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COURSE INTRODUCTION

This is the first mathematics course you will be studying in the Bachelor’s Degree
Programme. The aim of this course is to develop an understanding of basic
mathematical concepts and techniques that you will require for studying other
mathematics courses of the programme, as well as any further study and work you
undertake in mathematics.

Calculus is divided into two broad areas, differential calculus and integral calculus.
Broadly speaking, differential calculus is the study of change and integral calculus is
about adding up the parts. Differential calculus helps you to find, for example, the
effect of changing conditions on a system being investigated, and hence to gain control
over the system. The process of this mathematical investigation uses the powerful
technique of modelling the phenomena concerned. The models usually involve
differential equations. Differential calculus is useful in formulating models and integral
calculus is used to solve the differential equations associated with the model. Apart
from well known applications in physics, mathematical models based on calculus are
used for the study of population ecology, cybernetics, management practices,
economics and medicine.

In this course we shall focus on integral calculus after we discuss differential calculus.
However, it was integral calculus that developed first historically. This has its origins in
the need for measuring lands for the purpose of revenue collection. It is said that the
Egyptian river Nile changed its course often, and the lands near it, with differently
curved boundaries, were required to be measured again and again for levying taxes.
This led to the development of mensuration in the Egyptian civilisation. We can regard
mensuration as the forerunner of integral calculus. Indeed, one meaning of the word
‘quadrature’, used in integration, is computing the area.

The modern development of calculus began with the work of the famous 17" century
mathematicians, Newton and Leibnitz, in developing differential calculus. One of the
early successes of calculus was the prediction of the period of Halley’s comet. As you
can see, calculus provides a powerful tool for the study of not only such natural
phenomenon, but also artificial entities like the stock market. Over the centuries, many
European mathematicians like Euler, Lagrange, the Bernoullis, Gauss, Cauchy and
Riemann contributed to the development of this subject.

Now, a few words about how this course unfolds. In the first block of this course, you
will be introduced to two basic building blocks of mathematics, namely, sets and
functions. In the process you would recall a lot of related mathematics you studied in
school, including two important coordinate systems for representing and studying
two-dimensional spaces. Next, you will get more than a glimpse of the world of
complex numbers, C. Finally, you will study ways of solving certain polynomial
equations over R.

In the second block, you will begin by studying the properties of real numbers that you
will need again and again. You will also study the concept of limits and continuity,
which play a central role in calculus and, more generally, in mathematics.

In the third block, you will begin your study of differential calculus with the definition of a
derivative and its basic properties. You will study several formulae for the derivatives
of some functions which are used often, like polynomial functions and trigonometric
functions. This block ends with a discussion on higher order derivatives and the
Leibnitz rule for finding higher order derivatives.



In the fourth block, you will find some applications of differentiation. You shall study
how derivatives can help to get information about various geometrical properties of
curves. This block ends with a discussion on the tracing of different types of curves.

In the fifth, and last, block, your focus will be on integral calculus. You will study
concepts of ‘integral of a function’ and ‘primitive of a function’. You will also study the
integrals of common functions like polynomial functions and trigonometric functions.
You will get an opportunity to apply some techniques of integration like the substitution
method, integration by parts and reduction formulae. The block ends with some
applications of integral calculus for measuring lengths, areas and volumes.

Now a word about our notation. Each block has units and each unit is divided into
sections, which may be further divided into sub-sections. These sections/sub-sections
are numbered sequentially, as are the exercises and important equations in a unit.
Since the material in the different units is heavily interlinked, there will be a lot of
cross-referencing. For this we will be using the notation Sec. x.y to mean Section y
of Unit x.

Throughout this course the emphasis will be on techniques rather than on theory. So
you may not find many proofs here. (You will be able to find the proofs of many of the
theorems you study and apply here in our third semester course, Real Analysis.)

Another compulsory component of this course is its assignment, which covers the
whole course. Your academic counsellor at the study centre will evaluate it, and
return it to you with detailed comments. Thus, the assignment is meant to be a
teaching as well as an assessment aid. Further, you will not be allowed to take the
exam of this course till you submit your assignment response at your study centre. So
please submit it well in time.

The course material that we have sent you is self-sufficient. If you have a problem in
understanding any portion, please ask your academic counsellor for help. Also, if you
feel like studying any topic in greater depth, you may consult.

A word of friendly advice here is that to learn the various techniques presented in this
course, you will need to put in a lot of practice in solving problems given in the material.
You should attempt to solve all the exercises in the block as you go along, before you
look up the solution. As a part of the tutorials, we have added miscellaneous examples
and exercises at the end of each block. You should also attempt these exercises. In
addition, you may also like to look up some other books in the library of your study
centre, and try to solve some exercises from these books.

Some useful books and websites are the following:
1. Essential Calculus, by James Stewart, Cengage Publication.
2.  Calculus, by Anton, Bivens and Davis, Wiley Publications.

3. https://brilliant.org/courses/calculus-done-right

4. https://www.mathisfun.com/calculus

5.  www.math.mit.edu/Ndjk/calculus beginners

We have also prepared a video programme, which will be available at your study
centre, called “Limits”, based on the material in Block 2.

Wishing you a happy learning experience,

The Course Team



BLOCK 1 ESSENTIAL PRELIMINARY CONCEPTS

With this block, you are stepping into your study of undergraduate mathematics. You
would have studied mathematics upto Class XlI, wherein you would have studied some
of the concepts that will be covered here. These are included because they are
essential for further study, and recalling them will help you.

To begin with, in Unit 1, you will look at a basic essential concept developed in the 20™
century, namely, that of a set. Here you will get an opportunity to relook operations on
sets and their properties.

Following this, in Unit 2, you will have occasion to recall what a function is, operations
on functions as well as various kinds of functions.

In Unit 3, you will be considering two coordinate systems for two dimensions. The
Cartesian system would be familiar to you, though the polar coordinate system may
seem new. Linked with this is Unit 4, which focuses on introducing you to complex
numbers and their properties. The link between the two units will become clear as you
study them.

Finally, in Unit 5 you will study various polynomials and how to find their roots. In
particular, we will be discussing polynomials upto degree 4.

At the end of this block you will find a set of miscellaneous exercises related to the
concepts covered in this block. Please do study them, and try each exercise yourself.
This will help you engage with the concepts concerned and understand them better.

A word about some signs used in the unit! Throughout each unit, you will find
theorems, examples and exercises. To signify the end of the proof of a theorem, we
use the signlll . To show the end of an example, we use . Further, equations that
need to be referred to are numbered sequentially within a unit, as are the exercises
and figures. E1, E2, etc. denote the exercises and Fig. 1, Fig. 2, etc. denote the
figures.
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NOTATIONS AND SYMBOLS (used in Block 1)

w.r.t.
s.t.
<(3)
> (2)
3

A4

S 110
FiX oY

{x|x satisfies P}
(X)

IxI

Rez

Imz
Arg z

Z
degf

R™ (C")

belongs to (does not belong to)

is contained in (is properly contained in)

is not contained in (does not contain)
contains (properly contains)

the union of the sets A and B

the intersection of the sets A and B

the complement of the set B in the set A
The Cartesian product of the sets A and B
complement of the set A

the set of natural numbers

the set of integers (non-zero integers)

the set of rational numbers (non-zero rational numbers)

the set of real numbers (non-zero real numbers)

the set of complex numbers (non-zero complex numbers)
empty set

implies (implies and is implied by)

if and only if

therefore

with respect to

such that

is less than (is less than or equal to)

is greater than (is greater than or equal to)
there exists

for all

a,+a,+---+a,  (a,a,...a)

f is a function from the set X to the set Y

the set of all x such that x satisfies the property P
the power set of the set X

modulus of the real, or complex number, x

real part of the complex number z

imaginary part of the complex number z

the principal argument of the complex number z
the complex conjugate of the complex number z
degree of the polynomial f

RxRx...xR (n times) (CxCx...xC (n times))



Greek Alphabets

o  Alpha K  Kappa c,Y  Sigma
B  Beta A Lambda (Capital
Y Gamma L Mu sigma)
d Delta v Nu T Tau

€  Epsilon E X V) Upsilon
C Zeta o  Omicron () Phi

n Eta 7, I1 Pi (capital X Chi

0  Theta pi) v Psi

L lota p Rho ) Omega



UNIT 1

SETS AND OPERATIONS ON THEM \

Structure Page Nos.
1.1 Introduction 9
Objectives
1.2  Sets 10
1.3  Subsets 15
1.4  Venn Diagrams 17
1.5  Operations on Sets 19
Complementation
Intersection
Union
Cartesian Product
1.6 Laws on Operations 28

Distributive Laws
De Morgan’s Laws

1.7  Summary 32
1.8 Solutions/Answers 33

1.1 INTRODUCTION

Welcome to the world of algebra! We start our formal discussion with a basic
entity necessary for doing any algebra. So, consider the collection of words
that are defined in a given dictionary. A word either belongs to this collection
or not, depending on whether it is listed in the dictionary or not. This collection
is an example of a set, as you will see in Sec. 1.2. When you start studying
any part of mathematics, you will be working with one or more sets. This is
why we want to spend some time in discussing some basic concepts and
properties concerning sets. These objects were first defined by the German
mathematician Cantor. To start with, you will see various examples of sets
and different ways of describing sets.

Then, in Sec. 1.3, we will discuss ‘parts’ of a set, which also form sets. In
Sec. 1.4, we will consider Venn diagrams, a pictorial representation of inter-
relationships between sets.

You must be familiar with the basic operations on real numbers — addition,
subtraction, multiplication and division. When we apply any of these
operations, we combine two real numbers at a time to obtain another real
number. For instance, if r and s are two real numbers, then r—s is also a

Fig. 1: Georg Cantor
(1845-1918)
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real number. In a similar way, we can obtain new sets by applying certain
operations on two given sets at a time. In Sec. 1.5, we shall discuss four
operation on pairs of sets, namely, the complement of a set A in a set B, the
union and intersection of A and B, and the Cartesian product of A and B. The
operations of union, intersection and Cartesian product can be naturally
applied to any number of sets, too, as you will see.

Finally, in Sec. 1.6, we shall familiarise you with certain laws relating to these
operations.

As mentioned earlier, a knowledge of the material covered in this unit is
necessary for studying any mathematics course. So please study this unit
carefully.

And now we will list the objectives of this unit. After studying the unit, please
read this list again and make sure that you have achieved the objectives.
One way of ensuring this is to try each exercise given in the unit as you get
to it. Do not go further, till you have done the exercise to your satisfaction.

Objectives
After studying this unit, you should be able to:

identify a set;

o describe sets by the listing method or the property method;
o give examples of finite and infinite sets;

o represent relationships between sets by Venn diagrams;

o explain, and apply, the operations of complementation, intersection,
union and Cartesian product on pairs of sets;

o prove, and apply, basic results pertaining to these operations;

o state, prove and apply, the distributive laws pertaining to these
operations;

o state, prove and apply, the De Morgan’s laws.

1.2 SETS

You may have come across various collections of objects, like a stamp
collection, a coin collection, a gathering of people interested in ‘kabaddi’, and
so on. In mathematics some of these collections are considered ‘sets’, and
some are not. Let us see why.

Consider the coin collection of the National Museum, Delhi. Given any object,
you can firstly see whether it is a coin or not. Next, if it is a coin, you can
easily find out whether it is part of the Museum’s collection or not. Also,
whatever conclusion you reach will be the same conclusion reached by any
object (person) in any part of the world. So, there is a universal agreement
about whether an object belongs to this collection or not. This certainty comes
because the collection is ‘well-defined’.

So, a well-defined collection is one for which given an object, it should be
quite clear to anybody, anywhere, whether the object belongs to the collection
or not, regardless of who is deciding this. So, for example, the collection of all
female pilots who have worked in Air India from 2000 on is well-defined
because any object (person) is/was either a female pilot working in Air India in



this period or not, and accordingly she/he does or does not belong to the
collection. On the other hand, the collection of all intelligent human beings is
not well-defined. Why? Well, a particular human being may seem intelligent to
one person and not to another. So, there is no objective criterion for agreeing
on who is intelligent and who is not.

This leads us to the following definition.
Definition: A well-defined collection of objects is called a set.

Let us look at some more examples of sets, which you may have already
come across. You will be using them a great deal in this course, and in the
other mathematics courses you take.

i) The set of natural numbers, denoted by N.
i)  The set of integers, denoted by Z.

i) The set of rational numbers, denoted by Q.

iv)  The set of real numbers, denoted by R .

In Unit 4 you will be studying another set of numbers, namely, the set of
complex numbers, denoted by C.

Doing the following exercises will help you to assess if you have understood
the concept of a set.

E1) Which of the collections mentioned below are sets?
i) The collection of all people interested in ‘kabaddi’.

i)  The collection of all those people who have been to Mars. . ,
A prime number is a

i)  The collection of prime numbers. natural number other
than one, whose only
factors are one and
v)  The collection of all rectangles that are not squares. itself.

iv)  The Asiatic Society Library collection.

vi)  The collection of all funny movies.

E2) Suppose you are given a stamp album. Is the collection of stamps in
that album a set? Give reasons for your answer.

Now consider the objects in a set, for example, the set of all female pilots in Air
India. Any such female pilot is a ‘member’ of the set, and a person who is/was
not a female pilot with Air India is not a ‘member’ of the set, according to the
definition below.

Definition: An object that belongs to a set is called an element, or member,
of that set.
For example, 2 is an element of the set of natural numbers, N, and (-2) is

not an element of N.

People normally use capital letters A, B, C, etc. , to denote sets. The lower

case letters a, b, ¢, X, y, etc., are usually used to denote elements of sets. The symbol ‘< * stands
We symbolically write the statement ‘a is an element of the set A’ as ae A. fS%r b:sl?ggitotﬁelt was
If ais not an element of A, that is, if a does not belong to A, we write this Itaﬁgn matheymatician
factas ag A. Peano (1858-1932).

So, for example, if A is the set of prime numbers, then 5 A and 9¢ A. .



Recall that \/;
denotes the non-
negative square root
of the non-negative
real number a .

Remember that if you
write an opening bracket
‘{” to start a set, you
must write its
corresponding closing
bracket ‘}’ after the
elements of the set are
listed.

‘... is the convention for
showing that the
elements continue

accordingly.
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Now, you know that the square of a real number is always non-negative. So,
will the collection of all real numbers whose square is negative be a set? Is
there any such number? There isn’t. Therefore, the collection does not have
any element. However, it is well-defined because it is clear to anybody
anywhere that this collection has no element. So, this collection is a set, but
with no member, and it has a special name.

Definition: A set which has no element is called the empty set (or the void
set, or the null set). It is usually denoted by ().

Try the following exercise now.

E3) Which of the following statements are true? Change those that are false
to obtain correct statements.

) 02eN
i) V9eZ
i) J2eR
iv) V2eQ

v) The set of all squares that are not rectangles is ()

vi) Any circle is a member of the set in E1 (v) above.

A set which has at least one element is called a non-empty set. We usually
describe a non-empty set in two ways — the listing method and the property
method.

Listing Method: In this method, we list all the members of the set within curly
brackets. For instance, the set of all natural numbers that are factors of 10 is

{1, 2,5,10}. Using this notation, some people also denote the empty set by
[

But what if the set has too many elements to be able to write them all down?
In this case we list some of the elements of the set, enough to see/show some
pattern which its elements follow. For example, the set N of natural numbers

can be described as N={1,2,3,...}, where you can see the pattern, namely,

the next element is obtained by adding 1 to the previous one.
Similarly, the set of all even numbers strictly lying between 10 and 100 is
{12, 14, 16 ,..., 98}. (Note that ‘strictly’ lying between two numbers a and

b means that a and b are not included.)

This method of representing sets is called the listing method (or tabular
method, or roster method).

Property Method: In the second method of describing a set, we describe its
elements by a property common to all of them. As an example, consider the
set S of all the stars in the sky. Here the property common to all of them is
that each is a star. So, we can write this as

S={s, where s is a starin the sky}.

In formal mathematics we write this as S={s|s is a star in the sky}.



The vertical bar after s denotes ‘such that’. (Some authors use *:’ instead of ‘I’
for ‘such that’.)

Now, consider the set T of all natural numbers which are multiples of 5. This
set T can be written in the form

T={x|xe N and x is a multiple of 5}.

This states that T is the set of all x such that x is a natural number and x is
a multiple of 5. We can also write this in a slightly shorter form as

T={xe N|x is a multiple of 5}.

This method of describing the set is called the property method (or
set-builder method).

In some cases, we can use either method to represent the set under
consideration. For instance, the set T above, can be described by the roster
method as T =15, 10, 15, ...}.

Again, the set E, of all natural numbers less than 10, can be described as

E={1,2,3,4,5,6,7,8,9 } (by the listihg method)
E ={x|x is a natural number less than 10}

E={xe NIx <10} (by the property method).
E={xlxeZ and 0<x <10}

Sometimes, however, it is difficult to represent a set by both methods. For
example, take the set of stars in the sky. How would you represent it by the
listing method?

Again, consider the collection of three elements { Kochi, 5, w}. Firstly, is this

. - . . . " Th t thod
a set? Since this is a well-defined collection of three objects, it is a set. Car? Oprr]tlvypgreyu?e% fgr sets
So, how would you represent this set by the property method? The three whose elements have a

objects do not appear to have any common property except that they belong common property.
to the given set. So the property method won’t work here.

Now, consider the set E, represented above by two methods. Instinctively,
you can see that both these sets are the same. How do we say this more

formally?
Definition: Two sets S and T are called equal, denoted by S=T, iff every ‘iff” is short for ‘if and
element of S is an element of T and every element of T is an element of S. only if’.

So,if A={1,2,3,3}, B={1,2,3}and C={2,1,3},are A=B and B=C?
The answer to both questions is ‘yes’, since the elements are the same in all 3
sets.

This leads us to the following remarks.

Remark 1: While listing the elements in a set, we do not gain anything by
repeating them. Therefore, the convention is that we do not repeat the
elements in a set.

Remark 2: Changing the order in which the elements are listed in a set does
not alter the set.

Remark 3: There can be several properties that define the same set. For
example, two ways of describing the set {2} by the property method are

{x13x—-1=35} or {x|x is an even prime number}.
13
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Why don’t you do the following exercises now?

E4) Describe the following sets by the listing method, if possible

i) {x e Z1x is the largest negative integer}
i) {xeZl3x-5<19}
i) the set of all the letters in the English alphabet.
E5) Describe the following sets by the property method, if possible.
) {1,4,9,16,.}
i)  {Indira Gandhi National Open University, w, 100'”}
iy  {...—6,-4,-2,0,2,4,6,..}
iv) O

v)  {September, April, June, November}

E6) Check whether ornot {xe NIx*=9}={xe RIx*>=9}.

Let us now consider one way of classifying sets, depending on their ‘size’, in a
sense.

Consider the set S, of students of IGNOU enrolled in the course ‘Calculus’.
How many elements do you think this set has? It may have anywhere up to
10,000 elements. So it is a set with finitely many members. Similarly,

{xe RI12x*-5x+1=0} has two elements, and hence is finite.

Now consider the set Z . Does this have finitely many members? For any
positive integer n, you can always find an integer n+1 (or for a negative
integer n, you can find n—1). This means that there is no end to the number
of integers we can find. So, it is not possible to count all the elements of this
set, and hence it does not have finitely many elements.

These examples lead us to the following definitions.

Definitions: i) A non-empty set with finitely many elements is called a finite
set. A set which is not finite is called an infinite set.

i)  The number of elements in a finite set A is called the cardinality of the
set A, andis denoted by | Al, or card(A). (We shall talk about the

cardinality of infinite sets later.)
i) A set with only one element is called a singleton.
Regarding cardinality, what follows is an important point.

Remark 4: By convention, we treat the empty set as a finite set, with
cardinality zero.

An example of a finite set is the set of stars in the sky. Do you agree? Well, if
you try and count them, they seem to be far too many to count. However,
according to present day astronomers they can be counted, and their number
is approximately 100 billion.



Yet another example of a finite set is {(, —x/E, IGNOUY}, with cardinality 3.
On the other hand, N, Z, Q, R, C are all infinite sets.

Remark 5: Note that the set {0.3}, for example, is a singleton, and is not the

same as the number 0.3. For any object x, there is a difference between
x and {x}. Infact, xe {x}.

Why don’t you try an exercise now?

E7) Which of the following sets are infinite? Give reasons for your answers.
i) The number of spoons of water in a given drum of water.
ii) {x+3Ixe Q}

i) {xeRlxg Q)

iv)
v)  {N}
vi)  The set of points on the circumference of a circle.
vi) Q.
E8) Which of the following statements are true? Give reasons for your
answer.
h {R}=R

i) {Q} is a singleton.

Now, you have been working with the sets N and Z . You would have noted
that every element of N is an element of Z, but not vice versa. Is there a
similar relationship between other sets? Let us see.

1.3 SUBSETS

Consider two sets A and B, where
A = the set of all students of IGNOU, and
B = the set of all female students of IGNOU.

Now, every female student of IGNOU is certainly a student of IGNOU. So,
each element of B is also an element of A. In such a situation, we say that B is
contained in A.

Of course, IGNOU also has some male students! So, there is at least one
element x in A such that x does not belong to B. Mathematically, we write this
as

dxe A st x¢B.

This is read as ‘there exists x belonging to A such that x does not belong to ‘3" denotes ‘there exists’.
B’ ‘s.t.’ is short for ‘such that'.

So, every element of B is an element of A, but A has some more elements
too. In this situation we say that B is properly contained in A.

So, for example, would you agree that N is properly contained in Z ?

In general, we have the following definitions.

Definitions: i) A set A is a subset of a set B if every element of A belongs to
B, and we denote this fact by A < B. In this situation, we also say that

A is contained in B, or that B contains A, denoted by B 2 A. Here,
we also say that B is a superset of A.

15



There are infinitely many
pairs of sets A and B
such that A ¢ B and

Bz A.

O c A, forany set A.

‘< ' denotes ‘implies
and is implied by’, or ‘is
equivalent to’.

16

ii) If AcB and 4 ye B such that y¢ A, then we say that A is a proper
subset of B (or A is properly contained in B). We denote this by
AcB,or A; B.

i) If Xand Y are two sets such that X has an element x which does not
belong to Y, then we say that X is not contained in Y. We denote this
factby X Y. So, X ¢ Y implies that 3xe X s.t. xe¢ Y.

Let us look at a few examples of what we have just defined.

Example 1: Consider the set A={1,2,3}.Is ACA? Is AgA ? Give
reasons for your answer.

Solution: Since every element of A is certainly in A, we find that A C A.

Also, there cannot be any element of A thatis notin A. Therefore, A
cannot be a proper subset of itself.

* k%

This example leads us to the following remark.

Remark 6: For any set A, you can show that A < A by using the same

reasoning. Thus, any set is a subset of itself. Also, no set is a proper
subset of itself. (Why?)

Now consider the following example.

Example 2: Give an example of two sets, neither of which is a subset of the
other.

Solution: Consider the sets A ={,—1} and B=1{0,1,2}.
Is AcB? Wefind (—1)e A suchthat (-1)¢ B. .A g B.
Also, BZ A. (Why?)

*kk

Note that given any two sets A and B, one and only one of the following
possibilities is true.

i) AcB,or
i) AgB.
Using this fact, we can show that the empty set () is a subset of every set.

Now, let us go back for a moment to the point before Remark 1, where we
defined equality of sets. Let us see what equality means in terms of subsets.
Consider the sets

A = the set of even natural numbers less than 10, and

B=1{2,4,6,8}.

Every member of A is a member of B, and vice versa. Thatis, Ac B and
B c A. But, by our definition, we also note that A =B.

So, we find that A =B is equivalentto (A =B and B c A) taken together.

We write this as
A=B< (AcB and Bc A). Infact, this is true for any two sets.

Remark 7: For any two sets A and B, A=B< AcCB and BC A.



Try the following exercises now. While doing them, remember that to show
that A c B, for any two sets A and B, you must show that if ae A, then
acB,i.e, ac A=aeB.

Also, to show that A ¢ B, you must show that there is at least one element
in A thatisnotin B, i.e., 3xe A suchthat x¢ B. The set of all subsets of

a set A is called the
power set of A.

‘=’ denotes ‘implies’.

E9) Write down all the subsets of {1,2,3}. How many of these contain

i) no element, ii) one element, iii) two elements,
iv) three elements, v) more than three elements.

E10) Show thatif Ac B and Bc C, then A c C. (This shows that ‘c’is a
transitive relation, as you will see in Unit 2.)

E11) Give a superset of the set {IGNOU, 0.7, Mahatma Gandhi}.

So far you have seen two methods of describing sets. There is yet another
way of representing sets and the relationships between them. This is what we
discuss in the next section.

1.4 VENN DIAGRAMS

It is often easier to understand a situation if we can represent it pictorially. To
ease our understanding of many situations involving sets and their
relationships, we represent them by simple diagrams, called Venn diagrams.
An English logician, John Venn, invented them. To be able to draw a Venn
diagram, you would need to know what a universal set is.

Consider a situation involving two or more sets, for example, the set D of

X . . A . Fig. 2: John V
female film directors, and the set S of female scientists. Then, we first look for 'g (1%32_132;)

a convenient superset of all the sets under discussion. For example, here we
can take this to be the set of all women. We call this superset a universal
set, and denote it by U. So here our universal set U is the set of all women.
This is because U contains D as well as S. We could also have taken U to be
the set of all humans, which would be a larger superset.

Consider another situation involving the sets of integers and rational numbers.
Here we could take the set of real numbers as our universal set. We could
also take Q@ as our universal set, since it contains both Z and Q.

A universal set is not
unique.

Remark 8: As you have seen, we have several possibilities from which we
pick one as a universal set in a given situation. We usually take our universal
set to be just large enough to contain all the sets under consideration.

Now, let us see how to draw a Venn diagram, using an example. To clarify
what we have just said, consider the following example.

Example 3: Draw a Venn diagram to represent the sets
A={1,2,3},B={3,4,5},C={6,7}, with U={1,2,...,10}.

Solution: Let us denote A by a circle, B by an ellipse and C as another
closed region. The points 8,9 and 10 don’t lie in any of A, B or C, but they

are in U. Note that 3 belongs to both A and B . Therefore, it lies in the circle
as well as the ellipse. So the circle and ellipse have a common region. Also
note that A and C do not have any elements in common. Therefore, the
17



Note that, in Fig. 3, we
could have
represented B and C
in the shape of circles
also, or any other
shape.

regions representing them do not cut each other. For the same reason the
regions representing B and C do not cut each other. We represent the
universal set U by a rectangle enclosing all these regions and points, as in
Fig. 3.

u

Fig. 3: A Venn diagram

* k%

Remark 9: Note that the relative areas of the regions in the Venn diagram do
not actually represent the relative cardinalities of the sets concerned. For
instance, the regions representing A and B in Fig. 3 do not have the same
area though A and B have the same number of elements.

So, in general, how would we draw a Venn diagram? Suppose we are
discussing various sets A, B,C,.... They may be finite or infinite. We choose
a universal set U. So, Ac U, Bc U, Cc U, and so on. We show this
situation in a Venn diagram as follows:

The interior of a rectangle represents U. The subsets A,B,C, etc., are
represented by the interiors of closed regions lying completely within the
rectangle showing U . These regions may be in the form of a circle, ellipse, or
any other shape. Further, we assume that any enclosed area in a Venn
diagram represents a non-empty set.

Now, what will a Venn diagram corresponding to the situation
P={2,3,57,11,...} € Z look like? Well, we can just take Z to be our

universal set. Then the Venn diagram in Fig. 4 is one such diagram. If we take
another set U that properly contains Z as our universal set, say QQ, then we

get the Venn diagram in Fig. 5. So both Venn diagrams represent the
relationship between the set of primes and Z .

Try these exercises now.

Z
Fig. 4
u
Z
Fig. 5

E12) How would you represent the following situation in a Venn diagram?
The set of all rectangles, the set of all squares and the set of all
parallelograms.

E13) Draw a Venn diagram to show three sets A, B and C, where A and C
have some common elements, B is infinite and C is finite.

So, what is the purpose of a Venn diagram? Well, consider Fig. 6. Just one
look and you know the broad situation — there are 4 sets A, B, C, D, of which



A has no element in common with the others; B and C have common
elements; C and D have common elements; B and D have no common
elements. This single visual gives us so much information.

That is the utility of these diagrams.

u

Fig. 6

Now that you are familiar with Venn diagrams, let us consider various ways in
which we can create new sets from two or more sets given to us.

1.5 OPERATIONS ON SETS

Consider two sets A={-1,1} and B= {1, % % i } . We can obtain other

sets from them in several ways, for example, by considering the elements in
A that are notin B, or by taking the elements common to both A and B,
etc. These are examples of operations on these sets. In this section, we shall
discuss four operations on sets that you will be using very often.

1.5.1 Complementation

Consider the sets A and B above. There are elements of B that do not

.11
belongto A, like —, 3’ etc. These elements form a set, namely,

1 11
{5 5 Z } Similarly, there are elements in A that are not in B, which
form a set, namely, {—1}. This way of obtaining a third set from two given sets
is defined below.

Definition: Let A and B be two sets. The complement of A in B, denoted
by B\A, andread as ‘B complement A, is the set of elements in B which

are not elements of A, thatis, {xe Blx¢ A}.

Similarly, A\B={xe Alxe¢ B}.

In the special case when B is the universal set U, B\ A is U\A. This setis
called the complement of the set A, and is denoted by A" or A°.

If you look at Fig. 7, the unshaded part in the Venn diagram represents
A°=U\A. Infact, this diagram also shows us that xe A if and only if

Fig. 7

19




B\ACB
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x¢ A. Similarly, the unshaded area in Fig. 4 represents the set
P={2,3,5,7,11,...}, and the shaded area represents Z \P.

Remark 10: Note thatif A B, then, A\B =, since there is no element in
A that is not an element of B.

Try these exercises now.

E14)i) Represent the following sets in one Venn diagram:
The set P of all prime numbers, the set Z and the set Q\Z.

i) Isthe set Z\P finite or infinite? Is the set P\ Z finite? Give
reasons for your answers.

E15) Let A be any set. Give the sets A\A,Q\A, A\ and (A°)".

E16) Give an example of sets A and B such that
i) A\BgB.
ii) A\BcB.

Let us now consider another operation on sets, namely, the intersection of two
or more sets.

1.5.2 Intersection

Let us consider N and {0, 1}. Are there any elements common to both these
sets? For instance, 1 belongs to both. In fact, this is the only element
common to both. Thus, {1} is the intersection of the sets N and {0, 1},
according to the definition below.

