ≡ . Here r determines the returns to scale 
of the production function. If  

( , )F x y is linearly homogeneous (homogeneous of degree 1) if and only if 

( , ) xF x y yf
y

 
=  

 
,where ,1x xf F

y y
   

=   
   

 

How do we show this? Let us begin by showing the ‘if’ (sufficiency) part. 

Given: 

( )

( ) ( )

,  ,we have

, ,

xF x y yf
y

x xF x y yf yf F x y
y y

λλ λ λ λ λ
λ

 
=  

 
   

= = = =   
   

 

Now let us show the only if (necessary condition) part: 

Given F(x,y) is linearly homogeneous (homogeneous of degree 1). Then 

( ) ( ), ,F x y F x yλ λ λ= , for any λ 

Put 1
y

λ = . The we have 

( )1,1 ,xF F x y
y y

 
= 

 
 

Thus ( ),1 ,xyF F x y
y

 
= 

 
 

But ,1x xF f
y y

   
=   

   
.  

Hence, ( ), xF x y yf
y

 
=  

 
 

Differentiation of a Homogeneous Function  

A very important property of homogeneous functions is with regard to the 
differentiation of homogeneous functions. 

Let us have a homogeneous function  f(x, y) of degree r. then we have: 

( ) ( )yxfyxf r ,, λλλ ≡  

Differentiating with respect to x we have: 
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Calculus-II( ) ( )yxfyxf x

r
x ,, λλλλ = , where 

x
ff x ∂
∂

=  

If we divide by λ we get: 

( ) ( )yxfyxf x
r

x ,, 1−= λλλ  

If you notice carefully, the above equation shows that the function xf  is 
homogeneous of degree r – 1. The above holds for the function fy too, where 
fy is the partial derivative with respect to y. the above holds in the case of any 
multivariate homogeneous function.  

This result says that if a function is homogeneous of degree r, then each of its 
partial derivatives is homogeneous of degree r – 1. 

Euler’s equation  

This is a very important property displayed by homogeneous equations. Let  
,z f x y    

 be a homogeneous function of degree r. then the following relation holds as 
an identity: 

rz
y
zy

x
zx =

∂
∂

+
∂
∂  

We repeat the proof that that was provided in unit 1. We  prove Euler’s 
equation using implicit differentiation and the chain rule: 

Let us have the homogeneous function  

( ) ( )yxfyxf r ,, λλλ ≡     (a) 

Let us partially differentiate the left-hand side of equation (a) with respect to 
λ. We get: 

( ) ( )
λ
λ

λ
λλ

λ
λ

λ
λλ

∂
∂

∂
∂

+
∂
∂

∂
∂ y

y
yxfx

x
yxf ,,  

= yx yfxf λλ +    (b) 

Now let us obtain the partial derivative of the right-hand side of equation (a) 
with respect to λ. We now get: 

( ) ( )
λ

λ
λ
λ

∂
∂

+
∂
∂ yxfyxf r

r ,,  

=
( )
( )yxfr

yxfr
r

r

,
0,

1

1

−

−

=

+

λ

λ
   (c) 

 

Since for equation (a), left-hand side = right hand side, therefore equation (b) 
= equation (c). Hence we have  
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yx yfxf λλ + =  ( )yxfr r ,1−λ  

Now λ can be any number. Let λ be 1. Then, we get Euler’s theorem: 

yx yfxf + = ( )yxrf , , i.e. rz
y
zy

x
zx =

∂
∂

+
∂
∂ `  

The above can be generalised for functions of more than two variables. Let us 
discuss an important application in economics of Euler’s theorem. 

