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13.0 OBJECTIVES 

After going through this unit, you will be able to 

 appreciate the importance of correct specification of an econometric 
model; 

 identify the important issues in specification of econometric models; 

 find out the consequences of including an irrelevant variable; 

 find out the consequences of excluding a relevant variable; and 

 find out the impact of measurement errors in dependent and independent 
variables. 

13.1 INTRODUCTION 

In the previous Units of the course we have discussed about various econometric 

tools. We began with the classical two variable regression model. Later on, we 

extended it to the classical multiple regression model. The steps of carrying out 

the ordinary least squares (OLS) method were discussed in details. Recall that the 
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classical regression model is based on certain assumptions. When these 

assumptions are met, the OLS estimators are the best linear unbiased estimators 

(BLUE). When these assumptions are violated the OLS estimators are not BLUE 

– they lose some of their desirable properties. Therefore, when some of the 

classical assumptions are not fulfilled, we have to adopt some other estimation 

method.  

Thus far our objective has been to explain how various estimation methods are 

applied. Now let us look into certain other important issues regarding 

specification of econometric models. 

13.2  ISSUES IN SPECIFICATION OF 
ECONOMETRIC MODEL 

A model refers to a simplified version of reality. It allows us to explain, analyse 

and predict economic behavior. An economic model can be for a microeconomic 

agent such as household or firm. In macroeconomics, it represents the behavior 

of the economy as a whole. In economic models we identify relevant economic 

variables (such as income, output, expenditure, investment, saving, exports, etc.) 

and establish relationship among them. The relationships among these variables 

may be expressed through diagrams or mathematical equations. There could be 

economic models without mathematical expressions, but such models may not be 

precise.  

Recall from Unit 1 of this course that there are eight steps to be followed in an 

econometric study. The first three steps are as follows: 

(i) Construction of a statement of theory or hypothesis 

(ii) Specification of mathematical model of the theory 

(iii) Specification of econometric model 

Based on economic theory or logic we construct the hypothesis. We specify the 
hypothesis in mathematical terms. Further, we add a stochastic error term (𝑢 ) to 
transform it into an econometric model. We decide on the estimation method 
(such as OLS, GLS, maximum likelihood, etc.) subsequently.  

13.2.1 Model Specification 

While building an econometric model we first consider the logic or theory behind 
the model. The empirical or methodological considerations come later. The 
accuracy of the estimated parameters and the inferences drawn from the model 
depend upon the correct specification of the model. 

An econometric model comprises a dependant variable, independent variable(s) 
and the error term. The dependant variable should be logically explained by the 
independent variables. Next is the functional form of the regression model, which 
should be specified correctly.  
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Let me illustrate the point through an example. In the case of a firm, we assume 

that there are two factors of production, viz., capital and labour. We club all types 

of labour into a homogeneous category – we do not distinguish between a 

manager and a worker in the field! Thus you should remember that we ignore the 

details and concentrate on the major issues in a model. Secondly, we assume that 

the production function takes a particular form, say Cobb-Douglas. But, 

remember that it is just an assumption! The production function in reality could 

be of some other form. Thus we have to logically explain the functional form 

(regression equation) of the model.  

Regression analysis derives its robustness from the assumption that the 

econometric model under study is correctly specified. In Unit 4 of this course we 

specified the assumptions such that the econometric model must bring efficient 

estimates of the parameters in the model. Ordinary Least Squares (OLS) method 

is based on the assumption that regression model is correctly specified. Correct 

specification has three important elements: 

a) all the necessary independent variables are included in the model, 

b) no redundant variable IS included in the model, and  

c) the model is specified using the correct functional form. 

13.2.2 Violation of Basic Assumptions 

An economic model is based on certain assumptions. Recall that we made the 
following assumptions regarding the multiple regression model (see Unit 7): 

a) The regression model is linear in parameters 

b) 𝐸(𝑋 𝑢 ) = 0 (regressor is non-stochastic)  

c) 𝐸(𝑢 ) = 0  

d) 𝐸(𝑢 ) = 𝜎  

e) 𝐸 𝑢 𝑢 = 0 for 𝑖 ≠ 𝑗 

f) The explanatory variables (𝑋 ) are independent of one another. 

Let us look into the implications of the above assumptions. Assumption (a) says 
that the regression model is linear in parameters. Standard regression model 
usually takes the following form  

𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + 𝑢       … (13.1) 

Equation (13.1) is linear in parameters (there are no such terms as 𝛽 , for 
example) and linear in variables. Examples of non-linear regression models are 
logarithmic functions, logistic functions, trigonometric functions, exponential 
functions, etc. For estimation of non-linear models, the OLS method cannot be 
applied.  
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Assumption (b) says that 𝑋  and 𝑢  are independent. Thus if we take the 𝑋  values 
randomly, the joint probability of both that 𝑋  and 𝑢  will not be zero. In order to 
avoid this problem we assume that 𝑋  is non-stochastic. All explanatory variables 
are fixed in repeated sampling.  

Assumption (c) says that the mean of the error term (𝑢 ) is zero. There could be 
errors in individual observations; on the whole these errors cancel out. If 
𝐸(𝑢 ) ≠ 0, OLS estimator of the intercept term (𝛽 ) will be biased. Estimators of 
the slope parameters 𝛽  and 𝛽  will remain unbiased. For example, suppose 
𝐸(𝑢 ) = 3. In that case 𝐸(𝑌 ) will be  

𝐸(𝑌 ) = 𝐸(𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + 𝑢 ) 

Remember that 𝛽  are parameters of the model. They are constants. We have 
assumed 𝑋   to be fixed across samples. Thus  

𝐸(𝑌 ) = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + 𝐸(𝑢 )    … (13.2) 

If 𝐸(𝑢 ) = 3, we can say that 

𝐸(𝑌 ) = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + 3 

Thus the intercept term will be  (𝛽 + 3). Remember that if assumption (d) is 
violated we have the problem of heteroscedasticity, which is discussed in Unit 
11. If assumption (e) is violated we have the problem of autocorrelation, that we 
have discussed in Unit 12. In case the assumption (f) is violated we have the 
problem of multicollinearity (see Unit 10). 

Check Your Progress 1 

1) List the assumptions of the classical regression model.  

.......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

.......................................................................................................................  

2) Do you agree that correct specification of an econometric model is 
important? Why? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 
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3) What are the implications of violations of the basic assumptions classical 
regression model?  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

4) List three types of specification error that we encounter in an econometric 
model.  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

13.3 CONSEQUENCES OF SPECIFICATION 
ERRORS 

As pointed out earlier, we usually encounter three kinds of problems in an 
econometric model: 

a) Inclusion of irrelevant/redundant variables 

b) Omission of relevant variables 

c) Incorrect functional form of the model 

Each of the above problem results in a different kind of bias. We discuss each of 
these problems below. 

13.3.1 Inclusion of Irrelevant Variable 

Let us consider the case where some irrelevant variable is included in the 
regression model. Suppose the true model is  

Yi = β0 + 𝛽 𝑋  + ui       … (13.3) 

But we somehow include a redundant variable, i.e., we estimate the following 
equation: 

𝑌  = 𝛽  +  𝛽 𝑋  + 𝛽 𝑋  + vi     … (13.4) 

For the true model (13.3), the slope coefficient is expressed as 

 𝛽 =  
∑

∑
       … (13.5)  

which is unbiased. 