Definition: Let A and B be two subsets of a universal set U. The
intersection of A and B will be the set of elements of U that are common to
both A and B. This is denoted by A N B, and read as ‘A intersection B'.
Thus, AnB ={xe Ulxe A and xe B}.

To clarify this operation further, consider the following example.

Example 4: Let S be the set of prime numbers and T be the set
{xe ZI|x divides 10}. Whatis SNT ?

Solution: We take Z to be our universal set. Then
S N'T =set of those integers that are prime numbers as well as divisors of 10
={2,5}.

* k%

Example 5: Let A be the set of all human beings living in Bihar, B be the set
of all women and C be the set of all Indian cities. Describe A NB and
ANC.

Solution: We can take U to be the set of all human beings and all the cities
of India. Then A N B is the set of all women living in Bihar, and A N C is the
empty set.

* k%

You should be able to do the following exercise now.



E17) Obtain the sets ZNQ, QNZ,ZN7Z and ZN Q. In each case, clearly
state what U is.

While solving E17 you may have noticed certain facts about the operation of
intersection. We explicitly list them in the following theorem. You will study
the proofs of some of them, and then prove the rest yourself.

Theorem 1: For any two sets A and B in a universal set U,

)  ANBcA
i) ANBCB
il AcB=ANB=A
iv) ANA=A

V) ANn@P=0=BNn O
vii ANU=A,BNU=B

viil AnB=BnNA (i.e., the operation of intersection of sets is
commutative.)

vii) A\B=ANB°
ix) If C isasubsetof U suchthat Cc Aand Cc B,then Cc AnB.

Proof: We will prove (i) and (ii), and leave you to prove the rest (see E18).
So, to prove these facts, we need to show that every element of AnB is an
element of A as well as of B. For this, let xe AN B. Then, by definition
xe A and xe B.

This is true for any element x of AnB.

Thus, AnBc A and AnB c B. So we have proved both (i) and (ii). W

Remark 11: The operation of intersection is meaningless unless we are clear
about our universal set. However, we usually tend not to write the universal
set explicitly, and assume it as understood.

Also note that if, for example, in Example 4 we had taken the universal set to
be Q, we would still have got SNT ={2, 5}. Thus, the choice of the
universal set does not change the set SNT . In fact, the intersection of two

sets just involves the elements in these two sets, and hence is independent of
the choice of the universal set.

Now, using (i) and (ii) of Theorem 1, try to do the following exercises.

E18) Prove (iii) — (ix) of Theorem 1.

E19) Does Theorem 1 (ix) remain true if we replace ‘c’ by 7@ everywhere?

Give reasons for your answer.

Now, consider the set Q~ of negative rational numbers and the set Q" of

positive rational numbers. Then Q™ N"Q*=Q, that is, they have no elements
in common. This pair of sets is an example of what we will now define.

21



Fig. 8

gr

Fig. 9: The shaded
portion represents

AnNnBNC.

Vv denotes ‘for all’, or

‘for every'.
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Definition: Let A and B be two sets such that AnB= (. Then A and
B are called mutually disjoint (or disjoint).

For example, the sets A and A° in Fig. 7 are disjoint. In fact, for any set A,
ANA‘=0. (Why?)

Now let us represent the intersection of sets by means of Venn diagrams.
Consider Fig. 8. The shaded region in Fig. 8 represents the set A N C, which

is non-empty, as you can see. Also note that the regions representing A and
B do not overlap, thatis, AnB = (), thatis, A and B are disjoint. From
this diagram, we can also see that neitheris A < C, noris C < A. Further,
both C\A and A\C are non-empty sets. See how much information a Venn
diagram can convey!

Now, go back to Fig. 4 for a moment. What situation does it represent? It
shows two sets A and B, with A € B. So, the shaded area shows that
ANB=A.

So far we have considered the intersection of two sets. Now let us consider
the intersection of more than 2 sets, through an example first.

Example 6: Let A, B and C be the sets of multiples of 3, 6 and 10 in N,
respectively. Obtain AN BN C. Also draw a Venn diagram to represent all
these sets.

Solution: Here A ={3xI1xe N}, B={6xIxe N}, C={10x|x e N}.

Letustake U=N.
A N BN C will consist of all those natural numbers that belong to all three

sets, A, B and C. Thus,
ANBNC={xeNI3, 6and 10 divide x}
={xe N|x=3a, x =6b, x =10c for some a, b, ce N}
={xe N30 divides x} (since 30! x iff ‘3, 6 and 10 divide x’)
={30ylye N}. (Did you notice that 30 is the Icm of 3, 6, 10 ?)
Now consider the Venn diagram in Fig. 9, where we show A, B, C and
ANBNC in N. Note here that Bc A and A\B does not intersect C.

* k%

This example, and your understanding of intersection, will have helped you
develop a definition of the intersection of 3 or more sets. Does this match the
definition we now give?

Definition: The intersection of n sets A, A,, ..., A inauniversal set U is
defined to be the set {xe Ulxe A, Vi=1,...,n}. This is denoted by

A NA,N..nA,or )AL

i=1
Let us look at another example involving the intersection of 3 sets.
Example 7: Let S = {Re Q

R=l} and T:{l
q q 2 n

Further, find two sets A and B, different from S or T, such that
ANnB=SNT.

ne N}. Find SNTNQ.



Solution: Note that SCc Q, T < Q. Therefore,
SNTNQ={xeQlxeS and xe T} =SNT, since every element of S or of
T is already an element of Q.

Now take xe SNT. As xe€ S, x=L , for some p, q with 2p=q, that s,

q
p
x=—,p#0 .
2p P
1
As xeT,x=— forsome ne N.
n
p 1 _ 1
So, — =— shows that n=2, that is, x=—.
2p n 2

Therefore, SNTNQ=SNT :{%} .
Now for the second part of the problem. We can find many such sets A and

B . For instance, takeA:{xe]R xs%} and Bz{xe@ xzé}.

Checkthat AMB=SNT.

* k%

Try the following exercises now.

E20) Let A={1,2,3,4},B={3,4,5,6} and C={1, 4, 7, 8}.
Determine AnB N C. Represent all these sets in a Venn diagram.
Also verify that

) AnNBNC=(AnB)NC,
i) AnBNC=AnNnBNO),
i) ANBNC=ANnCnB.

E21) If A={6nlne N}, B={4nlne N} and C is the set of prime numbers,
then find AnBNC.

What you have shown in E20 is not only true for those sets; it is true for any
three sets A, B and C. (i) and (ii) say that N is an associative operation.

When we combine this with (vii) of Theorem 1, we see that we can obtain the
intersection of any n sets by intersecting any two of these sets at a time.

For example, if A, B, C, D are sets, then
ANBNCND=(ANnB)Nn(CND)

=BNC)N(AND), etc.

Thus, we choose to combine those sets, whose intersection helps us to find
the overall intersection more quickly.

Let us now look at another operation on sets.

1.5.3 Union

Let us again come back to the sets N and {0, 1}. You have seen that

23



Fig. 10: The lined
regionis A UB, of
which the double lined
regionis AnB.

Fig. 11: The shaded
regionis NUZ, i.e.,
Z .
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N\{0, 1} ={2, 3,4, ...} and Nn{0, 1} ={1}. Now, consider the set consisting
of all the elements in N along with all the elements in {0, 1}. What will this

setbe? It willbe {0,1,2,...}, i.e., the set of whole numbers W. Note that 1 is

repeated when we take the elements of both the sets, but we do not repeat an
element in listing a set, as noted in Sec. 1.2.

Again, consider the sets A={xe RI1x <10} and B={xe RIx>10}. Take

the set consisting of all the elements in A and all those in B. This willbe R
because any real number will be either less than or equal to 10 or greater than
or equal to 10, and 10 will belong to both A and B.

These examples lead us to define the operation we are undertaking in them.

Definition: Let A and B be two sets in a universal set U. The set of all
those elements of U which belong eitherto A, orto B, orto both A and B,

is called the union of A and B. This is symbolically written as A UB, and

is read as ‘A union B'.
Thus, AuUB={xe Ulxe A or xe B or xe ANnB}.

However, you know that AnNBc A. So, xe AnB = xe A. Therefore, we

remove the repetition, which is AN B, and write
AuUB={xlxe A or xe B}.

So, for example, at the beginning of this sub-section you have seen that
NuU{0,1}=W and {xeR|x SlO}u{xe R| X 210}= R.
Before going further we make a remark.

Remark 12: Since A U B contains all the elements of A as well as of B, it
follows that
AcAuB, Bc AuUB.

In fact, ANBc Ac AUB.
We can show this fact in a Venn diagram, as in Fig. 10.

Now let us look at another example.

Example 8: Find NUZ . Also show this in a Venn diagram .

Solution: N={1,2,3,...} and Z={...,-3,-2,-1,0, 1, 2,3, ...}.

We want to find NUZ ={xlxe N or xe Z}.

Since NcZ,xe N=>xe Z. Thistellsusthat NUZ ={x|xe Z}="Z.

The Venn diagram is given in Fig. 11, in which Z is taken as the universal set.

* k%

Example 8 is a particular case of the general fact that we now state and prove.
Theorem 2: For any two sets A and B, AcB< AuB=B.

Proof: Here we have to prove two statements.

Oneisthatif Ac B,then AuUB=B.

The other is the converse, namely, if AuUB =B, then AcB.
First, let us assume A < B, and let us prove that AuUB =B.
For this, take any xe A UB.

If xe A, then xe B, since A CB.

If x¢ A, thentoo xe B, since xe A UB.



So, every element of A UB is an element of B, thatis, AUB c B.
Also, we know that B c A U B. Therefore, using Remark 7, we have proved

that AUB=B.
Conversely, assume that AuB =B. We also know that Ac AUB.
Hence, A < B, which is what we wanted to prove. [ |

You can use this theorem while solving the following exercises.

E22) For any three sets A, B and C, in a universal set U, show that

i) AUA=A.

ii) AUB=BUA, thatis, the operation of union is commutative. You can also see the video
at

i)  AUQ=A. https://www.youtube.com/
v) If AcC and BCC,then AUBCC. wateh?v=uR70knMr2Hg

v) AUA"=LU.

E23) Let U be thereallineR, A={xe RI0<x <1} and
B={xe RI1<x<3}. Determine AUB.
Also find two distinct subsets S and T of R, different from A and B,
such that SUT = A UB. Justify your choice of S and T.

E24) What can you say about the number of elements in A and B if
AUB=0Q?

Just as in the case of ‘’, we can define the union of 3 or more sets, in a very
natural way.

Definition: The union of n sets A, A,,..., A inauniversal set U is the

n

set {xe Ulxe A, for some 1 suchthat 1<i<n}. This is denoted by

A UA,U..UA or A,

i=1
Let’s consider an example.

Example 9: Find AUBuUC, where A={1, 2,3}, B={2, 3, 4, 5}, C={1}.
Also, check whether AUB=(A\B)U(ANB)uU(B\A)or not.

Solution: You can checkthat AuUBUC={l, 2,3, 4, 5}.
Also, AuB={1,2,3,4,5}, A\B={1}, B\A={4,5}, AnB={2, 3}.
Therefore,
(A\B)U(AnB)U(B\A)={1,2,3,4,5}.
=AUB.

* k%

In the example above, you can also see that A UB U C is the same as
(AuB)UC aswellas AUBUCQO).

What we have noted in Example 9 are particular cases of the general facts

that we ask you to prove in the following exercises. 75



The operation of union of
sets is associative.

A\B ANB B\A

Fig. 12: AUB is the
whole filled-in region.

Fig. 13: René Descartes

If a#b, (a, b) and (b, a)
are different ordered pairs.
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E25) For any three subsets A, B, C of a setU, show that
AuBUC=AuB)UC=AUBUC).

E26) For any two sets A and B, show that
AUB=(A\B)U(ANB)U(B\A).
(We depict this situation in the Venn diagram in Fig. 12.)

What you see from E22 (ii) and E25 is that we can obtain the union of any
number of sets by taking the union of any two of these sets at a time.

For example, if A, B, C, D are four sets, then
AuBuUCUD=[(AuB)UC]JuUD

=AuU[(BuC)uD]
=Au[DuBuUlC)]
=(AuD)uBUC).

Let us now discuss the fourth operation on sets that we had planned to at the
beginning of this section.

1.5.4 Cartesian Product

An interesting set that can be formed from two given sets is their Cartesian
product, named after the French philosopher and mathematician, René
Descartes (1596-1650). He also invented the Cartesian coordinate system
that is used for plotting points in the XY -plane, and which we shall discuss in
Unit 3. In fact, defining this operation helped Descartes to create the
coordinate system, and hence, to study and understand geometry by using
algebra.

Let us start by considering A, the set of first names of all the students of
Class 4 of a certain Government school, and B the set of their birth dates.
Then form all pairs of elements (a, b) where a is in A and b is in B. This
collection is well-defined. Note that (Sarla, 17) can be an element of this set
but (17, Sarla) cannot be, since Sarla is not a date and 17 is not a name. So,
the order of writing the pair is important. We define this way of obtaining a
new set below.

Definitions: i) Let A and B be two sets. The pair (a,b), in which the first
element is from A and the second element is from B, is called an
ordered pair.

i)  The Cartesian product AxB, of the sets A and B, is the set of all
ordered pairs (a, b), where a€ A, be B.

Thatis, AXB ={(a,b)lae A and be B}.

iy  Two ordered pairs (a, b) and (c, d) are said to be equal (or the same)
ifa=cand b=d.

For example, if A={1, 2, 3}, B={4, 6}, then
AxB={(, 4), (1,6), (2, 4), (2, 6), (3,4), (3,6)}, and
BxA={(4,1), 4, 2),4,3),(6,1), (6, 2), (6, 3)}.
You can see that (1, 4)e AxXB, but (1, 4)¢ BXA.



Therefore, AXB#BXxA. (While studying Unit 3, you will learn to visualize
AXB.)

Now what does A xB look like if either A=Qor B=(Q ? In thiscase AxB
cannot have any elements. Thus, AXB=0.

Try these exercises now.

E27) If A={2,5} and B={2, 3}, find AXB, BXA, AXA, (AXB)n(BxA),
(AXB)u(BxA) and A\(BxA).

E28) If AxB={(7,2),(7,3),(7,4),(2,2),(2,3),(2,4)}, determine A and
B.

E29) If A< C, Bc D, then show that AXB c CxD.
E30) Find 3 distinct elements of Nx(Q \N).

E31) Give an example of a proper non-empty subset S of RxR . Also give
an element of (RxXR)\S.

In the examples and exercises above, have you found any relationship

between the cardinality of AXB and the cardinalities of A and B ? Look
again and consider the remark below.

Remark 13: i) flAl=n,IBl=m,then |AXB|=nm.

i) If A and B are non-empty sets and either one of them is infinite,
then A xB will be infinite.

Now that we have defined the Cartesian product of two sets, let us extend the
definition to any number of sets.

Definition: Let A, A,, ..., A, be n sets. Then their Cartesian product is
the set A, XA, X...xA, ={(X;, X,,...,X,)|x,€e A Vi=1,2,...,n}.
The element (x,, X,, ..., X,) is called an n-tuple.

For example, if R is the set of real numbers, then

RxR={(a,a,)la, e R, a,e R},

RxRxR={(a,,a,,a;)la,e RVi=1, 2, 3}, and so on.

It is customary to write R? for RxR and R" for Rx...xR (n times). Also,

a 2 -tuple is usually called an ordered pair, and a 3 -tuple is usually called an
ordered triple.

Try the following exercise now.

E32) Which of the following belong to the Cartesian product QxZxN? Give
reasons for your answers.

i) (3,0 ii) (é, %, %} iii) a4, L1

AxB =@ iff
A=@ orB=0.
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LHS stand for ‘left hand
side’ of an equation.
Similarly, RHS stands for
‘right hand side’ of the
equation.
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iv) 6 _s, \/EJ v (=22.3).

In this section we have discussed four operations on sets. You have also
noted a relation them between some of these operations, in E26 for example.
Let us now see if there are any other relationships satisfied by these
operations that help us in carrying them out more efficiently.

1.6 LAWS ON OPERATIONS

You must be familiar with the law of distributivity that connects the operations
of multiplication and addition of real numbers, namely,

axX(b+c)=axb+axcVa,b,ceR.

Here we say that multiplication distributes over addition. We have similar laws
governing the operations on sets that you have studied so far. You shall study
two kinds of such laws in this section.

1.6.1 Distributive Laws

The name of these laws may give you an idea of what to expect here — may
be some process like that in arithmetic? Let us look at an example.

Example 10: Check whether ornot NN (QUR)=(NNnQ)uU(NNR). Also,

if you interchange m with U in the equation above, will you still get an
equation?

Solution: To check whether ornot NN(QUR)=(NNQ)U(NNR), note
that QUR =R, since Q< R.

Therefore, NN(QUR)=NNR =N, since NcR. .. (1)
Also NNQ=N and NnR=N.
Therefore, (NNQ)U(NNR)=NUN=N. ... (2)

Thus, from (1) and (2), we see that NN(QUR)=(NNnQ)U(NNR) ... (3)
So, in this case N distributes over U .

Now, if we interchange N with U in (3) above, we get
NU@nNnR)=(NuQ)n(NUR). Note that the LHS and RHS are both

equalto Q. Hence, this is a correct equation too, i.e., in this case U
distributes over N .

* k%

What this example shows us is a particular case of the following theorem.
Theorem 3 (Laws of Distributivity): Let A, B and C be three subsets of a
universal set U. Then

i) ANnBuC)=(AnB)U(ANCQC), that is, intersection distributes over
union;

ii) AuBNC)=(AuB)N(AuUCQC), that is, union distributes over
intersection.

Proof: We will prove (i) and ask you to prove (ii) (see E33).



i) We know that two sets are equal if and only if each is a subset of the
other. So, we will show that

ANBUC) c(AnB)UANC) and ... (4)
(ANB)UANC)c An(BUO) ... (5)

Now, xe AN(BUC(C)

= xe€e A and xe BUC

= xe A and (xe B or xe 0)

= (xe A and xeB) or (xe A and xe C)
= xeAnNnBorxe AnC

= xe(ANB)UANC)

So, we have proved the first inclusion, (4).

To prove (5), let xe (ANB)U(ANC)

xe ANB orxe ANnC

(xe A and xe B) or (xe A and xe C)
xe A and (xe B or xe C)

xe A and xe BUC

xe ANn(BUCO)

R AR Y

So we have proved (5), and hence (i) of Theorem 3. [ |

Did you notice that our argument for proving (5) is just the reverse of our
argument for proving (4)? In fact, we could have combined the proofs of (4)
and (5), using the two-way implication, as follows:

xe An(BuUO)

< xeAand xe BuC

< xe A and (xeB or xe 0)

< (xe A and xe B) or (xe A and xe C)
& xe AnBorxe AnC

< xe(AnB)UANO)

This proves Theorem 3 (i).

In Fig. 14 we have given a Venn diagrammatic representation of Theorem 3(i).

6{

Fig14:AnBuUC) =(ANB)UANC)

Now try to solve the following exercise, using the two-way implication, < .

29



Fig. 15: De Morgan
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E33) Prove (ii) of Theorem 3. Also represent this statement in a Venn
diagram.

Let us now consider some properties relating the Cartesian product of sets
with the other operations on sets.

Theorem 4: For any 3 sets A, B, C, prove that

(AUuB)XC=(AxXC)u(BxC(C), that is, the Cartesian product of sets
distributes over the union of sets.

Proof: Firstly, since Ac AUB, AXCc (AuB)xC.

Similarly, BxC c (AuB)xC.

Therefore, (AXC)u(BxC)c(AuB)xC.

So, we need to prove that (A UB) XC c (AXC)u(BxC). ... (6)
For this, consider any ordered pair (x, y)e (AUB)XC.

= xe AuUB,yeC.

= xeAorxeB, yeC.

= (x,y)e AXC or (x, y)e BxC.

= (x,y)e (AxXC)u(BxC)

Hence, (6) is proved, and the theorem is proved. [

Why not try an exercise now?

E34) Prove that (ANB)XC =(AXC)n(BxC), that is, the Cartesian
product distributes over intersection.

You may wonder what use these properties are. Let us consider an example.

Example 11: Let A be the set of irrational numbers and B={xe€ R|x <3}
Find (ANB)uU(QnNB).

Solution: Now, try to find A nB as wellas Q nB. Then find their
intersection. This is one way of solving the problem, but a rather difficult one.
On the other hand, note that AU Q=R . So, applying the distributive laws,
we find that (ANB)U(@Q@NB)=(AuQ)NnB=RNB=B.

So, distributivity has simplified our calculations!

* k%

Let us now consider some laws involving the operation of complementation.

1.6.2 De Morgan’s Laws

We will now discuss two laws that relate the operation of finding the
complement of a set to that of the intersection or union of sets. These are
known as De Morgan’s laws, after the British mathematician Augustus De
Morgan (1806-1871). Let us first consider an example.

Example 12: Let A={-2, 2}, B={1,3,5,7,...}, U=Z. Check whether or not
(AUB)"=A"NB°.

Solution: Here (AUB)* =Z\{-2,1,2,3,5,7, ...}



={..,=5-4,-3,-1,0,4,6,8,...}.

Also, A° NB =(Z\{-2.2)"(Z\{1,3,5,...})
={.,—4,-3-1,0,1,3,4,5 .. {.... =3,-2,-1,0,2,4,6, ...}
={.,=5,-4,-3,-1,0,4,6,8,...} .

So, (AUB)° = A° NB°.

* k%

This interesting way in which the operation of complementation ‘interchanges’
v and N, is true for all sets, not just those in the example above. Let us
state these laws, and prove them now.

Theorem 5 (De Morgan’s Laws): For any two sets A and B in a universal
set U,

) (ANB)° =A° UB°,
i)  (AUB)° =A°NB°.

Proof: As in the case of Theorem 3, we will prove (i), and ask you to prove (ii)
(see E35). So, letus take x e (AN B)°. Now,

xe (ANB)* =U\(ANB)
& x¢ ANB, (thatis, x does not belong to both A and B .)
< x¢ A or xg B (because if xe A and xe B, then xe ANnB)

& xe A or xe B
& xe ACUBS
So (ANnB) =A° UB°. [ |

The De Morgan’s laws can be quite useful for using the operations efficiently.
Consider the following example.

Example 13: Consider the sets Z, A ={xe QIx>+/2}, U=Q. Find
AUZ.
Solution: Now, A° ={xe Qlx<~/2} and Z° =Q\Z.

Can we write A° UZ° in a manner that its elements are clear to us? It
doesn’t seem so.

However, by De Morgan’s laws, A° UZ° =(ANZ)°.
Now, ANZ={xe ZIx>~2 }={2,3,...}

So (ANZ) =Q\(ANZ)=0Q\{2,3,4,...}

So A"UZ=Q\{2,3,...}, aclear way of looking at the required set.

* k%

Now try the following exercises.

E35) Prove (ii) of Theorem 5.

E36) Verify De Morgan’s laws for A and B, where A ={1, 2}, B={2, 3, 4}.
(For convenience, you can take U ={1, 2, 3, 4},i.e., U=AUB. Of

course, the laws will continue to hold true with any other U.) .
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E37) For any three sets A, B, C in a universal set U, prove that
(A\B)XC=(AxXC)\(BxC). Also write down what the set U could be.

E38) Is the statement, ‘For any three sets A, B, C, (A\B)xC=A\(BxC)’
true? Give reasons for your answer.

By now you would be familiar with sets, several operations on sets, and laws
relating these operations. Let us take an overview of what we have covered in
this unit.

1.7 SUMMARY

In our discussion on sets we have brought out the following points:
1. Asetis a well-defined collection of objects.

2.  The listing method and property method for representing sets. Some
sets can be represented by both methods, and some by only one of
them.

3.  The concepts of ‘subset’, ‘proper subset’, ‘superset’, ‘universal set’, finite
set’ and ‘infinite set’.

4. Thesets A and B are equal iff A is a subsetof B and B is a subset
of A,thatis, A=B iff AcB and BCA.

5. A isnotasubsetof B if 3 ac A st. a¢ B.

6.  The pictorial representation of sets and their relationships by Venn
diagrams, and the utility of this type of representation.

7.  The definition, and examples, of the complement of a set A inaset B,
denoted by B\ A.
B\A={xeBlx¢ A}.
When B is a universal set, B\ A is called the complement of A, and is
denoted by A" or A°.

8.  The definition, and examples, of the intersection of two sets A and B in
a universal set U, denoted by ANB.
ANB={xeUlxe A and x € B}.
This definition extends to more than two sets, in a natural manner, as
A NA,Nn..NA ={xeUlxeA, Vi=1, .., n}.

9.  Several properties of the operation of intersection of sets.

10. The definition, and examples, of the union of two subsets A and B of a
universal set U, denoted by AUB.
AuUB={xe Ulxe A or xe B}.
This definition extends to more than two sets, in a natural way, as
A UA,U...UA ={xeUlxeA, forsomei=1,..., n}.

11. Several properties of the operation of union of sets.



12. The definition, and examples, of the Cartesian product of the sets A
and B, denoted by AXB.
AxXB={(x,y)lxe A, ye B}.
This definition extends to the Cartesian product of n sets, as follows:
A XA, X XA ={(x,,X,,...x)Ix, €A, Vi=1 ..., n}.

13. Several properties of the Cartesian product of sets.

14. The statement, and proof, of the distributive laws: For any three sets
A, B, C,
ANBuUC)=(ANB)UANC);
AuBNC)=(AuB)N(AUC).

15. The statement, and proof, of De Morgan’s laws: For any two sets A
and B,
(AuUB)" =A°NB°;
(ANB)=A° UB".

Now, we suggest that you go back to the objectives given in Sec. 1.1, and
see if you have achieved them. One way of checking this is to solve all the
exercises in the unit. If you would like to know what our solutions are, we
have given them in the next section. But please do not look at them until you
have tried to solve all the exercises on your own.

1.8 SOLUTIONS/ANSWERS

E1) (i) — (v) are sets.
(i) is not a set because one person may think Asha, for example, is
interested in the game, while another may think she is not. So there are
no clear-cut criteria for assessing interest, and hence the collection is not
well-defined.
Similarly, (vi) is not a set.

E2) A given stamp collection is a set because given any object it is clear to
anybody firstly, whether it is a stamp or not; and secondly, if itis a
stamp, then whether it belongs to the collection or not.

E3) (iii), (v) are true. There could be several ways of making changes to the
rest. For instance, altering € to ¢, or picking an appropriate number or
set to make the statement true. For example, (i) can be changed to
02¢N,o0r 0.2€Q.

E4) ) {1}
ii) This is the set of all integers less than or equal to 8, i.e.,
{....—3,-2,...,6,7, 8}.
iii) {a,b,c,....X,y, z}

E5) i) {x*Ixe N}
ii) This cannot be described by the property method since the three
elements have nothing in common.
iii) {x | x is an even integer}
iv)  We can have several representations (see Remark 3). For
example,
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If a finite set A hasn
elements, then its

power set has 2"
elements.

Fig. 16

c

Fig. 17
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(¢ ={xe Nlx is both odd as well as even}, or
O={xeNIx<0}.
V) {x|x is a month with only 30 days}.

E6) The setonthe LHS is {3}. The set on the RHS is {3, 3}. Therefore,
they are not equal.

E7) i) The number of spoons of water may be 1000 or 1 million, but it is
still some number. Thus, the set is finite.

ii) If x and y are different rational numbers, then x+3 and y+3
are different rational numbers also. So, for each x€ Q, there is
an element of the given set, and all these elements are as many as
the number of elements in Q. Since Q has infinitely many
elements, this set will be infinite too.

i) This is the set of irrational elements, and is infinite.

iv)  {N} is a singleton, having only one element, N. Thus, it is finite.

v)  Between any two points on a circle, there is always another point
on the circle. Therefore, this set is infinite.

vi) By convention, this set is finite.

E8) i) False, since on the RHS is an infinite set, and on the LHS is a
singleton.

i)  True, since the only element in the setis (.

E9) O, {1}, {2}, {3}, {1, 2}, {1,3}, {2, 3}, {1, 2,3}
As you can see, the answers to (i) — (iv) are 1, 3, 3, 1, respectively.

As the cardinality of the given set is 3, no subset can have more than 3
elements. Thus, the answer to (v) is ‘none’.

E10) Let xe A.
Then AcB=xeB.

Now, xe B and BcC=xeC.
xeA=>xeC
Since this is true forany xe A, AcC.

E11) There are infinitely many possibilities here. One could be the given set
itselfl Another could be {3, 0.7, IGNOU, Mahatma Gandhi}.

E12) S, R, P are the sets of squares, rectangles and parallelograms,

respectively. Since Sc R ¢ P, we have taken U =P in the Venn
diagram in Fig. 16.

E13) One possible diagram is given in Fig. 17. Note that just because B is
infinite and C is finite does not mean that the regions depicting them
need be of different areas.

E14) i) Note that Pc Z c Q. We take Q as U (see Fig. 18).

ii) Z\P ={xe ZI|x is not a prime number}.
This certainly contains the set of all negative numbers as a subset,
which is infinite. Hence, Z \ P is infinite.
P\Z ={plpis a prime number and p¢& Z}



= (), since every prime number is an integer.
So, P\Z is finite.

E15) A\A=0, O\A=0, A\Q=A, Q
(A)=A,since xe Aoxeg A ©xe (A°)°.

E16) i) Q\N ¢ N, for example. There are many such examples.

i) This can only be true if A\B=(, because if 3xe A\B, then
x¢ B. But AA\Bc B= xe B. So we reach a contradiction,
unless A\B=(. So any two sets A and B for which
A\ B = Qwill be a valid example.

E17) Z, 7,7, O, respectively. :;g;lg &r\nez ?haded

In all the cases U could be Q. Of course, there are several other
choices for U too.

E18) iii)  From (i) we know that AnB < A. We need to prove that in this
case Ac AnB.
For this, let xe A. Then, since AcB, xe B. Thus, xe ANnB.

. AcAnNnB.
Since AcANnBc A,weseethat A=ANB.

iv)  Applying (iii) with A=B,we get ANA=A.

v)  An® c O, applying ().
Also D AN, since @ is a subset of every set.

AnO=0Q.
vi)  Since A c U, by (iii) above we get the result.

vii AnBcBand AnBcA. .. AnBcBnNA.
Similarly, BNA Cc ANB.
ANnB=BnNA.

vii) xe A\B< xe A and x¢ B
< x€A and xe B¢
< xe AnB°.
A\B=AnNB".
(Note that we have used the two-way implication, < , at each
stage, and hence, simultaneously shown that A\B c AnB°® and
ANB*cA\B))

ix) LetxeC. Then Cc A= xe A. Similarly, xe B. Therefore,
xe ANB. Hence, Cc ANnB.

