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10.0 OBJECTIVES 

After going through this unit, you should be able to 

 explain the concept of multicollinearity in a regression model; 

 comprehend the difference between the near and perfect multicollinearity; 

 describe  the consequences of multicollinearity; 

 1explain how multicollinearity can be detected; and 

 describe the remedial measures of multicollinearity; and  

 explain the concept of ridge regression. 

10.1  INTRODUCTION  

The classical linear regression model assumes that there is no perfect 
multicollinearity. Multicollinearity means the presence of high correlation 
between two or more explanatory variables in a multiple regression model. 

                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi  
 



 

 

 

131 

Multicollinearity Absence of multicollinearity implies that there is no exact linear relationship 
among the explanatory variables. The assumption of no perfect multicollinearity 
is very crucial to a regression model since the presence of perfect 
multicollinearity has serious consequences on the regression model. We will 
discuss about the consequences, detection methods, and remedial measures for 
multicollinearity in this Unit. 

10.2  TYPES OF MULTICOLLINEARITY  

Multicollinearity could be of two types: (i) perfect multicollinearity, and (ii) 

imperfect multicollinearity. Remember that the division is according to the 

degree or extent of relationship between the explanatory variables. The 

distinction is made because of the nature of the problem they pose. We describe 

both types of multicollinearity below. 

10.2.1 Perfect Multicollinearity  

In the case of perfect multicollinearity, the explanatory variables are perfectly 

correlated with each other. It implies the coefficient of correlation between the 

explanatory variables is 1. For instance, suppose want to derive the demand curve 

for a good Y. We assume that quantity demanded (Y) is a function of price (𝑋 )    

and income (𝑋 ). In symbols,  

𝑌 = 𝑓(𝑋 , 𝑋 )  where 𝑋   is price of good Y and 𝑋  is the weekly consumer 

income.  

Let us consider the following regression model (population regression function): 

𝑌 = 𝐴 + 𝐴 𝑋 + 𝐴 𝑋 + 𝑢      … (10.1) 

In the above equation, suppose     

𝐴  is < 0. This implies that prices are inversely related do demand.  

𝐴 > 0. This indicates that as income increases, demand for the good increases.  

Suppose there is a perfect relationship between 𝑋  and 𝑋  such that 

𝑋 = 300 − 2𝑋          … (10.2) 

In the above case, if we regress X3 on X2 we obtain the coefficient of 

determination 𝑅 = 1. 

If we substitute the value of X3 from equation (10.2), we obtain 

 𝑌 = 𝐴 + 𝐴 𝑋 + 𝐴 (300 − 2𝑋 ) + 𝑢  

 = 𝐴 + 𝐴 𝑋 + 300𝐴 − 2𝐴 𝑋 + 𝑢  

 = (𝐴 + 300𝐴 ) + (𝐴 − 2𝐴 )𝑋 + 𝑢    … (10.3) 

Let 𝐶 = (𝐴 + 300𝐴 )  and  𝐶 = (𝐴 − 2𝐴 ) . Then equation (10.3) can be 

written as: 
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Treatment of Violations 
of Assumptions 

𝑌 = 𝐶 + 𝐶 𝑋 + 𝑢              ….(10.4) 

Thus if we estimate the regression model given at (10.4), we obtain estimators for 

C1 and C2. We do not obtain unique estimators for A1, A2 and A3.  

As a result, in the case of perfect linear relationship or perfect multicollinearity 

among explanatory variables, we cannot obtain unique estimators of all the 

parameters. Since we cannot obtain their unique estimates, we cannot draw any 

statistical inferences (hypothesis testing) about them. Thus, in case of perfect 

multicollinearity, estimation and hypothesis testing of individual regression 

coefficients in a multiple regression are not possible.  

10.2.2 Near or Imperfect Multicollinearity  

In the previous section, the presence of perfect multicollinearity indicated that we 

do not get unique estimators for all the parameters in the model. In practice, we 

do not encounter perfect multicollinearity. We usually encounter near or very 

high multicollinearity. In this case the explanatory variables are approximately 

linearity related.  

High collinearity refers to the case of “near” or “imperfect” multicollinearity. 

Thus, when we refer to the problem of multicollinearity we usually mean 

“imperfect multicollinearity’’ 

Let us consider the same demand function of good Y. In this case we however 

assume that there is imperfect multicollinearity between the explanatory variables 

(in order to distinguish it from the earlier case, we have changed the parameter 

notations). The following is the population regression function: 

 𝑌 = 𝐵 + 𝐵 𝑋 + 𝐵 𝑋 + 𝑢     ….(10.5) 

Equation (10.5) refers to the case when two or more explanatory variables are not 

exactly linear.  For the above regression model, we may obtain an estimated 

regression equation as follows:  

Equation (10.5): Y = 145.37     −       2.7975𝑋       −        0.3191𝑋          

Standard Error:        (120.06)            (0.8122)          (0.4003)  

t-ratio:            (1.2107)            (–3.4444)         (–0.7971) 

97778.0R2          ... (10.6) 

Since the explanatory variables are not exactly related, we can find estimates for 

the parameters. In this case, regression can be estimated unlike the first case of 

prefect multicollinearity. It does not mean that there is no problem with our 

estimators if there is imperfect multicollinearity. We discuss the consequences of 

multicollinearity in the next section.  
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Multicollinearity Check Your Progress 1 

1) What is meant by perfect multicollinearity? 

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

2) What do you understand by imperfect multicollinearity?  

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

3) Explain why it is not possible to estimate a multiple regression model in the 
presence of perfect multicollinearity.  
...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

10.3  CONSEQUENCES OF MULTICOLLINEARITY 

We know from Unit 4 that the ordinary least squares (OLS) estimators are the 
Best Linear Unbiased Estimators (BLUE). It implies they have the minimum 
variance in the class of all linear unbiased estimators. In the case of imperfect 
multicollinearity, the OLS estimators still remain BLUE. Then what is the 
problem? In the presence of multicollinearity, there is an increase in the variance 
and standard error of the coefficients. As a result, very few estimators are 
statistically significant.  

Some more consequences of multicollinearity are given below. 

(a) The explanatory variables may not be linearly related in the population 

(i.e., in the population regression function), but they could be related in a 

particular sample. Thus multicollinearity is a sample problem. 

(b) Near or high multicollinearity results in large variances and standard 

errors of OLS estimators.  As a result, it becomes difficult to estimate true 

value of the estimator.  
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(c) Multicollinearity results in wider confidence intervals. The standard 

errors associated with the partial slope coefficients are higher. Therefore, 

it results in wider confidence intervals. 

𝑃 𝑏 − 𝑡 ⁄ 𝑆𝐸(𝑏 ) ≤ 𝛽 ≤ 𝑏 + 𝑡 ⁄ 𝑆𝐸(𝑏 ) = 1 − 𝛼             ….(10.7) 

Since the values of standard errors have increased the interval reflected in 

expression in (10.7) has widened.  

(d) Insignificant t ratios: As pointed out above, standard errors of the 

estimators increase due to multicollinearity. The t-ratio is given as 

=
( )

 .  Therefore, the t-ratio is very small. Thus we tend to accept (or 

do not reject) the null hypothesis and tend to conclude that the variable 

has no effect on the dependent variable.  

(e) A high 𝑅  and few significant t-ratios: In equation (10.6) we notice that 

the 𝑅  is very high, about 98% or 0.98. The t-ratios of both the 

explanatory variables are  not statistically significant. Only the price 

variable slope coefficient has significant t-value. However, using F-test 

while testing overall significance 𝐻 : 𝑅 = 0,  we reject the null 

hypotheses.  Thus there is some discrepancy between the results of the F-

test and the t-test.  

(f) The OLS estimators are mainly partial slope coefficients and their 

standard errors become very sensitive to small changes in the data. If 

there is a small change in data, the regression results change substantially.   

(g) Wrong signs of regression coefficients: It is a very prominent impact of 

the presence of multicollinearity. In the case of the example given at 

equation (10.6) we find that the coefficient of the variable income is 

negative. The income variable has a ‘wrong’ sign as economic theory 

suggests that income effect is positive unless the commodity concerned is 

an inferior good. 

10.4 DETECTION OF MULTICOLLINEARITY 

In the previous section we pointed out the consequences of multicollinearity. 
Now let us discuss how multicollinearity can be detected.   

(h) High 2R and Few Significant t-ratios 

This is the classic symptom of multicollinearity. If 𝑅  is high (greater 
than 0.8), the null hypothesis that the partial slope coefficients are jointly 
or simultaneously equal to zero  0:H 320  is rejected in most cases 

(on the basis of F-test). But the individual t-tests will reflect that none or 
very few partial slope coefficients are statistically different from zero. 
This suggests very few slope coefficients are statistically significant.  
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Multicollinearity (ii) High Pair-wise Correlations among Explanatory Variables  

Due to high correlation among the independent variables, the estimated 

regression coefficients have high standard errors. But this is not 

necessarily true as demonstrated below. Even low correlation among the 

independent variables can lead to the problem of multicollinearity.  

Let 2423 r,r  and 34r  represent the pair-wise correlation coefficients 

between 2X and 3X and 4X respectively. Suppose ,90.0r23  reflecting 

high collinearity between 2X and 3X . Let us consider partial correlation 

coefficient 4.23r that indicates correlation between 2X and 3X (while 

keeping the influence of 4X constant). Suppose we find that 43.0r 4.23  . 

It indicates that partial correlation between 2X and 3X  is low reflecting 

the absence of high collinearity. Therefore, pair-wise correlation 

coefficient when replaced by partial correlation coefficients does not 

indicate the presence of multicollinearity. Suppose the true population 

regression is given by equation (10.8) 

 𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋 + 𝑢                                   … (10.8) 

Suppose the explanatory variables are perfectly correlated with each other 

as shown in equation (10.9) below 

 𝑋 = 𝜆 𝑋 + 𝜆 𝑋                  … (10.9) 

4X is an exact linear combination of 2X and 3X  

If we estimate the coefficient of determination by regressing 4X on 2X

and 𝑋 , we find that  

 𝑅 . =
   

      ... (10.10) 

Suppose, .5.0r,5.0r,5.0r 234342  If we substitute these values in 

equation (10.10), we find that 𝑅 . = 1. An implication of the above is 

that all the correlation coefficients (among explanatory variables) are not 

very high but still there is perfect multicollinearity.  

