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9.0   OBJECTIVES 

After going through this unit you should be in a position to: 

 explain the concept of probability, 

 explain the laws of probability including Bayes’ Theorem, 

 solve numerical problems in probability and mathematical expectations. 

9.1   INTRODUCTION 

Often we make statements like 

 It may rain tomorrow. 
 There is a fair chance that Team A wins the match. 
 It is unlikely that Mr. X becomes the President. 
 Mr. Y probably met Mr. Z. 

We can see that all these statements are characterised by an element of 
uncertainty. For example in the first statement, we are not sure that it will rain 
tomorrow. Similarly in the last statement, we exactly don’t know whether Mr. Y 
met Mr. Z or not. Any statement, in which there is an element of uncertainty 
about the occurrence of some event, is called a probability statement. Thus, all 
the above statements are probability statements. Suppose in connection with the 
first probability statement, one asks, “What is the chance of rain tomorrow?” 

We may have to come out with an answer like 
                                                             
 Dr. R A Chaudhury (Retd.), Kirorimal College, University of Delhi 



 

209 
 

Elementary 
 Probability 

‘There is a 75% chance of rain tomorrow’. 

Now, we are not only making a probability statement but also giving a relative 
measure for the degree of certainty (and implicitly that of uncertainty) associated 
with the event of rain tomorrow. Thus, the degree of certainty of rain is given a 
relative value of 75% and at the same time the uncertainty associated with rain is 
implicitly given a relative value of 25%. Suppose we have a scale to measure the 
degree of certainty. In this scale the degree of certainty will vary from 0% to 
100%. This scale also implicitly measures the degree of uncertainty. Thus, if one 
is sure about the non-occurrence of an event, it will have 0% chance or certainty. 
At the same time, it will have 100% non-chance or uncertainty. Similarly, if one 
is sure about the occurrence of an event, it will have 100% chance or certainty 
and 0% non-chance or uncertainty. However, we should note here that both the 
statements of 100% occurrence (so, 0% non-occurrence) and 0% occurrence (so, 
100% non-occurrence) of an event are statements without any element of 
uncertainty and hence, in a strict sense, are not probability statements. 
 
The relative measure of the degree of certainty with which an event can occur 
can be termed as the probability of the event. Conventionally, this degree is 
measured relative to 1. Thus, a 30% chance of the occurrence of an event will 
have a probability of 0.3. Similarly, a 75% chance of rain tomorrow can be stated 
as 

‘The probability of rain tomorrow is 0.75’. 
 

A relevant question is: How can we obtain the probability of an event? In the 
next section, we shall deal with this question. 
 

9.2   DEFINITION OF PROBABILITY 

It is clear that the problem of obtaining the probability is essentially a problem of 
measuring the degree of certainty of occurrence or non-occurrence of an event. 
Mathematicians have had different perceptions about the degree of certainty of an 
event and accordingly various definitions of probability have been given. These 
definitions suggest procedures for obtaining the probability of an event. In this 
Unit, we shall consider three such definitions. They are (i) the classical or 
mathematical definition, (ii) the relative frequency definition or the statistical 
definition, and (iii) the modern definition or the axiomatic approach to 
probability. 
 

9.2.1 Classical Definition 

The classical definition of probability is based upon certain concepts. Let us first 
understand these. 

a) Statistical experiment - An experiment having more than one possible 
outcome is called a statistical experiment. A statistical experiment is also 
known as a trial. Thus, tossing a coin to see whether it results in a head or a 
tail is a trial. Certain statements implying more than one possible situation 
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can also be termed as trials. For example, all the four statements given at the 
beginning of Section 9.1 are trials or statistical experiments. 

b) Event - A possible outcome of a trial is called an event. Thus, head is an 
event that may result from tossing a coin. Similarly, the occurrence of five or 
the occurrence of an odd number is a possible event of the trial of throwing a 
dice. The latter example indicates that an event may consist of one or more 
possible outcomes of an experiment. The event of getting an odd number, in 
fact, consists of three possible outcomes of rolling a dice. We should note that 
an event consisting of only one possible outcome is often called an 
elementary event. 

c) Exhaustive events - A set of events is said to be exhaustive, if it includes all 
possible outcomes of a trial. For example, the tossing of a coin can result in 
either a head or a tail and nothing else. Thus, the set {head, tail} is an 
exhaustive set of events associated with the trial of tossing a coin. Consider 
another example. We know, a dice has six sides and each side has dots that 
vary from 1 to 6. When the dice is thrown, it shows up a side with a given 
number of dots. If the occurrence of a side with a given number of dots is an 
event, the set {1, 2, 3, 4, 5, 6}, where each number represents the number of 
dots on a side of a dice, is an exhaustive set of events. The number of 
elements in an exhaustive set of events is known as the number of cases of 
the trial. 

d) Favourable events - Such cases that support the occurrence of an event are 
said to be cases favourable to that event. Suppose a dice is thrown to see if it 
shows up a face with an even number of dots. In this trial, the sides with 2, 4 
and 6 dots are all cases that favour the occurrence of the event of a side with 
an even number of dots. 

e) Equally likely events - If in a trial, the chance of the occurrence of any 
possible event is the same, the events are said to be equally likely. Suppose a 
dice is thrown. If we feel that each of the six sides has an equal chance to 
show up, the possible six events are then equally likely. 

f) Mutually exclusive events - If in a trial, the occurrence of an event rules out 
the simultaneous occurrence of any other possible event, the events are said 
to be mutually exclusive. We know, the toss of a coin results in either a head 
or a tail. Thus, the events of a head and a tail in the toss of a coin are mutually 
exclusive. 

Now we are in a position to understand the classical definition of probability. The 
definition states: 

If a trial can result in n mutually exclusive, equally likely and exhaustive 
outcomes and out of which m outcomes are favourable to an event A, the 

probability of A, denoted by P(A), is then P(A)
m

n
 . 
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It is clear that if A is an impossible event, that is, none of the n possible outcomes 
favours the occurrence of the event A, we have m = 0. The probability of A in that 

case is P(A)
m

n n
  

0
0 

On the other hand, if A is a certain event, that is, all of the n possible outcomes 
favour the occurrence of the event A, we have m = n. The probability of A in that 

case is P(A)
m

n

n

n
   1 

We shall now consider some applications of the classical definition for the 
computation of probability. 

Example 9.1  

What is the probability of getting a head in the toss of a fair coin? 

We know that the toss of a coin can result in either a head or a tail and nothing 
else. Hence, these two events constitutes a set of exhaustive events. If the toss 
results in head, it simultaneously cannot result in tail and vice versa. Thus, the 
two events are mutually exclusive. Finally, if we have nothing to suspect the 
behaviour of the coin, both head and tail have the same chance of occurrence in 
the toss. So, the two events are equally likely. In this way, when all the 
conditions of the classical definition are satisfied, we can proceed with the 
solution of the problem. 

The number of exhaustive outcomes n = 2 (head and tail) 

The number of outcomes favouring the required event (head) m = 1 

If P (H) is the probability of the occurrence of head, then
2

1


n

m
P(H)  

From now onwards, we shall proceed straight with the solution. However, you 
should satisfy yourselves that all the conditions of the classical definition are 
satisfied. 

Example 9.2  

A fair dice is thrown. What is the probability that either 1 or 6 will show up? 

A dice has six faces with 1, 2, 3, 4, 5 and 6 dots printed on them and any one of 
these faces will show up when the dice is thrown. Thus the number of exhaustive 
outcomes n = 6. Now, the face with 1 dot favours the required event and the face 
with 6 dots also satisfies the required event. So, the number of outcomes 
favouring the required event is m = 2. If P(1 or 6) is the probability of either 1 or 
6 then 

P or
m

n
(1

2

6

1

3
  6)   

 

Example 9.3  

An unbiased coin is tossed twice. What is the probability of getting a head at 
least once? 
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If H stands for head and T stands for tail, there are four possible outcomes. They 
are 

(H, H)  (H, T)  (T, H)  (T, T) 

Thus, n = 4 here and the number of outcomes favourable to the required event of 
at least one head, m = 3. Hence 

P at least one head
m

n
    ( )  

3

4  
 

Limitations of the Classical Definition 
 

The classical definition has some serious drawbacks. They are 

a) The classical definition can be applied only if various outcomes of the trials 
are equally likely or equally probable. But in practice the outcomes need not 
be always equally likely. For example, if a coin is biased in favour of head, 
the classical definition fails to give the probability of a head or a tail. 

b) The classical definition is valid for a finite number of outcomes of a trial. It 
fails when the number of outcomes becomes infinity. In fact, even in the case 
of a finite number of outcomes, it may not be practically feasible to 
enumerate all the cases. 

c) The classical definition is ‘circular’ in the sense that while defining 
probability, the definition uses the term ‘equally likely’ which pre-supposes 
the knowledge of the concept of probability. 
 

Check Your Progress 1 

1) A box contains 4 white balls and 6 red balls. A ball is drawn without looking 
into the box. What is the probability that it is a white ball? 

………………………………………………………………………………

……………………………………………………………………............…

………………………………………………………………………………

………………………………………………………………………………

…………………………………………………………………………….... 

2) A six-faced dice is thrown. What is the probability of getting an even 
number? 

………………………………………………………………………………

……………………………………………………………………............…

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

…………………………………………………………………………….... 
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3) A coin is tossed twice. What is the probability of getting either two heads or 
two tails? 

………………………………………………………………………………

……………………………………………………………………............…

………………………………………………………………………………

………………………………………………………………………………

…………………………………………………………………………….... 

4) A card is drawn from a pack of 52 cards. What is the probability of not 
getting a king? 

………………………………………………………………………………

……………………………………………………………………............…

………………………………………………………………………………

………………………………………………………………………………

…………………………………………………………………………….... 

 
9.2.2 Relative Frequency or Statistical Definition 

Another definition that has often been used is the relative frequency definition of 
probability. If we repeat a trial and observe the occurrence of an event, we shall 
see that as the number of trials is progressively increased, the ratio of the number 
of times a particular event occurs to the total number of trials tends to stabilise at 
a particular value. Now, the number of times an event occurs is its frequency and 
when this frequency is divided by the total number of trials, we get the relative 
frequency of the event. Thus in other words, when the number of trials becomes 
sufficiently large, the relative frequency of an event tends to a limit. According to 
the relative frequency definition, this limiting value is the probability of the event 
under consideration. Suppose, we repeat the experiment of tossing a coin and 
observe the number of times head occurs. We shall find that as we increase the 
number of tosses from say, 10 to 100 to 1000 to 10000 and so on, the relative 

frequency of head will gradually stabilise at 
1

2
. Thus, the probability of head in 

the toss of a fair coin is 
1

2
. 

Mathematically, if n is the total number of trials out of which, an event A occurs 
m times, the probability of A  

 P A Lim
n

m

n
 

  
 

9.2.3 Axiomatic Approach to Probability 

The main limitation of the classical as well as the relative frequency definitions is 
that these definitions preclude a rigorous mathematical treatment of the subject of 
probability. This limitation has been taken care in the modern definition. 
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Before presenting the modern or axiomatic definition, it is necessary to grasp the 
following concepts. 

a) Sample Space - It is the set of all possible (or exhaustive) outcomes of a trial. 
The sample space of a trial can be denoted by S and is given by S = {e1, e2, 

, en}, where, e1, e2, , en are n elementary events. 

If the trial consists of tossing a coin, then the sample space will be S = {H, 
T}. Similarly, when a dice is rolled, the sample space is given by S = {1, 2, 3, 
4, 5, 6}. 