E19) No. For example, if A={1, 2, 3}, B={l, 2, 4}, C={1, 2}, then C;A

and C;B, but C is not properly contained in A NB;in fact, it is

exactly equalto ANB.
35
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E20)

E21)

E22)

E23)

ANBNC={4}
(AnB)nC={34}nC={4}
ANn(BNC)=An{4}={4}
ANCNB=(ANC)NB={l, 4nB={4}

ANBNC=(ANB)NC={I12nlne N}nC=0, since C is the set of
primes and no element of AN B is a prime.

i) Since Ac A, by Theorem2, AUA =A.

ii) xe AUBo xe A or xe B
& xeBorxeA.
< xe BUA.
AUB=BUA.

i) QcA=AU@=A, by Theorem 2.

iv) Let xe AUB. Then xe€ A or xe B. Ineither case x e C, since
AcC and BcC. Thus,
xe AuB=xeC.
AuBcC.

v) By (iv) above AUA® cU.
Now, let us show that Uc AUA®.
Let xe U. Then, either x€ A or x ¢ A, that is, either x € A or
xe U\A=A".
So, xe AUA®.

Therefore, UcCc AUA®".
Hence, the equality is proved.

AuB={xe RI0<x <3}.

Take S={xe Ql0<x <3} and T={xe R\QI0<x <3}.

Then SUT c A UB.

Also, forany xe A UB, x is either rational or irrational. Accordingly,
xeS orxeT.

Hence, AUBcSUT.

Thus, SUT=A UB.

There can be several other pairs S and T that satisfy this requirement.
Look for at least one more pair.

E24) Since AcAUB=(, we seethat Ac (. Also, ) A always.

. A=0. Similarly, B=. Thus, |A|=|B|=0.

E25) Firstly, let us show that (AUB)UC=AUBUC.

Since AUBcAuBuUC and CcAuBuUC,
by E22, (AUB)UCcAuUBUC

Conversely, let xe AUBUC. Then xe A or xe B or xe C.
If xe A,then xe AUBcC(AuB)UC.

Similarly, if xe B or xe C then xe (AuUB)UC.



E26)

E27)

E28)

E29)

E30)

E31)

E32)

E33)

Thus, AUBUCc(AuB)uUC.
Therefore, AUBUC=(AuUuB)uUC.
You can, similarly, show that AUBUC=AuUBUC).

A\BcAcAuUB,B\AcBcAuUB, AnBc AuUB.
s (A\B)U(ANB)UB\A)c AUB.

Conversely, let xe AUB. Then x€ A or xe B.

Now, there are only three possibilities for x :

i) x€ A but x¢ B, thatis, xe A\B, or

ii) xe€ A and xe B, thatis, xe AnB, or

i) xeBbutxegA,thatis, xe B\A.

Thus, AUBcC (A\B)U(ANB)U(B\A).

So we have proved the result.

AxB={(2,2),(2,3), 5, 2),5,3)}
BxA={(22),3,2),(2,5),3,5}

AxXA={(22),(2)5),5. 2),(5,35)}.

(AXB)N(BxA)={(2, 2)}
(AXB)u(BxA)={(2,2),(2,3),(5,2),(5,3),3,2),(2,5),@3,5)}.
A\(BxA)={2, 5}.

A = set of all the first elements in each pair={7, 2}.
B = set of all the second elements in each pair={2, 3, 4}.

Let (x, y)e AXB. Since xe AcC, xe C. Similarly, ye D.
So, (x, y)e CxD. Hence, AXBc CxD.

For instance, (1, 0), (1, %} (1, 37.525252...).

There are infinitely many elements you can pick from.
There can be several examples. One is S={(0, 0)}. Then
(RxR)\S={(x, y)Ix,ye Rand x, y #0}.

i) is not, since it is only an ordered pair, and not a triple.

- . 1
i) is not, since Ee NUZ.

(
(
(iii) is, since le Q NZ NN.
(iv) is not, since J2¢N

(v) is not, since this is not an ordered triple; it is a set of three elements.
xe AU(BNO)

s xe Aor xe BnC

< xe A or(xeBand xe 0)

< (xe A orxeB) and (xe A or xe ©)

< xe AuBand xe AuC

xe(AuB) N(AUCO).

Hence, Theorem 3 (ii) is proved. (A visual representation of this is given
in Fig. 19.)

2

Fig.19: AUBNCO)
=(AuB) N(AuUC().

37



38

E34) (x, y)e (ANnB)xC
< xeAnBand ye C
< (xe A and xe B) and ye C
& (x,y)e AXC and (x, y)e BxC
S (%, y)e (AXC)n(BxO)
Hence the equality.

E35) xe (AUB) ©x¢ AUB
& xe¢Aand x¢ B
< xeAf and xe B°
& xe A*nB°.
So, (AUB)" =A°NB°.

E36) AuUB=U, .. (AUB)*=0
Also A° ={3, 41, B ={1}
A°NB =@
(AUB) =A° A B
Further, AMB={2}. .. (ANB)°={l,3,4)
AS UB® =(ANB).

E37) Since A\Bc A, (A\B)xCc AxC
If (x, y)e (A\B)xXC,then xe A\B,ie., x¢B.
= (x,y)¢ BxC
(7) and (8) tellus that (A\B)XC c (AXC)\(BxC)
Conversely, let (x, y)e (AXC)\(BxC).
Then (x, y)e AXC and (x, y)¢ BxC.
So, xe A,ye C and x¢ B.
Therefore, xe A\B, ye C.
Thus, (x, y)e (A\B)xC
This proves that (AXC)\(BxC) c (A\B)xC

(9) and (10) together prove the equality.
One possibility for U is (AxXC)uUB.

E38) Any element of (A\B)XxC is an ordered pair (a, c), where ac€ A, a¢ B
and ce C. On the other hand, any element of A\ (BXC) is an element
of A and not a pair. Therefore, you should expect the statement to be

false. You can show it by taking, for example,
A={l1,2},B={1,3},C=N.

Then (A\B)XxC={2}xN, while A\(BxC)={1, 2}.
So (A\B)xC#A\(BxC).
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2.1 INTRODUCTION

Now that you are familiar with sets and operations on them, we shall focus on
one of these operations in this unit. You will see how the Cartesian product is
used in different ways, under different names.

We start the unit with a discussion in Sec. 2.2 on relations, which are just
subsets of AXB, with A and B being sets. We also study relations with
certain properties that make them reflective, symmetric, transitive or
equivalence relations.

In Sec. 2.3 we go on to focus on certain relations which are called functions.
This is a concept you may have worked with while studying mathematics in
school. Apart from looking at functions generally, we will consider functions
with certain special properties that make them injective, surjective or bijective.

In the next section, namely, Sec. 2.4, we shall look at a way of joining two
functions called ‘the composition’ of those functions. You will see that the
composition of two functions may not always be defined. You will also study
the conditions under which their composition can be defined. In this section
you will also see why a bijective function is invertible.

Finally, in Sec. 2.5, we look at a particular kind of function from SxS — S,
where S is a set. This is essentially an operation on pairs of elements of S.
This is why it is called a binary operation on S. You will see that you have
actually been working with binary operations from primary school on. In fact,
you will find these operations through and through in the mathematics that you
do henceforth too.
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Essential Preliminary Concepts

Objectives

After studying this unit, you should be able to:

o explain what a relation from a set A to a set B is;

o give examples of reflexive, symmetric or transitive relations;

o define, and give examples of, a function from a set Ato a set B;

o explain when a function is an injection, surjection or bijection;

o obtain the composition of two functions under appropriate conditions;

o define, and give examples of, binary operations on sets.

2.2 RELATIONS

You are already familiar with the concept of a relationship between people.
For example, a parent-child relationship exists between two people A and B
if and only if A is a parentof B or B is a parent of A . Similarly, we can find
relationships between integers, for example, two integers have a relationship if
one is a factor of the other. However, there is a difference between
‘relationship’ and ‘relation’ in English usage. Similarly, there is a difference in
these words in mathematical usage. For example, if R is the relation ‘is a
factor of on N, then 1 is a factor of 5, but 5 is not a factor of 1, and we write
this as 1R5, but not 5R1. So, we see that R relates a pair of elements, and
the order matters. Here, if we treat R as a subset of Nx N, then

R ={(x,y)e NxN|xRy}, and (1, 5)e R but (5, e R.

In mathematics, a relation R on a set S is a particular kind of relationship
between the elements of S. If ae S isrelatedto be S by means of this
relation, we write aRb, or (a, b)e R, and this is exactly how we define a
relation on a set.

Definition: A relation R ona set S is a subset of SxS.

For example, if R is the relation ‘is greater than’ on Q, then 3R2 (because

3>2),and lR

Vne N. Thus, here
n n+1

RcQxQ, (3,2)eR, [lﬁje R forany ne N, and (0,2)¢ R.
n n

Remark 1: Since a relation on Sis a subset of SxS, two relations R, and R,
on S will be distinct if the sets R, and R, are different, i.e., R, #R,. For
instance, consider S={1, 2,3}, R, ={(1, 1), (1, 2)} and R, ={(2, 1), (1,2)}.

Then R, and R, are both relations on S, being subsets of SxS. But
R, #R,.

Try the following exercises now, which deal with relations on a set.

E1) Let N be the set of all natural numbers and R the relation

{(a,a*)lae N}. State whether the following statements are true or

false. Also give reasons for your answers.
i) 2R3, ii) 3RO,



Unit 2 Functions

i) 9R3, iv)  (+/3,3)eR.

E2) Give two distinct relations on the set of courses of IGNOU.

We now look at some particular kinds of relations, which you will be using very
often in other mathematics courses.

Definition: A relation R defined on a set S is said to be

i) reflexive if aRa Vae S,ie., (a,a)e RVaeS.

ii) symmetric if aRb = bRa Va, beS,i.e, (a,b)e R=(b,a)e R.

i)  transitive if aRb and bRc = aRc V a,b,ce S, i.e., if (a,b)e R and
(b,c)e R, then (a,c)e R.

To help you get used to these concepts, consider the following examples.

Example 1: Consider the relation R on the set H of those human beings who
were alive in 2016, given by ‘aRb iff a and b had the same weight on Jan.
1%, 2016, for any two human beings a and b in H'. Is R reflexive, symmetric
or transitive? Justify your answers.

Solution: Any human being certainly has the same weight as herself. So
hRhfor every he H. Thus, R is reflexive.

If a, be H suchthat a and b have the same weight, then b and a certainly
have the same weight. So aRb = bRa V a,be H. Thus, R is symmetric.
Finally, for a, b,ce H if a and b have the same weight, and b and ¢ have
the same weight, then a and c have the same weight too.

So, aRb and bRc = aRc . Thus, R is transitive.

* k%

Example 2: Consider the relation R on Z given by “aRb ifand only if a2 b".
Determine whether or not R is reflexive, symmetric or transitive. a3 b’denotes ‘a is

Solution: Since a > a is not true, aRa is not true. Hence, R is not reflexive. strictly greater than b

If a2 b, then certainly bz a is not true. Thatis, aRb does notimply bRa.

Hence, R is not symmetric.

Since az b and b c implies a 2 ¢, we find that aRb, bRc implies aRc.

Thus, R is transitive.

* k%

Example 3: Let S be a non-empty set. Let (S) denote the power set of S,
that is, the set of all subsets of S, i.e., (S)={A|A cS}.

Define the relation R on ¢(S) by R={(A, B)|A c B}.

Check whether or not R is reflexive, symmetric or transitive.

Solution: Since Ac A Ve @(S),(A,A)e RV Ae p(S). Thus, R is
reflexive.

Let (A, B)e R. Then A < B. However, B need not be containedin A. For
example, (®,S)e R but (S,®)e R . Thus, R is not symmetric.

If AcB and Bc C,then AcCV A, B,Ce @(S), that is,

(A,B)eR and (B,C)e R= (A, C)e R (see E10 of Unit1). Thus, R is
transitive.

* k%
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Remark 2: In all the examples in this section so far, when we have mentioned
relations from X to X or X to Y, X and Y have been non-empty.

However, a relation can be defined on the empty set too. This is called the
empty, or null, relation.

You may like to try the following exercises now.

E3) Consider the relation ‘aRb iff a=b’ on R. Check whether R is
reflexive, symmetric or transitive.

E4) The relation R < NxN is defined by (a, b)e R iff 5 divides (a—b)

in N. Is R

i)  reflexive?

i)  symmetric?

i) transitive?

Give reasons for your answers.

E5) Give examples to show why the relation in E1 is not reflexive, symmetric
or transitive.

E6) Check whether ornot R={(A, B)IA & B, A, Be (S)} is transitive,
where S has at least two elements.

The relationship in E3 is reflexive, symmetric and transitive. This is an
example of what we now define.

Definition: A relation R on a set S is called an equivalence relation if R is
reflexive, symmetric and transitive.

You will study, and use, such relations quite a bit in the other mathematics
courses.

Let us now generalize ‘relation on a set’ to a relation from one set to another.
You have seen that a relation on a set X is a subset of XxX. So, you may
expect the generalized form to have the following definition.

Definition: Let X and Y be two sets. A relation from X to Y is a subset
of XXY.
For example, let H be the set of humans beings, W < H be the set of

women drivers in India and Y the set of driving licences valid in India on Oct.
2" 2018. Then R={(w,y)lwe W, ye Y} is a relation from H to Y. Note

that R=WxY isasubsetof HXY.

Another example is the subset R of HxX L, where H is the set of humans
and L is the set of languages in the world in 2018, where (h, /)e R iff h

uses the language /. So, for example, (x, I)e R, where I is the Indian sign
language and x is a user of this language.

Let us now look at a particular type of such relations, in which the choice of the
second element of the pair takes great importance.

2.3 FUNCTIONS

Consider the relation R = Hx L that we gave at the end of Sec.2.2 above.
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Here, we also say xRy if (x, y)e R. Note that x is/was a human being and
y is a language extant in 2018.

Now, let us take a subset R” of R where ‘xR'y ifand only if xe H and y is

the first language of x’. Now since each person has one and only one first
language, given x there is one and only one ye L such that (x, y)e R". So

R’ cHxL.

Note that
i) For each x € H, there is at least one ye L such that (x, y)e R’.

i) Foreach xe H, there is only one ye L such that (x, y)e R".
Such arelation R’ is an example of a ‘function’, as you will soon see.

Let us consider another example. Let H be the set of human beings and W
be the set of women. Let R,, be the relation from H to W such that for each

he H, hR,,w, where w is h’s birth mother. Then we see that
i) Foreach he HIwe W such that hR,w .
i)  Foreach he H thereis only one w such that hR,,w .

i) There could be several elements of H, say h,, h,, ..., h_, with the same
birth mother m, i.e., hR,m, h,R,m,...,h Rym.
The properties of R,, given above tell us that R, is a ‘function’.

So, what is a ‘function’?

Definitions: i) A function f from a non-empty set A to a non-empty set B is This definition of function

a relation from A to B which associates with every element of A one was given by Dirichlet in
1837, and has been
and only one element of B. This is writtenas f : A — B, or ADB. used since then.

ii) If f associates with ae A, the element be B, we write f(a) =b, and b
is called the value of the function f at a.

ii) A is called the domain of f, and B is called the co-domain of f.

iv) The set f(A)={f(a)lae A} is called the range of f . As you can see,
the range of f is a subset of the co-domain of f, i.e., f(A)c B.

Note that if f : A — B, then
i) for each element of A, we associate some element of B.
i)  for each element of A, we associate only one element of B. So, if

ae A and f(a)=b, aswellas f(a)=b,, then b, =b,,
i.e.,if (a,b,) and (a, b,) are elements of f, then b, =b,.

i) two or more elements of A can be associated with the same element of
B,i.e. therecanbe a,, a,e Awith a, #a, and (a,, b) =(a,, b).

Remark 3: Some other terms commonly used for ‘function’ are ‘map’,
‘mapping’, ‘transformation’, ‘operator’.

Consider an example. Let A={1,2,3} and B={1,2,3,4,5,6,7,8,9,10}.
Define f:A — B by f(1)=1,f(2)=4,f(3)=9. Then f is a function with

domain A, co-domain B and range {1, 4, 9}. 43
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In this case, note that f(x) = x* for each xe A. We can write this as
f:A—>B:f(x)=x> or f ={(x, x*)Ixe A}.
If we define g: A — B by g(I)=1,g(2) =1, g(3)=4, then g is also a function,

whose domain and co-domain are the same as those of f, namely, A and
B, respectively. But the range of g is {1, 4}.

Remark 4: The example above tells us that several different functions can be
defined with the same domain and co-domain.

Remark 5: When a relation from A to B does not satisfy the requirements for
being a function, then we can say that this is not a well-defined function.

For example, if A={1,2,3,...,10} and B={1,5,7}, a: A — B with

o) =1, a(l) =5 is not well-defined. (Why?)

Try some exercises now.

E7) Let X be the set of residents of Kochi and Y be the set of all 10-digit
numbers. Define a mapping from X to Y, clearly giving its domain and
range.

E8) i)  Consider f:Ne@:f(n):Ll. Show that f is a function.
n-+

i)  Define a function g whose domain and co-domain are the same

as that of f above, but there is at least one x in their domain for
which f(x) # g(x).

E9) Define a relation from N to @Q which is not a function. Justify your
choice of relation.

E8 leads us to the notion defined below.

Definition: Two functions f and g are said to be equal if
i) Domain f =Domain g, and
ii) f(x)=g(x) Vxe Domain f (which implies that Range f = Range g).

So, for example, the function f :R > R:f(x)=x-1 and
g:R->R:g(0)=7,g(x)=x—-1, Vx#0, xe R are not equal, since
£(0) = g(0).

Try a related exercise now.

E10) ‘If f and g are two functions with domain A andrange B, then f =g’
Is this statement true or false? Give reasons for your answer.

Now let us look at functions with special properties.

Definition: A function f : A — B is called a one-one (or injective) function if
f relates different elements of A to different elements of B, i.e., if a,,a,€ A

and a, #a,, then f(a,) #f(a,).
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In other words, f is 1-1 if f(a,)=f(a,) = a, =a,.
If f is injective, it is also called an injection.

For example, consider the function

f:{1, 2,3} =>{L2,...,10}:£ (D) =1, £(2)=4, £(3)=9. You will find it takes
distinct elements of the domain to distinct elements of the co-domain. So f is
1-1.

Now, let us consider another example of sets and functions.

Let A={l, 2, 3}, B={p, q} . Let f: A — B be defined by

f(l)=q, f(2)=p, f(3)=p. Then f is a function, with range of f =B =
co-domain of f. (f is pictorially represented in Fig. 1). This is an example of
an onto function, as you shall see.

Fig.1: f:A—>B

Definition: A function f : A — B is called an onto (or surjective) function if
the range of f is the same as its co-domain B . In other words, f is onto if
f(A) =B. This means that for any be B, there is an ac A such that
fa)=b.

If fis surjective, it is called a surjection.

You will come across this kind of function very often in your mathematics
courses.

The word ‘surjection’ is
derived from the French
word ‘sur, meaning ‘on’.

Let us consider another example of a surjective function. Consider two non-
empty sets A and B. We define the function ,: AXB — A:m((a,b))=a.

7, is called the projection of AXB on A. You can see that the range of =,
is the whole of A, since forany a€ A, m,(a, b) =a, whatever b may be.
Therefore, m, is onto. Note that if B has more than one element, then T, is
not 1-1. (Why?)

Similarly, @, : AXB — B:x,((a, b)) =b, the projection of AXB on B, isa
surjective function.

Since m, (or T,) is an onto function, we also say T, (respectively =,) is a
function from AXB onto A (respectively B).

And now, we define a function that has a combination of both the properties
you have just studied.

Definition: If a function f : A — B is both one-one and onto, it is called a
bijective function, or a bijection.

Let us consider some examples. The first one is of a function that you will use
again and again.

Example 4: Let A be any non-empty set. The function I, :A —- A:I,(a)=a
is called the identity function on A. Show that I, is bijective.

Solution: Forany ae A, I, (a)=a. Thus, the range of I, is the whole of A .
Thatis, I, is onto.

I, isalso 1-1 because if a,;,a, e A suchthat a, #a,, then I,(a,) #I,(a,).
Thus, I, is bijective.

*kk
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Example 5: Define a function f :{1, 2, 3} = {1, 2, 3}:f (1) =f(2)=f(3) =1.
This function is an example of a constant function. Check whether f is
bijective or not.

Solution: The domain of f is {1, 2, 3} and range is the singleton

{1} #{1, 2, 3}. So f is not surjective.

Next, f(1)=f(2) and 1+ 2, so that f is not injective either.

* k%

Try the following exercises now.

E11) Let f : N — N be defined by f(n)=n+5. Write f as a subset of the

Cartesian product of its domain and range. Prove that f is one-one but
not onto.

E12) Let f:Z — Z :f(n) =n+5. Prove that f is both one-one and onto.

E13) What must X be like for the constant function f : X — {c} to be
injective? Is f surjective? Give reasons for your answers.

Before going further let us briefly look at finiteness. In Unit 1 we have
discussed finite and infinite sets. Let use see what this means mathematically.

Example 6: Show that a set A is finite if and only if there is a bijection
between A and {l, 2, ..., n}, for some ne N.

Solution: Let A be afinite set with [Al=m. Let A={a,, a,,...,a,}.
Define f: A —{1,2,...,m}:f(a,)=1i.

You can check that f is injective as well as surjective, and hence, bijective.
Conversely, let g be a bijective function from A to {1, 2,..., n}, for some
ne N. Since g is onto, its range is the same as its co-domain, i.e.,
{g(a)lae A}={1,2,..., n}.

Solg(A)l=n.

Since g is I-1,1Al=1g(A)l=n, so A isfinite.

* k%

Remark 6: Usually, the condition in Example 6 is treated as the definition of
finiteness.

Now let us look at a very important way of producing new functions from given
ones.

2.4 COMPOSITION OF FUNCTIONS

Let us start with taking the two functions f = {(x, x*)| x € N} and
g={(z,—z)lze Z}. Here the range of f is a subset of Z , which is the
domain of g. Let us define h by ‘combining’ f and g as follows:
Domain h =Domain f, Co-domain h = Co-domain g and

Range h cRange g.

For x e N, take h(x) = g(f(x)) = g(x*) =—x" (see Fig. 2).

So h:N—>Z:h(x)=g(f(x)).



More generally, if f : A — B and g:B — C are functions, there is a natural
way of combining g and f to yield a new function h: A — C, as below:

For each x € A, h(x) is defined by the formula h(x) = g(f(x)).

Note that f(x)e B. Therefore, g(f(x)) is defined as an element of C.

This function h is called the composition of g and f and is written as gof .
The domain of gof is A and its co-domainis C,i.e., gof:A —C (see
Fig. 2).

gof=h

Fig. 2: Composition of f and g

Let us consider some examples of this.

Example 7: Let f :R - R and g:R — R be defined by f(x) = x> and
g(x)=x+1. Is gof or f og defined? If yes, whatis gof , and what is
fog?

Solution: We observe that the range of f is a subset of R, the domain of g .
Therefore, gof is defined.

By definition, V xe R, gof(x) =g(f(x))=f(x)+1=x>+1.

Now, let us see if f o g is defined. Again, since the range of g is a subet of
the domain of f, f o g is defined. So,

VxeR, fog(x)=f(g(x)=[gx)) =(x+1".

So fog and gof are both defined. But gof #fog. (For example,
gef()#fogl).)

* k%

Example 8: Let A={1,2,3},B={p,q,r} and C={x, y}. Let f:A — B be
defined by f(1)=p, f(2) =p, f(3)=r. Let g: B — C be defined by
g(p)=x,g(qQ)=y,g(r)=y. Determineif fog and gof can be defined.

Solution: Here Domain f = A, Range f ={p, r}, Domain g=B,
Range g=C. For fog to be defined, it is necessary that the range of g
should be a subset of the domain of f. As C is not asubsetof A,fog
cannot be defined.

Functions
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Since the range of f is a subset of the domain of g, we see that gof is
defined. Also gof : A — C is such that

gof()=g(f(1)=g(p)=x,

gof(2)=g(f(2) =glp) =x,

gef(3) =gt =g =y.

Therefore, gof is surjective. Note that g is also surjective.

* k%

Remark 7: Note that for gof to be defined all we need is that
Range f < Domain g . Thus, Co-domain f need not be the same as
Domain g.

So, let us formally define the operation of composition now.

Definition: Let f : A — B and g:C — D be two functions such that
Range f < C. Then the composition of g and f is the function
gof:A—>D:gof(a)=g(f(a)).

Now for some exercises on the composition of functions.

E14) In each of the following parts, both f and g are functions from R to R.
Define fog and gof .
i) f(x)=5x, g(x)=x+5,
ii) f(x) =5x, g(x) =x/5.

E15) Give an example, with justification, of functions f and g such that
neither f og nor gof are defined.

E16) Letf:A — B and g:C — D, with B < C, be two functions. Which of
the following statements are true? Give reasons for your answers.

i) Range g o Range gof .
i) Range g=Range gof.
i) If f isinjective, sois gof .

iv) If g is surjective, sois gof .

While doing E16, a question may have risen in your mind about whether there
is any other kind of relationship between the properties of gof and those of

f and g. For instance, what can we expect if gof is onto, oris 1-17? In this
context, consider the following theorem.

Theorem 1: Let f : A — B and g:C — D be two functions such that gof is

defined. Then
i) if gof isinjective, sois f.
i) if gof issurjective,sois g.

Proof: Note that gof : A > D:gof(x)=g(f(x)).
Let us prove (i) first. We are given that gof is 1-1. To show that f is
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injective, let a;, a, € A such that f(a,)=f(a,).

Then g(f(a,))=g(f(a,)), as g is well-defined.

So, gof(a,)=gof(a,).

This implies that a, =a,, since gof is injective.

So, we have shown that f(a,) =f(a,) = a, =a,, i.e.,, f is injective.

Now let us prove (ii). Here we are given that gof is onto. To show that g is
onto, let de D. Since gof is surjective, there is ae A such that

gof(a)=d. This means that g(f(a))=d. Thus, givenany de D, 3f(a)e C
with g(f(a)) =d, which shows that g is surjective. [ |

In the theorem above, did you notice that when gof is injective we have not
said anything about the injectivity of g ? Do you expect g to be injective? For
example, if f :N > R:f(n)=+/n and g:R — R:g(x)=x7, then

gof:Z —>R:gof(n)=n. So gof is 11, but g is not. (Why?)

We now come to a theorem which shows us that the identity function behaves
like the number 1€ R does for multiplication. That is, if we take the
composition of any function f with a ‘suitable’ identity function (see Example
4), we get the same function f .

Theorem 2: Let A and B be sets.
i) Foranyfunction f:A > A ,fol, =1, of =1.
i)  Foranyfunction g:B—A,I,ocg=gand gol;=g.

Proof: We shall prove (i) here, and leave the proof of (ii) to you (see E17).
(i)  Since both f and I, are defined from A to A, both the compositions

fol, and I, of are defined. Moreover,
VxeA fol,(x)=f(,(x))=1f(x),s0 fol, =f.
Also, Vxe A, I, of(x)=1,(f(x))=1(x),s0 I, of =1 . [ |

To complete the proof of Theorem 2, try the next set of exercises.

E17) Prove Theorem 2(ii).

E18) Show thatif f and g are two functions such that f o g is onto, then g
need not be onto.

While doing E17, did you note why I, was used in the first equality and I; in

the second equality? This is what we meant when we said ‘suitable’ identity
function earlier. We need to pick the identity function of the set that allows the
composition concerned to be defined.

Now, in the case of the set of non-zero real numbers, R", you know that given
xe R 3ye R such that xy =1. This number y is called the inverse of x.

Similarly, we can define an inverse function for some functions. Here, instead
of multiplication of numbers, we shall consider the composition of functions.

For example, consider f : R - R:f(x)=x+3. If we define
49
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g:R—>R:g(x)=x-3,thenboth fog and gof are defined. Further,
fog(x)=f(g(x)=gx)+3=(x-3)+3=xVxeR.

Hence, f o g=1,. You can also verify that gof =1, .

In this case we call g the inverse of f, as you will see in the definition that
follows.

Definition: Let f : A — B be a given function. If there exists a function
g:B— A suchthat fog=1; and gof =1, , then g is called the inverse of

f, and we write g =f".

So, in the example before the definition, g=f"' and f =g™'. Note that in this
example, f adds 3 to x and g does the opposite — it subtracts 3 from x.
So, essentially f and g nullify each other’s actions on x. Thus, the key to

finding the inverse of a given function is: to get £ try to get back x from
f(x).

For another example, let f : R — R be defined by f(x)=3x+5. How can we
get back x from 3x +5? One way is to “first subtract 5 and then divide by
3”. So,wetry g:R —>R:g(r) :%. And we find

f(x)-5 :(3x+5)—5
3 3

Also, f o g(x) =3(g(x))+ 5— 3[(7( -5)

gof(x)=g(f(x)) = =xVxelR.

}-FS:XVXGR.

Let’s see if you've understood the process of obtaining the inverse of a
function.

E19) What is the inverse of
i) f:ReR:f(x)zg?

ii) g:@%@:g(r):2r+§?

The discussion above may have triggered the question: Do all functions have
an inverse? To answer this, consider the following example.

Example 9: Let f : R — R be the constant function given by f(x)=1Vxe R.
Does the inverse of f exist?

Solution: If f hasaninverse g:R >R, wehave fog=1,,i.e,
VxeR,fog(x)=x. Nowtake x =5, for instance. We should have
fog(5)=5,ie., f(g(5)=5. But f(g(5))=1 since f(x)=1V x.

So we reach a contradiction. Therefore, f has no inverse.

* k%

In view of this example, you may ask for the conditions under which f will
have an inverse. The answer is given by the following theorem.

Theorem 3: A function f : A — B has an inverse if and only if f is a bijection.



Proof: Here we have to prove two statements:

i) If f is bijective, then f has an inverse.

ii) If f has an inverse, then f is bijective.

So, firstly, suppose f is bijective. We shall define a function g: B — A and
prove that g =f".

Let be B. Since f isonto, B=f(A)={f(a)lae A}. So there is some

a€ A suchthat f(a)=b. Since f is one-one, there is only one such ae A.
We take this unique element a of A as g(b). Thatis, given be B, we define
g(b)=a, where a is that element of A for which f(a)=b.

