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COURSE INTRODUCTION 
 
This is the first mathematics course you will be studying in the Bachelor’s Degree 
Programme. The aim of this course is to develop an understanding of basic 
mathematical concepts and techniques that you will require for studying other 
mathematics courses of the programme, as well as any further study and work you 
undertake in mathematics.  

 
Calculus is divided into two broad areas, differential calculus and integral calculus.  
Broadly speaking, differential calculus is the study of change and integral calculus is 
about adding up the parts.  Differential calculus helps you to find, for example, the 
effect of changing conditions on a system being investigated, and hence to gain control 
over the system. The process of this mathematical investigation uses the powerful 
technique of modelling the phenomena concerned. The models usually involve 
differential equations. Differential calculus is useful in formulating models and integral 
calculus is used to solve the differential equations associated with the model.  Apart 
from well known applications in physics, mathematical models based on calculus are 
used for the study of population ecology, cybernetics, management practices, 
economics and medicine.  
 
In this course we shall focus on integral calculus after we discuss differential calculus.  
However, it was integral calculus that developed first historically. This has its origins in 
the need for measuring lands for the purpose of revenue collection.  It is said that the 
Egyptian river Nile changed its course often, and the lands near it, with differently 
curved boundaries, were required to be measured again and again for levying taxes. 
This led to the development of mensuration in the Egyptian civilisation.  We can regard 
mensuration as the forerunner of integral calculus.  Indeed, one meaning of the word 
‘quadrature’, used in integration, is computing the area.  

 
The modern development of calculus began with the work of the famous 17th century 
mathematicians, Newton and Leibnitz, in developing differential calculus.  One of the 
early successes of calculus was the prediction of the period of Halley’s comet.  As you 
can see, calculus provides a powerful tool for the study of not only such natural 
phenomenon, but also artificial entities like the stock market.  Over the centuries, many 
European mathematicians like Euler, Lagrange, the Bernoullis, Gauss, Cauchy and 
Riemann contributed to the development of this subject. 

 
Now, a few words about how this course unfolds. In the first block of this course, you 
will be introduced to two basic building blocks of mathematics, namely, sets and 
functions. In the process you would recall a lot of related mathematics you studied in 
school, including two important coordinate systems for representing and studying    
two-dimensional spaces. Next, you will get more than a glimpse of the world of 

complex numbers, C .  Finally, you will study ways of solving certain polynomial 

equations over R . 

 
In the second block, you will begin by studying the properties of real numbers that you 
will need again and again. You will also study the concept of limits and continuity, 
which play a central role in calculus and, more generally, in mathematics.   
 
In the third block, you will begin your study of differential calculus with the definition of a 
derivative and its basic properties.  You will study several formulae for the derivatives 
of some functions which are used often, like polynomial functions and trigonometric 
functions. This block ends with a discussion on higher order derivatives and the 
Leibnitz rule for finding higher order derivatives. 
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In the fourth block, you will find some applications of differentiation. You shall study 
how derivatives can help to get information about various geometrical properties of 
curves. This block ends with a discussion on the tracing of different types of curves. 
 
In the fifth, and last, block, your focus will be on integral calculus.  You will study 
concepts of ‘integral of a function’ and ‘primitive of a function’.  You will also study the 
integrals of common functions like polynomial functions and trigonometric functions.  
You will get an opportunity to apply some techniques of integration like the substitution 
method, integration by parts and reduction formulae. The block ends with some 
applications of integral calculus for measuring lengths, areas and volumes.  
 
Now a word about our notation.  Each block has units and each unit is divided into 
sections, which may be further divided into sub-sections.  These sections/sub-sections 
are numbered sequentially, as are the exercises and important equations in a unit. 
Since the material in the different units is heavily interlinked, there will be a lot of  
cross-referencing.  For this we will be using the notation Sec. x.y to mean Section y 
of Unit x. 

 
Throughout this course the emphasis will be on techniques rather than on theory.  So 
you may not find many proofs here.  (You will be able to find the proofs of many of the 
theorems you study and apply here in our third semester course, Real Analysis.)  
 
Another compulsory component of this course is its assignment, which covers the 
whole course. Your academic counsellor at the study centre will evaluate it, and 
return it to you with detailed comments. Thus, the assignment is meant to be a 
teaching as well as an assessment aid.  Further, you will not be allowed to take the 
exam of this course till you submit your assignment response at your study centre.  So 
please submit it well in time. 
 
The course material that we have sent you is self-sufficient.  If you have a problem in 
understanding any portion, please ask your academic counsellor for help.  Also, if you 
feel like studying any topic in greater depth, you may consult. 
 
A word of friendly advice here is that to learn the various techniques presented in this 
course, you will need to put in a lot of practice in solving problems given in the material. 
You should attempt to solve all the exercises in the block as you go along, before you 
look up the solution.  As a part of the tutorials, we have added miscellaneous examples 
and exercises at the end of each block.  You should also attempt these exercises.  In 
addition, you may also like to look up some other books in the library of your study 
centre, and try to solve some exercises from these books.  

Some useful books and websites are the following:  

1. Essential Calculus, by James Stewart, Cengage Publication. 

2. Calculus, by Anton, Bivens and Davis, Wiley Publications.   

3. https://brilliant.org/courses/calculus-done-right  

4. https://www.mathisfun.com/calculus  

5. www.math.mit.edu/Ndjk/calculus_beginners  

We have also prepared a video programme, which will be available at your study 
centre, called “Limits”, based on the material in Block 2. 
 
Wishing you a happy learning experience,  

 

The Course Team 
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BLOCK 1 ESSENTIAL PRELIMINARY CONCEPTS 
 
With this block, you are stepping into your study of undergraduate mathematics.  You 
would have studied mathematics upto Class XII, wherein you would have studied some 
of the concepts that will be covered here.  These are included because they are 
essential for further study, and recalling them will help you.   
 
To begin with, in Unit 1, you will look at a basic essential concept developed in the 20th 
century, namely, that of a set.  Here you will get an opportunity to relook operations on 
sets and their properties.   
 
Following this, in Unit 2, you will have occasion to recall what a function is, operations 
on functions as well as various kinds of functions. 
 
In Unit 3, you will be considering two coordinate systems for two dimensions.  The 
Cartesian system would be familiar to you, though the polar coordinate system may 
seem new.  Linked with this is Unit 4, which focuses on introducing you to complex 
numbers and their properties.  The link between the two units will become clear as you 
study them. 
 
Finally, in Unit 5 you will study various polynomials and how to find their roots.  In 
particular, we will be discussing polynomials upto degree 4. 
 
At the end of this block you will find a set of miscellaneous exercises related to the 
concepts covered in this block.  Please do study them, and try each exercise yourself.  
This will help you engage with the concepts concerned and understand them better. 
 
A word about some signs used in the unit!  Throughout each unit, you will find 
theorems, examples and exercises.  To signify the end of the proof of a theorem, we 
use the sign     .  To show the end of an example, we use       .  Further, equations that 
need to be referred to are numbered sequentially within a unit, as are the exercises 
and figures.  E1, E2, etc. denote the exercises and Fig. 1, Fig. 2, etc. denote the 
figures. 

 

*** 
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NOTATIONS AND SYMBOLS (used in Block 1) 
 
∈  (∉)  belongs to (does not belong to)  

)(
/

⊆⊆   is contained in (is properly contained in) 

⊄  ( /⊃ )  is not contained in (does not contain) 

)
/

(⊇⊇   contains (properly contains) 

BA ∪   the union of the sets A  and B  

BA ∩   the intersection of the sets A  and B  

B\A    the complement of the set B  in the set A  

BA×   The Cartesian product of the sets A  and B  

c
A   complement of the set A  

N   the set of natural numbers 

)( *ZZ   the set of integers (non-zero integers) 

)( *QQ   the set of rational numbers (non-zero rational numbers) 

)( *RR   the set of real numbers (non-zero real numbers) 

)( *CC   the set of complex numbers (non-zero complex numbers) 

«  empty set 

⇒ ( ⇔ )  implies (implies and is implied by)  

iff  if and only if  

∴  therefore 

w.r.t.  with respect to  

s.t.  such that 

)(≤<   is less than (is less than or equal to) 

)(≥>   is greater than (is greater than or equal to) 

∃   there exists 

∀   for all  









∏∑

==

n
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i

n
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i aa  )aaa(aaa n21n21 KL+++  

YX:f →  f  is a function from the set X  to the set Y  

x|x{  satisfies }P  the set of all x  such that x  satisfies the property P  

)X(℘  the power set of the set X  

|x|  modulus of the real, or complex number, x  

zRe  real part of the complex number z  

zIm  imaginary part of the complex number z  

zArg  the principal argument of the complex number z  

z  the complex conjugate of the complex number z  

fdeg  degree of the polynomial f  

n
R  (

n
C ) RRR ××× K  ( n  times) ( CCC ××× K  ( n  times))



 

8 

Greek Alphabets 
 

α  Alpha K   Kappa  Σσ,  Sigma 

β  Beta λ  Lambda   (Capital  

γ  Gamma µ  Mu    sigma) 

δ  Delta ν  Nu  τ  Tau 

ε  Epsilon ξ  Xi  υ  Upsilon 

ζ  Zeta ο  Omicron  φ  Phi 

η  Eta Ππ,  Pi (capital  χ  Chi 

θ  Theta   pi)  ψ  Psi 

ι       Iota  ρ  Rho  ω  Omega 
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UNIT 1                                                        

SETS AND OPERATIONS ON THEMSETS AND OPERATIONS ON THEMSETS AND OPERATIONS ON THEMSETS AND OPERATIONS ON THEM    

StructureStructureStructureStructure                            Page NoPage NoPage NoPage Nossss....    
 

1.1 Introduction               9           
Objectives 

1.2 Sets              10 

1.3 Subsets             15 

1.4 Venn Diagrams            17 

1.5 Operations on Sets            19 
Complementation 
Intersection 
Union 
Cartesian Product 

1.6 Laws on Operations            28 
Distributive Laws 
De Morgan’s Laws 

1.7 Summary             32 

1.8 Solutions/Answers            33 
       

1.1 INTRODUCTION 
 
Welcome to the world of algebra!  We start our formal discussion with a basic 
entity necessary for doing any algebra.  So, consider the collection of words 
that are defined in a given dictionary. A word either belongs to this collection 
or not, depending on whether it is listed in the dictionary or not. This collection 
is an example of a set, as you will see in Sec. 1.2.  When you start studying 
any part of mathematics, you will be working with one or more sets. This is 
why we want to spend some time in discussing some basic concepts and 
properties concerning sets.  These objects were first defined by the German 
mathematician Cantor.  To start with, you will see various examples of sets 
and different ways of describing sets.   
 
Then, in Sec. 1.3, we will discuss ‘parts’ of a set, which also form sets.  In  
Sec. 1.4, we will consider Venn diagrams, a pictorial representation of inter-
relationships between sets. 
 
You must be familiar with the basic operations on real numbers – addition, 
subtraction, multiplication and division. When we apply any of these 
operations, we combine two real numbers at a time to obtain another real 
number.  For instance, if r  and s  are two real numbers, then sr −  is also a 

Fig. 1: Georg Cantor 
 (1845-1918) 
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real number.  In a similar way, we can obtain new sets by applying certain 
operations on two given sets at a time.  In Sec. 1.5, we shall discuss four 
operation on pairs of sets, namely, the complement of a set A in a set B, the 
union and intersection of A and B, and the Cartesian product of A and B.  The 
operations of union, intersection and Cartesian product can be naturally 
applied to any number of sets, too, as you will see.   
 
Finally, in Sec. 1.6, we shall familiarise you with certain laws relating to these 
operations. 
 
As mentioned earlier, a knowledge of the material covered in this unit is 
necessary for studying any mathematics course. So please study this unit 
carefully. 

 
And now we will list the objectives of this unit. After studying the unit, please 
read this list again and make sure that you have achieved the objectives.  
One way of ensuring this is to try each exercise given in the unit as you get 
to it.  Do not go further, till you have done the exercise to your satisfaction. 

 

Objectives 

After studying this unit, you should be able to: 

• identify a set; 

• describe sets by the listing method or the property method; 

• give examples of finite and infinite sets; 

• represent relationships between sets by Venn diagrams; 

• explain, and apply, the operations of complementation, intersection, 
union and Cartesian product on pairs of sets; 

• prove, and apply, basic results pertaining to these operations; 

• state, prove and apply, the distributive laws pertaining to these 
operations; 

• state, prove and apply, the De Morgan’s laws. 

 

1.2 SETS 
 
You may have come across various collections of objects, like a stamp 
collection, a coin collection, a gathering of people interested in ‘kabaddi’, and 
so on.  In mathematics some of these collections are considered ‘sets’, and 
some are not.  Let us see why. 

 
Consider the coin collection of the National Museum, Delhi.  Given any object, 
you can firstly see whether it is a coin or not.  Next, if it is a coin, you can 
easily find out whether it is part of the Museum’s collection or not.  Also, 
whatever conclusion you reach will be the same conclusion reached by any 
object (person) in any part of the world.  So, there is a universal agreement 
about whether an object belongs to this collection or not.  This certainty comes 
because the collection is ‘well-defined’.   

 
So, a well-defined collection is one for which given an object, it should be 
quite clear to anybody, anywhere, whether the object belongs to the collection 
or not, regardless of who is deciding this.  So, for example, the collection of all 
female pilots who have worked in Air India from 2000 on is well-defined 
because any object (person) is/was either a female pilot working in Air India in 
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this period or not, and accordingly she/he does or does not belong to the 
collection. On the other hand, the collection of all intelligent human beings is 
not well-defined. Why?  Well, a particular human being may seem intelligent to 
one person and not to another. So, there is no objective criterion for agreeing 
on who is intelligent and who is not.  
 
This leads us to the following definition. 
 
Definition: A well-defined collection of objects is called a set. 
 
Let us look at some more examples of sets, which you may have already 
come across. You will be using them a great deal in this course, and in the 
other mathematics courses you take. 

i) The set of natural numbers, denoted by N . 

ii) The set of integers, denoted by Z . 

iii) The set of rational numbers, denoted by Q . 

iv) The set of real numbers, denoted by R . 
 
In Unit 4 you will be studying another set of numbers, namely, the set of 
complex numbers, denoted by C . 
 
Doing the following exercises will help you to assess if you have understood 
the concept of a set. 
  
 

E1) Which of the collections mentioned below are sets? 

i) The collection of all people interested in ‘kabaddi’. 

ii) The collection of all those people who have been to Mars. 

iii) The collection of prime numbers. 

iv) The Asiatic Society Library collection. 

v) The collection of all rectangles that are not squares. 

vi) The collection of all funny movies. 
 
E2) Suppose you are given a stamp album.  Is the collection of stamps in 

that album a set?  Give reasons for your answer. 
 

 
Now consider the objects in a set, for example, the set of all female pilots in Air 
India.  Any such female pilot is a ‘member’ of the set, and a person who is/was 
not a female pilot with Air India is not a ‘member’ of the set, according to the 
definition below. 
 
Definition: An object that belongs to a set is called an element, or member, 
of that set.  

For example, 2 is an element of the set of natural numbers, ,N  and )2(−  is 

not an element of .N  
 
People normally use capital letters A, B, C, etc. , to denote sets. The lower 
case letters a, b, c, x, y, etc., are usually used to denote elements of sets. 

We symbolically write the statement ‘a is an element of the set A’ as .Aa ∈∈∈∈  

If a is not an element of ,A  that is, if a does not belong to ,A  we write this 

fact as .Aa ∉∉∉∉  

So, for example, if A  is the set of prime numbers, then A5∈  and .A9 ∉  

A prime number is a 
natural number other 
than one, whose only 
factors are one and 
itself. 

The symbol ‘∈ ’ stands 
for ‘belongs to’.  It was 
suggested by the 
Italian mathematician 
Peano (1858-1932). 
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Now, you know that the square of a real number is always non-negative.  So, 
will the collection of all real numbers whose square is negative be a set?  Is 
there any such number?  There isn’t.  Therefore, the collection does not have 
any element.  However, it is well-defined because it is clear to anybody 
anywhere that this collection has no element.  So, this collection is a set, but 
with no member, and it has a special name. 
 
Definition: A set which has no element is called the empty set (or the void 

set, or the null set).  It is usually denoted by .∆  

 
Try the following exercise now. 
 

 

E3) Which of the following statements are true?  Change those that are false 
to obtain correct statements. 

i) N∈2.0  

ii) Z∉9   

iii) R∈2  

iv) Q∈2  

v) The set of all squares that are not rectangles is «  

vi) Any circle is a member of the set in E1 (v) above. 
 

 
A set which has at least one element is called a non-empty set. We usually 
describe a non-empty set in two ways – the listing method and the property 
method. 
 
Listing Method: In this method, we list all the members of the set within curly 
brackets. For instance, the set of all natural numbers that are factors of 10 is  

{ }.10,5,2,1   Using this notation, some people also denote the empty set by  

}{ . 

 
But what if the set has too many elements to be able to write them all down? 
In this case we list some of the elements of the set, enough to see/show some  

pattern which its elements follow.  For example, the set N  of natural numbers 

can be described as { }...3,2,1,=N , where you can see the pattern, namely, 

the next element is obtained by adding 1 to the previous one. 
Similarly, the set of all even numbers strictly lying between 10 and 100 is 

{ }98,,16,14,12 K .  (Note that ‘strictly’ lying between two numbers a  and 

b  means that a  and b  are not included.) 
 
This method of representing sets is called the listing method (or tabular 
method, or roster method). 
 
Property Method: In the second method of describing a set, we describe its 
elements by a property common to all of them. As an example, consider the 
set S of all the stars in the sky.  Here the property common to all of them is 
that each is a star.  So, we can write this as                                  

s{S = , where s  is a star in the sky} .   

 

In formal mathematics we write this as s|s{S =  is a star in the sky}. 

‘K ’ is the convention for 

showing that the 
elements continue 

accordingly. 

Recall that a  

denotes the non-
negative square root 
of the non-negative 
real number a . 

Remember that if you 
write an opening bracket 
‘{’ to start a set, you 
must write its 
corresponding closing 
bracket ‘}’ after the 
elements of the set are 
listed. 
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The vertical bar after s  denotes ‘such that’. (Some authors use ‘:’ instead of ‘ | ’ 

for ‘such that’.)  
 
Now, consider the set T  of all natural numbers which are multiples of 5. This 

set T  can be written in the form 

N∈= xx{T  and x  is a multiple of }5 .                       

This states that T  is the set of all x such that x is a natural number and x is 
a multiple of 5.  We can also write this in a slightly shorter form as 

xx{T N∈=  is a multiple of }5 . 

This method of describing the set is called the property method (or           
set-builder method). 
 
In some cases, we can use either method to represent the set under 

consideration. For instance, the set T  above, can be described by the roster  

method as { }K,15,10,5T = .   

Again, the set E, of all natural numbers less than 10, can be described as 

{ }9,8,7,6,5,4,3,2,1E =  (by the listing method) 

x|x{E =  is a natural number less than }10   

}10x|x{E <∈= N      (by the property method). 

Z∈= x|x{E  and }10x0 <<  

Sometimes, however, it is difficult to represent a set by both methods.  For 
example, take the set of stars in the sky.  How would you represent it by the 
listing method? 
 

Again, consider the collection of three elements {Kochi, },5 π .  Firstly, is this 

a set?  Since this is a well-defined collection of three objects, it is a set. 
So, how would you represent this set by the property method?  The three 
objects do not appear to have any common property except that they belong 
to the given set.  So the property method won’t work here. 
 
Now, consider the set E , represented above by two methods.  Instinctively, 
you can see that both these sets are the same.  How do we say this more 
formally? 
 
Definition: Two sets S and T are called equal, denoted by S=T, iff every 
element of S is an element of T and every element of T is an element of S. 
 

So, if }3,2,1{B},3,3,2,1{A == and }3,1,2{C = , are BA =  and CB = ?  

The answer to both questions is ‘yes’, since the elements are the same in all 3  
sets. 
 
This leads us to the following remarks. 
 
Remark 1: While listing the elements in a set, we do not gain anything by 
repeating them. Therefore, the convention is that we do not repeat the 
elements in a set. 
 
Remark 2: Changing the order in which the elements are listed in a set does 
not alter the set. 
 
Remark 3: There can be several properties that define the same set. For 

example, two ways of describing the set }2{  by the property method are  

}51x3|x{ =−  or x|x{  is an even prime number} . 

‘iff’ is short for ‘if and 
only if’. 

The property method 
can only be used for sets 
whose elements have a 
common property. 
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Why don’t you do the following exercises now? 
 
 

E4) Describe the following sets by the listing method, if possible 

i) x|x{ Z∈  is the largest negative integer} 

ii) }195x3|x{ ≤−∈Z  

iii) the set of all the letters in the English alphabet. 
 
E5) Describe the following sets by the property method, if possible. 

i) { },...16,9,4,1  

ii) {Indira Gandhi National Open University, }100, 100π  

iii) { },...6,4,2,0,2,4,6..., −−−  

iv) «  

v) {September, April, June, November} 
 

E6) Check whether or not }9x|x{}9x|x{ 22 =∈==∈ RN . 
 

 
Let us now consider one way of classifying sets, depending on their ‘size’, in a 
sense. 
 

Consider the set S , of students of IGNOU enrolled in the course ‘Calculus’.  
How many elements do you think this set has?  It may have anywhere up to 
10,000 elements.  So it is a set with finitely many members.  Similarly, 

}01x5x2|x{ 2 =+−∈R  has two elements, and hence is finite. 

 

Now consider the set Z .  Does this have finitely many members?  For any 
positive integer n , you can always find an integer 1n +  (or for a negative 
integer n , you can find 1n − ).  This means that there is no end to the number 
of integers we can find.  So, it is not possible to count all the elements of this 
set, and hence it does not have finitely many elements. 
 
These examples lead us to the following definitions. 
 
Definitions: i) A non-empty set with finitely many elements is called a finite 

set.  A set which is not finite is called an infinite set. 
 
ii)  The number of elements in a finite set A  is called the cardinality of the 

set A , and is denoted by || A , or card )(A .  (We shall talk about the 

cardinality of infinite sets later.) 
 
iii)  A set with only one element is called a singleton. 
 
Regarding cardinality, what follows is an important point. 
 
Remark 4: By convention, we treat the empty set as a finite set, with 
cardinality zero.   
 
An example of a finite set is the set of stars in the sky.  Do you agree?   Well, if 
you try and count them, they seem to be far too many to count.  However, 
according to present day astronomers they can be counted, and their number 
is approximately 100 billion.   



 

15 

 

Unit 1                                                           Sets and Operations on Them 

Yet another example of a finite set is },IGNOU,2,{ −«  with cardinality 3 . 

On the other hand, CRQZN ,,,,  are all infinite sets. 
 

Remark 5: Note that the set },3.0{  for example, is a singleton, and is not the 

same as the number 3.0 .  For any object x , there is a difference between 

x  and {x} .  In fact, {x}x∈ .   
 

Why don’t you try an exercise now? 
 
 

E7)  Which of the following sets are infinite?  Give reasons for your answers. 
i) The number of spoons of water in a given drum of water. 

ii) �Q}x|3x{ ∈+  

iii) }x|x{ QR ∉∈  

iv)  

v) }{N  

vi) The set of points on the circumference of a circle. 

vii) « . 
 

E8) Which of the following statements are true?  Give reasons for your 
answer. 

i) RR =}{  

ii) {«}  is a singleton. 
 

 

Now, you have been working with the sets N  and Z .  You would have noted 

that every element of N  is an element of Z , but not vice versa.  Is there a 
similar relationship between other sets? Let us see. 

 

1.3 SUBSETS 
 
Consider two sets A and B, where 
A = the set of all students of IGNOU, and 
B = the set of all female students of IGNOU. 
 
Now, every female student of IGNOU is certainly a student of IGNOU. So, 
each element of B is also an element of A. In such a situation, we say that B is 
contained in A. 
Of course, IGNOU also has some male students!  So, there is at least one 
element x in A such that x does not belong to B.  Mathematically, we write this 
as  

Ax ∈∃  s.t.  .Bx ∉  

This is read as ‘there exists x  belonging to A  such that x  does not belong to 
B ’. 
 

So, every element of B  is an element of ,A  but A  has some more elements 

too.  In this situation we say that B is properly contained in A. 

So, for example, would you agree that N  is properly contained in Z ? 
In general, we have the following definitions. 
 
Definitions: i) A set A is a subset of a set B if every element of A belongs to 

B, and we denote this fact by .BA ⊆⊆⊆⊆   In this situation, we also say that 

A is contained in B, or that B contains A, denoted by .AB ⊇⊇⊇⊇   Here, 

we also say that B  is a superset of .A  

‘ ∃ ’ denotes ‘there exists’. 
‘s.t.’ is short for ‘such that’. 
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ii)  If BA ⊆  and By ∈∃  such that Ay∉ , then we say that A is a proper 

subset of B (or A is properly contained in B). We denote this by 

BA ⊂ , or .
/

BA⊂   

 
iii)  If X and Y are two sets such that X has an element x which does not 

belong to Y, then we say that X is not contained in Y. We denote this 

fact by .YX ⊆/   So, YX ⊆/  implies that Xx ∈∃  s.t. .Yx ∉  

 
Let us look at a few examples of what we have just defined. 
 

Example 1: Consider the set { }3,2,1A = . Is AA ⊆ ?  Is A/A⊂ ?  Give 

reasons for your answer. 

Solution: Since every element of A is certainly in A, we find that .AA ⊆  

Also, there cannot be any element of A  that is not in .A   Therefore, A  
cannot be a proper subset of itself. 

*** 
 
This example leads us to the following remark. 
 

Remark 6: For any set ,A  you can show that AA ⊆  by using the same 

reasoning.  Thus, any set is a subset of itself. Also, no set is a proper 
subset of itself.  (Why?) 
 
Now consider the following example. 
 
Example 2: Give an example of two sets, neither of which is a subset of the 
other. 

Solution: Consider the sets { }11,A −=  and { }21,0,B = . 

Is BA ⊆ ?  We find ( ) A1 ∈−  such that ( ) B1 ∉− . .BA ⊆/∴  

Also, .AB ⊆/   (Why?) 

*** 
 
Note that given any two sets A and B, one and only one of the following 
possibilities is true. 

i) BA ⊆ , or 

ii) .BA ⊆/  

Using this fact, we can show that the empty set «  is a subset of every set. 

 
Now, let us go back for a moment to the point before Remark 1, where we 
defined equality of sets. Let us see what equality means in terms of subsets.  
Consider the sets 
A = the set of even natural numbers less than 10, and 

B { }8,6,4,2= . 

Every member of A is a member of B, and vice versa. That is, BA ⊆  and 

B .A⊆   But, by our definition, we also note that .BA =    

So, we find that BA =  is equivalent to ( )ABandBA ⊆⊆  taken together.  

We write this as  

BA(BA ⊆⇔=  and .)AB ⊆  In fact, this is true for any two sets. 

 

Remark 7: For any two sets A  and BABA,B ⊆⇔=  and .AB ⊆  

A⊆« , for any set A . 

There are infinitely many 
pairs of sets A and B 
such that BA ⊆/  and 

AB ⊆/ . 

‘ ⇔ ’ denotes ‘implies 

and is implied by’, or ‘is 
equivalent to’. 
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Try the following exercises now. While doing them, remember that to show 

that BA ⊆ , for any two sets A and B, you must show that if Aa ∈ , then 

Ba ∈ , i.e., BaAa ∈⇒∈ .   

Also, to show that BA ⊆/ , you must show that there is at least one element 

in A  that is not in B , i.e., Ax ∈∃  such that Bx ∉ . 

 
 

E9)  Write down all the subsets of { }3,2,1 . How many of these contain 

i) no element,       ii) one element,      iii) two elements,       
iv)  three elements,  v) more than three elements.  

 

E10) Show that if BA ⊆  and CB ⊆ , then CA ⊆ . (This shows that ‘⊆ ’ is a 

transitive relation, as you will see in Unit 2.) 
 
E11) Give a superset of the set {IGNOU, 0.7, Mahatma Gandhi}. 
 

 
So far you have seen two methods of describing sets. There is yet another 
way of representing sets and the relationships between them. This is what we 
discuss in the next section. 
 

1.4 VENN DIAGRAMS  
 
It is often easier to understand a situation if we can represent it pictorially. To 
ease our understanding of many situations involving sets and their 
relationships, we represent them by simple diagrams, called Venn diagrams. 
An English logician, John Venn, invented them. To be able to draw a Venn 
diagram, you would need to know what a universal set is. 
 
Consider a situation involving two or more sets, for example, the set D of 
female film directors, and the set S of female scientists.  Then, we first look for 
a convenient superset of all the sets under discussion.  For example, here we 
can take this to be the set of all women.  We call this superset a universal 

set, and denote it by .U  So here our universal set U is the set of all women. 
This is because U contains D as well as S.  We could also have taken U to be 
the set of all humans, which would be a larger superset. 
 
Consider another situation involving the sets of integers and rational numbers.  
Here we could take the set of real numbers as our universal set. We could  

also take Q  as our universal set, since it contains both Z  and Q . 

 
Remark 8: As you have seen, we have several possibilities from which we 
pick one as a universal set in a given situation.  We usually take our universal 
set to be just large enough to contain all the sets under consideration. 
 
Now, let us see how to draw a Venn diagram, using an example. To clarify 
what we have just said, consider the following example. 
 
Example 3: Draw a Venn diagram to represent the sets 

{ } { } { }7,6C,5,4,3B,3,2,1A === , with { }10...,,2,1U = . 

Solution: Let us denote A  by a circle, B by an ellipse and C as another 

closed region. The points 9,8  and 10  don’t lie in any of B,A  or C , but they 

are in U .  Note that 3 belongs to both A and B . Therefore, it lies in the circle 
as well as the ellipse.  So the circle and ellipse have a common region.  Also 

note that A  and C do not have any elements in common. Therefore, the 

‘⇒ ’ denotes ‘implies’. 

of a set A is called the 

Fig. 2: John Venn  
           (1834-1923) 

 

A universal set is not 
unique. 

The set of all subsets of 
a set A is called the 
power set of A. 
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regions representing them do not cut each other. For the same reason the 

regions representing B and C do not cut each other.  We represent the 

universal set U  by a rectangle enclosing all these regions and points, as in 
Fig. 3. 

 

Fig. 3: A Venn diagram 

*** 
 
Remark 9: Note that the relative areas of the regions in the Venn diagram do 
not actually represent the relative cardinalities of the sets concerned.  For 
instance, the regions representing A  and B  in Fig. 3 do not have the same 

area though A  and B  have the same number of elements. 
 
So, in general, how would we draw a Venn diagram?  Suppose we are 

discussing various sets ,...C,B,A .  They may be finite or infinite.  We choose 

a universal set U.  So, UC,UB,UA ⊆⊆⊆ , and so on. We show this 

situation in a Venn diagram as follows: 

The interior of a rectangle represents U. The subsets C,B,A , etc., are 

represented by the interiors of closed regions lying completely within the 

rectangle showing U . These regions may be in the form of a circle, ellipse, or 
any other shape.  Further, we assume that any enclosed area in a Venn 
diagram represents a non-empty set. 
 
Now, what will a Venn diagram corresponding to the situation 

Z⊆= },11,7,5,3,2{P K  look like? Well, we can just take Z to be our 

universal set. Then the Venn diagram in Fig. 4 is one such diagram. If we take 

another set U that properly contains Z  as our universal set, say Q , then we 

get the Venn diagram in Fig. 5.  So both Venn diagrams represent the 

relationship between the set of primes and Z . 
 

Try these exercises now. 
 
 

E12) How would you represent the following situation in a Venn diagram?   
 The set of all rectangles, the set of all squares and the set of all 

parallelograms. 
 

E13) Draw a Venn diagram to show three sets B,A  and C , where A  and C  

have some common elements, B  is infinite and C  is finite. 
 

 

So, what is the purpose of a Venn diagram?  Well, consider Fig. 6.  Just one 

look and you know the broad situation – there are 4 sets D,C,B,A , of which 

Fig. 5 

Fig. 4 

 

Note that, in Fig. 3, we 
could have 
represented B  and C  

in the shape of circles 
also, or any other 
shape. 
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A  has no element in common with the others; B  and C  have common 

elements; C  and D  have common elements; B  and D  have no common 
elements.  This single visual gives us so much information.  
That is the utility of these diagrams. 
 

 

Fig. 6 

 
Now that you are familiar with Venn diagrams, let us consider various ways in 
which we can create new sets from two or more sets given to us. 
 

1.5 OPERATIONS ON SETS 

 

Consider two sets }1,1{A −=  and 








= L,
4

1
,

3

1
,

2

1
,1B .  We can obtain other 

sets from them in several ways, for example, by considering the elements in 

A  that are not in B , or by taking the elements common to both A  and B , 
etc.  These are examples of operations on these sets.  In this section, we shall 
discuss four operations on sets that you will be using very often. 
 

1.5.1 Complementation  

Consider the sets A  and B  above. There are elements of B  that do not 

belong to A , like 
3

1
,

2

1
, etc.  These elements form a set, namely, 









L,
4

1
,

3

1
,

2

1
.  Similarly, there are elements in A  that are not in B , which 

form a set, namely, }1{− .  This way of obtaining a third set from two given sets 

is defined below. 
 

Definition: Let A  and B  be two sets.  The complement of A in B , denoted 

by A\B ,  and read as ‘B  complement A ’, is the set of elements in B  which 

are not elements of A ,  that is, }Ax|Bx{ ∉∈ . 

Similarly, B}x|A{xB\A ∉∉∉∉∈∈∈∈= . 

In the special case when B  is the universal set U , A\B  is A\U .  This set is 

called the complement of the set A , and is denoted by A′  or 
c

A . 
 
If you look at Fig. 7, the unshaded part in the Venn diagram represents 

A\UAc = .  In fact, this diagram also shows us that 
c

Ax ∈∈∈∈  if and only if 

 

Fig. 7 
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.Ax ∉∉∉∉   Similarly, the unshaded area in Fig. 4 represents the set 

},11,7,5,3,2{P K= , and the shaded area represents P\Z .  

Remark 10: Note that if BA ⊆⊆⊆⊆ , then, «=B\A , since there is no element in 

A  that is not an element of B . 
 
Try these exercises now. 
 
 

E14) i) Represent the following sets in one Venn diagram:  

The set P  of all prime numbers, the set Z  and the set ZQ \ . 

 ii) Is the set P\Z  finite or infinite?  Is the set Z\P  finite?  Give 
reasons for your answers. 

 

E15) Let A  be any set.  Give the sets «« \A,A\,A\A  and .)A( cc  

 

E16) Give an example of sets A  and B  such that  

i) BB\A ⊆/ . 

ii) BB\A ⊆ . 
 

 
Let us now consider another operation on sets, namely, the intersection of two 
or more sets. 

  

1.5.2 Intersection 

Let us consider N  and }1,0{ .  Are there any elements common to both these 

sets?  For instance, 1 belongs to both.  In fact, this is the only element 

common to both.  Thus, }1{  is the intersection of the sets N  and }1,0{ , 

according to the definition below. 
 

Definition: Let A  and B  be two subsets of a universal set U .  The 

intersection of A  and B  will be the set of elements of U that are common to 

both A  and B .  This is denoted by BA ∩∩∩∩ , and read as ‘ A  intersection B ’. 

Thus, Ax|U{xBA ∈∈=∩  and B}x∈ . 

 
To clarify this operation further, consider the following example. 
 
Example 4: Let S  be the set of prime numbers and T  be the set         

x|x{ Z∈  divides }10 .  What is TS ∩ ? 

Solution: We take Z  to be our universal set.  Then  

=∩ TS set of those integers that are prime numbers as well as divisors of 10                 

          }5,2{= . 