(iii) Subsidiary or Auxiliary Regressions  

Suppose one explanatory variable is regressed on each of the remaining 

variables and the corresponding 𝑅  is computed. Each of these 

regressions is referred to as subsidiary or auxiliary regression. For 

example, in a regression model with seven explanatory variables, we 
regress 𝑋 on 𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋  and 7X  and find out the 𝑅  . Similarly, we 

can regress 𝑋 on 𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋  and 7X  and find out the 𝑅 . By 

examining the auxiliary regression models we can find out the possibility 
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of multicollinearity.  We take the rule of thumb that multicollinearity may 

be troublesome if 𝑅  obtained from auxiliary regression is greater than 

overall 2R of the regression model.  

A limitation of this method is that we have to compute 𝑅  several times, 

which is cumbersome and time consuming. 

(iv) Variance Inflation Factor (VIF) 

Another indicator of multicollinearity is the variance inflation factor 

(VIF). The 𝑅  obtained from auxiliary regressions may not be a reliable 

indicator of collinearity. In VIF method we modify the formula of 
variance of the estimators as follows; (𝑏 ) and )b( 3  

var (𝑏 ) =
∑

  =
∑

.   ... (10.11) 

In equation (10.11), you should note that 𝑅  is the auxiliary regression 

discussed earlier.   

Compare the variance of 𝑏 given in equation (10.11) with the usual 

formula for variance of an estimator given in Unit 4. We find that  

𝑣𝑎𝑟(𝑏 ) =
∑

 𝑉𝐼𝐹       ... (10.12) 

where VIF =  

Similarly,  𝑣𝑎𝑟(𝑏 ) =
∑

(𝑉𝐼𝐹) 

Note that as 𝑅  increases the VIF also increases. This inflates the variance 
and hence standard errors of 2b and 3b  

If 𝑅  = 0,  𝑉𝐼𝐹 = 1 ⇒ 𝑉(𝑏 ) =
∑

 and 𝑉(𝑏 ) =
∑

 

Therefore, there is no collinearity.  

On the other hand,   

if 𝑅  = 1,  𝑉𝐼𝐹 = ∞ ⇒ 𝑉(𝑏 ) → ∞, 𝑉(𝑏 ) → ∞ 

If 𝑅  is high, however 𝑉(𝑏 ) tends to ∞. 

Note that 𝑣𝑎𝑟(𝑏 ) depends not only on 𝑅 ,  but also on 2 and  2
i2x . It 

is possible that 2
iR is high (say, 0.91) but 𝑣𝑎𝑟(𝑏 ) could be lower due to 

low 2 or high  2
i2x . Thus  2bV  is still lower resulting in high t value.  

Thus 𝑅  obtained from auxiliary regression is only a superficial indicator 

of multicollinearity.  
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Multicollinearity Check Your Progress 2 

1) Bring out four important consequences of multicollinearity. 

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

2) Explain how multicollinearity can be detected using partial correlations. 

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

3) Describe the method of detection of multicollinearity using the variance 
inflation factor (VIF).  
...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

10.5 REMEDIAL MEASURES OF 
MULTICOLLINEARITY 

Multicollinearity may not necessarily be an “evil’’ if the goal of the study is to 
forecast the mean value of the dependent variable. If the collinearity between the 
explanatory variables is expected to continue in future, then the population 
regression function can be used to predict the relationship between the dependent 
variable Y and other collinear explanatory variables.  

However, if in some other sample, the degree of collinearity between the two 
variables is not that strong the forecast based on the given Regression is of little 
use.  

On the other hand, if the objective of the study is not only prediction but also 

reliable estimations of the individual parameters of the chosen model then serious 

collinearity may be bad, since multicollinearity results in large standard errors of 

estimators and therefore widens confidence interval.  Thus, resulting in accepting 

null hypotheses in most cases. If the objective of the study is to estimate a group 
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of coefficients (i.e., sum or difference of two coefficients) then this is possible 

even in presence of multicollinearity. In such a case multicollinearity may not be 

a problem. 

𝑌 = 𝐶 + 𝐶 𝑋 + 𝑢         …(10.13) 

311 A300AC  ,         322 A2AC   

Running the above regression in equation (10.2), as presented in earlier section 
10.2, one can easily estimate 2C by using OLS method, although neither 2A nor 

3A can be estimated individually. There can be situation when in spite of inflated 

S.E., the individual coefficients happened to be numerically significant since the 

true value itself is so large even or estimate on the downside still shows up a 

significant test. 

Certain remedies prescribed for reducing the severity of collinearity problem 

which can be listed as OLS estimators can still retain BLUE property despite of 

near collinearity. Further, one or more regression coefficients can e individually 

statistically significant or some of them with wrong signs.  

10.5.1 Dropping a Variable from the Model 

The simplest solution may be to drop one or more of the collinear variables. 

However, dropping a variable from the model may lead to model specification 

error. In other words, when we estimate the model without the excluded variable, 

the estimated parameters of the reduced model may turn out to be biased. 

Therefore, the best practical advice is not to drop a variable from a model that is 

theoretically sound. A variable which has t value of its coefficient greater than 1, 

then than variable should not be dropped as it will result in a decrease in �̄� . 

10.5.2 Acquiring Additional Data or New Sample 

Acquiring additional data implies increasing the sample size. This is likely to 

reduce the severity of the multicollinearity problem. As we know from equation 

(10.11), 

var (𝑏 ) =
∑

    

Given 2 and 𝑅 , if the sample size of 𝑋  increases, there is an increase in ∑𝑥 . 

It will lead a decrease in var (𝑏 ) and its standard error. 

10.5.3 Re-Specification of the Model 

It is possible that some important variables are omitted from the model. The 

functional form of the model may also be incorrect. Therefore, there is a need of 

looking into the specification of the model. Many times, taking log form of a 

model leads to solving the problem of multicollinearity.  
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Multicollinearity 10.5.4 Prior Information about Certain Parameters 

Estimated values of certain parameters are available in existing studies. These 
values can be used as prior information. These values give us some tentative idea 
on the plausible value of the parameters.  

10.5.5 Transformation of Variables  

Transformation of the variables would minimize the problem of collinearity.  

10.5.6 Ridge Regression 

The ridge regressions are another method of resolving the problem of 
multicollinearity. In the ridge regression, the first step is to standardize the 
variables both dependent and independent by subtracting the respective means 
and dividing by their standard deviations. This mainly implies that the main 
regression is run by transforming both dependent and explanatory variables into 
the standardized values.  

It is observed that in the presence of multicollinearity, the value of variance 
inflation factor is substantially high. This is mainly due to a high value of 
coefficient of determination. The ridge regression is applied when the regression 
equations are in the form of matrix involving large number of explanatory 
variables.  

The ridge regression proceeds by adding a small value, k, to the diagonal 
elements of the correlation matrix. The reason that the diagonal of ones in the 
correlation matrix could be considered as a ridge, this is the reason such 
regression is referred as ridge regression.  

10.5.7 Other Remedial Measures  

There are several other Remedies suggested such as combining time series and 
cross-sectional data, factor or principal component analysis and ridge regressions. 

Polynomial Regression Models  

Let us consider total cost of production (TC) as a function of output as well as 
marginal cost (MC) and Average Cost (AC) 

 𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + 𝛽 𝑋       …….(10.12) 

The cost function is defined as Cubic function for cost as a third-degree 
polynomial of variable X. This model in equation (10.12) is linear in parameters 

s , therefore satisfy assumption of CLRM of linear Regression Model and can be 

estimated by usual OLS method. However, one needs to worry about problem of 
collinearity since it is not linear in variables and at the same time 2X  and 3X are 
non-linear function of X and do not violate the assumptions of no perfect 
collinearity i.e., no perfect linear relationship between variables. The estimated 
results are presented in equation (10.13).  

2
iii X9615.12X4776.637667.141Ŷ   + 0.9396 3

iX                         ….(10.13) 
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Se (6.3753)  (4.7786)     (0.9857)        (0.0591) 

     9983.0R 2   

2
ii

ii

X)9396.0(X96.124776.63
X

7667.141

X

RC
AC   

2
iiii X9396.0X7667.141X9615.124776.63AC   

 2
ii

i

X9396.03X)9615.12(X24776.63
X

TC
MC 




  

If the cost curves are U-shaped Average Marginal cost curves then the theory 
suggests that the coefficient should satisfy following  

1) 0and, 421   

2) 03   

3) 42
2
3 3   

Check Your Progress 3 

1)   Define two significant methods to rectify the problem of multicollinearity? 

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

2)    Describe the method of ridge regression.  

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

10.6 LET US SUM UP  

This unit presents a clear understanding of the concept of multicollinearity in the 
regression model. The unit also presents a clear distinction of near and perfect 
multicollinearity. The unit familiarizes the consequences of presence of 
multicollinearity in regression model. The method of detection of 
multicollinearity has been highlighted in the unit. Finally various techniques that 
provide remedial measures including the concept of ridge regression have been 
explained in the unit. 
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Multicollinearity 10.7 ANSWERS/ HINTS TO CHECK YOUR 
PORGRESS EXERCISES  

Check Your Progress 1 

1) The case of perfect multicollinearity mainly reflects the situation when 
the explanatory variables and perfectly correlated with each other 
implying the coefficient of correlation between the explanatory variables 
is 1. 

2) This refers to the case when two or more explanatory variables are not 
exactly linear this reinforces the fact that collinearity can be high but not 
perfect. “High collinearity” refers to the case of “near” or imperfect” or 
high multicollinearity. Presence of multicollinearity implies “imperfect 
multicollinearity’’ 

3) In the case of perfect multicollinearity it is not possible to obtain 
estimators for the parameters of the regression model. See Section 10.2 
for details. 