The elements of a sample space can also be ordered pairs. For example, the 
sample space of the simultaneous toss of two coins is S = { (H, H), (H, T), (T, 
H), (T, T) }. Further, a sample space can be finite or infinite depending upon 
whether it consists of finite or infinite number of elements. 

b) Event - An event is any subset of sample space. For example, if A denotes an 
event that an odd number appears on a dice, then A = {1, 3, 5}. Again, the 
event of the occurrence of at least one head when two coins are tossed 
simultaneously is given by, say, B = { (H, H), (H, T), (T, H) }. 

c) Occurrence of an Event - An event is said to have occurred whenever the 
outcome of a trial belongs to the relevant event-subset. Thus, when we roll a 
dice and get 1, we say that event A has occurred. Based upon this, we can say 
that the sample space of a trial is certain to occur. 

According to the modern definition, the probability of an event A, denoted by 
P(A) is a real valued set function that associates a real value P(A) corresponding 
to any subset A of the sample space S. 

In order that P(A) is the probability of an event A, it must satisfy the following 
restrictions. These restrictions are also known as the axioms of probability theory. 

1. The probability of an event A, in a sample space S, is a non-negative real 
number less than or equal to unity, i.e.,   1 0  AP . 

2. The probability of an event, that is certain to occur, is unity. Since S is certain 
to occur, this implies that P(S) = 1. 

3. If A1, A2 and A3 are mutually exclusive events in a sample space S, then 
 

        P A A A P A P A P A    1 2 3 1 2 3     . 
 

 The above relation can be generalised to any number of events. 

We should note that in the sample space S = {e1, e2, , en}, the elementary 

events, e1, e2, , en are mutually exclusive. Thus on the basis of the third 

axiom, we can say that 

    P S P eii

n
  



1
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Verbally, the probability of sample space is equal to the sum of the probabilities 
of its elementary events. In a similar way, we can state that the probability of an 
event is equal to the sum of its elementary events.  

Thus, to find the probability of an event, we must know the probability of the 
occurrence of its elementary events. This can be done in any of the following 
three ways. 

1. In the absence of any information regarding the occurrence of various 
elementary events, it is reasonable assume them to be equally likely. Thus, 
we can assign equal probability to each of the elementary events. 

Since    P S P eii

n
  


 
1

1, therefore 

 ni
nieP  , ,2 ,1     
1

)(   

If there are m elementary events in the event A, then 

 P A
n n n

   times   


 




1 1 1
 m  

 
m

n

number of elements in 

number of elements in 

A

S
 

This is nothing but the classical approach to probability. 

2. Another way of assigning probability to various elementary events is to 
perform an experiment a large number of times. The relative frequencies of 
various elementary events can be taken as their respective probabilities if n is 
sufficiently large. This method uses the statistical definition of probability 
discussed before. 

3. The probabilities of various elementary events can also be assigned by the 
person performing the experiment, on the basis of her experience and 
expectations. For example, one may ask you to specify the probability of rain 
today. You may be tempted to specify a higher value, say 0.8, if the day falls 
in the rainy season and so on. This approach to probability is particularly 
useful to managers engaged in taking various business decisions. 

In practice we encounter many situations which involve a combination of events. 
In such situations we need to combine the probabilities of these events. In this 
context, we discuss two important laws of probability below. 
 

9.3   PROBABILITY LAWS 

Before considering various probability laws, let us be familiar with certain 
notations. 

a) If A and B are two events, then    P A B P A B  or     denotes the probability 
that either A occurs or B occurs or both occur simultaneously. It can also be 
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interpreted as the probability of the occurrence of at least one of the two 
events A and B. 

b)    AB P or BA P   denotes the probability of the simultaneous occurrence of 
both A and B. 

c)  B/A P  denotes the conditional probability of the occurrence of A given that 
B has already occurred. 

9.3.1 Addition Law 

This law states that the probability of the occurrence of at least one of the two 
events (i.e., either A or B or both) is equal to the probability of A plus the 
probability of B minus the probability of both A and B. 

Using notations, we can say 

       BA PB PA PBA P    …(9.1) 

We discuss below the modification to (9.1) in certain special cases. 

a) Mutually Exclusive Events: Now suppose, A and B are mutually exclusive, 
that is, the occurrence of A precludes the occurrence of B and vice versa; 
then, the two events cannot occur simultaneously and   0 BA P . Thus, for 

two mutually exclusive events A and B, probability of the occurrence of either 
A or B is equal to the probability of A plus the probability of B. 

      P A B P A P B       

b) Exhaustive Events: Again, if A and B are the only possible outcomes of a trial 
(i.e., A and B are exhaustive events), then the occurrence of either A or B is a 
certainty. We know that the probability of a event that is certain to occur is 1. 
Hence, in that case 

       1)(    BAPBPAPBAP  

 or      P A B P A P B       1 (when A and B are mutually exclusive) 

c) Complementary events: Suppose A is a possible outcome of some trial. It is 
then clear that the trial either results in the occurrence of A or the non-
occurrence of A. Thus, A and ‘not A’ exhaust all the possible outcomes of any 
trial. So, if A  denotes ‘not A’, we have 

 
   

   

P A P A

P A P A

  

or   

 

 

1

1
 

Here, A  is called complement to the event A. Thus, the sum of probabilities 
of any event and its complement is always equal to 1. 
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9.3.2 Multiplication Law 

This law states that the probability of the simultaneous occurrence of the two 
events A and B is equal to the product of 

(i) the probability of A and the conditional probability of B given that 
A has already occurred  

or 

(ii) the probability of B and the conditional probability of A given that 
B has already occurred. 

In symbols, 

         P A B P A P B A P B P A B         / /   …(9.2) 

Using the multiplication law, we can find the conditional probabilities 

 
 
 P B A

P A B

P A
 

 

 
/ 


 

and 

 
 
 P A B

P A B

P B
 

 

 
/ 


 

In case of multiplication law, certain modification is required in case of 
independent events. 

Suppose that the occurrence of B does not depend upon the occurrence of A and 
vice versa, then the two events A and B are said to be mutually independent. In 
this case the two conditional probabilities  P B A /  and  P A B /  are equal to 
their respective non-conditional simple probabilities. Hence, for independence 

    P B A P B  /   and 

    P A B P A  /   

Thus, for two independent events A and B, the probability of their 
simultaneous occurrence is the product of their respective probabilities. 

         P AB P A P B P B P A          

Let us now consider some examples on the application of the probability laws. 
 

9.3.3 Applications of Probability Laws 

Let us work out some problems so that you get a fair idea of the application of 
the above mentioned probability laws. 
 

Example 9.4  

A dice is thrown. What is the probability of getting either 1 or 6? 

It is clear that in a single throw the two events of 1 and 6 cannot occur together. 
Hence, the two events are mutually exclusive. Thus,

     
3

1

6

1

6

1
 6 P1 P6 or 1 either P . 



 

218 
 

Probability 
Theory  
 

Example 9.5  

One card is drawn from a pack of 52 cards. The card is not replaced in the pack 
and another card is drawn. What is the probability that both the cards are spade? 

Here the first event is drawing a spade and the second event is drawing another 
spade given that the first card is a spade. Thus the second event is a conditional 
event. Let  P A  be the probability of the first event and  P B A /  be the 
probability of the second event given the occurrence of the first event. Now, 

 P A  
13

52

1

4
. When the first card is a spade and is not replaced, there are 12 

spades left in a pack of 51 cards. So,  P B A / 
12

51
. Hence, the required 

probability is 

 )( BAP    P A P B A       /
13

52

12

51

1

4

12

51

3

51
 

We should note that when the card is not replaced after the first drawing, the two 
events are not independent as the probability of the occurrence of the second 
event depends upon the probability of the occurrence of the first event. 
 

Example 9.6  

One card is drawn from a pack of 52 cards. The card is replaced in the pack and 
another card is drawn. What is the probability that both the cards are spade? 

In this example, the card is replaced after the first drawing. Thus, when the 
second card is drawn, there are 13 spades in a pack of 52 cards. As a result, the 
probability of the second card being a spade does not depend upon whether the 
first card drawn is a spade or not. Hence, the two events are independent here. If 

 P B  is the probability of the second card being a spade, in this case 
 

   P B A P B  /   
13

52

1

4
. 

 

Thus, the required probability is 

 )( BAP        P A P B A P A P B           /
13

52

13

52

1

4

1

4

1

16
 

Example 9.7  
 

A dice is thrown. What is the probability of getting a number less than 5 or an 
odd number? 

Let A be the event of a number less than 5 and B be the event of an odd number. 
We should note here that the two events are not mutually exclusive as a number 
can be both less than 5 and an odd number. So the required probability is 
obtained by applying the formula 
 

 )( BAP      P A P B P A B       
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Now in a dice, out of 6 numbers, there are 4 numbers (1, 2, 3, and 4) less than 5. 
Therefore, 

 P A  
4

6

2

3
. 

Again, there are 3 odd numbers (1,3 and 5) out of a possible six numbers. So 

 P B  
3

6

1

2
 

Suppose  P B A /  is the probability of an odd number given it is less than 
five. Then 

 P B A /  
2

4

1

2
 

Now 

     P AB P A P B A       /
2

3

1

2

1

3
 

Thus, the probability of getting a number less than 5 or an odd number is 

2

3

1

2

1

3

5

6
  

 
 

Example 9.8  

If A and B are two events such that      P A P A B P A B =
2

3
,   =

1

6
 and    

1

3
. Find 

 P B ,          P A B P A B P B A P A B P A B ,   ,   ,    and    / / . Also examine whether A 
and B are 

a) Equally likely 

b) Exhaustive 

c) Mutually exclusive 

d) Independent. 

We can write 

     P B P A B P A B          
1

6

1

3

3

6

1

2
 

       P A B P A P B P A B             
2

3

1

2

1

3

5

6
 

 
 
 P A B

P A B

P B
 

 

 
/ 


  

1

3
2

2

3
 

 
 
 P B A

P A B

P A
 

 

 
/ 


  

1

3

3

2

1

2
 

            P A B P A P B P A B P A P A                           
1

3

1

2

1

6

2

3
1

     P A B P A B           Using the concept of complementary event      1 1
5

6

1

6
 

a) Since    P A P B   , A and B are not equally likely. 
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b) Since  P A B  1  , A and B are not exhaustive. 

c) Since  P A B  0  , A and B are not mutually exclusive. 

d) Since      P A P B P A B      , A and B are independent. 

Check Your Progress 2 

1) A student takes Mathematics and English tests. His independent chances of 

passing the two tests are 
2

3
 and 

3

4
 respectively. What is the probability that 

a) he passes at least one test? 

b) he fails in both the tests? 

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 

2) Two cards are drawn from a pack of 52 cards. What is the probability 

a) that both the cards are kings when the first card is replaced before the 

second card is drawn? 

b) that both the cards are spades when the first card is not replaced before 

the second card is drawn? 

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 

3) There are two urns. The first urn contains 7 white balls and 3 red balls. The 

second urn contains 4 white balls and 6 red balls. An urn is selected at 

random and a ball is drawn. What is the probability that the first urn is 

selected and a red ball is drawn from it? 

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 



 

221 
 

Elementary 
 Probability 4) The probabilities that A and B speak the truth independently are 

1

2
 and 

1

3
 

respectively. If they make the same statement, what is the probability that the 
statement made by them is a true one? 

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 

9.4   BAYES’ THEOREM 
 

Let A1, A2, and A3 be three mutually exclusive and exhaustive events and there 

be an event D which can occur in conjunction with any of them. If D actually 
happens, then the conditional probability of the occurrence of Ai (i = 1, 2, 3) 

given D, is given by 

   
 

   
 

P A D
P A D

P D

P A P D A

P D
i

i i i
 

 

 

  

 
/

/






 

where 

         


3

1

3

1
/    

i
ii

i
i ADPAPDAPDP  

We should note that the above result can be generalised to any number of 
mutually exclusive and exhaustive events. 

Let us consider some practical applications of Bayes’ Theorem. 
 

Example 9.9  

In a factory that produces bolts there are three machines A, B and C.  They 
manufacture 25%, 35% and 40% of total output respectively. However, 5%, 4% 
and 2% of their respective output are defective. A bolt is drawn at random from a 
day’s output and is found to be defective. What is the probability that it was 
produced by (i) machine A, (ii) machine B, and (iii) machine C ? 