For the model (13.4) that we have taken, we obtain 
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𝛽 = 𝛽 =  
(∑ ) ∑ (∑ ) (∑ )

∑ ∑  (∑ )
    … (13.6) 

Now the true model in deviation form is  

𝑦 =  𝛽 𝑥 +  (𝑢 − 𝑢)       … (13.7) 

Substituting for 𝑦  from (13.7) into (13.6) and simplifying, we obtain 

E(𝛽 ) = E(𝛽 ) =  𝛽  
∑ ∑ (∑ )  

∑ ∑  (∑ )
    … (13.8) 

From equation (13.8) we find that 

E(𝛽 ) = 𝛽  

Thus, inclusion of an irrelevant variable provides us with unbiased estimator of 
𝛽 .The estimator of the redundant variable 𝛽  is given by  

𝛽 =  
(∑ ) ∑ (∑ ) (∑ )

∑ ∑  (∑ )
                                        … (13.9) 

If we substitute for 𝑦  from (13.7) in (13.9) and re-arrange terms, we obtain 

E(𝛽 ) =E(𝛽 ) = 𝛽  
(∑ ) ∑ (∑ ) ∑   

∑ ∑  (∑ )
   … (13.10) 

Thus, E(𝛽 ) = E(𝛽 ) = 0 

So, we find that 𝛽  which is absent from the true model has its coefficient 0. 
Thus we obtain unbiased estimators for both the parameters.  

This leads us to conclude that inclusion of irrelevant variables is not that harmful 
as omission of relevant variables. As an extra variable is added to the model, we 
observe that there is an increase in R-squared. The variance of the parameters 
will not be efficient.  

Therefore, the specification error in the nature of inclusion of irrelevant variables 
in the model, will produce unbiased but inefficient least squares estimators of the 
parameters. The larger variance reduces the precision of the estimates resulting in 
wider confidence intervals. This may lead to type II error (the error of not 
rejecting a null hypothesis when the alternative hypothesis is actually true).  

13.3.2 Omission of Relevant Variable 

Now let us look into the other side of the spectrum – excluding a relevant 
variable. Since a relevant variable is not included in the model (although it 
influences the dependent variable) its impact will be included in the residuals. As 
a result, the residuals will show a systematic pattern rather than being white noise 
as required by Gauss-Markov theorem. Also, the coefficient of the included 
variable will be biased. 

Suppose the true equation (in deviation form) is  

𝑦 = 𝛽 𝑥  + 𝛽 𝑥  + u       … (13.11) 
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Instead of estimating equation (13.11) suppose we omitted  𝑥 . The following 
equation is estimated, 

𝑦 = 𝛽∗𝑥  + e        … (13.12) 

Equation (13.12) is a case of omitted variable, and hence incorrect model 
specification. In the model with omitted variable (incorrect model) the estimate 
of 𝛽∗ is 

𝛽∗= 
∑  

∑
         … (13.13) 

In order to calculate the bias in the estimated value of 𝛽  in the incorrect model 
(equation (13.12)) as compared to the true model (equation (13.11)), we take the 
following steps: 

Substituting the expression of y from the true model in (13.11), we get 

𝛽∗ = 
∑ (     )

∑
 = 𝛽 +  𝛽  

∑

∑
+

∑  

∑
    … (13.14) 

Since E (∑ 𝑥 𝑢) = 0 we get 

E (𝛽∗) = 𝛽 + 𝑏 𝛽        … (13.15) 

where 𝑏  = 
∑  

∑
 is the regression coefficient from a regression of X2 (omitted 

variable) on X1.   

Thus 𝛽∗ is a biased estimator for 𝛽  and the bias is given by 

Bias = (coefficient of the excluded variable) × (regression coefficient in a 
regression of the excluded variable on the included variable) … (13.16) 

In the deviation form, the three-variable population regression model can be 
written as 

𝑦  = 𝛽 𝑥 + 𝛽 𝑥 + ( 𝑢 − 𝑢)    … (13.17) 

First multiplying by 𝑥  and then by 𝑥 , the usual normal equations are 

∑ 𝑦 𝑥  = 𝛽 ∑ 𝑥 + 𝛽 ∑ 𝑥 𝑥 + ∑ 𝑥 ( 𝑢 − 𝑢) … (13.18) 

∑ 𝑦 𝑥  = 𝛽 ∑ 𝑥 𝑥 +  𝛽 ∑ 𝑥 + ∑ 𝑥 ( 𝑢 − 𝑢) … (13.19) 

Dividing (13.18) by ∑ 𝑥  on both sides, we obtain 

∑

∑
 = 𝛽 +  𝛽

∑

∑
+  

∑ (  )

∑
   … (13.20) 

Thus we have 

by2 = 
∑

∑
 

b32 = 
∑

∑
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Hence (13.20) can be written as  

by2 = 𝛽 +  𝛽  b32 + 
∑ (  )

∑
    … (13.21) 

Taking the expected value of (13.21) we obtain 

E(by2) = 𝛽 +  𝛽  b32      … (13.22) 

Similarly, if 𝑥  is omitted from the model, the bias in E(by3) can be calculated.  

The variance of 𝛽∗ (parameter of the incorrect model) can also be derived by 
using the formula for variance. As it is a bit complex, we do not present it here. 
You should note that the variance of 𝛽∗ is higher than that of 𝛽 . An implication 
of the above is that usual tests of significance concerning parameters are invalid, 
if some of the relevant variables are excluded from a model. 

Thus we know that 

(i) When an irrelevant variable is included in the model: (a) the 
estimators of parameters are unbiased, (b) efficiency of the estimators 
decline, and (c) estimator of the error variance is unbiased. Thus 
conventional tests of hypothesis are valid. The inferences drawn could 
be somewhat erroneous.  

(ii) When a relevant variable is dropped from the model: (a) estimators of 
parameters are biased, (b) efficiency of estimators decline, and (c) 
estimator of error variance is biased. Thus conventional tests of 
hypothesis are invalid. The inferences drawn are faulty. 

13.3.3 Incorrect Functional Form  

Apart from inclusion of only relevant variables in an econometric model, another 
specification error pertains to functional form. There is a tendency the part of 
researchers to assume a linear relationship between variables. This however is 
not always true. If the true relationship is non-linear and we take a linear 
regression model for estimation, we will not be able to draw correct inferences. 
There are test statistics available to choose among functional forms. We will 
discuss these test statistics in Unit 14. 

 

Check Your Progress 2 

1) Explain the consequences of inclusion of an irrelevant variable.  

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

………………………………………………………………………….... 
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2) Explain the consequences of excluding a relevant variable. 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

13.4 ERROR OF MEASUREMENT IN VARIABLES 

So far we have assumed the variables in the econometric model under study are 

measured correctly. It means that there are no measurement errors in both 

explained and explanatory variables. Sometimes we do not have data on the 

variables that we want to use in the model. This could be for various reasons such 

as non-response error, reporting error, and computing error.  A classic example of 

measurement error pertains to the variable permanent income used in the Milton 

Friedman model. Measurement error in variables is a serious problem in 

econometric studies. There are two types of measurement errors: 

(i) Measurement error in dependent variable, and 

(ii) Measurement error in independent variable.  

13.4.1 Measurement Error in Dependent Variable 

Let us consider the following model: 

𝑌∗ = 𝛼 + 𝛽𝑋 + 𝑢        … (13.23) 

where 𝑌∗ is permanent consumption expenditure 

 𝑋  is current income, and 

 𝑢  is the stochastic disturbance term. 

(we place a star mark (*) on the variable that is measured with errors)  

Since 𝑌∗ is not directly measureable, we may use an observable expenditure 
variable 𝑌  such that 

 𝑌 = 𝑌∗ + 𝑒         … (13.24) 

where 𝑒  denote measurement error in 𝑌∗. 