Note that, since f is onto, we are simply defining g:B — A by g(f(a))=a.
This automatically ensures that gof =1, .

We still need to show that f o g =1;. Forthis, let be B and g(b)=a. Then
f(a) =b, by definition of g. Therefore, f o g(b) =f(g(b))=f(a)=b. Hence,
fog=1I;.

So, fog=1I, and gof =1, . This proves that g=f".

Now let us prove (ii). Suppose f has an inverse, and g=f"'. We must prove
that f is bijective, that is, f is one-one and onto.
Now fog=1I, and gof =I,. From Example 4, you know that I, and I, are

both 1-1 and onto, so fog and gof are both 1-1 and onto.
Now, from Theorem 1, since gof is 1-1, sois f. Also, since f o gis onto,

sois f.
Thus, f is one-one and onto.
Hence, the theorem is proved. [ |

Thus, by applying the theorem above to the function f in Example 9, we
would immediately know that f~' does not exist, since f is not injective.

Try the following exercise now.

E20) Consider the functions £, f,, f; from R to R, defined as below. For

each, determine whether it has an inverse and, when the inverse exists,
find it.

i) f(x)=x"V xeR;
iy  £,0=0VxeR;
iy f,x0)=11x+7V xeR.

In this section we have looked at an operation on functions. Earlier, you
studied operations on sets, like union and intersection. Let us look at all these
operations in a more general setting.

2.5 BINARY OPERATIONS

You are familiar with the operations of addition and multiplication on the set of
real numbers. Addition is a function which associates with (a, b)e RxR the

element a+b of R. So, itis a function from RxR to R. In other words,

Functions
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+:RXR—>R:+(a,b)=a+b. Can you see that multiplication is also a

function from RxR to R ? These functions can be performed on any pair of
elements of R. They are examples of binary operations, which we now
define.

Definition: A binary operation on a non-empty set S is a function from
SxStoS.

Thus, a binary operation on S takes a pair of elements of S and associates a
unique element in S to them. The word ‘binary’ means ‘involving pairs’. It is
customary to denote a binary operation by a symbol such as +, o, *, etc.

As mentioned earlier, + and x are binary operations on R.

Another example is *: RXR —- R:a*b= a—;b.

As yet another example, take a set X, and take its power set @(X). Then
N p(X)xp(X) — p(X): N(A,B)= A " Bis a binary operation.

Some binary operations can have special properties which we now define.

Definition: A binary operation * on a set S is said to be

i) closedonasubset T of S if t, *t,e TV t,t,eT.
i) commutative if a*b=b*aVa,beS.

i) associative if (a*b)*c=a*(b*c)Va,b,ceS.

For example, the operations of addition and multiplication on R are
commutative as well as associative. But, subtraction is neither commutative
nor associative on R. Why? Is a—b=b—a fora,be R? Oris

(a—b)—c=a—-(b—c)Va, b,ce R? No, as you know. Also, subtraction is not
closed on N c IR, because, for example, 1e N, 2e N but 1-2¢ N.

Try an exercise now.

E21) Let X be a set and (X) its power set.

i) Show that complementation and union are binary operations on
¢(X) . Which of these operations are commutative, and which are

associative? Give reasons for your answers.

ii) s the Cartesian product a binary operation on ©(X)? Give
reasons for your answer.

Let us now look at a property connecting two binary operations. In Sec. 1.6,
you have seen some examples of distributivity. You would recall that
AuBNC)=(AuB)N(AUC) for subsets A, B, C ofaset U. This
shows that the operation of union distributes over the operation of intersection.
Let us define this concept more generally.

Definition: If o and * are two binary operations on a set S, we say that * is
distributive over o (or * distributes over o) if

a*(boc)=(a*b)o(a*c), and

(boc)*a=(b*a)o(c*a)Va,b,ceS.

Consider an example.
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Example 10: Let a*b= %V a,be R. Prove that the operation of

multiplication in R is distributive over *.

Solution: We have to see whether a(b*c)=ab*ac and (b*c)a=ba*ca.
(b+c) ab+ac

Now a(b*c)=a =ab#*ac.
2 2
Also (b*c)a = (b;—c)azba;-ca =ba*ca.

Hence, multiplication is distributive over .

* k%

Try an exercise now.

E22) For the following binary operations defined on R, determine whether
they are commutative or associative. Are any of them closed on N ?
i) X@y=x+y-5
ii) X*y=2(x+Yy)

X—y
iii
) 2

xAy =

Also check if @ distributes over A in R.

We end our discussion on functions here. Of course, you will be extending
your learning from this unit while studying every mathematics course. For
now, let us quickly summarise what we have discussed in this unit.

2.6 SUMMARY

In this unit, you have studied the following points.
1) The definition, and examples, of a relation fromaset S toaset T.

2) Arelation R onasetS is
i) reflexiveif aRa VaeS,ie, {(a,a)laeS}cR;
i) symmetric if aRb=bRaV a,be S, ie.,
(a,b)e R=(b,a)e RV a,beS§S;
i) transitive if aRb, bRc = aRc V a,b,ce S, i.e.,,
(a,b)e R, (b,c)e R=(a,c)e RV a,b,ceS.
iv) an equivalence relation if it is reflexive, symmetric and transitive.

3)  The definition, and examples, of a function with domain S, co-domain T
and range R .

4)  Two functions f and g are equal iff Domain f =Domain g and
f(x)=g(x)V xe Domain f.

5) Afunction f:A —> B is
i) injective (or 1-1) if a,,a,€ A with a, #a, = f(a,) #f(a,);
ii) surjective (or onto) if for each be B 3ae A suchthat f(a)=b;
i) bijective (or 1-to-1) if f is injective and surjective.
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6)  The composition of functions f : A - B and g:C — D, where the
range of g is a subsetof A,is fog:C —>B:fog(c)="1(g(c)).

7)  When a function is invertible, and then defining its inverse explicitly.
8)  The definition, and examples, of a binary operation on a set S .

9)  When a binary operation on S is closed on a subset of S, oris
commutative or associative.

10) When one binary operation on a set S distributes over another binary
operationon S.

2.7 SOLUTIONS/ANSWERS

E1) (2.3)¢ Rsince 3#22. Similarly, (9,3)¢ R. (V3,3)¢ R since V3¢ N,
Thus, (i) is the only true one since 3R3*, with 3¢ N.

E2) If S is the set of courses of IGNOU, then consider
R, ={(C,,C,))IC,, C, are first level courses of IGNOU},
R, ={(M, N)IM is a course of the BA prog. and N is a course of the B.Sc.
programme}.
Then R, and R, are subsets of SxS which are not equal.

E3) R isreflexive because a=a VaeR.
R is symmetric because a=b=b=a V a, be R.
R is transitive because a=b,b=c=a=c Va, b,ce R.

E4) i) R is not reflexive because forany ae N, a—a=0. So, there is
no natural number n for which Sn=a—a.

ii) If 5I(a—b), then dne N suchthat Sn=a—-b. If 3me N such

that Sm=b—a=-5n, then m=-n, which is a contradiction
since n and —n both cannotbe in N. So R is not symmetric.

i) If5l(a—b) and 5I(b—c) in N, then check that 5I(a—c) in N.
So, R is transitive.

E5) There can be several examples. We give the following:
2,2)¢R.

(2,4)e R, but (4,2)R.
(2, 4)e R, (4,16)e R, but (2,16) R.

E6) Consider the set S={a, b}. Then {a}R{b} and {b}R{a}, but {a}R{a}
is not true. Therefore, R is not transitive.

E7) If we assume that every resident of Kochi has one and only one mobile
phone number, then we can define f : X — Y : f(x) =mobile no. of x.
Another way could be if we list all the elements of X from 1, (i.e.,
00...01 in the 10-digit format) onwards, calling it his/her resident
number, then we can define
g: X — Y :g(x) =resident number of x.
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The domains of f and g are the set of residents of Kochi.
Range f ={ Mob. No. of x| xe X},

Range g ={Resident no. of x|xe X}.

E8) i) For each ne N, there is i €Q.
n+1
. m
Also, if n, me N such that n =m, then = .
n+l m+l1

So, foreach ne N, there is a unique element qe Q, such that

f(n)=q. Here q=L.
n+l

Hence f is well-defined.

i)  There can be several such functions from N to Q. For example,
take g(n)=n, or h(n) =n—+1. You can check that f(n) # g(n)
n

and f(n) #h(n) Vne N.

E9) For example, take the relation R from N to Q,
R={{1,1),d,-1),(2,2),(2,-2),...}. Since an element of N is not
uniquely mapped under R to an element of Q (e.g., (2,2) and (2, —2)
are both in R ), R is not a function.

E10) This is false. Forinstance, take f:R - R:f(x)=x and
g:R—>R:g(x)=x+1. Then the domains of f and g are R, which is
also their ranges. But f(x) #g(x) Vxe R.

E11) Domain f =N, Range f ={6, 7, ...}, Co-domain f =N. So
f={(n,n+5)Ine N} c NxRange f.

f is not surjective since Range f # Co-domain f .
Now, to check whether f is injective, suppose f(m)=1f(n), where

m,ne N,
Then m+5=n+5, which implies m=n. Thus, f is 1-1.

E12) In this case, forany ze Z,3dz—-5€ Z such that f(z—5)=z. So,

Range f =7 . Therefore, f is onto.
AsinE11, f is 1-1. Hence f is bijective.

E13) Firstly, by definition, X # (.
Next, if X has more than one element, say, x,, x,, then x, # x,, but
f(x,)=c=1f(x,). This would mean that f is not injective. So, for f to

be injective, X must be a singleton.
f is surjective because Range f = Co-domain f ={c}.

E14) i) fog(x)=f(g(x)=f(x+5)=5(x+5)VxeR.
gof(x)=g(f(x))=g(5x)=5x+5V xeR.
ii) fog(x)=x,gof(x)=x.
Note that f c g =gof in (ii) but notin (i).

E15) There are several examples. One is the following: 55
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Define f :N —>Z:f(n)=—n and g:N—)@:g(n)=l.
n

Then Range f ={-1,-2,-3,...} ¢ N=Domain g.

Range g:{l,%,%, -~-}¢N:Domain f.

Thus, neither gof nor f o g are defined.

E16) gof:A—D.

i)

True, because if ye Range gof ,then 3xe A such that
gof(x)=y. This means g(f(x)) =y, which shows that
ye Range g.

So Range gof cRange g.

False, because for example, take f : N — Z :f(n) =—n and
g:Z—7:g(z)=2". Then gof :N —Z:gof(n)=n. So, 0Oe
Range g, but 0¢ Range (gof).

False. For example, take f:Z — Z:f(z) =—z, and g as in (ii)
above. Here, checkthat f is 1-1, but gof is not.

False. For example, take f :N — Z:f(n) =—nand
g:R—>R:g(x)=x+5. Then check that g is surjective, but
gof :N—>R:gof(n)=5—n is not surjective.

E17) Notethat I,:B—B,g:B—>A, I, :A—>A.
So I, og and go I, are well-defined, and I, cg:B —> A, gol;:B—A.
Also I, cg(b)=g(b) Vbe B and goI;(b)=g(b) Vbe B. Hence the
result.

E18) For example, in Example 8 gof is onto, but f is not. You can find
several other examples.

E19) i)

E20) i)
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To get x from % we need to multiply by 3. So, let us define

g:R—>R:g(r)=3r.
Then gof and f og are both defined.

Further, gof(x) = ggj =x =1,(x)

and fog(x)=f(3x) =x=1;(x).

To get r from 2r +%, we need to first subtract % and then divide

by 2. So, let us define h:@a@:h(x):%[x—g) Then check

that hog and goh are both defined, and are equal to I .

f:R —>R:f(x)=x"isnot 1-1, since, for example, f,(1) =f,(-1)
and 1#—1. So f, doesn’t have an inverse.



E21) i)

E22) i)

i)

Functions

f, is neither an injection nor a surjection. Hence f, doesn’t have
an inverse.

f, is bijective, and hence has an inverse. In fact, we can easily

see that x can be extracted from 11x + 7 by first subtracting 7
and then dividing by 11.

So if we define g: R = R by g(y) = y1—_17 then check that

f,og=gof,=1,. So f, has the inverse g.

For any two subsets A, B of X, we have A\B, AuBare

subsets of X . So, complementation and union are binary
operations on (X) .

Take X tobe N. Then {1, 2}\{2, 3} #{2, 3} \ {1, 2}, for example.
So complementation is not commutative.

Similarly, you can see that

({1,2,3,4}\ {1, 2) \{4, 5} #{1, 2, 3, 4} \ ({1,2} \ {4, 5}) , so that
complementation is not associative.

However, as you have seen in Sec. 1.5, union is both commutative
and associative.

For any two subsets A, B of a non-empty set X, AXB is nota

subset of X. This is a subset of X x X . Therefore, Cartesian
product is not a binary operation on (X) .

Checkthat x®@y=y® x and
xPy)@z=xD(yDz)VX,y, ze R. However, for example,
1®1=-1¢ N. So @ is not closed on N.

* is commutative, but not associative since
(x*xy)*z=2[2x+2y+7z],and x*(y*z)=2[x +2y+2z].
However, for x, ye N, x*ye N, so that * is closed on N.

xAy is neither commutative nor associative. Further, A is not

closed on N.
Now, for x, y, ze R, consider

x@(yAz)=x+(yAz)—5=x+%—5.
Also,

(X®Y)A(X®z)=(x+y—5)A(X+Z_5):(X+Y—5)—(x+z—5)

2

y—2z

5
So, x® (yAz) #(X D y)A(x D z)
Therefore, @ does not distribute over A.
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3.1 INTRODUCTION

We will first briefly discuss a system you would have studied in school,
namely, the Cartesian coordinate system. This system of representing points
in a plane was introduced in the early 17" century by René Descartes, the
French mathematician you read about in Unit 1. It is said that René Descartes
(pronounced re-nay daycart) was a sick child and was, therefore, allowed to
remain in bed till quite late in the mornings. One day when he was lying in
bed, he saw a spider near one corner of the ceiling. Its movement led
Descartes to think about the problem of determining its position on the ceiling.
He decided that it was sufficient to know the eastward and the northward
distances of the spider from the corner of the ceiling! This is supposed to
have sown the seed for the development of the subject known as coordinate
geometry.

In Sec. 3.2 you will study the idea of coordinates and how Descartes’ system
helps in studying all of plane geometry. In particular, you will study various
algebraic representations of a straight line in Sec. 3.3. In Sec. 3.4 you will
work with graphs, which are a geometric way of viewing functions, using the
Cartesian system. As you go through Sec. 3.3 and Sec. 3.4, you would see
the close interaction between algebraic and geometric representations of
various curves.

Up to this point, you would have thought that Descartes was the only person to
come out with a method for positioning points in a plane. However, in Sec. 3.5



you will study another system for locating points in a plane, which is very
important in your study of Calculus and Analysis. This is the polar coordinate
system, known from ancient times in a limited non-formal way. This system
will be very useful for studying Unit 4 also.

Objectives
After studying this unit, you should be able to:

o explain what a Cartesian coordinate system is;

o use the Cartesian system to give different algebraic representations of
straight lines in a plane;

o geometrically represent functions by their graphs in the Cartesian
coordinate system;

o explain the polar coordinate system, and its relationship with the
Cartesian coordinate system in which the origin and pole coincide, and
the x -axis and polar axis coincide;

o geometrically represent functions by their graphs in the polar coordinate
system.

3.2 THE CARTESIAN COORDINATE SYSTEM

You would be familiar with the concepts of point, line, circle, etc. You would
also recall that real numbers are represented on a number line like the one in

Fig.1. Here O denotes the number zero, the other points on OX denote the
positive real numbers and the points on 0X’ denote the negative real

numbers. If we choose the point A on OX such that the length of OA is 1
unit, then A denotes 1 on this line.

v

Fig. 1: The real number line

So, for example, © will be denoted by B, where the distance OB is
approximately 3.1416. Similarly, —3 will be denoted by C, where the

distance OC is thrice the distance OA , with C on OX, that is, the ‘negative’
side.

Remark 1: Note that the number line need not be shown horizontal. It could
also be vertical or at any other angle to the horizontal.

Now suppose you put a dot on a sheet of paper [as in Fig.2 (a)], which | can’t
see. Now, | ask you to describe the position of the dot on the paper in a
manner that | can visualise it (remember, | can’t see the paper and the dot).
How would you do this? Perhaps you would say, “The dot is in the upper half
of the paper”, or “It is near the left edge of the paper”. Do any of these
statements fix the position of the dot precisely and unambiguously? No! But,
if you say “The dot is 2 cm away from the left edge of the paper”, it helps to
give me some idea, but still does not fix the position of the dot precisely. But,
if you also tell me that the dot is also at a distance of 9 cm above the bottom
edge, then | can tell exactly where the dot is!

2D Coordinate Systems
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AB denotes the length of

the segment AB.
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(@) Vv (b

Fig. 2: Positioning the dot precisely requires knowing its distance
from at least two non-parallel lines

So, what did you do? You fixed the position of the dot by specifying its
distance from two lines perpendicular to each other, namely, the line along the
left edge of the paper, and the line along the bottom edge of the paper

[Fig. 2 (b)].

In fact, this is the basis of the Cartesian coordinate system. We can take any
point O in a plane and fix it. Then draw a horizontal line X’OX and a vertical
line Y'OY through O. These lines divide the whole plane of the paper into
four parts, which are called quadrants (first, second, third and fourth), as
shown in Fig. 3.

A
Y--
Quadrant Quadrant
Il |
<Y 0 )'(7
Quadrant Quadrant
Il 1\
Y4
g

Fig. 3: The x-axis, y-axis and the four quadrants

The point O is called the origin and the lines X’OX and Y'OY are called the
x-axis and the y-axis, respectively. Starting with the origin O, we mark off

the points 1, 2, 3, ... at equal distances along OX as in Fig. 1, and
—1,-2,-3,..., similarly, on OX’. In a similar manner, we write 1, 2, 3, ...
along OY and -1,-2,-3,... along 0Y’. OX and OY are the positive

parts of the axes (plural of axis), and OX and OY are the negative parts.
Now, recall how we represent any point on a plane, using this frame. Let P
be any point in the plane. We have already drawn the origin and the axes.

Through P we draw lines PL and PM perpendicular to the x-axis and y-axis,
respectively (see Fig. 4), where L lies on the x-axis and M lies on the y-axis.
Then PL is the distance of P from the x-axis and PM s the distance from the
y-axis. Also note that PM =OL and PL=OM.



A
Y..
o - M
X L Ot %
Y3
v
Fig. 4

The number that L represents on the x-axis is called the x-coordinate (or
abscissa) of P. The number that M represents on the y-axis is called the
y-coordinate (or ordinate) of P. The two taken together are known as the
coordinates of P, and are written as a pair, (OL, OM). Thus, if OL =-4
units and OM = 2 units, the coordinates of P are (-4, 2). The expression
P(—4, 2) indicates that P has coordinates —4 and 2, —4 being the
x-coordinate and 2 being the y-coordinate. Note that we write the x-

coordinate first and then write the y-coordinate. This is a convention accepted
by all users of this system. Using this convention, the point (I, —4) will not be

the same as the point (-4, 1), as you can see in Fig. 5.

This way of representing points in a plane is called the two-dimensional
Cartesian coordinate system, after the mathematician Descartes who
invented it. Here’s an important related remark.

Remark 2: i) Points for which both coordinates are positive lie in Quadrant I.

i)  Points for which both coordinates are negative lie in Quadrant IIl.

i)  Points for which the x-coordinate is negative and y-coordinate is positive
lie in Quadrant II.

iv)  Points for which the x-coordinate is positive and y-coordinate is negative
lie in Quadrant IV.

v)  Points on the axes do not lie in any quadrant.

So, uptil now we have seen that if we know the position of a point P on a
plane, then we can find a pair of real numbers (x, y) corresponding to P in

the Cartesian coordinate system. The first number in the pair is called the
x-coordinate and the second is called the y-coordinate, and the pair are called
the coordinates of P .

Now, what about the other direction, i.e., given any pair of real numbers
(x, y), can we find a unique point P in the plane for which x, y are its

coordinates? To answer this, let us consider some pair, say, (3,—2). Let A
and B denote 3 along OX and —2 along 0OY in Fig. 6.

Y
L A
\kl L} T T 1 L} L] i T k,
- .B_ ..... TP- .....
Y!
Fig. 6

2D Coordinate Systems

The points (x, y) and
(y, x) are different

unless x =y.
A

Y...

41 1}

i 7 .. | I
=
X 01 X

bl

1. (1,-4)
Yy
Fig. 5
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A Cartesian coordinate
system represents the
set RxR.

Y
(-3,1) 1
6!—,!—!—0——!—!9
X ol 1 X
%
v

Fig. 7: The point
(-3, 1) in a Cartesian
coordinate system in
which the unit along
the x-axis is different
from the unit along
the y-axis.

A two-dimensional space
is a representation of a
plane along with a
coordinate system.

N

L A iPeoy)

DTN EE S——

X o <X > B X
Yl

v
Fig. 8: The line L
represents y =2.
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Through A draw a line parallel to the y-axis, and through B draw a line
parallel to the X-axis. What are the coordinates of the point P, at which they

intersect? You can check that they are (OA, OB), thatis, (3, -2).

In the same way, you can now see how, given any (x,y)e RxXR, there is a
unique point P in the plane such that the coordinates of P are (x,y).

Thus, you have seen that there is a 1-to-1 correspondence between points in
a plane and a Cartesian coordinate system in which X’OX and Y'OY are
fixed.

Try these exercises now.

E1) Plot the points with Cartesian coordinates (-2, 2.5), (2, —2.5), (3.45, 0),
(0, —3.45) , respectively.
E2) In which quadrants of the plane would (x, y) lie if:
i) xy >07?
ii) xy<07?
iy  xy=07?

Justify your answers.

Let me end this section with an important remark.

Remark 3: In this section, one of the points you studied was how to mark off
points along the x and y axes. In the examples used here, you have used

the same unit along the x-axis and the y-axis. So, for example, if OA =1 unit
along the x-axis, and OB =1 unit along the y-axis, then OA = OB . However,

this need not be so. You can use one unit along the x-axis and another along
the y-axis (see Fig. 7).

Let us now look at the way lines in a plane can be represented in the
Cartesian system.

3.3 EQUATIONS OF A LINE

In this section we aim to discuss ways of representing straight lines in two-
dimensional spaces algebraically. Since you may be familiar with the matter
from school, we shall cover the ground quickly. We start with lines parallel to
either of the axes.

3.3.1 Lines Parallel to the Axes

Consider a line L parallel to the x-axis, which intersects the y-axis in A(0, 2).
Now, take any point P(x, y) on it, as in Fig. 8. You can see that the

perpendicular from P onto the y-axis is along the line L, and hence intersects
the y-axisin A. Thus, y=2. Thus, for any point P on the given line, we find

that its ordinate is 2.

Conversely, take any point Q with coordinates (x, 2). This means that the
perpendicular from Q onto the y-axis intersects it at the point A(0, 2). So,



this perpendicular is along L. Therefore, Q will lie on L. This is regardless

of the value of x.
Thus, this line L consists precisely of all those points whose coordinates
(x,y) satisfy y=2. So L represents the equation y =2.

Similarly, for any line parallel to the x-axis, which intersects the y-axis in
(0, a), ae R, its equation will be

y=a. ..(1)

What do you expect the equation of a line parallel to the y-axis to be? Think
about this while doing the following exercises.

E3) Find the equation of a line parallel to the y-axis, and which intersects the
y-axis in
(3,0
ii) (b, 0), for some constant b.

E4) What are the equations of the coordinate axes?

If you have solved E3, you would have seen that any line parallel to the y-axis
is of the form
x=b, forsome be R. ...(2)

Now let us obtain four forms of the equation of a line which is not parallel to
either of the axes.

3.3.2 Slope-intercept Form

Consider any line not parallel to either axis. It will make an angle, say
a, o =0, /2, with the positive direction of the x-axis, measured in the

anti-clock-wise direction, and will cut the y-axis in A(0, c¢), say. Then, if

P(x, y) is any point on this line, from Fig. 9 you can see that tano = y=¢,
X

Thus, y=xtano+c,
i.e., y=mx+c, where m=tano. ...(3)

m gives the slant of the line L to the horizontal. It is called the slope of L.
c is called the intercept of L on the y-axis. Thus, y=mx +c is called the
slope-intercept form of the equation of a line.

Let us consider an example.

Example 1: Find the equation of the line which makes the same angle with the
x-axis as with the y-axis, and which intercepts the y-axis in (0, — 7).

Solution: Let the angle made by the line with the x-axis be o. Then consider
Fig. 10. The line passes through A(0, — 7). Let the line intersect the x-axis in

P. If we draw AM parallel to OX , then ZMAP =q..
Also, we are given that ZPAY =a. Thus, 2a0=7n/2. Hence a=mn/4. So,

the equation of the line is y = x tang+ (—m) , that is,

y=X—-T.

2D Coordinate Systems

Fig. 9: L is given by
y =xtano +c.

‘Intercept’ on an axis is
the distance from the
origin of the point at
which the line cuts the
axis concerned.
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Try some exercises now.

E5) Find the equation of the line that cuts off an intercept of 1 from the
negative direction of the y-axis, and is inclined at 120° to the x-axis.

E6) What is the equation of the line passing through the origin and making

an angle 6 with the x-axis, where 6 #0, g ?

Let us now see another way of representing lines algebraically, closely related
to the form (3).

3.3.3 Point-slope Form

Now, suppose we know the slope m of a line but not the intercept it makes
with the y-axis. We also know that a point (x,, y,) lies on the line. Then, can

we obtain the line’s equation? Let P(x, y) be any point on the line, with slope
m=tana, and Q(x,, y,) be the given point. Now, from Fig. 11, we see that

Y. Y
X, —X

Fig. 11: m =

YimY_Y—Y
X, —X  X—X,
to the y-axis.) Thus,

y-y, =m(x-x,), ---(4)
which is the point-slope form of a line.

m=tano, = . (Note that x, # x, since the line is not parallel

Let us consider an example.

Example 2: Find the equation of a line L which is parallel to the line



1 |
Solution: Since L is parallel to 3y =x — V3, thatis, y :§X _ﬁ’ its slope
will be the same as the slope of this line, namely, % Also, we know that L

1
passes through [— 1, —7j Thus, by (4), its equation is

*kk

Try an exercise now which helps you see the close relationship between the
forms (3) and (4).

E7) If L is a line with slope m, and which cuts off an intercept of length ¢
from the y-axis, how would you use (4) to obtain its equation?

Let us consider yet another form now.

3.3.4 Two-point Form

Now, suppose we have a line which is not parallel to the axes but we don’t
know its slope. Can we find its equation? Yes, if we know two distinct points
lying on it. Let us see how.

Let P(x,, y,) and Q(x,, y,) be two distinct points on a line L, which is not
parallel to the axes. Let R(x, y) be any point on it (see Fig. 12).

N
a

T
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(0.0)
(2.0)

o) N X7
Fig. 13: L is given by
Yo
a b

(6) is called the intercept
form of the equation of L.
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Then the slope of L, say m, willbe m =Ny (Note that x, —x #0.
X, —X
(Why?))
You can see that m will also be 22—
X, =X

ThUS, YI_y m= YZ_YI

X, —X X, =X,
e Ny _ATX (Note that y, #y,.)
Y=Y XX
o ITh XN ..(5)

Y=V XX
which is known as the two-point form of the line.
As you can see, the slope of the line is actually known — it is Y27V
X, =X
Also, its intercept on the y-axis, which can be obtained by finding the
intersection of (5) with the y-axis, i.e., x =0, is given by
YY1 __TX%
Y= X7X
e, y=y,— x{uj.

2 T Xy

Let us consider an example.

Example 3: Find the equation of the line whose intercept on the x-axis is 2

1
and which passes through (—, nj.
T

1
Solution: We know that the line required passes through (2, 0) and (—, nj.
T

Hence, using (5), its equation is y-0 X —1l/m
-0 2-1/m
T
= nx—1).
y 2n—1( )

*kk

Try an exercise now, which actually leads you to another well known form of
the equation of a line.

E8) i) Suppose we know that the intercept of a line on the x-axis is 2 and

on the y-axis is —3. Then show that its equation is %—%zl.

(Hint: See how you can use (5).)

i)  More generally, if a line L cuts off an intercept a(#0) on the
x-axis and b(# 0) on the y-axis (see Fig.13), then show that its
equation is

X Yy
—4+< =1 ...(6
2 (6)




Now, have you noticed a characteristic that is common to all the equations of
lines you have studied here? They are all linear in two variables, that is, of the
form ax+by+c=0, where a, b, ce R and at least one of a and b is

non-zero. This is not a coincidence, as the following theorem tells us. (We
shall not formally prove this result.)

Theorem 1: A linear equation in two variables represents a straight line in two-
dimensional space. Conversely, the equation of a straight line in the plane is a
linear equation in two variables.

So, for example, 2x+3y—1=0 represents a line. What is its slope? To find
this, we rewrite itas y = —%x+%. The slope is the coefficient of x, namely

o 1 1
—%. Do you agree that its intercepts on the x and y axes are B and 3’

respectively? You can check this by finding its intersection with the x and y
axes respectively.

Why don’t you try an exercise now?

E9) i) Find the equation of the line parallel to y+ x+1=0 and passing
through (0, 0).

i)  What is the equation of the line perpendicular to the line obtained
in (i) above, and passing through (2, 1) ?

Let us now stop our discussion on lines and linear equations, and move on to
more general equations. We shall discuss a concept that will help us to
represent functions geometrically in the rest of the course.

3.4 GRAPH OF A FUNCTION

In Unit 2, you studied functions. There, you saw that the function f is a
subset of the Cartesian product A xB with special properties, where A is the
domain of f and B is the co-domain of f . In this section we shall look at the
geometrical representation of f, using Cartesian coordinates, when
AxBcRxR.

In the previous section you have already studied this for one type of function.
Do you agree? Isn'’t a line a representation of a function from R to R ? For
instance, take any line, say 2x =3y+ 7. This is the set of points

[ 2X —7)
X,

3
requirements of a function. So, this can also be written as the function

f:R—)R:f(x)z%(ZX—ﬂ.

X€ R} c RxR . Check that this relation satisfies all the

. . 2 7
So, this function is represented by the line 2x =3y+7,i.e., y= gx—g,

which has slope % and y-intercept —%.

2D Coordinate Systems
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(0.b)

o e

/ O| X~

Fig. 14: L represents
f:R—>R:f(x)=ax+b,

where a =tanao .