Since a day’s output consists of the bolts produced by all the three machines, the 
probability that a bolt selected at random is produced by machine A is given by P 
(A) = 0.25. Similarly we have, P (B) = 0.35 and P (C) = 0.40. Further, let D be 
the event that the bolt is defective. Since machine A produces 5% defective bolts, 
we have P (D / A) = 0.05. Similarly, P (D / B) = 0.04 and P (D / C) = 0.02. 

Thus 
 

             P D P A P D A P B P D B P C P D C       

         

     

      

/ / /

. . . . . . .0 25 0 05 0 35 0 04 0 40 0 02 0 0345  
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The probability that the bolt is manufactured by machine A given that it is 
defective 

 
   

 
P A D

P A P D A

P D
 

  

 
/

/ . .

.

.

.
.





 

0 25 0 05

0 0345

0 0125

0 0345
0 362 

Similarly, 

 
   

 
P B D

P B P D B

P D
 

  

 
/

/ . .

.

.

.
.





 

0 35 0 04

0 0345

0 0140

0 0345
0 406  

and 

 
   

 
P C D

P C P D C

P D
 

  

 
/

/ . .

.

.

.
.





 

0 40 0 02

0 0345

0 0080

0 0345
0 232 

There is an alternative method you can pursue. You can determine the above 
probabilities by making the following table. The three events A, B and C have 
been renamed as A1, A2, and A3 respectively. 
 

Ai A1 A2 A3 Total 

 P Ai  0.25 0.35 0.45 1.00 

 P D Ai /  0.05 0.04 0.02  

 P D Ai   0.0125 0.014 0.008  

   
 

P A D
P D A

P D
i

i
 

 

 
/ 


 

0.362 0.406 0.232 1.00 

 

Note that the probabilities P (A1), P (A2) and P (A3), which are known before 

conducting the trial, are known as priori probabilities. The conditional 
probabilities  of A1, A2, and A3 i.e.,  P (A1/ D), P (A2/ D) and P (A3/ D), after the 

result of the trial is known; are termed as posterior probabilities. 

To begin with the analysis of a problem, the manager of a firm assigns 

probabilities to certain events on subjective basis, i.e., based on his experience 

and expectation. These probabilities are the priori probabilities. Then the trial is 

conducted. Subsequent to the trial, the priori probabilities are revised on the basis 

of the occurrence of certain event like D to obtain posterior probabilities. Again 

in the next round, these posterior probabilities can be taken as priori probabilities 

and the whole procedure may be repeated to revise the posterior probabilities. 

Such a revision can be repeated a number of times. Generally, after a certain 

number of revisions the posterior probabilities tend to stabilise and the subjective 

probabilities tend to become objective probabilities. Thus, Bayes’ Theorem 

proves to be very useful for the analysis of business phenomena. 
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Example 9.10   

The probability that the product of a company will be successful given that the 
result of the survey is favourable is 0.6 and the probability of its being successful 
with unfavourable survey is 0.3. If the probability that the survey shows a 
favourable result is 0.7, find the probability that (i) the product is successful; (ii) 
the result of the survey is favourable given that the product is successful, and (iii) 
the result of the survey is unfavourable given that the product is successful. 

Let S denote the event that the product of the company is successful and F denote 
the event that the survey result is favourable. Let S F and  be the events denoting 
the negation of the respective events. 

In terms of notations we are given 

     P S F P S F P F ,    and  / . / . .  0 6 0 3 0 7  

Thus we have 

 P F   1 0 7 0 3. .  

(i) The probability that the product is successful is given by 

     

       

P S P S F P S F

P F P S F P F P S F

   

             

         

   

   

    

/ /

. . . . .0 7 0 6 0 3 0 3 0 51

 

(ii)  
 
 

P F S
P F S

P S
 

 

 
/

.

.
.


 

0 42

0 51
0 824  

(iii)    
 

P F S
P F S

P S
 

 

 
/

.

.
.


 

0 09

0 51
0 176  

Note that       P F S P F S/ / 1  
 

Check Your Progress 3 

1) A talcum powder manufacturing company had launched a new type of 
advertisement. The company estimated that a person who comes across their 
advertisement will buy their product with a probability of 0.7 and those who 
do not see the advertisement will buy the product with a probability of 0.3. If 
in an area of 1000 people, 70% had come across the advertisement, find the 
probability that a person who buys the product  

(a) has not come across the advertisement and.  

(b) has come across the advertisement? 
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 
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2) An insurance company insured 2000 scooter drivers, 4000 car drivers and 
6000 truck drivers. The probability of an accident is 0.01, 0.03 and 0.15 in 
the respective categories. One of the insured drivers meets with an accident. 
What is the probability that the person is a scooter driver? 

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………….................... 

……………………………………………………………………....................  

9.5   LET US SUM UP 

In ordinary parlance, probability refers to chance. In statistics, however, we go 
deeper than this. Here, we not only consider the uncertainty involved in the 
occurrence of an event but also try to quantify it. Thus, probability is a 
quantitative measure of chance. In this Unit, we have considered three different 
approaches to probability, namely, the classical approach , the relative frequency 
approach and the axiomatic approach. The probabilities of compound events are 
essentially governed by two laws. They are the addition law and the 
multiplication law. Finally, Bayes’ Theorem provides a framework for revising 
the probabilities on the basis of the occurrence and non-occurrence of certain 
events. This revision is very useful for business decisions. 
 

9.8   ANSWERS OR HINTS TO CHECK YOUR  
 PROGRESS EXERCISES 

Check Your Progress 1 

1) 
2

5
 

2) 
1

2
 

3) 
1

2
 

4) 
12

13  

Check Your Progress 2 

1) a) 
11

12
, b) 

1

12
 

2) a) 
1

169
, b) 

1

17
 

3) 
3

20
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1

3  

Check Your Progress 3 

1) 
9

58

49

58
,   

2) 
1

52
 

 



 

UNIT 10   DISCRETE PROBABILITY 
DISTRIBUTIONS* 

Structure 
 

10.0  Objectives 

10.1  Introduction 

10.2   Random Variable  

10.3  Probability Distribution 
10.3.1   Discrete Probability Distribution 

10.3.2   Continuous Probability Distribution 

10.3.3   Theoretical Distributions 

10.4   Mean and Variance of a Random Variable 

10.4.1   Theorems on Mathematical Expectation 

10.4.2   Theorem on Variance 

10.4.3    Standard Normal Variate 

10.5  Binomial Distribution 

10.6  Poisson Distribution 

10.7  Let Us Sum Up 

10.8  Answers or Hints to Check Your Progress Exercises 
 

10.0   OBJECTIVES 

After going through this unit you should be able to: 

 explain the meaning of a random variable  
 explain the concept of a probability distribution, 
 distinguish between a discrete probability distribution and a continuous 

probability distribution, and 
 explain the binomial and the Poisson distribution. 

10.1   INTRODUCTION 

In Unit 9, we discussed about probability of the occurrence of an event. In that 

unit an event was defined as the set of one or more possible outcomes of a chance 

experiment. The outcomes of such a chance experiment can be related to the 

concept of a random variable. In the present unit, we shall consider probability in 

the context of a random variable and understand the notion of a probability 

distribution. Any probability distribution is based upon the behaviour of some 

random variable. In this unit, we shall define a random variable and distinguish 

between a discrete random variable and a continuous random variable. Then, in 

the context of discrete random variables, we shall discuss two important discrete 

probability distributions. They are the binomial distribution and the Poisson 

distribution.  
                                                             
* Dr. Anup Chatterjee (retd.), ARSD College, University of Delhi 
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10.2   RANDOM VARIABLE 

Before presenting the formal definition of a random variable, let us intuitively try 
to understand the concept of a random variable. As mentioned in the 
introduction, a random variable is related to the outcomes of a chance 
experiment. Such a chance experiment is also known as a random experiment. 
Let us consider an example. 

Suppose a coin is tossed. There are two possible outcomes; a head (H) and a tail 
(T). In the earlier unit, we have discussed the concept of a sample space. The 
sample space of this experiment consists of the outcomes head and tail. If S 
denotes the sample space, then  

S = (H, T) 

In this experiment, we are not sure whether a head will result or a tail. This is an 

example of a chance experiment or a random experiment. Now suppose, we 

assign a number 0 to the occurrence of tail (T = 0) and a number 1 to the 

occurrence head (H = 1). Let us define a variable X that refers to the occurrence 

of an outcome. Then the variable and its possible values can be written as 

X = (0, 1) 

However, there is an important difference between this variable and our common 
notion of a variable. Here, the value that the variable takes depends upon the 
outcome of the chance or random experiment that we are considering. In other 
words, we are not sure, whether as a result of the experiment; the variable will 
take the value 0 or 1. We can only attach some probabilities to these values. 
These probabilities depend upon the chances of the occurrence of the different 
outcomes of the experiment. If in our example, for instance, the coin is unbiased, 

the probability of the occurrence of tail is 
2

1
 and that of head is also 

2

1
; because, 

both the outcomes have an equal chance to occur. Accordingly, we attach a 

probability of 
2

1
 to both 0 and 1. In the case of the conventional notion of a 

variable, on the other hand, no such probability is attached to a value taken by the 
variable.  

From the above discussion we can say that a random variable is a variable that 
takes different values with some probabilities. Thus, the variable X referring to 
the possible outcomes of tossing a coin, is an example of a random variable. 

We will use the following notations: Let X be a random variable and it assumes 
values 1 2 3, , ,...... .nx x x x  The corresponding probabilities are 1 2 3, , ,........ .np p p p  

Thus, 1 1( )p X x p  .  

Example 10.1 

Let us consider an experiment of simultaneous tossing of two coins. The sample 

space of the experiment is 
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 S = {(H, H), (H, T), (T, H), (T, T)} 

If we define a random variable X as the number of heads obtained, then X = 2 

corresponds to the outcome (H, H); X =1 corresponds to the outcomes (H, T) and 

(T, H); and finally, X = 0 corresponds to the outcome (T, T). Thus X can take 

three possible values i.e., 0, 1 and 2. 

 X = (0, 1, 2) 

Example 10.2 

As another example, we consider the roll of a dice. The sample space is S = {1, 2, 

3, 4, 5, 6}. A random variable X can be defined such that it takes a value equal to 

0 when an odd number appears on the dice and 1 when an even number appears. 

Thus 

 X = (0, 1) 

In the tossing of two coins experiment, we can also define a random variable in 
monetary terms. For instance, we may decide to pay a player Rs. 10/- if two 
heads are obtained, Rs. 5/- if one head is obtained and ask the player to pay Rs. 
8/- (i.e., we pay Rs. –8/-) if no head is obtained. Here X is a random variable 
denoting the amount of payment that can be made to a player. Thus 

 X = (10, 5, –8)  

A random variable can be either discrete or continuous. 

(i) Discrete Random Variable: When the sample space of an experiment is 
discrete, the corresponding random variable will also be discrete, i.e., it 
will take certain isolated values. The random variables discussed above 
are examples of discrete random variable. 

(ii) Continuous Random Variable: We know that a continuous variable can 
take any value in an interval. Accordingly, a continuous random variable 
is defined when the accompanying sample space is also continuous. In the 
next unit, we shall discuss the concept of the normal variable which is an 
example of a continuous random variable. 

10.3  PROBABILITY DISTRIBUTION 

Let us begin with a definition of probability distribution. It is defined as a 
statement about the possible values of a random variable along with their 
respective probabilities. 

Let us take a concrete example of probability distribution. In the earlier example 
of tossing two coins, we defined a random variable X as the number of heads. 
Further, X took three values, viz., 0, 1 and 2. Assuming that the two coins are 
unbiased, we can write  

  1
p 0 , 

4
X     
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1
( 1)

2
p X   [i.e., the probability of the occurrence of (H, T) or (T, H)] 

  1
p 2

4
X   .  

These probabilities along with the corresponding values of the random variable 
written in a tabular form constitute the probability distribution of the random 
variable X where X is the number of heads. It is shown in Table 10.1. 