Consider a production function that is homogeneous of degree 1. In other 
words, this production function displays constant returns to scale. Consider 
the following simple production function 

( )KLfQ ,=  

If the Euler’s theorem holds for the function ,z f x y  

,then if z is homogeneous of degree 1, then Euler’s theorem would imply 

z
y
zy

x
zx =

∂
∂

+
∂
∂

 

Now  let us merely substitute z with Q, x with L, and y with K. Then we 
would have our production function above with constant returns to scale. 
Euler’s theorem would imply: 

Q
K
QK

L
QL =

∂
∂

+
∂
∂

 

On the left hand side, 
L
Q
∂
∂  is the marginal product of labour and 

K
Q
∂
∂ is the 

marginal product of capital. If each worker gets paid a wage equal to his or 
her  marginal product of labour, and each unit of capital gets paid a rental 

equl to its marginal product of capital, then 
L
QL
∂
∂ is the total earnings of all 

the workers (that is, of labour as a whole) and 
K
QK
∂
∂ is the total earnings of 

capital. Thus the left-hand side of the above equation shows the total earnings 
of all the factors of production (in this case, only labour and capital).  This 
equals the right-hand side , which is simply Q, or the total output.  So we see 
that if constant returns to scale prevail (which would, if the production 
function is homogeneous of degree one), then the total earnings of the factors 
of production is equal to the total output produced. Thus nothing is left over 
and there are no extra-normal profits. The product is totally exhausted.  This 
is the famous product-exhaustion theorem which says that if there are 
constant returns to scale and if each factor is paid its marginal product, then 
the payments to the factors exhausts the entire output. Of course this holds 
only in the case of constant returns to scale. 
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Calculus-IICheck Your Progress 3 

1)  Suppose you have a utility function βα yxU = . Suppose U is fixed at the 
level U = k. Find the marginal rate of substitution of the utility function 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

2)  Consider the production function ηγ KLQ = . Determine the degree of 
homogeneity of this production function. 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

3)  Show that if there are increasing returns to scale, the production 
exhaustion theorem will not hold 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

2.6  LET US SUM UP  

This unit was devoted to presenting some economic applications of the 
various concepts about multivariate functions and their differentiation. The 
unit began by presenting some familiar multivariate functions that you come 
across in economics, like utility function, production function, demand 
function, money demand function, investment function and so on. Also, the 
unit soon discussed a couple of examples of level curves in economics, 
namely, indifference curves and isoquants. The unit then went on to discuss 
partial derivatives in economics. We found that partial derivatives are 
ubiquitous in economics. In a multivariate function, whenever we speak of a 
marginal concept in economics, the corresponding mathematical concept is a 
partial derivative.  Marginal utility, marginal product of a factor, marginal 
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cost, marginal revenue, and marginal propensity to consume are all examples 
of partial derivatives, 

The unit then went on to discuss the application of total differentials and total 
derivatives in economics. The applications were drawn from utility theory, 
production theory and macroeconomics. The application of the chain rule 
with respect to derivative of multivariate functions, where each argument in 
the original function is itself a function of two or more variables was also 
discussed with the aid of a constructed example about utility as a function of 
utility of others, with each utility in turn being  functions of consumption of 
two goods.  

After this you were presented with some applications of implicit functions 
and their differentiation. We saw that level curves are an important type of 
implicit functions. In economics, using the function for indifference curves 
and isoquants, we came across the concept of marginal rate of substitution, 
and the marginal rate of technical substitution. We also came across an 
example from macroeconomics. 

Finally, the unit turned to a discussion of homogeneous functions and the 
Euler’s theorem. We saw the homogeneity in utility functions, demand 
functions and production functions, where the degree of homogeneity being 
equal to, less than, or greater than one determines whether the production 
function displays constant, decreasing, or increasing returns to scale. At the 
end, the Euler’s theorem was applied to demonstrate the product exhaustion 
theprem in the theory of production. 

2.7  ANSWERS/HINTS TO CHECK YOUR 
PROGRESS  EXERCISES 

Check Your Progress 1 

1) See section 2.3 and answer. 

2) See section 2.3 and answer. 

Check Your Progress 2 

1) See section 2.4 and answer 

2) See section 2.4 and answer 

3) See section 2.4 and answer 

Check Your Progress 3 

1) See section 2.5 and answer. 

2) See section 2.5 and answer. 

3) See section 2.5 and answer. 

  