*** 
 

Example 5: Let A  be the set of all human beings living in Bihar, B  be the set  

of all women and C  be the set of all Indian cities.  Describe BA ∩  and 

CA ∩ . 

Solution: We can take U  to be the set of all human beings and all the cities 

of India.  Then BA ∩  is the set of all women living in Bihar, and CA ∩  is the 

empty set. 
*** 

You should be able to do the following exercise now. 

BA\B ⊆  
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E17) Obtain the sets ZZZQQZ ∩∩∩ ,,  and «∩Z .  In each case, clearly 

state what U  is.   
 

 
While solving E17 you may have noticed certain facts about the operation of 
intersection.  We explicitly list them in the following theorem.  You will study 
the proofs of some of them, and then prove the rest yourself. 
 

Theorem 1: For any two sets A  and B  in a universal set U , 

i) ABA ⊆∩   

ii) BBA ⊆∩  

iii) ABABA =∩⇒⊆   

iv) AAA =∩  

v) ∩A « = « ∩= B «  

vi) BUB,AUA =∩=∩  

vii) ABBA ∩=∩  (i.e., the operation of intersection of sets is 
commutative.) 

viii) 
cBAB\A ∩=  

ix) If C  is a subset of U  such that AC ⊆ and BC ⊆ , then BAC ∩⊆ . 

 
Proof: We will prove (i) and (ii), and leave you to prove the rest (see E18). 

So, to prove these facts, we need to show that every element of BA ∩  is an 

element of A  as well as of B .  For this, let BAx ∩∈ .  Then, by definition 

Ax ∈  and Bx ∈ .   

This is true for any element x  of BA ∩ .   

Thus, ABA ⊆∩  and BBA ⊆∩ .  So we have proved both (i) and (ii). 

     
Remark 11: The operation of intersection is meaningless unless we are clear 
about our universal set.  However, we usually tend not to write the universal 
set explicitly, and assume it as understood.   
 
Also note that if, for example, in Example 4 we had taken the universal set to 

be Q , we would still have got }5,2{TS =∩ .  Thus, the choice of the 

universal set does not change the set TS ∩ .  In fact, the intersection of two 
sets just involves the elements in these two sets, and hence is independent of 
the choice of the universal set. 
 
Now, using (i) and (ii) of Theorem 1, try to do the following exercises. 
 

 

E18) Prove (iii) – (ix) of Theorem 1. 
 

E19) Does Theorem 1 (ix) remain true if we replace ‘⊆ ’ by ‘
/
⊂ ’ everywhere?  

Give reasons for your answer.  
 

 

Now, consider the set −Q  of negative rational numbers and the set +Q  of 

positive rational numbers.  Then =«+QQ ∩−
, that is, they have no elements 

in common.  This pair of sets is an example of what we will now define. 
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Definition: Let A  and B  be two sets such that =∩ BA « .  Then A  and 

B are called mutually disjoint (or disjoint). 
 

For example, the sets A  and 
c

A  in Fig. 7 are disjoint.  In fact, for any set A , 

=∩ c
AA « .  (Why?) 

 
Now let us represent the intersection of sets by means of Venn diagrams.  
Consider Fig. 8.  The shaded region in Fig. 8 represents the set CA ∩ , which 

is non-empty, as you can see.  Also note that the regions representing A  and 

B  do not overlap, that is, =∩ BA « , that is, A  and B  are disjoint.  From 

this diagram, we can also see that neither is CA ⊆ , nor is AC ⊆ .  Further, 

both A\C  and C\A  are non-empty sets.  See how much information a Venn 

diagram can convey! 
  
Now, go back to Fig. 4 for a moment.  What situation does it represent?  It 

shows two sets A  and B , with BA ⊆ .  So, the shaded area shows that 

ABA =∩ . 
 
So far we have considered the intersection of two sets.  Now let us consider 
the intersection of more than 2 sets, through an example first. 
 

Example 6: Let B,A  and C  be the sets of multiples of 6,3  and 10  in N , 

respectively.  Obtain CBA ∩∩ .  Also draw a Venn diagram to represent all 
these sets. 

Solution: Here }x|x10{C},x|x6{B},x|x3{A NNN ∈=∈=∈= .   

Let us take N=U . 

CBA ∩∩  will consist of all those natural numbers that belong to all three 

sets,  B,A  and C .  Thus,  

6,3|x{CBA N∈=∩∩ and 10  divide }x  

        c10x,b6x,a3x|x{ ===∈= N  for some }c,b,a N∈    
       30|x{ N∈=  divides }x  (since x|30  iff ‘ 6,3  and 10  divide x ’) 

      }y|y30{ N∈= .  (Did you notice that 30  is the lcm  of 10,6,3 ?) 

Now consider the Venn diagram in Fig. 9, where we show C,B,A  and 

CBA ∩∩  in N .  Note here that AB ⊂  and B\A  does not intersect C . 

*** 
 
This example, and your understanding of intersection, will have helped you 
develop a definition of the intersection of 3 or more sets. Does this match the  
definition we now give? 
 

Definition: The intersection of n  sets n21 A,,A,A K  in a universal set U  is 

defined to be the set }n,,1iAx|Ux{ i K=∀∈∈ .  This is denoted by 

n21 AAA ∩∩∩ K , or I
n

1i

iA
=

. 

 
Let us look at another example involving the intersection of 3 sets. 
 

Example 7: Let 








=∈=
2

1

q

p

q

p
S Q  and  









∈= Nn
n

1
T .  Find Q∩∩ TS .  

Further, find two sets A   and B , different from S  or T , such that 

TSBA ∩=∩ . 

∀  denotes ‘for all’, or 
‘for every’. 

Fig. 8 
 

Fig. 9: The shaded 
portion represents 

CBA ∩∩ . 
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Solution: Note that QQ ⊆⊆ T,S . Therefore,  

Sx|x{TS ∈∈=∩∩ QQ  and TS}Tx ∩=∈ , since every element of S  or of 

T  is already an element of Q . 

Now take TSx ∩∈ .  As 
q

p
x,Sx =∈  , for some q,p  with qp2 = , that is, 

0p,
p2

p
x ≠=  . 

As 
n

1
x,Tx =∈  for some N∈n . 

So, 
n

1

p2

p
=  shows that 2n = , that is, 

2

1
x = . 

Therefore, 








=∩=∩∩
2

1
TSTS Q . 

Now for the second part of the problem.  We can find many such sets A  and 

B . For instance, take








≤∈=
2

1
xxA R  and 









≥∈=
2

1
xxB Q . 

Check that TSBA ∩=∩ .   

*** 
 
Try the following exercises now. 
 

 

E20) Let }6,5,4,3{B},4,3,2,1{A ==  and }8,7,4,1{C = . 

 Determine CBA ∩∩ .  Represent all these sets in a Venn diagram.  
Also verify that 

 i) C)BA(CBA ∩∩=∩∩ , 

 ii) )CB(ACBA ∩∩=∩∩ , 

 iii) BCACBA ∩∩=∩∩ . 
 

E21) If }n|n4{B},n|n6{A NN ∈=∈=  and C  is the set of prime numbers, 

then find CBA ∩∩ .  
 

 
What you have shown in E20 is not only true for those sets;  it is true for any 

three sets B,A  and C .  (i) and (ii) say that ∩  is an associative operation.  

When we combine this with (vii) of Theorem 1, we see that we can obtain the 
intersection of any n  sets by intersecting any two of these sets at a time. 
 

For example, if D,C,B,A  are sets, then  

)DC()BA(DCBA ∩∩∩=∩∩∩  

   )DA()CB( ∩∩∩= , etc.  

Thus, we choose to combine those sets, whose intersection helps us to find 
the overall intersection more quickly. 
 
Let us now look at another operation on sets. 
 

1.5.3 Union 

Let us again come back to the sets N  and }1,0{ .  You have seen that 
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},4,3,2{}1,0{\ K=N  and }1{}1,0{ =∩N .  Now, consider the set consisting 

 of all the elements in N  along with all the elements in }1,0{ .  What will this 

set be?  It will be },2,1,0{ K , i.e., the set of whole numbers .W  Note that 1 is 

repeated when we take the elements of both the sets, but we do not repeat an 
element in listing a set, as noted in Sec. 1.2. 
 

Again, consider the sets }10x|x{A ≤∈= R  and }10x|x{B ≥∈= R .  Take 

the set consisting of all the elements in A  and all those in B .  This will be R   
because any real number will be either less than or equal to 10  or greater than 

or equal to 10 , and 10  will belong to both A  and .B    
 
These examples lead us to define the operation we are undertaking in them. 
 

Definition: Let A  and B  be two sets in a universal set .U  The set of all 

those elements of U  which belong either to ,A or to ,B  or to both A  and ,B  

is called the union of A  and .B   This is symbolically written as ,BA ∪  and  
is read as ‘A union B’. 

Thus, Ax|Ux{BA ∈∈=∪  or Bx ∈  or .}BAx ∩∈   

However, you know that .ABA ⊆∩   So, AxBAx ∈⇒∩∈ .  Therefore, we 

remove the repetition, which is BA ∩ , and write  

AxxBA ∈∈∈∈|{=∪  or .}Bx∈∈∈∈  

 
So, for example, at the beginning of this sub-section you have seen that  

W=∪ }1,0{N  and { } { } .10xx10xx RRR =≥∈∪≤∈  

Before going further we make a remark. 
 

Remark 12: Since BA ∪  contains all the elements of A  as well as of B , it 
follows that  

., BABBAA ∪∪∪∪⊆⊆⊆⊆∪∪∪∪⊆⊆⊆⊆  

In fact, .BAABA ∪⊆⊆∩    

We can show this fact in a Venn diagram, as in Fig. 10. 
 
Now let us look at another example. 
 

Example 8: Find ZN∪ .  Also show this in a Venn diagram .   

Solution: },3,2,1{ K=N  and .},3,2,1,0,1,2,3,{ KK −−−=Z  

We want to find .}xorx|x{ ZNZN ∈∈=∪  

Since ZNZN ∈⇒∈⊆ xx, .  This tells us that .}x|x{ ZZZN =∈=∪  

The Venn diagram is given in Fig. 11, in which Z  is taken as the universal set. 
*** 

 
Example 8 is a particular case of the general fact that we now state and prove. 
 

Theorem 2: For any two sets A  and ,B  .BBABA =∪⇔⊆  

 
Proof: Here we have to prove two statements.   

One is that if BA ⊆ , then .BBA =∪    

The other is the converse, namely, if BBA =∪ , then .BA ⊆   

First, let us assume ,BA ⊆  and let us prove that .BBA =∪    

For this, take any .BAx ∪∈    

If ,Ax ∈  then ,Bx ∈  since .BA ⊆    

If ,Ax ∉  then too Bx ∈ , since .BAx ∪∈    

Fig. 11: The shaded 
region is ZN ∪∪∪∪ ,  i.e.,  

Z .  

Fig. 10: The lined 
region is BA ∪ , of 
which the double lined 
region is BA ∩ .  
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So, every element of BA ∪  is an element of ,B  that is, .BBA ⊆∪   

Also, we know that .BAB ∪⊆  Therefore, using Remark 7, we have proved 

that .BBA =∪   

Conversely, assume that BBA =∪ . We also know that BAA ∪⊆ .   

Hence, BA ⊆ , which is what we wanted to prove.  

 
You can use this theorem while solving the following exercises. 
 

 

E22) For any three sets B,A  and C , in a universal set U ,  show that  

 i) .AAA =∪  

 ii) ABBA ∪=∪ , that is, the operation of union is commutative. 

 iii) «=A.∪A   

 iv) If CA ⊆  and CB ⊆ , then .CBA ⊆∪  

 v) .UAA c =∪  
 

E23) Let U  be the real line }1x0|x{A, ≤≤∈= RR  and  

 }.3x1|x{B ≤≤∈= R   Determine BA ∪ .   

Also find two distinct subsets S  and T  of R , different from A  and ,B   

such that .BATS ∪=∪   Justify your choice of S  and .T  

 

E24) What can you say about the number of elements in A  and B  if  

 «=∪ BA ? 

 

 
Just as in the case of ‘∩ ’, we can define the union of 3 or more sets, in a very 
natural way. 
 

Definition: The union of n  sets n21 A,,A,A K  in a universal set U  is the 

set iAx|Ux{ ∈∈  for some i  such that }ni1 ≤≤ .  This is denoted by 

n21 AAA ∪∪∪ K , or U
n

1i

i
A

=

. 

 
Let’s consider an example. 
 

Example 9: Find CBA ∪∪ , where }1{C},5,4,3,2{B},3,2,1{A === .  

Also, check whether )A\B()BA()B\A(BA ∪∩∪=∪ or not. 

Solution: You can check that }5,4,3,2,1{CBA =∪∪ . 

Also, }3,2{BA},5,4{A\B},1{B\A},5,4,3,2,1{BA =∩===∪ . 

Therefore,  

}5,4,3,2,1{)A\B()BA()B\A( =∪∩∪ . 

           BA ∪= . 

*** 
 

In the example above, you can also see that CBA ∪∪  is the same as 

C)BA( ∪∪  as well as )CB(A ∪∪ . 

 
What we have noted in Example 9 are particular cases of the general facts 
that we ask you to prove in the following exercises. 

You can also see the video 
at 
https://www.youtube.com/
watch?v=uR70knMr2Hg 
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E25) For any three subsets C,B,A  of a set U , show that  

 )CB(AC)BA(CBA ∪∪=∪∪=∪∪ . 

  

E26) For any two sets A  and B , show that 

)A\B()BA()B\A(BA ∪∩∪=∪ .   

 (We depict this situation in the Venn diagram in Fig. 12.) 
 

 
What you see from E22 (ii) and E25 is that we can obtain the union of any 
number of sets by taking the union of any two of these sets at a time.  

For example, if D,C,B,A  are four sets, then  

D]C)BA[(DCBA ∪∪∪=∪∪∪  

   ]D)CB[(A ∪∪∪=  

  )]CB(D[A ∪∪∪=  

     )CB()DA( ∪∪∪= . 

 
Let us now discuss the fourth operation on sets that we had planned to at the 
beginning of this section. 
 

1.5.4 Cartesian Product 

An interesting set that can be formed from two given sets is their Cartesian 
product, named after the French philosopher and mathematician, René 
Descartes (1596-1650).  He also invented the Cartesian coordinate system 

that is used for plotting points in the XY -plane, and which we shall discuss in 
Unit 3.  In fact, defining this operation helped Descartes to create the 
coordinate system, and hence, to study and understand geometry by using 
algebra. 
 
Let us start by considering A , the set of first names of all the students of 

Class 4 of a certain Government school, and B  the set of their birth dates.  
Then form all pairs of elements (a, b) where a is in A and b is in B. This 
collection is well-defined.  Note that (Sarla, 17) can be an element of this set 
but (17, Sarla) cannot be, since Sarla is not a date and 17 is not a name.  So, 
the order of writing the pair is important.  We define this way of obtaining a 
new set below. 
 

Definitions: i) Let A  and B  be two sets.  The pair ),b,a(  in which the first 

element is from A  and the second element is from B , is called an 
ordered pair.   

ii) The Cartesian product BA × , of the sets A  and B , is the set of all 

ordered pairs )b,a( , where Bb,Aa ∈∈ . 

 That is, Aa|b){(a,BA ∈∈∈∈=×  and B}b∈∈∈∈ . 

iii) Two ordered pairs )b,a(  and )d,c(  are said to be equal (or the same) 

if ca =  and db = . 
 

For example, if }6,4{B},3,2,1{A == , then  

)}6,3(),4,3(),6,2(),4,2(),6,1(),4,1{(BA =× , and  

)}3,6(),2,6(),1,6(),3,4(),2,4(),1,4{(AB =× . 

You can see that BA)4,1( ×∈ , but AB)4,1( ×∉ . 

Fig. 12: BA ∪  is the 
whole filled-in region. 

Fig. 13: René Descartes  

If ba ≠ , b)(a,  and a)(b,   

are different ordered pairs.   

The operation of union of 
sets is associative. 
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Therefore, ABBA ×≠× .  (While studying Unit 3, you will learn to visualize 

BA × .)  
 

Now what does BA ×  look like if either «=A or «=B ?  In this case BA ×  

cannot have any elements.  Thus, «=×BA . 

 
Try these exercises now. 
  
 

E27) If }5,2{A =  and }3,2{B = , find ),AB()BA(,AA,AB,BA ×∩××××  

        )AB()BA( ×∪×  and ).AB(\A ×  

 

E28) If )}4,2(),3,2(),2,2(),4,7(),3,7(),2,7{(BA =× , determine A  and  

        B . 
 

E29) If DB,CA ⊆⊆ , then show that DCBA ×⊆× . 

 

E30) Find 3  distinct elements of ( )NQ�N \× . 

 

E31)  Give an example of a proper non-empty subset S  of RR× .  Also give 

an element of S\)( RR× . 

  

 
In the examples and exercises above, have you found any relationship 

between the cardinality of BA×  and the cardinalities of A  and B ?  Look 
again and consider the remark below. 
 

Remark 13: i) If m|B|n,|A| == , then nm|BA| =× . 

ii) If A  and B  are non-empty sets and either one of them is infinite, 

then BA ×  will be infinite. 
 
Now that we have defined the Cartesian product of two sets, let us extend the 
definition to any number of sets. 
 

Definition: Let n21 A,,A,A K  be n  sets.  Then their Cartesian product is 

the set n},2,1,iAx|)x,,x,{(xAAA
iin21n21

KKK =∀∈=××× . 

The element )x,,x,x( n21 K  is called an n -tuple. 

 

For example, if R is the set of real numbers, then 

}a,a|)a,a{( 2121 RRRR ∈∈=× ,   

}3,2,1ia|)a,a,a{( i321 =∀∈=×× RRRR , and so on. 

It is customary to write 
2
R  for RR×  and 

n
R  for RR ××K  n(  times).  Also, 

a 2 -tuple is usually called an ordered pair, and a 3 -tuple is usually called an 
ordered triple. 
 
Try the following exercise now. 
  
 

E32) Which of the following belong to the Cartesian product NZQ ×× ?  Give 

reasons for your answers.   

 i) )0,3(   ii) 








2

1
,

2

1
,

2

1
  iii) )1,1,1(  

«=× BA  iff 

«=A  or «=B . 
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 iv) 







− 2,5,

2

1
  v) }3,2,2{− . 

 

 
In this section we have discussed four operations on sets.  You have also 
noted a relation them between some of these operations, in E26 for example.  
Let us now see if there are any other relationships satisfied by these 
operations that help us in carrying them out more efficiently. 

 

1.6 LAWS ON OPERATIONS 

 
You must be familiar with the law of distributivity that connects the operations 
of multiplication and addition of real numbers, namely,  

R∈∀×+×=+× c,b,acaba)cb(a . 

Here we say that multiplication distributes over addition.  We have similar laws 
governing the operations on sets that you have studied so far.  You shall study 
two kinds of such laws in this section.   

 

1.6.1 Distributive Laws 

The name of these laws may give you an idea of what to expect here – may  
be some process like that in arithmetic?  Let us look at an example. 

 
Example 10: Check whether or not )()()( RNQNRQN ∩∪∩=∪∩ .  Also, 

if you interchange ∩  with ∪  in the equation above, will you still get an 
equation? 

Solution: To check whether or not )()()( RNQNRQN ∩∪∩=∪∩ , note 

that RRQ =∪ , since RQ⊆ . 

Therefore, NRNRQN =∩=∪∩ )( , since RN ⊆ .            … (1) 

Also NQN =∩  and NRN =∩ . 

Therefore, NNNRNQN =∪=∩∪∩ )()( .             … (2) 

Thus, from (1) and (2), we see that )()()( RNQNRQN ∩∪∩=∪∩    … (3)           

So, in this case ∩  distributes over ∪ . 
 
Now, if we interchange ∩  with ∪  in (3) above, we get 

)()()( RNQNRQN ∪∩∪=∩∪ .  Note that the LHS and RHS are both 

equal to Q .  Hence, this is a correct equation too, i.e., in this case ∪  

distributes over ∩ . 

*** 
 
What this example shows us is a particular case of the following theorem. 

 

Theorem 3 (Laws of Distributivity): Let B,A  and C  be three subsets of a 

universal set U .  Then  

i) )CA()BA()CB(A ∩∪∩=∪∩ , that is, intersection distributes over  

union;  

ii) )CA()BA()CB(A ∪∩∪=∩∪ , that is, union distributes over 

intersection. 

 
Proof: We will prove (i) and ask you to prove (ii) (see E33). 

LHS stand for ‘left hand 
side’ of an equation.  
Similarly, RHS stands for 
‘right hand side’ of the 
equation. 
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i) We know that two sets are equal if and only if each is a subset of the 
other.  So, we will show that  

 )CA()BA()CB(A ∩∪∩⊆∪∩  and                      … (4) 

 )CB(A)CA()BA( ∪∩⊆∩∪∩               … (5) 

 Now, )CB(Ax ∪∩∈  

 Ax ∈⇒  and CBx ∪∈  

 Ax ∈⇒  and Bx( ∈  or )Cx ∈  

 Ax( ∈⇒  and  )Bx ∈  or Ax( ∈  and )Cx ∈  

 BAx ∩∈⇒  or CAx ∩∈  

 )CA()BA(x ∩∪∩∈⇒  

 So, we have proved the first inclusion, (4).   
  

 To prove (5), let )CA()BA(x ∩∪∩∈  

 BAx ∩∈⇒  or CAx ∩∈  

 Ax( ∈⇒  and )Bx ∈  or Ax( ∈  and )Cx ∈  

 Ax ∈⇒  and Bx( ∈  or )Cx ∈  

 Ax ∈⇒  and CBx ∪∈  

 )CB(Ax ∪∩∈⇒  

 So we have proved (5), and hence (i) of Theorem 3.     
  
Did you notice that our argument for proving (5) is just the reverse of our 
argument for proving (4)?  In fact, we could have combined the proofs of (4) 
and (5), using the two-way implication, as follows: 

)CB(Ax ∪∩∈  

Ax ∈⇔  and CBx ∪∈  

Ax ∈⇔  and Bx( ∈  or )Cx ∈  

Ax( ∈⇔  and )Bx ∈  or Ax( ∈  and )Cx ∈  

BAx ∩∈⇔  or CAx ∩∈  

)CA()BA(x ∩∪∩∈⇔  

This proves Theorem 3 (i). 
 
In Fig. 14 we have given a Venn diagrammatic representation of Theorem 3(i). 

 

 
 

Fig.14: C)(AB)(AC)(BA ∩∩∩∩∪∪∪∪∩∩∩∩∪∪∪∪∩∩∩∩ =   

 
Now try to solve the following exercise, using the two-way implication, ⇔ . 
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E33) Prove (ii) of Theorem 3.  Also represent this statement in a Venn 
diagram. 

 

 
Let us now consider some properties relating the Cartesian product of sets 
with the other operations on sets. 
 

Theorem 4: For any 3  sets C,B,A , prove that 

)CB()CA(C)BA( ×∪×=×∪ , that is, the Cartesian product of sets 

distributes over the union of sets. 
  

Proof: Firstly, since C)BA(CA,BAA ×∪⊆×∪⊆ . 

Similarly, C)BA(CB ×∪⊆× . 

Therefore, C)BA()CB()CA( ×∪⊆×∪× . 

So, we need to prove that )CB()CA(C)BA( ×∪×⊆×∪ .           … (6) 

For this, consider any ordered pair C)BA()y,x( ×∪∈ . 

Cy,BAx ∈∪∈⇒ . 

Ax ∈⇒  or Cy,Bx ∈∈ . 

CA)y,x( ×∈⇒  or CB)y,x( ×∈ . 

)CB()CA()y,x( ×∪×∈⇒  

Hence, (6) is proved, and the theorem is proved.    
   
Why not try an exercise now? 
 
 

E34) Prove that )CB()CA(C)BA( ×∩×=×∩ , that is, the Cartesian 

product distributes over intersection. 
 

 
You may wonder what use these properties are.  Let us consider an example. 
 

Example 11: Let A  be the set of irrational numbers and }3x|x{B <∈= R  

Find )B()BA( ∩∪∩ Q . 

Solution: Now, try to find BA ∩  as well as B∩Q .  Then find their 

intersection.  This is one way of solving the problem, but a rather difficult one. 

On the other hand, note that RQ =∪A .  So, applying the distributive laws, 

we find that BBB)A()B()BA( =∩=∩∪=∩∪∩ RQQ . 

So, distributivity has simplified our calculations! 
*** 

 
Let us now consider some laws involving the operation of complementation. 
 

1.6.2 De Morgan’s Laws 

We will now discuss two laws that relate the operation of finding the 
complement of a set to that of the intersection or union of sets.  These are 
known as De Morgan’s laws, after the British mathematician Augustus De 
Morgan (1806-1871).  Let us first consider an example.   
 

Example 12: Let .U},,7,5,3,1{B},2,2{A Z�==−= K   Check whether or not 
ccc BA)BA( ∩=∪ .  

Solution: Here },7,5,3,2,1,2{\)BA( c
K−=∪ Z  

Fig. 15: De Morgan 
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 }.,8,6,4,0,1,3,4,5,{ KK −−−−=  

Also, }),5,3,1{\(})2,2{\(BA cc
KZZ ∩−=∩   

   ∩−−−= },5,4,3,1,0,1,3,4,{ KK },6,4,2,0,1,2,3,{ KK −−−  

   .},8,6,4,0,1,3,4,5,{ KK −−−−=  

So, ccc BA)BA( ∩=∪ . 

*** 
 
This interesting way in which the operation of complementation ‘interchanges’ 
∪  and ∩ , is true for all sets, not just those in the example above.  Let us 
state these laws, and prove them now. 
 

Theorem 5 (De Morgan’s Laws): For any two sets A  and B  in a universal 
set U , 

i) ccc BA)BA( ∪=∩ , 

ii) ccc BA)BA( ∩=∪ . 

 
Proof: As in  the case of Theorem 3, we will prove (i), and ask you to prove (ii) 

(see E35).  So, let us take c)BA(x ∩∈ .  Now, 

)BA(\U)BA(x c ∩=∩∈  

BAx ∩∉⇔ , (that is, x  does not belong to both A  and B .) 

Ax ∉⇔  or Bx ∉  (because if Ax ∈  and Bx ∈ , then BAx ∩∈ ) 
cAx ∈⇔  or 

c
Bx ∈  

cc BAx ∪∈⇔  

So ccc BA)BA( ∪=∩ . 

 
The De Morgan’s laws can be quite useful for using the operations efficiently.  
Consider the following example. 
 

Example 13: Consider the sets QQZ =≥∈= U},2x|x{A, .  Find 
cc

A Z∪ .   

Solution: Now, }2x|x{Ac <∈= Q  and ZQZ \c = .  

Can we write 
cc

A Z∪  in a manner that its elements are clear to us?  It 
doesn’t seem so. 

However, by De Morgan’s laws, ccc )A(A ZZ ∩=∪ . 

Now, },3,2{}2x|x{A K=≥∈=∩ ZZ  

So },4,3,2{\)A(\)A( c
KQZQZ =∩=∩  

So },3,2{\A cc
KQZ =∪ , a clear way of looking at the required set. 

*** 
 
Now try the following exercises. 
 
 

E35) Prove (ii) of Theorem 5. 
 

E36) Verify De Morgan’s laws for A  and B , where }4,3,2{B},2,1{A == . 

 (For convenience, you can take }4,3,2,1{U = , i.e., BAU ∪= .  Of 

course, the laws will continue to hold true with any other .U ) 



 

 

32 

Block 1                                                           Essential Preliminary Concepts 

E37) For any three sets C,B,A  in a universal set ,U  prove that 

)CB(\)CA(C)B\A( ××=× .  Also write down what the set U  could be. 

 

E38) Is the statement, ‘For any three sets )CB(\AC)B\A(,C,B,A ×=× ’ 

true?  Give reasons for your answer. 
 

 
By now you would be familiar with sets, several operations on sets, and laws 
relating these operations.  Let us take an overview of what we have covered in 
this unit. 
 

1.7 SUMMARY 

 
In our discussion on sets we have brought out the following points: 
 
1. A set is a well-defined collection of objects. 
 
2. The listing method and property method for representing sets.  Some 

sets can be represented by both methods, and some by only one of 
them. 

 
3. The concepts of ‘subset’, ‘proper subset’, ‘superset’, ‘universal set’, ‘finite 

set’ and ‘infinite set’. 
 
4. The sets A  and B  are equal iff A  is a subset of B  and B  is a subset 

of A , that is, BA =  iff BA ⊆  and AB ⊆ . 

 

5. A  is not a subset of B  if Aa ∈∃  s.t. Ba ∉ . 

 
6. The pictorial representation of sets and their relationships by Venn 

diagrams, and the utility of this type of representation. 
 

7. The definition, and examples, of the complement of a set A  in a set B , 
denoted by A\B . 

         }Ax|Bx{A\B ∉∈= .  

When B  is a universal set, A\B  is called the complement of A , and is 

denoted by A′  or 
c

A . 
 

8. The definition, and examples, of the intersection of two sets A  and B  in 

a universal set U , denoted by BA ∩ . 

Ax|Ux{BA ∈∈=∩  and }Bx ∈ . 

This definition extends to more than two sets, in a natural manner, as  

         }n,,1iAx|Ux{AAA in21 KK =∀∈∈=∩∩∩ . 

 
9. Several properties of the operation of intersection of sets. 
 

10. The definition, and examples, of the union of two subsets A  and B  of a 

universal set ,U  denoted by BA ∪ . 

Ax|Ux{BA ∈∈=∪  or }Bx ∈ . 

This definition extends to more than two sets, in a natural way, as  

in21 Ax|Ux{AAA ∈∈=∪∪∪ K  for some }n,,1i K= . 

 
11. Several properties of the operation of union of sets. 
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12. The definition, and examples, of the Cartesian product of the sets A  

and B , denoted by BA × . 

}By,Ax|)y,x{(BA ∈∈=× . 

This definition extends to the Cartesian product of n  sets, as follows: 

}n,,1iAx|)x,,x,x{(AAA iin21n21 KKK =∀∈=××× . 

 
13. Several properties of the Cartesian product of sets. 
 
14. The statement, and proof, of the distributive laws: For any three sets 

C,B,A , 

)CA()BA()CB(A ∩∪∩=∪∩ ; 

)CA()BA()CB(A ∪∩∪=∩∪ . 

 

15. The statement, and proof, of De Morgan’s laws:  For any two sets A  

and B , 
ccc BA)BA( ∩=∪ ; 
ccc BA)BA( ∪=∩ . 

  
Now, we suggest that you go back to the objectives given in Sec. 1.1, and 
see if you have achieved them.  One way of checking this is to solve all the 
exercises in the unit.  If you would like to know what our solutions are, we 
have given them in the next section.  But please do not look at them until you 
have tried to solve all the exercises on your own. 
 

1.8 SOLUTIONS/ANSWERS 

 
E1) (ii) – (v) are sets.   

(i) is not a set because one person may think Asha, for example, is 
interested in the game, while another may think she is not.  So there are 
no clear-cut criteria for assessing interest, and hence the collection is not 
well-defined. 

 Similarly, (vi) is not a set. 
 
E2) A given stamp collection is a set because given any object it is clear to 

anybody firstly, whether it is a stamp or not; and secondly, if it is a 
stamp, then whether it belongs to the collection or not. 

 
E3) (iii), (v) are true.  There could be several ways of making changes to the 

rest.  For instance, altering ∈  to ∉ , or picking an appropriate number or 
set to make the statement true.  For example, (i) can be changed to 

N∉2.0 , or Q∈2.0 . 

 

E4) i) }1{−  

 ii) This is the set of all integers less than or equal to 8, i.e.,  

   }8,7,6,,2,3,{ KK −− . 

 iii) }z,y,x,,c,b,a{ K  

 

E5) i) }x|x{ 2 N∈  

 ii) This cannot be described by the property method since the three 
elements have nothing in common. 

 iii) x|x{  is an even integer} 

 iv) We can have several representations (see Remark 3).  For 
example, 
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  x|x{ N∈=«  is both odd as well as even}, or  

  }0x|x{ <∈= N« . 

 v) x|x{  is a month with only 30 days}. 

 

E6) The set on the LHS is }3{ .  The set on the RHS is }3,3{− .  Therefore, 

they are not equal. 
 
E7) i) The number of spoons of water may be 1000  or 1 million, but it is 

still some number.  Thus, the set is finite. 

 ii) If x  and y  are different rational numbers, then 3x +  and 3y +  

are different rational numbers also.  So, for each Q∈x , there is 

an element of the given set, and all these elements are as many as 

the number of elements in Q .  Since Q  has infinitely many 

elements, this set will be infinite too. 

 iii) This is the set of irrational elements, and is infinite. 

 iv) }{N  is a singleton, having only one element, N .  Thus, it is finite. 

 v) Between any two points on a circle, there is always another point 
on the circle.  Therefore, this set is infinite. 

 vi) By convention, this set is finite. 
 
E8) i)  False, since on the RHS is an infinite set, and on the LHS is a 

singleton.   

 ii)  True, since the only element in the set is « . 

   

E9) }3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,«  

 As you can see, the answers to (i) – (iv) are 1,3,3,1 , respectively. 

 As the cardinality of the given set is 3 , no subset can have more than 3  
elements.  Thus, the answer to (v) is ‘none’. 

 

E10) Let Ax ∈ .   

 Then BxBA ∈⇒⊆ .   

 Now, Bx ∈  and CxCB ∈⇒⊆ . 

 CxAx ∈⇒∈∴  

 Since this is true for any CA,Ax ⊆∈ . 

 
E11) There are infinitely many possibilities here.  One could be the given set 

itself!  Another could be ,7.0,3{ IGNOU, Mahatma Gandhi}. 

  

E12) P,R,S  are the sets of squares, rectangles and parallelograms, 

respectively.  Since PRS ⊆⊆ , we have taken PU =  in the Venn 

diagram in Fig. 16. 
 

E13) One possible diagram is given in Fig. 17.  Note that just because B  is 
infinite and C  is finite does not mean that the regions depicting them 

need be of different areas. 
 

E14) i) Note that QZ ⊆⊆P .  We take Q  as U (see Fig. 18).  

 ii) x|x{P\ ZZ ∈= is not a prime number}. 

  This certainly contains the set of all negative numbers as a subset, 

which is infinite.  Hence, P\Z  is infinite. 

p|p{\P =Z is a prime number and }p Z∉  

If a  finite set A  has n 

elements, then its 

power set has 
n

2  
elements. 

Fig. 16 
 

 

Fig. 17 
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         = « , since every prime number is an integer. 

So, Z\P  is finite. 
 

E15) «=A\A , «« =A\ , «=A\A , 

 A)A( cc = , since ccc )A(xAxAx ∈⇔∉⇔∈ . 

 

E16) i) NNQ ⊆/\ , for example.  There are many such examples. 

 ii) This can only be true if «=B\A , because if B\Ax ∈∃ , then  

          Bx ∉ .  But BxBB\A ∈⇒⊆ .  So we reach a contradiction, 

unless «=B\A . So any two sets A  and B  for which 

                  «=B\A will be a valid example. 

 

E17) «,,, ZZZ , respectively. 

 In all the cases U  could be Q .  Of course, there are several other 

choices for U  too. 
 

E18) iii) From (i) we know that ABA ⊆∩ .  We need to prove that in this 

case BAA ∩⊆ .   

  For this, let Ax ∈ .  Then, since Bx,BA ∈⊆ .  Thus, BAx ∩∈ . 

  BAA ∩⊆∴ .  

  Since ABAA ⊆∩⊆ , we see that BAA ∩= . 

 

 iv) Applying (iii) with BA = , we get AAA =∩ . 

 v)     «∩A ⊆  « , applying (ii). 