Therefore, instead of estimating  

𝑌∗ = 𝛼 + 𝛽𝑋 + 𝑢 , we estimate 

𝑌 =  𝛼 + 𝛽𝑋 + 𝑢 + 𝑒       

 =  𝛼 + 𝛽𝑋 + (𝑢 + 𝑒 ) 
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Let us re-write the above equation as 

𝑌 =  𝛼 + 𝛽𝑋 + 𝑣         … (13.25) 

where 𝑣 = 𝑢 + 𝑒   

In equation (13.25) we take 𝑣   as a composite error term comprising population 
disturbance term (𝑢 ) and measurement error term (𝑒 ). 

Let us assume that the following classical assumptions hold 

a)  E(𝑢 ) = E(𝑒 ) = 0 

b)  Cov (𝑋 , 𝑢 ) = 0 

c)  Cov (𝑢 , 𝑒 ) = 0 

An implication of (c) above is that the stochastic error term and the measurement 
error term are uncorrelated. Thus expected value of the composite error term is 
zero; 𝐸(𝑣) =  0. By extending the logic given in Unit 4, we can say that 𝐸 𝛽 =

𝛽. It implies that 𝛽 is unbiased.  

Now let us look into the issue of variance in the case of measurement error in the 
dependent variable. As you know, variance of the estimator 𝛽 in a two variable 
regression model (13.23) is given by 

Var(𝛽) = 
∑

, 

For the composite error term, this will translate into 

Var(𝛽) = 
 

∑
 =  

∑
      … (13.26) 

Thus we see that the variance of the error term is larger if there is measurement 
error in the dependent variable. This leads to inefficiency of the estimators. They 
are not best linear unbiased estimators (BLUE).  

13.4.2 Measurement Error in Independent Variable 

There could be measurement error in explanatory variables. Let us assume the 
true regression model to be estimated is  

𝑌 = 𝛼 + 𝛽𝑋∗ + 𝑢        … (13.27) 

Suppose we do not have data on variable 𝑋∗. On the other hand, suppose we have 
data on 𝑋 . In that case, instead of observing 𝑋∗, we observe  

𝑋 = 𝑋∗ + 𝑤         … (13.28) 

where 𝑤  represents error of measurement in 𝑋∗. 

In the permanent income hypothesis model, for example, 

𝑌 = 𝛼 + 𝛽𝑋∗ + 𝑢        

where 𝑌  is current consumption expenditure 

 𝑋∗ is permanent income 

  𝑢  is stochastic disturbance term (equation error) 
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From equation (13.27) and (13.28) we find that 

𝑌 = 𝛼 + 𝛽(𝑋 − 𝑤 ) + 𝑢       … (13.29) 

 = 𝛼 + 𝛽𝑋 + (𝑢 − 𝛽𝑤 ) 

 = 𝛼 + 𝛽𝑋 + 𝑧        … (13.30) 

where 𝑧 = (𝑢 − 𝛽𝑤 ) . You should notice that 𝑧  is made up of two terms: 
stochastic error and measurement error. 

Now, let us assume that 𝑤  has zero mean; it is serially independent; and it is 
uncorrelated with 𝑢 . Even in that case, the composite error term 𝑧  is not 
independent of the explanatory variable 𝑋 . 

Cov (𝑧 , 𝑋 )   = E[𝑧 − 𝐸(𝑧 )[𝑋 − 𝐸(𝑋 )]    

        = E(𝑢 − 𝛽𝑤 )(𝑤 ) 

  = E(−𝛽𝑤 ) 

  = −𝛽𝜎       … (13.31) 

From (13.31) we find that the independent variable and the error term are 
correlated. This violates the basic assumption of the classical regression model 
that the explanatory variable is uncorrelated with the stochastic disturbance term. 
In such a situation the OLS estimators are not only biased but also inconsistent, 
that is they remain biased even if the sample size n increases infinitely. 

Check Your Progress 3 

1) Explain the consequences measurement error in the dependent variable.  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 .......................................................................................................................

 ....................................................................................................................... 

2) Explain the consequences of measurement error in the explanatory 
variable.  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

...................................................................................................................... 
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3) Measurement error in the dependent variable is a lesser evil than 
measurement error in the explanatory variable.  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

13.5 LET US SUM UP 

Correct specification of an econometric model determines the accuracy of the 
estimates obtained. Therefore, correct specification of an econometric model is 
very important. Economic theory and logic guide us in specification of 
econometric models.  

In order to correctly specify an econometric model all relevant explanatory 
variables should be included in the model. No relevant explanatory variable 
should be excluded from the model. Further, the functional form of the model 
should be correct.  

At times we do not get appropriate variable required in an econometric model. In 
such cases there could be cases where either dependent variable or independent 
variable is measured with certain error. Measurement error in dependent variable 
is a lesser evil than the measurement error in the independent variable.  

13.6 ANSWERS TO CHECK YOUR PROGRESS  
EXERCISES 

Check Your Progress 1 

1) The basic assumptions of the classical regression model are as follows:  

a)  The regression model is linear in parameters 

b) 𝐸(𝑋 𝑢 ) = 0 (regressor is non-stochastic)  

c) 𝐸(𝑢 ) = 0  

d) 𝐸(𝑢 ) = 𝜎  

e) 𝐸 𝑢 𝑢 = 0 for 𝑖 ≠ 𝑗 

f) The explanatory variables (𝑋 ) are independent of one another. 

2) Go through Section 13.2. It is important because incorrect specification has 

serious implications on desirable properties of the estimators.  

3) Go through Sub-Section 13.2.2 and answer.  
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4) The important specific issues are: inclusion of irrelevant/redundant 
variables; omission of relevant variables; and incorrect functional form of 
the model 

Check Your Progress 2 

1)   The estimator is unbiased but inefficient. See Sub-Section 13.3.1. 

2)  The estimator is biased as well as inefficient. See Sub-Section 13.3.2.  

Check Your Progress 3 

1)  Go through Sub-Section 13.4.1 and answer.  

2)  Go through Sub-Section 13.4.2 and answer.  

3)  If there is measurement error in dependent variable the estimator is 

unbiased but inefficient. Measurement error in explanatory variable results 

in biased estimator. See Section 13.4 for details.  
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14.1 Introduction  

14.2 Objectives 

14.3 Tests for Identifying the Most Efficient Model 

14.3.1 The 𝑅  Test and Adjusted 𝑅  Test 

14.3.2 Akaike Information Criterion  

14.3.3 Schwarz Information Criterion 

14.3.4 Mallow’s 𝐶  Criterion 

14.4 Caution about Model Selection Criteria 

14.5 Let Us Sum Up 

14.6 Answers to Check Your Progress Exercises 

14.1 INTRODUCTION 

In the previous Unit we highlighted the consequences of specification errors. 

There could be three types of specification errors; inclusion of an irrelevant 

variable, exclusion of a relevant variable, and incorrect functional form. When 

the econometric model is not specified correctly, the coefficient estimates, the 

confidence intervals, and the hypothesis tests are misleading and inconsistent. In 

view of this, econometric models should be correctly specified.  

While building a model we face a lot of difficulties in specifying a model 

correctly. In some cases economic theory is quite transparent about the dependent 

variables and the independent variables. In some other cases still it is in a 

hypothesis stage. Researchers are still working in that area to confirm the 

hypothesis suggested by others. In such cases, what we have a dependent variable 

and a set of explanatory variables. Out of these explanatory variables we have to 

select the most appropriate ones.  

