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BLOCK 2 LIMIT AND CONTINUITY 
 
This is the second of the five blocks which you will be studying for the course calculus. We 
assume that you are familiar with the real number system and real functions. But, just to 
refresh your memory, we have given a brief account of real numbers and their properties, 
as well as some types of functions in Unit 6. It is also possible that some of you have not 
studied certain aspects of the real number system and functions earlier. In that case, Unit 
6 will help you prepare a firm ground for the imposing structure of calculus which follows. 

Calculus has two fundamental procedures, differentiation and integration, which can be 
formulated in terms of a concept called the ‘limit’. In Unit 7, we begin with helping you 
acquire an intuitive sense of this concept. The word ‘intuitive’ can mean several things. Its 
use here means “experience based, without proof”. Following this intuitive presentation, 
we present the formal definition of ‘limit’. In addition, we will introduce you to functions that 
require the use of limits, namely, the exponential, logarithmic functions and hyperbolic 
functions. 

In Unit 8, we will continue to use ‘limit’ to explore a new concept, namely, that of 
continuity. We will also discuss the types of discontinuity, and end the unit by stating the 
intermediate value theorem for continuous functions, and giving some of its applications. 

In Unit 6 to Unit 8, we have included a number of examples. Please go through them 
carefully. They will help you in a better understanding of the concepts discussed and will 
also serve as a guide in solving the exercises. 

At the end of the block, you will find miscellaneous examples and exercises, covering the 
concepts you have studied across the units. Please solve the exercises on your own. At 
the end of each unit, and after the miscellaneous exercises, we do provide some 
solutions/answers to the exercises concerned. These are only as a support for you to be 
able to check whether you have been able to solve the problem correctly or not. Please do 
not look at these solutions till you have spend enough time on studying the unit and trying 
all the exercises.   

A word about some signs used in the unit! Throughout each unit, you will find theorems, 
examples and exercises. To signify the end of the proof of a theorem, we use the sign    . 
To show the end of an example, we use ***. Further, equations that need to be referred to 
are numbered sequentially within a unit, as are exercises and figures. E1, E2 etc. denote 
the exercises and Fig. 1, Fig. 2, etc. denote the figures. 
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NOTATIONS AND SYMBOLS (used in Block 2) 
 

∈  ( )∉   belongs to (does not belong to)  

N   the set of natural numbers 

( )( )−+ ZZZ   the set of integers(the set of positive integers)(the set of negative 

integers) 

( )*QQ   the set of rational numbers (non-zero rational numbers) 

( )( )−+ RRR  the set of real numbers(the set of positive real numbers)(the set of 

negative real numbers) 

⇒ ( )⇔   implies (implies and is implied by)  

iff  if and only if  
∴  therefore 
w.r.t.  with respect to  
s.t.  such that 

)(≤<   is less than (is less than or equal to) 

)(≥>   is greater than (is greater than or equal to) 

∃   there exists 

∀   for all  

YX:f →  f  is a function from the set X  to the set Y  

x|x{  satisfies }P  the set of all x  such that x  satisfies the property P  

|x|  modulus of the real x  

)x(flim
ax→

 limit of )x(f as x tends to a  

)x(fx →  a functions f taking x to )x(f  

r

n C  the number of combinations of r things taken out of n , 

!)rn(!r

!n
Cr

n

−
=  

≈  is approximately equal to  

}y,x{max  the maximum of x and y  

}y,x{min  the minimum of x and y  

 
Please see the notations and symbols used in Block 1. 
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Unit 6                                                                    Real Numbers 

UNIT 6                                                        

REAL NUMBERSREAL NUMBERSREAL NUMBERSREAL NUMBERS    

StructureStructureStructureStructure                                Page NoPage NoPage NoPage No....    
 
6.1       Introduction                 5 

 Objectives 

6.2       Properties of Real Numbers               6         

6.3 Supremum and Infimum               9 

6.4 Absolute Value              12 

6.5 Intervals on the Real Number Line            16 

6.6 Functions and Their Graphs             20 

6.7 Types of Functions              31 

 Even and Odd Functions 

 Monotonic Functions 

 Periodic Functions 

6.8 Summary               40       

6.9 Solutions/Answers              41 
           

6.1 INTRODUCTION 
 
In this unit, we shall provide you with a review of the basic facts about the 
system of real numbers. Perhaps, you are already familiar with some of these 
from your studies in school. But, a quick look through this unit will help you in 
refreshing your memory. And some of the concepts, like infimum and 
supremum, are likely to be new to you. 
 