 
Table 10.1: Probability Distribution of the Number of Heads Obtained 
         in Tossing of Two Unbiased Coins 
 
Number of Heads 

(x) 

Probability 

p(x) 

0 1

4
 

1 1

2
 

2 1

4
 

In the above example, the events of getting no head (X = 0), one head  
(X = 1 ),and two heads ( X = 2 ) exhaust all the possibilities (this means, there is 
no other possible outcome than the above three). Thus, the probability 
distribution resulting from the above experiment has enumerated all the possible 
values of the random variable X and assigned specific probabilities to them. We 
can see that the sum of these probabilities equals 1.  

Probability distribution can be of two types: Discrete Probability Distribution and 
Continuous Probability Distribution. 

10.3.1 Discrete Probability Distribution 

We have already seen that the probability distribution for a random variable 

describes how the probabilities are distributed over the values of the random 

variable. Now, for a discrete random variable, the probability distribution is 

defined by a function called probability mass function, denoted by p(x). This 

probability mass function provides the probability for each value of the discrete 

random variable. In fact, the probability distribution of the number of heads in 

tossing two coins that we have presented in Table 10.1 is an example of a 

discrete probability distribution.  

We can consider another example of a discrete probability distribution. Suppose 
we observe the number of children per household in a locality. Here, we can 
consider the number of children as a discrete random variable. A discrete 
probability distribution for the number of children per household can be 
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constructed by computing the relative frequencies for the possible values of this 
random variable. Such a probability distribution is shown in Table 10.2. 

Table 10.2: Probability Distribution of the Number of Children per  

 Household 

Number of Children 

(x) 

p(x) 

 

0 0.10 

1 0.15 

2 0.23 

3 0.25 

4 0.14 

5 0.13 

Thus, the set of ordered pairs [x, p(x)] is called the probability distribution of a 

discrete random variable X or the discrete probability distribution. 

Since the values p(x) are all probabilities and a value x of the random variable 

will always occur, the probability mass function should satisfy the following two 

conditions 

1) Probability of an event cannot be negative, i.e., for any value of X 

0)( xp  

2) Probabilities of all possible outcomes sum to unity, i.e., 

 
all x

xp 1)(   

Let us work out some problems on discrete probability distribution. 

Example 10.3 

Is the following a valid probability mass function?   1 ,0 ,1 ,
2

3
 x

x
xp  

Let us find out the probability of x, when x assumes the specified values  

(1, 0 and 1).  
 

When x = 1  

    0
2

1

2

31
1  pxp . 

But we know that probability of an event cannot be negative. Thus, the first 
condition of a probability mass function is violated. Hence, the given function is 
not a valid probability mass function. 
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Example 10.4 

Given a function
x

k
xp )( , x = 3, 4, 5 and k is a constant. Find k such that the 

given function is a valid probability mass function. 

From the given function, we have 

 

 

 

p
k

p
k

p
k

3
3

4
4

5
5







 

For the satisfaction of the second condition of a probability mass function, we 

have 

 

1
5

1

4

1

3

1
 

1
543













kor

kkk
xp

 

47

60
  

1= 
60

47
 





kor

kor

 

When k   
60

47
 

 

 

  0
235

60

47

60

5

1
5

0
188

60

47

60

4

1
4

0
141

60

47

60

3

1
3







p

p

p

 

Thus, for k   
60

47
, the first condition for a probability mass function is also 

satisfied. 

14.3.2 Continuous Probability Distribution 

A continuous random variable X has a zero probability of assuming exactly any 
of its values. Apparently, this seems to be a surprising statement. Let us try to 
understand this by considering a random variable say, weight.  

Obviously weight is a continuous random variable since it can vary continuously. 

Suppose, we do not know the weight of a person exactly but have a rough idea 

that her weight falls between 60 kg and 61 kg. Now, there are an infinite number 

of possible weights between these two limits. As a result, by its definition, the 
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probability of the person’s assuming a particular weight say, 60.3 kg will be 

negligibly small almost equal to zero. But we can definitely attach some 

probability to the person’s weight being between 60 kg and 61 kg. Thus, for a 

continuous random variable X, one assigns a probability to an interval and not to 

a particular value. Here, we look for a function p(x), called the probability 

density function, such that with the help of this function we can compute the 

probability 

 bxaP  , a and b are the limits of an interval (a, b) where, a < b  

A probability density function is defined in such a manner that the area under its 
curve bounded by x-axis is equal to one when computed over the domain of X for 
which p(x) is defined. The probability density function for a continuous random 
variable X defined over the entire set of real numbers R should satisfy the 
following conditions. 

1) Rxxp   allfor  0)(  

2) 




 1)( dxxp  

3) ( ) ( )
b

a

p a X b p x dx     

Although the probability distribution of a continuous random variable cannot be 

presented in the form of a table like that of a discrete random variable, it can 

nevertheless be expressed by a specific form of the probability density function 

p(x). We shall study some of these forms in the next unit on the theoretical 

distributions for continuous random variables.  

 10.3.3 Theoretical Distributions 

We should note that a probability distribution is based upon the empirical 
observations associated with a probability experiment. For obtaining the relevant 
probability distribution, the experiment has to be repeated a very large number of 
times under an identical condition which may sometimes prove to be an 
extremely difficult task. Alternatively, by means of a formula, we can specify a 
probability mass function or a probability density function, as the case may be, 
theoretically by satisfying the conditions of the experiment. Such kind of a 
probability distribution is known as a theoretical distribution. An advantage with 
the theoretical distribution is that a few theoretical distributions describe many 
real life random phenomena. Consequently, with the help of a handful of 
important theoretical distributions we may get an insight into several such real 
life random phenomena without actually experimenting with them. A theoretical 
distribution can either be a discrete or a continuous one.  

Later in this unit, we discuss two important discrete theoretical distributions that 

have often been employed in the statistical analysis. In the next unit, we shall 

study some continuous theoretical distributions. 



 

233 
 

Discrete Probability 
Distributions 

10.4  MEAN AND VARIANCE OF A RANDOM 
 VARIABLE 

The mean of a random variable, also known as its mathematical expectation or 
expected value is defined as the sum of the products of the values of the random 
variable and the corresponding probabilities.  
 
Thus, if X is a discrete random variable that can assume the values x

1 
, x

2 
, x

3 
,  , 

xn with specific probabilities p
1 

, p
2 

, p
3 

, , p
n
 respectively, then the 

mathematical expectation of x is 

1 1 2 2 3 3
1

( ) .......
n

n n i i
i

E X x p x p x p x p x p


       

It is interesting to note that the mathematical expectation of a random variable 
corresponds to the arithmetic mean of an ordinary variable. This can be easily 
shown for a discrete random variable. We have seen from the relative frequency 
definition of probability that the probability of an event can be interpreted as the 
limit of relative frequency of the occurrence of that event when the number of 
trials tends to infinity, i.e.,  

N

f
p i

i   

where if  is frequency of ix and N = 


n

t
if

1
 is the total frequency. 

Thus  
1 1

N n
i

i i i
i t

f
E X p x x

N 

    

= Xxf
N

N

i
ii 

1

1
, the arithmetic mean of X. 

Example 10.5 

A fair coin is tossed. If it is ‘head’, you win Rs. 20/-. If it is ‘tail’, you lose Rs. 

10/-. What is the amount that you are expected to win or lose per toss? 

Since the coin is given to be unbiased, the probability of getting a ‘head’ or a 

‘tail’ is 
1

2
. Let X be a random variable which takes the values equal to the 

amounts of gain and loss. So, X=20 with probability 
1

2
 and x= 10 (loss can be 

considered to be negative gain) again with probability 
1

2
.  

Therefore, the expected amount to win or lose per toss is 

 1 1
. 20 10 . 5

2 2
s RsR     
 
  

 

A game with positive expected gain is said to be biased in favour of the player. If 
the expected gain is zero, the game is said to be fair. The above game can be 
made fair if we charge Rs. 5/- (equal to the expected value) as entry fee. The 
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possible values of the random variable X now become 15 and 15 and the 
expected value E(X) = 0. 

For a continuous random variable, the mathematical expectation takes the form 

of a definite integral. Thus, 


b

a

dxxxpXE )()(   

where, X is a continuous random variable with domain from a to b and p(x) is its 

probability density.  

10.4.1 Theorems on Mathematical Expectation 

(i) The mathematical expectation of a constant is the constant itself. If c is a 

constant, then 

   ccE   

(ii) The mathematical expectation of the product of a constant and a random 

variable is the product of the constant and the mathematical expectation 

of the random variable. If c is a constant and X is a random variable, then 

    )(XcEcXE   

(iii) The mathematical expectation of any function of a random variable is the 

sum of the products of the values of the function and the corresponding 

probabilities of the values of the random variable. Thus if f (X) is a 
function of a random variable X that takes the values nxxxx ,....,3,21 ,  with 

specific probabilities npppp ,....,3,21 , the mathematical expectation of 

f(X) is 

      ip
n

i ixffE X  
1



  

We may note here that the above summation, strictly speaking, applies to a 

discrete random variable. However, without any loss of generality, the theorem is 

valid for a continuous random variable also. There, instead of a summation over 

some finite values, an integration over the domain of the random variable has to 

be performed. 

(iv) The mathematical expectation of the sum of a given number of random 

variables is the sum of their expectations. If X and Y are two random 

variables, the mathematical expectation of X + Y is 

      YX EEYXE   

(v) The mathematical expectation of the product of a given number of 

independent random variables is the product of their expectations. If X 
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and Y are two independent random variables, the mathematical 

expectation of XY is 

      YXXY EEE   

The variance of a random variable X is given by 

          222 XXX EXEEXEV   

The variance of the random variable in Example 10.5 (tossing of a coin) can be 

computed in the following manner. 

First we compute 

   25050200
2

1210
2

12202 XE  

 2 2[ ( )] 5 25E X    

Now 

   225252502 
X

XV   

Also the standard deviation of X 

 225 Rs. 15
X

    

10.4.2    Theorem on Variance 

(i) The variance of a constant is zero. If c is a constant, then 

  0cV  

(ii) The variance of the product of a constant and a random variable is the 

product of the square of the constant and the variance of the random 

variable. If c is a constant and X is a random variable, then 

   XcX VcV 2   

(iii) The variance of the sum of a given number of random variables is the 

sum of their variances. If X and Y are two random variables, the 

variance of X + Y is 

      ),(2 YXCovVVYXV YX   

Here, Cov(X, Y) is called the covariance between X and Y. We should 

note that covariance is a measure of simultaneous variability of the 

two variables. 

Covariance can be shown as 

  )()()()}]()}{([{),( YEXEXYEYEYXEXEYXCov   
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But, if X and Y are independent, then a variation in one variable does  not cause a 
variation in the other variable. Consequently, 0),( YXCov  and 

)()()( YVXVYXV   

It may be noted here that all the theorems on mathematical expectation and 

variance discussed above are valid for both discrete and continuous random 

variables. 

We can now state and prove an important result. 

10.4.3   Standard Normal Variate 

For any variable (random or otherwise) with a given mean and standard 

deviation, whenever the mean is subtracted from it and the result is divided by 

the standard deviation; the resultant variable has a mean equal to zero and a 

standard deviation equal to one. 

Let us prove the above statement. 

 

 

 

In the next unit, we shall consider how this result is used in the context of the 
normal distribution. 

The variable z defined in the above manner is called standard normal variate. 
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Check Your Progress 1 

1. Check whether the following is a valid probability mass function or not. 

 
2

, X 2, 1, 0, 1, 2, 3
16

x x
p x


    . 

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 

2. Find k such that the following is a valid probability mass function. 

2
( ) , X 1, 2

k
p x

x
   

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 

3. A and B throw a dice for an amount of Rs. 99 to be won by one who throws a 

six first. If A has the first throw, what are their respective expected gains? 