Check Your Progress 2 

1) (i) In case of imperfect multicollinearity, some of the estimators are 
statistically not significant. But OLS estimates still retain their BLUE 
property that is, Best Linear Unbiased Estimators. Therefore, imperfect 
multicollinearity does not violate any of the assumptions, OLS estimators 
retain BLUE property. Being BLUE with minimum variance does not 
imply that the numerical value of variance will be small.  

(ii) The 2R  value is very high but very few estimators are significant  (t-ratios 
low). The example mentioned in earlier section where the demand 
function of good Y we computed using the earnings of individuals, 

reflects the situation where 2R is quite high about 98% or 0.98 but only 
price variable slope coefficient has significant t-value. However, using F-

test while testing overall significance ,0R:H 2
0   we reject the 

hypotheses that both prices and earnings have no effect on the demand of 
Y. 

(iii) The ordinary least square OLS estimators mainly partial slope coefficients 
and their standard errors become very sensitive to small changes in the 
data, i.e. they then to be rentable. A small charge of data, the regression 
results change quite substantially as in case example of near or imperfect 
multicollinearity mentioned above, the standard errors go down and t-
ratios have increased in absolute values.  

(iv) Wrong signs of regression coefficients. It is a very prominent impact of 
presence of multicollinearity. In case of example where earnings of 
individuals were used in deriving demand curve of good Y, the earning 
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variable has the ‘wrong’ sign for the economic theory since the income 
effect usually positive unless it is case of inferior good. 

2)  Examining partial correlations: In case of three explanatory variables 

32 X,X and 4X very high or perfect multicollinearity between 4X and 

32 X,X . 

Subsidiary or auxiliary regressions: When one explanatory variables X is 

regressed on each of the remaining X variable and the corresponding 2R
is computed. Each of these regressions is referred as subsidiary or 
auxiliary regression. A regression Y on 65432 X,X,X,X,X and 7X with 

six explanatory variables. If 2R comes out to be very high but few 
significant t-ratios or very few X coefficients are individually statistically 
significant then the purpose is to identify the source of the 
multicollinearity or existent of perfect or near perfect linear combination 

of other sX . 

For this we Regress 2X on remaining sX and obtain 2
2R or also written as 

𝑅 .  

Regress 3X on remaining ,Xs and obtain 2
3R coefficient of determination 

also written as 2
24567.3R each 2

iR obtained will lie between 0 and 1. By 

testing the null hypothesis 0R:H 2
i0  by applying F-test. Let 2423 r,r and 

34r  represent pairwise correlation between 2X and 3X , 2X and 4X , 3X

and 4X respectively suppose ,90.0r23  reflecting high collinearity 

between 2X and 3X . Considering partial correlations coefficient 4.23r that 

indicators correlations coefficient between 2X and 3X , Adding the 

influence of 4X constant. If 43.0r 4.23  . Thus, partial correlation between 

2X and 3X  is low reflecting no high collinearity or low degree of 

collinearity. Therefore, pairwise correlation when replaced by partial 
correlation coefficients does not provide indicator of presence of 
multicollinearity.  

3)  Variance Inflation Factor (VIF): 2R obtained variables auxiliary 
regression may not be completely reliable and is not reliable indicator of 
collinearity. In this method we modify the formula of var )b( 2 and )b( 3  

  2
2

2
i2

2

2
R1x

)b(var
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Multicollinearity 
Similarly,     VIF

x
bV

2
i3

2

3



  

VIF is variance inflation factor. As 2R increases VIF 
2R1

1


increased 

thus inflating the variance and hence standard errors of 2b and 3b  

If  





2
i2

2

2
2

x
bV1VIF,0R  and  






2
i3

2

3
x

bV  

     No collinearity  
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If 2R is high, however 𝑣𝑎𝑟(𝑏 ) → ∞, 𝑣𝑎𝑟(𝑏 ) does not only depend on 
2R (auxiliary coefficient of determination) or VIF. If also depends on 2

and  2
i2x it is possible that 2

iR is high 0.91 but 𝑣𝑎𝑟(𝑏 ) could be lower 

due to low 2 or high  2
i2x thus  2bV be still lower resulting in high t 

value not showing any low t end thus defeating the indicator of 

multicollinearity. Thus 2R obtained from and binary regression is only a 
surface indicator of multicollinearity.  

Check Your Progress 3 

1)  (i) Dropping a variable from the Model: The simplest solution might seem 
to be to drop one or more of the collinear variables. However, dropping a 
variable from the model may lead to model specification error in either 
words, where we estimate the model without that variable, the estimated 
parameters of reduced model may turn out to be biased. Therefore, the 
best practical advice is not to drop or variable from an economically 
variable model first because the collinearity problem is serious. A variable 
which has t value of its coefficient greater than 1, then than variable 
should not be dipped as it will result in decrease in adjusted 2R  

(ii) Acquiring Additional Data or new sample: Acquiring additional data 
implies increasing the sample size can reduce the severity of collinearity 
problem. 
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Given 2 and 2R , if the sample size of 3X increases  2
i3x will 

increase as a result )b(V 3 will tend to decrease and standard error 3b will 

also. 

2) In ridge regression we first standardise all the variables in the model. Go 
through Sub-Section 10.5.6 for details. 
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11.1  Heteroscedasticity 
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 11.2.1 Homoscedasticity 

 11.2.2 Heteroscedasticity 

11.3  Consequences of Heteroscedasticity 
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11.6  Linear versus Log-Linear Forms  

11.7  Let Us Sum Up 

11.8  Answers/ Hints to Check Your Progress Exercises 

11.0  OBJECTIVES 

After going through this unit, you should be able to 

 explain the concept of heteroscedasticity in a regression model; 

 identify the consequences of heteroscedasticity in the regression model; 

 explain the methods of detection of heteroscedasticity; 

 describe the remedial measures for resolving heteroscedasticity; 

 show how the use of deflators can help in overcoming the consequences of 

heteroscedasticity; and  

 identify the correct functional form of regression model so that 

heteroscedasticity is avoided.  

                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi 
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Heteroscedasticity 11.1  INTRODUCTION 

A crucial assumption of the Classical Linear Regression Model (CLRM) is that 
the error term 𝑢  in population regression function (PRF) is homoscedastic. It 
means that 𝑢  has the same variance 𝜎  throughout the population. An alternative 
scenario arises where the variance of ui is 𝜎 . In other words, the error variance 
varies from one observation to another. Such cases are referred to as cases of 
heteroscedasticity.  

11.2 HETEROSCEDASTICITY: DEFINITION  

Let us first make a distinction between homoscedasticity and heteroscedasticity. 
This will help us in understanding the concept of heteroscedasticity better. 

11.2.1 Homoscedasticity  

Consider a 2-variable regression model, where the dependent variable Y is 
personal savings and the explanatory variable X is personal disposable income (or 
after-tax income).  

As personal disposal income (PDI) increases, the mean or average level of 
savings also increases but the variances of savings around its mean value remains 
the same at all the levels of PDI. Such a case depicts the case of homoscedasticity 
or equal variance as shown in Fig. 11.1. In such cases, we have: 

 

 

 

 

 

 

 

 

 

 

   Fig.11.1: Case of Homoscedasticity 

𝐸(𝑢 ) = 𝜎        … (11.1) 

We can alternatively express equation (11.1) as a case where: 

𝑉(𝑢 ) = 𝜎        … (11.2) 

In Fig. 11.1, we see a case of homoscedasticity where the variance of the error 
term is a constant value, 𝜎 . This is expressed in the form of an equation as in 
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(11.2). Since the expected value of the error term is zero, the expression 𝑉(𝑢 ) =

𝜎  can also be written as 𝐸(𝑢 ) = 𝜎  as in equation (11.1). 

11.2.2 Heteroscedasticity  

As PDI increases, the average level of savings increases. However, the variance 
of savings does not remain the same at all the levels of PDI. This is the case of 
heteroscedasticity or unequal variance. In other words, high-income people, on 
average, save more than low-income people, but at the same time, there is more 
variability in their savings. This can be graphically represented as in Fig. 11.2. 
We now therefore have: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.2: Case of Heteroscedasticity 

𝐸(𝑢 ) = 𝜎    𝑜𝑟  𝑉(𝑢 ) = 𝜎        … (11.3) 

The case of heteroscedasticity reflected in Fig.11.2 indicates that the error 
variance is not constant. It rather changes with every observation, like  

𝑉(𝑢 ) = 𝜎 . 

It is observed that heteroscedasticity is usually found in cross-sectional data and 
not so much in time series data. The reason for its occurrence more in cross-
sectional data is mainly because, in the case of cross-sectional data, the members 
of population are like individuals, firms, industries, geographical division, state 
or countries. The data in such cases is collected at a point in time. Hence, the 
members of the population may be of different sizes: small, medium or large. 
This is referred to as the scale effect. In other words, due to what is called in 
economics as the ‘scale effect’, in cross sectional data we find cases of 
heteroscedasticity more commonly.  

In the case of time series, on the other hand, the data of similar variables vary 
over a period of time. For instance, GDP (gross domestic product) or savings or 
unemployment varies over a period (like 1960 to 2008). 
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Heteroscedasticity Check Your Progress 1 

1) What is meant by heteroscedasticity? 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

2) Is the problem of heteroscedasticity related to data? Comment. 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

11.3 CONSEQUENCES OF HETEROSCEDASTICITY 

To avoid the problem of heteroscedasticity, we have made one of the 
assumptions in the classical linear regression model that the error term is 
homoscedastic. However, in many regression models and actual data, the 
disturbance variance varies across observations. Consequently, the model suffers 
from specific impacts due to heteroscedastic error term. 

The following are the characteristics of the OLS model in the presence of 

heteroscedasticity.  

(i) The OLS estimators are linear function of the variables. The 

regression equation is also linear in its parameters. 

(ii) The ordinary least squares (OLS) estimators are unbiased. This means 

the expected value of estimated parameters is equal to the true 

population parameters.  