                                                
 Dr. Sahba Fatima, Independent Researcher, Lucknow. 
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Tests for Specification 

Error 
Econometric theory suggests certain criteria and test statistics. On the basis of 

these criteria we select the most appropriate econometric model. We describe 

some of these criteria below.   

14.2 OBJECTIVES 

After going through this Unit, you should be in a position to  

 identify econometric models that are not specified correctly; 

 take remedial measures for correcting the specification error; and 

 evaluate the performance of competing models. 

14.3 TESTS FOR IDENTIFYING THE MOST 
EFFICIENT MODEL 

As pointed out above, econometric models should be specified correctly. Any 

spurious relationship should be identified and excluded from the model. There 

are certain tests for this purpose. These tests can be used under specific 

circumstances in conjunction with practical understanding of the variables and an 

enlightened study of it through the related literature. Following tests are most 

commonly used for model testing and evaluation.  

14.3.1 The R2 Test and Adjusted-R2 Test 

We have discussed the concept of coefficient of determination (𝑅 ) in Unit 4. As 

you know, the coefficient of determination indicates the explanatory power of a 

model. If, for example, 𝑅 = 0.76  we can infer that 76 per cent variation in the 

dependent variable is explained by the explanatory variable in the model.  

We define R2 as follows: 

𝑅 = = 1 −          ... (14.1) 

where  TSS = Total Sum of Squares 

 ESS = Explained Sum of squares 

 RSS = Residual Sum of Squares 

As you know,  

TSS = RSS + ESS       ... (14.2) 

Dividing both sides of equation (14.2) by TSS, we find that 

+ = 1        ... (14.3) 

Since 𝑅 =   , we observe that 𝑅  lies between 0 and 1 necessarily. Its 

closeness to 1 indicates better fit of the model. If  𝑅  is close to one, RSS is much 

smaller compared to ESS. Therefore, very little residual will be left. Thus a 
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model with higher R2 is preferred. You should however keep in mind that a very 

high R2 indicates the presence of multicollinearity in the model. If the R2 is high 

but the t-ratio of the coefficients are not statistically significant you should check 

for multicollinearity. The R2 is calculated on the basis of the sample data.  

Thus the explanatory variables included the model are considered for estimation 
of R2. Variables not included in the model do not account for the variation in the 
dependent variable. 

There is a tendency of the R2 to increase if more explanatory variables are added. 
Thus, we are tempted to add more explanatory variables to increase the 
explanatory power of the model. If we add irrelevant explanatory variables in a 
model, the estimators are unbiased, but there is an increase in the variance of the 
estimators. This makes forecast and analysis on the basis of such models 
unreliable.  

In order to overcome this difficulty, we use the ‘adjusted-R2’. It is denoted by 𝑅  
and defined as follows: 

𝑅 = 1 −
( )⁄

( )⁄
 = 1 − (1 − 𝑅 )      … (14.4) 

where n is the number of observations and k is the number of regressors. As you 
know the TSS has a degree of freedom of (𝑛 − 1) while the ESS has a degree of 
freedom of (𝑛 − 𝑘). Thus,  𝑅  takes into account the degrees of freedom of the 
model. The 𝑅  penalises the addition of explanatory variables. It is observed that 
there is an increase in 𝑅  only if the t-value (absolute number) of the additional 
explanatory variable is greater than 1. Hence, superfluous variables can be 
identified and eliminated from the model. The restriction here is to regress all the 
independent variable against the same dependent variable. 

Remember that we can compare the 𝑅  of two models only if the dependent 
variable is the same. For example, we cannot compare two models if in one 
model the explanatory variable is Y and in the other model the explanatory 
variable in logY.   

14.3.2 Akaike Information Criterion (AIC)  

Another method for identifying the mis-specification in a model is Akaike 
Information Criterion (AIC). This method also penalises the addition of 
regressors as we can see from the formula below: 

𝐴𝐼𝐶 = 𝑒 ⁄ ∑  = 𝑒 ⁄       … (14.5) 

where k is the number of regressors (explanatory variables) and n is the number 
of observations. 

We can further simplify equation (14.5) as 

ln 𝐴𝐼𝐶 = + ln        … (14.6) 
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where ln 𝐴𝐼𝐶 is the natural log of AIC, and   is the penalty factor. 

Remember that the model with a lower value of lnAIC is considered to be better. 
Thus, when we compare two models by using the AIC criterion, the model with 
lower value of AIC has a better specification. The logic is simple. An 
econometric model that reduces the residual sum of squares is a better specified 
model.  

14.3.3 Schwarz Information Criterion 

The Schwarz Information Criterion (SIC) also relies on the RSS, like the AIC 
criterion mentioned above. This method also is popular for analysing correct 
specification of an econometric model. The SIC is defined as follows: 

𝑆𝐼𝐶 = 𝑛 ⁄ ∑
 =  𝑛 ⁄        … (14.7) 

If we take in log-form, equation (14.7) is given as 

ln 𝑆𝐼𝐶  = ln 𝑛 + ln        … (14.8) 

where [(𝑘 𝑛⁄ ) ln 𝑛] is the penalty factor. Note that the SIC criterion imposes a 
harsher penalty for inclusion of explanatory variable compared to the AIC 
criterion.  

14.3.4 Mallow’s 𝑪𝒑 Criterion 

When we do not include all the relevant variables in a model, the estimators are 
biased. The Mallow’s Cp Criterion evaluates such bias to find out whether there 
is significant deviation from the unbiased estimators. Thus, the Mallow’s Cp 
Criterion helps us in selecting the best among competing econometric models. 

If some of the explanatory variables are dropped from a model, there is an 
increase in the residual sum of squares (RSS).  Let us assume that the true model 
has k regressors. For this model, 𝜎  is the estimator of true 𝜎 . Now, suppose we 
drop p regressors from the model. The residual sum of squares obtained from the 
truncated model is 𝑅𝑆𝑆 . The Mallow’s Cp Criterion is based on the following 

formula: 

𝐶 =  − (𝑛 − 2𝑝)      ... (14.9) 

where n is the number of observations. 

While choosing a model according to the 𝐶  criterion, the model with the lowest 
𝐶  value is preferred.  

14.4 CAUTION ABOUT MODEL SELECTION 
CRITERIA  

We have emphasized earlier that econometric models should be based on 

economic theory and logic. Therefore, while constricting an econometric model, 
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you should go by the theoretical appropriateness of including or excluding a 

variable. In order to have a correctly specified model, a thorough understanding 

of the theoretical concepts and the related literature is necessary. Also, the model 

that we fit will only be as good as the data that we have collected. If the data 

collected does not suffer from, say, multicollinearity or autocorrelation, we are 

likely to have a more robust model.  

As mentioned earlier, the criteria for selecting an appropriate model primarily 

rests on the theory behind it and the strength of the collected data. Many a time, 

we observe certain relationship between two variables. Such relationship 

however may be superficial or spurious. Let us take an example. At a traffic light, 

cars stop when the signal is red. It does not mean that cars cannot move when 

there is red light in front of them. It also does not mean that traffic light has some 

damaging effect on moving cars. The reason is observance of traffic rules. Unless 

we look into the traffic rules and go by observation only, our reasoning will be 

wrong. The dependent variable and the independent variable both may be 

affected by another variable. In such cases the relationship is confounded.  

You should note one more issue regarding selection of econometric models. 

Different test criteria may suggest different models. For example, economic logi 

suggests that there could two possible econometric models (say, model A and 

model B) for a particular issue. You may come across a situation such that 𝑅  

test suggests model A and AIC criterion suggest model B. In such situations you 

should carry out a number of tests and then only chose the best model.  