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 

4.  A contractor spends Rs. 3,000 to prepare for a bid on a construction project 

 which, after deducting the manufacturing and the cost of bidding, will yield a 

 profit of Rs. 25,000 if the bid is won. If the chance of winning the bid is ten 

 percent, compute the contractor’s expected profit and state the likely 

 decision on whether to bid or not. 

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 



 

238 
 

 Probability 
Theory   
 

5.  Prove the following results 

a)   .constant a is   where,)( cXcEcXE   

b) V c c( )  0,  where  is a constant. 

c)   constant. a is   where,)( 2 cXVccXV   

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 

10.5 BINOMIAL DISTRIBUTION 

The binomial distribution is an example of a discrete probability distribution. 
James Bernoulli presented it in the year 1700. The word ‘binomial’ suggests two. 
It signifies two possible outcomes of an experiment, the occurrence of an event 
or the non-occurrence of the event. A probability experiment can be termed as a 
Bernoulli experiment, if it satisfies the following conditions. 

1. The experiment consists of a sequence of n repeated trials. 

2. Each trial results in an outcome that may be classified either as a success or a 

failure. 

3. The probability of a success, denoted by p, is known and remains the same in 

each trial. Consequently, the probability of a failure, denoted by q = (1  p) is 

also known and remains the same in each trial. 

4. The trials are independent. 

We may get some idea about a Bernoulli experiment by considering the 
experiment of tossing a coin a certain number of times and counting the number 
of heads appearing. Suppose, the coin is unbiased and we toss it 5 times. It is 
clear that the experiment consists of a sequence of 5 identical trials. There are 
two possible outcomes of each toss, a head (success) and a tail (failure). The 

probability of a head (success) is 
1

2
 and this does not vary from one toss to 

another. The probability of a tail (failure) is again 
1

2
 and this also does not vary 

from one toss to another. Finally, the tosses are independent in the sense that the 
outcome of one toss in no way depends upon the outcome of another toss. Thus, 
we find that this experiment of tossing a coin a certain number of times and 
observing the number of heads appearing satisfies all the conditions of a 
Bernoulli experiment. 

In a Bernoulli experiment, we are interested in deriving the probability of a given 
number of successes, say, x occurring in n trials. (For example, in the previous 
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example we may be interested in finding out the probability of getting 3 heads in 
5 tosses.) It is clear that the random variable x can assume values 0, 1, 2, 3, , n. 
Suppose, we denote a success by S and a failure by F, then x successes and (n  
x) failures may occur in a number of different sequences. One possible sequence 
is that the first x trials are all successes and the remaining (n  x) trials are all 
failures. Symbolically the sequence is shown by 

𝑆𝑆 … . 𝑆

𝑥 times
  

𝐹𝐹 … . 𝐹

(𝑛 − 𝑥) times
 

The probability of the above sequence of x successes and (n  x) failures can be 

obtained by applying the multiplication theorem of probability. The probability is 

𝑝𝑝 … . . 𝑝

𝑥 times
  

(1 − 𝑝)(1 − 𝑝) … . . (1 − 𝑝)

(𝑛 − 𝑥) times
= 𝑝௫(1 − 𝑝)௡ି௫ 

But, as mentioned earlier, x successes and (n  x) failures can occur in other 

sequences also. However, each of the sequences in which x successes and (n  x) 
failures occur will have a probability of  p x p

n x
1


. Thus, the probability of x 

successes in n trials is the probability of the occurrence of the x successes and (n 

 x) failures in any of the possible sequences. This probability can be obtained by 

applying the addition theorem of probability over the possible sequences. But, as 

the probability of x successes and (n  x) failures is the same for each of the 

possible sequences, the required probability of x successes in n trials is the 

product of the total number of possible sequences and the probability of the 

occurrence of a sequence. The total number of sequences in which x successes 

(and n  x failures) can occur in n trials is basically a problem of obtaining the 

number of combinations of n things taken x at a time and is denoted by xCn . 

From the mathematics of permutation and combination, we have 

  !  !

!

xnx

n
xCn


  

where 

 n! = n(n  1)(n  2)  2.1 

 x! = x(x  1)(x 2)  2.1 

and 0! = 1. 

We should note that the notation ‘!’ is called factorial.  

For example, 4! = 4321 = 24. The symbol C in n
xC  represents combination. 

For example, 5
3

5! 5!

3!(5 3)! 3!2!
C  


 

    =
5 4 3 2 1

3 2 1 2 1

   
   

 

    = 10 
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Thus, the probability of x successes in n trials is given by 

     xn
pxpxCnxp


 1  

 x = 0, 1, 2,……., n. 

The above expression is the probability mass function for the Binomial 
distribution. This function has been used for presenting the Binomial distribution 
of x = 0, 1, 2,  n successes in n trials in Table 10.3. We note that a binomial 
distribution has two parameters n and p. It means that the distribution is 
completely specified if the values of n and p are known. 

Table 10.3: Binomial Distribution 

Number of Successes 

x 

Probability 

p(x) 

0  1 p
n

 

1  np p
n

1
1




 

2    n n
p p

n


1

2.1

2 1
2

 

  

N pn 

Total 1 

 Now let us find out the mean of the binomial distribution. 

Let there be n number of trials in a Bernoulli experiment with p as the probability 

of a success in a trial. This implies the probability of failure is q 

Mean 

 
0

x 1( )
n

x

n xn xC p pxE X



   

By simplifying the above we find that the mean of binomial distribution is given 
by np. We do not present the proof of the above as it is quite 
cumbersome.Similarly the variance of binomial distribution is given by 
 

2 2 2( ) [ ( )] ( ) [ ( )]V X E X E X E X E X     

By simplification of the above it can be shown that the variance of binomial 
distribution is given by npq[which is equal to np(1-p)]. 



 

241 
 

Discrete Probability 
Distributions 

Thus we observe that the mean and variance of binomial distribution are given by 
its two parameters n and p. We give some examples on the applications of 
binomial distribution below. 

Example 10.6 

A machine is generally known to be producing 20 percent defective items. A 
quality control Inspector selects 5 items at random. Find the probability of getting 
(i) exactly 1 defective item (ii) at least 3 defective items. 

This is an example of binomial distribution with p = 0.20 and n = 5. Let us now 

solve the question. 

(i) We know that the probability of x defective items (i.e., n  x non-defective 
items) in n items is   xn

pxpxCn 1 . Here n = 5 and x = 1. Thus the probability 

of exactly 1 defective item is 

  4096.04)80.0).(20.0(1
51  Cp . 

(ii) At least 3 defective items means that there can be 3 or 4 or 5 defective items. 
Thus the probability of at least 3 defective items is the probability of 3 defective 
items plus the probability of 4 defective items plus the probability of 5 defective 
items. 

Now, the probability of 3 defective items is 

p(3) =     0512.0
2

80.0320.03
5 C  

The probability of 4 defective items is 

  0064.08.0420.04
5)4(  Cp  

The probability of 5 defective items is 

P(5) =  5
5

0 20 5 0 0003c . .  

Therefore, the probability of at least 3 defective items = 0.0512 + 0.0064 + 

0.0003 = 0.0579. 

Example 10.7 

If a fair dice is thrown 36 times, what is the expected number of times of getting 

a 6? What is the variance? 

If p is the probability of getting a 6, then  p p  
1

6
1

5

6
 and . Now,  

n = 36.  

The mathematical expectation 

6
6

1
36 np  

Thus, one can expect to get a 6, six times when a dice is thrown 36 

times. 
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The variance is 

  5
6

5

6

1
361  pnp

 

10.6  POISSON DISTRIBUTION 

The Poisson distribution is another discrete probability distribution. It is named 
after a French mathematician Simeon Poisson who derived this distribution in 
1837. The distribution is in fact a special (limiting) case of binomial distribution. 
When the probability of success, p, in a binomial distribution is very small and 
the number of trials, n, is so large that the expectation,  = np, is a finite quantity; 
the binomial distribution tends to Poisson distribution. This distribution is 
particularly useful while dealing with the number of occurrences of something 
over a specified interval of time or space. For example, the random variable 
under consideration may be the number of telephone calls arriving at a telephone 
switch-board in 1 hour, the number of leaks in 100 kilometres of pipeline, or the 
number of bus accidents reported in a particular day in Delhi. 

To obtain the probability mass function of Poisson distribution, we can consider 
the example of the number of telephone call, x, in an hour and assume that the 
expected number of telephone calls per hour (i.e., the mathematical expectation) 
is  For the applicability of the binomial distribution, we divide the interval of 
one hour into sub-intervals that are so small that the probability p of having a 
telephone call in a sub-interval is very low and that of getting more than one call 
is approximately zero. Thus, each sub-interval can be treated as a Bernoulli trial 
having only two possible outcomes; either there will be a telephone call (a 
success) or no telephone call (a failure). The number of sub-intervals is taken to 
be equal to n, the total number of trials. We note that the expected number of 
telephone calls, , remains the same and is equal to np (as we have seen from the 
binomial distribution). Therefore, the probability of a telephone call in a sub-

interval is  
n


.  

Thus, the probability of x telephone calls in one hour amounts to finding the 
probability of x successes in n trials when n tends to infinity (as argued above, n 
trials correspond to n sub-periods that constitute one hour and n tends to infinity 
as a result of making each sub-trial extremely small so that the total number of 
trials tends to be infinitely large). This probability is given as the following limit 
of a binomial distribution.  

  
xn

n

x

n
xCn

n
Lim




 













 

1  

Let us try to find the above-mentioned limit. 

The Poisson probability mass function is derived from the above and is               

given by 
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 𝑝(𝑥) =
௘షʎʎೣ

௫!
 

 𝑥 = 0, 1, 2, … 

where, X is a random variable denoting the number of successes in a specified 

time interval or length interval. 

 = expected value or average number of occurrences in an interval of time or 

length etc. 

e = a constant (base of the natural logarithm) whose value is 2 7182e . . 

Table 10.4: Poisson Distribution 

The value of the Poisson random variable x Probability 

0 e  

1 

!1

  e
 

2 

!2

 2  e
 

. 

. 

 . 

 . 

Total   1 

In Poisson distribution, there is no upper limit on the random variable x, the 

number of occurrences. It is a discrete random variable that can assume an 

infinite sequence of values (x = 0, 1, 2,3, ). The distribution has only one 

parameter . Table 10.4 presents the Poisson distribution generated by the 

Poisson probability mass function. 

Expectation and Variance 

The expectation of the Poisson distribution is given by the constant . It can be 
shown that the variance of the Poisson distribution is also given by . 

Example 10.8 

An analysis shows that on an average 10 cars arrive at a petrol pump in a 15-

minute period of time.  

i) Find the probability of the arrival of 5 cars in 15 minutes.  

ii) What is the probability of the arrival of 1 car in 3 minutes? 

Here,   = 10 and x = 5. Thus, the required probability is 
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  p
e

5
105 10

5
0 0378




!
. . 

Since the expected number of arrivals in a 15-minute period is 10, the 

expected number of arrivals in a 3-minute period is 
10

15
3 2  . Thus for the 

second part of the question,   = 2 and x = 1. Hence, the probability of 

one arrival in a 3-minute period is 

 p
e

1
2 2

1
0 2707




!
. . 

Check your progress 2 

1. In a hospital, there are 3 ambulances for the transportation of patients. 
The probability of the availability of an ambulance is 0.75. If an 
ambulance is needed what is the probability that  

a) no ambulance will be available?  

b) at least one ambulance will be available? 

 ……………………………………………………………………………

 ……………………………………………………………………………

 ……………………………………………………………………………

……………………………………………………………………………

 …………………………………………………………………………… 

2. Can for a binomial distribution the mean and the variance be 3 and 5 

respectively? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 

3. It is known from the past experience that in a certain plant, there are on an 
average 4 industrial accidents per month. Find the probability that in a 
given month, there will be less than 4 accidents. Assume Poisson 
distribution. 