  Also «« ∩⊆ A , since «  is a subset of every set. 

  «=«∩∴ A . 

   

 vi) Since UA ⊆ , by (iii) above we get the result. 

 

 vii) BBA ⊆∩  and ABA ⊆∩ .  ABBA ∩⊆∩∴ . 

  Similarly, BAAB ∩⊆∩ . 

  ABBA ∩=∩∴ . 

 
 viii) AxB\Ax ∈⇔∈  and Bx ∉  

  Ax ∈⇔  and 
c

Bx ∈  

  cBAx ∩∈⇔ . 

  cBAB\A ∩=∴ . 

  (Note that we have used the two-way implication, ⇔ , at each 

stage, and hence, simultaneously shown that cBAB\A ∩⊆  and 

B\ABA c ⊆∩ .) 

 

 ix) Let Cx ∈ .  Then AxAC ∈⇒⊆ .  Similarly, Bx ∈ .  Therefore, 

BAx ∩∈ .  Hence, BAC ∩⊆ . 

 

E19) No. For example, if }2,1{C},4,2,1{B},3,2,1{A === , then A
/

C⊂  

and B
/

C⊂ , but C  is not properly contained in BA ∩ ; in fact, it is 

exactly equal to BA ∩ . 

 

Fig. 18: The shaded  
area is ZQ \ . 
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E20) }4{CBA =∩∩  

 ( ) { } { }4C4,3CBA =∩=∩∩  

 ( ) { } { }44ACBA =∩=∩∩  

 }4{B}4,1{B)CA(BCA =∩=∩∩=∩∩  

  

E21) «=∩∈=∩∩=∩∩ C}n|n12{C)BA(CBA N , since C  is the set of 

primes and no element of BA ∩  is a prime. 
 

E22) i) Since AA ⊆ , by Theorem 2, AAA =∪ . 

 

 ii) AxBAx ∈⇔∪∈  or Bx ∈  

  Bx ∈⇔  or Ax ∈ . 

  ABx ∪∈⇔ . 

  ABBA ∪=∪∴ . 

 

 iii) A=«« ∪⇒⊆ AA , by Theorem 2. 

 

 iv) Let BAx ∪∈ .  Then Ax ∈  or Bx ∈ .  In either case Cx ∈ , since 

CA ⊆  and CB ⊆ .  Thus,  

  CxBAx ∈⇒∪∈ . 

  CBA ⊆∪∴ . 

 

 v) By (iv) above UAA c ⊆∪ . 

  Now, let us show that cAAU ∪⊆ .   

  Let Ux ∈ .  Then,  either Ax ∈  or Ax ∉ , that is, either Ax ∈  or 
cAA\Ux =∈ . 

  So, 
c

AAx ∪∈ . 

  Therefore, cAAU ∪⊆ . 

  Hence, the equality is proved. 
 

E23) }.3x0|x{BA ≤≤∈=∪ R  

 Take }3x0|x{S ≤≤∈= Q  and }.3x0|\x{T ≤≤∈= QR  

 Then .BATS ∪⊆∪  

 Also, for any x,BAx ∪∈  is either rational or irrational.  Accordingly, 

Sx ∈  or .Tx ∈    

 Hence, .TSBA ∪⊆∪  

 Thus, .BATS ∪=∪  

 There can be several other pairs S  and T  that satisfy this requirement. 
 Look for at least one more pair. 
 

E24) Since «=∪⊆ BAA , we see that .A «⊆   Also, A⊆«  always. 

 .A «=∴   Similarly, .B «=  Thus, .0BA ==  

 

E25) Firstly, let us show that ( ) .CBACBA ∪∪=∪∪   

 Since CBABA ∪∪⊆∪  and CBAC ∪∪⊆ ,  

 by E22, .CBAC)BA( ∪∪⊆∪∪  

 Conversely, let .CBAx ∪∪∈   Then Ax ∈  or Bx ∈  or .Cx ∈  

 If Ax ∈ , then .C)BA(BAx ∪∪⊆∪∈  

 Similarly, if Bx ∈  or Cx ∈  then .C)BA(x ∪∪∈  
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 Thus, .C)BA(CBA ∪∪⊆∪∪  

 Therefore, .C)BA(CBA ∪∪=∪∪  

 You can, similarly, show that ).CB(ACBA ∪∪=∪∪  

 

E26) .BABA,BABA\B,BAAB\A ∪⊆∩∪⊆⊆∪⊆⊆  

 .BA)A\B()BA()B\A( ∪⊆∪∩∪∴  

 Conversely, let BAx ∪∈ .  Then Ax ∈  or .Bx ∈  
 Now, there are only three possibilities for x : 

 i) Ax ∈  but Bx ∉ , that is, B\Ax ∈ , or  

 ii) Ax ∈  and Bx ∈ , that is, BAx ∩∈ , or  

 iii) Bx ∈  but Ax ∉ , that is, .A\Bx ∈  

 Thus, ).A\B()BA()B\A(BA ∪∩∪⊆∪  

 So we have proved the result. 
 

E27) )}3,5(),2,5(),3,2(),2,2{(BA =×  

 )}5,3(),5,2(),2,3(),2,2{(AB =×  

 )}5,5(),2,5(),5,2(),2,2{(AA =× . 

 )}2,2{()AB()BA( =×∩×  

 )}5,3(),5,2(),2,3(),3,5(),2,5(),3,2(),2,2{()AB()BA( =×∪× . 

 }5,2{)AB(\A =× . 

 

E28) =A  set of all the first elements in each pair }2,7{= .  

 =B  set of all the second elements in each pair }4,3,2{= . 

 

E29) Let .BA)y,x( ×∈   Since Cx,CAx ∈⊆∈ .  Similarly, .Dy∈  

 So, .DC)y,x( ×∈   Hence, .DCBA ×⊆×  

 

E30) For instance, )525252.37,1(,
2

1
,1),0,1( K








. 

 There are infinitely many elements you can pick from. 
 

E31) There can be several examples.  One is )}0,0{(S = . Then  

 RRR ∈=× y,x|)y,x{(S\)( and }0y,x ≠ . 

 
E32) (i) is not, since it is only an ordered pair, and not a triple.   

 (ii) is not, since ZN∪∉
2

1
.   

 (iii) is, since NZQ ∩∩∈1 . 

 (iv) is not, since N∉2  

 (v) is not, since this is not an ordered triple; it is a set of three elements. 
 

E33) )CB(Ax ∩∪∈   

 Ax ∈⇔ or CBx ∩∈  

 Ax ∈⇔  or Bx( ∈  and )Cx ∈  

 Ax( ∈⇔  or )Bx ∈  and Ax( ∈  or )Cx∈  

 BAx ∪∈⇔ and CAx ∪∈  

 )CA()BA(x ∪∩∪∈⇔ . 

 Hence, Theorem 3 (ii) is proved.  (A visual representation of this is given 
in Fig. 19.) 

 

 

Fig.19: C)(BA ∩∪         

             C)(AB)(A ∪∩∪= . 
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E34) C)BA()y,x( ×∩∈  

 BAx ∩∈⇔  and Cy∈  

 Ax( ∈⇔  and )Bx ∈  and Cy∈  

 CA)y,x( ×∈⇔  and CB)y,x( ×∈  

 )CB()CA()y,x( ×∩×∈⇔  

 Hence the equality.  
 

E35) BAx)BA(x c ∪∉⇔∪∈  

 Ax ∉⇔  and Bx ∉  

 cAx ∈⇔  and 
c

Bx ∈  

 cc BAx ∩∈⇔ . 

 So, ccc BA)BA( ∩=∪ . 

 

E36) «=∪∴=∪ c)BA(,UBA  

 Also }1{B},4,3{A cc ==  

 «=∩∴ cc BA  

 ccc BA)BA( ∩=∪∴  

 Further, }4,3,1{)BA(}.2{BA c =∩∴=∩  

 ccc )BA(BA ∩=∪∴ . 

 

E37) Since CAC)B\A(,AB\A ×⊆×⊆               … (7) 

 If C)B\A()y,x( ×∈ , then B\Ax ∈ , i.e., Bx ∉ . 

 CB)y,x( ×∉⇒                 … (8) 

 (7) and (8) tell us that  )CB(\)CA(C)B\A( ××⊆×            … (9) 

 Conversely, let )CB(\)CA()y,x( ××∈ . 

 Then CA)y,x( ×∈  and CB)y,x( ×∉ . 

 So, Cy,Ax ∈∈  and Bx ∉ .  

 Therefore, Cy,B\Ax ∈∈ . 

 Thus, C)B\A()y,x( ×∈  

 This proves that C)B\A()CB(\)CA( ×⊆××           … (10) 

 (9) and (10) together prove the equality. 

 One possibility for U  is B)CA( ∪× .  

 

E38) Any element of C)B\A( ×  is an ordered pair )c,a( , where Ba,Aa ∉∈  

and Cc ∈ .  On the other hand, any element of )CB(\A ×  is an element 

of A and not a pair.  Therefore, you should expect the statement to be 
false.  You can show it by taking, for example, 

N=== C},3,1{B},2,1{A  . 

 Then N×=× }2{C)B\A( , while }2,1{)CB(\A =× . 

 So )CB(\AC)B\A( ×≠× . 
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2.1 INTRODUCTION 
 

Now that you are familiar with sets and operations on them, we shall focus on 
one of these operations in this unit. You will see how the Cartesian product is 
used in different ways, under different names. 
 
We start the unit with a discussion in Sec. 2.2 on relations, which are just 

subsets of BA × ,  with A  and B  being sets. We also study relations with 
certain properties that make them reflective, symmetric, transitive or 
equivalence relations. 
 
In Sec. 2.3 we go on to focus on certain relations which are called functions. 
This is a concept you may have worked with while studying mathematics in 
school. Apart from looking at functions generally, we will consider functions 
with certain special properties that make them injective, surjective or bijective. 
 
In the next section, namely, Sec. 2.4, we shall look at a way of joining two 
functions called ‘the composition’ of those functions. You will see that the 
composition of two functions may not always be defined. You will also study 
the conditions under which their composition can be defined. In this section 
you will also see why a bijective function is invertible. 
 
Finally, in Sec. 2.5, we look at a particular kind of function from SSS →× , 

where S  is a set. This is essentially an operation on pairs of elements of S .  

This is why it is called a binary operation on S .  You will see that you have 
actually been working with binary operations from primary school on. In fact, 
you will find these operations through and through in the mathematics that you 
do henceforth too. 
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Objectives 

After studying this unit, you should be able to:  

• explain what a relation from a set A  to a set B  is; 

• give examples of reflexive, symmetric or transitive relations; 

• define, and give examples of, a function from a set A to a set B ; 

• explain when a function is an injection, surjection or bijection; 

• obtain the composition of two functions under appropriate conditions; 

• define, and give examples of, binary operations on sets. 
 

2.2 RELATIONS 

 
You are already familiar with the concept of a relationship between people.  

For example, a parent-child relationship exists between two people A  and B  

if and only if A  is a parent of  B  or B  is a parent of A . Similarly, we can find 
relationships between integers, for example, two integers have a relationship if 
one is a factor of the other. However, there is a difference between 
‘relationship’ and ‘relation’ in English usage. Similarly, there is a difference in 

these words in mathematical usage. For example, if R is the relation ‘is a 
factor of’ on N , then 1 is a factor of 5 , but 5  is not a factor of 1, and we write 

this as 5R1 , but not 1R5 . So, we see that R relates a pair of elements, and 

the order matters. Here, if we treat R as a subset of NN× , then 

( ){ }xRyy,xR NN×∈= , and R)5,1( ∈  but R)1,5( ∉ .  

 

In mathematics, a relation R  on a set S  is a particular kind of relationship 

between the elements of S .  If  Sa ∈  is related to Sb ∈  by means of this 

relation, we write aRb , or R)b,a( ∈ , and this is exactly how we define a 

relation on a set. 
 
Definition: A relation R  on a set S  is a subset of SS× . 

 

For example, if R  is the relation ‘is greater than’ on Q , then 2R3  (because  

)23 > , and N∈∀
+

n
1n

1
R

n

1
.  Thus, here 

R
1n

1
,

n

1
,R)2,3(,R ∈









+
∈×⊆ QQ for any N∈n , and R)2,0( ∉ . 

 

Remark 1: Since a relation on S is a subset of SS× , two relations 
1R  and 

2R  

on S  will be distinct if the sets 
1R  and 

2R  are different, i.e., 
21 RR ≠ .   For 

instance, consider )}2,1(),1,1{(R},3,2,1{S 1 ==  and )}2,1(),1,2{(R 2 = .  

Then 1R  and 2R  are both relations on S , being subsets of SS× .  But 

21 RR ≠ . 

 
Try the following exercises now, which deal with relations on a set. 
 
 

E1) Let N  be the set of all natural numbers and R the relation 

}a|)a,a{( 2 N∈ .  State whether the following statements are true or 

false.  Also give reasons for your answers. 

 i) 3R2 ,   ii) 9R3 ,   
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 iii) 3R9 ,   iv) R)3,3( ∈ . 

 
E2) Give two distinct relations on the set of courses of IGNOU.  
 

 
We now look at some particular kinds of relations, which you will be using very 
often in other mathematics courses. 
 

Definition: A relation R  defined on a set S  is said to be  

i) reflexive if SaaRa ∈∀ , i.e., SaR)a,a( ∈∀∈ . 

ii) symmetric if Sb,abRaaRb ∈∀⇒ , i.e., R)a,b(R)b,a( ∈⇒∈ . 

iii) transitive if aRb  and Sc,b,aaRcbRc ∈∀⇒ , i.e., if R)b,a( ∈  and 

R)c,b( ∈ , then R)c,a( ∈ . 

 
To help you get used to these concepts, consider the following examples. 
 
Example 1: Consider the relation R on the set H of those human beings who 

were alive in 2016, given by ‘aRb  iff a  and b  had the same weight on Jan. 

1st, 2016, for any two human beings a  and b  in H ’. Is R reflexive, symmetric 

or transitive? Justify your answers. 

Solution: Any human being certainly has the same weight as herself. So 

hRh for every Hh ∈ . Thus, R  is reflexive.  

If Hb,a ∈  such that a  and b  have the same weight, then b  and a certainly 

have the same weight. So Hb,abRaaRb ∈∀⇒ . Thus, R is symmetric.  

Finally, for Hc,b,a ∈  if a  and b have the same weight, and b  and c  have 

the same weight, then a  and c  have the same weight too.  

So, aRb  and aRcbRc ⇒ . Thus, R is transitive. 
*** 

 

Example 2: Consider the relation R  on Z  given by ‘aRb  if and only if ba
|

≥ ’.  

Determine whether or not R  is reflexive, symmetric or transitive. 

Solution: Since aa
|

≥  is not true, aRa  is not true.  Hence, R  is not reflexive.  

If ba
|

≥ , then certainly ab
|

≥  is not true.  That is, aRb  does not imply bRa .  

Hence, R  is not symmetric. 
Since ba

|
≥  and cb

|
≥  implies ca

|
≥ , we find that bRc,aRb  implies aRc .  

Thus, R  is transitive. 
*** 

 

Example 3: Let S  be a non-empty set.  Let )S(℘  denote the power set of S , 

that is, the set of all subsets of S , i.e., }SA|A{)S( ⊆=℘ . 

Define the relation R  on )S(℘  by }BA|)B,A{(R ⊆= . 

Check whether or not R  is reflexive, symmetric or transitive. 

Solution: Since )S(AR)A,A(),S(AA ℘∈∀∈℘∈∀⊆ .  Thus, R  is 

reflexive. 

Let R)B,A( ∈ .  Then BA ⊆ .  However, B  need not be contained in A .  For 

example, ( ) RS ∈«,  but ( ) R,S ∉« . Thus, R  is not symmetric. 

If BA ⊆  and CB ⊆ , then )S(C,B,ACA ℘∈∀⊆ , that is,  

R)B,A( ∈  and R)C,A(R)C,B( ∈⇒∈  (see E10 of Unit 1).  Thus, R  is 

transitive. 
*** 

‘ b
|

a ≥ ’ denotes  ‘ a  is 

strictly greater than b ’. 
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Remark 2: In all the examples in this section so far, when we have mentioned 

relations from X  to X  or X  to X,Y  and Y   have been non-empty.  

However, a relation can be defined on the empty set too.  This is called the 
empty, or null, relation. 
 

You may like to try the following exercises now.  

 
 

E3) Consider the relation ‘aRb  iff ba = ’ on R .  Check whether R is 

reflexive, symmetric or transitive. 
 

E4) The relation NN×⊆R  is defined by R)b,a( ∈  iff 5  divides )ba( −      

in N .  Is R   

i) reflexive?   
ii) symmetric? 
iii) transitive?  
Give reasons for your answers. 

 
E5) Give examples to show why the relation in E1 is not reflexive, symmetric 

or transitive. 
 

E6) Check whether or not )}S(B,A,BA|)B,A{(R ℘∈⊄=  is transitive, 

where S  has at least two elements. 
 

 
The relationship in E3 is reflexive, symmetric and transitive.  This is an 
example of what we now define. 
 

Definition: A relation R  on a set S  is called an equivalence relation if R  is 

reflexive, symmetric and transitive.   
You will study, and use, such relations quite a bit in the other mathematics 
courses. 
 
Let us now generalize ‘relation on a set’ to a relation from one set to another. 

You have seen that a relation on a set X  is a subset of XX × . So, you may 
expect the generalized form to have the following definition. 
 

Definition: Let X  and Y  be two sets.  A relation from X  to Y  is a subset 

of YX × . 

For example, let H  be the set of humans beings, HW ⊆  be the set of 

women drivers in India and Y  the set of driving licences valid in India on Oct. 

2nd, 2018.  Then }Yy,Ww|)y,w{(R ∈∈=  is a relation from H  to Y .  Note 

that YWR ×=  is a subset of YH × . 
 

Another example is the subset R  of LH × , where H  is the set of humans 

and L  is the set of languages in the world in 2018, where R),h( ∈l  iff h  

uses the language l .  So, for example, R)I,x( ∈ , where I  is the Indian sign 

language and x  is a user of this language. 
 
Let us now look at a particular type of such relations, in which the choice of the 
second element of the pair takes great importance. 
 

2.3 FUNCTIONS 

 
Consider the relation LHR ×=  that we gave at the end of Sec.2.2 above. 
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Here, we also say xRy  if R)y,x( ∈ .  Note that x  is/was a human being and 

y  is a language extant in 2018. 

 

Now, let us take a subset R′  of R , where ‘ y'xR  if and only if Hx ∈  and y  is 

the first language of x ’.  Now since each person has one and only one first 
language, given x  there is one and only one Ly ∈  such that R)y,x( ′∈ .  So 

LHR ×⊆′ .  

Note that  

i) For each Hx ∈ , there is at least one Ly ∈  such that R)y,x( ′∈ . 

ii) For each Hx ∈ , there is only one Ly ∈  such that R)y,x( ′∈ . 

Such a relation R′  is an example of a ‘function’, as you will soon see. 
 

Let us consider another example.  Let H  be the set of human beings and W  

be the set of women.  Let 
MR  be the relation from H  to W  such that for each 

whR,Hh M∈ , where w  is sh′  birth mother.  Then we see that  

i) For each WwHh ∈∃∈  such that whR M
. 

ii) For each Hh ∈  there is only one w  such that whR M . 

iii) There could be several elements of H , say n21 h,,h,h K , with the same 

birth mother m , i.e., mRh,,mRh,mRh MnM2M1 K . 

The properties of 
MR  given above tell us that MR  is a ‘function’. 

 
So, what is a ‘function’? 
 

Definitions: i) A function f  from a non-empty set A  to a non-empty set B  is 

a relation from A  to B  which associates with every element of A  one 

and only one element of B .  This is written as BA:f → , or BA
f→ . 

 

ii) If f  associates with Aa ∈ , the element Bb ∈ , we write bf(a) = , and b  

is called the value of the function f  at a .   
 

iii) A  is called the domain of f , and B  is called the co-domain of f .   

 

iv) The set }Aa|)a(f{)A(f ∈=  is called the range of f . As you can see, 

the range of f  is a subset of the co-domain of f , i.e., B)A(f ⊆ .   

 

Note that if BA:f → , then  

i) for each element of A , we associate some element of B . 

ii) for each element of A , we associate only one element of B .  So, if 

Aa ∈  and 1b)a(f =  as well as 2b)a(f = , then 21 bb = , 

  i.e., if )b,a( 1
 and )b,a( 2

 are elements of f , then 21 bb = . 

iii) two or more elements of A  can be associated with the same element of 

B , i.e., there can be Aa,a 21 ∈ with 21 aa ≠  and )b,a()b,a( 21 = . 

 
Remark 3: Some other terms commonly used for ‘function’ are ‘map’, 
‘mapping’, ‘transformation’, ‘operator’. 
 

Consider an example.  Let }3,2,1{A =  and }10,9,8,7,6,5,4,3,2,1{B = .  

Define BA:f →  by 9)3(f,4)2(f,1)1(f === .  Then f  is a function with 

domain A , co-domain B  and range }9,4,1{ .   

This definition of function 
was given by Dirichlet in 
1837, and has been 
used since then. 
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In this case, note that 2x)x(f =  for each Ax ∈ .  We can write this as 
2x)x(f:BA:f =→  or }Ax|)x,x{(f 2 ∈= .   

If we define BA:g →  by 4)3(g,1)2(g,1)1(g === , then g  is also a function, 

whose domain and co-domain are the same as those of f , namely, A  and 

B , respectively.  But the range of g  is }4,1{ . 

 
Remark 4: The example above tells us that several different functions can be 
defined with the same domain and co-domain. 
 
Remark 5: When a relation from A to B  does not satisfy the requirements for 
being a function, then we can say that this is not a well-defined function. 

For example, if }10,,3,2,1{A K=  and BA:},7,5,1{B →α=  with 

5)1(,1)1( =α=α  is not well-defined. (Why?) 

 
Try some exercises now. 
 

 

E7) Let X  be the set of residents of Kochi and Y  be the set of all 10-digit 

numbers.  Define a mapping from X  to Y , clearly giving its domain and 
range. 

 

E8) i) Consider 
1n

n
f(n)::f

+
=→QN .  Show that f  is a function. 

 
 ii) Define a function g  whose domain and co-domain are the same 

as that of f  above, but there is at least one x  in their domain for 

which )x(g)x(f ≠ . 

 

E9) Define a relation from N  to Q  which is not a function. Justify your 

 choice of relation. 
 

 
E8 leads us to the notion defined below. 
 

Definition: Two functions f  and g  are said to be equal if  

i) Domain =f Domain g , and   

ii) ∈∀= x)x(g)x(f  Domain f  (which implies that Range =f  Range g ). 

 

So, for example, the function 1x)x(f::f −=→R�R  and 

RRR ∈≠∀−==→ x,0x,1x)x(g,7)0(g::g  are not equal, since 

)0(g)0(f ≠ . 

 
Try a related exercise now. 
 

 

E10) ‘If f  and g  are two functions with domain A  and range B , then gf = .’  

Is this statement true or false?  Give reasons for your answer. 
 

 
Now let us look at functions with special properties.    
 

Definition: A function BA:f →  is called a one-one (or injective) function if 

f  relates  different elements of A  to different elements of B , i.e., if Aa,a 21 ∈  

and 21 aa ≠ , then )a(f)a(f 21 ≠ .   

‘f is one-one’ is briefly  
shown as ‘f is 11 − ’. 
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In other words, f  is 11−  if ( ) ( )
2121

aaafaf =⇒= .  

If f  is injective, it is also called an injection. 

 
For example, consider the function 

9)3(f,4)2(f,1)1(f:}10,,2,1{}3,2,1{:f ===→ K .  You will find it takes 

distinct elements of the domain to distinct elements of the co-domain.  So f  is 

11 − . 

 
Now, let us consider another example of sets and functions. 

Let }q,p{B},3,2,1{A == .  Let BA:f →  be defined by 

p)3(f,p)2(f,q)1(f === .  Then f  is a function, with range of == Bf        

co-domain of .f   ( f  is pictorially represented in Fig. 1).  This is an example of 

an onto function, as you shall see. 

 
Definition: A function BA:f →  is called an onto (or surjective) function if 

the range of f  is the same as its co-domain B .  In other words, f  is onto if 

Bf(A) = .  This means that for any Bb ∈ , there is an Aa ∈  such that 

bf(a) = .   

If f is surjective, it is called a surjection.   
You will come across this kind of function very often in your mathematics 
courses. 

 
Let us consider another example of a surjective function. Consider two non-

empty sets A  and B .  We define the function a))b,a((:ABA: 11 =π→×π .  

1π  is called the projection of BA ×  on A .  You can see that the range of 1π  

is the whole of A , since for any a)b,a(,Aa 1 =π∈ , whatever b  may be.  

Therefore, 1π  is onto.  Note that if B  has more than one element, then 1π  is 

not 11 − .  (Why?)   

Similarly, b))b,a((:BBA: 22 =π→×π , the projection of BA ×  on B , is a 

surjective function. 

Since 1π  (or 2π ) is an onto function, we also say 1π  (respectively 2π ) is a 

function from BA ×  onto A  (respectively B ). 

 
And now, we define a function that has a combination of both the properties 
you have just studied. 
  
Definition: If a function BA:f →  is both one-one and onto, it is called a 
bijective function, or a bijection.  

 
Let us consider some examples.  The first one is of a function that you will use 
again and again. 

 

Example 4: Let A  be any non-empty set.  The function a)a(I:AA:I AA =→  

is called the identity function on A .  Show that AI  is bijective. 

Solution: For any a)a(I,Aa A =∈ .  Thus, the range of AI  is the whole of A .  

That is, AI  is onto. 

AI  is also 11−  because if Aa,a 21 ∈  such that 21 aa ≠ , then )a(I)a(I 2A1A ≠ . 

Thus, AI  is bijective. 

*** 
 

Fig. 1: BA:f →  

The word ‘surjection’ is 
derived from the French 
word ‘sur’, meaning ‘on’. 
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Example 5: Define a function 1)3(f)2(f)1(f:}3,2,1{}3,2,1{:f ===→ . 

This function is an example of a constant function.  Check whether f  is 
bijective or not. 

Solution: The domain of f  is }3,2,1{  and range is the singleton 

}3,2,1{}1{ ≠ .  So f  is not surjective.  

Next, )2(f)1(f =  and 21 ≠ , so that f  is not injective either. 

*** 
 
Try the following exercises now. 
 

 

E11) Let NN→:f  be defined by 5n)n(f += .  Write f  as a subset of the  

Cartesian product of its domain and range.  Prove that f  is one-one but 
not onto. 

 

E12) Let 5nf(n)::f +=→ ZZ .  Prove that f  is both one-one and onto. 

 

E13) What must X  be like for the constant function }c{X:f →  to be 

injective?  Is f  surjective?  Give reasons for your answers. 
 

 
Before going further let us briefly look at finiteness.  In Unit 1 we have  
discussed finite and infinite sets.  Let use see what this means mathematically. 
 

Example 6: Show that a set A  is finite if and only if there is a bijection 

between A  and }n,,2,1{ K , for some N∈n . 

Solution: Let A  be a finite set with m|A| = .  Let }a,,a,a{A m21 K= .  

Define i)a(f:}m,,2,1{A:f i =→ K . 

You can check that f  is injective as well as surjective, and hence, bijective. 

Conversely, let g  be a bijective function from A  to }n,,2,1{ K , for some  

N∈n .  Since g  is onto, its range is the same as its co-domain, i.e.,  

}n,,2,1{}Aa|)a(g{ K=∈ . 

So n|)A(g| = . 

Since g  is n|)A(g||A|,11 ==− , so A  is finite. 

*** 
 
Remark 6: Usually, the condition in Example 6 is treated as the definition of 
finiteness. 
 
Now let us look at a very important way of producing new functions from given 
ones. 
 

2.4 COMPOSITION OF FUNCTIONS 
 

Let us start with taking the two functions }x|)x,x{(f 2 N∈=  and 

}z|)z,z{(g Z∈−= .  Here the range of f  is a subset of Z , which is the 

domain of g .  Let us define h  by ‘combining’ f  and g  as follows: 

Domain =h Domain f , Co-domain =h Co-domain g  and   

Range ⊆h Range g .  

For N∈x , take 22 x)x(g))x(f(g)x(h −===  (see Fig. 2). 

So ))x(f(g)x(h::h =→ZN . 

Aac)a(f:BA:f ∈∀=→   

is called a constant 
function. 
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More generally, if BA:f →  and CB:g →  are functions, there is a natural 

way of combining g  and f  to yield a new function CA:h → , as below: 

  
 
 
 

Note that B)x(f ∈ .  Therefore, ))x(f(g  is defined as an element of C .  

This function h  is called the composition of g  and f  and is written as fg o .  

The domain of fg o  is A  and its co-domain is C , i.e., CA:fg →o  (see  

Fig. 2).  
 

 
 

Fig. 2: Composition of f and g 

 
Let us consider some examples of this. 
 

Example 7: Let RR→:f  and RR→:g   be defined by 2x)x(f =  and 

1x)x(g += .  Is fg o  or gf o  defined? If yes, what is fg o , and what is 

gf o ? 

Solution: We observe that the range of f  is a subset of R , the domain of g .  

Therefore, fg o  is defined.   

By definition, 1x1)x(f))x(f(g)x(fg,x 2 +=+==∈∀ oR .   

Now, let us see if gf o  is defined. Again, since the range of g  is a subet of 

the domain of gf,f o  is defined.  So, 
22 )1x()]x(g[))x(g(f)x(gf,x +===∈∀ oR . 

So gf o  and fg o  are both defined.  But gffg oo ≠ .  (For example, 

)1(gf)1(fg oo ≠ .) 

*** 
 

Example 8: Let }r,q,p{B},3,2,1{A ==  and }y,x{C = .  Let BA:f →  be 

defined by r)3(f,p)2(f,p)1(f === .  Let CB:g →  be defined by 

y)r(g,y)q(g,x)p(g === .  Determine if gf o  and fg o  can be defined. 

Solution: Here Domain Af = , Range }r,p{f = , Domain Bg = ,             

Range Cg = .  For gf o  to be defined, it is necessary that the range of g  

should be a subset of the domain of f .  As C  is not a subset of gf,A o  

cannot be defined. 

For each )x(h,Ax ∈  is defined by the formula ))x(f(g)x(h = . 
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Since the range of f  is a subset of the domain of g , we see that fg o  is 

defined.  Also CA:fg →o  is such that  

x)p(g))1(f(g)1(fg ===o , 

x)p(g))2(f(g)2(fg ===o , 

y)r(g))3(f(g)3(fg ===o . 

Therefore, fg o  is surjective.  Note that g  is also surjective. 

*** 
 

Remark 7: Note that for fg o  to be defined all we need is that  

Range ⊆f Domain g . Thus, Co-domain f need not be the same as     

Domain g . 

 
So, let us formally define the operation of composition now. 
 

Definition: Let BA:f →  and DC:g →  be two functions such that 

Range Cf ⊆ . Then the composition of g  and f  is the function 

))a(f(g)a(fg:DA: =→ oo fg . 

 
Now for some exercises on the composition of functions. 
 
 

E14) In each of the following parts, both f  and g  are functions from R  to R .  

Define gf o  and fg o . 

 i) 5x)x(g,x5)x(f +== , 

 ii) 5/x)x(g,x5)x(f == . 

 

E15) Give an example, with justification, of functions f  and g  such that 

neither gf o  nor fg o  are defined. 

 

E16) Let BA:f →  and DC:g → , with CB ⊆ , be two functions. Which of 

 the following statements are true? Give reasons for your answers. 

 i) Range ⊇g  Range fg o . 

 ii) Range =g Range fg o . 

 iii) If f  is injective, so is fg o . 

 iv) If g  is surjective, so is fg o . 
 

 
While doing E16, a question may have risen in your mind about whether there 

is any other kind of relationship between the properties of fg o  and those of  

f  and g . For instance, what can we expect if fg o  is onto, or is 11 − ? In this 

context, consider the following theorem. 
 

Theorem 1: Let BA:f →  and DC:g →  be two functions such that fg o  is 

defined. Then 

i) if fg o  is injective, so is f .  

ii) if fg o  is surjective, so is g . 

 
Proof: Note that ))x(f(g)x(fg:DA:fg =→ oo . 

Let us prove (i) first. We are given that fg o  is 11 − .  To show that f  is 
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injective, let Aa,a 21 ∈  such that )a(f)a(f 21 = .  

Then ))a(f(g))a(f(g 21 = ,  as g  is well-defined.   

So, )a(fg)a(fg 21 oo = .   

This implies that 21 aa = ,  since fg o  is injective.  

So, we have shown that 2121 aa)a(f)a(f =⇒= , i.e., f  is injective. 

 

Now let us prove (ii).  Here we are given that fg o  is onto.  To show that g  is 

onto, let Dd ∈ .  Since fg o  is surjective, there is Aa ∈  such that 

d)a(fg =o . This means that d))a(f(g = .   Thus, given any C)a(f,Dd ∈∃∈  

with d))a(f(g = ,  which shows that g  is surjective. 

 

In the theorem above, did you notice that when fg o  is injective we have not 

said anything about the injectivity of g ?  Do you expect g  to be injective?  For 

example, if n)n(f::f =→ RN  and 2x)x(g::g =→RR , then 

n)n(fg::fg =→ oo RZ .  So fg o  is 11 − , but g  is not.  (Why?) 

 
We now come to a theorem which shows us that the identity function behaves 

like the number R∈1  does for multiplication.  That is, if we take the 

composition of any function f  with a ‘suitable’ identity function (see Example 
4), we get the same function f .   
 
Theorem 2: Let A  and B  be sets. 

i) For any function AA:f → , ffIIf AA == oo . 

ii) For any function AB:g → , ggIA =o  and gIg B =o .  

 
Proof: We shall prove (i) here, and leave the proof of (ii) to you (see E17).    

(i)  Since both f  and AI  are defined from A  to A , both the compositions 

AIf o  and fIA o  are defined.  Moreover,  

)x(f))x(I(f)x(If,Ax AA ==∈∀ o , so fIf A =o . 

Also, )x(f))x(f(I)x(fI,Ax AA ==∈∀ o , so ffIA =o . 

 
To complete the proof of Theorem 2, try the next set of exercises. 
 
 

E17) Prove Theorem 2(ii). 
 

E18) Show that if f  and g  are two functions such that gf o  is onto, then g  

need not be onto. 
 

 

While doing E17, did you note why AI  was used in the first equality and BI  in 

the second equality?  This is what we meant when we said ‘suitable’ identity 
function earlier. We need to pick the identity function of the set that allows the 
composition concerned to be defined. 
 

Now, in the case of the set of non-zero real numbers, 
*
R , you know that given 

*x R∈  *y R∈∃  such that 1xy = .  This number y  is called the inverse of x .  

Similarly, we can define an inverse function for some functions. Here, instead 
of multiplication of numbers, we shall consider the composition of functions. 
 

For example, consider 3x)x(f::f +=→RR .   If we define 
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3x)x(g::g −=→RR , then both gf o  and fg o  are defined.  Further, 

R∈∀=+−=+== xx3)3x(3)x(g))x(g(f)x(gf o . 

Hence, 
R

Igf =o .  You can also verify that 
R

Ifg =o .  

In this case we call g  the inverse of f , as you will see in the definition that 

follows. 
 
Definition: Let BA:f →  be a given function.  If there exists a function 

AB:g →  such that BIgf =o  and AIfg =o , then g  is called the inverse of 

f ,  and we write 1
fg

−= . 

 

So, in the example before the definition, 1fg −=  and 1gf −= .  Note that in this 

example, f  adds 3  to x  and g  does the opposite – it subtracts 3  from x .  