N
vt
O : T : k,
Fig. 15
A
Y-_
(0.1)
t t o) X,
Fig. 16: y =1.
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In general, the function f : R > R:f(x)=ax+b, a, be R, is represented by a

line with slope a and y-intercept b, as in Fig. 14. This representation of f is
called the graph of f .

More generally, given any function from A c R to B R, we have the
following definition.

Definition: Let f be a function with domain A and co-domain B, where A
and B are subsets of R. The graph of f is the subset {(x, f(x))Ixe A} of
RxR.

Thus, when this set is represented using the Cartesian system, we see it as
the geometrical view of the function. As you have seen, if the function is a
linear polynomial, its graph is a straight line. Let us consider some more
examples.

Example 4: Draw the graph of the function
f:{1L,2,3}>{L2,...,10}:f(D)=1f12)=4,f3)=9.

Solution: We plot the points in the set {(1, 1), (2, 4), (3,9)} in a Cartesian

system, as in Fig. 15. Thus, the graph of f comprises the three points shown
in Fig. 15.

* k%

Example 5: Draw the graph of the constant function f : R — R : f(r)=1.

Solution: The graph of this function is the set of points representing
{(r, )Ire R}, that is, the line y =1 shown in Fig. 16.

* k%

Example 5 leads into the following remark.

Remark 4: Look at the graph in Fig. 16. Take any value b along the y-axis,
b#1. You can see that the line y =b does not intersect the graph at all. But

b lies in the co-domain R of f. What does this show? It tells us that f is
not surjective (see Unit 2). More generally, by looking at the graph of a
function, you can tell it is not onto if the line y =b does not intersect the graph

for even one value of b in the co-domain of the function.
Here’s an example about checking surjectivity.

Example 6: Draw the graph of the function given in E8(i), Unit 2. Hence,
check whether this function is onto, by inspecting its graph.

Solution: f:N > Q:f(n)= n
n+l1

Thus, the graph is as in Fig. 17. Note that we have used different units along
the x-axis and along the y-axis, for convenience.

You can see that the graph comprises infinitely many points, getting nearer
and nearer to the line y =1, but lying below it even when n gets very very

large.

Note that 1 lies in the co-domain QQ of f, but y =1 does not intersect the
graph of f. This tells us that f is not onto.



Fig. 17: The graph of f : N — Q : f(n) =
n+1

* k%

Example 7: Draw the graph of the identity function from R to R.

Solution: f :R > R:f(r)=r.

Thus, the graph is the set {(r, r)Ire R}, which is drawn in Fig. 18. You can
see that this is the line y =x.

* k%

Example 7 leads into an important point.

Remark 5: If you inspect the graph in Fig. 18 and take any line parallel to the
x-axis, say y =b, it will intersect the graph in one point only, namely, (b, b).

This property of the graph tells us that f is 1-1 (see Unit 2). More generally,
if f:A—>BcR,and V be B y=>b intersects the graph of f in at most

one point, then f is 1—-1. If the intersection is two or more points for even
one be B, then f willnotbe 1—-1.

Example 8: Draw the graph of the function g: R — R:g(x) =x>. Hence,

decide whether
i) g is 1—-1 ornot,
ii) g is onto or not.

Solution: The graph of g is the set of points {(x, x*)Ixe R}. As you can
see, this is the parabola y = x>, shown in Fig. 19.

v

Fig. 19: The curve represents{(x, xz) Ixe R}.

2D Coordinate Systems
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Fig. 18: The graph of
f:R>R:f(r)=r.
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f defines the modulus
function,

X,x20
Ix|=
-x,x<0

R ={xeRIx <0}
R*={xeRIx >0}

In Example 9 you can
also show that f is not
bijective by showing that
it is not surjective.
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i) From the graph, you can see that, for example, the line y =1 intersects
the graph in two points (1, 1) and (-1, 1). Hence g isnot 1—-1.

i)  From the graph you can see that forany aoe R, aa<0, y =0 does not
intersect the graph. Hence g is not onto.

* k%

Example 9: Draw the graph of f : R — R defined by f(x)=x,if x >0 and
f(x)=—x, if x <0. Further, by inspecting the graph, decide if f is bijective or
not.

Solution: To draw the graph of this function notice that it is defined differently
for negative real numbers, R™, and for non-negative numbers, R* u{0}. So,
the graph is the set union {(x,x)Ixe R*} U{(0, 0)}u{(x, —x)Ixe R7}. ltis
shown in Fig. 20.

Fig. 20: Graph of Ix|.

You can see that on R" itis the line y=x and on R" itis the line y =—x.
Further, by looking at it, you can see that the line yzé intersects it in two

points. Hence f is not injective, and thus, not bijective.

* k%

Why don’t you do some related exercises how?

E10) Draw the graphs of the functions given below:
i) f:N—>N:f(n)=n+5;
ii) g:Z—>7Z:g(n)=n+35;
i) h:R—>R:h(r)=r+5.
What is the difference you note in the three graphs above? Include

differences regarding injectivity and surjectivity.

1, x20
-1, x<0
Hence decide whether f is bijective or not.

E11) Draw the graph of f:ReR:f(x):{

E12) Draw the graph of the function f : R — R which represents the line

given by X+ Y —1. Also check whether f is bijective or not.
T V2




So far we have been working with Cartesian coordinates. But there is another
very useful coordinate system for locating points in a plane. Let’s see what it
is.

3.5 THE POLAR COORDINATE SYSTEM

You have come across the concepts of ‘angle’ and ‘radius’ before. Using
these concepts one can determine the position of any point in a plane. Let us
see how.

We first fix a point O in the plane called the pole. Then we fix an axis, usually

a horizontal ray through O, called the polar axis, shown as OA in Fig. 21.
Then we can locate any point P in the plane, if we know the distance OP, say
r, and the angle AOP, say 0 radians. r is called the radial coordinate, or
radius, of P and 0 is called the angular coordinate, or polar angle, of P .
Thus, given a point P in the plane, we can represent it by a pair of
coordinates (r, 0), where r is the “directed distance” of P from O and 0 is

ZAOP , measured in radians in the anticlockwise direction. We use the
term “directed distance” because r can be negative also. For instance, the

point P in Fig. 22 can be represented by [5, %nj or [— 5, gj because the

positive distance is along the ray which makes an angle %ﬂ with the polar

axis. In general, given (r, 0), r is positive if it is measured along the ray

which makes an angle 0 with the polar axis, and r is negative if it is
measured along the ray which makes an angle m+6 with the polar axis.

Note that by this method the pole O corresponds to (0, 0), for any angle 6.

Thus, you have seen that for any point P, there is a pair of real numbers
(r, ©) that corresponds to it. They are called the polar coordinates of P.

These coordinates are not unique, as you have seen.

Now, if we keep 0 fixed, say 6 =m/3, and let r take on all real values, we get
the line OP (see Fig. 23), where ZAOP =m/3.

Similarly, keeping r fixed, say r =2, and allowing 6 to take all real values,
the point P(2, 6) traces a circle of radius 2, with centre at the pole
(see Fig. 24).

Remark 6: A negative value of 6 means that the angle has magnitude 161,

but is taken in the clockwise direction. Thus, for example, the point [2, —gj
. 3n
is also represented by | 2, > )

As you have probably guessed, the Cartesian coordinates (x, y) and polar
coordinates (r, 8) are very closely related. Can you find the relationship?
From Fig. 25 you would agree that the relationship is

X =rcosf, y=rsin. ...(7)
This gives us

2D Coordinate Systems

i
o ks
Fig. 21: Polar
coordinates of P with

O as pole, OA as polar
axis, r as the radius of
P and 6 as the polar
angle of P.

v

e

Fig. 22: P’s polar

. b
coordinates are [— 5, Zj .

A point has many different
pairs of polar coordinates.

b
Cd

e

Fig. 23: The line L is given
by 0=mn/3.

Fig. 24: The circle r = 2.
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(0,1/2)

Fig. 26: The graph of

LN
4

X

r=sin0.
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r= x2+y2,6:tan1§ (8)
A
Y--
______ (x,y)
y |P (r.0)
|
s |
|
|
0 | L
0 X X

Fig. 25: Polar and Cartesian coordinates.

Note that the origin and the pole are coinciding here, as are the x-axis and the
polar axis. This is usually the situation.

Remark 7: If the polar coordinates of a point are to be unique, we need to
restrict 6 to 0<0<2n. (The pole will then have the polar coordinates
(0, 0).) This restriction is consistent with the uniqueness in the Cartesian
system, as you can see.

We use (7) and (8) often while dealing with equations, particularly where the
relationship between two points is easily given in terms of r and 6. For

example, the Cartesian equation of the circle x> +y* =25, reduces to the

simple polar form r=5. So we may prefer to use this simpler form rather than
the Cartesian one.

The equation of a curve in terms of r and 0 is called its polar equation. You
will often use this form in this course and other mathematics courses. To give
you a flavour, let us consider an example.

Example 10: Draw the graph of the curve r=sin 6.

Solution: r=sin 8 is the curve given by x> +y’ =y, in Cartesian form. This

2
is the same as the equation x’ +[y _Ej = i which is a circle with radius %

and centre [O, %j We have graphed this in Fig. 26.

*kk

Now, try the following exercises to get used to polar coordinates.

E13) Draw the graph of the curve rcos6=1
E14) Find the Cartesian forms of the equations
i) 1’ =3rsin 0.

ii) r=a(l—cos0), where a is a constant.
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The history of the development, and use, of the polar coordinate system is
very interesting. In fact, it goes back to the 2" century BC, when the ancient
Greek astronomer Hipparchus applied it for locating the stars. Nearer to our
times, the 17" century German mathematician, Jacob Beroulli, is credited
with formalising this system, and using it to study curves.

The polar coordinate system, is useful for studying various properties of
curves, and for drawing these curves. You will find it immediately useful in the
next unit, while studying the geometric representation of a complex number.

Let us now summarise what you have studied in this unit.

3.6 SUMMARY

In this unit, we have briefly run through certain elementary concepts of
two-dimensional analytical geometry. In particular, we have covered the
following points:

1. The 2D Cartesian coordinate system represents two-dimensional space
giving a one-to-one correspondence between the points in space and
those in RxR.

2.  Inthe Cartesian system any line parallel to the x-axis is represented by
y =a, and any line parallel to the y-axis is represented by x =b, for

some constants a and b.

3.  The equation of a line in
i) slope-intercept formis y =mx +c,

i)  point-slope formis y—y, =m(x —x,),

i)  two-point form is Y=h - X% :
Yo=Y X 7X
iv)  intercept form is Yo,
a b

4.  The polar coordinate system: A point P in a plane can be represented
by a pair of real numbers (r, 0), where r is the directed distance of P

from the pole O, and 0 is the angle that OP makes with the polar axis,
measured in radians in the anticlockwise direction. r (called the radius)
and 6 (called the polar angle) are the polar coordinates of P. They

are related to the Cartesian coordinates (x, y) of P by r=+/x>+y’

and 6=tan™ Z.

X

5. r and 6 uniquely represent points in a plane only if we insist that either
0<0<2m,or —t<O<T.

In the next unit we shall discuss numbers that are represented by the
Cartesian and polar systems. But, before going to it, please make sure that
you have achieved the unit objectives listed in Sec. 3.1. One way of
checking this is to ensure that you have done all the exercises in the unit. Our
solution to these exercises are given in the following section.
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3.7 SOLUTIONS/ANSWERS

P

4

De

Fig. 27

P @---mmaaee 4B

Fig. 28: L represents
x=-3.

Fig. 29: y = -(V3x + 1)
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E1)

E2)

E3)

E4)

E5)

E6)

E7)

ES)

E9)

The points P(=2, 2.5), Q(2, —2.5), R(3.45, 0), S(0, —3.45) are shown in
Fig. 27.

i)

i)

xy>0=x>0,y>0 or x<0, y<0.
Thus, (x, y) will lie in the Quadrants | or Ill.

Arguing as in (i) above, (x, y) will lie in the Quadrants Il or IV.

xy=0=x=0o0ry=0.
Thus, (x, y)=(0, y) or (x, y)=(x, 0). Accordingly, the point lies
on the y-axis or the x-axis.

Consider the line L in Fig. 28. This is parallel to the y-axis and
passes through (=3,0). Take any point P(x, y) on L. Draw a

perpendicular from P onto the y-axis, meeting itin B. Then
x =PB =-3. Thus, any point on L is of the form (-3, y), ye R.

Conversely, if you plot any point (=3, r), re R, it will lie on L.
Thus, the equation of L is x =-3.

Arguing as in (i) above, the equation of this line willbe x =b.

The x and y-axes are given by y =0 and x =0, respectively.

In Fig. 29 we have drawn the line. Its equation is y =mx +c, where
c=-1 and m=tan120° =—/3.
Thus, the required equation is y = —(\/gx +1).

Here ¢ =0, since the line intersects the y-axis in (0, 0). Thus, the
equationis y=xtan®0.

We are given that the slope of Lis m, and (0, c) lies on it. Thus, using
(4), we get its equation as y—c=m(x —0), thatis, y=mx +c.

i)

(2, 0) and (0, —3) lie on the line. Thus, its two-point form is
y=0 x-2
-3-0 0-2

, thatis, 2y =3(x-2).

We can rewrite this as %—% =1.

(a, 0) and (0, b) lie on the line. Thus, its equation is
y-0_x-a X y_,

b-0 0-a a b

The slope of y+x+1=0 is —1. Thus the slope of any line

parallel to the given line is —1. Thus, the line required is of the
form y+x+c=0, where ce R. Since (0, 0) lies on it,

0+0+c=0, thatis, c=0. Thus, the required lineis y+x=0.
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E10)

E11)

i)  The slope of the line y+x =0 is —1, that is, tan[g+gj . Thus,
the angle that any line perpendicular to it makes with the x-axis is

E+E iE:E, 5—“ You should check that both these values
2 4 2 4 4

give the same line. So, the slope of the line will be tang =1.

Thus, the equation of the line required is of the form y=x+c,
where ce R.

Since (2, 1) liesonit, 1=2+c,sothat c=-1.

Thus, the line required is y=x—1.

The graphs of f, g and h are shown in Fig. 30 (a), (b), (c), respectively.

(a) (b) (c)
Fig. 30

As you can see, in Fig. 30(a), the graph shows infinitely many points, all
lying in the first quadrant. In Fig. 30(b), you have these points as well as
one more on the x-axis and on the y-axis, four in the second quadrant,
and infinitely many more in the third quadrant. In Fig. 30(c), you find the
line y=x+5. Also, all the points in the graphs of f and g actually lie

on this line. Thus, the graph of f is a proper subset of the graph of g,
which is a proper subset of the graph of h.

Considering injectivity, you can check that all three are injective.
Considering surjectivity, (i) is not surjective because, for example, 1e N,
but y =1 does not intersect the graph. However, you can check that (ii)
and (i) are onto.

Here, the graph of f comprises two parts, namely, y =1 for R* U {0},

and y =—1 for R™. Hence, the graph is as shown in Fig. 31. We circle
the point (-1, 0) to show that it is not included.

Looking at the graph, you can see that, for example, 0 R, but y =0

(that is, the x-axis) does not intersect the graph. Hence, f isnot 1-1.
Hence, f is not bijective.

You can also show it is not bijective by checking that it is not onto.
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1, x=0
Fig. 31: The graphof f : R - R : f(x) =
Y -1, x<0
1 E12) The given equation is linear. Hence it is represented by a line. Now,

comparing the given equation with that in E8(ii), you can see that the

A 4

intercepts of this line on the x and y-axes are © and V2, respectively.
Thus, its graph is as shown in Fig. 32.
You can check the graph and show that it is bijective.
Fig. 32 E13) The curve is x =1, if we convert to Cartesian coordinates. This is the
line L in Fig. 33.
Y/"\ L
E14) i)  Since r’ =x”+y” and y =rsin 8, the equation becomes
x*+y>=3y.
¥ : i i)  The equation becomes
Jx2+y?=all-—2_ | since cosf=2=—_%
Fig. 33 'X2+y2 ’ T 1'X2+y2
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COMPLEX NUMBERS ‘
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4.6 Summary 98
4.7 Solutions/Answers 99

4.1 INTRODUCTION

In your studies so far you have dealt with natural numbers, integers, rational
numbers and real numbers. You would also know that a shortcoming in N led
mathematicians of several centuries ago to define negative numbers. Hence,
the set Z was born. For similar reasons Z was extendedto Q and Q to R
at various stages in history. Then came a point when mathematicians found
that R was not enough, for example, when looking for solutions of equations
like x*>+1=0. Since x> +1=0 has no solution in IR, for a long time it was
accepted that this equation has no solution. The Indian mathematicians
Mahavira (in 850 A.D.) and Bhaskara (in 1150 A.D.) clearly stated that the
square root of a negative quantity does not exist. Then, in the 16" century the
ltalian mathematician Cardano tried to solve the quadratic equation

x> —10x+40=0. He found that x, =5++/—15 and x, =5—-+/—15 satisfied

Fig. 1: Cardano (1501 -

the equation. But then, what is ¥—15 ? He, and other mathematicians, tried 1576) acknowledged
to give expressions like this some meaning. Even while making mathematical the existence of
models of real life solutions, the mathematicians of the 17" and 18" centuries imaginary numbers in
were coming across more and more examples of equations which had no real his book Ars Magna,
roots. To overcome this shortcoming, the concept of a complex number slowly published in 1545

came into being. It was the famous mathematician Gauss (1777-1855) who
used, and popularised, the name ‘complex number’ for numbers of the type

S++-15.
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In the early 1800s, a geometric representation of complex numbers was
developed. This representation finally made complex numbers acceptable to
all mathematicians. Since then complex numbers have seeped into all
branches of mathematics. In fact, they have even been found necessary for
developing several areas in modern physics and engineering.

In this unit, you will have an opportunity to familiarise yourself with complex
numbers in Sec. 4.2. There are several different ways of representing
complex numbers, which you shall study in Sec. 4.3. Next, in Sec. 4.4, you
will study the basic algebraic operations on complex numbers. Finally, in Sec.
4.5, we shall acquaint you with De Moivre’s theorem, and you will see why this
is considered so important.

We would like to reiterate that whichever mathematics course you study, you
will need the understanding of complex numbers that we have tried to give you
through this unit. So please go through it carefully, do every exercise as you
come to it and ensure that you have achieved the following objectives.

Objectives
After studying this unit, you should be able to:

e define a complex number;

e describe the algebraic, geometric and polar representations of a complex
number;

e add, subtract, multiply and divide two complex numbers;
e apply De Moivre’s theorem to prove trigonometric identities;

e apply De Moivre’s theorem for finding the nth roots of ze C, where ne N.

4.2 WHAT A COMPLEX NUMBER IS

When you consider the linear equation 2x +3 =0, you know that it has a
solution, namely, x :_73. But, can you always find a real solution of the

equation ax+b=0, where a, be R and a#0? Is the required solution

x:_—b? It is, since a [_—bj+b:0.
a a

Now, what happens if we try to look for real solutions of any quadratic
equation over R ? Consider one such equation, namely, x> —1=0, that is,
x> =1. This equation has two real solutions, x =1 and x =—1. But, what
about the equation x> +1=0, thatis, x> =—1? Does this equation have a
solution in R ? Since the square of any real number must be non-negative,
there is no x € R such that x> =—1. But, as discussed in Sec. 4.1, several
equations like x> =—1 were coming up in studies undertaken by
mathematicians. In fact, from about 250 A.D. onwards, mathematicians have
been coming across quadratic equations, arising from real life situations,
which did not have any real solutions. It was in the 16" century that the Italian
mathematicians, Cardano and Bombelli, started a serious discussion on
extending the number system to include square roots of negative numbers. In
the next two hundred years, more and more instances were discovered in
which the use of square roots of negative numbers helped in finding the
solution of real-life problems.
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In 1777, the Swiss mathematician Euler introduced the term “imaginary unit”,

which he denoted by i. He defined i = J—=1. Soon after, the great
mathematician Carl Friedrich Gauss introduced the term ‘complex numbers’
for numbers such as 3i(=3v=1 ), 1+i(=1+v=1) or —2+iV5 [=—2++=5 ).
Nowadays, not only are these numbers accepted, they are heavily used in
every field of mathematics and its applications.

[For a brief history of complex numbers, you can also see the web link

www.math.uri.edu/~merino/spring06/mth562/ShortHistoryComplexNumb
ers2006.pdf]

So, what you have seen is that over the centuries the number systems were
extended as the need was felt — from N to NuU{0},to Z,to Q,to R,
and then to complex numbers.

Fig.2: Gauss
Let us formally define a complex number now. (1777-1855) is often
referred to as ‘the
prince of
mathematics’

Definition: i) A complex number is an expression of the form x +1y , where

x and y are real numbers, and i=+/—1 is the imaginary unit.

ii) x is called the real part, and y is called the imaginary part, of the
complex number x +1y . We write x =Re(x+1y) and y=Im(x +1y).

Caution: i) Remember that i is not a real number.

i) Im(x +1y) is the real number y, and not the number 1y .

We denote the set of all complex numbers by C.

So, C={x+iylx, ye R}.

By convention, we will usually denote an element of C by z. So, whenever
we will talk of a complex number z, we will mean z =x +1y for some

X, ye R. Infact, z=Rez+i Imz .

This is usually called the algebraic (or standard, or rectangular)
representation of a complex number.

There is another convention that we follow while writing complex numbers,
which we give in the following remark.

Remark 1: When you go through Sec. 4.4.2, you will see that iy=yi Vye R.
That is why we can write the complex number x +1y as x +yi also.
By convention, we write any complex number x +1iy , for which ye Q, as

x+yi. Forexample, we prefer to write 2+1i, 2+%i and 2+%i instead of

2 +il, 2+i% and 2+i%, respectively.

But, if ze C is of the form z = a+i\/g, be R, then we prefer to write z in this

formandnotas z=a++/b 1.
Further, we write 1i as i and 0i as (.

Now that you know what a complex number is, would you agree that the
following belong to C?

0,1, 5++/—15, 3i, +/2, /-2
Each of them is a complex number because
0=0+01

I=1+01 29
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5+4/-15=5+i15

3i =0+ 3i

V2 =2 +0i
J-a=ifava>0. V=2=0+iv2

From these examples, you may have realised that some complex numbers
can have their real part or their imaginary part equal to zero. We have names
for such numbers.

Definition: Consider a complex number z =x +1y .
If y=0, we say z is purely real.
If x=0,and y#0, we say z is purely imaginary.

We usually write the purely real number x +0i as x only, and write the purely
imaginary number O+1y as iy only, as you may have noted in the examples
above.

Try these exercises now.

E1) Complete the following table:

Z Re z Im z
1+\/—_23
2
i
0 0
~1+4/3
5

E2) Is Rc C? Give reasons for your answer.

So, you have seen that, given x +iy € C, we associate with it the unique point

(x, y)e R*. The converse is also true. That s, given (x, y)e R*, we can
associate with it the unique complex number x +1y . This means that the

following definition of a complex number is equivalent to our previous
definition.

Definition: A complex number is an ordered pair of real numbers.
In the language of sets (see Unit 1), we can say that C=RxR.

With the help of this definition can you say when two complex numbers are
equal?

Definition: Two complex numbers (x,, y,) and (x,, y,) are equal iff x, =x,
and y, =y,.
In other words, x, +1y, = x, +1y, iff x,=x, and y,=y,.

Thus, two elements of C are equal if and only if their real parts are equal
and their imaginary parts are equal.
e e SR B S B SR
2 2 2 2 2 2
Here’s an exercise about this, now.

So, for example,
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E3) For which real values of k and m is

)  Jk+3i=v3+im?

ii) ki-meR?

Now, given any complex number, we can define a related complex number in
a very natural way, as follows.

Definition: Let z=x+iye C. The complex conjugate of z (or simply, the
conjugate of z ) is the complex number z = x —iy .
Thus, Rez=Rez and Imz=—-Imz.

For example, if z=15+1 then z=15-1.
Again, if z=0,then Rez=Imz=0, sothat Rez=Imz=0. Hence, z=0
also.

In Section 4.4.2 you will see one important use of the complex conjugate. But,
for now, here are some exercises for practice!

E4) Obtain the conjugates of —5, /=5, 2+3i, 2-3i.

E5) Forwhich ze C, will z=Z7? The conjugate of the
conjugate of z is

= zVze C.

E6) Forany ze C, showthat z=z.

In this section we have defined a complex number, giving the algebraic, or
standard, method of representing complex numbers. Now let us consider
other ways of representing such numbers.

4.3 DIFFERENT REPRESENTATIONS OF A
COMPLEX NUMBER

You know that we can geometrically represent real numbers on the number
line. In fact, there is a one-one correspondence between real numbers and
points on the number line. You have also seen that C=R xR . So, using
your understanding developed by studying Sec. 3.2, can you think of a way of
representing complex numbers geometrically? Let’s see.

4.3.1 Geometric Representation

Since a complex number z is given by a pair of real numbers, Rez and Imz,
your study of Unit 3 may have given you the idea that led mathematicians in
the 18™ and 19™ century to think of representing complex numbers as points in
a plane. This geometric representation was given in the early 1800s. It is
called an Argand diagram, after the Swiss mathematician J. R. Argand, who
propagated this idea. Interestingly, this idea was first described a few years
earlier by the mathematician Wessel.

Let us see what an Argand diagram is. In a Cartesian coordinate system, take
the axes OX and OY in the XOY plane. From Unit 3, you know that any
point in the plane is determined by its Cartesian coordinates. Now we

consider any complex number x +1iy . We represent it by the point in the
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plane with Cartesian coordinates (x, y). Thus, the real parts of the complex

numbers are plotted along the horizontal axis, and the imaginary parts are
plotted along the vertical axis. This representation of complex numbers is

The x-axis is called the called an Argand diagram.
real axis and the

y-axis is called the P .
imaginary axis in an For example, in Fig. 3, P represents the complex number 2+ 3i, whose real

Argand diagram. partis 2 and imaginary partis 3. And what number does P’ in Fig. 3
represent? P’ corresponds to 2—3i, the conjugate of P.

7

Imaginary 1,

axis K
P
Real

faxis
: N
X

N

7

>+
o

-_Y/

Vv

Fig. 3: An Argand diagram

From Fig. 3, you may have observed that in an Argand diagram the point

The reflection of a that represents z is the reflection in the real axis of the point that

point (a, b) inthe represents z, for any ze C.

x-axis is the point

(a, —=b), andin the Now, you know that any real number is a complex number (called a purely real
y-axisis (-a, b). number). Where would the purely real numbers lie in an Argand diagram?

Wouldn'’t they lie along the real axis? Similarly, the purely imaginary numbers
lie along the imaginary axis.

Try these exercises now.

E7) a) Represent the following elements of C in an Argand diagram:
3, —1+1, —1+i, 1.
b) Representthe sets S, ={2+1ylye R}, S, ={x+3ilxe R} and
S, ={x+ix |xe R} in an Argand diagram.

E8) Give the algebraic representation of the elements of C represented

geometrically by the points [_71 %j (2,0) and (0, —2) in an Argand
diagram.

Let us now consider another way of representing a complex number.

4.3.2 Polar Representation

Consider any non-zero complex number z=x+1y. We representitby P in

the Argand diagram in Fig. 4. We can represent this point uniquely by its

Cartesian coordinates, as you know. But, you also know from Unit 3 that we
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can represent it by its polar coordinates (r, 0). Recall that the distance OP is
r. We call it the modulus of z, and denote itby |z |. Further, 6 is called an
argument of z.

Now, let us merge the pole and polar axis with the real and imaginary axes in

an Argand diagram, as in Fig. 5. »P
\4} 2
N s
Imaginary +vy 4
axis
\ (x,y) — 2
« N ) o A
np{m 0 .
O Real axis Fig. 4: The polar
vy~ : and representation of a
, ! Polar axis complex number
A6 ! N with polar
e} X ' X7 coordinates |z |

and 0

Fig. 5: The relationship between the Cartesian and the polar coordinates

Then, lzl=x* +y> .

Also, if we write | z| =r, then from Fig. 5 you can see that sin@=2 and
T
cosezi.
Tr
X =rcos0, y=rsin0 ..(1)

Here are some important remarks on the modulus and argument of z.

Remark 2: From Unit 3, you know that (r, 6) are unique only if we restrict 6
to 0<0<2morto —t<O< 7. Inthe case of complex numbers,
lz1>20V ze C. Also, by convention for uniqueness the restriction on 0 is

—nt<0<m. We call this unique value of 6 the principal argument of z,
and denote it by Arg z.

Thus, for a complex number, the polar coordinates (r, 0) satisfy r >0
and —t<0<m.

Remark 3:i) ze C,butlzle R.

ii) If z isreal, whatis 1z|? Itis justthe absolute value of z (see Example 9,
Unit 3).

i) For z=0,1zI1=0, and its argument is not defined.

From (1) and Remark 2, we are led to a definition.

Definition: Given any complex number, we can write it as
z=r(cosO+isin0),where r=1z| and 0 =Argz.
This is called the polar form of z.

Note that, given z=x+1y, we can use (1) to obtain Argz = tan‘l[lj.
X
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However, as more than one angle between — 1 and © have the same tan
. _ -3n
value, for instance, tan™'(1) =%/4 and L we must draw an Argand

diagram to find the quadrant in which the point (x, y) lies and hence obtain the
right value of Argz.

Let us look at an example.

Example 1: a) Obtain the modulus and principal argument of \/§+i, - (\/§+i)

and +/3 +i. Hence obtain their polar forms.

b) Iflzl=2 and Arg z= g obtain the algebraic representation of z.

c) Iflzl :g and Arg z :g, obtain the algebraic representation of z.

Solution: Let z, =3 +i, z, =—(3 +i) and z, =/3 +i.

a) Now Rez, :\/5, Imz, =1. Thus, \/§+i corresponds to (\/5 1), which
lies in the first quadrant. We find that

2, l=/(Rez,)? +(Imz,)* =2, and

Arg z, =tan™ Imz, =tan”’ i\ or —_Sn.
Rez, J3) 6 6

. ny . T
Since z, lies in the first quadrant, Argz, must be between 0 and EE

Thus, Argz, :g. Hence, the polar form of \/§+i is 2[cosg+isin gj
Now, let us consider z, = —(\/5 + i)z 3+ (=1)i. Here,

lz,1 =2 and Arg z, :tan_l(ij , just as for z,.

NE)
—-57

But —(\/§+i) lies in the 3" quadrant. Hence, Arg z, = ra

Thus the polar form of z, is Z[COS%—iSh‘I %Ej

Finally, let us look at z, = V3+i=4/3-1.
You can check that 1z, | =2 and

1 1 T
Argz, :tan’l(—— =—tan'| — |=—, since z, liesin the 4t
3 J3) 6

quadrant.