 ……………………………………………………………………………

 ……………………………………………………………………………

 ……………………………………………………………………………

……………………………………………………………………………

 …………………………………………………………………………… 
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10.7  LET US SUM UP 

In this unit, we have used the concept of probability to understand the meaning of 
a probability distribution. We have understood the concepts of the mathematical 
expectation and the variance of a probability distribution. We have distinguished 
between a discrete probability distribution and a continuous probability 
distribution. In this context, we have introduced the notions of a probability mass 
function and a probability density function. We have studied two specific discrete 
probability distributions. They are the binomial distribution and the Poisson 
distribution. We have learnt the characteristics of these distributions, particularly, 
the expressions for their mean and variance. We have tried to understand the use 
of these two distributions in various situations.  

10.8  ANSWERS OR HINTS TO CHECK YOUR  
 PROGRESS EXERCISES 

Check Your Progress 1 

1)      ,
8

1
1,

8

3
2  pp  

   00 p  

   01 p  

  
8

1
2 p  

  
8

3
3 p  

Since p(x)   0 for all values of x, the first condition is satisfied.  

   1
8

3

8

1
00

8

1

8

3
 xp . 

 Therefore, second condition is also satisfied. 

Hence, the given function is a valid probability mass function. 

2)  k 
4

5
 

3)  A can win if A throws a six in the first throw or A cannot throw a six in 

the first throw and B cannot throw a six in the second throw and A throws 

a six in the third throw, and so on. Therefore, the probability that A 

throws a six first 

 11

6

6

1

6

5

6

5

6

5

6

5

6

1

6

5

6

5

6

1
 

 

 Thus, the expected gain of A is 99
6

11
  = Rs. 54 
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 The probability that B throws a six first 

      1 1
6

11

5

11
P A  throws a six first  

 So, the expected gain of B is 99
5

11
  = Rs. 45 

4)  Rs. (-)200 

5) a)            E cX E c E cEX X   (because, expectation of a constant is 

the constant itself) 

 b)       V c E c E c c c       2 2 2 2 0 

 c)          2 22 2 2 2 2     X XV cX E c E cX c E c E X           

       22 2 2   Xc E E c VX X   
  

 

Check Your Progress 2 

1) a) 
1

64
 b) 

63

64
 

2) Mean np = 3, variance np(1 p) = 5. Now, 

 

 np p

np

or p

1 5

3

5

3




  1

 

 
5 2

 q 1 0, which is not possible.
3 3

or       

3)  0.4332. 

 

 



 
 

UNIT 11  CONTINUOUS PROBABILITY 
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Structure 

11.0  Objectives 

11.1  Introduction 

11.2  Normal Distribution 

         11.2.1  Standard Normal Curve 

         11.2.2  Normal Approximation to the Binomial Distribution 
11.3  Some Other Continuous Distributions 

11.3.1   Degrees of Freedom 

11.3.2   The 2 (Chi-squared) Distribution 

11.3.3   The Student’s-t Distribution 

           11.3.4   The F Distribution 

           11.3.5   Distributions Related to the Normal Distribution 

11.4  Let Us Sum Up 

11.5  Answers or Hints to Check Your Progress Exercises 
 

11.0   OBJECTIVES 

After going through this unit you should be able to 
 explain and use the normal distribution;  
 explain the concept of the degrees of freedom; and 
 form some  elementary ideas  about the  chi-squared  distribution,  the  

student’s-t distribution and the F distribution. 
 

11.1   INTRODUCTION 

In the previous Unit, we made a distinction between a discrete random variable 
and a continuous random variable. In that unit, we introduced the concept of a 
probability distribution and found that it is essentially a statement regarding the 
values taken by a random variable with their associated probabilities. We studied 
two important discrete probability distributions namely, the binomial distribution 
and the Poisson distribution. In the present Unit we will continue with the topic 
and study a very important continuous probability distribution called the normal 
distribution. It may be mentioned that the normal distribution plays an important 
role in the statistical inference and tests of hypotheses and these are going to be 
our subject matter of Block-7.  

In fact, we will consider in Unit 13 the topic of sampling distribution that forms 
the foundation of statistical inferences and tests of hypotheses. However, 

                                                             
* Dr. Anup Chatterjee (retd.), ARSD College, University of Delhi 



 

248 
 

Probability 
Theory  
 

sampling distribution can be properly appreciated only if we have some 
rudimentary ideas about three other continuous probability distributions besides 
the normal distribution, viz., the chi-squared distribution, the student’s-t 
distribution and the F distribution. We will discuss about these probability 
distributions below.  
 

11.2   NORMAL DISTRIBUTION 

Normal distribution is perhaps the most widely used distribution in Statistics and 
related subjects. It has found applications in inquiries concerning heights and 
weights of people, IQ scores, errors in measurement, rainfall studies and so on. 
Abraham de Moivre gave the mathematical equation for the normal distribution 
in 1733. Karl Friedrich Gauss also independently derived its equation from a 
study of errors in repeated measurements of the same quantity. Accordingly, 
sometimes it is also referred to as the Gaussian distribution. The distribution has 
provided the foundation for much of the subsequent development of 
mathematical statistics. 

We have seen in the previous Unit that for a continuous random variable, the 
counterpart of a probability mass function is the probability density function. We 
shall denote the probability density function also by p(x). The probability density 
function of a continuous random variable that follows the normal distribution is 
given by 

  
21

1 2     
2

 where - , and

x

p x e

x






 
  
 




   

 

 = 3.17141 (approximately) 

e = 2.71828 (approximately). 
 

It is clear that the normal density function is completely determined by the 
parameters  and . It means that given the values of  and , we can trace out 
the normal curve by obtaining the values of p(x) for different values of x. In fact, 
it can be shown that  and  are respectively the mean and the standard deviation 
of the normal distribution. When a random variable X follows normal distribution 
with mean   and standard deviation   we write it in symbols as ( , )X N    
and read as ‘X follows normal distribution with mean   and standard deviation 

 . The normal curve is a symmetrical bell-shaped curve as shown in Fig. 11.1. 

The important features of the normal distribution are as follows: 

1) The normal curve stretches from   to + . This means that a normal 

random variable (X) assumes values between   to + . 



 

 

2) The curve is symmetric about its

corresponding to x =  + a and x = 
any arbitrarily chosen ‘a’).  

3) The median and the mode of the distribution coincide with the mean. Thus 

mean = median = mode = . 

Fig 11.1: Normal Curve

4) The maximum of the normal curve occurs at 

when x= . 

5)  The points of inflexion of the normal curve occurs at 

At the points of inflexion, the normal curve 

The following area-properties hold for a normal distribution. In Fig.11.2 below 

we plot a normal curve with mean  = 50 and standard deviation 

   Fig. 11.2: Area under Normal Curve

(a) 68.8 % of the area under the normal curve lies between the ordinates at 

and  + . Thus in Fig.11.2, 68.8% area is covered when 

and 54. 

(b) 95.5% of the area under the normal curve lies between the ordinates at 

and  + 2.  In Fig. 11.2, 95.5% area is covered when 

The curve is symmetric about its mean, i.e., x = . This means that 

  a, the values of p(x) are the same (for 

The median and the mode of the distribution coincide with the mean. Thus 

 

Fig 11.1: Normal Curve 

The maximum of the normal curve occurs at x = . Thus p(x) is maximum 

5)  The points of inflexion of the normal curve occurs at x =  +  and x =   . 

At the points of inflexion, the normal curve changes its curvature. 

properties hold for a normal distribution. In Fig.11.2 below 

= 50 and standard deviation  = 4. 

 

Normal Curve 

68.8 % of the area under the normal curve lies between the ordinates at    

. Thus in Fig.11.2, 68.8% area is covered when x ranges between 46 

95.5% of the area under the normal curve lies between the ordinates at   2 

Fig. 11.2, 95.5% area is covered when 42 58.X   
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(c) 99.7% of the area (i.e., almost the whole of the distribution) under the normal 
curve lies between the ordinates at   3 and  + 3. In Fig.11.2 we find 
that 99.7% area is covered when 38 X 62. 

If we have different values of  and , the range of x mentioned in Fig. 11.2 will  
change. 

11.2.1 Standard Normal Curve 

We have seen in the previous unit that the curve for any continuous probability 
distribution or probability density function is so traced out that the area under the 
curve bounded by the two ordinates corresponding to 1x x and 2x x gives the 

probability that the random variable assumes a value between 1x x and 2x x . 

Thus, for a normal curve 

dxxXxP
x

x

x

x

x

edx

x

e 















 





2

1

2

1

2

2
1

2

1
2

2
1

2

1
)( 21









  

Obviously, this probability depends upon the values of the two parameters  and 
. However, it is very difficult to solve the above-mentioned integral of the 
normal distribution. This has necessitated the tabulation of normal curve areas for 
quickly obtaining the probabilities of the normal variable assuming values in 
different intervals. But, it is really meaningless to attempt to construct a separate 
table for every conceivable combination of values for  and . Fortunately, the 
solution to an apparently hopeless task has been achieved by the application of a 
standard result in statistics that we have seen and proved in the last unit. Let us 
recapitulate the result. We have seen that  

For any variable with a given mean and standard deviation, whenever the mean is 
subtracted from the variable and the result is divided by the standard deviation; 
the resultant variable has a mean equal to zero and a standard deviation equal to 
one. 

Thus if X is a variable with mean (expectation)  and standard deviation  then 

𝑧 =
௑ିఓ

ఙ
 has a mean equal to zero and standard deviation equal to one.  

It means that normal variables with different combinations of  and  can all be 
transformed into a unique normal variable with mean 0 and standard deviation 1. 

Thus if X is a normal variable with mean (expectation) 𝜇 and standard deviation 

𝜎, then 𝑧 =
௑ିఓ

ఙ
  for any combination of 𝜇 and  𝜎, is always a normal variable 

with mean 0 and standard deviation 1. 

Symbolically, 

 

 

 

If ,

0,1

then,

for any  and  .  
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Such a transformed normal variable is called a standard normal variate. The 

probability density function of the standard normal variate z is given by 

  


 z
z

ep z -     
2

2
1

2

1


 

Once we obtain a standard normal variate, our seemingly hopeless task of 

obtaining probability areas for different combinations of  and  becomes 

elegantly simple. Let us see how. We should note that a standard normal variate 

has a unique mean of 0 and a unique standard deviation of 1. It means, if we can 

construct a table for probability areas of such a unique standard normal variate, it 

can be used for obtaining probability for any normal variable with any 

combination of mean and standard deviation. The only thing is that the given 

normal variable is to be transformed into the standard normal variate. In fact, 

such a table for areas (or probability) has been compiled for a standard normal 

variate (see Appendix Table A1: Area under the Standard Normal Curve given at 

the end of this book) and is very much in use in statistics. Thus, for the 

computation of the required probability for any normal variable with some mean 
and standard deviation, the upper and the lower limits say, 1x x and 2x x of the 

given interval are converted into the corresponding z-values say, 1z z and 2z z

and the relevant area is obtained from Appendix Table A1 given at the end of this 

book.  

Remember that the standard normal curve is symmetrical and it covers an area of 

1.0 Since the value of z ranges between   and , we find that the area between

  0 z   is 0.5 (half the area under standard normal curve). Similarly, the area 

between 0z    is 0.5. Since the standard normal curve is symmetric we 

have one advantage; the area under the curve is the same on both sides. In 

Appendix Table A1 the area for different positive values of z are given.  

If we look into column 1 of Appendix Table A1 we find that values assumed by z 

ranges from 0.0 to 3.0. Corresponding to each value there are 10 columns marked 

.00, .01, ........, .09. These columns represent the second digit after decimal. For 

example, if z = 0.45, then we look for the row corresponding to 0.4. On this row 

we move to the right and look for the column representing .05. In Table A1 we 

find that when z=0.45 the area covered is 0.1736. Note that when z =  0.45 the 

area under standard normal curve again is 0.1736. As another example, the area 

under the standard normal curve when z = 1.31 is 0.4049.  