So, essentially f  and g  nullify each other’s actions on x .  Thus, the key to 

finding the inverse of a given function is: to get 
1

f
−

 try to get back x  from 

f(x) . 

 

For another example, let RR→:f  be defined by 5x3)x(f += .  How can we 

get back x  from 5x3 + ?  One way is to “first subtract 5  and then divide  by 

3 ”.  So, we try 
3

5r
)r(g::g

−
=→RR .  And we find  

R∈∀=
−+

=
−

== xx
3

5)5x3(

3

5)x(f
))x(f(g)x(fg o . 

Also, R∈∀=+




 −
=+= xx5

3

)5x(
35))x(g(3)x(gf o . 

 
Let’s see if you’ve understood the process of obtaining the inverse of a 
function. 
 
 

E19) What is the inverse of  

 i) 
3

x
)x(f::f =→ RR ? 

 ii) 
7

5
r2)r(g::g +=→QQ ? 

 

 
The discussion above may have triggered the question: Do all functions have 
an inverse?  To answer this, consider the following example. 
 

Example 9: Let RR→:f  be the constant function given by R∈∀= x1)x(f . 

Does the inverse of f  exist? 

Solution: If f  has an inverse RR→:g , we have 
R

Igf =o , i.e., 

x)x(gf,x =∈∀ oR .  Now take 5x = , for instance.  We should have 

5)5(gf =o , i.e., 5))5(g(f = .  But 1))5(g(f =  since x1)x(f ∀= .   

So we reach a contradiction.  Therefore, f  has no inverse. 

*** 
 

In view of this example, you may ask for the conditions under which f  will 
have an inverse.  The answer is given by the following theorem. 
 

Theorem 3: A function BA:f →  has an inverse if and only if f  is a bijection. 
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Proof: Here we have to prove two statements: 

i) If f  is bijective, then f  has an inverse. 

ii) If f  has an inverse, then f  is bijective.   

So, firstly, suppose f  is bijective.  We shall define a function AB:g →  and 

prove that 1fg −= . 

Let Bb ∈ .  Since f  is onto, }Aa|)a(f{)A(fB ∈== .  So there is some 

Aa ∈  such that b)a(f = .  Since f  is one-one, there is only one such Aa ∈ .  

We take this unique element a  of A  as )b(g .  That is, given Bb ∈ , we define 

a)b(g = , where a  is that element of A  for which b)a(f = . 

Note that, since f  is onto, we are simply defining AB:g →  by a))a(f(g = .  

This automatically ensures that AIfg =o . 

We still need to show that BIgf =o .  For this, let Bb ∈  and a)b(g = .  Then 

b)a(f = , by definition of g .  Therefore, b)a(f))b(g(f)b(gf ===o .  Hence, 

BIgf =o . 

So, BIgf =o  and AIfg =o .  This proves that 1fg −= . 

 

Now let us prove (ii).  Suppose f  has an inverse, and 1fg −= .  We must prove 

that f  is bijective, that is, f  is one-one and onto. 

Now BIgf =o  and AIfg =o .  From Example 4, you know that AI  and BI  are 

both 11 −  and onto, so gf o  and fg o  are both 11 −  and onto. 

Now, from Theorem 1, since fg o  is 11 − , so is f .  Also, since gf o is onto, 

so is f .  

Thus, f  is one-one and onto. 
Hence, the theorem is proved. 
 

Thus, by applying the theorem above to the function f  in Example 9, we 

would immediately know that 
1f −
 does not exist, since f  is not injective. 

 
Try the following exercise now. 
 
 

E20) Consider the functions 321 f,f,f  from R  to R , defined as below.  For 

each, determine whether it has an inverse and, when the inverse exists, 
find it. 

 i) R∈∀= xx)x(f 2

1 ;  

 ii) R∈∀= x0)x(f2 ; 

 iii) R∈∀+= x7x11)x(f3 . 
 

 
In this section we have looked at an operation on functions. Earlier, you 
studied operations on sets, like union and intersection. Let us look at all these 
operations in a more general setting. 
 

2.5 BINARY OPERATIONS 
 
You are familiar with the operations of addition and multiplication on the set of 

real numbers.  Addition is a function which associates with RR×∈)b,a(  the 

element ba +  of R .  So, it is a function from RR×  to R .  In other words, 
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ba)b,a(:: +=+→×+ RRR .  Can you see that multiplication is also a 

function from RR×  to R ?  These functions can be performed on any pair of 
elements of R .  They are examples of binary operations, which we now 
define. 
 
Definition: A binary operation on a non-empty set S  is a function from 

SS×  to S . 
 

Thus, a binary operation on S  takes a pair of elements of S  and associates a 

unique element in S  to them.  The word ‘binary’ means ‘involving pairs’.  It is 

customary to denote a binary operation by a symbol such as *,, o+ , etc. 

As mentioned earlier, +  and ×  are binary operations on R . 

Another example is 
2

ba
ba::

+
=∗→×∗ RRR . 

As yet another example, take a set X , and take its power set ( )X℘ . Then 

( ) ( ) ( ) ( ) BAB,A:XXX: ∩=∩℘→℘×℘∩ is a binary operation. 

 
Some binary operations can have special properties which we now define. 
 

Definition: A binary operation ∗  on a set S  is said to be  

i) closed on a subset T  of S  if Tt,tTt*t 2121 ∈∀∈ . 

ii) commutative if Sb,aa*bb*a ∈∀= . 

iii) associative if Sc,b,a)c*b(*ac*)b*a( ∈∀= . 

 

For example, the operations of addition and multiplication on R  are 
commutative as well as associative.  But, subtraction is neither commutative 

nor associative on R .  Why?  Is abba −=−  for R∈b,a ? Or is 

R∈∀−−=−− c,b,a)cb(ac)ba( ?  No, as you know. Also, subtraction is not 

closed on RN ⊆ , because, for example, NN ∈∈ 2,1  but N∉− 21 . 

 
Try an exercise now. 
 
 

E21) Let X  be a set and )X(℘  its power set.  

i)   Show that complementation and union are binary operations on 

)X(℘ .  Which of these operations are commutative, and which are 

associative?  Give reasons for your answers. 
 

ii) Is the Cartesian product a binary operation on ( )X℘ ?  Give 

reasons for your answer. 
 

 
Let us now look at a property connecting two binary operations. In Sec. 1.6, 
you have seen some examples of distributivity. You would recall that 

)CA()BA()CB(A ∪∩∪=∩∪  for subsets C,B,A  of a set U .  This 

shows that the operation of union distributes over the operation of intersection.  
Let us define this concept more generally. 
 

Definition: If o  and ∗  are two binary operations on a set S , we say that ∗  is 
distributive over o  (or ∗  distributes over o ) if  

)ca()ba()cb(a ∗∗=∗ oo , and 

Sc,b,a)ac()ab(a)cb( ∈∀∗∗=∗ oo . 

Consider an example. 
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Example 10: Let R∈∀
+

=∗ b,a
2

ba
ba .  Prove that the operation of 

multiplication in R  is distributive over ∗ . 

Solution: We have to see whether acab)cb(a ∗=∗  and cabaa)cb( ∗=∗ . 

Now acab
2

acab

2

)cb(
a)cb(a ∗=

+
=

+
=∗ . 

Also caba
2

caba
a

2

)cb(
a)cb( ∗=

+
=

+
=∗ . 

Hence, multiplication is distributive over ∗ . 
*** 

 
Try an exercise now. 
 
 

E22) For the following binary operations defined on R , determine whether 

they are commutative or associative. Are any of them closed on N ?  

 i) 5yxyx −+=⊕  

 ii) )yx(2yx +=∗  

 iii) 
2

yx
yx

−
=∆  

 Also check if ⊕  distributes over ∆  in R . 
 

 
We end our discussion on functions here.  Of course, you will be extending 
your learning from this unit while studying every mathematics course.  For  
now, let us quickly summarise what we have discussed in this unit. 
 

2.6 SUMMARY 

 
In this unit, you have studied the following points. 
 
1) The definition, and examples, of a relation from a set S  to a set T . 

 
2) A relation R  on a set S  is  

 i) reflexive if SaaRa ∈∀ , i.e., R}Sa|)a,a{( ⊆∈ ; 

 ii) symmetric if Sb,abRaaRb ∈∀⇒ , i.e., 

Sb,aR)a,b(R)b,a( ∈∀∈⇒∈ ; 

 iii) transitive if Sc,b,aaRcbRc,aRb ∈∀⇒ , i.e., 

Sc,b,aR)c,a(R)c,b(,R)b,a( ∈∀∈⇒∈∈ . 

 iv) an equivalence relation if it is reflexive, symmetric and transitive.  
 
3) The definition, and examples, of a function with domain S , co-domain T  

and range R .  
 

4) Two functions f  and g  are equal iff Domain =f Domain g  and 

∈∀= x)x(g)x(f  Domain f . 

 

5) A function BA:f →  is 

 i) injective (or )11−  if Aa,a 21 ∈  with )a(f)a(faa 2121 ≠⇒≠ ; 

 ii) surjective (or onto) if for each AaBb ∈∃∈  such that b)a(f = ; 

 iii) bijective (or 1-to-1) if f  is injective and surjective. 
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6) The composition of functions BA:f →  and DC:g → , where the 

range of g  is a subset of A , is ))c(g(f)c(gf:BC:gf =→ oo . 

 
7) When a function is invertible, and then defining its inverse explicitly. 
 

8) The definition, and examples, of a binary operation on a set S . 
 
9) When a binary operation on S  is closed on a subset of S , or is 

commutative or associative. 
 

10) When one binary operation on a set S  distributes over another binary 

operation on S . 
 

2.7 SOLUTIONS/ANSWERS 

 

E1) R)3,2( ∉ since 223 ≠ .  Similarly, R)3,9( ∉ .  ( ) R3,3 ∉ since N∉3 .  

Thus,  (ii) is the only true one since 23R3 , with N∈3 . 
 
E2) If S  is the set of courses of IGNOU, then consider 

 21211 C,C|)C,C{(R =  are first level courses of IGNOU}, 

 M|)N,M{(R2 =  is a course of the BA prog. and N  is a course of the B.Sc. 

programme}.  

 Then 1R  and 2R  are subsets of SS×  which are not equal. 

 

E3) R  is reflexive because R∈∀= aaa . 

R  is symmetric because R∈∀=⇒= b,aabba . 

R  is transitive because R∈∀=⇒== c,b,acacb,ba . 

 

E4) i) R  is not reflexive because for any 0aa,a =−∈N .  So, there is 

no natural number n  for which aan5 −= . 

 ii) If )ba(|5 − ,  then N∈∃ n  such that ban5 −= .   If N∈∃ m  such 

that n5abm5 −=−= ,  then nm −= , which is a contradiction 

since n  and n−  both cannot be in N .  So R  is not symmetric. 

 iii) If )ba(|5 −  and )cb(|5 −  in N , then check that )ca(|5 −  in N .  

So, R  is transitive. 
 
E5) There can be several examples. We give the following: 

 R)2,2( ∉ . 

 R)4,2( ∈ , but R)2,4( ∉ . 

 R)16,4(,R)4,2( ∈∈ , but R)16,2( ∉ . 

 

E6) Consider the set }b,a{S = .  Then }b{R}a{  and }a{R}b{ , but }a{R}a{  

is not true. Therefore, R  is not transitive. 
 
E7) If we assume that every resident of Kochi has one and only one mobile 

phone number, then we can define =→ )x(f:YX:f mobile no. of x . 

 Another way could be if we list all the elements of X  from 1, (i.e.,  
 0100K  in the 10 -digit format) onwards, calling it his/her resident  
 number, then we can define 

 =→ )x(g:YX:g resident number of x . 
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 The domains of f  and g  are the set of residents of Kochi.  

 Range {f = Mob. No. of }Xx|x ∈ ,  

 Range {g = Resident no. of }Xx|x ∈ . 

 

E8) i)  For each N∈n , there is Q∈
+1n

n
. 

  Also, if N∈m,n  such that mn = , then 
1m

m

1n

n

+
=

+
. 

  So, for each N∈n , there is a unique element Q∈q , such that 

q)n(f = .  Here 
1n

n
q

+
= . 

  Hence f  is well-defined. 
 

ii) There can be several such functions from N  to Q . For example, 

take n)n(g = , or 
n

1n
)n(h

+
= .  You can check that )n(g)n(f ≠  

and N∈∀≠ n)n(h)n(f . 

 

E9) For example, take the relation R  from N  to Q , 

}),2,2(),2,2(),1,1(),1,1{(R K−−= .  Since an element of N  is not 

uniquely mapped under R  to an element of Q  (e.g., )2,2(  and )2,2( −  

are both in R ), R  is not a function.   
 

E10) This is false.  For instance, take x)x(f::f =→ RR  and 

1x)x(g::g +=→RR .  Then the domains of f  and g  are R , which is 

also their ranges.  But R∈∀≠ x)x(g)x(f .  

 

E11) Domain N=f , Range },7,6{f K= , Co-domain N=f .  So 

×⊆∈+= NN}n|)5n,n{(f Range f . 

 f  is not surjective since Range ≠f Co-domain f . 

 Now, to check whether f  is injective, suppose )n(f)m(f = , where 

N∈n,m .  

 Then 5n5m +=+ , which implies nm = .  Thus, f  is 11 − . 
 

E12) In this case, for any ZZ ∈−∃∈ 5z,z  such that z)5z(f =− .  So,  

 Range Z=f . Therefore, f  is onto. 

 As in E11, f  is 11 − .  Hence f  is bijective. 
 

E13) Firstly, by definition, «≠X . 

 Next, if X  has more than one element, say, 21 x,x , then 21 xx ≠ , but 

)x(fc)x(f 21 == .  This would mean that f  is not injective. So, for f  to 

be injective, X  must be a singleton.   

 f  is surjective because Range =f Co-domain }c{f = . 

 

E14) i) R∈∀+=+== x)5x(5)5x(f))x(g(f)x(gf o . 

  R∈∀+=== x5x5)x5(g))x(f(g)x(fg o . 

 ii) x)x(fg,x)x(gf == oo . 

 Note that fggf oo =  in (ii) but not in (i).  

 

E15) There are several examples.  One is the following: 
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 Define n)n(f::f −=→ZN  and 
n

1
)n(g::g =→QN . 

 Then Range =⊄−−−= N},3,2,1{f K Domain g . 

 Range =⊄








= NL,
3

1
,

2

1
,1g Domain f . 

 Thus, neither fg o  nor gf o  are defined. 

 

E16) DA:fg →o . 

i) True, because if ∈y  Range fg o , then Ax ∈∃  such that 

y)x(fg =o .  This means y))x(f(g = , which shows that           

∈y  Range g .  

So Range ⊆fg o Range g . 

 

ii) False, because for example, take n)n(f::f −=→ZN  and 
2z)z(g::g =→ZZ .  Then 2n)n(fg::fg =→ oo ZN .  So,     ∈0  

Range g , but ∉0  Range )fg( o . 

 

iii) False.  For example, take zf(z)::f −=→Z�Z , and g  as in (ii) 

above.  Here, check that f  is 11 − , but fg o  is not. 

 

iv) False.  For example, take n)n(f::f −=→ZN and 

5x)x(g::g +=→RR .  Then check that g  is surjective, but 

n5)n(fg::fg −=→ oo RN  is not surjective. 

 

E17) Note that AA:I,AB:g,BB:I AB →→→ . 

 So gIA o  and BIg o  are well-defined, and AB:Ig,AB:gI BA →→ oo .   

Also Bb)b(g)b(gIA ∈∀=o  and Bb)b(g)b(Ig B ∈∀=o .  Hence the 

result. 
 

E18) For example, in Example 8 fg o  is onto, but f  is not.  You can find 

several other examples. 
 

E19) i) To get x  from 
3

x
, we need to multiply by 3 .  So, let us define 

  r3)r(g::g =→RR . 

  Then fg o  and gf o  are both defined.  

  Further, )x(Ix
3

x
g)x(fg R==








=o  

  and )x(Ix)x3(f)x(gf
R

===o . 

 

 ii) To get r  from 
7

5
r2 + , we need to first subtract 

7

5
 and then divide 

by 2 .  So, let us define 







−=→

7

5
x

2

1
)x(h::h QQ .  Then check 

that gh o  and hg o  are both defined, and are equal to QI .   

 

E20) i) 2

11 x)x(f::f =→RR  is not 11 − , since, for example, )1(f)1(f 11 −=  

and 11 −≠ .  So 1f  doesn’t have an inverse. 
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 ii) 2f  is neither an injection nor a surjection.  Hence 2f  doesn’t have 

an inverse. 
 

iii) 3f  is bijective, and hence has an inverse.  In fact, we can easily 

see that x  can be extracted from 7x11 +  by first subtracting 7  

and then dividing by 11.   

So if we define RR→:g  by 
11

7y
)y(g

−
= , then check that 

R
Ifggf 33 == oo .  So 3f  has the inverse g . 

 

E21) i) For any two subsets B,A  of X , we have BA,B\A ∪ are 

subsets of X .  So, complementation and union are binary 

operations on )X(℘ .  

Take X  to be N .  Then }2,1{\}3,2{}3,2{\}2,1{ ≠ , for example. 

So complementation is not commutative.  
  Similarly, you can see that 

})5,4{\}2,1({\}4,3,2,1{}5,4{\})2,1{\}4,3,2,1({ ≠ , so that 

complementation is not associative. 
  However, as you have seen in Sec. 1.5, union is both commutative 

and associative. 
  

 ii) For any two subsets B,A  of a non-empty set BA,X ×  is not a 

subset of X .  This is a subset of XX × .  Therefore, Cartesian 

product is not a binary operation on )X(℘ . 

 

E22) i) Check that xyyx ⊕=⊕  and 

R∈∀⊕⊕=⊕⊕ z,y,x)zy(xz)yx( .  However, for example,  

  N∉−=⊕ 111 .  So ⊕  is not closed on N . 
 
 ii) ∗  is commutative, but not associative since 

]zy2x2[2z)yx( ++=∗∗ , and ]z2y2x[2)zy(x ++=∗∗ . 

  However, for NN ∈∗∈ yx,y,x , so that ∗  is closed on N . 

 

 iii) yx∆  is neither commutative nor associative. Further, ∆  is not 

closed on N . 

  Now, for R∈z,y,x , consider 

  5
2

zy
x5)zy(x)zy(x −

−
+=−∆+=∆⊕ . 

  Also, 

2

)5zx()5yx(
)5zx()5yx()zx()yx(

−+−−+
=−+∆−+=⊕∆⊕

           
2

zy −
= . 

   So, )zx()yx()zy(x ⊕∆⊕≠∆⊕  

  Therefore, ⊕ does not distribute over ∆ . 
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3.1 INTRODUCTION 
 
We will first briefly discuss a system you would have studied in school, 
namely, the Cartesian coordinate system.  This system of representing points 
in a plane was introduced in the early 17th century by René Descartes, the 
French mathematician you read about in Unit 1.  It is said that René Descartes 
(pronounced re-nay daycart) was a sick child and was, therefore, allowed to 
remain in bed till quite late in the mornings.  One day when he was lying in 
bed, he saw a spider near one corner of the ceiling.  Its movement led 
Descartes to think about the problem of determining its position on the ceiling.  
He decided that it was sufficient to know the eastward and the northward 
distances of the spider from the corner of the ceiling!  This is supposed to 
have sown the seed for the development of the subject known as coordinate 
geometry.  
 
In Sec. 3.2 you will study the idea of coordinates and how Descartes’ system 
helps in studying all of plane geometry.  In particular, you will study various 
algebraic representations of a straight line in Sec. 3.3.  In Sec. 3.4 you will 
work with graphs, which are a geometric way of viewing functions, using the 
Cartesian system.  As you go through Sec. 3.3 and Sec. 3.4, you would see 
the close interaction between algebraic and geometric representations of 
various curves. 
 
Up to this point, you would have thought that Descartes was the only person to 
come out with a method for positioning points in a plane.  However, in Sec. 3.5 

 



 

 

59 

Unit 1                                                                       2D Coordinate Systems 

you will study another system for locating points in a plane, which is very 
important in your study of Calculus and Analysis.  This is the polar coordinate 
system, known from ancient times in a limited non-formal way.  This system 
will be very useful for studying Unit 4 also.   
 

Objectives 

After studying this unit, you should be able to: 

• explain what a Cartesian coordinate system is; 

• use the Cartesian system to give different algebraic representations of 
straight lines in a plane; 

• geometrically represent functions by their graphs in the Cartesian 
coordinate system; 

• explain the polar coordinate system, and its relationship with the 
Cartesian coordinate system in which the origin and pole coincide, and 
the x -axis and polar axis coincide; 

• geometrically represent functions by their graphs in the polar coordinate 
system. 

 

3.2 THE CARTESIAN COORDINATE SYSTEM 
 
You would be familiar with the concepts of point, line, circle, etc.  You would 
also recall that real numbers are represented on a number line like the one in 

Fig.1.  Here O  denotes the number zero, the other points on OX  denote the 

positive real numbers and the points on XO ′  denote the negative real 

numbers.  If we choose the point A  on OX  such that the length of OA  is 1 

unit, then A  denotes 1 on this line. 
 

 
Fig. 1: The real number line 

 

So, for example, π  will be denoted by B , where the distance OB  is 

approximately 3.1416.  Similarly, 3−  will be denoted by C , where the 

distance OC  is thrice the distance OA , with C  on XO ′ , that is, the ‘negative’ 
side.   
 
Remark 1: Note that the number line need not be shown horizontal.  It could 
also be vertical or at any other angle to the horizontal.   
 
Now suppose you put a dot on a sheet of paper [as in Fig.2 (a)], which I can’t 
see.  Now, I ask you to describe the position of the dot on the paper in a 
manner that I can visualise it (remember, I can’t see the paper and the dot).  
How would you do this?  Perhaps you would say, “The dot is in the upper half 
of the paper”, or “It is near the left edge of the paper”.  Do any of these 
statements fix the position of the dot precisely and unambiguously?  No!  But, 
if you say “The dot is 2 cm away from the left edge of the paper”, it helps to 
give me some idea, but still does not fix the position of the dot precisely.  But, 
if you also tell me that the dot is also at a distance of 9 cm above the bottom 
edge, then I can tell exactly where the dot is! 
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  Fig. 2: Positioning the dot precisely requires knowing its distance                                    
    from at least two non-parallel lines 

 
So, what did you do?  You fixed the position of the dot by specifying its 
distance from two lines perpendicular to each other, namely, the line along the 
left edge of the paper, and the line along the bottom edge of the paper       
[Fig. 2 (b)].   
 
In fact, this is the basis of the Cartesian coordinate system.  We can take any 
point O  in a plane and fix it.  Then draw a horizontal line OXX′  and a vertical 

line OYY′  through O .  These lines divide the whole plane of the paper into 
four parts, which are called quadrants (first, second, third and fourth), as 
shown in Fig. 3. 

 
 

Fig. 3: The x-axis, y-axis and the four quadrants 

 

The point O  is called the origin and the lines OXX′  and OYY′  are called the 

x-axis and the y-axis, respectively.  Starting with the origin O , we mark off 

the points  K,3,2,1  at equal distances along OX  as in Fig. 1, and 

K,3,2,1 −−− , similarly, on XO ′ .  In a similar manner, we write K,3,2,1  

along OY  and K,3,2,1 −−−  along YO ′ .  OX  and OY  are the positive 

parts of the axes (plural of axis), and XO ′  and YO ′  are the negative parts.   

Now, recall how we represent any point on a plane, using this frame.  Let P  
be any point in the plane.  We have already drawn the origin and the axes.  

Through P  we draw lines PL  and PM  perpendicular to the x-axis and y-axis, 
respectively (see Fig. 4), where L  lies on the x-axis and M  lies on the y-axis.  
Then PL  is the distance of P from the x-axis and PM  is the distance from the 

y-axis.  Also note that OLPM =  and OMPL = . 
 

AB  denotes the length of  

the segment AB . 
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Fig. 4 

 
The number that L  represents on the x-axis is called the x-coordinate (or 
abscissa) of P .  The number that M  represents on the y-axis is called the   

y-coordinate (or ordinate) of P .  The two taken together are known as the 

coordinates of P , and are written as a pair, )OM,OL( .  Thus, if 4OL −=  

units and 2OM =  units, the coordinates of P  are )2,4(− .  The expression 

2)4,P(−  indicates that P  has coordinates 4−  and 4,2 −  being the              

x-coordinate and 2  being the y-coordinate.  Note that we write the x-
coordinate first and then write the y-coordinate.  This is a convention accepted 

by all users of this system.  Using this convention, the point )4,1( −  will not be 

the same as the point )1,4(− , as you can see in Fig. 5. 

 
This way of representing points in a plane is called the two-dimensional 
Cartesian coordinate system, after the mathematician Descartes who 
invented it.  Here’s an important related remark. 
 
Remark 2: i) Points for which both coordinates are positive lie in Quadrant I. 
ii) Points for which both coordinates are negative lie in Quadrant III. 
iii) Points for which the x-coordinate is negative and y-coordinate is positive 

lie in Quadrant II. 
iv) Points for which the x-coordinate is positive and y-coordinate is negative 

lie in Quadrant IV. 
v) Points on the axes do not lie in any quadrant. 
 
So, uptil now we have seen that if we know the position of a point P  on a 

plane, then we can find a pair of real numbers )y,x(  corresponding to P  in 

the Cartesian coordinate system.  The first number in the pair is called the     
x-coordinate and the second is called the y-coordinate, and the pair are called 

the coordinates of P . 
 
Now, what about the other direction, i.e., given any pair of real numbers 

)y,x( , can we find a unique point P  in the plane for which y,x  are its 

coordinates?  To answer this, let us consider some pair, say, )2,3( − .  Let A  

and B  denote 3  along OX  and 2−  along YO ′  in Fig. 6. 

 
Fig. 6 

The points )y,x(  and 

)x,y(  are different 

unless yx = . 

Fig. 5 
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Through A  draw a line parallel to the y-axis, and through B  draw a line 

parallel to the X-axis.  What are the coordinates of the point ,P  at which they 

intersect?  You can check that they are )OB,OA( , that is, )2,3( − . 
 

In the same way, you can now see how, given any RR×∈y)(x, , there is a 

unique point P  in the plane such that the coordinates of P  are y)(x, . 
 

Thus, you have seen that there is a 1-to-1 correspondence between points in 
a plane and a Cartesian coordinate system in which OXX′  and OYY′  are 
fixed. 
 

Try these exercises now. 
 
 

E1) Plot the points with Cartesian coordinates )0,45.3(),5.2,2(),5.2,2( −− , 

)45.3,0( − , respectively. 

 

E2) In which quadrants of the plane would )y,x(  lie if: 

 i) 0xy > ? 

 ii) 0xy < ? 

 iii) 0xy = ? 

 Justify your answers. 
 

 

Let me end this section with an important remark. 
 

Remark 3: In this section, one of the points you studied was how to mark off 
points along the x  and y  axes.  In the examples used here, you have used 

the same unit along the x-axis and the y-axis.  So, for example, if 1OA =  unit 

along the x-axis, and 1OB =  unit along the y-axis, then OBOA = .  However, 
this need not be so.  You can use one unit along the x-axis and another along 
the y-axis (see Fig. 7). 
 
Let us now look at the way lines in a plane can be represented in the 
Cartesian system. 
 

3.3  EQUATIONS OF A LINE  
 
In this section we aim to discuss ways of representing straight lines in two-
dimensional spaces algebraically. Since you may be familiar with the matter 
from school, we shall cover the ground quickly.  We start with lines parallel to 
either of the axes.   
 

3.3.1 Lines Parallel to the Axes 

Consider a line L  parallel to the x-axis, which intersects the y-axis in )2,0(A .  

Now, take any point )y,x(P  on it, as in Fig. 8.  You can see that the 

perpendicular from P  onto the y-axis is along the line L , and hence intersects 

the y-axis in A .  Thus, 2y = .  Thus, for any point P  on the given line, we find 

that its ordinate is 2 . 
 

Conversely, take any point Q  with coordinates )2,x( .  This means that the 

perpendicular from Q  onto the y-axis intersects it at the point )2,0(A .  So, 

A Cartesian coordinate 
system represents the 
set RR× . 

Fig. 7: The point 
1)3,(−  in a Cartesian 

coordinate system in 
which the unit along 
the x-axis is different 
from the unit along 
the y-axis. 
 

A two-dimensional space 
is a representation of a 
plane along with a 
coordinate system. 

 

 
Fig. 8: The line L  
represents 2y = . 
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this perpendicular is along L .  Therefore, Q  will lie on L .  This is regardless 

of the value of x .  
Thus, this line L  consists precisely of all those points whose coordinates 

)y,x(  satisfy 2y = .  So L  represents the equation 2y = . 

 
Similarly, for any line parallel to the x-axis, which intersects the y-axis in 

R∈a),a,0( , its equation will be  

ay = .                   …(1) 

 
What do you expect the equation of a  line parallel to the y-axis to be?  Think 

about this while doing the following exercises. 
 
 

E3) Find the equation of a line parallel to the y-axis, and which intersects the 
y-axis in  

 i) )0,3(−  

 ii) )0,b( , for some constant b . 

 
E4) What are the equations of the coordinate axes? 
 

 
If you have solved E3, you would have seen that any line parallel to the y-axis 
is of the form  

bx = ,  for some R∈b .                …(2) 
 
Now let us obtain four forms of the equation of a line which is not parallel to 
either of the axes.   
 

3.3.2  Slope-intercept Form 

Consider any line not parallel to either axis.  It will make an angle, say 

2/,0, π≠αα , with the positive direction of the x-axis, measured in the     

anti-clock-wise direction, and will cut the y-axis in )c,0(A , say.  Then, if 

)y,x(P  is any point on this line, from Fig. 9 you can see that 
x

cy
tan

−
=α .  

Thus, ctanxy +α= ,  

i.e., cmxy += , where α= tanm .               …(3) 

m  gives the slant of the line L  to the horizontal.  It is called the slope of L .  

c  is called the intercept of L  on the y-axis.  Thus, cmxy +=  is called the 

slope-intercept form of the equation of a line. 
 
Let us consider an example. 
 
Example 1: Find the equation of the line which makes the same angle with the 

x-axis as with the y-axis, and which intercepts the y-axis in ),0( π− . 

Solution: Let the angle made by the line with the x-axis be α .  Then consider 

Fig. 10.  The line passes through ),0(A π− .  Let the line intersect the x-axis in 

P .  If we draw AM  parallel to OX , then α=∠MAP .   

Also, we are given that α=∠PAY .  Thus, 2/2 π=α .  Hence 4/π=α .  So, 

the equation of the line is )(
4

tanxy π−+
π

= , that is,  

π−= xy . 

 

‘Intercept’ on an axis is 
the distance from the 
origin of the point at 
which the line cuts the 
axis concerned. 

Fig. 9: L  is given by 
cαtanxy += . 

 



 

 

64 

Block 1                                                           Essential Preliminary Concepts 

 
Fig. 10 

 
*** 

 
Try some exercises now. 
 
 

E5) Find the equation of the line that cuts off an intercept of 1 from the 

negative direction of the y-axis, and is inclined at o120  to the x-axis. 
 
E6) What is the equation of the line passing through the origin and making 

an angle θ  with the x-axis, where 
2

,0
π

≠θ ? 

 

 
Let us now see another way of representing lines algebraically, closely related 
to the form (3). 
 

3.3.3 Point-slope Form  

Now, suppose we know the slope m  of a line but not the intercept it makes 

with the y-axis.  We also know that a point )y,x( 11  lies on the line.  Then, can 

we obtain the line’s equation?  Let )y,x(P  be any point on the line, with slope 

α= tanm , and )y,x(Q 11  be the given point.  Now, from Fig. 11, we see that  

 

Fig. 11: 
xx

yy
m

1

1

−

−
= . 

 

1

1

1

1

xx

yy

xx

yy
tanm

−

−
=

−

−
=α= .  (Note that xx1 ≠ , since the line is not parallel 

to the y-axis.)  Thus, 

)xm(xyy
11

−=− ,                 …(4) 

which is the point-slope form of a line. 
 
Let us consider an example. 
 
Example 2: Find the equation of a line L  which is parallel to the line  
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3xy3 −= , and which passes through 







−−

7

1
,1 . 

Solution: Since L  is parallel to 3xy3 −= , that is, 
3

1
x

3

1
y −= , its slope 

will be the same as the slope of this line, namely, 
3

1
.  Also, we know that L  

passes through 







−−

7

1
,1 .  Thus, by (4), its equation is  

))1(x(
3

1

7

1
y −−=








−− , 

3

1
x

3

1

7

1
y +=+⇔  

21

4
x

3

1
y +=⇔ . 

*** 
 
Try an exercise now which helps you see the close relationship between the 
forms (3) and (4). 
 
 

E7) If L  is a line with slope m , and which cuts off an intercept of length c  
from the y-axis, how would you use (4) to obtain its equation?  

 

 
Let us consider yet another form now. 
 

3.3.4  Two-point Form  

Now, suppose we have a line which is not parallel to the axes but we don’t 
know its slope.  Can we find its equation?  Yes, if we know two distinct points 
lying on it.  Let us see how.   
 

Let )y,x(P 11  and )y,x(Q 22  be two distinct points on a line L , which is not 

parallel to the axes.  Let )y,x(R  be any point on it (see Fig. 12). 

 

Fig. 12: 

12

1

12

1

xx

xx

yy

yy

−

−
=

−

−
. 
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Then the slope of L , say m , will be 
xx

yy
m

1

1

−

−
= .  (Note that 0xx1 ≠− .  

(Why?)) 

You can see that m  will also be 
12

12

xx

yy

−

−
. 

Thus,  
12

12

1

1

xx

yy
m

xx

yy

−

−
==

−

−
 

12

1

12

1

xx

xx

yy

yy

−

−
=

−

−
⇔   (Note that 12 yy ≠ .) 

12

1

12

1

xx

xx

yy

yy

−

−
=

−

−
⇔                 …(5) 

which is known as the two-point form of the line. 

As you can see, the slope of the line is actually known ─ it is 
12

12

xx

yy

−

−
. 

Also, its intercept on the y-axis, which can be obtained by finding the 

intersection of (5) with the y-axis, i.e., 0x = , is given by  

12

1

12

1

xx

x

yy

yy

−

−
=

−

−
 

i.e., 








−

−
−=

12

12
11

xx

yy
xyy . 

 
Let us consider an example. 
 
Example 3: Find the equation of the line whose intercept on the x-axis is 2  

and which passes through 







π

π
,

1
. 

Solution: We know that the line required passes through )0,2(  and 







π

π
,

1
.   

Hence, using (5), its equation is 
π−

π−
=

−π

−

/12

/1x

0

0y
 

)1x(
12

y −π
−π

π
=⇔ . 

*** 
 
Try an exercise now, which actually leads you to another well known form of 
the equation of a line. 
 
 

E8) i) Suppose we know that the intercept of a line on the x-axis is 2 and 

on the y-axis is 3− .  Then show that its equation is 1
3

y

2

x
=− . 

  (Hint: See how you can use (5).) 
 

 ii) More generally, if a line L  cuts off an intercept )0(a ≠  on the       

x-axis and )0(b ≠  on the y-axis (see Fig.13), then show that its 

equation is  

  1
b

y

a

x
=+                     …(6) 

   

 

Fig. 13: L  is given by 

1
b

y

a

x
=+ . 

 
(6) is called the intercept 
form of the equation of L. 
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Now, have you noticed a characteristic that is common to all the equations of 
lines you have studied here?  They are all linear in two variables, that is, of the 

form 0cbyax =++ , where R∈c,b,a  and at least one of a  and b  is       

non-zero.  This is not a coincidence, as the following theorem tells us.  (We 
shall not formally prove this result.) 
 