(iii) The OLS estimators though unbiased, are no longer with minimum 

variance, i.e., they are no longer efficient. In fact, even in large 

samples, the OLS estimators are not efficient. Therefore, the OLS 

estimators are not BLUE both in small as well as asymptotically large 

samples. 

(iv) In light of the above, the usual formula for estimating variances of 

OLS estimator is biased, i.e., they are either upward biased (positive 

bias) or downward biased (negative bias). Note that when the OLS 
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overestimates the true variances of estimators, a positive bias is said 

to occur, and when it underestimates the true variances of estimators, 

we say that a negative bias occurs.  

(v) The estimator of true population variance as given by 𝜎 =
∑

=  

is biased. That is  

𝐸(𝜎 ) ≠ 𝜎      … (11.4) 

We know that the degrees of freedom for testing an estimated 

parameter is (n – k), where k is the number of parameters (or 

explanatory variables) in the regression model. For example, if there 

are three explanatory variables, d.f. = (n – 3). In the two variables 

case, df = (n – 2). Note that we are counting the intercept estimate for 

this purpose of determining the d.f. 

(vi) Equation (11.4) implies that in the presence of heteroscedasticity, the 

estimated value of error variance is not equal to the true population 

error variance. In view of this, the usual confidence interval and 

hypothesis testing based on t and F distributions are unreliable (since, 

the estimator of the error variance is biased). Therefore, the possibility 

of making wrong inferences (Type–II error) is very high. As a result, 

in the presence of heteroscedasticity, the results of the usual 

hypothesis-testing are not reliable raising the possibility of drawing 

misleading conclusions.  

Check Your Progress 2 

1) State any two important consequences of heteroscedasticity. 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

2)  In the presence of heteroscedasticity, the OLS estimator will either 
overestimate or underestimate the error variance. Justify the statement. 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 
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Heteroscedasticity 11.4 DETECTION OF HETEROSCEDASTICITY  

So far, we have discussed the consequences of heteroscedasticity. Now let us 
discuss how heteroscedasticity can be detected. There are quite a few methods of 
detecting heteroscedasticity. Some of these methods are described below.  

11.4.1 Graphical Examination of the Residuals  

We can begin with examining the residuals obtained from the fitted regression 
line. The residual plot of squared residuals is an indicator of the existence of 
heteroscedasticity. Since the error terms 𝑢  are not observable, we examine the 
residuals,  𝑒 . 

A plot of the residuals can give us various types of diagrams as in Fig. 11.3. 

 

Fig. 11.3: Cases of Homoscedasticity and Heteroscedasticity 

In the five situations depicted in Fig. 11.3, we see that Case (a) represents 
homoscedasticity, i.e., 𝑉(𝑢 ) = 𝜎  whereas in the remaining four cases viz., (b), 
(c), (d) and (e) represent heteroscedasticity, i.e., 𝑉(𝑢 ) = 𝜎 . 

11.4.2 Park-Test  

If there is heteroscedasticity in a data set, the heteroscedastic variance 𝜎 may be 
systematically related to one or more explanatory variables. Therefore, we can 
regress 𝜎 on one or more explanatory variables such as   

𝜎 = 𝑓(𝑋 )  

ln𝜎 = 𝛽 + 𝛽 ln𝑋 + 𝑣       … (11.5) 

In equation (11.5), a non-linear (double-log) regression is run to establish a 
relationship between the error variance and the explanatory variable with 𝑣  
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taken as the residual term. When 𝜎 are not known, we take the residual term 𝑒  
as proxies for 𝑢 . Therefore, we have 

ln 𝑒 = 𝛽 + 𝛽 ln𝑋 + 𝑣        … (11.6) 

Now, Park test for detecting heteroscedasticity involves the following steps:  

a) Run the original regression in equation (11.5) despite the 
heteroscedasticity problem. 

b) From the regression obtain ei and square them. Then take the logs of 2
ie . 

c) Run the double-log form regression as indicated in equation (11.6) using 
an explanatory variable in the original model (in the case of more than 
one explanatory variable). Then run the regression against each X 
variable. In other words, we run the regression against 𝑌 , the estimated 
value of 𝑌 . 

d) Test the null hypothesis 02  , i.e., there is no heteroscedasticity.  

e) A statistically significant relationship implies that the null hypothesis of 
no heteroscedasticity is rejected. It suggests the presence of 
heteroscedasticity which requires remedial measures.  

f) If the null hypothesis is not rejected, then it means we accept 02  and 

the value of 1 , that is, the value of the intercept can be accepted as the 

common, homoscedastic variance 𝜎 . 

11.4.3 Glejser Test 

The Glejser Test is similar to the Park Test. The steps to carry out the Glejser test 
are as follows:  

a) Obtain the residual ei from the original model. 

b) Take absolute value |𝑒 | of the residuals  

c) Regress the absolute values of |𝑒 | on the X variable that is expected to be 
closely associated with heteroscedastic variance 𝜎 .  

d) You can take various functional forms of 𝑋 . Some of the functional 
forms suggested by Glejser are  

 |𝑒 | = 𝛽 + 𝛽 𝑋 + 𝑣       … (11.7) 

|𝑒 | = 𝛽 + 𝛽 𝑋 + 𝑣       … (11.8) 

|𝑒 | = 𝛽 + 𝛽 + 𝑣       … (11.9) 

The above means that the Glejser test suggests various plausible (linear as 
well as non-linear) relationships between the residual term and the 
explanatory variable to investigate the presence of heteroscedasticity. 
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Heteroscedasticity e) For each of the cases given, test the null hypothesis that there is no 
heteroscedasticity, i.e., 𝐻 : 𝛽 = 0 (no heteroscedasticity).  

f) If H0 is rejected we conclude that there is evidence of heteroscedasticity. 

You should note that the error term 𝑣  can itself be heteroscedastic as well as 
serially correlated. Thus, in the case of Glesjer test also, we follow the same steps 
as in the Park Test. The difference between the two tests is in the functional 
forms to be considered. 

11.4.4 White’s General Test 

Let us consider the following PRF:  

𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + 𝑢       … (11.10) 

The steps to carry out White’s general test for heteroscedasticity are as follows:  

a) Estimate the population regression equation (11.10) by OLS and obtain 
the residuals 𝑒 . 

b) Find the square of the residuals 𝑒 . 

c) Run the following auxiliary regression:  

𝑒 = 𝐴 + 𝐴 𝑋 + 𝐴 𝑋 + 𝐴 𝑋 + 𝐴 𝑋 + 𝐴 𝑋 𝑋 + 𝑣  … (11.11)  

d) Obtain the coefficient of determination  R2 from the auxiliary regression 
under the null hypothesis that there is no heteroscedasticity (i.e., all the 
slope coefficient are zero). That is,  

𝐻 : 𝐴 = 𝐴 . . . 𝐴 = 0      … (11.12) 

The null hypothesis given at equation (11.12) implies that all the partial 
slope coefficients are simultaneously zero. Note that we do not include 
the intercept term 𝐴  in equation (11.12).  

e) Test the null hypothesis in equation (11.12) by using the chi-square 
distribution as follows: 

 𝑛𝑅 ~𝜒         … (11.13) 

Equation (11.13) tells us that the product of sample size (n) and the 

coefficient of determination (R2) follows 2 distribution with degrees of 

freedom (k–1). Here k is the number of regressors in the auxiliary 

regression (equation 11.11).  

f) If 𝜒  > 𝜒  we reject the  𝐻 , and conclude that the null 

hypothesis of homoscedasticity is to be rejected, i.e., there is 

heteroscedasticity. Alternatively, we can also decide on the basis of the p 

value (readily given by econometric softwares). If the p value is < 0.05, 

we reject H0. If 𝜒  < 𝜒  . On the other hand, if p > 0.05 we 

do not reject the null hypothesis of no heteroscedasticity. This implies the 

existence of homoscedasticity. 
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11.4.5 Goldfeld-Quandt Test  

The Goldfeld-Quandt (G-Q) test is applicable if heteroscedasticity is related to 
only one of the explanatory variables. Let us assume that the error variance 𝜎  is 
related to one of the explanatory variables (say, 𝑋 ) in the regression model. 

Suppose 𝜎  is positively related to 𝑋  as given below.  

𝜎 = 𝜎 𝑋         … (11.14) 

In order to carry out the G-Q test we proceed as follows:  

a) Arrange the observations in increasing order of 𝑋  

b) Omit some of the observations (say, C out of the no observations in the 
sample) in the middle of the series. There is no hard and fast rule for the 
exact value of C and the choice is quite arbitrary. In practice about one 
fourth observations are omitted. 

c) Run a regression on the first 𝑛 = (𝑛 − 𝐶)/2 observations. Find out the 
error sum of squares for this regression, i.e., ESS1. 

d) Run a regression on the last 𝑛 = (𝑛 − 𝐶)/2 observations. Find out the 
error sum of squares for this regression, i.e., ESS2. 

e) Take the following null hypothesis:  

 𝐻 : 𝜎 = 𝜎        ... (11.15) 

f) Find out the ratio: 

ʎ =            

In case 𝑛 = 𝑛 , the above ratio becomes 

ʎ =         … (11.6) 

The above ratio (ʎ ) follows F-distribution with degrees of freedom  

(  ,      )     … (11.17) 

g) We compare the value of ʎ obtained above with the tabulated value of F 
given at the end of the book. If 𝜆 > Fcritical we reject 𝐻 : 𝜎 = 𝜎 and 
conclude that there is heteroscedasticity in error variance. It implies  
𝜎 ≠ 𝜎 . If 𝜆 < Fcritical we do not reject H0. We conclude that there is 
homoscedasticity in error variance, i.e.,  𝜎 = 𝜎 . 
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Heteroscedasticity Check Your Progress 3 

1) State the steps in conducting the Park test for detection of heteroscedasticity. 

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... 