Theoretically z can assume any value between   and  . However, when z = 

3.09 the area covered is 0.4990. Therefore, in Table A1 areas for z > 3.09 are not 

given. 

Let us now consider some examples to see the applications of the normal area 

table. 
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Example 11.1 

Find the area under the standard normal curve in each of the following cases by 
using Appendix Table A1 for areas under the standard normal curve. 

a) Between z = 0 and z = 1.8. 

b) Between z = 0.25 and z = 0. 

c) Between z = 0.52 and z = 2.25. 

Solution: 

a) In Table A1, let us move downward under the column marked z until we reach 
the entry 1.8. Now, let us turn right to the column marked 0. We find here an 
entry equal to 0.4641. This is the required area. 

b) Since the standard normal curve is symmetric about the mean, the required 
probability between z =  0.25 and z = 0 can be obtained by finding the area 
between z = 0 and z = 0.25 from the table. So, let us move downward under the 
column marked z until we reach the entry 0.2. Then we turn right to the column 
marked .05. We find here an entry equal to 0.0987. This is the required area. 

c) It is clear that the required area is  

(area between z = 0. 52 and z = 0) + (area between z = 0 and z =2.25) 

= (area between z = 0 and z = 0.52) (by symmetry) + (area between z = 0 and z 

=2.25) 

= 0.1985 + 0.4878 

= 0.6863. 

Example 11.2     

In a sample of 120 workers in a factory the mean and standard deviation of daily 
wages are Rs. 11.35 and Rs. 3.03 respectively. Find the percentage of workers 
getting wages between Rs. 9 and Rs. 17 in the whole factory assuming that the 
wages are normally distributed. 

Solution: Let x be a random variable denoting wages. Then, x is a normal 
variable with mean  = 11.35 and the standard deviation  = 3.03. The 
corresponding standard normal variate 

z
x


11 35

3 03

.

.  

 

For x z 





 9
9 11 35

3 03

2.35

3 03
0 78,  

.

. .
.

 

 

For   x z 


 17
17 1135
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P x P z

P z P z

P z P z

9 17 0 78 1 86

0 78 0 0 1 86

0 0 78 0 1 86

0 2823 0 4686

0 7509.

. .

. .

. .

. .

.  
 

Thus, 75.09% of workers get wages between Rs. 9 and Rs. 17. 

11.2.2   Normal Approximation to the Binomial Distribution 

Sometimes in statistics, one distribution is obtained as the limiting form of 

another distribution. For example, in Unit 10, we have learnt that at times the 

probability of success, p, in a binomial distribution is very small and the number 

of trials, n, is so large that the expectation,  = np, is a finite quantity. In such 

cases the binomial distribution tends to Poisson distribution. You can recall that 

both the binomial distribution and the Poisson distribution are discrete 

distributions. However, the limiting form of the discrete binomial distribution 

need not be uniquely the discrete Poisson distribution. In fact, when n is very 

large and p is not extremely close to 0 or 1; the binomial distribution approaches 

the continuous normal distribution. As a result, in real world situations, the 

normal distribution is often used for approximating the binomial distribution. We 

have already seen that the standard normal table comes very handy in obtaining 

probabilities for a normal variable falling within a specified interval. We may 

now state a result that helps us to use areas under the standard normal curve to 

approximate the binomial properties of a random variable: 

If X is a binomial variable with mean 𝜇 = 𝑛𝑝 and variance  𝜎ଶ = 𝑛𝑝𝑞 then  

𝑧 =
𝑋 − 𝑛𝑝

ඥ𝑛𝑝𝑞
 

tends to a normal distribution with mean zero and standard deviation one, as n 
tends to infinity  
In symbols, 

lim
௡→ஶ

𝑋 − 𝑛𝑝

ඥ𝑛𝑝𝑞
~𝑁(0,1) 

It has been observed that the normal distribution provides a good approximation 

for a binomial distribution even when n is not very large and p is reasonably 

close to 0.5.  

Let us consider an example. 
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Example 11.3 

Suppose the probability of a particular kind of machine being defective is 0.4. A 

quality control inspector examines a lot of 15 such machines to identify the 

defective machines. Find the probability that the inspector will find 4 machines to 

be defective. 

Solution: We know from our discussion on binomial distribution that the 

distribution of defective machines in a given lot is a binomial variable. Here 

1268.00036279.00256.01365)6.0()4.0(
!11 !4

!15
)6.0()4.0(c

bygiven  is machines defective 4 ofy probabilit The

6.01 and 4.0,15

114114
4

15 

 pqpn

 Now suppose, we want to find the required probability by the normal 
approximation. Then 

15 0.4 6, (1 ) 15 0.4 0.6 3.6 and 3.6 1.897

 We have

                  z  

  

np npq np p npq

X np

npq

          




which is approximately a standard normal variate. But the standard normal 

variate is a continuous random variable. We know that for such a random 

variable, the probability of its taking a particular value cannot be determined. It is 

only the probability of the random variable lying within an interval that can be 

obtained. Thus the probability of the binomial variable taking a value 4 has to be 

translated into the probability of the corresponding normal variable falling in an 

interval around the value 4 for the required normal approximation. Since, a 

binomial variable assumes zero and positive integer values; the value 

immediately preceding 4 and the value immediately succeeding 4 that the 

binomial variable under question can take are 3 and 5 respectively. As a result, 

the probability of the binomial variable taking a value equal to 4 can be 

reasonably approximated by the probability of the corresponding normal variable 

falling within an interval (3.5, 4.5). The required probability is thus 
approximately equal to the area under the normal curve between the ordinates 1x

= 3.5 and 2x = 4.5. Converting to z-values, we have 

𝑧ଵ =
𝑥ଵ − 𝑛𝑝

ඥ𝑛𝑝𝑞
=

3.5 − 6

1.897
= −1.32 and 𝑧ଶ =

𝑥ଶ − 𝑛𝑝

ඥ𝑛𝑝𝑞
=

4.5 − 6

1.897
= −0.79. 

If X is the binomial variable and z is the corresponding standard normal variate, 
then 𝑃(𝑋 = 4) = 𝑃(−1.32 ≤ 𝑧 ≤ −0.79) = 0.1214 (From the area under 
standard normal curve given in Appendix Table A1) 
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We can see that the normal approximation of 0.1214 agrees quite closely with the 

actual probability of 0.1268 for 4 defective machines obtained from the binomial 

distribution. 

Check Your Progress 1 

1)  Find the area under the normal curve in the following cases. 
a) Between z = 1.55 and z = 2.55. 
b) To the left of z =  1.5. 
c) To the right of z = 2.5. 

 …………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 

2)  The mean height of 1000 men is 68 inches and the standard deviation is 5 
 inches. If the heights are normally distributed, find how many men have 
 heights between 67 inches and 69 inches. 

 …………………………………………………………………………………

 …………………………………………………………………………………

 …………………………………………………………………………………

 ………………………………………………………………………………… 

3)  A company, that sells 5000 batteries in a year, guarantees them for a life of 24 
 months. The life of the batteries is estimated to be approximately normal with 
 mean equal to 34 months and standard deviation equal to 5 months. Find the 
 number of batteries that will have to be replaced under the guarantee. 

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………… 

 

11.3   SOME OTHER CONTINUOUS DISTRIBUTIONS 

There are some other continuous probability distributions that play important 

roles in various branches of statistics. In Block 4, we will study statistical 

inference. In that Block, in addition to normal distribution, we will often use 

concepts of three more continuous distributions, Chi-Squared (Pronounced as 
kai-squared and denoted by the symbol 2 ), the Student’s-t distribution and the 

F-distribution. In this section, we are going to discuss these distributions in brief. 

We begin with a general concept, the ‘degrees of freedom’, which finds 

applications in all these distributions. 
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11.3.1 Degrees of Freedom 

In connection with these distributions, we shall often come across a term: degrees 
of freedom. Let us get some idea about the term now. In a general sense, the 
degrees of freedom refers to the number of pieces of independent information that 
are required to compute some characteristic (say, variance) of a given set of 
observations. We consider an example here. 

Suppose there are 5 observations: 4, 7, 12, 3 and 15. Hence, the arithmetic mean 

X  is 8. The computation of variance 21
( )ix x

n
  involves obtaining the squares 

of the deviations of the values of the observations from their arithmetic mean and 

adding them as shown below: 

22222

22222

)6()5()4()1()4(

)814()83()812()87()84(




   

From the properties of arithmetic mean ( X ), we know that the summation of the 

values inside the brackets must be equal to zero, i.e., in general 
1
( ) 0.

n

i
i

x X


   It 

means that in the computation of the variance, if the first four terms inside the 
brackets happen to be –4, –1, 4 and –5 respectively, the fifth term cannot be any 
other term but 6. Thus in this example, we do not have 5 independent pieces of 
information inside the brackets. The fifth piece of information inside the bracket, 
i.e., ‘6’ depends upon the first four pieces of information inside their respective 
brackets.  

We can fix the idea better if we think of a person who does not have any idea 

about the individual observations. She is only told that there are 5 observations 

and the first 4 deviations of the values from the mean of the five observations are 

–4, –1, 4 and –5 respectively. She is then asked to calculate the variance of the 5 

observations. If she knows the law that the sum of the deviations of the values of 

a variable from their arithmetic mean is always equal to zero, she will at once be 

able to figure out that the deviation of the 5th value from its arithmetic mean is 6. 

She will then proceed to take the squares of these deviations and add them 

together to arrive at the last step for the computation of the required variance. 

The last step involves a division by the number of observations to get an idea 

about the average dispersion of the values about their arithmetic mean (we take 

variance as the required measure here). What is the appropriate value that she 

should take for the number of observations? Is it 5? Let us probe a little into it. 

We have seen that the fifth deviation is determined by the first four deviations, 

which means that there are 4 independent pieces of information that produce the 

dispersions of the given 5 values about their arithmetic mean. Therefore, for 

measuring the average dispersion, i.e., the variance, the sum of the squares of the 

five deviations should be divided by 4 and not by 5.  
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Thus, in this example, the degrees of freedom are 4. Generalising the above 

example, for obtaining the variance of n observations, there are n–1 degrees of 

freedom because of the restriction 



N

i
i Xx

1

.0)(  As a result, for variance, 





N

i
i Xx

1

2)( is divided by n–1, i.e., 
1

2 2

1

1
( ) ,

1

n

i
i

S x X
n




 


 where, 2S is the 

variance. From the above discussion, we can say that the degrees of freedom that 

we have for the computation of any characteristic is equal to the number of 

observations minus the number of restrictions put on the computation of the 

required characteristic. In symbols, d.f. = n – r where, d.f. is the degrees of 

freedom, n is the number of observations and r is the number of restrictions. 

We should note here that when n is quite large, for calculating the variance or its 

positive square root, i.e., the standard deviation, we often divide 



N

i
i Xx

1

2)(  by 

n and not by n –1. However, strictly speaking, we should divide 



N

i
i Xx

1

2)( by 

n –1, particularly when n is small.   
 

11.3.2 The 2 (Chi-Squared) Distribution 

Suppose, X is a normal variable with mean (expectation 𝜇 and standard 

deviation𝜎, than 𝑧 =
௑ିఓ

ఙ
  is a standard normal variate, i.e., 𝑧~N(0,1) If we take 

the square of z, i.e., 𝑧ଶ = ቀ
ଡ଼ିஜ

ఙ
ቁ

ଶ

, then 𝑧ଶ is said to be distributed as a 2  

variable with one degree of freedom and expressed as 2
1 . 

It is clear that since 2
1  is a squared term; for z laying between −∞ and +

∞, 2
1   will lie between 0 and +∞ (because a squared term cannot take negative 

values). Again since, z has a mean equal to zero, most of the values taken by z 
will be close to zero. As a result, the probability density of 2  variable will be 

maximum near zero. 