Theorem 1: A linear equation in two variables represents a straight line in two-
dimensional space.  Conversely, the equation of a straight line in the plane is a 
linear equation in two variables. 
 

So, for example, 01y3x2 =−+  represents a line.  What is its slope?  To find 

this, we rewrite it as 
3

1
x

3

2
y +−= .  The slope is the coefficient of x , namely 

3

2
− .  Do you agree that its intercepts on the x  and y  axes are 

2

1
 and 

3

1
, 

respectively?  You can check this by finding its intersection with the x  and y  

axes respectively. 
 
Why don’t you try an exercise now? 
 
 

E9) i) Find the equation of the line parallel to 01xy =++  and passing 

through )0,0( . 

 ii) What is the equation of the line perpendicular to the line obtained 

in (i) above, and passing through )1,2( ? 
 

 
Let us now stop our discussion on lines and linear equations, and move on to 
more general equations.  We shall discuss a concept that will help us to 
represent functions geometrically in the rest of the course. 
 

3.4  GRAPH OF A FUNCTION  
 

In Unit 2, you studied functions.  There, you saw that the function f  is a 

subset of the Cartesian product BA ×  with special properties, where A  is the 
domain of f  and B  is the co-domain of f .  In this section we shall look at the 

geometrical representation of f , using Cartesian coordinates, when 

RR×⊆× BA . 

 
In the previous section you have already studied this for one type of function.  
Do you agree?  Isn’t a line a representation of a function from R  to R ?  For 

instance, take any line, say 7y3x2 += .  This is the set of points 

RRR ×⊆








∈






 −
x

3

7x2
,x .  Check that this relation satisfies all the 

requirements of a function.  So, this can also be written as the function 

)7x2(
3

1
)x(f::f −=→ RR . 

So, this function is represented by the line 7y3x2 += , i.e., 
3

7
x

3

2
y −= , 

which has slope  
3

2
 and y-intercept 

3

7
− . 
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In general, the function RRR ∈+=→ b,a,bax)x(f::f , is represented by a 

line with slope a  and y-intercept b , as in Fig. 14.  This representation of f  is 

called the graph of f . 

 
More generally, given any function from R⊆A  to R⊆B , we have the 

following definition. 

 
Definition: Let f  be a function with domain A  and co-domain B , where A  

and B  are subsets of R .  The graph of f  is the subset { }Ax|))x(f,x( ∈  of 

RR× . 

 
Thus, when this set is represented using the Cartesian system, we see it as 
the geometrical view of the function.  As you have seen, if the function is a 
linear polynomial, its graph is a straight line.  Let us consider some more 
examples. 

 
Example 4: Draw the graph of the function 

9)3(f,4)2(f,1)1(f:}10,,2,1{}3,2,1{:f ===→ K . 

Solution: We plot the points in the set )}9,3(),4,2(),1,1{(  in a Cartesian 

system, as in Fig. 15.  Thus, the graph of f  comprises the three points shown 
in Fig. 15. 

*** 
 

Example 5: Draw the graph of the constant function 1)r(f::f =→ RR . 

Solution: The graph of this function is the set of points representing 

}r|)1,r{( R∈ , that is, the line 1y =  shown in Fig. 16. 

*** 
 
Example 5 leads into the following remark. 
 

Remark 4: Look at the graph in Fig. 16.  Take any value b  along the y-axis, 

1b ≠ .  You can see that the line by =  does not intersect the graph at all.  But  

b  lies in the co-domain R  of f .  What does this show?  It tells us that f  is 
not surjective (see Unit 2).  More generally, by looking at the graph of a 

function, you can tell it is not onto if the line by =  does not intersect the graph 

for even one value of b  in the co-domain of the function. 
 
Here’s an example about checking surjectivity. 
 
Example 6: Draw the graph of the function given in E8(i), Unit 2.  Hence, 
check whether this function is onto, by inspecting its graph. 

Solution: 
1n

n
)n(f::f

+
=→QN . 

Thus, the graph is as in Fig. 17.  Note that we have used different units along 
the x-axis and along the y-axis, for convenience. 
 
You can see that the graph comprises infinitely many points, getting nearer 

and nearer to the line 1y = , but lying below it even when n  gets very very 

large. 
 

Note that 1 lies in the co-domain Q  of f , but 1y =  does not intersect the 

graph of f .  This tells us that f  is not onto. 

Fig. 14: L represents  
baxf(x)::f +=→ RR , 

where ααααtana = . 

Fig. 15 

 

Fig. 16: 1y = . 
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Fig. 17: The graph of 
1n

n
f(n)::f

+
=→ QN . 

 

*** 
 

Example 7: Draw the graph of the identity function from R  to R . 

Solution: r)r(f::f =→ RR . 

Thus, the graph is the set }r|)r,r{( R∈ , which is drawn in Fig. 18.  You can 

see that this is the line xy = . 

*** 
 
Example 7 leads into an important point. 
 
Remark 5: If you inspect the graph in Fig. 18 and take any line parallel to the 

x-axis, say by = , it will intersect the graph in one point only, namely, )b,b( .  

This property of the graph tells us that f  is 11−  (see Unit 2).  More generally, 

if R⊆⊆⊆⊆BA:f → , and byBb =∈∈∈∈∀∀∀∀  intersects the graph of f  in at most 

one point, then f  is 11 − .  If the intersection is two or more points for even 

one Bb∈ , then f  will not be 11− . 

 

Example 8: Draw the graph of the function 2x)x(g::g =→ RR .  Hence, 

decide whether  
i)  g  is 11−  or not,  

ii)  g  is onto or not. 

Solution: The graph of g  is the set of points }x|)x,x{( 2 R∈ .  As you can 

see, this is the parabola 2xy = , shown in Fig. 19. 

 

 
Fig. 19: The curve represents }x|)x{(x,

2
R∈∈∈∈ . 

Fig. 18: The graph of Fig. 18: The graph of Fig. 18: The graph of Fig. 18: The graph of 
rf(r)::f =→ RR ....    
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i) From the graph, you can see that, for example, the line 1y =  intersects 

the graph in two points )1,1(  and )1,1(− .  Hence g  is not 11− . 

ii) From the graph you can see that for any α=<α∈α y,0,R  does not 

intersect the graph.  Hence g  is not onto. 

*** 
 

Example 9: Draw the graph of RR→:f  defined by x)x(f = , if 0x ≥  and 

x)x(f −= , if 0x < .  Further, by inspecting the graph, decide if f  is bijective or 

not. 

Solution: To draw the graph of this function notice that it is defined differently 

for negative real numbers, 
−
R , and for non-negative numbers, }0{∪+R .  So, 

the graph is the set union }x|)x,x{()}0,0{(}x|)x,x{( −+ ∈−∪∪∈ RR .  It is 

shown in Fig. 20. 

 
Fig. 20: Graph of |x| . 

 

You can see that on 
+
R  it is the line xy =  and on 

−
R  it is the line xy −= . 

Further, by looking at it, you can see that the line 
2

1
y =  intersects it in two 

points.  Hence f  is not injective, and thus, not bijective. 

*** 
 
Why don’t you do some related exercises now? 
 

 

E10) Draw the graphs of the functions given below: 

 i) 5n)n(f::f +=→ NN ; 

 ii) 5n)n(g::g +=→ ZZ ; 

 iii) 5r)r(h::h +=→ RR . 

 What is the difference you note in the three graphs above?  Include 
differences regarding injectivity and surjectivity. 

 

E11) Draw the graph of 




<−

≥
=→

0x,1

0x,1
)x(f::f RR . 

 Hence decide whether f  is bijective or not. 
 

E12) Draw the graph of the function RR→:f  which represents the line 

given by  1
2

yx
=+

π
.  Also check whether f  is bijective or not. 

 

 

}0x|x{ <∈=− RR  

}0x|x{ >∈=+
RR  

In Example 9 you can 
also show that f  is not 
bijective by showing that 
it is not surjective. 

f  defines the modulus  
function,  





<−

≥
=

0x,x

0x,x
|x|  
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So far we have been working with Cartesian coordinates.  But there is another 
very useful coordinate system for locating points in a plane.  Let’s see what it 
is. 
 

3.5  THE POLAR COORDINATE SYSTEM 
 
You have come across the concepts of ‘angle’ and ‘radius’ before.  Using 
these concepts one can determine the position of any point in a plane.  Let us 
see how. 
 

We first fix a point O  in the plane called the pole.  Then we fix an axis, usually 

a horizontal ray through O , called the polar axis, shown as OA  in Fig. 21.  

Then we can locate any point P  in the plane, if we know the distance OP , say 

r , and the angle AOP , say θ  radians.  r  is called the radial coordinate, or 

radius, of P  and θ  is called the angular coordinate, or polar angle, of P .  

Thus, given a point P  in the plane, we can represent it by a pair of 

coordinates ),r( θ , where r  is the “directed distance” of P  from O  and θ  is 

AOP∠ , measured in radians in the anticlockwise direction.  We use the 
term “directed distance” because r  can be negative also.  For instance, the 

point P  in Fig. 22 can be represented by 






 π5

4
,5  or 







 π
−

4
,5 , because the 

positive distance is along the ray which makes an angle 
4

5π
 with the polar 

axis.  In general, given ),r( θ , r  is positive if it is measured along the ray 

which makes an angle θ  with the polar axis, and r  is negative if it is 

measured along the ray which makes an angle θ+π  with the polar axis.   

 

Note that by this method the pole O  corresponds to ),0( θ , for any angle θ . 
 

Thus, you have seen that for any point P , there is a pair of real numbers 

),r( θ  that corresponds to it.  They are called the polar coordinates of P . 

These coordinates are not unique, as you have seen. 
 

Now, if we keep θ  fixed, say 3/π=θ , and let r  take on all real values, we get 

the line OP  (see Fig. 23), where 3/AOP π=∠ .   
 
 

Similarly, keeping r  fixed, say 2r = , and allowing θ  to take all real values, 

the point ),2(P θ  traces a circle of radius 2 , with centre at the pole            

(see Fig. 24).   
 

Remark 6: A negative value of θ  means that the angle has magnitude || θ , 

but is taken in the clockwise direction.  Thus, for example, the point 






 π
−

2
,2  

is also represented by 






 π

2

3
,2 . 

 

As you have probably guessed, the Cartesian coordinates )y,x(  and polar 

coordinates ),r( θ  are very closely related.  Can you find the relationship?  

From Fig. 25 you would agree that the relationship is  

θ=θ= sinry,cosrx .                  …(7) 

This gives us   

Fig. 21: Polar 
coordinates of P with 

O as pole, OA  as polar 
axis, r as the radius of 
P and θ  as the polar 

angle of P. 

Fig. 24: The circle 2r = . 

Fig. 22: P’s polar 

coordinates are 







−

4
5,

ππππ
.   

A point has many different 
pairs of polar coordinates. 
 

 

Fig. 23: The line L is given 

by  π/3θ = . 
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x

y
tan,yxr 122 −=θ+=                  …(8) 

 
 

Fig. 25: Polar and Cartesian coordinates. 

 
Note that the origin and the pole are coinciding here, as are the x-axis and the 
polar axis.  This is usually the situation. 
 
Remark 7: If the polar coordinates of a point are to be unique, we need to 

restrict θ  to π<θ≤ 20 .  (The pole will then have the polar coordinates 

).)0,0(   This restriction is consistent with the uniqueness in the Cartesian 

system, as you can see. 
 
We use (7) and (8) often while dealing with equations, particularly where the 

relationship between two points is easily given in terms of r  and θ .  For 

example, the Cartesian equation of the circle 25yx 22 =+ , reduces to the 

simple polar form 5r = .  So we may prefer to use this simpler form rather than 
the Cartesian one.   
 
The equation of a curve in terms of r  and θ  is called its polar equation.  You 

will often use this form in this course and other mathematics courses.  To give 
you a flavour, let us consider an example. 
 

Example 10: Draw the graph of the curve θ= sinr . 

Solution: θ= sinr  is the curve given by yyx 22 =+ , in Cartesian form.  This 

is the same as the equation 
4

1

2

1
yx

2

2 =







−+ , which is a circle with radius 

2

1
  

and centre 








2

1
,0 .  We have graphed this in Fig. 26.  

*** 
 
Now, try the following exercises to get used to polar coordinates. 
   
 

E13) Draw the graph of the curve 1cosr =θ  
 
E14) Find the Cartesian forms of the equations 

 i) θ= sinr3r2 . 

 ii) )cos1(ar θ−= , where a  is a constant. 
 

Fig. 26: The graph of 
θsinr = . 
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The history of the development, and use, of the polar coordinate system is 
very interesting.  In fact, it goes back to the 2nd century BC, when the ancient 
Greek astronomer Hipparchus applied it for locating the stars.  Nearer to our 
times, the 17th century German mathematician, Jacob Bernoulli, is credited 
with formalising this system, and using it to study curves. 
 
The polar coordinate system, is useful for studying various properties of 
curves, and for drawing these curves.  You will find it immediately useful in the 
next unit, while studying the geometric representation of a complex number. 
 
Let us now summarise what you have studied in this unit. 
 

3.6  SUMMARY 
 
In this unit, we have briefly run through certain elementary concepts of       
two-dimensional analytical geometry.  In particular, we have covered the 
following points: 
 
1. The 2D Cartesian coordinate system represents two-dimensional space 

giving a one-to-one correspondence between the points in space and 

those in RR× . 
 
2. In the Cartesian system any line parallel to the x-axis is represented by  

ay = , and any line parallel to the y-axis is represented by bx = , for 

some constants a  and b . 

 
3. The equation of a line in  

i) slope-intercept form is cmxy += , 

ii) point-slope form is )xx(myy 11 −=− , 

iii) two-point form is 
12

1

12

1

xx

xx

yy

yy

−

−
=

−

−
, 

iv) intercept form is 1
b

y

a

x
=+ . 

 
4. The polar coordinate system: A point P  in a plane can be represented 

by a pair of real numbers ),r( θ , where r  is the directed distance of P  

from the pole O , and θ  is the angle that OP  makes with the polar axis, 

measured in radians in the anticlockwise direction.  r  (called the radius) 
and θ  (called the polar angle) are the polar coordinates of P .  They 

are related to the Cartesian coordinates )y,x(  of P  by 
22

yxr +=  

and 
x

y
tan 1−=θ . 

 

5. r  and θ  uniquely represent points in a plane only if we insist that either   

π<θ≤ 20 , or π<θ≤π− . 
 
In the next unit we shall discuss numbers that are represented by the 
Cartesian and polar systems.  But, before going to it, please make sure that 
you have achieved the unit objectives listed in Sec. 3.1.  One way of 
checking this is to ensure that you have done all the exercises in the unit.  Our 
solution to these exercises are given in the following section. 
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3.7  SOLUTIONS/ANSWERS 
 

E1) The points )45.3,0(S),0,45.3(R),5.2,2(Q),5.2,2(P −−−  are shown in 

Fig. 27. 
 

E2) i) 0y,0x0xy >>⇒>  or 0y,0x << . 

  Thus, )y,x(  will lie in the Quadrants I or III. 

 

 ii) Arguing as in (i) above, )y,x(  will lie in the Quadrants II or IV. 

 

 iii) 0x0xy =⇒=  or 0y = . 

  Thus, )y,0()y,x( =  or )0,x()y,x( = .  Accordingly, the point lies  

  on the y-axis or the x-axis. 
 

E3) i) Consider the line L  in Fig. 28.  This is parallel to the y-axis and 

passes through )0,3(− .  Take any point )y,x(P  on L .  Draw a 

perpendicular from P  onto the y-axis, meeting it in B .  Then 

3PBx −== .  Thus, any point on L  is of the form R∈− y),y,3( .  

Conversely, if you plot any point R∈− r),r,3( , it will lie on L .  

Thus, the equation of L  is 3x −= . 
 

 ii) Arguing as in (i) above, the equation of this line will be bx = . 
 

E4) The x and y-axes are given by 0y =  and 0x = , respectively. 

 
E5) In Fig. 29 we have drawn the line.  Its equation is cmxy += , where 

1c −=  and 3120tanm −== o . 

 Thus, the required equation is )1x3(y +−= . 

 

E6) Here 0c = , since the line intersects the y-axis in )0,0( .  Thus, the 

equation is θ= tanxy . 
 

E7) We are given that the slope of L is m , and )c,0(  lies on it.  Thus, using 

(4), we get its equation as )0x(mcy −=− , that is, cmxy += . 
 

E8) i) )0,2(  and )3,0( −  lie on the line.  Thus, its two-point form is  

  
20

2x

03

0y

−

−
=

−−

−
, that is, )2x(3y2 −= . 

  We can rewrite this as 1
3

y

2

x
=− . 

 ii) )0,a(  and )b,0(  lie on the line.  Thus, its equation is  

  1
b

y

a

x

a0

ax

0b

0y
=+⇔

−

−
=

−

−
. 

 

E9) i) The slope of 01xy =++  is 1− .  Thus the slope of any line 

parallel to the given line is 1− .  Thus, the line required is of the 

form 0cxy =++ , where R∈c .  Since )0,0(  lies on it, 

0c00 =++ , that is, 0c = .  Thus, the required line is 0xy =+ . 

Fig. 28: L  represents 

3x −= . 

Fig. 29: 1)x3(y +−=  

 

 

Fig. 27 
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 ii) The slope of the line 0xy =+  is 1− , that is, 






 π
+

π

42
tan .  Thus, 

the angle that any line perpendicular to it makes with the x-axis is 

4

5
,

4242

ππ
=

π
±






 π
+

π
.  You should check that both these values 

give the same line.  So, the slope of the line will be 1
4

tan =
π

.   

  Thus, the equation of the line required is of the form cxy += , 

where R∈c .   

  Since )1,2(  lies on it, c21 += , so that 1c −= .   

  Thus, the line required is 1xy −= . 

 

E10) The graphs of g,f  and h  are shown in Fig. 30 (a), (b), (c), respectively. 

 
       (a)      (b)             (c) 

 
Fig. 30 

  
 As you can see, in Fig. 30(a), the graph shows infinitely many points, all 

lying in the first quadrant.  In Fig. 30(b), you have these points as well as 
one more on the x-axis and on the y-axis, four in the second quadrant, 
and infinitely many more in the third quadrant.  In Fig. 30(c), you find the 

line 5xy += .  Also, all the points in the graphs of f  and g  actually lie 

on this line.  Thus, the graph of f  is a proper subset of the graph of g , 

which is a proper subset of the graph of h . 
 
 Considering injectivity, you can check that all three are injective. 

Considering surjectivity, (i) is not surjective because, for example, N∈1 , 

but 1y =  does not intersect the graph.  However, you can check that (ii) 

and (iii) are onto. 
 

E11) Here, the graph of f  comprises two parts, namely, 1y =  for }0{∪+R , 

and 1y −=  for 
−
R .  Hence, the graph is as shown in Fig. 31.  We circle 

the point 0)1,(−  to show that it is not included. 

   

 Looking at the graph, you can see that, for example, R∈0 , but 0y =  

(that is, the x-axis) does not intersect the graph.  Hence, f  is not 11− .  
Hence, f  is not bijective.   

 
 You can also show it is not bijective by checking that it is not onto. 
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Fig. 31: The graph of 





<−

≥
=→

0x1,

0x1,
f(x)::f RR  

 
E12) The given equation is linear.  Hence it is represented by a line.  Now, 

comparing the given equation with that in E8(ii), you can see that the 

intercepts of this line on the x and y-axes are π  and 2 , respectively.  
Thus, its graph is as shown in Fig. 32. 

 You can check the graph and show that it is bijective. 
 

E13) The curve is 1x = , if we convert to Cartesian coordinates.  This is the 
line L  in Fig. 33. 

 

E14) i) Since 222 yxr +=  and θ= sinry , the equation becomes  

  y3yx 22 =+ . 

 
 ii) The equation becomes  

  














+
−=+

22

22

yx

x
1ayx , since 

22 yx

x

r

x
cos

+
==θ  

  0)yxx(ayx
2222 =+−++⇒ .  

 

Fig. 32 

Fig. 33 
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4.1 INTRODUCTION 
 

In your studies so far you have dealt with natural numbers, integers, rational 
numbers and real numbers.  You would also know that a shortcoming in N  led 
mathematicians of several centuries ago to define negative numbers.  Hence, 

the set Z  was born.  For similar reasons Z  was extended to Q  and Q  to R  

at various stages in history.  Then came a point when mathematicians found 

that R  was not enough, for example, when looking for solutions of equations 

like 01x 2 =+ .  Since 01x 2 =+  has no solution in R , for a long time it was 
accepted that this equation has no solution.  The Indian mathematicians 
Mahavira (in 850 A.D.) and Bhaskara (in 1150 A.D.) clearly stated that the 
square root of a negative quantity does not exist.  Then, in the 16th century the 
Italian mathematician Cardano tried to solve the quadratic equation  

040x10x 2 =+− .  He found that 155x1 −+=  and 155x 2 −−=  satisfied 

the equation.  But then, what is 15− ?  He, and other mathematicians, tried 

to give expressions like this some meaning.  Even while making mathematical 
models of real life solutions, the mathematicians of the 17th and 18th centuries 
were coming across more and more examples of equations which had no real 
roots.  To overcome this shortcoming, the concept of a complex number slowly 
came into being.  It was the famous mathematician Gauss (1777-1855) who 
used, and popularised, the name ‘complex number’ for numbers of the type 

155 −+ . 

Fig. 1: Cardano (1501 - 
1576) acknowledged 
the existence of 
imaginary numbers in 
his book Ars Magna, 
published in 1545 
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In the early 1800s, a geometric representation of complex numbers was 
developed.  This representation finally made complex numbers acceptable to 
all mathematicians.  Since then complex numbers have seeped into all 
branches of mathematics.  In fact, they have even been found necessary for 
developing several areas in modern physics and engineering. 
 
In this unit, you will have an opportunity to familiarise yourself with complex 
numbers in Sec. 4.2.  There are several different ways of representing 
complex numbers, which you shall study in Sec. 4.3.  Next, in Sec. 4.4, you 
will study the basic algebraic operations on complex numbers.  Finally, in Sec. 
4.5, we shall acquaint you with De Moivre’s theorem, and you will see why this 
is considered so important.   
 
We would like to reiterate that whichever mathematics course you study, you 
will need the understanding of complex numbers that we have tried to give you 
through this unit.  So please go through it carefully, do every exercise as you 
come to it and ensure that you have achieved the following objectives.       
 

Objectives 

After studying this unit, you should be able to: 

• define a complex number; 

• describe the algebraic, geometric and polar representations of a complex 
number; 

• add, subtract, multiply and divide two complex numbers; 

• apply De Moivre’s theorem to prove trigonometric identities; 

• apply De Moivre’s theorem for finding the nth roots of C∈z , where N∈n . 
 

4.2 WHAT A COMPLEX NUMBER IS  
 

When you consider the linear equation 03x2 =+ , you know that it has a 

solution, namely, 
2

3
x

−
= .  But, can you always find a real solution of the 

equation 0bax =+ , where R∈b,a  and 0a ≠ ?  Is the required solution 

a

b
x

−
= ?  It is, since 0b

a

b
a =+







 −
. 

 
Now, what happens if we try to look for real solutions of any quadratic 

equation over R ?  Consider one such equation, namely, 01x2 =− , that is, 

1x
2 = .  This equation has two real solutions, 1x =  and 1x −= .  But, what 

about the equation 01x2 =+ , that is, 1x
2 −= ?  Does this equation have a 

solution in R ?  Since the square of any real number must be non-negative, 

there is no R∈x  such that 1x
2 −= .  But, as discussed in Sec. 4.1, several 

equations like 1x
2 −=  were coming up in studies undertaken by 

mathematicians.  In fact, from about 250 A.D. onwards, mathematicians have 
been coming across quadratic equations, arising from real life situations, 
which did not have any real solutions.  It was in the 16th century that the Italian 
mathematicians, Cardano and Bombelli, started a serious discussion on 
extending the number system to include square roots of negative numbers.  In 
the next two hundred years, more and more instances were discovered in 
which the use of square roots of negative numbers helped in finding the 
solution of real-life problems. 
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In 1777, the Swiss mathematician Euler introduced the term “imaginary unit”, 

which he denoted by i .  He defined 1i −= .  Soon after, the great 
mathematician Carl Friedrich Gauss introduced the term ‘complex numbers’ 

for numbers such as ( ) ( )11i1,13i3 −+=+−=  or ( )525i2 −+−=+− .  

Nowadays, not only are these numbers accepted, they are heavily used in 
every field of mathematics and its applications. 
[For a brief history of complex numbers, you can also see the web link 
www.math.uri.edu/~merino/spring06/mth562/ShortHistoryComplexNumb
ers2006.pdf]  
 

So, what you have seen is that over the centuries the number systems were 

extended as the need was felt ─ from N  to }0{∪N , to Z , to Q , to R ,  

and then to complex numbers. 
 

Let us formally define a complex number now. 
 

Definition: i) A complex number is an expression of the form iyx + , where 

x  and y  are real numbers, and  1i −=  is the imaginary unit. 

ii) x  is called the real part, and y  is called the imaginary part, of the 

complex number iyx + .  We write )iyx(Rex +=  and )iyx(Imy += . 

Caution: i) Remember that i  is not a real number. 

ii) )iyxIm( +  is the real number y , and not the number iy . 

 

We denote the set of all complex numbers by C . 

So, �RC }y,x|iyx{ ∈+= . 

By convention, we will usually denote an element of C  by z .  So, whenever 

we will talk of a complex number z , we will mean iyxz +=  for some 

R∈y,x .  In fact, ImziRezz += . 

This is usually called the algebraic (or standard, or rectangular) 
representation of a complex number. 
 

There is another convention that we follow while writing complex numbers, 
which we give in the following remark. 
 

Remark 1: When you go through Sec. 4.4.2, you will see that R∈∀= yyiiy .  

That is why we can write the complex number iyx +  as iyx +  also. 

By convention, we write any complex number iyx + , for which Q∈y , as 

iyx + .  For example, we prefer to write i
2

3
2,i12 ++  and i

9

5
2 +  instead of 

2

3
i2,1i2 ++  and 

9

5
i2 + , respectively. 

But, if C∈z  is of the form R∈+= b,biaz , then we prefer to write z  in this 

form and not as ibaz += . 

Further, we write 1i  as i  and i0  as 0 . 

 

Now that you know what a complex number is, would you agree that the 

following belong to C? 

 2,2,i3,155,1,0 −−+  

Each of them is a complex number because  
 i000 +=  

 i011 +=  

 
Fig.2: Gauss      
(1777-1855) is often 
referred to as ‘the 
prince of 
mathematics’ 
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 15i5155 +=−+  

 i30i3 +=  

 i022 +=  

 2i02 +=−  

From these examples, you may have realised that some complex numbers 
can have their real part or their imaginary part equal to zero.  We have names 
for such numbers.  
 

Definition: Consider a complex number iyxz += . 

If 0y = , we say z  is purely real. 

If 0x = , and 0y ≠ , we say z  is purely imaginary. 

 

We usually write the purely real number i0x +  as x  only, and write the purely 

imaginary number iy0 +  as iy  only, as you may have noted in the examples 

above. 
 
Try these exercises now. 
 
 

E1) Complete the following table: 
  

z Re z Im z 

2

231 −+
 

  

i    

 0 0 

5

31+−
 

  

 

E2) Is CR ⊆ ?  Give reasons for your answer. 
 

 

So, you have seen that, given C∈+ iyx , we associate with it the unique point 
2)y,x( R∈ .  The converse is also true.  That is, given 2)y,x( R∈ , we can 

associate with it the unique complex number iyx + .  This means that the 

following definition of a complex number is equivalent to our previous 
definition. 
 
Definition: A complex number is an ordered pair of real numbers.   

In the language of sets (see Unit 1), we can say that RRC ×= . 
 
With the help of this definition can you say when two complex numbers are 
equal? 
 

Definition: Two complex numbers )y,x( 11  and )y,x( 22  are equal iff 21 xx =  

and 21 yy = . 

In other words, 2211 iyxiyx +=+  iff 21 xx =  and 21 yy = . 

Thus, two elements of C  are equal if and only if their real parts are equal 
and their imaginary parts are equal. 

So, for example, 
2

3
i

2

1

2

31
+

−
=

−+−
, but 

2

1
i

2

1

2

31
+

−
≠

−+−
. 

Here’s an exercise about this, now. 
 

0aaia ≥∀=− . 
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E3) For which real values of k  and m  is  

 i) im3i3k +=+ ? 

 ii) R∈− mki ? 
 

 
Now, given any complex number, we can define a related complex number in 
a very natural way, as follows. 
 

Definition: Let C∈+= iyxz .  The complex conjugate of z  (or simply,  the 

conjugate of z ) is the complex number iyxz −= . 

Thus, zRezRe =  and zImzIm −= . 
 

For example, if i15z +=  then i15z −= . 

Again, if 0z = , then 0zImzRe == , so that 0zImzRe == .  Hence, 0z =  
also. 
 
In Section 4.4.2 you will see one important use of the complex conjugate.  But, 
for now, here are some exercises for practice! 
 
 

E4) Obtain the conjugates of i32,i32,5,5 −+−− . 

 

E5) For which C∈z , will zz = ? 
 

E6) For any C∈z , show that zz = .  
 

 
In this section we have defined a complex number, giving the algebraic, or 
standard, method of representing complex numbers.  Now let us consider 
other ways of representing such numbers. 
 

4.3 DIFFERENT REPRESENTATIONS OF A  
 COMPLEX NUMBER  
 
You know that we can geometrically represent real numbers on the number 
line.  In fact, there is a one-one correspondence between real numbers and 

points on the number line.  You have also seen that RRC ×= .  So, using 
your understanding developed by studying Sec. 3.2, can you think of  a way of 
representing complex numbers geometrically?  Let’s see.   
 

4.3.1 Geometric Representation 

Since a complex number z  is given by a pair of real numbers, zRe  and zIm , 

your study of Unit 3 may have given you the idea that led mathematicians in 
the 18th and 19th century to think of representing complex numbers as points in 
a plane.  This geometric representation was given in the early 1800s.  It is 
called an Argand diagram, after the Swiss mathematician J. R. Argand, who 
propagated this idea.  Interestingly, this idea was first described a few years 
earlier by the mathematician Wessel. 
 
Let us see what an Argand diagram is.  In a Cartesian coordinate system, take 

the axes OX  and OY  in the XOY  plane.  From Unit 3, you know that any 
point in the plane is determined by its Cartesian coordinates.  Now we 

consider any complex number iyx + .  We represent it by the point in the 

The conjugate of the 
conjugate of z  is 

C∈∀ zz . 
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plane with Cartesian coordinates )y,x( .  Thus, the real parts of the complex 

numbers are plotted along the horizontal axis, and the imaginary parts are 
plotted along the vertical axis.  This representation of complex numbers is 
called an Argand diagram. 
 

For example, in Fig. 3, P  represents the complex number i32 + , whose real 

part is 2  and imaginary part is 3 .  And what number does P′  in Fig. 3 

represent?  P′  corresponds to i32 − , the conjugate of P .  

 
 

 
Fig. 3: An Argand diagram 

 
From Fig. 3, you may have observed that in an Argand diagram the point 
that represents z  is the reflection in the real axis of the point that 
represents z , for any C∈z . 
 
Now, you know that any real number is a complex number (called a purely real 
number).  Where would the purely real numbers lie in an Argand diagram?  
Wouldn’t they lie along the real axis?   Similarly, the purely imaginary numbers 
lie along the imaginary axis. 
 
Try these exercises now. 
 
 

E7) a) Represent the following elements of C  in an Argand diagram: 

  i,i1,i1,3 +−+− . 

 b) Represent the sets }x|i3x{S},y|iy2{S 21 RR ∈+=∈+=  and 

}x|ixx{S3 R∈+=  in an Argand diagram. 

 

E8) Give the algebraic representation of the elements of C  represented 

geometrically by the points )0,2(,
3

1
,

2

1







 −
 and )2,0( −  in an Argand 

diagram. 
 

 
Let us now consider another way of representing a complex number. 
 

4.3.2 Polar Representation 

Consider any non-zero complex number iyxz += .  We represent it by P  in 

the Argand diagram in Fig. 4.  We can represent this point uniquely by its 
Cartesian coordinates, as you know.  But, you also know from Unit 3 that we 

The reflection of a 

point  )b,a(  in the       

x-axis is the point 
)b,a( − , and in the     

y-axis is )b,a(− . 

The x-axis is called the 
real axis and the       
y-axis is called the 
imaginary axis in an 
Argand diagram. 
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Fig. 4: The polar 
representation of a 
complex number 
with polar 
coordinates |z|  

and θθθθ  

 

 

can represent it by its polar coordinates ),r( θ .  Recall that the distance OP  is 

r .  We call it  the modulus of z , and denote it by || z .  Further, θ  is called an 

argument of z . 
 
Now, let us merge the pole and polar axis with the real and imaginary axes in 
an Argand diagram, as in Fig. 5. 
 

 
Fig. 5: The relationship between the Cartesian and the polar coordinates 

 

Then, 
22

yx|z| += . 

Also, if we write r|z| = , then from Fig. 5 you can see that 
r

y
sin =θ  and 

r

x
cos =θ . 

θ=θ=∴ sinry,cosrx                            …(1) 

 
Here are some important remarks on the modulus and argument of z . 
 

Remark 2: From Unit 3, you know that ),r( θ  are unique only if we restrict θ  

to π<θ≤ 20  or to π≤θ<π− .  In the case of complex numbers, 

C∈∀≥ z0|z| .  Also, by convention for uniqueness the restriction on θ  is 

π≤θ<π− .   We call this unique value of θ  the principal argument of z , 

and denote it by zArg . 

Thus, for a complex number, the polar coordinates )(r, θθθθ  satisfy 0r ≥  

and ππππ≤≤≤≤θθθθ<<<<ππππ−−−− . 
 

Remark 3: i) C∈z , but .|z| R∈  

ii) If z  is real, what is |z| ?  It is just the absolute value of z  (see Example 9,     

    Unit 3). 

iii) For 0|z|,0z == , and its argument is not defined. 

 
From (1) and Remark 2, we are led to a definition. 
 
Definition: Given any complex number, we can write it as   

θ)siniθ(cosrz += , where |z|r =  and zArgθ = . 

This is called the polar form of z . 
 

Note that, given iyxz += , we can use (1) to obtain 







= −

x

y
tanzArg

1
.  
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However, as more than one angle between π−  and π  have the same tan 

value, for instance, 4/)1(tan 1 π=−  and 
4

3π−
,  we must draw an Argand 

diagram to find the quadrant in which the point )y,x( lies and hence obtain the  

right value of zArg . 

 
Let us look at an example. 
 

Example 1: a) Obtain the modulus and principal argument of ( )i3,i3 +−+  

and i3 + .  Hence obtain their polar forms. 

b)  If 2|z| =  and 
3

zArg
π

= , obtain the algebraic representation of z . 

c)  If 
2

|z|
π

=  and 
2

zArg
π

= , obtain the algebraic representation of z .  

Solution: Let ( )i3z,i3z 21 +−=+=  and i3z3 += . 

a) Now 1zIm,3zRe 11 == .  Thus, i3 +  corresponds to ( )1,3 , which 

lies in the first quadrant.  We find that  

 2)z(Im)z(Re|z|
2

1

2

11 =+= , and  

 
63

1
tan

zRe

zIm
tanzArg

1

1

11

1

π
=








=








= −−  or 

6

5π−
. 

 Since 1z  lies in the first quadrant, 1zArg  must be between 0  and 
2

π
. 

 Thus, 
6

zArg 1

π
= .  Hence, the polar form of i3 +  is 







 π
+

π

6
sini

6
cos2 . 

 Now, let us consider ( ) i)1(3i3z2 −+−=+−= .  Here,  

 2|z| 2 =  and 







= −

3

1
tanzArg

1

2 , just as for 1z .   