11.5 REMEDIAL MEASURES OF 
HETEROSCEDASTICITY  

Heteroscedasticity means that the OLS estimators are unbiased but no longer 
efficient; not even in large samples. Therefore, if heteroscedasticity is present, it 
is important to seek remedial measures. For proceeding with remedial measures, 

it is important to know if the true error variance 2
i  is known or not. In such 

cases, use of a ‘deflator’ may help rectify the problem of heteroscedasticity. We 
will learn about the use of deflators in this section.  

11.5.1 Case I: 𝜎  is Known 

If we know 𝜎 , we can use the method of Weighted Least Squares (WLS). We 
explain the procedure of carrying out WLS below.  

Let us consider the two-variable Population Regression Function (PRF).  

 𝑌 = 𝛽 + 𝛽 𝑋 + 𝑢        …(11.18) 

Let us assume that 𝑢  has heteroscedastic error variance. Here, since the true 
variance is known, we can use it to divide the equation (11.18) by 𝜎 . By dividing 
both sides of (11.18) by 𝜎 , we obtain: 

 = 𝛽 + 𝛽 +      … (11.19) 

Note that the error term gets transformed due to the division by 𝜎 . Let the new 
error term be vi. Squaring the new error term we get:  

 𝑣 =         …(11.20) 

Since the variance of error term is given by 𝑣𝑎𝑟(𝑣 ) = 𝐸(𝑣 ), taking the 
expectation of both sides of the equation (11.20) we get: 

 𝐸(𝑣 ) = 𝐸  

  = . 𝐸(𝑢 ) 

  = = 1      
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Thus, the transformed error-term 𝑣  is homoscedastic. Therefore, equation 
(11.19) can be estimated by the usual OLS method. The OLS estimators of 
𝛽  and 𝛽  thus obtained are called the Weighted Least Squares (WLS) 
estimators.  

11.5.2 Case II: 2
i  is Unknown  

When the error variance 2
i is not known, we need to make further assumptions 

to use the WLS method. Here, we consider the following two cases. 

 

(i) Error variance 𝝈𝒊
𝟐 is Proportional to 𝑋  

In this case, we follow what is called as the square root transformation. 

The proportionality assumption means that:  

 𝐸(𝑢 ) = 𝜎 𝑋   

 Or, 𝑉(𝑢 ) = 𝜎 𝑋       … (11.21) 

Now, the square root transformation requires that we divide both sides of 

equation (11.18) by  to get: 

 = 𝛽 + 𝛽 +   

 = 𝛽 + 𝛽 𝑋 + 𝑣      … (11.22) 
  

 where 𝑣 =         … (11.23) 

The error term in equation (11.23) is a transformed error term. In order to 

see whether 𝑣  is devoid of heteroscedasticity, we square both the sides of 

equation (11.23) to get: 

 𝑣 =        … (11.24) 

 Now, the variance of the transformed error term, i.e., equation (11.24) is: 

𝐸(𝑣 ) =
( )

=        ... (11.25) 

 = 𝜎 ⇒ homoscedasticity  

Thus, when we apply the square root transformation (𝑣 = ), we could 

make the error variance to become homoscedastic.  

(ii) Error Variance is Proportional to 𝑋  

Here, we have: 

𝐸(𝑢 ) = 𝜎𝑋         … (11.27) 
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Heteroscedasticity 𝑉(𝑢 ) = 𝜎𝑋   

Dividing both sides of equation (11.18) by 𝑋 , 

= 𝛽 + 𝛽 +   

 = 𝛽 + 𝛽 + 𝑣        … (11.28) 

Equation (11.28) is the transformed PRF in which the error term is: 

𝑣 = ,        … (11.29) 

Squaring both the sides of equation (11.29), we get:  

𝑣 =         … (11.30) 

The variance of the error term of the transformed equation in (11.30) is 
homoscedastic because: 

𝐸(𝑣 ) = = = 𝜎      … (11.31) 

11.5.3 Re-Specification of the Model 

Instead of speculating about 𝜎 , sometimes choosing a different functional form 
can reduce heteroscedasticity. For instance, instead of running the usual 
regression model, we can estimate the model in its log form.  

ln 𝑌 = 𝛽 + 𝛽 ln𝑋 + 𝑢        … (11.32) 

In many cases transforming original model as above will take care of the problem 
of heteroscedasticity. 

We used the word ‘deflator’ in the beginning of this section. The cases we have 
considered above basically involve dividing both sides of the original regression 
model by a known value to transform the variables. Such transformation of 
variables by division amounts to deflating the original values. The known values 
used to perform the division act are known as the ‘deflators’.  

Check Your Progress 4 

1)  How does the use of deflators work as a solution for the problem of 
heteroscedasticity? 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 



 

 

 

156 

Treatment of Violations 
of Assumptions 

2)  Explain how the usage of deflators serve to tackle the problem of 
heteroscedasticity when the error variance is proportional to 𝑋 . 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

11.6  LINEAR VERSUS LOG – LINEAR FORMS 

The regression model can be run in various functional forms depending upon: (i) 

the relationship of dependent and independent variable, and (ii) the data. Suppose 

there is a choice of running two types of regression models: (i) a linear regression 

model, and (ii) a log-linear model.  To help decide in such cases, a test for the 

selection of the appropriate functional form for regression is proposed by 

Mackinnon, White and Davidson (MWD). The MWD test is applied as follows:  

Let there be two distinct functional forms of a regression like: 

Model 1:  𝑌 = 𝛽 + 𝛽 𝑋 + 𝑢      …….(11.33) 

Model 2:  ln𝑌 = 𝛽 + 𝛽 𝑙𝑛𝑋 + 𝑢     …….(11.34) 

In Model 1, the dependent variable is linearly related to one (or more than one) of 

the Xs. In Model 2, the relationship between the dependent and independent 

variable is non-linear. The MWD test involves considering a null and an alternate 

hypothesis as follows: 

H0: Linear Model, i.e., Y is a linear function of regressors (equation (11.33)) 

H1: Log- Linear Model, i.e., ln Y is a linear function of 𝑙𝑛𝑋  (equation (11.34)) 

Following are the steps for carrying out the MWD test: 

(i) Estimate the linear model and obtain the estimated Y values. Let the 

estimated Y values be denoted as Yf . 

(ii) Estimate the log-linear model and obtain the estimated lnY values. 

Let the estimated values of the log-linear Y be denoted as lnYf. 

(iii) Obtain Z1 = (lnYf – Yf ) 

(iv) Regress Y on Xs and Z1 obtained in Step (iii) Reject H0 if the 

coefficient of Z1 is statistically significant by the usual t-test. 

(v) Obtain Z2 = (antilog lnYf – Yf ) 
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Heteroscedasticity (vi) Regress log of Y on the logs of Xs and Z2. Reject H1 if the 

coefficient of Z2 is statistically significant by the usual t-test.  

Suppose the linear model I in equation (11.33) is in fact the correct model. In that 

case, the constructed variable Z1 should not be statistically significant in Step 

(iv). For, in that case the estimated Y values from the linear model and those 

estimated from the log-linear model (after taking their antilog values for 

comparative purposes) in equation (11.34) should not be different. The same 

logic applies to the alternative hypothesis H1. 

Check Your Progress 5 

1) Outline the MWD test for choosing the appropriate functional form of the 
regression model between its linear and log-linear forms. 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

11.7 LET US SUM UP  

In this Unit, we have discussed the concept of heteroscedasticity in regression 
models. The unit outlines the consequences of the presence of heteroscedasticity 
and the methods of its detection. Various techniques to provide remedial 
measures are explained in the unit. The remedial measures involve understanding 
of the use of deflators. The unit has also explained a method for the choice of 
selecting the functional form by way of the MWD test. 

11.8 ANSWERS/ HINTS TO CHECK YOUR  

  PROGRESS EXERCISES  

Check Your Progress 1 

1)  A crucial assumption of the Classical Linear Regression Model CLRM is 
that the error term ui is population regression function (PRF) is 
homoscedastic, i.e., they have the same variance 2 . However, if the 
variance of 𝑢  is 𝜎  (in other words, it varies from one observation to 
another), then the situation is referred to as heteroscedasticity.  

2)   Heteroscedasticity is usually found is cross-sectional data and not in time 
series data.  This is because, in the case of cross-sectional data, the 
members of population are in the form of individual firms, industries, 
geographical division, state or countries. The data collected for such units 
at a point of time from the members of population may be of different 
sizes: small, medium or large firms. This is referred to as scale effect.  
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Treatment of Violations 
of Assumptions 

Due to the scale effect, in cross-sectional data, there is a greater chance of 
coming across heteroscedasticity in the error terms. 

Check Your Progress 2 

1)  The OLS estimators are unbiased but they no longer have minimum 
variance, i.e., they are no longer efficient. Even in large samples the OLS 
estimators are not efficient. Therefore, the OLS estimators are not BLUE 
in small as well as large samples (asymptotically). 

The usual formula for estimating the variances of OLS estimator are 
biased i.e. there is either upward bias (positive bias) or downward bias 
(negative bias).  

2)  The OLS estimator of error variance is a biased estimator. Thus it will 
either overestimate or underestimate. In fact, the OLS estimator of error 
variance is inefficient, thereby meaning that it is very high; thus it is 
always an overestimate.  

Check Your Progress 3 

1)  In the presence of heteroscedasticity, the heteroscedastic variance 2
i may 

be systematically related to one or more explanatory variables. Therefore, 
we can regress 2

i on one or more of X- variables as:  

 𝜎 = 𝑓(𝑋 ) or ln𝜎 = 𝛽 + 𝛽 ln𝑋 + 𝑣  

where 𝑣 = 𝑛𝑒𝑤 residual term. If 𝜎 are not known, estimated ie can be 

used as proxies for 𝑢 . A statistically significant relationship implies that 
the null hypothesis of no heteroscedasticity is rejected suggesting the 
presence of heteroscedasticity which requires remedial measures. If null 
hypothesis is not rejected then it means we accept 02  and value of 1
can be taken as the common, homoscedastic variance .2  

2)  Heteroscedasticity means that the OLS estimators are unbiased but 
estimators are no longer efficient, not even in large samples. This lack of 
efficiency makes the conventional hypothesis testing of OLS estimators 
unreliable. For remedial measures, it is important to know whether the 
true error variance 2

i  is known or not. In such cases, use of deflators will 

help rectify the problem of heteroscedasticity. Various deflators can be 
used to convert the error variance ti make them homoscedastic.  