Generalizing the result mentioned above, if z1, z2, ..., .zk are independent standard 

normal variates (i.e., normal variables with zero mean and unit variance), then 

the variable 

𝑧 = ෍ 𝑧ଵ
ଶ

௞௜

௜ୀଵ

 

is said to be a 2  variable with k  degrees of freedom and is denoted by 2
k  Fig, 

15.3 given below shows the probability curves for 2  variables with different 

degree of freedom. 
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We should note the following features of the

1) As Fig. 11.3 shows, the

skewness depends on its degrees of freedom. For lower degrees of freedom, 
the distribution is highly skewed. As the number of degrees of freedom 
increases, the distribution becomes increasingly symmetric. In

degrees of freedom more than 100, the variable 

treated as a standard normal variate, where 

2) The mean of the chi
is the degrees of freedom.

3) If and 1Z

degrees of freedom respectively, then 
with degrees of freedom equal to 

As in the case of the normal distribution, a similar table has been prepared for the 
2 distribution also (see 

just consult this table to obtain the required pr

different degrees of freedom. 

In Table A2 
denotes 2  values for 5% and 1% 

explain the concept of level of significance in Unit 1

The following example illustrates the use of the chi

Example 11.4
 

What is the probability of obtaining a 

degrees of freedom 25?
 

Fig 11.3: Chi-squared Probability Curves

note the following features of the 2  distribution.

As Fig. 11.3 shows, the 2  is a positively skewed distribution. Its degree of 

skewness depends on its degrees of freedom. For lower degrees of freedom, 
the distribution is highly skewed. As the number of degrees of freedom 
increases, the distribution becomes increasingly symmetric. In

degrees of freedom more than 100, the variable 2
treated as a standard normal variate, where k is the degrees of freedom.

The mean of the chi-squared distribution is k, and its variance is 
is the degrees of freedom. 

  and 2Z are two independent chi-squared variables with 
degrees of freedom respectively, then    21 ZZ  is also a chi
with degrees of freedom equal to .21 kk   

As in the case of the normal distribution, a similar table has been prepared for the 
distribution also (see Appendix Table A2 at the end of this 

just consult this table to obtain the required probability of the 

different degrees of freedom.  

2 df represent degrees of freedom. While the columns
values for 5% and 1% level of significance respectively. We will 

explain the concept of level of significance in Unit 14.  

The following example illustrates the use of the chi-squared table.

Example 11.4 

What is the probability of obtaining a 2  value of 34 or greater, given 

degrees of freedom 25? 

 

squared Probability Curves 

distribution. 

a positively skewed distribution. Its degree of 

skewness depends on its degrees of freedom. For lower degrees of freedom, 
the distribution is highly skewed. As the number of degrees of freedom 
increases, the distribution becomes increasingly symmetric. In fact, for 

 122  k  can be 

is the degrees of freedom. 

, and its variance is 2k, where k 

squared variables with   and 21 kk

is also a chi-squared variable 

As in the case of the normal distribution, a similar table has been prepared for the 
2 at the end of this book). We have to 

obability of the 2 variable for 

represent degrees of freedom. While the columns 𝜒଴.଴ହ
ଶ

 and 𝜒଴.଴ଵ
ଶ  

respectively. We will 

squared table. 

value of 34 or greater, given the 



 

 

Solution: We can see from Appendix 
degrees of freedom column to reach the figure of 25, the nearest figure to 34 that 
we find across the corresponding row is 34.08747. The probability for 34.087
as we can see from the table, is 0.10. Hence the required probability is 0.10. 

11.3.3 The Student’s-t Distribution  

W.S. Gosset presented the t-distribution. The interesting story is that Gosset was 
employed in a brewery in Ireland. The rules of the 
employee to publish any research finding independently. So, Gosset adopted the 
pen-name ‘student’ and published his findings about this distribution 
anonymously. Since then, the distribution has come to be known as the student’s
t distribution or simply, the t distribution.

If z1 is a standard normal variate, i.e., 𝑧ଵ

variable that follows the chi-square distribution with k degrees of freedom, i.e.,

𝑧ଶ~ 2
k , then the variable 𝑡 =

௭భ

ඥ(௭మ/௞)
=

  is said to follow student’s-t distribution with 

The probability curves for the student’s

freedom are presented in Fig. 11.4 

Fig 11.4: Student’s-t Probability Curves

We may note the important characteristics of this distribution.

1) As we can see in Fig. 11.4, like the normal distribution, the student’s

distribution is also symmetric and its range of variation is also from 

to + ; however, it is flatter than the normal distribution. We should also 

Appendix Table A2 that if we move down the 
degrees of freedom column to reach the figure of 25, the nearest figure to 34 that 
we find across the corresponding row is 34.08747. The probability for 34.08704, 
as we can see from the table, is 0.10. Hence the required probability is 0.10.  

distribution. The interesting story is that Gosset was 
employed in a brewery in Ireland. The rules of the company did not permit any 
employee to publish any research finding independently. So, Gosset adopted the 

name ‘student’ and published his findings about this distribution 
anonymously. Since then, the distribution has come to be known as the student’s-

distribution. 

ଵ~𝑁(0,1)  and zଶ  is another independent 
square distribution with k degrees of freedom, i.e.,  

௭భ√௞

√௭మ
  

distribution with k degrees of freedom. 

The probability curves for the student’s-t distribution for different degrees of 

 

robability Curves 

We may note the important characteristics of this distribution. 

As we can see in Fig. 11.4, like the normal distribution, the student’s-t 

distribution is also symmetric and its range of variation is also from   

; however, it is flatter than the normal distribution. We should also 
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note here that as the degrees of freedom increase, the student’s-t 

distribution approaches the normal distribution. 

2) The mean of the student’s-t distribution is zero and its variance is  2k

k , 

where, k is the degrees of freedom. 

Like the normal distribution, the student’s-t distribution is often used in statistical 

inferences and tests of hypotheses to be discussed in Block-7. The task involves 

the integration of its density function; which may prove to be tedious. As a result, 

in this case also, like the normal distribution, a table has been constructed for 

ready-reference purposes (see Appendix Table A3).  

 

We shall consider an example to see the use of Table A3. 

Example 11.5 

Given the degrees of freedom equal to 10, what is the probability of obtaining a t 

value of (i) 2.7638 or greater, (ii) –2.7638 or lower? 

Solution: 

(i) In Table A3 for student’s-t distribution, first, we move down the degrees of 

freedom column and reach the figure of 10 and then look across the 

corresponding row and locate the figure of 2.7638. The corresponding 

lower probability figure of 0.01 is the required probability. 

 

(ii) Since the student’s-t distribution is symmetric, the probability of obtaining 

a t value of –2.7638 or lower is also 0.01. 

  

11.3.4  The F Distribution 

Another continuous probability distribution that we discuss now is the F 

distribution. 

If 𝑧ଵ and 𝑧ଶ  are two chi-squared variables that are independently distributed with 

 𝑘ଵand  𝑘ଶ degrees of freedom respectively, the variable 

𝐹 =
𝑧ଵ/𝑘ଵ

𝑧ଶ/𝑘ଶ
 

follows s F distribution with  𝑘ଵ and  𝑘ଶ  degrees of freedom respectively. The 
variable is denoted by 𝐹௞భ,௞మ

 where, the subscripts  𝑘ଵ and  𝑘ଶ are the degrees of 

freedom associated with the chi-squared variables. We may note here that  𝑘ଵ is 

called the numerator degrees of the freedom and in the same way,  𝑘ଶ is called 

the denominator degrees of freedom. 
 

Some important properties of the F distribution are mentioned below. 

1)    The F distribution, like the chi-squared distribution, is also skewed to the          
 right. But, as k1 and k2 increase, the F distribution approaches the normal 

 distribution. 
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2) The mean of the F distribution is k1/(k2 – 2), which is defined for k2 > 2, 

and its variance is 
 

   
.4for  defined is which 

42

22
2

2
2

21

21
2
2 




k

kkk

kkk

 
 

3) An F distribution with 1 and k as the numerator and denominator degrees 

of freedom respectively is the square of a student’s-t distribution with k 

degrees of freedom. Symbolically, 

                2
,1 kk tF   

4) For fairly large denominator degrees of freedom k2, the product of the 

numerator degrees of freedom k1and the F value is approximately equal to 

the chi-squared value with degrees freedom k1, i.e., .2
1 1kFk   

As we have mentioned earlier with reference to other continuous probability 
distributions, F distribution is also extensively used in statistical inference and 
testing of hypotheses. Again, such uses also require obtaining areas under the F 
probability curve and consequently integrating the F density function. However, 
in this case also our task is facilitated by the provision of the F Table. 
 

11.3.5 Distributions Related to the Normal Distribution 

We have already seen from the features of the chi-squared, student’s-t and the F 
distributions that for large degrees of freedom, these distributions approach the 
normal distribution. Consequently, these distributions are also known as the 
distributions related to the normal distribution. This relationship between the chi-
squared distribution, the student’s-t distribution and the F distribution on one 
hand and the normal distribution on the other has tremendous practical 
implications. When the degrees of freedom happen to be fairly large, instead of 
using the chi-squared distribution or the student’s-t distribution or the F 
distribution separately as the situation may demand; we can uniformly apply the 
normal distribution. As a result, our task gets considerably simplified. 
 

Check Your Progress 2 

 1) What is the probability of obtaining a 2  value of 8 or greater, given the 

 degrees of freedom 20? 
 …………………………………………………………………………......… 

 …………………………………………………………………………......… 

 …………………………………………………………………………......… 

2) Given the degrees of freedom equal to 25, what is the probability of 
obtaining a t value of 1.708 or greater? 

 …………………………………………………………………………......

 ……………………………………………………………………………...

 ...…………………………………………………………………………… 
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3) Given 1k  = 10 and 2k  = 8, what is the probability of obtaining an F value 

of 5.8 or greater? 
 …………………………………………………………………………......… 

 …………………………………………………………………………......… 

 …………………………………………………………………………......… 

 …………………………………………………………………………......… 
 

11.4  LET US SUM UP 

In this unit, we studied some continuous probability distributions. Among these 
distributions, the normal distribution is considered to be the most important one. 
We have learnt its characteristics and seen its practical applications. We have 
considered the important concept of a standard normal variate. We have also 
learnt the technique of using the table for the areas under the standard normal 
curve for solving problems relating to the normal distribution. Besides the normal 
distribution, we have considered three other continuous probability distributions. 
These are: the chi-squared distribution, the student’s-t distribution and the F 
distribution. These three distributions use the notion of the degrees of freedom. 
So, we have tried to explain the concept of the degrees of freedom. We have 
learnt the characteristics of these distributions and seen how these distributions 
can be applied to various situations by using tables relating to these distributions. 
Finally, we have seen that for fairly large degrees of freedom, these three 
distributions approach the normal distribution.  
 

11.5  ANSWERS OR HINTS TO CHECK YOUR  
 PROGRESS EXERCISES 

Check Your Progress 1 

1)  a) 0.0552 
 b) 0.0668 
 c) 0.0062 

2) The proportion of persons having heights between 67 inches and 69 
 inches = 0.1586 

 Therefore, the number of persons having heights between 67 inches and 
69 inches = 1000  0.1586 = 159 (approximately). 

3)     
24 34

2
5

z


    

From the standard normal table, the area between z = 0 and z = 2 is 

0.4772. Therefore, the area between z = 0 and z = – 2 is 0.4772 (because 

the standard normal distribution is symmetric). For finding the number of 

batteries that will have to be replaced, we have to consider the area to the 

left of z = – 2, which is equal to the area to the right of z = 2. Now, the 
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area to the right of z = – 2 is 0.5 – 0.4772 = 0.0228. Therefore, the 

probability that a battery is defective is 0.0228. Thus out of 5000 

batteries, the number of batteries that will have to be replaced 

.11450000228.0   

Check Your Progress 2 

  1) 0.99 

 2) 0.05 

 3) 0.01   

  

 