 But ( )i3 +−  lies in the 3rd quadrant.  Hence, 
6

5
zArg 2

π−
= .   

 Thus the polar form of 2z is 






 π
−

π

6

5
sini

6

5
cos2 . 

 Finally, let us look at i3i3z3 −=+= . 

You can check that 2|z| 3 =  and 

63

1
tan

3

1
tanzArg

11

3

π−
=








−=








−= −− , since 3z  lies in the 4th 

quadrant.   

 Thus, the polar form of 3z  is 






 π
−

π

6
sini

6
cos2 . 

 

b) We know that ))zArgsin(i)zArg(cos(|z|z +=  

    









+=







 π
+

π
=

2

3
i

2

1
2

3
sini

3
cos2  

    3i1+= . 
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c) Here i
22

sini
2

cos
2

z
π

=




 π
+

ππ
=  

*** 
 
Try the following exercises now. 
 
 

E9) Write down the polar forms of the complex numbers listed in E7 (a). 
 
E10) Find the relationship between the moduli and principal arguments of z  

and z , for C∈z . 
 

E11) Show that { }1|z|z =∈C  is the set of points on the circle 1yx 22 =+  in 

2
R . 

 

 
You will find the polar form of a complex number very useful when you study 
the multiplication and division of complex numbers in the next section. 
 

4.4 ALGEBRAIC OPERATIONS 

 
You are familiar with the operations of addition, subtraction, multiplication and 
division in R .  In this section we will discuss these operations in C .  Let us 
first consider the first two operations. 
 

4.4.1 Addition and Subtraction 

Take any two complex numbers, say i23z1 +=  and i
2

1
4z2 += .  What do you  

expect 21 zz +  to be?  Wouldn’t you just add the real parts of both and the 

imaginary parts of both to get this?  If so, you would be right, i.e., 

i
2

5
7i

2

1
2)43(zz 21 +=








+++=+ .   

Let us define this process formally for any two complex numbers. 
 

Definition: The sum of two complex numbers )iyx(z 111 +=  and 

)iyx(z 222 +=  is the complex number )yy(i)xx(zz 212121 +++=+ . 

In terms of ordered pairs,  

)yy,xx()y,x()y,x( 21212211 ++=+ . 

 
Let us look at an example. 
 
Example 2: Find the sum of  

i) i3 +  and i42 +− , 

ii) 5−  and i5 − . 

Solution: i) i51i)41())2(3()i42()i3( +=++−+=+−++ . 

 

ii) ii)10()55()i5()i05()i5()5( −=−++−=−++−=−+− . 

*** 
 
Example 3: Show that any complex number is the sum of a purely real 
number and a purely imaginary number.   

Solution: Take )iy0()i0x(iyxz +++=+= . 

‘Moduli’ is the 
plural of ‘modulus’. 
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Here i0x +  is purely real and iy0 +  is purely imaginary, hence the result.  

*** 
 
In the following exercises we ask you to verify some very important properties 

of addition in C . 
 
 

E12) i) Find the sum of i32 +  and i32 + . 

 ii) Show that zRe2zz =+  for any C∈z  . 

 

E13) Show that C∈∀+=+ 212121 z,zzzzz . 

 

E14) a) Show that 1221 zzzz +=+  for any C∈21 z,z . 

b) Show that )zz(zz)zz( 321321 ++=++  for any C∈321 z,z,z . 

 

E15) Find an element C∈+ iba  such that C∈∀=++ zz)iba(z . 
 

 
If you have solved these exercises, you must have realised that the addition in 

C  satisfies most of the properties that addition in R  satisfies.  Also, because 

of what you proved in E15, we say that )0(0i0 =+  is the additive identity in 

C . 
 

Now, can you define subtraction in C?  For this, let us first define z− , for 

C∈z .  You may already have come up with the following definitions, which 
are very natural. 
 

Definitions: i) Given C∈+= iyxz , z−  is the complex number   

)y(i)x( −+− . 

ii) The difference 21 zz −  of two complex numbers )iyx(z 111 +=  and 

)iyx(z 222 +=  is defined by  

 )yy(i)xx()z(zzz 21212121 −+−=−+=− . 

 

So, what do you think zz −  is, for any C∈z ?  Let’s see.  Take iyxz += .  

Then 0)yy(i)xx(zz =−+−=− , the additive identity in C . 

This tell us that for any )z(,z −∈C  is the additive inverse of z . 

 
Try the following exercises now. 
  
 

E16) i) Find )i23()i23( −−− . 

 ii) Find zz − , for any C∈z . 
 
E17) Find the relationship between  

 i) |z|  and |z| − , 

 ii) zArg  and )z(Arg − , for any C∈z  (see Fig. 6). 
 

 
We will now make a brief remark on the graphical representation of the sum of 
complex numbers. 
 

E14(a) tells us that 
addition in C  is 
commutative. 
E14(b) says that 
addition in  C  is 
associative. 

Fig. 6: z  and z−  are 
represented by P  and 

P′ , respectively. 
 

CR ∈∀∈+ zzz  
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Remark 5: The addition of two complex numbers has an interesting 
geometrical representation.  Consider an Argand diagram (Fig. 7) in which we 

represent two complex numbers )y,x( 11  and )y,x( 22  by the points P  and 

Q .  If we complete the parallelogram with adjacent sides OP  and OQ , the 

fourth vertex R  represents the sum )y,x()y,x( 2211 + .  In vector algebra you 

will come across a similar parallelogram law of addition. 
 

 
Fig. 7: The geometric representation of addition in C . 

 
So far you have seen how naturally we have defined addition (and subtraction) 

in C  by using addition (and subtraction) in R .  Let us see if we can do the 
same for multiplication and division.  You may find the polar form more useful 
than the standard form for these operations. 
 

4.4.2  Multiplication and Division 

Let us begin by considering two complex numbers in their polar forms, say 

)0sini0(cos22z1 +==  and )sini(cos33z2 π+π=−= . 

Notice that 1z  and 2z  are actually real numbers, and we know that 

)}0sin(i)0){cos(3()2()sini(cos66zz 21 π++π+=π+π=−= .   

        )}zArgzArg(sini)zArgzArg({cos|z||z| 212121 +++=  

This may help you see why we define multiplication in C   as below. 
 

Definition: The product of two complex numbers )sini(cosrz 1111 θ+θ=  and 

)sini(cosrz 2222 θ+θ=  is defined to be the complex number 

)]2kisin()2k[cos(rrzz
21212121

ππππθθθθθθθθππππθθθθθθθθ +++++=  

        )2kzArgz{cos(Arg|z||z|
2121

ππππ++=   

        )},2kzArgzisin(Arg
21

ππππ+++  

where Z∈k  is such that π≤π++<π− k2zArgzArg 21 . 
 

So, for example, if 






 π
+

π
=

6
sini

6
cos2z1  and ( )π+π= sinicos7z2 , then 

( )π+π






 π
+

π
= sinicos7

6
sini

6
cos2zz 21         

       















π+

π
+







π+

π
=

6
sini

6
cos72  

       






 π
+

π
=

6

7
sini

6

7
cos72  
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 π
−+







 π
−=

6

5
sini

6

5
cos72 , since π≤<π− zArg . 

Thus, { })2zArgzArgsin(i)2zArgzArgcos(|z||z|zz 21212121 π−++π−+= . 

 
In Fig. 8, you can see a visual representation of multiplication of two complex 
numbers.  As you can see, this involves scaling and rotation of vectors. 

 
Fig. 8: P represents the product, in polar form, of the complex numbers  

  represented by 
1

P  and 
2

P . 

 
Let us consider another example. 
 

Example 4: Obtain the product of )1sini1(cos2z1 +=  and 3sini3cosz2 +=  

in polar form. 

Solution: Here 3zArg,1|z|,1zArg,2|z| 2211 ==== . 

Therefore, )}31sin(i)31{cos(2zz 21 +++=  

   )4sini4(cos2 += . 

Note that 4)zz(Arg 21 ≠ , since π>4 .  We need to choose an integer k  such 

that 1k.k24 −=π≤π+<π−  serves the purpose.  Thus, 

π−= 24)zz(Arg 21 . 

Hence )}24(sini)24{cos(2zz 21 π−+π−= . 

*** 
 
Try some exercises now, which will help you see some interesting properties 
of multiplication. 
 
 

E18) Find C∈∀ zz.z,i.z,0.z,1.z . 

 

E19) a) Show that C∈∀= 211221 z,zzzzz . 

 b) Show that C∈∀= 321321321 z,z,z)zz(zz)zz( . 

 

 
If you have done E19(a) and (b), then you have shown that multiplication in C  
is commutative and associative, respectively. 
 

Now, let us consider division.  If I want to find 1

21

2

1 z.z
z

z −= , all I need to do is 

look for a nice way to find 1

2z−  in polar form, and then multiply this with 1z  to 

z
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get the result.  So, for obtaining 0z,z 1 ≠− , consider an example.  Take 








 π
+

π
=

4
sini

4
cos3z .   Then  

















π
−

π

π
−

π








 π
+

π
=








 π
+

π
=−

4
sini

4
cos

4
sini

4
cos

4
sini

4
cos

1

3

1

4
sini

4
cos3

1
z

1
 

     








 π
+

π








 π
−

π

=

4
sin

4
cos

4
sini

4
cos

3

1

22

, using 22222 babia)iba()iba( +=−=−+ . 

     






 π
−

π
=

4
sini

4
cos

3

1
 

So 
|z|

1
|z| 1 =−

 and )z(Arg)z(Arg 1 −=− . 

More generally, using the same steps we see that if )sini(cosrz θ+θ= , and 

0z ≠ , then 

)sini(cos
r

1
z 1 θ−θ=− .                         …(2) 

Now, if )sini(cosrz 1111 θ+θ=  and )sini(cosrz 2222 θ+θ= , 

then 
)sini(cosr

)sini(cosr

z

z

222

111

2

1

θ+θ

θ+θ
=  

    )sini(cos)sini(cos
r

r
2211

2

1 θ−θθ+θ= , using (2)  

    )}sin(i){cos(
r

r
2121

2

1 θ−θ+θ−θ=  

So,     )}k2sin(i)k2{cos(
r

r

z

z
2121

2

1

2

1 π+θ−θ+π+θ−θ= ,           …(3) 

where Z∈k  is such that π≤π+θ−θ<π− k221 . 

 
Let us consider an example. 
 

Example 5: Find 
2

1

z

z
 in polar form, where )sini(cos6z1 π+π=  and  








 π
−

π
=

4
sini

4
cos2z2 . 

Solution: Here 23
2

6

|z|

|z|

z

z

2

1

2

1 === , and 

π+−=







k2ArgzzArg

z

z
Arg 21

2

1 , such that π≤







<π−

2

1

z

z
Arg . 

Thus, 
4

3
2

4z

z
Arg

2

1 π
−=π−







 π−
−π=








.  
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So 






 π
−

π
=

4

3
sini

4

3
cos23

z

z

2

1 . 

*** 
 
Try the following exercise now. 
 
 

E20) Find the polar forms of 1z  and 2z , where 6z1 −=  and i1z2 += .  Hence 

obtain the polar forms of 21zz  and 
2

1

z

z
. 

 

 
Let us now consider these operations on complex numbers using the standard 
form.  The route is slightly circuitous.   
 

Let 111 iyxz +=  and 222 iyxz += .  Then, from Unit 3 you know that if the 

polar coordinates of 1z  and 2z  are ),r( 11 θ  and ),r( 22 θ , respectively, then 

111111 sinry,cosrx θ=θ= , 222222 sinry,cosrx θ=θ= . 

You also know that  

)}sin(i){cos(rrzz 21212121 θ+θ+θ+θ=  

       )sinsincos(cosrr 212121 θθ−θθ= )sincoscos(sinrir 212121 θθ+θθ+  

       )yxyx(i)yyxx( 12212121 ++−= . 

 
Accordingly, we have the following definition. 
 

Definition: The standard form of the product 21 zz , of two complex 

numbers 111 iyxz +=  and 222 iyxz += , is given by  

)yxy(xi)yyx(xzz
1221212121

++−= . 

Or, in the language of ordered pairs, 

)yxyx,yyxx()y,x).(y,x( 122121212211 +−= . 

 

For example, ]2)3(2.1,2.2)3.(1[)2,3()2,1( −+−−=− )4,7( −−= . 

Let us check and see what 
2

i  is according to this definition. 

1)00(i)10()i0()i0(i.ii2 −=−+−=++== , which is as it should be! 

 
While solving E18 and E19 you have noted some properties of multiplication in 

C .  You will discover some more properties if you try the following exercises.    
 
 

E21) Obtain )0,y(.)0,x(),0,0(.)y,x()1,0(.)y,x(),0,1(.)y,x(  and 

C∈∀ )y,x()1,1(.)y,x( . 

 

E22) Show that }0{\)y,x()0,1(
yx

y
,

yx

x
.)y,x(

2222
C∈∀=









+

−

+
. 

 (Note that 0yx 22 ≠+ , since )0,0()y,x( ≠ .) 
 

 
If you’ve solved these exercises, you must have realised that  

i) C∈∀= zzz.1 , that is, 1 is the multiplicative identity of C ;   

ii) C∈∀= z0z.0 ; 

iii) R∈∀+−=+ y,xixy)iyx(i ; 

.BsinAcosBcosAsin

)BAsin(

,BsinAsinBcosAcos

)BAcos(

+=

+

−=

+
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iv) if R∈21 z,z , then our definition of multiplication coincides with the usual 

one for R ;  

v) for any non-zero element CC ∈′∃∈ zz , such that 1zz =′ .  In this case 

we say that z′  is the multiplicative inverse of z .  So 
z

1
z =′ . 

 
Now let us see how to obtain the standard form of the quotient of a complex 
number by a non-zero complex number.  We will use a process similar to the 

one you used for obtaining 
2

1

z

z
 earlier (before Example 5).  Consider an 

example. 
 

Example 6: Obtain 
i1

i32

−

+
 in standard form. 

Solution: Let us multiply and divide 
i1

i32

−

+
 by i1i1 +=− .  We get 

i
2

5

2

1

11

i51

)i1()i1(

)i1()i32(

i1

i1

i1

i32
+

−
=

+

+−
=

+−

++
=









+

+









−

+
. 

So, i
2

5

2

1

i1

i32
+

−
=

−

+
. 

*** 
 
If you’ve understood the way we have solved the example, you will have no 
problem in doing the following exercises. 
 
 

E23) Obtain 
4i3

i2

−+−

+−
 in standard form, and hence in polar form. 

 

E24) For R∈d,c,b,a  and 0dc 22 ≠+ , write 
idc

iba

+

+
 in standard form. 

 

E25) Show that }0{\zz
|z|

1

z

1
2

C∈∀= .  Hence show that 

}0{\z
|z|

1

z

1
C∈∀= . 

 

E26) Represent 
2

221
z

1
,z,z,z  and 

2

1

z

z
 in an Argand diagram, where 

i32z,i21z 21 −=−−= . 
 

 
We will use multiplication and division in the polar form a great deal in the next 

section.  Before going to it, let us give you a rule that relates ‘ + ’ and ‘× ’ in C .  
Do you know of such a law in R ?  You must have used the distributive law 

often enough.  It says that R∈∀+=+ c,b,aacab)cb(a .  The same law 

holds for C .  Why don’t you try and show this (see E27)? 
 
 

E27) i) Check that  

  ( ){ })i5(i32)i1( ++−+ ( ) )i5()i1(i32)i1( +++−+= . 

.z|z|zz
2

CR ∈∀∈=  

Multiplication distributes 
over addition in C . 
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 ii) Show that C∈∀+=+ 3213121321 z,z,zzzzz)zz(z . 
 

 
Now let us discuss a theorem which is very useful for complex numbers. 
 

4.5 APPLICATIONS OF DE MOIVRE’S THEOREM 

 
In the previous section, you studied that if  

)sini(cosrz 1111 θ+θ=  and )sini(cosrz 2222 θ+θ= , then 

)}sin(i){cos(rrzz 21212121 θ+θ+θ+θ= . 

In particular, if 21 zz = , then 2121 ,rr θ=θ= , and hence we find that  

)2sini2(cosrz 11

2

1

2

1 θ+θ= . 

In fact, this is a particular case of a very nice formula, that uses the theorem 
below.  This is De Moivre’s theorem, named after the French mathematician 
Abraham De Moivre.  It may amuse you to know that De Moivre never 
explicitly stated this result.  But he seems to have known it and used it in his 
writings of 1730.  It was the mathematician Euler who explicitly stated and 
proved this result in 1748.  We shall not be proving the result here, but shall 
state it and discuss some of its consequences. 
 

Theorem 1 (De Moivre’s theorem): θ+θ=θ+θ nsinincos)sini(cos n , for 

any Z∈n  and any angle θ . 
 
This statement is so simple, and so beautiful.  For instance, an immediate 
implication of this theorem is that if  

C∈θ+θ= )sini(cosrz , then Z∈∀ n , 
nnn )sini(cosrz θ+θ=  

    )nsinin(cosrn θ+θ= , using De Moivre’s theorem. 

 

So, for example, )7sini7(cosrz 77 θ+θ=  and 

)}100sin(i)100{cos(rz 100100 θ−θ= −− . 

 
What we have shown is that  
  
 
 

This equality is true not just for a particular value of θ , or of r , or of n .  It is 
true for all values of these variables as shown in the box.  Such an equality is 
called an identity.  Thus, an identity is an equality that is true for all applicable 
values of the variables involved.  We will consider some identities now, which 
are proved by using De Moivre’s theorem. 
 

4.5.1  Trigonometric Identities 

One of the most useful applications of Theorem 1 is in proving identities that 

involve trigonometric ratios like θθ cos,sin , etc.  Let us look at an example. 

 
Example 7: Find a formula for θ4cos  in terms of θcos  and θsin , for any 

R∈θ . 

Solution: By De Moivre’s theorem, 

R∈θ∀θ+θ=θ+θ ,4sini4cos)sini(cos 4 .                       …(4) 

ZR ∈∈θ≥∀θ+θ=+θ n,,0r)nsinin(cosrsin)]i(cosr[ nn . 

Fig. 9: De Moivre 
           (1667-1754) 
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We can also expand the left hand side of (4) by using the binomial expansion.  
Then    

22

2

43

1

444 )sini()(cosC)sini()(cosC)(cos)sini(cos θθ+θθ+θ=θ+θ  

 43

3

4 )sini()sini(cosC θ+θθ+  

θ+θθ−θθ−θθ+θ= 432234 sincossini4cossin6cossini4cos           …(5) 
 
Now, you know that two complex numbers are equal iff their real parts and 
their imaginary parts are equal. 
Thus, comparing the real parts in (4) and (5), we get  

θ+θθ−θ=θ 4224 sincossin6cos4cos . 

*** 
 
You can try the following exercise on similar lines. 
 
 

E28) Find formulae for θ3cos  in terms of θcos , and  for θ3sin  in terms of 

θsin . 
 

 

Now, for any N∈m  let us look at 
m

z , where C∈z  such that 1|z| = .  Then, 

by De Moivre’s theorem 

θ+θ= msinimcoszm , and  

θ−θ=θ−+θ−=− msinimcos)msin(i)mcos(z m . 

Thus, θ=+ − mcos2zz mm , and θ=− − msini2zz mm .           …(6) 

We can use these relations to express θmcos  and θmsin  in terms of θmcos  

and θmsin Z∈∀ m .  Let us consider an example. 

 

Example 8: Expand )sin(cos2 n4n42n4 θ+θ−  in terms of the cosines or sines of 

multiples of θ , where R∈θ . 

Solution: Putting 1m =  in Equation (6), we get  

z

1
zcos2 +=θ  and 

z

1
zsini2 −=θ . 

n4

n4n4

z

1
zcos2 








+=θ∴  

n41n4n2

n2

n2

n4

2

2n4

2

n41n4n4

z

1

z

1
nz4

z

1
zC

z

1
zC

z

1
nz4z +++++++=

−

−−
LL , 

     by the binomial expansion. 

n2

n4

2n4

2n4

n4

n4
C

z

1
zn4

z

1
z ++








++








+=

−

−
L .            …(7) 

Also, 

n4

n4n4

z

1
zsin2 








−=θ , since 1)i(i n4n4 == . 

     n2

n4

2n4

2n4

n4

n4
C

z

1
zn4

z

1
z ++








+−








+=

−

−
L           …(8) 

Thus, (7) and (8) give 

( ) ( )n2

n4

4n4

4n4

2

n4

n4

n4n4n4n4
C2

z

1
zC2

z

1
z2)sin(cos2 ++








++








+=θ+θ

−

−
L  

( ){ } ( )n2

n4

2

n4 C2)4n4cos(C2n4cos22 ++θ−+θ= K , using (6). 

)!mn(!m

!n
Cm

n

−
=  

mn,m,n ≥∈∀ N . 
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n2

n4

2

n4n4n42n4 C
2

1
)4n4cos(Cn4cos)sin(cos2 ++θ−+θ=θ+θ∴ −

L . 

***  
 
The procedure we have shown in Example 8 is very useful for solving 
differential equations involving trigonometric functions, as you will see in the 
2nd semester course.  It is also useful for finding the Laplace transform of such 
functions. 
 
Why don’t you try some related exercises now? 
 
 

E29) Apply De Moivre’s theorem to prove that  

 i) θ−θ=θ 22 sincos2cos , 

 ii) θθ=θ cossin22sin . 
 

E30) Expand θ−θ 66 sincos  in terms of the cosines of multiples of θ . 
 

 
Let us now look at another area in which we can apply De Moivre’s theorem 
with great success. 
 

4.5.2 Roots of a Complex Number 

Let us take any non-zero real number r .  If 0r > , then it has two square roots, 

r  and r−  in R .  If 0r < , then 0r >− .  So, )r(−  has two distinct square 

roots, R∈−± r .  The question is that if 0z,z ≠∈C , then does z  also have 

two distinct square roots in C?  In fact, the set of complex numbers has a 
much stronger property, which is a major reason for its importance in 
mathematics.  This property is: 
 
 
 
 

Each of these szk  is called an nth root of z . 

 
Thus, every complex number has n  distinct nth roots in C , where 

N∈∈∈∈n .  To find all these roots, we need De Moivre’s theorem as well as the 
following theorem. 
 
Theorem 2: Let x  be a positive real number and N∈n .  Then there is one 

and only one positive real number b  such that xbn = . 
 

We denote the unique positive nth root obtained in Theorem 2 by 
1/n

x . 
 
We shall not prove the existence of b  here as it is beyond the level of this 
course.  However, the uniqueness is not difficult to show, as you will see while 
solving the following exercise. 
 
 

E31) Let x  be a positive real number and N∈n .  Show that the positive 

real number r  such that xr
n =  is unique. 

Given any N∈n  and 0z,z ≠∈C , we can find distinct C∈n1 z,,z K  

such that n,,1kzzn

k K=∀= . 
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 (Hint: Let 0s,r ≥  be such that nn sxr == .  Suppose sr ≠ .  Then 

0sr nn =−  and 0sr ≠− .  Now you should be able to reach a 
contradiction.) 

 

 
Now let us consider an example of obtaining all the nth roots of a complex 
number, where N∈n .  (This process is also called the extraction of the nth 
roots of a complex number.) 
 
Example 9: Obtain all the fifth roots of i  in C . 

Solution: Let )sini(cosrz θ+θ=  be any 5th root of i .  Then iz
5 = .  The polar 

form of i  is 
2

sini
2

cosi
π

+
π

= .  Therefore, 

iz
5 =  

2
sini

2
cos)sini(cosr 55 π

+
π

=θ+θ⇒  

2
sini

2
cos)5sini5(cosr5 π

+
π

=θ+θ⇒ , by De Moivre’s theorem.             …(9) 

Comparing the moduli and arguments of the complex numbers on both sides 
of (9), we get  

1r
5 =  and π+

π
=θ k2

2
5 , where K,2,1,0k ±±= . 

r  is the unique positive real fifth root of 1 (see Theorem 2).  Since R∈1  is a 

fifth root of 1, 1r = , that is, 1|z| = .  The possible values of θ  are  

K,2,1,0k,k2
25

1
±±=








π+

π
=θ . 

Thus, the possible 5th roots of i  are  

K,2,1,0k,
5

k2
10

sini
5

k2
10

cosz ±±=






 π
+

π
+






 π
+

π
= . 

From this it seems that i  has infinitely many 5th roots, one for each Z∈k .  Let 
us see if this is so. 

When 






 π
−

π
+






 π
−

π
=−=

5

4

10
sini

5

4

10
cosz,2k  

    2z
10

7
sini

10

7
cos −=

π
−

π
= , say. 

When 1z
10

3
sini

10

3
cosz,1k −=

π
−

π
=−= , say. 

When 0z
10

sini
10

cosz,0k =
π

+
π

== , say. 

When 1z
2

sini
2

cosz,1k =
π

+
π

== , say. 

When 2z
10

9
sini

10

9
cosz,2k =

π
+

π
== , say. 

When 2z
10

7
2sini

10

7
2cos

10

13
sini

10

13
cosz,3k −=







 π
−π+







 π
−π=

π
+

π
== . 

When 1z
10

3
2sini

10

3
2cos

10

17
sini

10

17
cosz,4k −=







 π
−π+







 π
−π=

π
+

π
== . 

Similarly, when 5k = , you will get 0z , and so on. 

θ=θ±π cos)2cos(  and  

θ±=θ±π sin)2sin( . 

In Remark 6 you will  
see why we start with 

2k −= . 
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Thus, K,4,3k =  don’t give us new values of z . 

Now, if we put 3k −= , we get 2z
10

11
sini

10

11
cosz =







 π−
+






 π−
= . 

Similarly, K,5,4k −−=  will not give us new values of z . 

Therefore, the only 5th roots of i  are 








 π
+

π
+






 π
+

π

5
k2

10
sini

5
k2

10
cos  for 2,1,0k ±±= . 

*** 
 

Remark 6: We also get the 5th roots of i  by taking 4,3,2,10k =  in 








 π
+

π
+






 π
+

π

5

k2

10
sini

5

k2

10
cos , as you have seen.  Only note that for 3k =  

and 4k = , the angles θ  will not lie in the range π≤θ<π− .  That’s why we 

had taken 2,1,0k ±±= . 

 

Now, look at all the fifth roots of i .  How are their moduli related?  They have 

the same modulus, namely, )1(|i| 5/1 = .  Thus, they all lie on the circle with  

centre )0,0(  and radius 1.  These points will be equally spaced along the 

circle, since the arguments of consecutive points differ by 
5

2π
, a constant.  We 

plot them in the Argand diagram in Fig. 10. 

 
Fig. 10: The fifth roots of i . 

 
Here’s another example. 
 
Example 10: Find all the fifth roots of unity, that is, 1. 

Solution: )0sini0(cos11 += . 

If )0sini0(cos1)]sini(cosr[ 5 +=θ+θ , then 1r
5 =  and 

2,1,0k,k25 ±±=π=θ .  As in Example 9, 1r = . 

Further, 2,1,0k,
5

k2
±±=

π
=θ .  Thus, the fifth roots of unity are 

2,1,0k,
5

k2
sini

5

k2
cos ±±=

π
+

π
. 

*** 
 
Do you find any relationship between the roots in Example 9 and those in 

Example 10?  The 5th roots of i  are of the form 54321 w,w,w,w,w ααααα , 
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where w is one 5th root of i , say, 0z  in Example 9, and 51 ,, αα K  are the 

roots in Example 10.  You should check that this is so. 
 
Using the same procedure as in Examples 9 and 10, we can obtain the distinct 
nth roots of any non-zero complex number, for any N∈n .  Thus, given, any 

non-zero complex number z , we write it in its polar form 

)sini(cosaz α+α= , where |z|a =  and zArg=α . 

By Theorem 2, there is a unique 0r,r >∈R , such that arn = , that is, 
n/1ar = .  Then the distinct nth roots of z  are 








 π+α
+

π+α
=

n

k2
sini

n

k2
cosaz

n/1

k , for 1n,,1,0k −= K . 

Geometrically, they lie on a circle of radius 1/n
a  and are equally spaced 

along it.  Note that  
 
 
 
 
 
 
 
Now you should do some related exercises. 
 
 

E32) Find the cube roots of unity, that is, those C∈z  such that 1z
3 = .  Also 

represent them in an Argand diagram. 
 

E33) Solve the equation 0i24z4z 24 =−+− . 

 (Hint: The equation can be rewritten as 222 )i1()2z( +=− .) 
 

 
The cube roots of unity that you obtained in E32 are very important.  We 

usually denote the cube root 
2

3i1+−
 by the Greek letter ω  (omega). 

Note that 
2

3i1

2

3i1
2

2 −−
=









 +−
=ω , the other non-real cube root of unity. 

Thus, note the following: 
 
 
 
 
 
Also note that  

01 2 =ω+ω+ .                        …(10) 
You will often find ω  and the relation (10) being used in mathematics. 
We will equally often use the following results, that we ask you to prove.  

 

 

E34) a) Let R∈a .  Show that a  has a real cube root r , and the cube 

roots of a  are 2r,r,r ωω . 

 b) Show that if 0a,a <∈R  and n  is an even positive integer, then a  

will not have a real nth root. 

a non-zero complex number has exactly n  distinct nth roots for any 

N∈n .  If z  is one root, then the others are 1n21 z,,z,z −ααα K , where 

1n1 ,, −αα K  are the nth roots of unity. 

The three cube roots of unity are 2,,1 ωω , where 
2

3i1+−
=ω . 
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 c) Let RC \z ∈ .  Show that z  has three cube roots, and if any one of 

them is γ , the other two are 2, γωγω .  Hence find the sum of the 

roots. 
 

 
With this we come to the end of our discussion on complex numbers.  This 
doesn’t mean that you won’t be dealing with them any more.  In fact, you will 
often use whatever we have covered in this unit, while studying this course, as 
well as other mathematics courses. 
 
Let us take a brief look at the points covered in this unit. 
 

4.6 SUMMARY  
 
In this unit on complex numbers, you have studied the following points. 

1. The definition of a complex number, in algebraic (or standard) form: 

 A complex number is a number of the form iyx +  where R∈y,x  and 

1i −= .  Equivalently, it is a pair RR×∈)y,x( . 

 

2. x  is the real part, and y  is the imaginary part, of iyx + . 

 

3. 2211 iyxiyx +=+  iff 21 xx =  and 21 yy = . 

 

4. The conjugate of iyxz +=  is iyxz −= . 

 

5.  The geometric representation of the complex number iyx +  in an 

Argand diagram is the point with Cartesian coordinates )y,x( . 

 

6. The polar form of iyxz +=  is )sini(cosrz θ+θ= , where 

22
yx|z|r +==  and 








==θ −

x

y
tanzArg

1
, where we choose θ  such 

that it corresponds to the position of z  in an Argand diagram, and 

π≤θ<π− . 

 

7. For C∈21 z,z , 

 π++== k2zArgzArg)zz(Arg|,z||z||zz| 21212121  

 π+−=







= m2zArgzArg

z

z
Arg,

|z|

|z|

z

z
21

2

1

2

1

2

1  (for )0z2 ≠ , 

 where Z∈m,k  are chosen so that  

 π≤<π− )zz(Arg 21  and π≤







<π−

2

1

z

z
Arg . 

 

8. R∈∀ d,c,b,a  

 i) )db(i)ca()idc()iba( ±+±=+±+ , 

 ii) )bcad(i)bdac()idc()iba( ++−=+×+ , 

 iii) i
ba

b

ba

a

iba

1
2222 








+
−

+
=

+
, for 0iba ≠+ , 

 iv) 
22

dc

)idc()iba(

idc

iba

+

−+
=

+

+
, for 0idc ≠+ . 
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9. De Moivre’s theorem: Z∈∀θ+θ=θ+θ nnsinincos)sini(cos n  and any 

angle θ . 
 
10. Applying De Moivre’s theorem to prove trigonometric identities and for 

obtaining nth roots of complex numbers, where N∈n . 
 

11. The cube roots of unity are 2,,1 ωω , where 









+







−=ω

2

3
i

2

1
.  

Further, 01 2 =ω+ω+ . 
 
Now that you have gone through this unit, please go back to the objectives 
listed in Sec. 4.1.  Do you think you have achieved them?  As mentioned in 
Sec. 4.1, one way of finding out is to solve all the exercises that we have given 
you in this unit.  If you would like to verify your solutions or answers, you can 
see what we have given in the following section. 
  

4.7 SOLUTIONS/ANSWERS  
 

z Re z Im z 

2

231 −+
 

2

1
 

2

23
 

i  0 1 

0 0 0 

5

31+−
 

5

31+−
 

0 

 

E2) Yes, because every real number x  is the complex number i0x + . 
 

E3) i) 3kim3i3k =⇔+=+  and 3m,3km3 ==⇔= . 

 ii) R∈= mki  iff 0k = .  Thus, RR ∈∀∈− mmki  and 0k = . 

 

E4) 5i.05i.055 −=−−=+−=− . 

 5i5 =− .  Hence 55i5 −−=−=− . 

 i32i32 −=+ . 

 i32i32 +=− . 

 

E5) Let iyxz += .  Then iyxz −= . 

 0yyyiyxiyxzz =⇒−=⇒−=+⇒=∴ . 

 zz =∴  iff R∈z . 

 

E6) Let iyxz += .  Then iyxz −= . 

 ziyxiyxz =+=−=∴ . 

 

E7) a) R,Q,P  and S  represent i1,i1,3 +−+−  and i , respectively, in 

Fig. 11. 
 

E1) 
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Fig. 11 

 

 b) The set }y|)y,2{(S1 R∈= , that is, the set of points satisfying the 

linear equation 2x = .  Similarly, you can see that 2S  is 

represented by the line 3y = , and 3S  by the line xy = .  Let 

21 L,L  and 3L  represent the sets 21 S,S  and 3S , respectively.  

These are shown in Fig. 12. 

 
Fig. 12 

 

E8) 2,
3

i

2

1
+

−
 and i2−  are the respective elements of C . 

 

E9) 3|3| =  and 0)0(tan)3(Arg 1 == − , since 3  lies on the positive side of the 

real-axis.  So, )0sini0(cos33 += . 

 Now 211|i1| =+=+− , and  

 4/)1(tan)i1(Arg 1 π−=−=+− −  or 4/3π  

 Since i1+−  corresponds to )1,1(− , which lies in the 2nd quadrant, 

4

3
)i1(Arg

π
=+− . 

 














 π
+






 π
=+−∴

4

3
sini

4

3
cos2)i1( . 

 














 π−
+






 π−
=−−=+−

4

3
sini

4

3
cos2i1i1  
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 π
−






 π
=

4

3
sini

4

3
cos2 . 

 
2

sini
2

cosi
π

+
π

= . 

 

E10) Let iyxz += .  Then iyxz −= .  So, |z|yx|z|
22 =+= . 

 Next, 







= −

x

y
tanzArg

1
 and 








−= −

x

y
tanzArg

1
.  Thus, 

zArgzArg −= . 

 

E11) For any 1yx1yx1|z|,iyxz
2222 =+⇔=+⇔=∈+= C . 

 

E12) i) 4i04i32i32i32i32 =+=−++=+++ . 

 

 ii) Let iyxz += .  Then  

  zRe2x2)iyx()iyx(zz ==−++=+ . 

 

E13) Let 111 iyxz +=  and 222 iyxz += .  Then  

 )yy,xx(zz 212121 ++=+  

 ))yy(,xx(zz 212121 +−+=+∴  

          )yy,xx( 2121 −−+=  

          )y,x()y,x( 2211 −+−=  

      21 zz += . 

 

E14) a) Let )y,x(z 111 =  and )y,x(z 222 = . 