Adjusted R-squared, Mallows 𝐶 , p-values, etc. may point to different regression 

equations without much clarity to the econometrician. Thus, we conclude that 

none of the methods for model selection listed above are adequate by itself. 

There is no substitute to theoretical understanding of the related literature, 

accurately collected data, practical understanding of the problem, and common 

sense while specifying an econometric model. We will discuss further on the 

model selection criteria in the course BECC 142: Applied Econometrics.  

Check Your Progress 1 

1) Explain why 𝑅  is a better criterion than R2 in model specification. 

.......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

....................................................................................................................... 

 ....................................................................................................................... 
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2) Explain how the AIC and BIC criteria are applied in selection of 

econometric models.  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

3) What precaution you should take while selecting an econometric model?  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

14.5 LET US SUM UP 

Selection of an appropriate econometric model is a difficult task. We have to take 

into account the economic theory and logic behind the econometric model. There 

could be many competing models for a particular issue.  

There a certain criteria on the basis of which the best econometric model is 

selected. These criteria could be 𝑅 , AIC, BIC, and Mallow’s Cp. We have 

described the formulae for these test criteria in the Unit.  

14.6 ANSWERS TO CHECK YOUR PROGRESS 
EXERCISES 

Check Your Progress 1 

1) In Sub-Section 14.3.1 we have compared between R2 and 𝑅 . The 𝑅  takes 
into account the degrees of freedom.  

2) You should describe the test statistics used in AIC and BIC criteria (see 
Section 14.3). The model with lowest value of test statistics is preferred.   

3) Go through Section 14.4 and answer.  
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APPENDIX TABLES 
Table A1: Normal Area Table 

Z 0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 
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Table A2: Critical Values of Chi-squared Distribution 

 

df\area 0.1 0.05 0.025 0.01 0.005 

1 2.706 3.841 5.024 6.635 7.879 

2 4.605 5.991 7.378 9.210 10.597 

3 6.251 7.815 9.348 11.345 12.838 

4 7.779 9.488 11.143 13.277 14.860 

5 9.236 11.071 12.833 15.086 16.750 

  

6 10.645 12.592 14.449 16.812 18.548 

7 12.017 14.067 16.013 18.475 20.278 

8 13.362 15.507 17.535 20.090 21.955 

9 14.684 16.919 19.023 21.666 23.589 

10 15.987 18.307 20.483 23.209 25.188 

  

11 17.275 19.675 21.920 24.725 26.757 

12 18.549 21.026 23.337 26.217 28.300 

13 19.812 22.362 24.736 27.688 29.819 

14 21.064 23.685 26.119 29.141 31.319 

15 22.307 24.996 27.488 30.578 32.801 

  

16 23.542 26.296 28.845 32.000 34.267 

17 24.769 27.587 30.191 33.409 35.718 

18 25.989 28.869 31.526 34.805 37.156 

19 27.204 30.144 32.852 36.191 38.582 

20 28.412 31.410 34.170 37.566 39.997 

21 29.615 32.671 35.479 38.932 41.401 

22 30.813 33.924 36.781 40.289 42.796 

23 32.007 35.172 38.076 41.638 44.181 

24 33.196 36.415 39.364 42.980 45.559 

25 34.382 37.652 40.646 44.314 46.928 

26 35.563 38.885 41.923 45.642 48.290 

27 36.741 40.113 43.195 46.963 49.645 

28 37.916 41.337 44.461 48.278 50.993 

29 39.087 42.557 45.722 49.588 52.336 

30 40.256 43.773 46.979 50.892 53.672 
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Table A3: Critical Values of t Distribution 

 

Df\p 0.25 0.10 0.05 0.025 0.01 0.005 

1 1.0000 3.0777 6.3138 12.7062 31.8205 63.6567 

2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 

3 0.7649 1.6377 2.3534 3.1825 4.5407 5.8409 

4 0.7407 1.5332 2.1318 2.7765 3.7470 4.6041 

5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0321 

6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074 

7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995 

8 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554 

9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 

11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058 

12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545 

13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123 

14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 

15 0.6912 1.3406 1.7531 2.1315 2.6025 2.9467 

16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208 

17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982 

18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784 

19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 

20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 

20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 

21 0.6864 1.3232 1.7207 2.0796 2.5177 2.8314 

22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188 

23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073 

24 0.6849 1.3178 1.7109 2.0639 2.4922 2.7969 

25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874 

26 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787 

27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707 

28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633 

29 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564 

30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500 

inf 0.6745 1.2816 1.6449 1.9600 2.3264 2.5758 
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Table A4: Critical Values of F Distribution 

(5% level of significance) 

 

df2/df1 1 2 3 4 5 6 7 8 9 10 

1 161.448 199.500 215.707 224.583 230.162 233.986 236.768 238.883 240.543 241.882 

2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396 

3 10.128 9.552 9.277 9.117 9.014 8.941 8.887 8.845 8.812 8.786 

4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 

5 6.608 5.786 5.410 5.192 5.050 4.950 4.876 4.818 4.773 4.735 

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 

7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 

8 5.318 4.459 4.066 3.838 3.688 3.581 3.501 3.438 3.388 3.347 

9 5.117 4.257 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 

10 4.965 4.103 3.708 3.478 3.326 3.217 3.136 3.072 3.020 2.978 

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 

12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 

13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 

14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 

15 4.543 3.682 3.287 3.056 2.901 2.791 2.707 2.641 2.588 2.544 

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 

17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450 

18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 

19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 

20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 

21 4.325 3.467 3.073 2.840 2.685 2.573 2.488 2.421 2.366 2.321 

22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297 

23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275 

24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255 

25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.237 

26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.266 2.220 

27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204 

28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190 

29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177 

30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165 

40 4.085 3.232 2.839 2.606 2.450 2.336 2.249 2.180 2.124 2.077 

60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993 

120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1.911 

inf 3.842 2.996 2.605 2.372 2.214 2.099 2.010 1.938 1.880 1.831 
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Table A4: Critical Values of F Distribution (Contd.) 

(5% level of significance) 

 