Thus, the polar form of z, is 2[cosg—isin gj

b) Weknow that z=1zl(cos(Argz) +isin(Argz))
:2[cosE+isinEj o[ L3
3 3 2

2
—1+i/3.
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Try the following exercises now.

E9) Write down the polar forms of the complex numbers listed in E7 (a).

E10) Find the relationship between the moduli and principal arguments of z ‘Moduli is the
and z, for ze C. plural of ‘modulus’.

E11) Show that {ze Clizl= 1} is the set of points on the circle x> +y> =1 in
R?.

You will find the polar form of a complex number very useful when you study
the multiplication and division of complex numbers in the next section.

4.4 ALGEBRAIC OPERATIONS

You are familiar with the operations of addition, subtraction, multiplication and
division in R . In this section we will discuss these operations in C. Let us
first consider the first two operations.

4.4.1 Addition and Subtraction

1
Take any two complex numbers, say z,=3+2i and z, = 4+§i . What do you

expect z, +z, to be? Wouldn't you just add the real parts of both and the
imaginary parts of both to get this? If so, you would be right, i.e.,

1 5
z,+72, =B+ +|2+—|[i=T+—1.
vrm@re(20L)ier3
Let us define this process formally for any two complex numbers.

Definition: The sum of two complex numbers z (= x, +1y,) and
z,(=x, +1y,) is the complex number z, +z, = (X, +Xx,) +i(y, +y,).
In terms of ordered pairs,

(X, YD+ (X5, ¥2) = (X, +X,, ¥, +Y,) -

Let us look at an example.

Example 2: Find the sum of
i) 3+i and —2+4i,
i) —5and 5-i.

Solution: i) B+1)+(-2+41) =GB+ (-2)+(1+4)i=1+51.

i) (=5)+ (5 -1)=(-5+0)+5-1)=(-5+5)+O0-Di=—i.

* k%

Example 3: Show that any complex number is the sum of a purely real
number and a purely imaginary number.

Solution: Take z=x+1y =(x+01) + (0 +1y). .
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Here x +0i is purely real and 0+1y is purely imaginary, hence the result.

* k%

In the following exercises we ask you to verify some very important properties
of addition in C.

7+7€ RVze C E12) i) Find the sum of 2+3i and 2+3i.
i) Showthat z+Z=2Rez forany ze C .

E13) Showthat z, +z,=2,+2, V z,,2,€ C.

E14) a) Showthat z,+z,=2z,+z, forany z,,z,e C.
E14(a) tells us that ) a) 1 T4, =4, T4 Y 7,2,

additionin C is b) Showthat (z, +z,)+z,=2 +(z,+z,) forany z,,z,,z,€ C.
commutative.

E14(b) says that ) ) .

additionin C is E15) Find an element a+ibe C suchthat z+(a+ib)=zV ze C.
associative.

If you have solved these exercises, you must have realised that the addition in
C satisfies most of the properties that addition in R satisfies. Also, because
of what you proved in E15, we say that 0+10(=0) is the additive identity in

C.

Now, can you define subtraction in C? For this, let us first define —z, for
ze C. You may already have come up with the following definitions, which
are very natural.

Definitions: i) Given z=x +iye C, —z is the complex number
(=x) +i(=y).

i)  The difference z, —z, of two complex numbers z, (= x, +1y,) and
z,(=x, +1y,) is defined by
2,—2,=2,+(=2,) = (X, = X,)+1(y, = ¥,) .

So, what do you think z—z is, forany ze C? Let's see. Take z=x+1iy .

Then z—z=(x—x)+i(y —y) =0, the additive identity in C.
This tell us that for any ze C, (-z) is the additive inverse of z.

»
, P Try the following exercises now.
\,\/\//
’; E16) i) Find 3-2i)—(3-2i).
O 4
(o) A i) Findz-Z,forany ze C.
& '
o E17) Find the relationship between
J’ i) lzl and | -z1,

. ii) Argz and Arg(-z), forany ze C (see Fig. 6).
Fig. 6: z and —z are

represented by P and

P’, respectively. We will now make a brief remark on the graphical representation of the sum of
complex numbers.
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Remark 5: The addition of two complex numbers has an interesting
geometrical representation. Consider an Argand diagram (Fig. 7) in which we
represent two complex numbers (x,, y,) and (x,, y,) by the points P and
Q. If we complete the parallelogram with adjacent sides OP and OQ, the
fourth vertex R represents the sum (x,, y,)+(x,, y,). In vector algebra you
will come across a similar parallelogram law of addition.

A ///_fR(X1+x2,y1+y2)
Ak, yz) —
L 4’P (X, Y,)
o X

Fig. 7: The geometric representation of addition in C.

So far you have seen how naturally we have defined addition (and subtraction)
in C by using addition (and subtraction) in R . Let us see if we can do the
same for multiplication and division. You may find the polar form more useful
than the standard form for these operations.

4.4.2 Multiplication and Division

Let us begin by considering two complex numbers in their polar forms, say
z,=2=2(cos0+1sin0) and z, =-3=3(cosT+1sin ).
Notice that z, and z, are actually real numbers, and we know that
2,2, =—6=6(cosT+1sin ) = (2) (3){cos(0+m)+1isin(0+ )} .
=lz, Iz, l{cos (Arg z, + Arg z,) +isin (Arg z, + Arg z,)}
This may help you see why we define multiplication in C as below.

Definition: The product of two complex numbers z, =1,(cos6, +1sin6,) and
z, =1,(cos0, +1isin 6,) is defined to be the complex number
z,z, =1,1,[cos(0, + 0, + 2kn) +isin(6, + 6, + 2kn)]
=lz, 1z, |{cos(Arg z, + Arg z, + 2km)
+isin(Arg z, + Arg z, +2km)},
where ke Z is such that —T < Arg z, + Arg z, + 2km < 7.

So, for example, if z, = ﬁ[cos%ﬁsmgj and z, =~/7(cosm+isin ), then
T .. X )
7,2, = \/E[cos€+1sm gj V7 (cosm+isin )

_ ﬁﬁ{cos{£+ nj +isin[g+ nﬂ

_ff[cos_mm%“j
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Thus, z,z, =1z, 11z, | {cos(Argz, + Argz, — 21) +isin(Argz, + Argz, —2m)}.

In Fig. 8, you can see a visual representation of multiplication of two complex
numbers. As you can see, this involves scaling and rotation of vectors.

Pz, 0.+ 6,)

\\ PQ’(lzzl! 62) . ,P1(|Z1|1 61)
o0 LT
\ /e \\/ -
\ s\
2% Y
\\L/' '\91 | ; >
(@] A

Fig. 8: P represents the product, in polar form, of the complex numbers
represented by P, and P,.

Let us consider another example.

Example 4: Obtain the product of z, =2(cosl+isinl) and z, =cos3 +isin3
in polar form.
Solution: Here |z, 1=2, Argz, =1,1z,|=1, Argz, =3.
Therefore, z,z, =2{cos(1+3) +isin(1+3)}
=2(cos4+isin4).
Note that Arg(z,z,) # 4, since 4 >7. We need to choose an integer k such
that —w<4+2kn <. k =—1 serves the purpose. Thus,
Arg(z,z,)=4-2m.
Hence z,z, =2{cos(4 —27) +1sin (4—-27)} .

* k%

Try some exercises now, which will help you see some interesting properties
of multiplication.

E18) Find z.1, 2.0, zi,zz V ze C.

E19) a) Showthatzyz,=2z,z, Vz,z,eC.

b) Showthat(z,z,)z, =2/(z,2,) V z,, 2,,2,€ C.

If you have done E19(a) and (b), then you have shown that multiplication in C
is commutative and associative, respectively.

. - A/ _ .
Now, let us consider division. If | want to find —L =z,.z;', all | need to do is
z
2

look for a nice way to find z,' in polar form, and then multiply this with z, to
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get the result. So, for obtaining z™', z # 0, consider an example. Take

z=3 cosE+isinE . Then
4 4

cosE—isinE
Z_l = 1 = 1 4 4

T .. T
3| cos—+1isin —
4 4
T .. T
cos— —1isin —
1 [ 4 4)

=— ,using (a+ib) (a—ib) =a’ —i’b* =a’ +b’.
3 S P ¥
COS™ —+SsIm”~ —
[ 4 4j

1 T .. X
=—| cos——1isin—
3[ 4 4j

1
Solz'l = and Arg(z™') = Arg(~z).

W | —

n+. in© cosn isinn
—+isin — — = —
cos4 S 1 4 4

More generally, using the same steps we see thatif z=r(cos6+isin 0), and

z#0, then

z‘l=l(cos9—isin9). ..(2)
Tr

Now, if z, =1,(cos0, +1sin©,) and z, =r1,(cos6, +isin0,),
z

then —- = —
z, 1,(cosb,+isinb,)

1, (cos0, +1sin 0,)

=1 (cos0, +isin®,)(cos@, —isin 8, ), using (2)
L

=1 {cos(0, —0,) +isin(, —6,)}
b}
So,  ZL="l{cos(8, -0, +2km) +isin(6, — 6, +2km)}, ..(3)
Z, L,
where ke Z is such that -t <0, -0, +2kn <.

Let us consider an example.

Example 5: Find 2 polar form, where z, = 6(cosm+1isin ) and
zZ,

z, = \/E[cosg —1isin %j .

ﬁ:|21|: 6

—=3\/5,and
lz,] 2
Z;

Arg (QJ = Argz, — Argz, + 2kn, such that — 1t < Arg(—j <7.

Z, Zy

Thus, Arg| 2L =n—[_—“j—2n=—3—“.
z, 4 4

Solution: Here

Z,
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So - 3\/5[c0s3—n—isin 3—nj .
z, 4 4

* k%

Try the following exercise now.

E20) Find the polar forms of z, and z,, where z, =—6 and z, =1+i. Hence

obtain the polar forms of z,z, and Z
Zy

Let us now consider these operations on complex numbers using the standard
form. The route is slightly circuitous.

Let z, =x, +1y, and z, =x, +1y,. Then, from Unit 3 you know that if the
polar coordinates of z, and z, are (1, 6,) and (1,, ©,), respectively, then
X, =1c080,,y, =10, x,=1,c080,,y, =1,5n0,.
You also know that
2,2z, =11,{cos(0,+0,)+1sin(6, +6,)}

=r1,1,(c0s0,cosB, —sin ©,sin O,) +1ir,r,(sin O, cosO, +cos0,sin 6,)

= (XX, = y¥,) Hi(X,y, + X))

cos(A +B)
=cos A cos B—sin AsinB,
sin(A + B)

=sin A cos B+ cos AsinB.
Accordingly, we have the following definition.

Definition: The standard form of the product z, z,, of two complex
numbers z, = x, +1y, and z, =x, +1y,, is given by

2,2, = (XX, —Y,¥,) +i (X,y, +X,5,) .

Or, in the language of ordered pairs,

(X1, Y1) (X5, ¥2) = (XX, = ¥, ¥00 XY, +X,¥,)-

For example, (1, 2) (-3,2)=[1.(=3)-2.2,1.24+(-3)2] = (-7, —4).
Let us check and see what i* is according to this definition.
i’ =ii=(0+1i) (0+i)=(0—1)+i(0—0)=~1, which is as it should be!

While solving E18 and E19 you have noted some properties of multiplication in
C. You will discover some more properties if you try the following exercises.

E21) Obtain (x, y). (1, 0), (x, y).(0, D) (x, y).(0, 0), (x, 0).(y, 0) and
(x,y).(, 1) V (x,y)e C.

E22) Show that (x,y).( S 2_y2j:(1,0)‘v’(x,y)e(C\{O}.
X" +y" X" +y

(Note that x> +y* #0, since (x, y)#(0,0).)

If you’ve solved these exercises, you must have realised that
i) z.1=2zVze C, thatis, 1is the multiplicative identity of C;
ii) z0=0vze C;

i) i(x+i1y)=-y+ix Vx,ye R;
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iv) if z, z, € R, then our definition of multiplication coincides with the usual

one for R ;
v)  for any non-zero element ze C 3z"e C, such that zz'=1. In this case

/A - - - - ’ 1
we say that 7z is the multiplicative inverse of z. So z =—.
Z

Now let us see how to obtain the standard form of the quotient of a complex
number by a non-zero complex number. We will use a process similar to the

one you used for obtaining 2 earlier (before Example 5). Consider an
Z,

example.

Example 6: Obtain 21+ %l in standard form.
-1

2+3i

Solution: Let us multiply and divide by 1-i=1+i. We get

1-i
2431 (1+i)_ 243D A+1) _—-1+51 -1 gi
I-1i J\1+i (1-1) (1+1) 1+1 2 2
So. 2+31:—_1 gi.
1-i 2 2

* k%

If you’ve understood the way we have solved the example, you will have no
problem in doing the following exercises.

—2+1
E23) Obtain ———— in standard form, and hence in polar form.
) N=3+iv-4 H

ag b in standard form.

c+id

E24) For a,b,c,de R and c* +d*> #0, write

E25) Show that 1 :I ! z V ze C\{0}. Hence show that

z 1zl

1

z

:LVZGC\{O}.
[z|

E26) Represent z,, z,, Z,, i and 4 in an Argand diagram, where
Z, Z,

z,=—1-2i,2,=2-3i.

We will use multiplication and division in the polar form a great deal in the next
section. Before going to it, let us give you a rule that relates '+’ and ‘<’ in C.
Do you know of such alaw in R ? You must have used the distributive law
often enough. It says that a(b+c)=ab+acVa, b,ce R. The same law

holds for C. Why don’t you try and show this (see E27)?

E27) i) Check that
-+ {2 =31)+ G+if=a+1) V2 =3i)+ A +1) G+i).

2z =z |2e Rvz e C.

Multiplication distributes

over addition in C.
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Fig. 9: De Moivre

(1667-1754)

i)  Showthat z,(z,+z,)=22,+22,V2,,2,,2,€ C.

Now let us discuss a theorem which is very useful for complex numbers.

4.5 APPLICATIONS OF DE MOIVRE’S THEOREM

In the previous section, you studied that if

z, =1,(cos0, +1sin 0,) and z, =r,(cosB, +1sin O,) , then

2,2, =115,{cos(0, +6,) +1sin(6, +6,)}.

In particular, if z, =z,, then 1, =1,, 6, =6, , and hence we find that

z; =17(cos20, +isin 20,).

In fact, this is a particular case of a very nice formula, that uses the theorem
below. This is De Moivre’s theorem, named after the French mathematician
Abraham De Moivre. It may amuse you to know that De Moivre never
explicitly stated this result. But he seems to have known it and used it in his
writings of 1730. It was the mathematician Euler who explicitly stated and

proved this result in 1748. We shall not be proving the result here, but shall
state it and discuss some of its consequences.

Theorem 1 (De Moivre’s theorem): (cos0+isin0)" =cosn0+isin n6, for
any ne Z and any angle 6.

This statement is so simple, and so beautiful. For instance, an immediate
implication of this theorem is that if
z=r1(cos0+isinB)e C, then Vne Z,

z" =r"(cos0+isin 6)"

=r1"(cosnO +isin nB), using De Moivre’s theorem.

So, for example, z’ =1’ (cos70 +isin 70) and
27" = 1" cos(1000) —isin(1000)}.

What we have shown is that

[r(cosO+isin)]" =r"(cosnB+isinnB) Vr >0, 0 R, ne Z.

This equality is true not just for a particular value of 6, orof r, orof n. ltis
true for all values of these variables as shown in the box. Such an equality is
called an identity. Thus, an identity is an equality that is true for all applicable
values of the variables involved. We will consider some identities now, which
are proved by using De Moivre’s theorem.

4.5.1 Trigonometric Identities

One of the most useful applications of Theorem 1 is in proving identities that
involve trigonometric ratios like sin 0, cos0, etc. Let us look at an example.

Example 7: Find a formula for cos40 in terms of cos® and sin 6, for any

0eR.
Solution: By De Moivre’s theorem,
(cosO+isin 0)* =cos40+isin40, V B R. ..(4)



We can also expand the left hand side of (4) by using the binomial expansion.
Then

(cos®+isin 8)* = (cos8)*+ 1C,(cos0)*(isin ) + *C,(cos0)’(isin 6)
+*C, cosB(isin 8)’ + (isin )"
=cos’ 0+ 4isin Ocos’ O—6sin” Bcos* @ —4isin’ OcosO+sin’ O ...(5)

Now, you know that two complex numbers are equal iff their real parts and
their imaginary parts are equal.
Thus, comparing the real parts in (4) and (5), we get

cos40 =cos*0—6sin’Ocos*O+sin* 0.

* k%

You can try the following exercise on similar lines.

E28) Find formulae for cos30 in terms of cos®, and for sin 30 in terms of
sin 0.

Now, for any me N let us look at z™ , where ze C suchthatzl=1. Then,
by De Moivre’s theorem

z™ =cosmO+isinm0O, and

z " =cos(—m)0+isin(—m)0 =cosmO—isinmo .

Thus, z"+z ™ =2cosm0, and z" —z ™ =2isinm0. ...(6)
We can use these relations to express cos™ 0 and sin™ 0 in terms of cosm6
and sinm6 V me Z . Let us consider an example.

Example 8: Expand 2*"*(cos* 8 +sin*" 0) in terms of the cosines or sines of
multiples of 6, where 6e R.

Solution: Putting m =1 in Equation (6), we get

2cose:z+l and 2isin9=z—l.
Z Z

4n
. 2" cos™O = [z +lj
z

_ 1 51 1
=z" +4nz" " =+ PC 2" S+ + C 2"+ A0z
z z

[+ +_j+4n[z

Also, 2*"sin*" @ = [z——j since i"" =({*)" =1.

n— 1 n
[ j [z“ 2+Z4n_2j+-~-+4 C,, ...(8)

Thus, (7) and (8) give

1

+_
4n-1 4n ?
n ZH

z

by the binomial expansion.

j+-~-+4“C2n- (7

4n—4

2* (cos™ 0 +sin*" ) = 2[z4“ +Z%j +2(*c, )[z“““‘ +- ! j+ —+2("c,,)

=2{2cos4n0+2(*"C, Jcos(4n — 4)0+...}+ 2(*"C,. ), using (6).

n!
m!(n —m)!

Vn, meN, n>m.

93



Block 1 Essential Preliminary Concepts

o 2" (cos™ B +sin*" @) = cos4nO + "C, cos(4n —4)0 + - +l4“C2n :
2

* k%

The procedure we have shown in Example 8 is very useful for solving
differential equations involving trigonometric functions, as you will see in the
2" semester course. It is also useful for finding the Laplace transform of such
functions.

Why don’t you try some related exercises now?

E29) Apply De Moivre’s theorem to prove that
) cos20=cos’0—sin’0,
ii) sin 20 = 2sin 6¢cosH .

E30) Expand cos’0—sin®8 in terms of the cosines of multiples of .

Let us now look at another area in which we can apply De Moivre’s theorem
with great success.

4.5.2 Roots of a Complex Number

Let us take any non-zero real number r. If r >0, then it has two square roots,
\/; and —\/; in R. If r<0,then —r>0. So, (—r) has two distinct square

roots, £+/—re R. The question is that if ze C, z#0, then does z also have

two distinct square roots in C? In fact, the set of complex numbers has a
much stronger property, which is a major reason for its importance in
mathematics. This property is:

Givenany ne N and ze C, z#0, we can find distinct z,, ...,z € C

suchthat z, =z Vk=1,...,n.

Thus, every complex number has n distinct nth roots in C, where
ne N. Tofind all these roots, we need De Moivre’s theorem as well as the
following theorem.

Theorem 2: Let x be a positive real number and ne N. Then there is one
and only one positive real number b such that b" =x.

We denote the unique positive nth root obtained in Theorem 2 by x"* .

We shall not prove the existence of b here as it is beyond the level of this
course. However, the uniqueness is not difficult to show, as you will see while
solving the following exercise.

E31) Let x be a positive real number and ne N. Show that the positive
real number r such that r" = x is unique.
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(Hint: Let r, s >0 be such that r" =x =s". Suppose r#s. Then

r"—s" =0 and r—s# 0. Now you should be able to reach a
contradiction.)

Now let us consider an example of obtaining all the nth roots of a complex
number, where ne N. (This process is also called the extraction of the nth
roots of a complex number.)

Example 9: Obtain all the fifth roots of i in C.

Solution: Let z=r(cos0+isin 0) be any 5" root of i. Then z>=1i. The polar
formof i is izcos§+ising. Therefore,
7z’ =1

.. T .. T
= rs(cose+1sm9)5:cos5+1sm5

= 15(cos50+isin 50) = cos§+ising, by De Moivre's theorem. .(9)

Comparing the moduli and arguments of the complex numbers on both sides
of (9), we get

=1 and 59:g+2kn,where k=0,+1,+2, ...

r is the unique positive real fifth root of 1 (see Theorem 2). Since 1e R is a
fifth rootof 1, r=1, thatis, | zI=1. The possible values of 6 are

6:1[£+2knj,k:0,il,i2,....

502

Thus, the possible 5" roots of i are

z=cos| ~+2k 2 | +isin| =+ 2kZ | k=0,+1, 2, ....
10 1Y 45

5

From this it seems that i has infinitely many 5" roots, one for each ke Z . Let
us see if this is so.

n 4m) . . (m 4xm In Remark 6 you will
When k=-2,z= cos[— ——j +1sin [— ——j see why we start with
10 5 10 5 k=-2.
Tt .. Tn
=cos— —isin—=1z_,, say.
10 10
When k =—1, 2= cos-F —isin >~ = 7, say.
10 10

When k =0, z = cos— +isin — =z, say.
10 10
When k=1, z :cosg+ising =7, say.

When k=2,z= cos%+isin9—fc =z,,say.
10 10

When k=3,z= cosB—n+isinl3—n = cos[Zn —7—nj +isin[2n —7—nj =z,.
10 10 10 10 cos(2n+0) =cos O and
sin(2r £ 0) ==+sin0 .
When k=4, z =c0s17—n+isinl7—n=cos 2n—3—n +1isin 2n—3—n =z,
10 10 10 10

Similarly, when k =5, you will get z,, and so on.
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Thus, k =3,4, ... don’t give us new values of z.

11 _11
Now, if we put k = -3, we get z:cos[ 10nj+isin[Tnj=Z2.

Similarly, k =—4, -5, ... will not give us new values of z.
Therefore, the only 5" roots of i are

cos| 42k | +isin| Z 42k | for k=0, +1,+2.
0 s 10 s

* k%

Remark 6: We also get the 5" roots of i by taking k=01,2, 3, 4 in

2k
cos 1+@ +isin £+—n , as you have seen. Only note that for k =3
10 5 10 5

and k =4, the angles 6 will not lie in the range —t <6< 7. That's why we
had taken k=0, 1, 2.

Now, look at all the fifth roots of i. How are their moduli related? They have
the same modulus, namely, lil"? (=1). Thus, they all lie on the circle with
centre (0, 0) and radius 1. These points will be equally spaced along the

. . . . . 2
circle, since the arguments of consecutive points differ by S a constant. We

plot them in the Argand diagram in Fig. 10.

b

N\

>4

Fig. 10: The fifth roots of i.
Here’s another example.

Example 10: Find all the fifth roots of unity, that is, 1.
Solution: 1 =1(cos0+isin0).

If [r(cos® +isin©)] =1(cosO+isin0), then r’ =1 and
50 =2km, k=0,%£1,£2. Asin Example 9, r=1.

Further, 6 = % k=0, 1, £2. Thus, the fifth roots of unity are

cos&sn+isin%,k:0,il,i2.

* k%

Do you find any relationship between the roots in Example 9 and those in
Example 10? The 5" roots of i are of the form wa,, wal,, wal,, woL,, woLs



roots in Example 10. You should check that this is so.

Using the same procedure as in Examples 9 and 10, we can obtain the distinct
nth roots of any non-zero complex number, forany ne N. Thus, given, any
non-zero complex number z, we write it in its polar form
z=a(coso+isina), where a=Iz| and oo = Arg z.
By Theorem 2, there is a unique re R, r >0, such that r" =a, that is,
r=a'". Then the distinct nth roots of z are
o+2km . . o+2km

7, = a”“[cos—+1sm—j ,fork=0,1,....,n—1.

n n

Geometrically, they lie on a circle of radius a'" and are equally spaced
along it. Note that

a non-zero complex number has exactly n distinct nth roots for any
ne N. If z is one root, then the others are za, za.,, ..., zo.,_,, where

a,,..., o, are the nth roots of unity.

n—17

Now you should do some related exercises.

E32) Find the cube roots of unity, that is, those ze C such that z’ =1. Also
represent them in an Argand diagram.

E33) Solve the equation z* —4z° +4-2i=0.
(Hint: The equation can be rewritten as (z° —2)* = (1+1)>.)

The cube roots of unity that you obtained in E32 are very important. We

usually denote the cube root Lzh/g by the Greek letter @ (omega).
2

~1+iV3) _-1-iv3

2 2

Thus, note the following:

Note that @’ :( , the other non-real cube root of unity.

The three cube roots of unity are 1, ®, ®°, where w:Lzh/g .

Also note that

l+o+w =0. ...(10)
You will often find @ and the relation (10) being used in mathematics.

We will equally often use the following results, that we ask you to prove.

E34) a) Letae R. Showthat a has a real cube root r, and the cube
roots of a are r, r, re’.

b) Showthatif ac R,a<0 and n is an even positive integer, then a
will not have a real nth root.
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c) Letze C\R. Show that z has three cube roots, and if any one of
them is v, the other two are Yo, Yo’ . Hence find the sum of the
roots.

With this we come to the end of our discussion on complex numbers. This
doesn’t mean that you won’t be dealing with them any more. In fact, you will
often use whatever we have covered in this unit, while studying this course, as
well as other mathematics courses.

Let us take a brief look at the points covered in this unit.

4.6 SUMMARY

In this unit on complex numbers, you have studied the following points.

1. The definition of a complex number, in algebraic (or standard) form:
A complex number is a number of the form x +iy where x, ye R and

i=+/—1. Equivalently, itis a pair (x, y)e RxR.
2. x is the real part, and y is the imaginary part, of x +1iy .
3. X, +1y, =X, +1y, iff x, =x, and y, =y,.
4. Theconjugate of z=x+1y is Z=x-—1y.

5.  The geometric representation of the complex number x +1iy in an
Argand diagram is the point with Cartesian coordinates (x, y).

6. The polarformof z=x+1y is z=r(cos®+1isin 0), where
r=lzl=4x+y> and 8=Argz= tan“(lj , where we choose 6 such
X

that it corresponds to the position of z in an Argand diagram, and
-NT<O<T.

7. Forz,z,eC,
lz,z, =1z 11z,|, Arg(z,z,) = Argz, + Argz, + 2kmn
Z

Z,

= IZII, Arg = = Argz, — Argz, + 2mn (for z, #0),
lz, | Z,

where k, me Z are chosen so that

—T<Arg(z,z,)<T and -t < Arg(ij <Tm.
Z,

8. Va,b,c,deR
)  (a+ib)t(c+id)=(atc)+i(bEd),
i) (a+ib)x(c+id)=(ac—bd)+i(ad+bc),
i aiib:azjbz—(aziszi,fora+ib;t0,
a+ib _ (a+ib) (c—id)
c+id  cF+d’

,for c+id #0.



10.

11.

De Moivre’s theorem: (cos®+isin 0)" =cosnB+isinnOVne Z and any
angle 0.

Applying De Moivre’s theorem to prove trigonometric identities and for
obtaining nth roots of complex numbers, where ne N .

V3

The cube roots of unity are 1, ®, ®*, where ®= [— %j +i (Tj

Further, 1+ 0+ o> =0.

Now that you have gone through this unit, please go back to the objectives

listed

in Sec. 4.1. Do you think you have achieved them? As mentioned in

Sec. 4.1, one way of finding out is to solve all the exercises that we have given
you in this unit. If you would like to verify your solutions or answers, you can
see what we have given in the following section.

4.7 SOLUTIONS/ANSWERS
E1) z Re z Im z
1++4/-23 1 J23
2 2 2
i 0 1
0 0 0
—1+4/3 —1+43 0
5 5
E2) Yes, because every real number x is the complex number x +0i .
E3) i) Jk+3i=+/3+imeJk=+3 and3=me k=3, m=3.
ii) ki=me R iff k=0. Thus, ki—-me RVme R and k=0.
E4) —5=-5+0i=-5-0i=-5.
V=5 =i/5. Hence v/-5=—i/5=—/-5.
2+31=2-3i.
2-3i=2+3i.
E5) Letz=x+iy. Then z=x-1y.

E6)

E7)

2=Z=>X+ly=x-1ly=>y=-y=y=0.

z=7 iff ze R.

Let z=x+1y. Then Zz=x-1y.

Z=X—-1ly=x+1y =zZ.

a) P,Q,R and S represent 3, —1+1, —1+1 and i, respectively, in
Fig. 11.
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q
v

Fig. 11

b) Theset S, ={(2, y)lye R}, thatis, the set of points satisfying the
linear equation x =2. Similarly, you can see that S, is
represented by the line y =3, and S, by the line y=x. Let
L,, L, and L, represent the sets S,, S, and S;, respectively.
These are shown in Fig. 12.

N

YT L,
L2
>
0 X
L3
Fig. 12

-1 1 .
E8) 7+% 2 and —2i are the respective elements of C.

E9) 131=3 and Arg(3)=tan '(0)=0, since 3 lies on the positive side of the
real-axis. So, 3=3(cos0+1isin0).

Now I—1+il=+1+1=+/2, and
Arg(-1+i)=tan"'(-1)=-7t/4 or 3n/4
Since —1+1i corresponds to (=1, 1), which lies in the 2" quadrant,

Arg(—1+i):%“.

(—1+i)= \/E[cos[%“j +isin [%"D :
“l+i=-1-i= \/E[cos[%njﬂsm[_%njj
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E10) Let z=x+iy. Then Z=x—iy. So, Izl =/x*+y’ =1ZI.
Next, Arg z=tan_l(lJ and Arg Zz—tan_l[lj. Thus,
X X

Arg z=—-Arg 7.
E11) Forany z=x+iye Clzl=1oJx*+y’ =l x’ +y’ =1.

E12) i) 24+31+2+31=24+31+2-31=4+01=4.

i) Letz=x+1y. Then
z+z=(x+1y)+(x—1y)=2x=2Rez.