  Then )y,x()y,x(zz 221121 +=+  

        )yy,xx( 2121 ++=  

        )yy,xx( 1212 ++= , since R∈∀+=+ b,aabba

       )y,x()y,x( 1122 +=  

        12 zz +=  

 

 b) Let )y,x(z),y,x(z),y,x(z 333222111 === . 

  Then, use the fact that R∈∀++=++ c,b,a)cb(ac)ba( , to 

obtain the result, on the same lines as in E14(a) above. 
 

E15) Let iyxz += . 

 Then z)iba(z =++  

 iyx)iba()iyx( +=+++⇔  

 iyx)by(i)ax( +=+++⇔  

 xax =+⇔  and yby =+  

 0b,0a ==⇔  

 00i0iba =+=+∴  satisfies the requirement. 

 

E16) i) i4)22(i)33()i23()i23()i23()i23( −=−−+−=+−−=−−− . 

 ii) Let iyxz += .  Then 

  iy2)yy(i)xx()iyx()iyx(zz =++−=−−+=− . 

zz −  is purely  
imaginary if 0zIm ≠ . 
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         )zIm2(i= . 

 

E17) Let iyxz += .  Then )y(i)x(z −+−=− .    

 i) 
22

yx|z| += , and  

  |z|yx)y()x(|z|
2222 =+=−+−=−  

 

 ii) 







= −

x

y
tanzArg

1
 

  π±=







=








−

−
=− −−

zArg
x

y
tan

x

y
tan)z(Arg

11
, because )z(−  is the 

reflection of z  in the origin. 
 

E18) Let )sini(cosrz θ+θ= .  Now 

 
2

sini
2

cosi,0|0|,0sini0cos1
π

+
π

==+= . 

 So z)sini(cosr)}0sin(i)0{cos(r1.z =θ+θ=+θ++θ=  

 Now 0|0||z||0.z| == .  Thus, 00.z = . 

 )cosisin(r)}2/sin(i)2/{cos(ri.z θ+θ−=π+θ+π+θ=  

 22222 |z|r)sin(cosrzz ==θ+θ= . 

 

E19) a) Let )sini(cosrz 1111 θ+θ=  and )sini(cosrz 2222 θ+θ= .  Then  

  )}k2sin(i)k2{cos(rrzz 21212121 π+θ+θ+π+θ+θ=  

     )}k2sin(i)k2{cos(rr 121212 π+θ+θ+π+θ+θ=  

     12zz= ,  

  where k  is chosen so that π+θ+θ k221 , that is, π+θ+θ k212 , lies 

between π−  and π .  
 

 b) Let )sini(cosrz mmmm θ+θ=  for 3,2,1m = . 

  Then you can check that 321321 r)rr(|z)zz(| =  

  |)zz(z|)rr(r 321321 == . 

  Again, π+θ+π+θ+θ= s2}k2){(]z)zz[(Arg 321321  

  π++θ+θ+θ= )sk(2)( 321 ,  

  )]zz(z[Argk2)s2( 321321 =π+π+θ+θ+θ= , 

  where integers k  and s  are chosen so that 

π≤π+θ+θ<π− k2)( 21 , π≤π+θ+θ<π− s2)( 32  and  

  π≤π++θ+θ+θ<π− )sk(2)( 321 . 

 

E20) 






 π
+

π
=π+π=

4
sini

4
cos2z),sini(cos6z 21  

 26|zz| 21 =∴  and  

 π+






 π
+π= k2

4
)zz(Arg 21 , where Z∈k  such that π≤<π− )zz(Arg 21  

 
4

3
)zz(Arg 21

π−
=∴ . 

 
 

The reflection in 
the origin of the 
point 

RR ×∈)b,a(  is 

)b,a( −− . 
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E21) )y,x()0,1()y,x( =  

 )x,y()1,0()y,x( −=  

 )0,0()0,0()y,x( =   

 )0,xy()0,y()0,x( =  

 )yx,yx()1,1()y,x( +−= . 

 

E22) )0,1(
yx

xyxy
,

yx

yx

yx

y
,

yx

x
)y,x(

2222

22

2222
=









+

+−

+

+
=









+

−

+
. 

 

E23) 
3i2

i2

)i2(i3i

i2

+−

+−
=

+

+−
, since 1i

2 −= . 

       
( )22 3)2(

)3i2()i2(

+−

−−+−
=  

       ( ) i13
7

2

7

34
−+

+
= . 

 The modulus of this number is 
7

35
)13(

7

2

7

34 2

22

=−







+









 +
. 

 Its principal argument is 
( )









+

−
=θ −

34

132
tan 1 . 

 Thus, its polar form is )sini(cos
7

35
θ+θ . 

 

E24) 0dc 22 ≠+  means that 0c ≠  or 0d ≠ .  Thus, 0idc ≠+ .  Hence 
idc

iba

+

+
 

is meaningful. 

 








+

−
+








+

+
=

+

−++
=

−+

−+
=

+

+
222222 dc

adbc
i

dc

bdac

dc

)adbc(i)bdac(

)idc()idc(

)idc()iba(

idc

iba
. 

 

E25) Let 0iyxz ≠+= .  Then, from E18 we know that R∈= 2|z|zz . 

 Therefore, 1z
|z|

1
z

2
=








.  Thus, z

|z|

1
2

 is the multiplicative inverse of z , 

that is, 
z

1
. 

 Now, 1
z

1
.z = .  1|1|

z

1
.|z| ==∴ .  

|z|

1

z

1
=∴ . 

 

E26) The points S,R,Q,P  and T  in Fig. 13 represent 
2

221
z

1
,z,z,z  and 

2

1

z

z
, respectively.  Here 

OQ

OP
OT =  and XOQXOPXOT ∠−∠=∠ . 

C∈∀= zz1.z

C∈∀= z00.z . 
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Fig. 13 

 

E27) i) LHS )23(i)27(]i2)52[()i1( +++=−++=    

  RHS )32(i)72()i64()]32(i)32[( +++=++−++=  

  Thus, LHS=RHS. 
 

 ii) Let 333222111 iyxz,iyxz,iyxz +=+=+=  

  Then ])yy(i)xx[()iyx()zz(z 323211321 ++++=+  

  )]xx(y)yy(x[i)]yy(y)xx(x[ 321321321321 +++++−+=  

  )]yxyx()yxyx[(i)yyxx()yyxx( 1331122131312121 ++++−+−=  

  )]yxyx(i)yyxx[)]yxyx(i)yyxx[( 1331313112212121 ++−+++−=  

  3121 zzzz += . 

 You can also solve this by writing 21 z,z  and 3z  in polar form.  If 

you do, you must remember to be careful about 0zi =  for any i . 

 

E28) θ+θ=θ+θ 3sini3cos)sini(cos 3 .                     …(11) 

 Also, 

 32233 )sini()sini(cos3)sini(cos3cos)sini(cos θ+θθ+θθ+θ=θ+θ  

 )sincossin3(i)sincos3(cos 3223 θ−θθ+θθ−θ= .         …(12) 

 Thus, comparing real parts of (11) and (12), we get  
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 )cos1(cos3cossincos3cos3cos 2323 θ−θ−θ=θθ−θ=θ  

   θ−θ= cos3cos4 3 . 
 Similarly, comparing the imaginary parts, we get  

 θ−θ=θ−θ−θ=θ 322 sin4sin3sin)sin1(sin33sin . 
 

E29) θ+θ=θ+θ 2sini2cos)sini(cos 2 , and  

 θ−θθ+θ=θ+θ 222 sinsincosi2cos)sini(cos . 

 θ−θ=θ∴ 22 sincoscos , and  

 θθ=θ cossin22sin . 
 

E30) Let θ+θ= sinicosz .  Then, using (7) and (8) of Example 8, we get  

 20
z

1
z15

z

1
z6

z

1
z

z

1
z)cos2(

2

2

4

4

6

6

6

6 +







++








++








+=








+=θ , and  

 20
z

1
z15

z

1
z6

z

1
z)sini2(

2

2

4

4

6

66 −







++








+−








+=θ . 

 







++








+=θ−θ∴

2

2

6

6666

z

1
z30

z

1
z2)sin(cos2  

            θ+θ= 2cos606cos4 , using (6). 

 )2cos156(cos
16

1
sincos 66 θ+θ=θ−θ⇒ . 

 

E31) Let 0s,r,s,r >∈R  and nn sxr == .  Then  

 0)srssrr()sr(sr 1n2n2n1nnn =++++−=− −−−−
L  

 Now, 0s,0r >> , so that 0srssrr 1n2n2n1n >++++ −−−−
L . 

 Thus, 0)ssrr()sr( 1n2n1n =+++− −−−
L  only if 0sr =− , i.e., sr = . 

 

E32) Let )sini(cosrz θ+θ=  be a cube root of 0sini0cos1 += . 

 Then 
3

k2

3

k20
,11r 3/1 π

=
π+

=θ==  for 1,1,0k −= . 

 Thus, the roots are 
2

3
i

2

1
,1 +

−
 and 

2

3
i

2

1
−

−
. 

 They are represented in Fig. 14 by 10 z,z  and 1z− . 
 

 
   Fig. 14: Cube roots of unity. 

 
E33) We want to obtain those C∈z  for which  

 )i1()2z( 2 +±=− , that is,  

 i12z
2 +=−  and )i1(2z2 +−=− , that is, 

 i3z2 +=  and i1z
2 −= . 

 Thus, we want to find the square roots of i3 +  and i1− . 
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 Now, 
















+







=+ −−

3

1
tansini

3

1
tancos10i3

11 . 

 Thus, the square roots of i3 +  are  

 






 θ
+

θ

2
sini

2
cos10

4/1
 and 

















π+

θ
+







π+

θ

2
sini

2
cos10

4/1 , 

 where 
3

1
tan 1−=θ . 

 Also 















 π−
+






 π−
=−

4
sini

4
cos2i1 , so that the square roots of i1−  

are 






 π
−

π

8
sini

8
cos2

4/1
 and 







 π
−

π

8

7
sini

8

7
cos2

4/1
. 

 These 4 square roots are the 4 roots of the given equation. 
 

E34) a) If 0a ≥ , then by Theorem 2, a  has a real cube root, 3/1a .  Now, 

)0sini0(cosaa += . 

  Thus, the cube roots of a are 

 2,1,0k,
3

k2
sini

3

k2
cosa

3/1 =






 π
+

π
 

 that is, 23/13/13/1 a,a,a ωω . 

 If 0a < , then 0a >− .  Thus, a−  has a real cube root, say b .  

Then br −=  is a real cube root for a .  And 3/1|a||r| = , that is, 
3/1|a||r|r −=−=  (since r  is negative). 

 Now )sini(cos|a|a π+π= .  Therefore, the cube roots of a are 

 2,1,0k,
3

)1k2(
sini

3

)1k2(
cos|a|

3/1 =






 π+
+

π+
. 

 2,1,0k,
3

)1k2(
sini

3

)1k2(
cos)sini(cosr =







 π+
+

π+
π+π=  

          (since )sinicos1 π+π=− . 

 2,1,0k,
3

)4k2(
sini

3

)4k2(
cosr =







 π+
+

π+
= . 

 Thus, the cube roots of a are 2r,r,r ωω . 

 b) Let N∈= m,m2n  .  Then, for any R∈b , 

  0)b(bb m2m2n ≥== . 

  Thus, abn ≠  for any R∈b .  Hence, a  can’t have a real nth root. 

 c) Let )sini(cosrz θ+θ= , in polar form. 

  Then its cube roots are 

2,1,0k,
3

k2
sini

3

k2
cosr

3/1 =






 π+θ
+

π+θ
. 

  Thus, if 






 θ
+

θ
=γ

3
sini

3
cosr

3/1
, then the other roots are  

  γω=






 π
+

π
γ=







 π+θ
+

π+θ

3

2
sini

3

2
cos

3

2
sini

3

2
cosr

3/1
, and  

  
23/1

3

4
sini

3

4
cosr γω=







 π+θ
+

π+θ
. 
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5.1 Introduction             107         
Objectives 

5.2 Linear and Quadratic Equations         108 
Linear Equations 
Quadratic Equations 

5.3 Polynomial Equations           113 
5.4 Relations Between Roots and Coefficients        117 
5.5 Nature of Roots           121 

Discriminant  
Descartes’ Rule of Signs 

5.6 Summary            124 
5.7 Solutions/Answers              125 
 

5.1 INTRODUCTION 
 

In your school studies, and in the units of this course, you have come across 

equations of the form 0bax =+ , or 0cbxax 2 =++ , where R∈c,b,a .  

These are examples of polynomial equations over R , as you will see in this 
unit.  Finding solutions of such equations has exercised the minds of several 
mathematicians through the ages.  The ancient Indian, Arabic and Babylonian 
mathematicians had discovered methods of solving linear and quadratic 
equations.  The ancient Babylonians and Greeks had also discovered 
methods of solving some cubic equations, that is, equations like 

R∈=+++ d,c,b,a,0dcxbxax 23 .  But, as we have said in Unit 4, they had 

not thought of complex numbers.  So, for them, many quadratic and cubic 
equations had no solutions. 
 

Here, in Sec. 5.2, you will get a chance to recall what you have studied about 
linear and quadratic equations, and their roots.  Then, in Sec. 5.3, we will 

introduce you to the general polynomial equation over R , and its roots in C .   
 

Next, in Sec. 5.4, you will find some very interesting, and maybe unexpected, 
relations between the roots and coefficients of polynomial equations.  You will 
also see how these relations can be exploited to find solutions of the equations 
concerned.   
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Finally, in Sec. 5.5, we will discuss the types of roots of polynomial equations, 
whether there are any real roots, how many could be non-real, etc.  Here you 
would also apply a very interesting rule, noticed by Descartes, giving a 
relationship between the types of real roots of a polynomial equation and the 
sign of its coefficients.   
 

In this unit, when we talk of polynomial equations, we will always 
assume them to be in one variable, and with coefficients in R , unless 
otherwise mentioned. 
 

There are several reasons, apart from a mathematician’s natural curiosity, for 
studying polynomial equations.  The material covered in this unit is also useful 
for mathematicians, physicists, chemists and social scientists. 
 

After going through the unit, please check to see if you have achieved the 
following objectives.  
 

Objectives 

After studying this unit, you should be able to: 

• solve any linear or quadratic equation over ;R  

• apply the procedure for obtaining one or more roots in C  of a polynomial 

over ,R  by inspection; 

• give the relations between the roots and coefficients of a polynomial 

equation over ;R  

• use the relations between the roots and coefficients of a cubic or quartic 
polynomial to solve such equations; 

• apply Descartes’ rule of signs, and the discriminant of a polynomial 

equation, for finding the nature of the roots of a polynomial over .R  
 

5.2 LINEAR AND QUADRATIC EQUATIONS 
 

Let us begin the unit by recalling what you have studied about linear and 
quadratic equations. 
 

5.2.1 Linear Equations 

As you know, 5x2,x,3x2 −π−+  are all linear polynomials over R .  You 

also know that 03x2 =+ , or 0x =π− , are examples of linear equations.  
More generally, we have the following definitions. 
 

Definition: i) An expression of the form bax + , with R∈b,a  and 0a ≠ , is a 

linear polynomial over R  in one variable x .  

ii) An equation of the form 0a,b,a,0bax ≠∈=+ R , is called a linear 

equation over R . 

iii) A solution of the linear equation 0bax =+  is a complex number α  

for which 0ba =+α .  α  is also called a root of 0bax =+ . 
 
Now, you can find a solution of a linear equation just by looking at it, that is, by 

inspection.  For instance, if 07x2 =−  is the equation, you know that 

2

7
x =  is a solution, as 07

2

7
2 =−








.  Are there any more solutions?  
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Let’s see.  Let C∈α  be such that 072 =−α .  Then, you can see that 

2

7
=α , which is the same as the earlier solution. 

 
Thus, more generally, we have the following theorem. 
 

Theorem 1: The linear equation 0a,b,a,0bax ≠∈=+ R , has one and only 

one solution, viz., 
a

b
x

−
= . 

 
In earlier units, and in school, you would have solved several linear equations.  
You may also recall, from Unit 2, that a function 

0a,b,a,bax)x(f::f ≠∈+=→ RRR , is called a linear function.  So a 

linear polynomial gives rise to a linear function. 
 
Let us now look at an example of the use of linear equations in daily life. 
 
Example 1: Suppose I bought two plots of land for Rs. 1,20,000, and then 
sold them.  Also suppose that I have made a profit of 15% on the first plot and 
a loss of 10% on the second plot.  If my total profit is Rs. 5500, how much did I 
pay for each piece of land? 

Solution: Suppose the first piece of land cost Rs. x .  Then the second piece 

cost Rs. (1,20,000 x− ).  Thus, my profit is Rs. x
100

15
 and my loss is             

Rs. 
100

10
(1,20,000 x− ). 

5500)x000,20,1(
100

10
x

100

15
=−−∴  

i.e., 0000,50,17x25 =−  

i.e., 000,70x = . 

Thus, the first piece cost Rs.70,000 and the second plot cost Rs.50,000. 

*** 
 
Sometimes you may come across equations that do not appear to be linear 
but, after simplification, they become linear.  Let us consider an example. 
 

Example 2: Solve p
1p

p2

3

1p3
=

−
−

−
.  (Here we must assume 1p ≠ .) 

Solution: At first glance, this equation in p  does not appear to be linear.  But, 

by cross-multiplying, we get the following equivalent equation:    

p)1p(3)p2(3)1p()1p3( −=−−− . 

On simplifying this we get  

p3p3p61p4p3 22 −=−+− , that is, 01p7 =− . 

The solution of this equation is 
7

1
.  Thus, this is the solution of the equation 

we started with. 
*** 

 
You may like to try these exercises now. 
 
 

E1) Solve each of the following equations for the variable indicated.  Assume 
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 that all denominators are non-zero. 

 i) xa
k

x
J =








+  for x , where k,J  and a  are constants, kJ ≠ . 

 ii) 
21 r

1

r

1

R

1
+=  for R , keeping 1r  and 2r  constant, 0rr 21 ≠+ . 

 iii) )32F(
9

5
C −=  for F , keeping C  constant. 

 

E2) A student cycles from her home to the study centre in 20 minutes.  The 
return journey is uphill and takes her half an hour.  If her rate is 8 km per 
hour slower on the return trip, how far does she live from the study 
centre? 

 

 

Now that we have looked at linear equations, let us consider quadratic 
equations. 
 

5.2.2 Quadratic Equations 

In the earlier units you have seen several quadratic equations.  One is 5x 2 = , 

which is the same as 05x 2 =− .  Another is the equation Cardano tried to 

solve, namely, 040x10x 2 =+−  (see Sec. 4.1).  We are sure you can think of 
several others.  Let us define the term, in general. 
 

Definitions: i) An expression of the form cbxax 2 ++ , where 

0a,c,b,a ≠∈R , is called a quadratic polynomial over R  in one 

variable x .   

ii) On equating a quadratic polynomial to zero, we get a quadratic 

equation over R  in standard form. 

iii) A solution of the quadratic equation 0cbxax 2 =++  is a complex 

number α  such that 0cba 2 =+α+α . 
 

Now, you know that 05x 2 =−  has two solutions in C , i.e., 5x =  and 

5x −= .  These are called the roots of the given equation. 

 
Various methods for solving quadratic equations have been known since 
Babylonian times (2000 B.C.).  Brahmagupta, in 628 A.D. approximately, also 
gave a rule for solving quadratic equations.  As you may recall, the method 
that can be used for any quadratic equation is “completing the square”.  Using 
it, we get the quadratic formula given in the box. 
 
 
 
 
 

 
The expression ac4b2 −  is called the discriminant of 0cbxax 2 =++ . 
Note that this formula tells us a quadratic equation has only two roots.  These 
roots may be equal or they may be distinct, they may be real or complex. 
 

Convention: We call a root that lies in RC \  a complex root.  Note that such  

a root is of the form 0b,b,a,iba ≠∈+ R . 

Quadratic Formula: The two solutions of the quadratic equation  

0cbxax 2 =++ , where R∈c,b,a  and 0a ≠ , are 
a2

ac4bb
x

2 −±−
= . 

The word ‘quadratic’ 
comes from the Latin 
word ‘quadratum’, 
meaning ‘square’. 
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Let us consider some examples, which show us the different possibilities of 
the nature of the roots of a quadratic equation. 
 
Example 3: Solve the following quadratic equations: 

i) 01x4x 2 =+− , 

ii) x2025x4 2 =+ , 

iii) 040x10x 2 =+− . 
 
Solution: i) This equation is in standard form.  So we can apply the quadratic 

formula immediately.  Here 1c,4b,1a =−== .  Substituting these 

values in the quadratic formula, we get the two roots of the equation to 
be  

 32
2

124

)1(2

)1()1(4)4()4(
x

2

+=
+

=
−−+−−

= , and  

 32
)1(2

)1()1(4)4()4(4
x

2

−=
−−−−

= . 

 Thus, the solutions are 32 +  and 32 − , two distinct elements of R . 

 Note that in this case the discriminant is positive. 
 
 ii) In this case let us first rewrite the equation in standard form as  

 025x20x4 2 =+− . 

 Now, putting 25c,20b,4a =−==  in the quadratic formula, we find that 

2

5

8

020

)4(2

)25()4(440020
x =

+
=

−+
= , and  

 
2

5

)4(2

)25()4(440020
x =

−−
= . 

 Here we find that both the roots coincide and are real. 

 Note that in this case the discriminant is 0 . 
 
iii) Using the quadratic formula, we find that the solutions are 

2

60
5

2

16010010
x

−
±=

−±
=  

    15i5 ±= . 

 Thus, in this case we get two distinct complex roots, 15i5 +  and 

15i5 − . 

 Note that in this case the discriminant is negative. 

*** 
 
In the example above do you see a relationship between the types of roots of 
a quadratic equation and the value of its discriminant?  There is such a 
relationship, which we now state. 
 

Theorem 2: The equation R∈≠=++ c,b,a,0a,0cbxax 2 , has two roots in 

C .  They are:  

i) real and distinct if 0ac4b2 >− ; 

ii) real and equal if 0ac4b2 =− ; 

iii) complex and distinct if 0ac4b2 <− . 
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Now let us consider some important remarks which would be useful to you 
while solving quadratic equations. 
 

Remark 1: α  and β  are roots of a quadratic equation 0cbxax 2 =++  if and 

only if )x()x(acbxax 2 β−α−=++ . 

Thus, C∈α  is a root of 0cbxax 2 =++  if and only if )cbxax(|)x( 2 ++α− . 
 

Remark 2: From the quadratic formula, you can see that if 0ac4b2 <− , then 

the quadratic equation 0cbxax 2 =++  has 2  complex roots which are each 

other’s conjugates.  Thus, if 04acb
2 <− , and one root is ββββαααα i+ , then the 

other root must be ββββαααα i− . 
 

Remark 3: Sometimes a quadratic equation can be solved without resorting to 

the quadratic formula, just by inspection.  For example, the equation 9x 2 =  

clearly has 3  and 3−  as its roots.  Similarly, the equation 0)1x( 2 =−  has two 

coincident roots, both equal to 1 (see Remark 1). 
 

Let us now consider an equation which is not quadratic, but whose solutions 
can be obtained from related quadratic equations.  
 

Example 4: Solve x215x −= . 

Solution: x215x −=  is not a polynomial equation.  But, if we square both 

sides, we obtain the polynomial equation x215x 2 −= . 

Now, any root of x215x −=  is also a root of the equation x215x 2 −= .   

(But the converse need not be true, since x215x 2 −=  can also mean 

x215x −−= .)  So we will obtain both the roots of x215x 2 −= , and see 

which of these satisfy x215x −= .   

Now, the roots of the quadratic equation x215x 2 −=  are 5x −=  and 3x = .  
We must put these values in the given equation to see if they satisfy it. 

Now, for 5x −= , 0105)5(1015)5(x215x ≠−=−−=+−−=−− . 

So 5x −=  is not a solution of the given equation.  But it is a solution of 

x215x 2 −= .  We call such a root an extraneous solution. 

Next, what happens when we put 3x =  in the given equation?  We get 

6153 −= , i.e., 33 = , which is true.  Thus, 3x =  is the solution of the given 

equation. 
*** 

 
Using what we have said so far, try and solve the following exercises. 
 
 

E3) A quadratic equation over R  can have complex roots while a linear 

equation over R  can only have a real root.  True or false?  Why? 
 
E4) Solve the following equations: 

 i) 05x 2 =+ , 

 ii) 0)1x()9x( =−+ , 

 iii) 1x5x 2 =− . 

 

E5) For which values of k  will the equation 016x)6k2(kx 2 =+++  have  

 coincident roots? 
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E6) If α  and β  are roots of 0cbxax 2 =++ , then show that 
a

b
−=β+α  and 

a

c
=αβ . 

 

E7) Let C∈βα,  such that R∈=β+α p  and R∈=αβ q .  Show that α  and 

β  are the roots of 0qpxx 2 =+− . 

 

E8) Reduce 11x3x2 =+−+  to a quadratic equation, and hence, solve 

it. 
 
E9) Ameena walks 1 km per hour faster than Alka.  Both walked from their 

village to the nearest library, a distance of 24 km.  Alka took 2 hours 
more than Ameena.  What was Alka’s average speed? 

 

 
Did you notice that E7 is the converse of E6?  In fact, you will see this 
relationship clearly in the next section.  In this section, our aim was to help you 
recall the methods of solving linear and quadratic equations.  Let us now 
discuss polynomial equations in general. 
 

5.3  POLYNOMIAL EQUATIONS 
 
You have already studied linear and quadratic polynomials in one variable with 

coefficients in R .  You have also seen expressions like 23 x5x2 + , or 

2xx
9

1
x

2

1 234 +π++ .  These are examples of what we shall now define. 

 

Definition: An expression of the form n

n

2

2

1

1

0

0 xaxaxaxa ++++ L , where 

N∈n  and n,,1ia i K=∀∈R , is called a polynomial over R  in the variable 

x .  n10 a,,a,a K  are the coefficients of the polynomial. 

Further, if 0a n ≠ , we say that the degree of the polynomial is n  and the 

leading term is n

n xa . 

 

We usually denote polynomials in x  by )x(g),x(f , etc.  If the variable x  is 

understood, then we often only write f  instead of )x(f .  We denote the 

degree of a polynomial )x(f  by f(x)deg , or fdeg . 

 
While discussing polynomials, we will observe the following conventions. 
 
Conventions: We will 

i) write 
0

x  as 1, so that we will write 0a  for 0

0xa ; 

ii) write 
1

x  as x , so that 1

1xa  is xa1 ; 

iii) write 
m

x  instead of mx.1  (i.e., when 1am = ); 

iv) omit terms of the type mx.0 ; 

v) define the degree of the zero polynomial, 0 , to be ∞∞∞∞−−−− . 
 

Thus, the polynomial 32 xx32 −+  is actually 3210 x)1(x3x.0x2 −+++ . 
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Note that the degree of )x(f  is the highest power of x  occurring in )x(f .  For 

example, 

i) 32 x
2

5
x6x3 ++  is a polynomial of degree 3, 

ii) 
5

x  is a polynomial of degree 5, and  

iii) 2  is a polynomial of degree 0, since 
0

x22 = . 
 
You will often come across polynomials of degree 3 and 4.  They have special 
names. 
 
Definition: i) A polynomial of degree 3 is called a cubic polynomial. 

ii) A polynomial of degree 4 is called a quartic polynomial (or biquadratic 
polynomial).  

 
The degree of a polynomial has some properties, which we shall now state. 
 

Theorem 3: If )x(f  and )x(g  are two polynomials over R ,   

i) )x(g)x(f ±  is a polynomial over R , and 

))x(gdeg),x(fmax(deg))x(g)x(f(deg ≤±  

ii) )x(g)x(f  is a polynomial over R , and 

)x(gdeg)x(fdeg))x(g).x(f(deg += . 

 

Throughout this unit, we have been talking of polynomials over R .  In the 

same vein, we say that )x(f  is a polynomial over C  if its coefficients are 

complex numbers, and f(x)  is over Q  if its coefficients are rational numbers.  

Of course, every polynomial over R  is a polynomial over C .  For example, 

3x2 +  and 3x 2 +  are polynomials over Q  (as well as R  and C ).  On the 

other hand, 3   is a polynomial over R  but not over Q .  In this course we 

shall almost always be dealing with polynomials over R . 
 
Let us now define a related term. 
 
Definition: If we put a polynomial of degree n  equal to zero, we get a 
polynomial equation of degree n , or an nth degree equation. 
 
For example,  

i) 03x2 =+  is a polynomial equation of degree 1, i.e., a linear equation.  

ii) 01x2x3
2 =−+  is a polynomial equation of degree 2, i.e., a quadratic 

equation.  

iii) 0x51 3 =+  is a polynomial equation of degree 3, i.e., a cubic equation. 

 

However, 01)x(sin 4 =+  and 0xx
3 =+  are not polynomial equations since 

they cannot be written in the form 0)x(f = , where f  is a polynomial. 

 

Now, if n

n10 xaxaa)x(f +++= L  is a polynomial, and C∈a , we can 

substitute x  by a  to get )a(f , the value of the polynomial at ax = .  Thus, 
n

n

2

210 aaaaaaa)a(f ++++= L .   

Any non-zero element 
of R  is a polynomial of 
degree 0 over R . 
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For example, if 3x2)x(f += , then 3i2)i(f,531.2)1(f +==+= , and 

03
2

3
2

2

3
f =+







 −
=







 −
. 

Since 0
2

3
f =







 −
, you know that 

2

3−
 is a root of )x(f . 

 
Now, as you have seen in the case of quadratic equations, a polynomial can 
have several roots.  Here are some related definitions. 
 

Definitions: i) Let )x(f  be a non-zero polynomial over R .  C∈α  is called a 

root (or a zero) of )x(f if 0)(f =α .  In this case we also say that α  is a 

solution (or a root) of the equation 0)x(f = . 

ii) The set of solutions of an equation is called its solution set.   
  

So, for example, the solution set of 01x 2 =+  is }i,i{ − , and of 0x3x3 =−  is 

}3,3,0{ − . 

 
There are several situations in which one needs to solve cubic and quartic 
equations.  For example, many problems in the social, physical and biological 
sciences reduce to obtaining the eigenvalues of a square matrix of order 3 or 4 
(which you can study about in the Linear Algebra course).  And for this you 
need to know how to obtain the solutions of such equations. 
 
For obtaining solutions of a polynomial equation, we need some results about 
the roots of polynomial equations.  You have already seen, and used, them in 
the context of linear and quadratic equations.  We will present them here, 
without proof. 
 

Theorem 4: The polynomial equation of degree ,0xaxaa,n n

n10 =+++ L  

where R∈n10 a,,a,a K  and 0a n ≠ , has n  roots in C .  Further, if n1 x,,x K  

are the n  roots of the equation, then  

)xx()xx()xx(axaxaa n21n

n

n10 −−−=+++ KL . 

(Note that the roots need not be distinct.  For example, 22 )1x(xx21 +=++ .) 

 
Though we will not prove this theorem here, we will now state a very important 
result which is used in the proof.  This is analogous to the division algorithm 
for integers, that you studied in school. 
 

Theorem 5 (Division algorithm): Given polynomials )x(f  and )x(g  over R , 

with ∃≠ ,0)x(g  unique polynomials )x(q  and )x(r  over R  such that  

)x(r)x(q)x(g)x(f +=  and )x(gdeg)x(rdeg < . 

 

Now, if you go back to Remark 2, you find that if 0ac4b2 <− , then 

0cbxax 2 =++  has complex roots β+α i  and β−α i , that is, they occur in 

conjugate pairs.  This is not only true for quadratic equations, as you can see 
from the following theorem. 
 
Theorem 6: If a polynomial equation over R  has complex roots, they occur in 

conjugate pairs.  In fact, if C∈+ iba  is a root, then iba −  is also a root. 
 

Proof: Let 0xaxaa n

n10 =+++ L  be a polynomial equation over R , and  
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iba +  be a root of this polynomial.  Then, by definition, 

0)iba(a)iba(aa n

n10 =+++++ L . 

Taking conjugates on both sides of the equation, we get 

0)iba(a)iba(aa n

n10 =−++−+ L .   

This implies iba −  is a root of the polynomial too. 
 
Here is an important point related to this theorem. 
 

Remark 4: Note that Theorem 6 does not say that 0)x(f =  must have a 

complex root.  It only says that if it has a complex root, then the conjugate of 

the root is also a root.  For instance, 01x 2 =−  has no complex roots, but 

01x 2 =+  has two complex roots, i  and its conjugate, i− . 
 
So, what do Theorems 4 and 6 say in the context of cubic equations?   

Consider the general cubic equation over R , 

0a,0dcxbxax 23 ≠=+++ . 

Theorem 4 says that this equation has 3 roots in C .  Theorem 6 says that 
either all 3 roots are real or one is real and two are complex.   
 
Next, what do Theorems 4 and 6 say in the context of quartic equations?  
Theorem 4 tells us that a quartic has 4 roots, which may be real or complex.  
By Theorem 6, the possibilities are  

i) all the roots are real, or  

ii) two are real and two are complex conjugates of each other, or  

iii) the roots are two pairs of complex conjugates, that is, 

idc,idc,iba,iba −+−+  for some 0d,b,d,c,b,a ≠∈R .  

 
Let us consider an example. 
 

Example 5: Obtain the roots of 01xx2 24 =++ . 
 

Solution: 01xx2 24 =++  can be written as 01yy2 2 =++ , where 2xy = .  

Then, solving this for y , we get 
4

7i1
y

±−
= , that is, 

4

7i1
x

2 ±−
= , two 

polynomials over C .  By applying De Moivre’s theorem, you can see the roots 

of 
4

7i1
x

2 +−
=  and 

4

7i1
x

2 −−
=  are  








 θ
−

θ
= −

2
sini

2
cos2z

4/1

1 , 






 θ
+

θ
−= −

2
sini

2
cos2z

4/1

2  and 








 θ
+

θ
=

2
sini

2
cos2z

4/1

3 , 






 θ
−

θ
−= −

2
sini

2
cos2z

4/1

4  respectively, where 

7tan 1−=θ .   

Note that 1z  and 3z  are conjugate pairs, as are 2z  and 4z . 

*** 
 
You can now try some related exercises. 
 
 

E10) Give an example, with justification, of an equation over R  which is not 
a polynomial equation. 
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E11) Obtain the solution set of the cubic equation 0x5x2 23 =− . 

 
E12) Obtain the solution set of  

 i) 01x 7 =− ; 

 ii) 7x5 = . 
 

E13) Find all the roots of x5x4x 35 =+ . 
 

 
So far you have been obtaining solutions of equations, just by inspecting them, 
or using the quadratic formula, or De Moivre’s theorem.  Let us look at some 
rules that help us locate solutions. 
  

5.4 RELATIONS BETWEEN ROOTS AND 
COEFFICIENTS 

 
In this section we shall first look at what E6 and E7 say.  Over there, we saw 
how closely the roots of a quadratic equation are linked with its coefficients.  In 
fact, the same is true for a cubic equation.  For showing this we first need a 
definition.  
 

Definition: Two polynomials n

n10 xaxaa +++ L  and m

m10 xbxbb ++ K  are 

called equal if mn =  and n,,1,0iba ii K=∀= . 

 
Thus, two polynomials are equal if they have the same degree and their 

corresponding coefficients are equal.  Thus, dcxbxax3x2 233 +++=+  iff 

3d,0c,0b,2a ==== . 

 
Why don’t you try and prove the relationship that we give in the following 
exercise, using this definition? 
 
 

E14) Show that βα,  and γ  are the roots of the cubic equation 

0a,0dcxbxax 23 ≠=+++ , if and only if  

i) 
a

b
−=γ+β+α ;  

ii) 
a

c
=αγ+βγ+αβ ;  

iii) 
a

d
−=αβγ . 