df2/df1 12 15 20 24 30 40 60 120 INF  

1 243.906 245.950 248.013 249.052 250.095 251.143 252.196 253.253 254.314 

2 19.413 19.429 19.446 19.454 19.462 19.471 19.479 19.487 19.496 

3 8.745 8.703 8.660 8.639 8.617 8.594 8.572 8.549 8.526 

4 5.912 5.858 5.803 5.774 5.746 5.717 5.688 5.658 5.628 

5 4.678 4.619 4.558 4.527 4.496 4.464 4.431 4.399 4.365 

6 4.000 3.938 3.874 3.842 3.808 3.774 3.740 3.705 3.669 

7 3.575 3.511 3.445 3.411 3.376 3.340 3.304 3.267 3.230 

8 3.284 3.218 3.150 3.115 3.079 3.043 3.005 2.967 2.928 

9 3.073 3.006 2.937 2.901 2.864 2.826 2.787 2.748 2.707 

10 2.913 2.845 2.774 2.737 2.700 2.661 2.621 2.580 2.538 

11 2.788 2.719 2.646 2.609 2.571 2.531 2.490 2.448 2.405 

12 2.687 2.617 2.544 2.506 2.466 2.426 2.384 2.341 2.296 

13 2.604 2.533 2.459 2.420 2.380 2.339 2.297 2.252 2.206 

14 2.534 2.463 2.388 2.349 2.308 2.266 2.223 2.178 2.131 

15 2.475 2.403 2.328 2.288 2.247 2.204 2.160 2.114 2.066 

16 2.425 2.352 2.276 2.235 2.194 2.151 2.106 2.059 2.010 

17 2.381 2.308 2.230 2.190 2.148 2.104 2.058 2.011 1.960 

18 2.342 2.269 2.191 2.150 2.107 2.063 2.017 1.968 1.917 

19 2.308 2.234 2.156 2.114 2.071 2.026 1.980 1.930 1.878 

20 2.278 2.203 2.124 2.083 2.039 1.994 1.946 1.896 1.843 

21 2.250 2.176 2.096 2.054 2.010 1.965 1.917 1.866 1.812 

22 2.226 2.151 2.071 2.028 1.984 1.938 1.889 1.838 1.783 

23 2.204 2.128 2.048 2.005 1.961 1.914 1.865 1.813 1.757 

24 2.183 2.108 2.027 1.984 1.939 1.892 1.842 1.790 1.733 

25 2.165 2.089 2.008 1.964 1.919 1.872 1.822 1.768 1.711 

26 2.148 2.072 1.990 1.946 1.901 1.853 1.803 1.749 1.691 

27 2.132 2.056 1.974 1.930 1.884 1.836 1.785 1.731 1.672 

28 2.118 2.041 1.959 1.915 1.869 1.820 1.769 1.714 1.654 

29 2.105 2.028 1.945 1.901 1.854 1.806 1.754 1.698 1.638 

30 2.092 2.015 1.932 1.887 1.841 1.792 1.740 1.684 1.622 

40 2.004 1.925 1.839 1.793 1.744 1.693 1.637 1.577 1.509 

60 1.917 1.836 1.748 1.700 1.649 1.594 1.534 1.467 1.389 

120 1.834 1.751 1.659 1.608 1.554 1.495 1.429 1.352 1.254 

inf 1.752 1.666 1.571 1.517 1.459 1.394 1.318 1.221 1.000 
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Table A4: Critical Values of F Distribution (contd.) 

(1% level of significance) 

df2/df1 1 2 3 4 5 6 7 8 9 10 

1 4052.181 4999.500 5403.352 5624.583 5763.650 5858.986 5928.356 5981.070 6022.473 6055.847 

2 98.503 99.000 99.166 99.249 99.299 99.333 99.356 99.374 99.388 99.399 

3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345 27.229 

4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 14.546 

5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 10.051 

6 13.745 10.925 9.780 9.148 8.746 8.466 8.260 8.102 7.976 7.874 

7 12.246 9.547 8.451 7.847 7.460 7.191 6.993 6.840 6.719 6.620 

8 11.259 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911 5.814 

9 10.561 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351 5.257 

10 10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942 4.849 

11 9.646 7.206 6.217 5.668 5.316 5.069 4.886 4.744 4.632 4.539 

12 9.330 6.927 5.953 5.412 5.064 4.821 4.640 4.499 4.388 4.296 

13 9.074 6.701 5.739 5.205 4.862 4.620 4.441 4.302 4.191 4.100 

14 8.862 6.515 5.564 5.035 4.695 4.456 4.278 4.140 4.030 3.939 

15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805 

16 8.531 6.226 5.292 4.773 4.437 4.202 4.026 3.890 3.780 3.691 

17 8.400 6.112 5.185 4.669 4.336 4.102 3.927 3.791 3.682 3.593 

18 8.285 6.013 5.092 4.579 4.248 4.015 3.841 3.705 3.597 3.508 

19 8.185 5.926 5.010 4.500 4.171 3.939 3.765 3.631 3.523 3.434 

20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368 

21 8.017 5.780 4.874 4.369 4.042 3.812 3.640 3.506 3.398 3.310 

22 7.945 5.719 4.817 4.313 3.988 3.758 3.587 3.453 3.346 3.258 

23 7.881 5.664 4.765 4.264 3.939 3.710 3.539 3.406 3.299 3.211 

24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168 

25 7.770 5.568 4.675 4.177 3.855 3.627 3.457 3.324 3.217 3.129 

26 7.721 5.526 4.637 4.140 3.818 3.591 3.421 3.288 3.182 3.094 

27 7.677 5.488 4.601 4.106 3.785 3.558 3.388 3.256 3.149 3.062 

28 7.636 5.453 4.568 4.074 3.754 3.528 3.358 3.226 3.120 3.032 

29 7.598 5.420 4.538 4.045 3.725 3.499 3.330 3.198 3.092 3.005 

30 7.562 5.390 4.510 4.018 3.699 3.473 3.304 3.173 3.067 2.979 

40 7.314 5.179 4.313 3.828 3.514 3.291 3.124 2.993 2.888 2.801 

60 7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718 2.632 

120 6.851 4.787 3.949 3.480 3.174 2.956 2.792 2.663 2.559 2.472 

inf 6.635 4.605 3.782 3.319 3.017 2.802 2.639 2.511 2.407 2.321 
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Table A4: Critical Values of F Distribution (contd.) 

(1% level of significance) 

 

df2/df1 12 15 20 24 30 40 60 120 INF 

1 6106.321 6157.285 6208.730 6234.631 6260.649 6286.782 6313.030 6339.391 6365.864 

2 99.416 99.433 99.449 99.458 99.466 99.474 99.482 99.491 99.499 

3 27.052 26.872 26.690 26.598 26.505 26.411 26.316 26.221 26.125 

4 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463 

5 9.888 9.722 9.553 9.466 9.379 9.291 9.202 9.112 9.020 

6 7.718 7.559 7.396 7.313 7.229 7.143 7.057 6.969 6.880 

7 6.469 6.314 6.155 6.074 5.992 5.908 5.824 5.737 5.650 

8 5.667 5.515 5.359 5.279 5.198 5.116 5.032 4.946 4.859 

9 5.111 4.962 4.808 4.729 4.649 4.567 4.483 4.398 4.311 

10 4.706 4.558 4.405 4.327 4.247 4.165 4.082 3.996 3.909 

11 4.397 4.251 4.099 4.021 3.941 3.860 3.776 3.690 3.602 

12 4.155 4.010 3.858 3.780 3.701 3.619 3.535 3.449 3.361 

13 3.960 3.815 3.665 3.587 3.507 3.425 3.341 3.255 3.165 

14 3.800 3.656 3.505 3.427 3.348 3.266 3.181 3.094 3.004 

15 3.666 3.522 3.372 3.294 3.214 3.132 3.047 2.959 2.868 

16 3.553 3.409 3.259 3.181 3.101 3.018 2.933 2.845 2.753 

17 3.455 3.312 3.162 3.084 3.003 2.920 2.835 2.746 2.653 

18 3.371 3.227 3.077 2.999 2.919 2.835 2.749 2.660 2.566 

19 3.297 3.153 3.003 2.925 2.844 2.761 2.674 2.584 2.489 

20 3.231 3.088 2.938 2.859 2.778 2.695 2.608 2.517 2.421 

21 3.173 3.030 2.880 2.801 2.720 2.636 2.548 2.457 2.360 

22 3.121 2.978 2.827 2.749 2.667 2.583 2.495 2.403 2.305 

23 3.074 2.931 2.781 2.702 2.620 2.535 2.447 2.354 2.256 

24 3.032 2.889 2.738 2.659 2.577 2.492 2.403 2.310 2.211 

25 2.993 2.850 2.699 2.620 2.538 2.453 2.364 2.270 2.169 

26 2.958 2.815 2.664 2.585 2.503 2.417 2.327 2.233 2.131 

27 2.926 2.783 2.632 2.552 2.470 2.384 2.294 2.198 2.097 

28 2.896 2.753 2.602 2.522 2.440 2.354 2.263 2.167 2.064 

29 2.868 2.726 2.574 2.495 2.412 2.325 2.234 2.138 2.034 

30 2.843 2.700 2.549 2.469 2.386 2.299 2.208 2.111 2.006 

40 2.665 2.522 2.369 2.288 2.203 2.114 2.019 1.917 1.805 

60 2.496 2.352 2.198 2.115 2.028 1.936 1.836 1.726 1.601 

120 2.336 2.192 2.035 1.950 1.860 1.763 1.656 1.533 1.381 

inf 2.185 2.039 1.878 1.791 1.696 1.592 1.473 1.325 1.000 
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Table A5: Durbin-Watson d-statistic    Level of Significance = 0.05  k= no. of regressors  

 
    ________________________________________________________________________________________________ 



GLOSSARY 

Association : It refers to the connection or relationship between 
variables 

Alternative 
Hypothesis 

: It is the hypothesis contrary to the null hypothesis. 
Null hypothesis and alternative hypothesis are 
mutually exclusive.  