E13) Let z, =x, +1y, and z, =x, +1y,. Then
z,+2,=(X, +X,, ¥, +Y,)
z,+2,=(X, +X,, —(y, +Y,))
=X, +X0, =Y, —Y,)
=(x;, —y)+(X,, —Y,)
=77 0 7

E14) a) Let z, =(x,, y,) and z, =(x,, y,).
Then z, +z, =(x,, y,) +(X,, ¥,)
=(X,+X,, ¥, +Y,)
=(X,+X,,y,ty,),since a+b=b+aVa,beR

:(Xza Y2)+(X1, Yl)
:Z2+Z1

b)  Letz, =(x,,y,), 2, =(X;, ¥,), 23 = (X3, ¥3)-
Then, use the fact that (a+b)+c=a+(b+c)Va, b,ce R, to
obtain the result, on the same lines as in E14(a) above.

E15) Let z=x+1y.
Then z+(a+ib)=z
& (x+1y)+(a+ib) =x+1y
& (x+a)+i(y+b)=x+1y
& x+a=x and y+b=y
& a=0,b=0
a+ib=0+10=0 satisfies the requirement.

E16) i) B-21)-3-21)=3-21)—3+21)=3-3)+i(-2-2)=—-4.
i) Letz=x+1y. Then
z—7Z=(X+1y)—(x—-1y)=(x—x)+i(y+y) =21y .

z—7 is purely
imaginary if Imz #0.
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E17) Let z=x+1y. Then —z=(—x)+i(-y).

) lzl=4x*+y*,and

| =21 = (x)* + (—y)* =y/x* +y* =zl

ii) Argz=tan" [Zj
X

The reflection in Arg(-z) = tan_l[—yJ =tan"' [lj = Argz+t 1, because (-z) is the
the origin of the - X

point reflection of z in the origin.

(a,b)e RxR is

(-a, —=b). E18) Let z=r(cos®+isin0). Now

1=cos0+isin 0,101 =0, i=cos~+isin .

So z.1=r{cos(0+0)+isin(6+0)}=r(cosO+isin0) =2z
Now 1z0l=1zI101=0. Thus, z0=0.
zi=r{cos(0+m/2)+isin(0+7/2)}=r(—sin O+icos0)
7zZ=1"(cos’0+sin’0)=r’=1z[.

E19) a) Let z, =r/(cosH, +isinO,) and z, =r,(cosB, +isin 6,). Then
2,2, =11,{cos(0, + 6, + 2km) +1sin(0, + 6, + 2km) }
=1,1,{cos(0, + 0, +2km) +isin(0, + 6, + 2km) }
=27,Z,,
where k is chosen so that 0, + 0, +2km, that is, 0, +6, + 2k, lies
between —m and T.

b) Letz, =1, (cosO_+isinO ) for m=1, 2, 3.
Then you can check that | (z,z,)z; | = (1,1, )r,
=5(n)=1z,(2,2,)I.
Again, Arg[(z,z,)z,]={(0,+6,)+2km}+0, + 2sw
=(0,+6,)+0,+2(k+s)m,
=0, +(0, + 0, + 2sm) + 2kn = Arg[z,(z,2,)],
where integers k and s are chosen so that
-1<(0,+6,)+2kn<m, —-1<(6,+0,)+2st<7 and
-<(0,+6,)+0,+2(k+s)T<T.

E20) z, =6(cosm+isin T), z, =\/5[cosg+isin g}
~12,2,1=62 and
Arg(z,2,) = [n+gj +2kn, where ke Z such that -1t < Arg(z,2,) <

—-3n
. Arg(z,z,) =4

102



E21) (x,y) (1,0)=(x,y)
(x,y) (0, D)=(-y, x)
(x,y)(0,0)=(0,0)
(x,0) (y, 0)=(xy, 0)
x,y) (4, D=(x—-y, x+Yy).

E22) (x, y)( 2X -y J:(X2+y2 —xy+XyJ:(LO).

x> +y x4y’ x> +y? x* 4y’

z1=2VzeC
z0=0Vze C.

) —2+4+i _ —24+i
W3 +i2i) —2+iV3’
_ (2+40) (22-iV3)

E23 since i’ =-1.

2 +(V3)
= 4+\/§+2(\/§—1)i.
7 7
The modulus of this number is \/(4+7\/§j +[§j 3 -1)? =§.

lts principal argument is 6 = tan‘l{ 2(\/5 — 1)} .

4443

Thus, its polar form is @(coseﬂsm 0).

E24) ¢*+d”*#0 meansthat c#0 or d#0. Thus, c+id #0. Hence a:lz
c+i
is meaningful.
a+ib_(a+ib)(c—id)_(ac+bd)+i(bc—ad)_[ac+bdj .(bc—adj
c+id (c+id)(c—id) c’+d’ c*+d? c?+d*)’

E25) Let z=x+iy #0. Then, from E18 we know that zz =1z R.

Therefore, Z(I 1|2 ijl. Thus, %Z is the multiplicative inverse of z,
z

z
1

that is, —.
z

Now, z.lzl. .'.Izl.lzlllzl. lzi
z z z| 1zl

E26) The points P, Q, R, S and T in Fig. 13 represent z,, z,, z,, i and

Z,

2 , respectively. Here OT = g—g and ZXOT = £ZXOP - £X0Q.
Z,
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«R (2, 3)

\ 4

P (-1,-2)

«Q(2,-3)

Fig. 13

E27) i)  LHS=(1+i) [((N2+5)—2i]=(7++/2)+i(3++/2)

RHS=[(V2 +3) +i(W2 =3)]+ @ +61) = V2 + ) +i(~2 +3)
Thus, LHS=RHS.

i)  Letz =x,+1y,, z, =X, +1y,, Z; = X, +1y,
Then z,(z, +z,) =(x, +1y )[(X, +X;) +i(y, + ;)]
=[x, (X, +X3) =y, (¥, Ty )I+IX, (¥, +¥3) +y, (X, +X5)]
= (XX, = ¥1¥2) (X X5 =y y3) +il(xy, + X,y) + (X5 +X5y,)]
=[(XX, =y1Y,) F1(X,y, + X,y DI+ [X X5 =y, y3) (X, Y5 +X5Y,)]
=22, +2,Z,.
You can also solve this by writing z,, z, and z, in polar form. [f
you do, you must remember to be careful about z, =0 forany 1.

E28) (cos®+isin 0)’ =cos30+isin 30. ..(11)
Also,
(cos®+isin B) =cos® 0+ 3cos” B(isin 8) + 3cosO(isin 0)* + (isin 0)°
= (cos’ 0—3cosBsin’ 0)+i(3sin Ocos’ O—sin’ 0). ...(12)

Thus, comparing real parts of (11) and (12), we get
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c0s30 =cos’ 0 —3cosOsin’ O =cos’ O —3cosO(1—cos’ 0)

=4cos’0—3cosH.
Similarly, comparing the imaginary parts, we get
sin 30 =3sin O(1—sin”O) —sin> O =23sin O —4sin’ 0.

E29) (cos®+isin 0)° =cos20+isin 20, and
(cos®+isin B)* =cos® O+ 2icosOsin O—sin’ 0.
cos®=cos’6—sin’ 0, and
sin 20 =2sin 6cos0 .

E30) Let z=cosB+isin 6. Then, using (7) and (8) of Example 8, we get
6
(2c0s6)° :[z+lj :[z6 +i6j+6(z4 +i4j+15[z2 +i2j+20, and
Z

Z z z

(2isin 0)° =[z6 +i6j—6[z4 +i4j+15[z2 +i2j-zo.
Z Z

z

. 2°(cos’ O —sin®0) = 2[z6 +i6j+30[z2 +i2j
Z Z

=4co0s60+60cos26, using (6).
= cos’°0—sin’0 :%(cos69+15cos 20).

E31) Letr,se R, r,s>0 and r" =x=s". Then
=" =(r—s) (" +r" s+ 41" +5"7) =0
Now, r>0,s>0,sothat r" +r"s+---+rs" 2 +s"' >0.
Thus, (r—s) "' +1r" s +---+s"")=0 only if r—s=0,i.e., r=s.

E32) Let z=r(cosO+isin B) be a cube root of 1=cos0+isin0.

Then r=1"3 =1, e=0+2k“=% for k=0, 1, —1.

E
J3 -1 .3

Thus, the roots are 1, _—1+i— and ——1—.
2 2 2 2

They are represented in Fig. 14 by z, z, and z_,.

A4

>-_

Fig. 14: Cube roots of unity.

E33) We want to obtain those ze C for which
(z* =2)=+(1+1), that is,
z°—2=1+iand z* —=2=—(1+1), that is,
z2=3+iand z° =1-i.
Thus, we want to find the square roots of 3+1 and 1—1i. 105
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Now, 3+i= \/ﬁ{cos[tan_l éj +isin[tan_1 éj} .

Thus, the square roots of 3+i are

10" cos§+isin9 and 10"*{ cos 9+1t +isin 9+1t ,
2 2 2 2

1

W | =

where 0 =tan~
. -T) .. [—-T .
Also 1-i= \/E{cos[Tj +1sm[Tj} , S0 that the square roots of 1—i

7 7
are 2"* cosE—isinEJ and 2”4[cos—n—isin—nj.
8 8 8 8

These 4 square roots are the 4 roots of the given equation.

E34) a) If a>0, then by Theorem 2, a has a real cube root, a'*. Now,
a=a(cos0+isin0).
Thus, the cube roots of a are

a”{cos%ﬁsm %}, k=0,1,2

thatis, a'*, a'*m, a'*w’.

If a<0,then —a>0. Thus, —a has a real cube root, say b.
Then r=—b is areal cube rootfor a. And Irl=1al”? thatis,
r=—Irl=—lal"’ (since r is negative).

Now a=lal (cosmt+isin ). Therefore, the cube roots of a are

lal”? (cos (Zkg_l)nﬁsin (2k;—1)nj’ k=0,1,2.

(2k+1)1t_|_isin (2k+1)nj’ k=012

=r(cosT+1sin T) [cos

(since —1=cosm+isin ).

:r[cos@+ismmj, k=012,

Thus, the cube roots of a are r, r®, re”.

b) Letn=2m, me N . Then,forany be R,

b" =b>" =(b*)" >0.

Thus, b" #a forany be R. Hence, a can’t have a real nth root.
C) Let z=r(cosO+isin 0), in polar form.

Then its cube roots are
1,3[ 0+2km . . 9+2knj
r'’| cos +1isin

,k=0,1,2.

Thus, if Y= rm[cosg+isin gj , then the other roots are
3 0+2n . . 0+2m 2r . . 2@
r'"| cos=—==Fisin === |=| cos = +isin = =y, and

1/3 9+4’IE . . 9+4’IE 2
r°| cos 3 +isin 3 =5
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5.1 INTRODUCTION

In your school studies, and in the units of this course, you have come across
equations of the form ax+b=0, or ax> +bx +c =0, where a, b,ce R.

These are examples of polynomial equations over R, as you will see in this
unit. Finding solutions of such equations has exercised the minds of several
mathematicians through the ages. The ancient Indian, Arabic and Babylonian
mathematicians had discovered methods of solving linear and quadratic
equations. The ancient Babylonians and Greeks had also discovered
methods of solving some cubic equations, that is, equations like

ax’ +bx*+cx+d=0,a, b, c,de R. But, as we have said in Unit 4, they had

not thought of complex numbers. So, for them, many quadratic and cubic
equations had no solutions.

Here, in Sec. 5.2, you will get a chance to recall what you have studied about
linear and quadratic equations, and their roots. Then, in Sec. 5.3, we will
introduce you to the general polynomial equation over R, and its roots in C.

Next, in Sec. 5.4, you will find some very interesting, and maybe unexpected,
relations between the roots and coefficients of polynomial equations. You will
also see how these relations can be exploited to find solutions of the equations
concerned.
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Finally, in Sec. 5.5, we will discuss the types of roots of polynomial equations,
whether there are any real roots, how many could be non-real, etc. Here you
would also apply a very interesting rule, noticed by Descartes, giving a
relationship between the types of real roots of a polynomial equation and the
sign of its coefficients.

In this unit, when we talk of polynomial equations, we will always
assume them to be in one variable, and with coefficients in R, unless
otherwise mentioned.

There are several reasons, apart from a mathematician’s natural curiosity, for
studying polynomial equations. The material covered in this unit is also useful
for mathematicians, physicists, chemists and social scientists.

After going through the unit, please check to see if you have achieved the
following objectives.

Objectives

After studying this unit, you should be able to:

o solve any linear or quadratic equation over R;

o apply the procedure for obtaining one or more roots in C of a polynomial
over R, by inspection;

o give the relations between the roots and coefficients of a polynomial
equation over R;

o use the relations between the roots and coefficients of a cubic or quartic
polynomial to solve such equations;

o apply Descartes’ rule of signs, and the discriminant of a polynomial
equation, for finding the nature of the roots of a polynomial over R.

5.2 LINEAR AND QUADRATIC EQUATIONS

Let us begin the unit by recalling what you have studied about linear and
quadratic equations.

5.2.1 Linear Equations

As you know, 2x +3, —TIX, \/EX—S are all linear polynomials over R. You

also know that 2x +3=0, or —ntx =0, are examples of linear equations.
More generally, we have the following definitions.

Definition: i) An expression of the form ax +b, with a, be R and a#0,isa
linear polynomial over R in one variable x.

i) Anequation of the form ax+b =0, a, be R, a#0, is called a linear
equation over R.

i) A solution of the linear equation ax +b =0 is a complex number o
for which aac+b=0. « is also called a root of ax +b=0.

Now, you can find a solution of a linear equation just by looking at it, that is, by
inspection. For instance, if V2x-7=0isthe equation, you know that
7

7
X =— is a solution, as \/5
J2 (ﬁ

j—7 =(0. Are there any more solutions?
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Let's see. Let ae C be such that v2a—7=0. Then, you can see that

7
o=

V2

Thus, more generally, we have the following theorem.

, Which is the same as the earlier solution.

Theorem 1: The linear equation ax+b=0, a, be R, a #0, has one and only

one solution, viz., x =—.
a

In earlier units, and in school, you would have solved several linear equations.
You may also recall, from Unit 2, that a function
f:R—>R:f(x)=ax+b,a,be R, a+#0, is called a linear function. So a

linear polynomial gives rise to a linear function.
Let us now look at an example of the use of linear equations in daily life.

Example 1: Suppose | bought two plots of land for Rs. 1,20,000, and then
sold them. Also suppose that | have made a profit of 15% on the first plot and
a loss of 10% on the second plot. If my total profit is Rs. 5500, how much did |
pay for each piece of land?

Solution: Suppose the first piece of land cost Rs. x. Then the second piece

1
cost Rs. (1,20,000—x ). Thus, my profit is Rs.%x and my loss is

Rs. £(1 ,20,000—x ).
100
| & —£(1,20,000 —x) =5500
100~ 100
i.e., 25x —17,50,000 =0

i.e., x =70,000.
Thus, the first piece cost Rs.70,000 and the second plot cost Rs.50,000.

*kk

Sometimes you may come across equations that do not appear to be linear
but, after simplification, they become linear. Let us consider an example.

Example 2: Solve sp-l _2_pl =p. (Here we must assume p#1.)
p—
Solution: At first glance, this equation in p does not appear to be linear. But,
by cross-multiplying, we get the following equivalent equation:
@p-D (p—D—=3(2p) =3(p—Dp.
On simplifying this we get
3p’ —4p+1-6p=3p>-3p, thatis, 7p—1=0.

1 . . .
The solution of this equation is rE Thus, this is the solution of the equation

we started with.

* k%

You may like to try these exercises now.

E1) Solve each of the following equations for the variable indicated. Assume
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The word ‘quadratic’
comes from the Latin
word ‘quadratum’,
meaning ‘square’.
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that all denominators are non-zero.

i) J[%+aj =x for x, where J, k and a are constants, J #k.

i) i:l+l for R, keeping r, and r, constant, r, +r, #0.
R 1, 1,

iy C :g(F—32) for F, keeping C constant.

E2) A student cycles from her home to the study centre in 20 minutes. The
return journey is uphill and takes her half an hour. If her rate is 8 km per
hour slower on the return trip, how far does she live from the study
centre?

Now that we have looked at linear equations, let us consider quadratic
equations.

5.2.2 Quadratic Equations

In the earlier units you have seen several quadratic equations. One is x* =5,
which is the same as x> —=5=0. Another is the equation Cardano tried to

solve, namely, x> —10x+40=0 (see Sec. 4.1). We are sure you can think of
several others. Let us define the term, in general.

Definitions: i) An expression of the form ax” +bx +c, where
a,b,ce R, a+#0,is called a quadratic polynomial over R in one
variable x.

i)  On equating a quadratic polynomial to zero, we get a quadratic
equation over R in standard form.

i)y A solution of the quadratic equation ax’ +bx +c =0 is a complex
number o such that aat> +bo+c=0.

Now, you know that x> —5=0 has two solutions in C, i.e., x =+/5 and
x =—J/5 . These are called the roots of the given equation.

Various methods for solving quadratic equations have been known since
Babylonian times (2000 B.C.). Brahmagupta, in 628 A.D. approximately, also
gave a rule for solving quadratic equations. As you may recall, the method
that can be used for any quadratic equation is “completing the square”. Using
it, we get the quadratic formula given in the box.

Quadratic Formula: The two solutions of the quadratic equation

—b++/b*—4ac

2a

ax’+bx+c=0,where a,b,ce R and a#0, are x =

The expression b” —4ac is called the discriminant of ax> +bx +c=0.
Note that this formula tells us a quadratic equation has only two roots. These
roots may be equal or they may be distinct, they may be real or complex.

Convention: We call a root that lies in C\R a complex root. Note that such
aroot is of the form a+ib, a,be R, b#0.
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Let us consider some examples, which show us the different possibilities of
the nature of the roots of a quadratic equation.

Example 3: Solve the following quadratic equations:

i) x*—4x+1=0,

ii) 4x* +25=20x,

i) x*—10x+40=0.

Solution: i) This equation is in standard form. So we can apply the quadratic

formula immediately. Here a=1, b=—4, c=1. Substituting these
values in the quadratic formula, we get the two roots of the equation to

be
R L (e USRI S (RN =
2(1) 2

Thus, the solutions are 2+ \/§ and 2—\/5, two distinct elements of R .
Note that in this case the discriminant is positive.

i)  Inthis case let us first rewrite the equation in standard form as

4x* —20x+25=0.
Now, putting a =4, b=-20, ¢ =25 in the quadratic formula, we find that

L _20+/400-4(4) 25) _ 20440 _5

and
2(4) 8
20-400-4(4) (25) 5
\ 2(4) VA

Here we find that both the roots coincide and are real.
Note that in this case the discriminant is 0.

i) Using the quadratic formula, we find that the solutions are

= 10++/100-160 _5+\/—60

2 2
=5+iV15.
Thus, in this case we get two distinct complex roots, 5+iy/15 and
5-iv/15 .

Note that in this case the discriminant is negative.

*kk

In the example above do you see a relationship between the types of roots of
a quadratic equation and the value of its discriminant? There is such a
relationship, which we now state.

Theorem 2: The equation ax* +bx+c=0,a#0, a, b, ce R, has two roots in
C. They are:

i) real and distinct if b> —4ac>0;
i)  realandequal if b>—4ac=0;

i) complex and distinct if b> —4ac<0.
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Now let us consider some important remarks which would be useful to you
while solving quadratic equations.

Remark 1: o and B are roots of a quadratic equation ax* +bx +c =0 if and
only if ax> +bx+c=a(x—a) (x—P).
Thus, o.e C is a root of ax® +bx +c =0 if and only if (x —ct)|(ax* +bx +c).

Remark 2: From the quadratic formula, you can see that if b> —4ac <0, then
the quadratic equation ax® +bx +c =0 has 2 complex roots which are each
other's conjugates. Thus, if b —4ac <0, and one root is o.+if , then the

other root must be a—if.

Remark 3: Sometimes a quadratic equation can be solved without resorting to
the quadratic formula, just by inspection. For example, the equation x> =9
clearly has 3 and —3 as its roots. Similarly, the equation (x—1)* =0 has two
coincident roots, both equal to 1 (see Remark 1).

Let us now consider an equation which is not quadratic, but whose solutions
can be obtained from related quadratic equations.

Example 4: Solve x =+/15-2x .

Solution: x =+/15—-2x is not a polynomial equation. But, if we square both
sides, we obtain the polynomial equation x* =15-2x.

Now, any root of x =+/15—2x is also a root of the equation x> =15-2x.
(But the converse need not be true, since x> =15-2x can also mean

x =—+/15—2x .) So we will obtain both the roots of x> =15—-2x, and see
which of these satisfy x =+/15-2x .

Now, the roots of the quadratic equation x* =15—2x are x =—5 and x =3.
We must put these values in the given equation to see if they satisfy it.

Now, for x =5, x —=4/15=2x =(-5)—-+/15+10 =(-5)-5=-10#0.

So x =-5 is not a solution of the given equation. But it is a solution of

x* =15-2x. We call such a root an extraneous solution.

Next, what happens when we put x =3 in the given equation? We get
3=4/15-6,i.e.,, 3=3, whichis true. Thus, x =3 is the solution of the given
equation.

* k%

Using what we have said so far, try and solve the following exercises.

E3) A quadratic equation over R can have complex roots while a linear
equation over R can only have a real root. True or false? Why?

E4) Solve the following equations:

i) x*+5=0,
i)  (x+9) (x=1)=0,
i) x>—/5x=1.

E5) For which values of k will the equation kx* +(2k+6)x+16=0 have
coincident roots?
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E6) If o and B are roots of ax” +bx +c =0, then show that oc+[3:—E and
a

E7) Let a,PBeC suchthat a+B=peR and ap =qe R. Show that o and
B are the roots of x> —px+q=0.

E8) Reduce v2x+3—+/x+1=1 to a quadratic equation, and hence, solve
it.

E9) Ameena walks 1 km per hour faster than Alka. Both walked from their
village to the nearest library, a distance of 24 km. Alka took 2 hours
more than Ameena. What was Alka’s average speed?

Did you notice that E7 is the converse of E6? In fact, you will see this
relationship clearly in the next section. In this section, our aim was to help you
recall the methods of solving linear and quadratic equations. Let us now
discuss polynomial equations in general.

5.3 POLYNOMIAL EQUATIONS

You have already studied linear and quadratic polynomials in one variable with
coefficients in R. You have also seen expressions like 2x’ +5x*, or

%x“ +éx3 +7x* +4/2. These are examples of what we shall now define.

Definition: An expression of the form a x’ +a,x' +a,x>+---+a x", where
neN and a,e RVi=1..., n,is called a polynomial over R in the variable
X. a,,a,...,a, are the coefficients of the polynomial.

Further, if a_ #0, we say that the degree of the polynomial is n and the
leading termis a x".

We usually denote polynomials in x by f(x), g(x), etc. If the variable x is
understood, then we often only write f instead of f(x). We denote the
degree of a polynomial f(x) by deg f(x), or deg f .

While discussing polynomials, we will observe the following conventions.
Conventions: We will

i) write x” as 1, so that we will write a, for a,x’;

iy  write x' as x, sothat a,x' is a,x;

i) write x™ instead of 1.x™ (i.e., when a_=1);

iv)  omit terms of the type 0.x™;

v)  define the degree of the zero polynomial, 0, to be —oo.

Thus, the polynomial 2+3x* —x’ is actually 2x° +0.x" +3x* +(=1)x°.
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Note that the degree of f(x) is the highest power of x occurring in f(x). For
example,

i) 3x +6x° +%x3 is a polynomial of degree 3,

i)  x’ is apolynomial of degree 5, and
iy 2 is a polynomial of degree 0, since 2=2x".

You will often come across polynomials of degree 3 and 4. They have special

names.

Definition: i) A polynomial of degree 3 is called a cubic polynomial.

i) A polynomial of degree 4 is called a quartic polynomial (or biquadratic
polynomial).

The degree of a polynomial has some properties, which we shall now state.

Theorem 3: If f(x) and g(x) are two polynomials over R ,
i) f(x)* g(x) is a polynomial over R, and
deg (f(x) £ g(x)) < max(deg f (x), deg g(x))

ii) f(x)g(x) is a polynomial over R, and
deg (f(x).g(x)) = degf(x) +degg(x).

Throughout this unit, we have been talking of polynomials over R . In the
same vein, we say that f(x) is a polynomial over C if its coefficients are

complex numbers, and f(x) is over Q if its coefficients are rational numbers.
Of course, every polynomial over R is a polynomial over C. For example,
2x+3 and x° +3 are polynomials over Q (as wellas R and C). Onthe

other hand, +/3 isa polynomial over R but not over Q. In this course we
shall almost always be dealing with polynomials over R.

Let us now define a related term.

Definition: If we put a polynomial of degree n equal to zero, we get a
polynomial equation of degree n, or an nth degree equation.

For example,
i) 2x +3=0 is a polynomial equation of degree 1, i.e., a linear equation.

ii) 3x% +4/2x—1=0 is a polynomial equation of degree 2, i.e., a quadratic
equation.

iii) 1+4/5x* =0 is a polynomial equation of degree 3, i.e., a cubic equation.

However, (sinx)*+1=0 and x* ++/x =0 are not polynomial equations since
they cannot be written in the form f(x) =0, where f is a polynomial.

Now, if f(x)=a,+a,x+---+a x" is a polynomial, and ae C, we can
substitute x by a to get f(a), the value of the polynomial at x=a. Thus,

f(a)=a,+a,a+a,a’+---+a.a".
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For example, if f(x)=2x+3,then f(1)=2.1+3=5, f(i)=2i+3, and

)

Since f[?j =0, you know that _73 is a root of f(x).

Now, as you have seen in the case of quadratic equations, a polynomial can
have several roots. Here are some related definitions.

Definitions: i) Let f(x) be a non-zero polynomial over R. ae C is called a
root (or a zero) of f(x)if f(a)=0. In this case we also say that o is a
solution (or a root) of the equation f(x)=0.

i)  The set of solutions of an equation is called its solution set.

So, for example, the solution set of x* +1=0 is {i, =i}, and of x’ =3x=0is

{0, /3, —=+/3}.

There are several situations in which one needs to solve cubic and quartic
equations. For example, many problems in the social, physical and biological
sciences reduce to obtaining the eigenvalues of a square matrix of order 3 or 4
(which you can study about in the Linear Algebra course). And for this you
need to know how to obtain the solutions of such equations.

For obtaining solutions of a polynomial equation, we need some results about
the roots of polynomial equations. You have already seen, and used, them in
the context of linear and quadratic equations. We will present them here,
without proof.

Theorem 4: The polynomial equation of degree n, a, +a,x+---+a x" =0,

n

where a,, a,,...,a, € R and a, #0, has n roots in C. Further, if x,, ..., x
are the n roots of the equation, then
a,+a,x+---+a x"=a (x-x,) (xX=X,)...(x=x,).

(Note that the roots need not be distinct. For example, 1+2x+x” = (x+1)%.)

Though we will not prove this theorem here, we will now state a very important
result which is used in the proof. This is analogous to the division algorithm
for integers, that you studied in school.

Theorem 5 (Division algorithm): Given polynomials f(x) and g(x) over R,
with g(x) # 0, 3 unique polynomials q(x) and r(x) over R such that
f(x)=g(x)q(x)+r(x) and degr(x) <degg(x).

Now, if you go back to Remark 2, you find that if b> —4ac <0, then
ax’ +bx +c =0 has complex roots o.+if and o.—if, that is, they occur in

conjugate pairs. This is not only true for quadratic equations, as you can see
from the following theorem.

Theorem 6: If a polynomial equation over R has complex roots, they occur in
conjugate pairs. Infact, if a+ibe C is a root, then a—ib is also a root.

Proof: Let a,+ax+---+a _x" =0 be a polynomial equation over R, and
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a+1ib be a root of this polynomial. Then, by definition,
a,+a,(a+ib)+---+a_(a+ib)" =0.

Taking conjugates on both sides of the equation, we get

a,+a,(a—ib)+---+a _(a—ib)" =0.

This implies a —ib is a root of the polynomial too. [ |

Here is an important point related to this theorem.

Remark 4: Note that Theorem 6 does not say that f(x) =0 must have a
complex root. It only says that if it has a complex root, then the conjugate of
the root is also a root. For instance, x> —1=0 has no complex roots, but
x*+1=0 has two complex roots, i and its conjugate, —i.

So, what do Theorems 4 and 6 say in the context of cubic equations?
Consider the general cubic equation over R,

ax’+bx?+cx+d=0,a#0.

Theorem 4 says that this equation has 3 roots in C. Theorem 6 says that
either all 3 roots are real or one is real and two are complex.

Next, what do Theorems 4 and 6 say in the context of quartic equations?
Theorem 4 tells us that a quartic has 4 roots, which may be real or complex.
By Theorem 6, the possibilities are

i) all the roots are real, or
i)  two are real and two are complex conjugates of each other, or

i)  the roots are two pairs of complex conjugates, that is,
a+ib, a—ib, c+id, c—id forsome a, b,c,de R, b, d#0.

Let us consider an example.
Example 5: Obtain the roots of 2x* + x> +1=0.

Solution: 2x* +x*>+1=0 can be written as 2y* +y+1=0, where y=x".

—1+iV7 —1xiv7
Then, solving this for y, we get y:Tl\/—, that is, x° :Tl\/—, two
polynomials over C. By applying De Moivre’s theorem, you can see the roots
,  —1+iW7 ,  —1-i7
of x :T and x :T are

z,=2" cosg—ising , z,=2""* —cos9+isin9 and
2 2 2 2

Z,= 2”4[cosg+isin gj z,= 2‘”4[— cosg—isin gj respectively, where

0=tan"' V7.
Note that z, and z, are conjugate pairs, as are z, and z,.

* k%

You can now try some related exercises.

E10) Give an example, with justification, of an equation over R which is not
a polynomial equation.
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E12) Obtain the solution set of
i) x'-1=0;
ii) 5=x".

E13) Find all the roots of x’ +4x’ =5x.

So far you have been obtaining solutions of equations, just by inspecting them,
or using the quadratic formula, or De Moivre’s theorem. Let us look at some
rules that help us locate solutions.

5.4 RELATIONS BETWEEN ROOTS AND
COEFFICIENTS

In this section we shall first look at what E6 and E7 say. Over there, we saw
how closely the roots of a quadratic equation are linked with its coefficients. In
fact, the same is true for a cubic equation. For showing this we first need a
definition.

Definition: Two polynomials a, +a,x+:--+a x" and b, +b,x...+b_x" are
calledequal if n=m and a, =b,Vi=0,1,...,n.