When 2
i is known, the method of Weighted Least Squares (WLS) can be 

considered. In this, the error variance 2
i is used to divide both sides of the 

equation by i . See Section 11.5 for details.   

3)  The estimated residuals show a pattern similar to earlier case I, but error 
variance is not linearly related to X but increases proportional to square of 
X. Hence, 𝐸(𝑢 ) = 𝜎𝑋  and 𝑉(𝑢 ) = 𝜎𝑋 . Dividing both sides by 𝑋 , we 
get:  

= 𝛽 + 𝛽 +   

 = 𝛽 + 𝛽 + 𝑣  
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Heteroscedasticity 
𝑣 = , 𝑣 =   

𝐸(𝑣 ) = = = 𝜎  

Thus, the transformed equation is homoscedastic. 

Check Your Progress 5 

1)  The test for selection of the appropriate functional form for regression as 
proposed by Mackinnon, White and Davidson is known as MWD Test. The 
MWD test is used to choose between the two models. See Section 11.6 for 
details.   



UNIT 12 AUTOCORRELATION  

Structure  

12.0  Objectives 

12.2  Concept of Autocorrelation 

12.3 Reasons for Autocorrelation 

12.4  Consequences of Autocorrelation 

12.5  Detection of Autocorrelation 

 12.5.1 Graphical Method 

 12.5.2 Durbin-Watson Test 

 12.5.3 The Breusch-Godfrey (BG) Test  

12.6  Remedial Measures for Autocorrelation 

 12.6.1 Known Autoregressive Scheme: Cochrane-Orcutt Transformation  

 12.6.2 Unknown Autoregressive Scheme 

 12.6.3 Iterative Procedure 

12.7  Autocorrelation in Models with Lags 

12.8  Let Us Sum Up 

12.9  Answers/ Hints to Check Your Progress Exercises 

12.0  OBJECTIVES 

After going through this unit, you should be able to: 

 outline the concept of autocorrelation in a regression model; 

 describe the consequences of presence of autocorrelation in the regression 
model; 

 explain the methods of detection of autocorrelation; 

 discuss the procedure of carrying out the Durbin-Watson test for detection of 
autocorrelation; 

 elucidate the remedial measures for resolving autocorrelation; and 

 outline the procedure of dealing with situations where autocorrelation exists 
in models with a lagged dependent variable.  

12.1  INTRODUCTION  

In the previous unit, you studied about heteroscedasticity. You saw that 
heteroscedasticity is a violation of one of the assumptions of the Classical Linear 
Regression Model (CLRM), viz., homoscedasticity. If the variance of the error 
term is not constant across all observations, then we have the problem of 
heteroscedasticity. In this unit, we discuss about the violation of another 
assumption of the CLRM. Recall that one of the assumptions about the error 
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Autocorrelation terms is that the error term of one observation is not correlated with the error 
term of another observation. If they are correlated, then the situation is said to be 
one of autocorrelation. This is also called as the problem of serial correlation. 
This can be present in both cross-section as well as time series data. Let us 
discuss the concept of autocorrelation in a little more detail. 

12.2  CONCEPT OF AUTOCORRELATION 

The classical linear regression model (CLRM) assumes that the correlation 
among various error terms is zero. We know that heteroscedasticity is associated 
more with cross sectional data.  Autocorrelation is usually more associated with 
time series data. Of course, autocorrelation can be present even in cross-section 
data. Some authors use the term autocorrelation only for time-series data. They 
use the term ‘serial correlation’ for describing autocorrelation in cross-section 
data. Many authors use the terms autocorrelation and serial correlation as 
synonyms. They use the term across both cross-section as well as time-series 
data. 

Autocorrelation occurring in cross-sectional data is also sometimes called spatial 
correlation (correlation in space rather than in time). In CLRM we assume that 
there is no autocorrelation. This implies: 

𝐸 𝑢 , 𝑢 = 0  𝑖 ≠ 𝑗      …(12.1) 

Equation (12.1) means that the stochastic error term associated with one 
observation is not related to or influenced by the disturbance term associated with 
any other observation. For instance, the labour strike in one quarter affecting 
output may not affect the output in the next quarter. This implies there is no 
autocorrelation in the time series. Similarly, in a cross-section data of family 
consumption expenditure, the increase in one family’s income on consumption 
expenditure in not expected to affect the consumption expenditure of another 
family. In the example of output affected due to labour strike above, if 
𝐸 𝑢 , 𝑢 ≠ 0, 𝑖 ≠ 𝑗, this implies a situation of autocorrelation. This means the 

disruption caused by the strike in one quarter is affecting the output in the next 
quarter. Similarly, increase in consumption expenditure of one family may 
influence the consumption expenditure of other families in the neighbourhood 
due to the ‘demonstration effect’ (cross-sectional data). It is thus more a case of 
spatial correlation. It is therefore important to analyse the data carefully to bring 
out what exactly is causing the correlation among the disturbance terms.  Let us 
see more carefully the different situations or cases of autocorrelation as depicted 
in Fig.12.1.  In panels (a) to (d) of Fig. 12.1 we find distinct pattern among 𝑢  . In 
panel (e) of Fig. 12.1 we do not see any such pattern. Note that since 
autocorrelation is seen mostly in time series data, we use the subscript ‘t’ in place 
of ‘i’ to indicate individual observations. Let us now study the reasons of 
autocorrelation with some specific examples from economics.  
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Treatment of Violations of 
Assumptions 

Fig. 12.1: Cases of Autocorrelation 

 

12.3 REASONS FOR AUTOCORRELATION 

The various reasons for the presence of autocorrelation can be discussed under 
the following broad heads.  

(a) Inertia or Sluggishness 

Most of the economic time series data displays inertia or sluggishness. For 
instance, gross domestic product (GDP), production, employment, money supply, 
etc. reflect recurring and self-sustaining fluctuations in economic activity. When 
an economy is recovering from recession, most of the time series will be moving 
upwards. This means any subsequent value of a series at one point of time is 
always greater than its previous time value.  
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Autocorrelation Such a momentum continuous till it slows down due to, say, a factor like increase 

in taxes or interest or both. Hence, in regressions involving time series data, 

successive observations would generally be inter-dependent or correlated. Such 

an uptick effect is termed as ‘inertia’ which literally means a situation that 

continues to hold in a similar manner for many successive time periods.  We see 

its opposite effect in periods of recession when most of the economic activity will 

be suffering, i.e., will be sluggish. 

(b) Specification Error in the Model 

By an incorrect specification of model, certain important variables that should be 

included in the model may not be included (i.e. a case of under-specification). If 

such model-misspecification occurs, the residuals from such an incorrect model 

will exhibit systematic pattern. If the residuals show a distinct pattern, it gives 

rise to serial correlation.  

(c) The Cobweb Phenomenon 

Many agricultural commodities reflect what is called as a ‘cobweb phenomenon’. 

In this, supply reacts to price with a lag of time. This is mainly because supply 

decisions take time to implement. In other words, there is a gestation period 

involved. For instance, farmers’ decision to plant crop might depend on the 

prices prevailing in the previous year’s supply position or function. This can be 

written as: 

 𝑆 = 𝛽 + 𝛽 𝑃 + 𝑢      … (12.2) 

In (12.2), the error term 𝑢  may not be purely random. This is because, if the 

farmers over-produce in year t, they are likely to under-produce in year (t + 1) 

since they want to clear away the unsold stock. This usually leads to a cobweb 

pattern. 

(d) Data Smoothing 

Sometimes we need to average the data presented. Considering averages implies 

‘data smoothing’(see Unit 5 of BECC 109 for an example).  We may prefer to 

convert monthly data into quarterly data by averaging the data over every three 

months. However, this smoothness, desired in many contexts, may itself lead to a 

systematic pattern in disturbances, resulting in autocorrelation.  

Autocorrelation may be positive or negative depending on the data. Generally, 

economic data exhibits positive autocorrelation. This is because most of them 

either move upwards or downwards over time. Such a trend continues at least for 

some time i.e. some months, or quarters. This means, they are not generally 

expected to exhibit a sudden upward or downward movement unless there is a 

reason or a shock.  
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Treatment of Violations of 
Assumptions 12.4 CONSEQUENCES OF AUTOCORRELATION 

When the assumption of no-autocorrelation is violated, the estimators of the 
regression model based on sample data suffers from certain consequences. More 
specifically, the OLS estimators will suffer from the following consequences.  

a) The least squares estimators are still linear and unbiased. In other words, 
the estimated values of parameters continue to be unbiased. However, 
they are not efficient because they do not have minimum variance. 
Therefore, the usual OLS estimators are not BLUE (best linear unbiased 
estimators). 

b) The estimated variances of OLS estimators (𝑏  and 𝑏 ) are biased. 
Hence, the usual formula used to estimate the variances, and their 
standard errors underestimate the true variances and standard errors. 
Consequently, the decision of rejecting a parameter on the basis of t-
values, concluding that a particular coefficient is statistically different 
from zero, would be an incorrect conclusion. In other words, the usual t 
and F tests become unreliable. 

 

Fig. 12.2: Patterns of the Error Term in Autocorrelation 

a) As a direct consequence of the above, the usual formula for estimating the 
population error variance, viz.,  df/RSSˆ 2   yields a biased estimator 
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Autocorrelation of true 2 . In particular, it underestimates the true 2 . As a consequence, 

the computed 𝑅  becomes an unreliable measure of true 𝑅 . 

Fig. 12.2 shows the pattern of error terms under different situations of 
autocorrelation. Note that since the population error terms (𝑢 ) are not known, we 
are plotting the sample residuals (𝑒 ).  