 (Hint: Note that, by Theorem 4, the given cubic equation is equivalent to 

0)x()x()x(a =γ−β−α− .) 
 

 
What E14 tells us is that for a cubic equation 

i) sum of the roots
3

2

xoftcoefficien

xoftcoefficien
−=  

ii) sum of the product of the roots taken two at a time
3

xof.coeff

xof.coeff
=  

iii) product of the roots
33

0

 xof coeff.

ermconstant t

xofcoeff.

xof.coeff
−=−= . 

‘coeff’ is an abbreviation 
of ‘coefficient’. 
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Let us use these three relations now to create equations with ‘designed’ roots! 
 

Example 6: If γβα ,,  are the roots of the equation  

05xx7x 23 =−+− , find the equation whose roots are γ+αγ+ββ+α ,, . 

 
Solution: By the relations in E14, we know that  









=αβγ

=αγ+βγ+αβ

=γ+β+α

5

1

7

                 …(1) 

Therefore, 14)(2)()()( =γ+β+α=γ+α+γ+β+β+α             …(2) 

Also, β−=α+γα−=γ+βγ−=β+α 7,7)(,7 , so that 

)()()()()()( β+αγ+α+γ+αγ+β+γ+ββ+α  

})(749{})(749{})(749{ βγ+γ+β−+αβ+β+α−+γα+α+γ−=  

198147 +−= , using (1) and (2). 

50= , and                   …(3) 

)7()7()7()()()( α−β−γ−=γ+αγ+ββ+α              …(4) 

To evaluate the expression on the right hand side of (4), we can use (1) or we 
can use the fact that  

)x()x()x(5xx7x 23 γ−β−α−=−+− .  So, putting 7x = , we get  

)7()7()7(577.77 23 γ−β−α−=−+− , i.e., 2)7()7()7( =γ−β−α−  

Therefore, (4) gives 2)()()( =γ+αγ+ββ+α .             …(5) 

Now, E14, (2), (3) and (5) give us the required equation, which is 

02x50x14x 23 =−+− . 
*** 

 
Why don’t you try the following exercises now? 
 
 

E15) Find the sum of the cubes of the roots of the equation 

06x11x6x 23 =−+− .  Hence find the sum of the fourth powers of the 
roots. 

 

E16) Let abcS,cabcabS,cbaS,c,b,a 321 =++=++=∈R .  Show that 

c,b,a  are positive if and only if 321 S,S,S  are positive. 

 

E17) Find R∈a  if you know that 01axx3x 23 =−+−  has three positive 
solutions.  Also solve the equation. 

 

 

Now, just as in the case of quadratic and cubic equations, if 4321 r,r,r,r  are 

the roots of the quartic 0edxcxbxax 234 =++++ , then we can find their 
relationship with the coefficients of the equation. 
Let us see what they are.  We know that  

)rx()rx()rx()rx(aedxcxbxax 4321

234 −−−−=++++  

)rx()rx()rx()rx(
a

e
x

a

d
x

a

c
x

a

b
x 4321

234 −−−−=++++⇔  

2

434232413121

3

4321

4 x)rrrrrrrrrrrr(x)rrrr(x +++++++++−=  

4321432431421321 rrrrx)rrrrrrrrrrrr( ++++− . 

Comparing the coefficients of 123 x,x,x  and 
0

x , we see that  
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a

b
rrrr 4321 −=+++ , 

a

c
rrrrrrrrrrrr 434232413121 =+++++ , 

a

d
rrrrrrrrrrrr 432431421321 −=+++ , 

a

c
rrrr 3321 = . 

This means that  

sum of the roots 
4

3

xof.coeff

xof.coeff
−= , 

sum of the roots taken two at a time 
4

2

xof.coeff

xof.coeff
= , 

sum of the roots taken three at a time
4

xof.coeff

xof.coeff
−= , 

product of the roots
44

0

xof.coeff

termconstant  

xof.coeff

xof.coeff
== . 

These four equations are a particular case of the following result that relates 
the roots of a polynomial equation with its coefficients.  It is due to the French 
mathematician, Viète. 
 

Theorem 7: Let n1 ,, αα K  be the n  roots of the equation 

0a,n,,1,0ia,0axaxa 0in

1n

1

n

0 ≠=∀∈=+++ −
KL R .  Then  

0

1
n

1i

i
a

a
−=α∑

=

 

0

2
n

ji
1j,i

ji
a

a
=αα∑

<
=

 

M  

n

tt
n

iii

iii
a

a
)1(

t21

t21
−=ααα∑

<<< K

K  

M  

0

nn
n

1i

i
a

a
)1(−=α∏

=

. 

 
In E6, E7 and E14 you have already seen that this result is true for 2n =  and 
3.  Theorem 7 is very useful in several ways.  Let us consider an application in 

the case 4n = . 
 
Example 7: If the sum of two roots of the equation  

08x6x31x24x4 234 =−++−  is zero, find all the roots of the equation. 

Solution: Let the roots be d,c,b,a , where 0ba =+ . 

Then 6
4

24
dcba ==+++ .                

6dc =+∴                   …(6) 

Also, 
4

31
cdab)dc()ba(cdbdbcadacab =++++=+++++  

∏ =
=

n

1i
n21i AAAA L  

Fig. 1: François Viète 
     (1504-1603) 

∑ +++=
=

n

1i
n21i AAAA L  
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4

31
cdab =+∴                  …(7) 

Further, 
2

3

4

6
abdabcbcdacd)dc(abcd)ba( −=

−
=+++=+++  

4

1
ab)6( −=⇒∴                  …(8) 

Finally, 2
4

8
abcd −=

−
=  

8cd)8( =⇒∴                  …(9) 

Now, E7, (6) and (9) tell us that c  and d  are roots of 08x6x 2 =+− . 

Thus, by the quadratic formula, 4d,2c == . 

Similarly, you should check that a  and b  are roots of 0
4

1
x 2 =− .  

2

1
b,

2

1
a −==∴ . 

Thus, the roots of the given quartic are 4,2,
2

1
,

2

1
− . 

*** 
 
Try the following problems now. 
 
 

E18) Solve the equation 064x120x70x15x 234 =++++  
 given that the roots are in G.P., i.e., geometrical progression. 

 (Hint: If four numbers d,c,b,a  are in G.P., then bcad = .) 

 

E19) Show that if the sum of two roots of 0srxqxpxx 234 =+−+−  (where  

 R∈s,r,q,p ) equals the sum of the other two, then 0r8pq4p3 =+− . 
 

 
We have touched upon relations between roots and coefficients for 

4,3,2n = .  But you can apply Theorem 7 for any N∈n .  You have seen 

how these relations can also be used for solving the equations.  You may 
also know that there are formulae, like the quadratic formula, for solving cubic 
and quartic equations, which are due to Cardano, Ferrari and others.  
However, in 1824 the Norwegian algebraist, Abel (1802-1829), published a 
proof of the following result:  
 

 
 
 
 
 
This result says that polynomial equations of degree 4>  do not have a general 
algebraic solution.  But, there are methods that can give us approximate 
values of real roots, which you will study in our course on Numerical Analysis.  
There are, of course, special polynomial equations of degree 5≥  that can be 
solved (as in E13). 
 
Now, given a polynomial equation, is there some way of knowing the type of 
roots it has without actually solving it?  We discuss this in the next section. 

There can be no general formula, expressed in explicit algebraic 
operations on the coefficients of a polynomial equation, for the roots of 
the equation, if the degree of the equation is greater than 4. 

Fig. 2: Niels Henrik Abel  
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5.5 NATURE OF ROOTS 
 
In Sec. 5.3, you saw that a polynomial equation of degree n  has n  roots, 
which may be real or complex.  Theorem 6 also tells you that the complex 
roots occur in conjugate pairs, so that the number of such roots must be even.  
You also know that the discriminant of a quadratic equation tells you what the 
roots of such an equation are like.  So, can we generalise this concept?  Let’s 
see. 
 

5.5.1 Discriminant 

In the case of a quadratic equation 0cbxx 2 =++ , you know that the 

discriminant is c4b2 − .  Also, if α  and β  are the two roots of the equation, 

then c,b =αβ−=β+α .  Therefore,  c4b4)()( 222 −=αβ−β+α=β−α .  

Thus, the discriminant 2)( β−α= , where α  and β  are the roots of the 

quadratic equation. 
 

Now consider the general quadratic equation, 0cbxax 2 =++ .  Let its roots 

be α  and β .  Then its discriminant is 222 )(aac4b β−α=− . 

We generalise this relationship to define the discriminant of any polynomial 
equation. 
 

Definition: The discriminant of 0xaxaxaa n

n

2

210 =++++ L  is  

∏
≤<≤

− α−α
nji1

2

ji

)1n(2

n )(a , where n1 ,, αα K  are the roots of the polynomial 

equation. 
 

In particular, if we consider the case 3n =  and 1a n = , we find that the 

discriminant of a cubic equation is a complicated expression.  This actually 
arises from Cardano’s solution of cubics, which we shall not be doing in this 
course.  However, we give the following:  
 
 
 
 
 
 
 

Now, we know that 222 )()()(D γ−αγ−ββ−α= , where γβα ,,  are the roots of 

the cubic.  As in the case of quadratic equations, does the sign of the 
discriminant tell us anything about the nature of the roots of the equation?  Let 

us look at the different possibility for the roots βα,  and γ  of the cubic. 

 

1) If the roots are all real and distinct, then 0D)()()( 222 >=γ−αγ−ββ−α . 

 

2) If only one root is real, say α , then β  and γ  must be complex 

conjugates. 

 γ−β∴  is purely imaginary, so that 0)( 2 <γ−β . 

 Also, γ−α=β−α , so that 0)()( >γ−αβ−α . 

 Hence, in this case 0D < . 
 

3) Suppose β=α  and α≠γ .  Since 0D,0 ==β−α . 

The discriminant of the cubic 0rqxpxx 23 =+++  is )A4B27(D 32 +−= , 

where r
3

pq

27

p2
B,

3

p
qA

32

+−=−= . 

The discriminant of a 
polynomial equation 
of degree N∈n  is 

zero iff it has at least 
two equal roots. 
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 Also, 0B ≠ .  Why?  Because if 0B = , then 0A =  (since 0D = ). 

 But 
3

p
q0A

2

=⇒= , that is 
3

)2(
)2(

2γ+α
=γ+αα , 

 [over here we have used the relationship between the roots, since 

)2()(p γ+α−=γ+β+α−=  and )2(q γ+αα=αγ+βγ+αβ= ] 

 On simplifying we get γ=α , a contradiction. 

 Thus, 0B ≠ . 

 So, if exactly two roots of  the cubic are equal, then 0D =  and 0B ≠ , 

and hence, 0A ≠ . 
 

4) If γ=β=α , then 0B,0D == , and hence 0A = . 

 
Let us summarize the different possibilities for the nature of the roots of a 
cubic equation now. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us consider an example of the use of the discriminant of a polynomial 
equation for analysing the type of its roots. 
 

Example 8: Obtain the discriminant of 23 x552x2x =−+ .  Hence, 

examine the nature of its roots. 

Solution: Here 52r,2q,5p −==−= .  Therefore, 
27

510
B,

3

1
A

−
==  

and 
3

56
D

−
= .  Since 0D < , exactly one root is real, and hence the other two 

are complex conjugates.  
*** 

 
You may now like to try the following problems to see if you’ve understood 
what we have just discussed. 
 
 

E20) Under what condition on the coefficients of  

 0a,0dcx3bx3ax 23 ≠=+++ , 

 will the equation have complex roots? 
 

E21) Will all the roots of 126x15x 3 +=  be real?  Why, or why not? 
 

 
So far we have introduced you to one way of determining the type of roots of a 
polynomial equation.  Let us now look at a method that tells us the signs of the 
real roots of such an equation. 

Consider the cubic equation R∈=+++ r,q,p,0rqxpxx 23 , and let 

r
3

pq

27

p2
B

3

+−=  and 
3

p
qA

2

−= .  Then )A4B27(D 32 +−= , and  

1. all its roots are real and distinct iff 0D > . 

2. exactly one root is real iff 0D < . 

3. exactly two roots are equal iff 0D =  and 0B ≠ .  Further, in this 
case all the roots are real. 

4. all three roots are equal iff 0D =  and 0B = . 
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5.5.2 Descartes’ Rule of Signs 

Let us begin by taking the polynomial 0xx
3

1
x2x3x2 2345 =π++−−+ .  

Just by looking at it, can you say how many positive and negative real roots it 
could have?  It is possible, due to the following remarkable theorem by 
Descartes. 
 
Theorem 8 (Descartes’ Rule of Signs): The number of positive real roots of 
a polynomial is bounded by the number of changes of sign in its coefficients. 
 
So, if we apply Theorem 8 to the polynomial equation above, then the signs of 

the coefficients of 012345 x,x,x,x,x,x  are ++−−++ .  Thus, there are only 

two changes of sign, one from 
4

x  to 
3

x , and one from 
2

x  to 
1

x .  Thus, it can 
have a maximum of two positive real roots. 
 
Remark 5: Note that we do not say that the polynomial actually has any real 
roots.  We are saying that if it has real roots, then at most two of these can 
be positive.  In fact, it may not have any real roots, or positive real roots at all!  
(See E24.) 
 
Now, you may be wondering if there is a similar rule for negative real roots too.  

Note that if a  is a root of a polynomial f(x)  over R , then a−  is a root of 

x)f(− .  For example, if 2x3x)x(p 2 +−= , then 

2x3x2)x(3)x()x(p 22 ++=+−−−=− .  Now 1 and 2 are the roots of )x(p , 

so that 1−  and 2−  are the roots of )x(p − . 

So, using this relationship, we can write down the following corollary to 
Theorem 8. 
 
Corollary 1: The maximum number of negative roots that the polynomial 

)x(f , over R , can have is the number of changes of sign of the coefficients of 

)x(f − . 

 
Let us consider an example of the use of Descartes’ Rule. 
 
Example 9: Find the nature of the roots of the equation 

04x5x12x3 24 =−++ . 

Solution: Let 4x5x12x3)x(f 24 −++= .  Using Descartes’ Rule, we can see 

that )x(f  has only one change of sign.  Hence, it can have at most one 

positive root. 

Now consider 4x5x12x3)x(f 24 −−+=− .  This too has only one change of 

sign.  Thus, )x(f  has at most one negative root. 

We also know that )x(f  must have 4 roots in C .  Thus, at least two of these 

roots must be non-real, and hence complex conjugates. 

*** 
 
Why don’t you try some exercises now? 
 
 

E22) Find the nature of the roots of x3x 2 + , using Descartes’ Rule.  Also 
check this by actually obtaining the roots. 

 
 

A corollary to a 
theorem is a statement 
that immediately follows 
from the theorem. 
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E23) What is the possible nature of the roots of the equation 

 03x2xx4x 4610 =−−+− ? 
 

E24) Consider 3x2x)x(p 2 +−= .  

i) By Descartes’ Rule, how many positive roots can )x(p  have? 

ii) Obtain the roots of )x(p . 

What can you infer from (i) and (ii)? 
 

 
With this discussion on trying to understand the character of the roots of a 
polynomial, we end our discussion on polynomial equations.  Let us briefly 
summarise the discussion in the unit. 
 

5.6  SUMMARY 
 
In this unit, we have covered the following points. 
 
1. A quick recall of linear and quadratic equations, their solutions and what 

the discriminant of a quadratic equation tells us about the nature of the 
roots of the equation. 

 
2. A polynomial over R  in the variable x  is an expression of the form 

0a,a,n,xaxaa ni

n

n10 ≠∈∈+++ RNL .  Its degree is n .  The 

corresponding polynomial equation is 0xaxaa n

n10 =+++ L , which is 

of degree n . 
 

3. −∞=0deg . 

 

4. A polynomial of degree )x(f,n , has n  roots in C .  C∈a  is a root of 

)x(f  if and only if 0)a(f =  if and only if )x(f|)ax( − . 

 

5. If )x(f  and )x(g  are polynomials over R , then so are )x(g)x(f ±  and 

)x(g)x(f . 

 Further, ))x(gdeg),x(fmax(deg))x(g)x(f(deg ≤± , and 

)x(gdeg)x(fdeg))x(g)x(fdeg( += . 

 
6. A polynomial equation of degree 3 is called a cubic equation, and of 

degree 4 is called a quartic (or biquadratic) equation. 
 

7. The division algorithm states that given polynomials )x(f  and )x(g  over 

R , with 0)x(g ≠ , ∃  unique polynomials )x(q  and )x(r  over R , such 

that )x(r)x(q)x(g)x(f += , with )x(gdeg)x(rdeg < . 

 
8. If a polynomial equation has complex roots, then they occur in conjugate 

pairs. 
 
9. Applications of the following theorem: 

 Let n1 ,, αα K  be the n  roots of the equation 

 0a,n,,1,0ia,0axaxa 0in

1n

1

n

0 ≠=∀∈=+++ −
KL R .  Then  

 
0

1
n

1i

i
a

a
−=α∑

=
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0

2
n

ji
1j,i

ji
a

a
=αα∑

<
=

 

 M  

 
n

tt
n

iii

iii
a

a
)1(

t21

t21
−=ααα∑

<<< K

K  

 M  

 
0

nn
n

1i

i
a

a
)1(−=α∏

=

 

 

10. If the polynomial equation 0a,0xaxaa n

n

n10 ≠=+++ L , has roots 

n21 ,,, ααα K , then its discriminant is 2

ji

ji

)1n(2

n )(aD ∏
<

− α−α= . 

 We also discussed the way D  can be used for understanding the nature 
of the roots of the equation, particularly in the case of cubics. 

 

11. If )x(f  is a polynomial over R , Descartes’ Rule of Signs tells us that the 

maximum number of positive roots 0)x(f =  can have is the number of 

changes of sign in its coefficients.  Applying this, we also obtained the 
bound on the number of negative roots.  Hence we tried to gauge the 

nature of all the roots of 0)x(f = . 

 

5.7  SOLUTIONS/ANSWERS 
 

E1) i) 
kJ

Jak
xJakx)kJ(xa

k

x
J

−

−
=⇔−=−⇔=








+ , 

  which is well-defined since kJ ≠ . 
 

 ii) 
21

21

21 rr

rr

r

1

r

1

R

1 +
=+=  

  Hence, 
21

21

rr

rr
R

+
= . 

 

 iii) 32C
5

9
F +=  

 

E2) 20 min
3

1
=  hr. 

 Let the student’s rate to the study centre be x km per hour. 

 Then the distance travelled by her is 
3

x
km. 

 Similarly, since the rate of travel back is )8x( − km per hour, the same 

distance, i.e., from the study centre to her home, is )8x(
2

1
− km. 

 So )8x(
2

1

3

x
−= . 

 Solving this for x , gives 24x = . 

 Thus, the student lives at a distance of 8
3

24
= km. 
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E3) The statement is true. 

 Consider a linear equation, say 0bax =+ . 

 Here 0a,b,a ≠∈R .  Its solution is 
a

b
− , which is in R . 

 Now, consider the quadratic equation 01x2 =+ .  This has complex 

roots i,i − .  Thus, a quadratic equation over R  can have complex 

roots. 
 

E4) i) 222 i55x05x =−=⇒=+ .  Thus, 5ix ±= . 

 

 ii) 09x0)1x()9x( =+⇒=−+  or 1,9x01x −=⇒=− . 

 

 iii) 01x5x1x5x 22 =−−⇒=− , in standard form.  Applying the 

quadratic formula, we get 
2

35
,

2

35

2

455
x

−+
=

+±
= . 

 
E5) The roots will be coincident, that is, both will be equal, iff the discriminant 

is zero, i.e., 0k64)6k2( 2 =−+  

 09k10k036k40k4 22 =+−⇒=+−⇒ . 

 By the quadratic formula, we get  

 1,945
2

3610010
k =±=

−±
= , which are the required values. 

 
E6) By Remark 1, 

 }x)(x{a)x()x(acbxax 22 αβ+β+α−=β−α−=++ . 

 Equating the coefficient of x , and the constant term, on both sides of the 
equality, we get  

 )(ab β+α−=  and αβ= ac , 

 that is, 
a

c
,

a

b
=αβ−=β+α . 

 

E7) α  is a root of 0x)(x2 =αβ+β+α−  iff 0)(2 =αβ+αβ+α−α , which is 

true.  Hence, α  is a root of the given equation. 

 Similarly, β  is a root of the given equation. 

 

E8) 11x3x2 =+−+ . 

 Squaring both sides, we get  

 1)1x()3x2(2)1x()3x2( =++−+++  

 )1x()3x2(23x3 ++=+⇔ . 

 Again, squaring this, we get  

 )1x()3x2(49x18x9 2 ++=++  

 12x20x89x18x9 22 ++=++⇔  

 03x2x2 =−−⇔ . 

 The roots of this equation are 3  and 1− . 
 Now, putting these values in the original equation, we find that 

1133)3(2 =+−+ , and 11)1(3)1(2 =+−−+− .   

 Thus, both 3  and 1−  are solutions of the given equation. 
 
E9) Let Alka’s average speed be x km per hour, and suppose she took t   
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 hours to walk 24 km. 

 Then xt24 = , that is, 
x

24
t = . 

 Also, Ameena’s speed is )1x( + km per hour, and time taken is 

)2t( − hrs. 

 So 







−+=−+= 2

x

24
)1x()2t()1x(24 . 

 012xx2 =−+⇔  

 4,3x −=⇔ . 

 Since average speed is non-negative, 4x −=  is not acceptable in the 
given situation.  Therefore, 3x = , that is, Alka’s average speed is 3km 
per hour. 

 
E10) There are infinitely many examples. 

 For instance, LL ++++++ n32
xxxx1 , containing infinitely many 

terms, is not a polynomial. 
 

E11) 0x5x2 23 =−  0)5x2(x2 =−⇔ .  By inspection, we note that two 

roots are zero.  So, we get 0x =  or 05x2 =− . 

 Thus, the solution set is 









2

5
,0 . 

 
E12) i) The required set is the set of the seventh roots of unity (see Unit 4, 

Sec. 4.5).  Thus, the solution set is 









±±±=
π

+
π

3,2,1,0k,
7

k2
sini

7

k2
cos . 

 

 ii) Again, from Sec. 4.5, you know that if 5x 7 =  has one root α , then 

the solution set is 








±±±=






 π
+

π
α 3,2,1,0k,

7

k2
sini

7

k2
cos . 

  Here we choose α  to be the real number 7/1)5( . 

 

E13) x5x4x 35 =+  

 0)5x4x(x 24 =−+⇔ . 

 By inspection, we see that one root is 0 , and the other roots are those 

of 05x4x 24 =−+ .   

 Now, to solve 05x4x 24 =−+ , put tx2 = .  Then the equation is 

05t4t2 =−+ . 

 Its roots are 5,1t −= . 

 Thus, 1x
2 =  and 5x2 −=  give us the roots of the given equation. 

 Now, 1x1x2 ±=⇒= . 

 Also, 5ix5x2 ±=⇒−= . 

 So the 5 roots of the given equation are 5i,1,0 ±± . 

 
E14) Using Theorem 4, we get  

 )x()x()x(adcxbxax 23 γ−β−α−=+++  

 }x)(x)(x{a 23 αβγ−αγ+βγ+αβ+γ+β+α−=  



 

 

128 

Block 1                                                           Essential Preliminary Concepts 

 Now, equating the coefficients of 012 x,x,x  on both sides we get (i), (ii) 

and (iii), respectively. 
 

E15) If γβα ,,  are the roots of the equation, we know that  

 6=γ+β+α ,                …(10) 

 11=αγ+βγ+αβ ,               …(11) 

 6=αβγ .                 …(12) 

 We need to find 333 γ+β+α , and then 444 γ+β+α . 

 Now, )(2)( 2222 αγ+βγ+αβ+γ+β+α=γ+β+α . 

 Thus, from (10) and (11) we find that  

 14)11(2)6( 2222 =−=γ+β+α               …(13) 

 Now, since γβα ,,  are roots of the given equation, we know that  

 06116 23 =−α+α−α , 

 06116 23 =−β+β−β , 

 06116 23 =−γ+γ−γ . 

 Adding these three equations, we get  

 018)(11)(6)( 222333 =−γ+β+α+γ+β+α−γ+β+α . 

 Now, using (10) and (13), we find  

 3618)6(11)14(6333 =+−=γ+β+α .             …(14) 

 Now, note that multiplying the given equation by x , we get  

 0x6x11x6x 234 =−+−  

 As γβα ,,  are also roots of this equation, using the procedure above, 

we get three equations.  Adding them, we get  

 0)(6)(11)(6)( 222333444 =γ+β+α−γ+β+α+γ+β+α−γ+β+α  

 So, using (14), (13) and (10), we get  

 98)6(6)14(11)36(6444 =+−=γ+β+α . 

 

E16) Firstly, if c,b,a  are positive, 21 S,S  and 3S  have to be positive.  (Why?) 

 Now, we need to prove the converse, that is, if 321 S,S,S  are positive, 

then c,b,a  must be positive.  For this, note that c,b,a  must be the 

roots of the cubic equation  

 0SxSxSx 32

2

1

3 =−+−  

 So, 0SaSaSa 32

2

1

3 =−+−  

 0S)SaSa(a 321

2 >=+−⇒  

 Thus, 0a ≠ . 

 Also, if 0a < , then 0SaSa 21

2 >+− , so that 0)SaSa(a 21

2 <+− , which 

is a contradiction.  So, a  must be positive. 

 Similarly, b  and c  must be positive. 
 

E17) If γβα ,,  are the roots of the equation, then 

1,a,3 =αβγ=αγ+βγ+αβ=γ+β+α . 

 By inspection, we see that 1=γ=β=α  satisfy all the relations. 

 Then 3a = . 
 

E18) Let d,c,b,a  be the roots in GP, then  

 bcad =                  …(15) 
 Now, we know that  
 15dcba −=+++                …(16) 
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 70cdbdbcadacab =+++++               …(17) 

 120)dc(abcd)ba( −=+++  

 120)da(bc)cb(ad −=+++⇒              …(18) 

 64abcd =                 …(19) 

 Now (15), (16) and (18) give us 10)15(ad −=− , i.e., bc8ad == . 

 Next, (17) gives us  

 70bc2)cb()da( =+++  

 70bc2)cb()}cb(15{ =+++−−⇒ , using (16) 

 054)cb(15)cb( 2 =++++⇒  

 6cb −=+⇒  or 9cb −=+  

 We take 6cb −=+                …(20) 

 Then 4bc4)cb()cb( 22 =−+=−  

 2cb =−⇒                 …(21) 

 (20) and (21) give us 4c,2b −=−= . 

 Also, (16) and (20) give us 9da −=+ . 

 As above, we find 8d,1a −=−= . 

 So, the roots, given in order, are 8,4,2,1 −−−− , with the common ratio 

being 2 . 

 (Note that in (20) we could have taken 9cb −=+ , then in the further 
calculations you would have got the same roots ultimately.) 

 

E19) Let the roots be d,c,b,a , with  

 dcba +=+ .                …(22) 

 Now pdcba =+++                …(23) 

 qcdbdbcadacab =+++++               …(24) 

 r)dc(abcd)ba( =+++               …(25) 

 sabcd =                  …(26) 

 (22) and (23) dc
2

p
ba +==+⇒  

 Then (25) 
p

r2
cdab =+⇒  

 Also (24) qcdabd)ba(c)ba( =+++++⇒  

 So pq4r8pq
p

r2

4

p 3
2

=+⇒=+  

 0r8pq4p3 =+−⇒ . 

 

E20) The only case will be when 0D < , i.e.,  

 0A4B27 32 >+ , 

 where 
a

d

3

1
.

a

bc9

27

1
.

a

)b3(
2B

23

3

+−=
a

d

a

bc3

a

b2
23

3

+−= , 

 and 
2

22

a

b
3

a

c3

a

b3

3

1

a

c3
A −=








−= . 

 Thus, the requirement is  

 0
a

bac
)27(4

a

adabc3b2
27

3

2

2
2

3

23

>






 −
+







 +−
 

 0)bac(4)daabc3b2( 32223 >−++−⇒ . 
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E21) Here 126r,15q,0p −=−== . 

 So, 15A,126B −=−= , 

 0})15(4)126(27{D 32 <−+−−=  

 Therefore, only one root will be real, and two will be complex conjugates. 
 
E22) By Descartes’ Rule, this has no positive roots, and at most one negative 

root.  So, it will have one root equal to zero and one negative root. 
 Now, by inspection we see it has two roots, 0  and 3− , which matches 

the nature suggested by Descartes’ Rule. 
 

E23) Using Descartes’ Rule, we see )x(f  can have at most three positive 

roots, since the signs are  

  +    ─   +    ─  ─, i.e., a total of 3  sign changes. 
 
     1    1    1  

 Now, 3x2xx4x)x(f 4610 −++−=− . 

 So, there are two sign changes. 
 Therefore, the equation can have at most two negative roots. 
 Now, this equation has 10  roots, and we see that at most 5  can be real.  

So, at least 5  roots are complex.  But, complex roots occur in pairs.  So, 

at least 6  roots are complex.  Then 4  roots would be real. 

 Another possibility is it could have 8  complex roots, and two real 
roots, one of which is positive and one negative. 

 A third possibility is that it has 5  pairs of complex roots and no real 
roots. 

 
E24) i) By the Rule, it can have two positive roots. 
 

 ii) The roots are 2i1
2

1242
±=

−±
. 

 Thus, even though the Rule shows the maximum possibility of real roots, 
there need not be any real roots at all.  Here both the roots are complex. 
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MISCELLANEOUS EXERCISES 
 
The exercises given below cover the concepts and processes you have 
studied in this block.  Doing them will give you a better understanding of the 
concepts concerned, as well as practice in solving such problems. 
 

1.  If R∈c,b,a  such that )cbxax()bax2(
2 +++ , what is the nature of the 

roots of 0cbxax2 =++ ? 
 

2. Give a geometrical representation of the following sets: 

 i) R⊆− }2,75.0,3{ , 

 ii) R⊆∪−< }3{}3x|x{ , 

 iii) |)y,x{( RR×⊆−= }2x3y . 

 

3. Graph the function ,f  defined by  

 i) 




>

≤−
=→

.1xif,x

,1xif,x1
)x(f::f

2
RR  

 ii) |x|)x(f::f −=→RR , 

 iii) x2)x(f::f =→NN . 

 

4. Is i4
i2

i2

i1

i4









+
−

+

−
 a purely imaginary number?  Give reasons for your 

answer. 
 

5. Solve the equation 3x,6
3x

4

3x

1x
±≠+

+
=

−

+
. 

 

6. If two people lay tiles on the floor of a room, it takes them 4 hours to do 
the job together.  If each works alone, one of them could do the job in 1 
hour less than the other.  How long would it take each of them to tile the 
floor alone? 

 

7. Evaluate the following, where ω  is a cube root of unity: 

 i) )1()1( 22 ω−ω+ω+ω− , 

 ii) )1()1()1()1( 542 ω−ω−ω−ω− . 

 

8. Find the equation whose roots are 4 less in value than the roots of 

011x17x7x5x 234 =+−+− . 

 (Hint: You can re-write the equation as an equation in 4x − .) 
 

9. Solve 01x9x16x9x 234 =++++ . 

 (Hint: Note that the coefficients of 
r

x  and 
r4

x
−

 are the same in this, for 

2,1,0r = .  Also 0x =  is not a root.  Dividing throughout by 
2

x , you can 

rewrite the equation as one in y
x

1
x =+ , say.  Then solve for y .) 

 

10 Find the least possible number of imaginary roots of 

01xxxx 2459 =+++− . 
 

11. Find the square root of )ba(i2ab4 22 −− , where R∈b,a . 
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SOLUTIONS/ANSWERS 
 

1. 0cbxax2 =++  has two roots.  By the given condition, one root is 
a2

b−
.  

Suppose the other root is R∈r .  Then  

 cbxax)rx(
a2

b
xa

2 ++=−







− . 

 On equating the coefficients, we get 
a2

b
r

−
= . 

 Thus, both the roots are equal and real. 
 
2. i) 
 

 
 

Fig. 1 
 

  
ii) 
 
 

 
 
 

Fig. 2:  The portion of the number line to the left of 3− , together with 
the point representing 3, is the representation of the set. 

 

 
 iii)   
 

 
 

Fig. 3: L represents 2x3y −= . 
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3.  (i) and (ii) 

 
    (i)     (ii)   

Fig. 4: (i) 




>

≤−
=

1x,x

1xx,1
y 2 ,   (ii) |x|y −= . 

 
iii) 

 
Fig. 5: N∈∈∈∈∀∀∀∀ x2y

x
= . 

 

4. The number is 
10

)i31(i44

i31

i44

)i2()i1(

)i1(i2)i2()i4(
i4

−
=

+
=









++

+−+−
. 

 Thus, its real part is non-zero, and hence the number is not purely 
imaginary. 

 

5. 6
3x

4

3x

1x
+

+
=

−

+
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 69x5 2 −=⇒  

 
5

69
ix ±=⇒ . 

 
6. Suppose the slower worker completes the job alone in x  hours. 

 The faster worker completes the job alone in )1x( −  hours. 

 The rate of job done per hour of each is 
x

1
 and 

1x

1

−
, respectively. 

 Together they complete the job in 4 hours. 

 1
1x

1

x

1
4 =









−
+∴  

 04x9x 2 =+−⇒  

 5.0,5.8
2

659
,

2

659
x =

−+
=⇒  (approximately). 

 5.0x =  is not possible, since 5.01x −=− , which is negative, and hence 
cannot be the time taken by a worker. 

 Thus, 5.8x ≈  and 5.71x ≈− . 

 So, the workers would each take 5.7  hours and 5.8  hours, respectively, 
to tile the floor alone.  

 

7. i) We know that 01 2 =ω+ω+  and 13 =ω . 

  4)2()2()1()1( 222 =ω−ω−=ω−ω+ω+ω−∴ . 

 

 ii) )1()1()1()1( 542 ω−ω−ω−ω−  

  )1()1()1()1( 22 ω−ω−ω−ω−=  

  222 )1()1( ω−ω−=  

  9)21()21( 422 =ω+ω−ω+ω−= . 

 

8. Let 4xy −= .  Then the given equation becomes  

 011)4y(17)4y(7)4y(5)4y( 234 =++−+++−+  

 09y55y43y11y 234 =−+++⇔  the required equation. 

 

9. 01x9x16x9x 234 =++++  

 016
x

1
x9

x

1
x

2

2 =+







++








+⇔ , dividing throughout by 

2
x . 

 014
x

1
x9

x

1
x

2

=+







++








+⇔ . 

 Put y
x

1
x =+ , to get 014y9y2 =++ . 

 Then 7,2y −−= . 

 So 2
x

1
x −=+  and 7

x

1
x −=+  give us 01x2x 2 =++  and 

01x7x 2 =++ . 
 Solving these equations, we get the four roots of the original equation, 

namely, 
2

457
,1,1

±−
. 
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10. Let 1xxxx)x(f 2459 +++−= .  Then 1xxxx)x(f 2459 ++++−=− . 

 Since )x(f  has only two changes of sign, it has at most two positive 

roots.  Since )x(f −  has at most one change of sign, )x(f  has at most 

one negative root. 

 Since )x(f  has 9  roots, of which at most 3  are real, at least 6  are 

complex roots. 
 

11. )sini(cos)ba(2)ba(i2ab4 2222 θ+θ+=−− , where 






 −
=θ −

ab2

ab
tan

22
1 . 

 Therefore, its square roots are  

 






 θ
−

θ
−+







 θ
+

θ
+

2
sini

2
cosba2,

2
sini

2
cosba2

2222
, where 








 −
=θ −

ab2

ab
tan

22
1 . 