Thus, two polynomials are equal if they have the same degree and their

corresponding coefficients are equal. Thus, 2x° +3 =ax’ +bx* +cx +d iff
a=2,b=0,c=0,d=3.

Why don’t you try and prove the relationship that we give in the following
exercise, using this definition?

E14) Show that o, B and 7y are the roots of the cubic equation
ax’+bx?+cx+d=0,a=0,if and only if

i) a+B+y:—E;
a

iy oB+Py+ay=—;
a
iii) ofy = _ﬂ_
a

(Hint: Note that, by Theorem 4, the given cubic equation is equivalent to
a(x—o) (x=P) (x=7)=0.)

What E14 tells us is that for a cubic equation
coefficient of x*

i) sum of the roots=— - 5
coefficient of x
‘coeff’ is an abbreviation

i)  sum of the product of the roots taken two at a tlmezcoe—ox3 of ‘coefficient’.
coeff. of x
. ff. of x’ tant t
i)  product of the roots=— coell- © X3 _ _constan en:l .
coeff. of x coeff. of x
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Let us use these three relations now to create equations with ‘designed’ roots!

Example 6: If o, B, Y are the roots of the equation
x’=7x*+x-5=0, find the equation whose roots are o+, B+7, ot +7.

Solution: By the relations in E14, we know that

oa+P+y=7

o +Py+oay=1 ..(1)
opfy=>5

Therefore, (a+B)+(P+7y)+(a+7y)=2(a+p+7y)=14 ...(2)

Also, a+B=7-v, B+y)=7-a, y+o=7-P, so that

(a+P) B+ +B+7Y) (@+7)+(a+7y) (a+p)

={49-T7(y+ o) +yo}+{49-T(o.+B)+ P} +{49-TPR+7v) + Py}
=147-98+1, using (1) and (2).

=50, and ...(3)
(@+p) B+7) (@+N=T-1 (7-P) (7T-) -.(4)
To evaluate the expression on the right hand side of (4), we can use (1) or we
can use the fact that

X’ =7x*+x-5=(x—-o) (x—=B) (x—7v). So, putting x =7, we get

T =77 +7-5=(T-a) (1-B) (71-7),ie, (T-o) (7-B) (7T-7)=2
Therefore, (4) gives (ot +B) (B+7y) (t+7)=2. ...(5)
Now, E14, (2), (3) and (5) give us the required equation, which is
x’—14x*+50x-2=0.

* k%

Why don’t you try the following exercises now?

E15) Find the sum of the cubes of the roots of the equation

x’—6x>+11x—6=0. Hence find the sum of the fourth powers of the
roots.

E16) Let a,b,ce R, S, =a+b+c, S, =ab+bc+ca, S, =abc. Show that

a, b, c are positive if and only if S, S,, S, are positive.

E17) Find ac R if you know that x* —3x*>+ax—1=0 has three positive
solutions. Also solve the equation.

Now, just as in the case of quadratic and cubic equations, if 1,, r,, r;, r, are

the roots of the quartic ax* +bx* +cx* +dx +e =0, then we can find their
relationship with the coefficients of the equation.
Let us see what they are. We know that
4 3 2
ax”" +bx” +cx”+dx+e=a(x-r) (x—1,) (X—-1;) (X—1,)
b c d e
e x'+—x’+-x"+—x+-=(x-1) (x—-1,)(x—1;) (X—T,)
a a a a
=x" (1,41, +1, +1,)X° + (1, + 1,1, 41, H 0T L L)X
—(nr,r, + 51,1, + L, + LT )X L.

Comparing the coefficients of x°, x*, x' and x”, we see that
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b
L+, +1,+r, =——,
a
_c
LL, + 110 + 0L, + 0L L L, = o
LT, + 0L, + 1L, 0T, = o

_c
LI =—.

This means that

ff. of x’
sum of the roots :—M,

coeff. of x*

; ff. of x°
sum of the roots taken two at a time :M,
coeff. of x
; ff. of
sum of the roots taken three at a time = ——————
coeff. of x

coeff. of x° constant term
product of the roots= =

coeff. of x*  coeff. of x*
These four equations are a particular case of the following result that relates
the roots of a polynomial equation with its coefficients. It is due to the French
mathematician, Viéte.

Theorem 7: Let o, ..., &, be the n roots of the equation
a,x"+ax""'+---+a =0,a,€e RVi=0,1,...,n,a,#0. Then

i=1 a()
n
a
E oo, =—=%
J)
i j=1 a,

i=1 a,

In E6, E7 and E14 you have already seen that this result is true for n=2 and
3. Theorem 7 is very useful in several ways. Let us consider an application in
the case n=4.

Example 7: If the sum of two roots of the equation
4x* —24x> +31x* +6x -8 =0 is zero, find all the roots of the equation.

Solution: Let the roots be a, b, ¢, d, where a+b=0.
Then a+b+c+d=27fl=6.
~c+d=6 ...(6)

Also, ab+ac+ad+bc+bd+cd=(a+Db) (c+d)+ab+cd=%

Fig. 1: Francois Viéete
(1504-1603)

A=A A A

i=1

HAi :AlAz"'A

i=1
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ab+cd =— (7)
-6 3
Further, (a+b)cd+ab(c+d)=acd+bcd +abc+abd = e = _E
s (6)= ab=—l ...(8)
4
Finally, abed = — =2
4
oo (8)=>cd=8 ...(9)

Now, E7, (6) and (9) tell us that ¢ and d are roots of x> —6x+8=0.
Thus, by the quadratic formula, c=2,d=4.

1
Similarly, you should check that a and b are roots of x” ) =0.

b=t

1
La=—,
2 2

1 1
Thus, the roots of the given quartic are 2o 2,4.

* k%

Try the following problems now.

E18) Solve the equation x* +15x> +70x> +120x + 64 =0
given that the roots are in G.P., i.e., geometrical progression.
(Hint: If four numbers a, b, ¢, d are in G.P., then ad =bc .)

E19) Show that if the sum of two roots of x* —px’ +qx*—rx+s=0 (where
p. q, 1, se R) equals the sum of the other two, then p’ —4pq+8r=0.

We have touched upon relations between roots and coefficients for

n=2, 3, 4. Butyou can apply Theorem 7 forany ne N. You have seen
how these relations can also be used for solving the equations. You may
also know that there are formulae, like the quadratic formula, for solving cubic
and quartic equations, which are due to Cardano, Ferrari and others.
However, in 1824 the Norwegian algebraist, Abel (1802-1829), published a
proof of the following result:

There can be no general formula, expressed in explicit algebraic
operations on the coefficients of a polynomial equation, for the roots of
the equation, if the degree of the equation is greater than 4.

This result says that polynomial equations of degree >4 do not have a general
algebraic solution. But, there are methods that can give us approximate
values of real roots, which you will study in our course on Numerical Analysis.
There are, of course, special polynomial equations of degree>5 that can be
solved (as in E13).

Now, given a polynomial equation, is there some way of knowing the type of
roots it has without actually solving it? We discuss this in the next section.
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5.5 NATURE OF ROOTS

In Sec. 5.3, you saw that a polynomial equation of degree n has n roots,
which may be real or complex. Theorem 6 also tells you that the complex
roots occur in conjugate pairs, so that the number of such roots must be even.
You also know that the discriminant of a quadratic equation tells you what the
roots of such an equation are like. So, can we generalise this concept? Let’s
see.

5.5.1 Discriminant

In the case of a quadratic equation x* +bx +c =0, you know that the
discriminant is b> —4c . Also, if o and B are the two roots of the equation,

then a+B=-b, af=c. Therefore, (—P)”> =(a+P)* —4af=b>—4c.
Thus, the discriminant= (a.—B)*, where o and B are the roots of the
quadratic equation.

Now consider the general quadratic equation, ax” +bx +c=0. Let its roots
be o and B. Then its discriminant is b> —4ac=a’(a—f)>.

We generalise this relationship to define the discriminant of any polynomial
equation.

Definition: The discriminant of a, +a,x +a,x’ +---+a x" =0 is |
The discriminant of a

a;* (o, —))*, where o, ..., o, are the roots of the polynomial polynomial equation
I<i<j<n of degree ne N is
equation. zero iff it has at least

two equal roots.
In particular, if we consider the case n=3 and a, =1, we find that the

discriminant of a cubic equation is a complicated expression. This actually
arises from Cardano’s solution of cubics, which we shall not be doing in this
course. However, we give the following:

The discriminant of the cubic x* +px* +gx+r=0 is D=—(27B*> +4A"),
2 3
P” g_2P P4 .

where A=q——,
3 27 3

Now, we know that D = (a.—B)*(B—7v)*(a—7)*, where a, B, y are the roots of

the cubic. As in the case of quadratic equations, does the sign of the
discriminant tell us anything about the nature of the roots of the equation? Let
us look at the different possibility for the roots a, B and 7y of the cubic.

1) If the roots are all real and distinct, then (.—B)*(B—7)*(t—y)* =D >0.

2)  If only one root is real, say o, then B and y must be complex
conjugates.
. B—v is purely imaginary, so that (B—7)* <0.
Also, aa—B=oa—-v, so that (a—f) (x—7y)>0.
Hence, in this case D<0.

3) Suppose o= and y#a. Since a—pf=0,D=0.
121
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Also, B#0. Why? Because if B=0,then A=0 (since D=0).

2 2 2
But AzO:q:%,that is aa+2y) = 24D

3
[over here we have used the relationship between the roots, since
p=—(+PB+v)=—QRoa+7) and q=0of+Py+oy=o(a+2Y)]
On simplifying we get o=y, a contradiction.
Thus, B#0.
So, if exactly two roots of the cubic are equal, then D=0 and B#0,
and hence, A #0.

4 Ifoa=B=vy,then D=0,B=0,and hence A=0.

Let us summarize the different possibilities for the nature of the roots of a
cubic equation now.

Consider the cubic equation x* +px* +qx+r=0, p,q,re R, and let
3 2

B:zi—%+r and A=q—%. Then D =—(27B* +4A’), and

27
1. all its roots are real and distinct iff D >0.
2. exactly one root is real iff D<O0.

3.  exactly two roots are equal iff D=0 and B#0. Further, in this
case all the roots are real.

4.  all three roots are equal iff D=0 and B=0.

Let us consider an example of the use of the discriminant of a polynomial
equation for analysing the type of its roots.

Example 8: Obtain the discriminant of x* +2x —2+/5 =+/5x*. Hence,
examine the nature of its roots.
1, -1045

,B=
3 27

Solution: Here p= —\/g, q=2,r= —2\/3 . Therefore, A =

6 . .
and D :T. Since D <0, exactly one root is real, and hence the other two

are complex conjugates.

* k%

You may now like to try the following problems to see if you’ve understood
what we have just discussed.

E20) Under what condition on the coefficients of
ax’ +3bx?+3cx+d=0,a=0,
will the equation have complex roots?

E21) Will all the roots of x* =15x+126 be real? Why, or why not?

So far we have introduced you to one way of determining the type of roots of a
polynomial equation. Let us now look at a method that tells us the signs of the
real roots of such an equation.
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5.5.2 Descartes’ Rule of Signs

Let us begin by taking the polynomial 2x* +3x* —+/2x° —%xz +x+1m=0.

Just by looking at it, can you say how many positive and negative real roots it
could have? It is possible, due to the following remarkable theorem by
Descartes.

Theorem 8 (Descartes’ Rule of Signs): The number of positive real roots of
a polynomial is bounded by the number of changes of sign in its coefficients.

So, if we apply Theorem 8 to the polynomial equation above, then the signs of
the coefficients of x°, x*, x°, x*, x', x” are ++——++. Thus, there are only

two changes of sign, one from x* to x’, and one from x* to x'. Thus, it can
have a maximum of two positive real roots.

Remark 5: Note that we do not say that the polynomial actually has any real
roots. We are saying that if it has real roots, then at most two of these can
be positive. In fact, it may not have any real roots, or positive real roots at all!
(See E24.)

Now, you may be wondering if there is a similar rule for negative real roots too.
Note that if a is a root of a polynomial f(x) over R, then —a is a root of

f(—x). For example, if p(x)=x>-3x+2, then
p(—=x) = (=x)* =3(=x)+2=x>+3x+2. Now 1 and 2 are the roots of p(x),

so that —1 and —2 are the roots of p(—x).
So, using this relationship, we can write down the following corollary to

Theorem 8.

Corollary 1: The maximum number of negative roots that the polynomial A corollary to a

f(x), over R, can have is the number of changes of sign of the coefficients of theorem is a statement
that immediately follows

f(—x). from the theorem.

Let us consider an example of the use of Descartes’ Rule.

Example 9: Find the nature of the roots of the equation
3x* +12x% +5x-4=0.

Solution: Let f(x) =3x*+12x*>+5x—4. Using Descartes’ Rule, we can see
that f(x) has only one change of sign. Hence, it can have at most one
positive root.

Now consider f(—x) =3x*+12x> —5x —4. This too has only one change of
sign. Thus, f(x) has at most one negative root.

We also know that f(x) must have 4 roots in C. Thus, at least two of these
roots must be non-real, and hence complex conjugates.

* k%

Why don’t you try some exercises now?

E22) Find the nature of the roots of x*+3x, using Descartes’ Rule. Also
check this by actually obtaining the roots.
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E23) What is the possible nature of the roots of the equation
x"—4x°+x*-2x-3=07?

E24) Consider p(x) =x”—2x+3.
i) By Descartes’ Rule, how many positive roots can p(x) have?
ii) Obtain the roots of p(x).
What can you infer from (i) and (ii)?

With this discussion on trying to understand the character of the roots of a
polynomial, we end our discussion on polynomial equations. Let us briefly
summarise the discussion in the unit.

5.6 SUMMARY

In this unit, we have covered the following points.

1. A quick recall of linear and quadratic equations, their solutions and what
the discriminant of a quadratic equation tells us about the nature of the
roots of the equation.

2. A polynomial over R in the variable x is an expression of the form
a,tax+---+a x",neN,a,eR,a #0. Iltsdegreeis n. The
corresponding polynomial equationis a,+a,x+---+a_x" =0, which is
of degree n.

3. degOQ=-—oo.

4. A polynomial of degree n, f(x), has n rootsin C. ae C is a root of
f(x) ifand only if f(a)=0 ifand only if (x—a)lf(x).

5. If f(x) and g(x) are polynomials over R, then so are f(x)+ g(x) and
f(x)g(x).
Further, deg (f(x) * g(x)) < max(deg f(x), degg(x)), and
deg(f(x)g(x)) = degf(x)+deg g(x).

6. A polynomial equation of degree 3 is called a cubic equation, and of
degree 4 is called a quartic (or biquadratic) equation.

7. The division algorithm states that given polynomials f(x) and g(x) over
R, with g(x) # 0, 3 unique polynomials q(x) and r(x) over R, such
that f(x) =g(x)q(x)+r(x), with degr(x) <degg(x).

8. If a polynomial equation has complex roots, then they occur in conjugate
pairs.

9.  Applications of the following theorem:
Let a,, ..., o, bethe n roots of the equation

a,x"+a,x""'+---+a, =0,a,€e RVi=0,1,...,n,a,#0. Then
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10.  If the polynomial equation a, +a,x+---+a x" =0, a_, #0, has roots
0, Oy, ..., O, , then its discriminant is D =a2" " J (e, —a))*.
i<j
We also discussed the way D can be used for understanding the nature
of the roots of the equation, particularly in the case of cubics.

11. If f(x) is a polynomial over R, Descartes’ Rule of Signs tells us that the
maximum number of positive roots f(x)=0 can have is the number of

changes of sign in its coefficients. Applying this, we also obtained the
bound on the number of negative roots. Hence we tried to gauge the
nature of all the roots of f(x)=0.

5.7 SOLUTIONS/ANSWERS

—Jak
E1) i) J[%+aj=X(:)(J—k)x:—Jak@X:JJ_k,

which is well-defined since J #k.
I ——

] =
Re 1T, i

Hence, R __4hh
I'1+I'2
i) F:%C+32

E2) 20 minzé hr.
Let the student’s rate to the study centre be x km per hour.
Then the distance travelled by her is %km.
Similarly, since the rate of travel back is (x —8) km per hour, the same

. . 1
distance, i.e., from the study centre to her home, is E(X —8)km.

x 1
So —=—(x-98).
3 2( )
Solving this for x, gives x =24.

Thus, the student lives at a distance of % =8 km.
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E4)

E5)

E6)

E7)

ES)

E9)

The statement is true.
Consider a linear equation, say ax+b=0.

Here a, be R, a#0. Its solution is —E , Whichisin R.
a

Now, consider the quadratic equation x> +1=0. This has complex
roots i, —i. Thus, a quadratic equation over R can have complex
roots.

) x’+5=0=x’>=-5=5i’. Thus, x =+i/5.

ii) x+9) x-D=0=x+9=0o0r x-1=0=>x=-9, 1.

iy x>—+/5x=1=>x>—+/5x—1=0, in standard form. Applying the

V5544 543 {5-3
2 ’ '

2 2

quadratic formula, we get x =

The roots will be coincident, that is, both will be equal, iff the discriminant
is zero, i.e., 2k +6)* —64k =0

= 4k*—40k+36=0= k*-10k+9=0.
By the quadratic formula, we get

 _ 10£100-36
2

=5+4=9, 1, which are the required values.

By Remark 1,
ax’+bx +c=a(x —a) (x—B) =a{x* - (a+B)x + ap}.
Equating the coefficient of x, and the constant term, on both sides of the
equality, we get
b=-a(a+p) and c=aaf,
b

. c
thatis, a+B=——, af=—.
a a

o is a root of x> —(at+PB)x +of =0 iff o> — (o +PB)ae+aP =0, which is
true. Hence, o is a root of the given equation.
Similarly, B is a root of the given equation.

V2x+3-x+1=1.

Squaring both sides, we get
(2x+3)+(x +1)=2/(2x +3) (x +1) =1
& 3x+3=2/2x+3) (x+1).

Again, squaring this, we get

9x? +18x +9=4(2x+3) (x+1)

& Ox*+18x+9=8x"+20x +12

& xP-2x-3=0.

The roots of this equation are 3 and —1.
Now, putting these values in the original equation, we find that

J23)+3-43+1=1,and 2(-1)+3 = /(=) +1=1.
Thus, both 3 and —1 are solutions of the given equation.

Let Alka’s average speed be x km per hour, and suppose she took t
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E11)

E12)

E13)

E14)
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hours to walk 24 km.

Then 24 = xt , that is, t:ﬁ .
X

Also, Ameena’s speed is (x +1) km per hour, and time taken is
(t—2) hrs.

So 24=(x+1) (t=2)=(x+1) [%—ZJ.
X

& xXP+x-12=0

S x=3, —4.

Since average speed is non-negative, x =—4 is not acceptable in the
given situation. Therefore, x =3, that is, Alka’s average speed is 3km
per hour.

There are infinitely many examples.

For instance, 1+ x +x”+x’ +---+x" +---, containing infinitely many
terms, is not a polynomial.

2x’=4/5x>=0 & x*(2x—+/5)=0. By inspection, we note that two
roots are zero. So, we get x =0 or 2x ~J5=0.

Thus, the solution set is {0, g}

i) The required set is the set of the seventh roots of unity (see Unit 4,
Sec. 4.5). Thus, the solution set is

{cosg+ism¥, k=0, £1, +2, 13}.

i)  Again, from Sec. 4.5, you know that if x’ =5 has one root o, then

the solution set is {a[cosgﬂsm gj k=0, 1, £2, J_r3}.

Here we choose a to be the real number (5)"".
x> +4x° =5x
& x(x*+4x*-5)=0.
By inspection, we see that one root is 0, and the other roots are those
of x*+4x*-5=0.
Now, to solve x*+4x”>—5=0, put x> =t. Then the equation is
t*+4t-5=0.
Its roots are t=1, 5.
Thus, x> =1 and x*> =-5 give us the roots of the given equation.
Now, x’=1=x ==1.
Also, x’=-5=x :i'i\/g.

So the 5 roots of the given equation are 0, *1, +iy/5

Using Theorem 4, we get
ax’ +bx*+cx+d=a(x—a) (x—B) (x—7)

=a{x’ —(+B+V)x* + (af + By + ay)x —ofy}
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E15)

E16)

E17)

E18)

Now, equating the coefficients of x>, x', x” on both sides we get (i), (ii)
and (iii), respectively.

If o, B, v are the roots of the equation, we know that

a+p+y=6, ...(10)
of+Py+ay=11, ...(11)

We need to find o® +B° +7°, and then o* +B* +v*.

Now, (t+B+7)° =a” +B° +7* +2(af +Py+ory) .

Thus, from (10) and (11) we find that

o> +B*+y =(6)-2(11) =14 ...(13)
Now, since «, 3, ¥ are roots of the given equation, we know that

o’ —60’+11e—6=0,

B’ —6B*+11B-6=0,

Y -6y +11y—-6=0.

Adding these three equations, we get

O +p+y)—6(c” +B° +v) +11(a+P+7)—-18=0.

Now, using (10) and (13), we find

o +B’+7 =6(14)-11(6)+18=36. ...(14)
Now, note that multiplying the given equation by x, we get
x'—6x’+11x*—6x =0

As a, B, vy are also roots of this equation, using the procedure above,
we get three equations. Adding them, we get

O +B*+yH—6(a +B7 + 7)) +11(a” + B> +y) —6(a+B+7)=0

So, using (14), (13) and (10), we get

o' +B* +v" =6(36)—11(14) + 6(6) =98 .

Firstly, if a, b, ¢ are positive, S,, S, and S, have to be positive. (Why?)
Now, we need to prove the converse, that is, if S;, S,, S, are positive,
then a, b, ¢ must be positive. For this, note that a, b, ¢ must be the
roots of the cubic equation

x* =8 x*+8,x-8,=0

So, a’—Sa’+S,a-S,=0

= a(a’-Sa+$,)=S,>0

Thus, a=0.

Also, if a <0, then a’—S,a+S, >0, so that a(a®>—S,a+S,) <0, which

is a contradiction. So, a must be positive.
Similarly, b and ¢ must be positive.

If o, B, ¥ are the roots of the equation, then
o+P+y=3,0f+Py+ay=a,afy=1.

By inspection, we see that o =3 =y =1 satisfy all the relations.
Then a=3.

Let a, b, ¢, d be the roots in GP, then

ad =bc ...(15)
Now, we know that
at+b+c+d=-15 ...(16)
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ab+ac+ad+bc+bd+cd=70 ...(17)
(a+b)cd+ab(c+d)=-120

= ad(b+c)+bc(a+d)=—-120 ...(18)
abcd =64 ...(19)

Now (15), (16) and (18) give us ad(-15)=-10, i.e., ad=8=bc.
Next, (17) gives us
(a+d) (b+c)+2bc=70

= {=15—(b+c)} (b+c)+2bc =70, using (16)
= (b+c)*+15(b+c)+54=0
= b+c=-60or b+c=-9

We take b+c=-6 ...(20)
Then (b—c)* =(b+c)’ —4bc =4
= b-c=2 ...(21)

(20) and (21) giveus b=-2, c=—4.

Also, (16) and (20) give us a+d =-9.

As above, we find a=-1,d=-8.

So, the roots, given in order, are —1, —2, —4, —8, with the common ratio
being 2.

(Note that in (20) we could have taken b+ c =-9, then in the further
calculations you would have got the same roots ultimately.)

E19) Let the roots be a, b, c, d, with

atb=c+d. ..(22)
Now a+b+c+d=p ..(23)
ab+ac+ad+bc+bd+cd=q .(24)
(a+b)cd+ab(c+d)=r ..(25)
abcd =s ..(26)
(22) and (23) = a+b=§=c+d

2r
Then (25) = ab+cd=—

P

Also (24) = (a+b)c+(a+b)d+ab+cd=q
2

So p_+£:q:> p’ +8r=4pq
4 p
= p’—4pq+8r=0.

E20) The only case will be when D <0, i.e.,
27B* +4A° >0,
(3b)* 1 9bc 1 d _2b" 3bc d

where B=2 — =
a> 27 a* 3 a a’ a’ a
2 2
and A:E—l[&j :2—3]3—2.
a 3\a a a

Thus, the requirement is

3 2\? ey
27(213 3al33c+ad j +4(27)(ac b j 0
a

2
a

= (2b’—3abc+a’d)* +4(ac—b*)’>0.
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E21) Here p=0, q=-15, r=-126.
So, B=-126, A=-15,
D =—{27(-126)* +4(-15)*} <0
Therefore, only one root will be real, and two will be complex conjugates.

E22) By Descartes’ Rule, this has no positive roots, and at most one negative
root. So, it will have one root equal to zero and one negative root.
Now, by inspection we see it has two roots, 0 and —3, which matches
the nature suggested by Descartes’ Rule.

E23) Using Descartes’ Rule, we see f(x) can have at most three positive

roots, since the signs are
+ — + — —,i.e., atotal of 3 sign changes.

N
1 1 1

Now, f(—x)=x""—4x°+x*+2x-3.

So, there are two sign changes.

Therefore, the equation can have at most two negative roots.

Now, this equation has 10 roots, and we see that at most 5 can be real.

So, at least 5 roots are complex. But, complex roots occur in pairs. So,

at least 6 roots are complex. Then 4 roots would be real.

Another possibility is it could have 8 complex roots, and two real

roots, one of which is positive and one negative.

A third possibility is that it has 5 pairs of complex roots and no real

roots.

E24) i) By the Rule, it can have two positive roots.
+./4—
i)y  The roots are # =1+iv/2.

Thus, even though the Rule shows the maximum possibility of real roots,
there need not be any real roots at all. Here both the roots are complex.
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MISCELLANEOUS EXERCISES

The exercises given below cover the concepts and processes you have
studied in this block. Doing them will give you a better understanding of the
concepts concerned, as well as practice in solving such problems.

1.

10

11.

If a, b, ce R such that (2ax +b)‘(ax2 +bx +¢), what is the nature of the

roots of ax’> +bx+¢c=07?

Give a geometrical representation of the following sets:
) {-3,075.V2}cR,
ii) {xIx<-3JU{3}cR,

i) {(x, y)] y=+3x—2} c RxR.

Graph the function f, defined by

1-x, if x<1,
x4, if x>1.
i) f:RoR:f(x)=—1xI,

i)  f:N-o>N:f(x)=2".

i) f:R—)R:f(x):{

i 2 _
Is (u——ljﬁ a purely imaginary number? Give reasons for your

I+1 241
answer.
Solve the equation X+1: 4 +6, x #X3.
x—3 x+43

If two people lay tiles on the floor of a room, it takes them 4 hours to do

the job together. If each works alone, one of them could do the job in 1

hour less than the other. How long would it take each of them to tile the
floor alone?

Evaluate the following, where @ is a cube root of unity:
)  (l—0o+0) (l+o-),
ii) (lI-o) (1-0") 1-0") 1-).

Find the equation whose roots are 4 less in value than the roots of
x*=5x* +7x* =17x+11=0.
(Hint: You can re-write the equation as an equation in x —4.)

Solve x* +9x’ +16x* +9x +1=0.
(Hint: Note that the coefficients of x" and x*™ are the same in this, for
r=0,1 2. Also x =0 is not a root. Dividing throughout by x>, you can

T

, . . 1
rewrite the equation as one in x +— =y, say. Then solve for y.)
X

Find the least possible number of imaginary roots of
) =x’+x*+x*+1=0.

Find the square root of 4ab—2i(a*—b?), where a, be R.
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SOLUTIONS/ANSWERS

. " . —b
1. ax® +bx +c =0 has two roots. By the given condition, one root is E
a

Suppose the other rootis re R. Then

a[x—ij (x—1)=ax’+bx +c.
2a

On equating the coefficients, we get r = B
a

Thus, both the roots are equal and real.

2. )

o

i

o
\Z

N
p

A4

|

w
O
we

Fig. 2: The portion of the number line to the left of — 3, together with
the point representing 3, is the representation of the set.

i)

Yt L
: —>
0 /2 X
/B
/

Fig. 3: L represents y = \Bx -2.



Solutions/Answers

Block 1
3. (i) and (i)
N
"1 A
é o] R
‘ . ),(,

i)

Fig. 5: y =2" Vxe N.
4. The numberis 4/ AN @HD=2A+D | 441 _ 44id=3)
(I+1) (2+1) 1+ 3i 10
Thus, its real part is non-zero, and hence the number is not purely

imaginary.
5 x+1: 4 46
x=3 x+3
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Suppose the slower worker completes the job alone in x hours.
The faster worker completes the job alone in (x —1) hours.

The rate of job done per hour of each is 1 and , respectively.

X X =
Together they complete the job in 4 hours.

.~.4[l+ ! jzl
x x-1

= x"-9x+4=0

X:9+J6 9-./65
2 72

x =0.5 is not possible, since x —1=-0.5, which is negative, and hence
cannot be the time taken by a worker.

Thus, x=8.5 and x—-1=7.5.

So, the workers would each take 7.5 hours and 8.5 hours, respectively,
to tile the floor alone.

=8.5, 0.5 (approximately).

i) We know that 1+ w+®* =0 and ®’ =1.
L(1-0+0) +0-0°)=(20) (20°)=4.

i) (-0 (-0)(-0) (-0)
=(l-) (-0’ (1-0) (1-0°)
=(1-0)’ (1-0°)’
=(1-20+0") (1-20"+®*)=9.

Let y=x—4. Then the given equation becomes
(y+4)*'=5(y+4)’ +7(y+4)* -17(y+4) +11=0
&y +11y° +43y* +55y -9 =0 the required equation.

x*+9x* +16x>+9x +1=0

PR [xz +i2j +9[x +lj +16 =0, dividing throughout by x”.
X X

1Y 1
@[x+—j +9[x+—j+14:0.
X X
Putx+l:y,toget y>+9y+14=0.
X
Then y=-2,-7.
So X4+4 =2 and X+ =7 give us x> +2x+1=0 and

X X
x> +7x+1=0.
Solving these equations, we get the four roots of the original equation,

~7+/45
—

namely, 1, 1,
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10. Let f(x)=x"—x"+x*+x>+1. Then f(—x)=—x"+x* +x* +x* +1.
Since f(x) has only two changes of sign, it has at most two positive
roots. Since f(—x) has at most one change of sign, f(x) has at most
one negative root.

Since f(x) has 9 roots, of which at most 3 are real, at least 6 are
complex roots.

2,2
11.  4ab—2i(a®> —b>)=2(a’> +b?)(cosO+isin 0), where e:tan—l(b2 ba J
a

Therefore, its square roots are

x/E\/az +b2[cosg+isingj, \/Exlaz +b2[—cosg—isingj, where

O=tan"’ b* —a’ .
2ab
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