Check Your Progress 1 [Answer the questions in 50-100 words within the space 
given] 

1) What is meant by autocorrelation in a regression model? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

2) In which type of data the problem of autocorrelation is more common? 
Why? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

3) State the broad reasons for autocorrelation. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

4) Enumerate the consequences of autocorrelation. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 
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Treatment of Violations of 
Assumptions 12.5  DETECTION OF AUTOCORRELATION 

There are many methods of detecting the presence of autocorrelation. Let us 
discuss them now. 

12.5.1 Graphical Method  

A visual examination of OLS residuals 𝑒  quite often conveys the presence of 
autocorrelation among the error terms 𝑢 . Such a graphical presentation (Fig. 
12.3) is known as the ‘time sequence plot’.  The first part of this figure does not 
show any clear pattern in the movement of the error terms. This means there is an 
absence of autocorrelation.  In the lower part of Fig. 12.3, you will notice that the 
correlation between the two residual terms is first negative and then becomes 
positive.   Therefore, plotting the sample residuals gives us the first indication on 
the presence or absence of autocorrelation. 

 

Fig. 12.3: Graphical Method for Detection of Autocorrelation 

12.5.2 Durbin-Watson Test 

The Durbin-Watson test, or the DW test as it is popularly called, is an analytical 
method of detecting the presence of autocorrelation. Its statistic is given by:  

𝑑 =
( )

        … (12.3) 

Equation (12.3) defines the d-statistic suggested by Durbin-Watson as the ratio of 
the sum of squared differences in the successive residuals to the residual sum of 
squares. For computing the d-statistic, we take the sample size to be (n–1) since 
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Autocorrelation one observation is lost in taking the successive differences. There are certain 
assumptions underlying the d-statistic. These are: 

(a) The regression model includes an intercept term. Therefore, this method 
cannot be used to determine autocorrelation in regression models 
without the intercept term (i.e. regression equation which passes through 
the origin).  

(b) The X variables are non-stochastic, i.e., their values are fixed in repeated 
samples.  

(c) The error term evolves as follows :  

 𝑢 = 𝜌𝑢 + 𝑣 ,  −1 ≤ 𝜌 ≤ 1   … (12.4) 

 Equation (12.4) states that the value of error term at time period t is 
dependent on the value of the error term in time-period (t–1) and a 
purely random term 𝑣 . The extent of dependence on past value is 
measured by 𝜌 which lies between –1 and 1. 

 The regression model given in equation (12.4) is referred to as the first-
order auto-regression scheme. It is denoted by AR(1). The usage of the 
term ‘autoregressive’ implies that the error term 𝑢  is regressed on its 
own lagged value of one period, i.e., 𝑢 . It is therefore called the first-
order autoregressive scheme. If we include 2 lagged values (i. e. , 𝑢  
and 𝑢 ) then we have the AR(2) scheme. Likewise, when we extend 
the number of lagged values to ‘p’, we have the AR(p) scheme.  

(d) The regression model does not contain any lagged value of the 
dependent variable as one of the explanatory variables. In other words, 
the test is not applicable to models like:  

  𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑌 + 𝑢    … (12.5) 

 where 𝑌  is the one-period lagged-value of the dependent variable Y. 
Models of the above type are known as auto-regressive (AR) models. 
For such cases, the d-statistic cannot be used.  

We can estimate 𝜌 from equation (12.4) as follows: 

 𝜌 =
∑

  

[Recall that the estimator of 𝑏  in the two variable regression model is 𝑏 = . 

We apply the same logic to derive 𝜌 above]  

We can expand equation (12.3) to obtain  

𝑑 =
∑ ∑ ∑

∑
  

The above can be approximated to  

𝑑 ≈ 2 1 −
∑
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Treatment of Violations of 
Assumptions 

We can take an approximate value of d as: 

 𝑑 ≈ 2(1 − 𝜌)        … (12.6) 

where the symbol denotes ‘approximately’. In equation (12.6), 𝜌 is an 
estimator of the first order autocorrelation scheme. Table 12.1 presents the value 
of the d-statistic for different values of 𝜌. 

From Table 12.1 we find that 0 ≤ 𝑑 ≤ 4. The Durbin-Watson statistic thus 
provides a lower limit dL and an upper limit dU. The computed value of d is 

therefore a value between 0 and 4. From such a value, we can infer on the nature 
of autocorrelation as follows: 

a) If d is closer to 0, there is evidence of positive autocorrelation.  

b) If d is closer to 2, there is evidence of no autocorrelation. 

c) If d is closer to 4, there is evidence of negative autocorrelation.  

Table 12.1: Value of d-Statistic according to 𝝆  

Value of 𝜌 Implication Value of d-statistic 

𝜌 = −1 Perfect negative autocorrelation 4 

𝜌 = 0 No autocorrelation 2 

𝜌 = 1 Perfect positive autocorrelation  0 

 The steps in applying the DW test are therefore the following: 

1. Run the OLS regression and obtain the residuals 𝑒 . 

2. Compute d  as:  

𝑑 =
( )

       

3. Find out the critical Table values 𝑑  and 𝑑  for given sample size and 
given number of explanatory variables.  

Follow the decision rule, as depicted in Fig. 12.4. 

 

Fig. 12.4: Range of Values of Durbin-Watson Statistic 
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Autocorrelation One drawback of the d-test is that it has two zones of indecision viz. dL < d < dU 

and (4  – dU < d < 4  – dL ). 

12.5.3 The Breusch-Godfrey (BG) Test  

To avoid the pitfalls of the Durbin Watson d-test, Breusch and Godfrey have 

proposed a test criterion for autocorrelation that is general in nature. This is in the 

sense that:  

(a) It can handle non-stochastic regressors as well as the lagged values of Yt ; 

(b) It can deal with higher-order autoregressive schemes such as AR(2), 

AR(3) … etc. 

(c) It can also handle simple or higher order moving averages. 

The BG-Test is also referred to as the LM (Lagrange Multiplier) Test (see Unit 

8). Let us now consider a two-variable regression model to see how the BG test 

works.   

𝑌 = 𝛽 + 𝛽 𝑋 + 𝑢        … (12.7) 

where ut follows a 𝑃 order auto regressive scheme AR(P) like:  

𝑢 = 𝜌 𝑢 + 𝜌 𝑢 +. . . +𝜌 𝑢 + 𝑣     … (12.8) 

where 𝑣  is the white noise or the stochastic error term. We wish to test: 

𝐻 : 𝜌 = 𝜌 =. . . 𝜌 = 0      … (12.9) 

The null hypothesis says that there is no autocorrelation of any order. Now, the 

BG test involves the following steps: 

(a) Estimate the model 𝑌 = 𝛽 + 𝛽 𝑋 + 𝑢  by OLS method and obtain the 

residuals et. 

(b) Regress the residuals et on the p-lagged values of estimated residuals 

obtained in step (a) above, i.e., e(t -1), e(t – 2), ......., e(t – p) [as in equation 

(12.8)]. Here we take the residual et which are estimate of the error 𝑢 , as 

the error term is not known.  

(c) Obtain R2 from the auxiliary regression (12.8) in the step (b) above. 

(d) Now, for large samples, the Breusch and Godfrey test statistic is 

computed as:  

(𝑛 − 𝑝)𝑅 ~𝜒       … (12.10) 

It is called LM test, as it has a similar form to the LM test described in Unit 8. 

The BG test statistic follows chi-squares distribution with p degrees of freedom 

where p is the number of regressors in the auxiliary regression (equation (12.8)). 
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Treatment of Violations of 
Assumptions 

We draw inferences from the BG test as follows: 

(i) If (𝑛 − 𝑝)𝑅 > 𝜒 , we reject H0 and conclude that at least one  is 

statistically different from zero, i.e., there exists autocorrelation.  

(ii) If (𝑛 − 𝑝)𝑅 < 𝜒 , we do not reject H0 and conclude that there 
exists no autocorrelation.  

Check Your Progress 2 [Answer the questions in 50-100 words within the space 
given] 

1) State the methods of detecting autocorrelation. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

2) Specify the test statistic applied in the DW test. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

3) State the assumptions under which the DW test is valid. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

4) Point out the limitations of the DW test. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 
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Autocorrelation 5) In what ways the BG test for autocorrelation is an improvement over the 
DW test? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

12.6 REMEDIAL MEASURES FOR 
AUTOCORRELATION 

To suggest remedial measures for autocorrelation, we assume the nature of inter-
dependence in the error term 𝑢  in a regression model like: 

𝑌 = 𝛽 + 𝛽 𝑋 + 𝑢       … (12.11)  

 and that the error term is following an AR (1) scheme like: 

𝑢 = 𝜌𝑢 + 𝑣                 −1 ≤ 𝜌 ≤ 1    … (12.12) 

 where 𝑣  is assumed to follow the OLS assumptions. We first consider the case 
where 𝜌 is known. Here, transforming the model in a certain manner (called as 
the Cochrane Orcutt procedure) will reduce the equation to an OLS compatible 
model. When 𝜌 is not known, we need some simple approaches which help us in 
overcoming the situation of autocorrelation. Let us study these approaches now. 

12.6.1 Autoregressive Scheme is Known: Cochrane-Orcutt Transformation  

Suppose we know the value of 𝜌. This helps us to transform the regression model 
given at (12.11) in a manner that the error term becomes free from 
autocorrelation. Subsequently, we apply the OLS method to the transformed 
model. For this, we consider a one-period lag in (12.11) as:  

𝑌 = 𝛽 + 𝛽 𝑋 + 𝑢      … (12.13) 

Let us multiply equation (12.13) on both the sides by 𝜌. We obtain: 

𝜌𝑌 = 𝜌𝛽 + 𝜌𝛽 𝑋 + 𝜌𝑢     … (12.14) 

Let us now subtract equation (12.14) from equation (12.11) to obtain:  

(𝑌 − 𝜌𝑌 ) = 𝛽 (1 − 𝜌) + 𝛽 (𝑋 − 𝜌𝑋 ) + 𝑣    … (12.15) 

Note that we have used 𝑣  for the new disturbance term above. Let us now 
denote:  

𝑌∗ = (𝑌 − 𝜌𝑌 )  

𝑋∗ = (𝑋 − 𝜌𝑋 )  

 𝛽∗ = 𝛽 (1 − 𝜌) 
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Treatment of Violations of 
Assumptions 

The transformed model will be 

𝑌∗ = 𝛽∗ + 𝛽 𝑋∗ + 𝑣         … (12.16) 

Now, the transformed variables 𝑌𝑡∗and 𝑋𝑡∗will have the desirable BLUE 
property. The estimators obtained by applying the OLS method to (12.16) are 
called the Generalized Least Squares (GLS) estimators. The transformation as 
suggested above is known as the Cochrane-Orcutt transformation procedure. 