Alternative 
Hypothesis 

: In hypothesis testing, alternative hypothesis states a 
condition that is opposite to the null hypothesis. It is 
expressed as 𝐻 : 𝛽 ≠ 0, i.e., the slope coefficient is 
different from zero. It could be positive or negative.  

Analysis of Variance 
(ANOVA) 

: This is a technique that breaks up the total 
variability of data into two parts one statistical and 
the other random. 

ANCOVA Model : This is a model which involves both a quantitative 
and a dummy variable. The form of such a model 
will be like: 𝑌 = 𝛽 + 𝛽 𝐷 + 𝛽 𝑋 + 𝑢 .  

ANOVA Model  : This is a regression model containing only a dummy 
explanatory variable. The functional form of this is 
like: 𝑌 = 𝛽 + 𝛽 𝐷 + 𝜇 .  

Autocorrelation : The Classical Linear Regression Model assumes 
that the random error terms are not related to each 
other. In other words, there exists no correlation 
between the error terms associated with each 
observation. This assumption is referred as the 
assumption of no autocorrelation. 

Base or Benchmark 
Category 

: The dummy variable which takes the value 0 is 
referred to as the ‘base or benchmark category’.  

Continuous Random 
Variable 

: It refers to a random variable that can take infinite 
number of values in an interval are called 
continuous random variables. 

Cochrane-Orcutt 
Procedure 

: This is a transformation procedure suggested by 
Cochrane-Orcutt. It is helpful in estimating the 
value of the correlation coefficient between the 
error terms. The transformation, enables the 
application of the OLS method, and yields estimates 
of parameters which enjoy the BLUE property. 
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Confidence Interval 
Approach 

: In order to test the population parameter, a 
confidence interval can be constructed about the true 
but unknown mean. If the population parameter lies 
within the confidence interval, the null hypothesis is 
accepted; otherwise it is rejected. 

Classical Linear 
Regression Model 

: It refers to a linear regression model that establishes 
a linear relationship between the variables, based on 
certain specified assumptions.  

Chow Test : This test visualizes the presence of structural change 
that may result in differences in the intercept or the 
slope coefficient or both. This in referred to as 
parameter instability. For examining this we perform 
Chow Test 

Causal Relationship : The relationship between the variables where one 
can figure  out the cause and the effect between 
the two variables. 

Confidence Interval : It is the range of values that determines the 
probability that the value of the parameter lies 
within the interval. 

Chi-square 
Distribution 

: Chi-square distribution is the distribution which is 
the sum of squares of k independent standard normal 
random variables. 

Composite or Two-
Sided Hypothesis 

: In hypothesis testing, a composite hypothesis covers 
a set of values that are not equal to the given or 
stated null hypothesis. 

Confidence Interval : It refers to the probability that a population 
parameter falls within the set of critical values taken 
from the Table. 

Discrete Random 
Variable 

: It refers to random variables that can assume only 
countable values. 

Distribution Function : Distribution function of a real valued random 
variable gives a value at any given sample point in 
the sample space. 

Deterministic 
Component 

: It represents the systematic component of the 
regression equation. It is the expected value of the 
dependent variable for given values of the 
explanatory variable. 
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Econometric Model : These are statistical models specifying relationship 
between relationships between various economic 
quantities. 

Differential Intercept 
Coefficient 

: In the ANOVA model 𝑌 = 𝛽 + 𝛽 𝐷 + 𝜇 , since 
there is no continuous regression line involved, the 
slope coefficient 𝛽  actually measures by how much 
the value of the intercept term differs between the 
two categories (e.g. male/female) under 
consideration. For this reason, 𝛽  is more 
appropriately called as the ‘differential intercept 
coefficient’. 

Dummy Variable 
Trap 

: Response to a dummy variable like gender 
(male/female), caste (general/SC-ST/OBC), etc. are 
called as categories. Depending on the ‘number’ of 
such categories, we must consider including the 
number of dummy variables in the regression 
carefully. Usually, this should be ‘one less than the 
number of categories’. Failing to do this will land us 
in a situation called as the ‘dummy variable trap’. 
This means we will face a situation of 
multicollinearity with no unique estimates, or 
efficient estimates, of the parameters. The general 
rule for introducing the number of dummies is that, 
if there are m attributes or categories, the number of 
dummy variables introduced should be ‘m – 1’.  

Dummy Variables  : There are variables which are qualitative in nature. 
Also known as dummy variables, these variables are 
referred differently like: indicator variables, binary 
variables, categorical variables, dichotomous 
variables. 

Durbin h-statistic  

 

: The Durbin- Watson technique fails to operate when 
the regression model involves the lagged value of 
dependent variable as one of the explanatory 
variables. In such models, the h – statistic, also 
suggested by Durbin, is useful to identify the 
presence of autocorrelation in the regression model.  

Durbin-Watson Test 
(d-statistic) 

 

: The test helps detect a first order autocorrelation. 
The test statistic employed is:  

𝑑 =
(𝑒 − 𝑒 )

𝑒
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Estimator : A method of arriving at an estimate of a parameter. 

Estimation of 
Parameters 

: This process deals with estimating the values of 
parameters based on measured empirical data that 
has a random component. 

Estimation : The process of estimating any population parameter. 

F-Distribution : It is a right-skewed distribution used for analysis of 
variance. F-statistic is used for comparing statistical 
models and to identify the model that best fits the 
population. 

Forecasting : Forecasting is a technique that predicts the future 
trends by using historical data. The method of 
forecasting is generally used to extrapolate the 
parameters such as GDP or unemployment. 

Goodness of Fit : An overall goodness of fit that tells us how well the 
estimated regression line fits the actual Y values. 
Such a measure is known as the coefficient of 
determination, denoted by R2. It is the ratio of 
explained sum of squares (ESS) to total sum of 
squares (TSS). 

Glejser Test 

 

: The Glejser Test is similar to the Park Test. 
Obtaining ei from the original model, Glejser 
suggests regressing the absolute values of ei, i.e., 

ie on the X variable expected to be closely 

associated with the heteroscedastic variance 𝜎 . 

Goldfeld-Quandt Test : In this method of testing for heteroscedasticity, we 
first arrange the observations in increasing order of 
Xi variable. Next we exclude C observations in the 
middle of dataset. Thus, (n – C)/2 observations in 
the first part and (n – C)/2 observations in the last 
part constitute two groups. We then proceed to 
obtain the respective residual sum of squares RSS1 
and RSS2. The RSS1 represents the RSS for the 
regression corresponding to the smaller Xi values 
and RSS2 to that of the larger Xi values. We conduct 
F-test to check for the presence of 
heteroscedasticity. 

Gauss Markov 
Theorem 

: Under the assumptions of classical linear regression 
model, the least squares estimators are Best Linear 
Unbiased Estimate (BLUE). This means, in the class 
of all unbiased linear estimators, the OLS estimates 
have the minimum or least variance. 
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Hypothesis : It is a tentative statement that we propose to test. It 
is based on the limited evidence. Hypothesis is 
formulated on the basis of economic theory or some 
logic.  

Homoscedasticity : A crucial assumption of the Classical Linear 
Regression Model (CLRM) in that the error term ui 
in the population regression function (PRF) is 
homoscedastic, i.e., they have the same variance 2 . 
Such an assumption is referred to as the assumption 
of homoscedasticity.  

Heteroscedasticity : If the variance of ui is 𝜎 , i.e., it varies from one 
observation to another, then the situation is referred 
to as a case of heteroscedasticity. 

Interactive Dummy : This is a variable like DX in which there is one 
dummy variable and one quantitative variable. It is 
considered in the multiplicative form to enable us to 
see whether the slope coefficients of two groups are 
same or different. The functional form of this type 
of regression is 𝑌 = 𝛽 + 𝛽 𝐷 + 𝛽 𝑋 +

𝛽 (𝐷 𝑋 ) + 𝑢 . 

Jarque-Bera (J-B) 
Test  

: This is an asymptotic or large sample test based on 
OLS residuals in order to test the normality of the 
error term. Coefficient of skewness: S, i.e., the 
asymmetry of PDF. Measure of tallness or height of 
population distribution function: K  

For normal distribution S = 0, K = 3  

Jarque and Bera constructed J-Statistics given by  

 𝐽 = 𝑆 +
( )

 

Linear Regression : In linear regression models the functional form of 
the relationship between the variables is linear. 

Mathematical Model : A description of system using mathematical 
concepts 

Multicollinearity : The classical linear regression model assumes that 
there is no perfect multicollinearity, implying no 
exact linear relationship among the explanatory 
variables, included in multiple regression models. 
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MWD test : This is the test for the selection of the appropriate 
functional form for regression as proposed by 
Mackinnon, White and Davidson. The test is hence 
known as the MWD Test.  

Null Hypothesis : The null hypothesis (also called Strawman 
hypothesis) states that there is no relationship 
between the variables. The coefficients are 
deliberately chosen as zero to find out whether Y is 
related to X at all. If X really belongs in the model, 
we would fully expect to reject the zero-null 
hypothesis H0 in favour of the alternatives 
hypothesis H1 that it is not zero. 

Near or imperfect 
multicollinearity 

: The case when two or more explanatory variables 
are not exactly linear this reinforces the fact that 
collinearity can be high but not perfect.  

“High collinearity” refers to the case of “near” or 
imperfect” or high multicollinearity. 

Null Hypothesis : It is the hypothesis that there is no significant 
difference between specified population, the 
observed difference is mainly due to sampling or 
experimental error. 

Normal Distribution : It is a very common probability distribution. The 
curve is bell-shaped and the area under the normal 
curve is 1. 

Ordinary Least 
Squares Method 

: Ordinary Least Squares (OLS) is a method for 
estimation of the unknown parameters in a linear 
regression model. The OLS method minimizes the 
sum of the squares of the errors.  

Parameters : It is a measurement of any variable. A numerical 
quantity that characterizes a given population 

Prediction  : A regression model explains the variation in the 
dependent variable on the basis of explanatory 
variables. Given the values of the explanatory 
variables, we predict the value of the dependent 
variable. The predicted value is different from the 
actual value.  

Parameter : A quantity or statistical measure for a given 
population that is fixed. The mean and the variance 
of a population are population parameters. 
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p- value : It is the lowest level of significance when the null 
hypothesis can be rejected. 

Power of Test : The power of any test of statistical significance is 
defined as the probability that it will reject a false 
null hypothesis. The value of the power of test is 
given by (1  ). 

Population 
Regression Function 
(PRF) 

: A population regression function hypothesizes a 
theoretical relationship between a dependent 
variable and a set of independent or explanatory 
variables. It is a linear function. The function 
defines how conditional expectation of a variable Y 
responds to the changes in independent variable X. 

Perfect 
multicollinearity 

 

: The case of perfect multicollinearity mainly reflects 
the situation when the explanatory variables and 
perfectly correlated with each other implying the 
coefficient of correlation between the explanatory 
variables is 1. 

Park-Test  

 

: If there is heteroscedasticity in a dataset, the 

heteroscedastic variance 2
i  may be systematically 

related to one or more of the explanatory variables. 

In such cases, we can regress 2
i on one or more of 

such X- variables. Such an approach, adopted in the 
Park-test, helps detect the presence of 
heteroscedasticity. 

Random Variable : A variable which takes on values which are 
numerical outcomes of a random phenomenon. 

Regression : A regression analysis is concerned with the study of 
the relationship the explained or dependent variable 
and the independent or explanatory variables. 

Residual Term : The actual value of Y is obtained by adding the 
residual term to the estimated value of Y. The 
residual term is the estimated value of the random 
error term of the population regression function. 

Ridge Regression 

 

: The ridge regressions are the method of resolving 
the problem of multicollinearity. In the ridge 
regression, the first step is to standardize the 
variables both dependent and independent by 
subtracting the respective means and dividing by 
their standard deviations. 
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Statistical Inference : It refers to the process of deducing properties of 
underlying probability distribution of the parameters 
by analysing data. 

Standard Normal 
Distribution 

: It refers to a normal distribution with mean 0 and 
standard deviation 1. 

Statistical Inference : It refers to the method of drawing inference about 
the population parameter on the basis of random 
sampling. 

Statistical 
Hypothesis: 

: It is an assumption about a population parameter. 
This assumption may or may not be true. This 
statistical hypothesis is either accepted or rejected 
on the basis of hypothesis testing. 

Stochastic Error  : The error term represents the influence of those 
variables that are not included in the regression 
model. It is evident that even if we try to include all 
the factors that influence the dependent variable, 
there exists some intrinsic randomness between the 
two variables. 

Subsidiary or 
Auxiliary Regressions  

 

: When one explanatory variables X is regressed on 
each of the remaining X variable and the 

corresponding 2R is computed. Each of these 
regressions is referred as subsidiary or auxiliary 
regression.  

t- Distribution : It refers to a continuous probability distribution that 
is obtained while estimating mean of normally 
distributed population where sample size is small 
and population standard deviation is unknown. 

Test of significance 
Approach 

: The method of inference used to either reject or 
accept the null hypothesis. This approach makes use 
of test statistic to make any statistical inference. 

Test Statistic : A test statistic is a standardized value that is 
computed from a sample during the hypothesis 
testing. On the basis of test statistics one can either 
reject or accept the null hypothesis. 

Type I Error: : In the statistical hypothesis testing, type I error is the 
incorrect rejection of true null hypothesis. The value 
is given by alpha level of significance.  
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Type II Error : The error that occurs when we accept a null 
hypothesis that is actually false. It is the probability 
of accepting the null hypothesis when it is false. 

Variance Inflation 
Factor (VIF) 

 

: 2R obtained variables auxiliary regression may not 
be completely realiable and is not reliable indicator 
of collinearity. In this method we modify the 

formula of var (𝑏 ) and (𝑏3), var (𝑏 ) =
∑

 

White’s General 
Heteroscedasticity 
Test  

 

: This is a method to test the presence of 
heteroscedasticity in a regression model. In this, the 
residuals obtained from original regression are 
squared and regressed on the original variables, their 
squared values and their cross-products. Additional 
powers of original X variables can be added.  
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