12.6.2 Autoregressive Scheme is not Known 

Suppose we do not know 𝜌. Thus, we need methods for estimating 𝜌. We first 
consider the case where 𝜌 = 1. This amounts to assuming that the error terms are 
perfectly positively autocorrected. This case is called as the First Difference 
Method. If this assumption holds, a generalized difference equation can be 
considered by taking the difference between (12.11) and its first order 
autoregressive schemes as:  

𝑌 − 𝑌 = 𝛽 (𝑋 − 𝑋 ) + 𝑣       … (12.17) 

i.e., 𝛥𝑌 = 𝛽 𝛥𝑋 + 𝑣        … (12.18) 

where the symbol 𝛥 (read as delta) is the first difference operator. Note that the 
difference model (12.17) has no intercept. If 𝜌 is not known, then we can 
estimate 𝜌 by the following two methods. 

(i) Durbin Watson Method  

 From equation (12.6) we see that d-statistic and 𝜌 are related. We can this 
relationship to estimate 𝜌. The d-statistic and 𝜌 are related as:  

𝜌 ≈ 1 −          … (12.19)  

 If the value of d is known, then 𝜌 can be estimated from the d-statistic.  

((ii) 𝐓he OLS Residuals (𝒆𝒕) Method 

Here, we consider the first order autoregression scheme as in (12.12), i.e., 

𝑢 = 𝜌𝑢 + 𝑣 . Since 𝑢  is not directly observable, we use its sample 
counterpart 𝑒  and run the following regression:  

𝑒 = 𝜌𝑒 + 𝑣         … (12.20) 

Note that 𝜌 is an estimator of 𝜌. In small samples, 𝜌 is a biased estimator of 𝜌. As 
sample size increases, the bias disappears.  

12.6.3 Iterative Procedure 

This is also called as the Cochrane-Orcutt iterative procedure. We consider the 
two variable model with the AR(1) scheme for autocorrelation as discussed 
earlier. That is, we consider: 𝑌 = 𝛽 + 𝛽 𝑋 + 𝑢  where 𝑢 = 𝜌𝑢 + 𝑣  with 
−1 ≤ 𝜌 ≤ 1. We have taken only one explanatory variable for simplicity but we 
can have more than one explanatory variable too. The iterative procedure 
suggested by Cochrane-Orcutt has the following steps: 
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Autocorrelation (i) Estimate the equation 𝑢 = 𝜌𝑢 + 𝑣  by the usual OLS method. 

(ii) From the above, obtain the residuals 𝑒 .  

(iii) Using the residuals 𝑒 , run the regression 𝑒 = 𝜌 𝑒 + 𝑣  and obtain 𝜌.  

(iv)  Use 𝜌 obtained in (iii) above to multiply the equation 𝑢 = 𝜌𝑢 + 𝑣 .  

(v) Now, obtain the generalized difference equation as: 

𝑌∗ = 𝛽∗ + 𝛽 𝑋∗ + 𝑒  where, 𝑌∗ = 𝑌 − 𝑌 , 𝑋∗ = 𝑋 − 𝜌𝑋  and  

 𝛽∗ = 𝛽 (1 − 𝜌) 

(vi) We are not sure that 𝜌 estimated in (iii) above is the best estimate of 𝜌. 
Therefore, we repeat the steps (ii) and (iii) to obtain the new residuals 
𝑒∗.  

(vii) Now estimate the regression 𝑒∗ = 𝜌𝑒∗ + 𝑤 to obtain the new estimate 
of 𝜌. 

We thus obtain the second-round estimate of 𝜌. Since we are not sure if the 
second round estimate of  is the best, we go for the third round estimate and 

so on. We repeat the same steps again and again. Due to this repetitive steps 
followed, this procedure, suggested by Cochrane-Orcutt, is called the ‘iterative 
procedure’. We stop the iteration when the successive estimates of  differ by 

a small amount (less than 0.01 or 0.005). 

12.7  LAGGED DEPENDENT VARIABLE 

The Durbin-Watson method is not applicable when the regression model includes 
lagged value of the dependent variable as one of the explanatory variables. In 
such models, the h-statistic suggested by Durbin is used to identify the presence 
of autocorrelation in the regression model. Let us consider the regression model 
as:  

𝑌 =  𝛽 + 𝛽 𝑋 + 𝛽 𝑌 + 𝑣       … (12.21) 

In equation (12.21), we have two explanatory variables: 𝑋  and 𝑌  with 𝑌  as 
a lagged dependent variable (with one-period lag). For equation (12.21) the d-
statistic is not applicable to detect autocorrelation. For such models, Durbin 
suggests replacing the d-statistic by the h-statistic taken as: 

 ℎ ≈ 𝜌 =
 ( )

       … (12.22) 

where, n = sample size, 𝜌 = the estimator of the autocorrelation coefficient, and 

𝑣𝑎𝑟(𝑏 ) = variance of estimator of 𝛽 , the lagged dependent variable in (12.21).   

The null hypothesis is  𝐻 : 𝜌 = 0. Durbin has shown that for large samples the h-
statistic is distributed as h~𝑁(0,1). For normal distribution, we know that the 
critical value at 5 per cent level of significance is 1.96 and at 1 per cent level of 
significance it is 2.58.  Using this information, we can draw inference from 
equation (12.22) as follows:  
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Treatment of Violations of 
Assumptions 

(i) If the computed value of h is greater than the critical value of h, we reject 
H0. We interpret the result as existence of no autocorrelation.  

(ii) If the computed value of h is less than the critical value of h, we do not 
reject H0. We interpret the result as existence of autocorrelation.  

Check Your Progress 3 [Answer the questions in 50-100 words within the space 
given] 

1) Outline the transformation procedure suggested by Cochrane-Orcutt to 
resolve the problem of autocorrelation. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

2) State how the iterative procedure of Cochrane-Orcutt is applied in the 
case of autocorrelation in a dataset. Why is it called iterative procedure? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

3) What is the advantage of using the h-statistic in regression model having 
autocorrelation problem? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

11.8 LET US SUM UP  

The unit has discussed the concept of autocorrelation in regression models. The 
consequences of the presence of autocorrelation, its detection and techniques that 
provide remedial measures for such situations have been explained. The unit also 
discusses the case of autocorrelation in regression models with lagged dependent 
variables.  
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Autocorrelation 11.9  ANSWERS/ HINTS TO CHECK YOUR 
PORGRESS EXERCISES  

Check Your Progress 1 

1) Autocorrelation refers to the presence of correlation between the error terms 
of any two observations. This means if Ui and Uj are the error terms, then 
Corr (Ui, Uj) ≠ 0 for i ≠ j. In the CLRM, one of our assumptions is that the 
Corr (Ui, Uj) = 0. This means the two error terms are not correlated. 
Violation of this assumptions is a situation of autocorrelation. 

2) The problem of autocorrelation is more common in time series data. This is 
because a phenomena affecting the error term in one point of time is more 
likely to be influencing the error term in the next point of time. This is 
especially identified as the factor of ‘inertia or sluggishness’. Across units of 
cross section this is less likely. But it cannot be ruled out even in cross 
section data. In such cases, due to the spatial effect in cross section data, 
which is more like a demonstration effect, it is distinctly termed as spatial 
correlation.  

3) Inertia or sluggishness, specification error in the model, cobweb phenomenon 
and data smoothening. 

4) The consequences are: (i) least squares estimators are not efficient, (ii) the 
estimated variances of OLS estimates are biased, (iii) the standard error of 
true variances are underestimated, (iv) we are more likely to commit an error 
in deciding on the hypothesis of ‘no statistical significance’ of a particular 
estimated coefficient i.e. the decisions based on t and F tests would be 
unreliable, (v) estimated error variance would be biased and (vi) the value of 
R2 would be misleading or unreliable. 

Check Your Progress 2 

1) Time sequence plotting (graphical method), Durbin-Watson test and Breusch-
Godfrey (BG) Test.  

 

2) 𝒅 =
(𝒆𝒕 𝒆𝒕 𝟏)𝟐

𝒏

𝒕 𝟐

𝒆𝒕
𝟐

𝒏

𝒕 𝟏

. It is the ratio of the sum of the squared differences in the 

successive residuals to the residual sum of squares. 

3) The regression model includes an intercept term, the X variables are non-
stochastic, the error term follows the following mechanism 𝑢 = 𝜌𝑢 + 𝑣 , 
−1 ≤ 𝜌 ≤ 1, and the regression does not contain any lagged values of the 
dependent variable as one of the explanatory variables.  

4) The one drawback of the d-test is that it has two zones of indecision, viz., dL 
< d < dU and (4 – dU < d < 4 – dL ). 
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Treatment of Violations of 
Assumptions 

5) (i) It can handle non-stochastic regressors as well as the lagged values of Yt , 
(ii) it can deal with higher-order autoregressive schemes such as AR(2)… etc. 
and (iii) it can also handle simple or higher order moving averages. 

Check Your Progress 3 

1) In this method we lag the regression equation by one period; multiply it by 𝝆; 
and subtract it from the original regression equation. This gives us a 
transformed regression model. When estimated by OLS method, the 
estimators of the transformed model are BLUE.  

2) In Sub-Section 12.6.3 we have outlined steps of the Cochrane-Orcutt iterative 
procedure. You should go through it and answer.   

3) The h-statistic can be used in regression models having lagged dependent 
variables as explanatory variables.  

 