In Sec. 6.2 of this unit, we shall present the arithmetic and order properties of 
the real number system.  In Sec. 6.3, we shall introduce the concept of 
supremum and infimum. We shall discuss absolute value and the intervals on 
the real line in Sec. 6.4 and Sec. 6.5 respectively.  You have already studied 
functions and their graphs in Unit 2 and Unit 3. In Sec. 6.6, you will find more 
examples of functions and their graphs. We end the unit with even and odd 
functions, monotonic functions and periodic functions in Sec.6.7. 
 
And now, we will list the objectives of this unit. After going through the unit, 
please read this list again and make sure that you have achieved the 
objectives. 
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Objectives 

After reading this unit, you should be able to: 

• list the basic properties of real numbers; 

• derive other properties of real numbers with the help of the basic ones; 

• define the supremum and infimum of a given set; 

• obtain the absolute value of a real number; and 

• determine whether a given function is even, odd, monotonic or periodic. 

 

6.2 PROPERTIES OF REAL NUMBERS 
 
The real number system (which we often call simply “the reals”) is first of all a 
set on which the operations are defined. Real number system is the foundation 
on which a large part of mathematics, including calculus, rests. Thus, before 
you actually start learning calculus, it is necessary to understand the real 
number system. 
Here we shall quickly recall some properties of real numbers. 

 

Operation of Addition:  

1A  R  is closed under addition. 
 If x  and y  are real numbers, then yx +  is a unique real number. 

 For example: 853 =+  is real.  

2A  Addition in R is associative.  

 z)yx()zy(x ++=++  holds for all z,y,x  in .R  

 For example: ( ) ( )3.05.02.03.05.02.0 ++=++  

3A  Existence of Additive identity (zero). 

There is a unique real number, ,0  such that xx00x =+=+  for all x  

inR . 0 is called the additive identity in .R   

For example: 
4

1

4

1
00

4

1
=+=+ . 

4A  Exstence of Additive inverse. 
For each real number x , there exists a real number y  (called the  

additive inverse of x , and denoted by x− ) such that 0xyyx =+=+ . 

For example: .0
2

1

2

1

2

1

2

1
=+








−=








−+  

5A  Addition is commutative.  

 xyyx +=+  holds for all y,x  in .R  

 For example: 2.328.428.422.32 +=+  

 

Operation of Multiplication: 

1M  R  is closed under multiplication. 
 If x  and y  are real numbers, then xy  is a real number.  

 For example: 1243 =× is real. 

2M  Multiplication is associative. 

 z)xy()zy(x =  holds for all z,y,x  in .R  
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 For example: 
5

4

4

3

3

2

5

4

4

3

3

2
×







×=








××     

3M  Existence of Multiplicative Identity (Unity) 

There exists a unique real number 1, such that xx11x ==  for every x  

in R . The number 1 is called the multiplicative identity (unit element or 
unity) in R . 

For example: 5.85.8115.8 =×=×  

4M  Existence of Multiplicative Inverse. 
For each non-zero real number x , there exists a real number y  (called 

the multiplicative inverse of x , and denoted by 
1

x
−

, or by x/1 ) such 

that 1yxxy == . 

 For example: 16
6

1

6

1
6 =×








=








×  

5M  Multiplication is commutative. 

 yxxy =  holds for all y,x  in R . 

 For example: 7887 ×=×  
 The next property involves addition as well as multiplication. 

D  Multiplication is distributive over addition. 

 xzxy)zy(x +=+  holds for all z,y,x  in R . 

         yzxzz)yx( +=+  holds for all z,y,x  in R . 

 For example: ( ) 4
2

1
2

2

1
42

2

1
×+×=+× , and 

          ( ) 4342432 ×+×=×+  

It may be noted that, for any two real numbers x and y, the result of 

subtraction of y  from x  is denoted by yx −  and is defined as )y(x −+ .  

Similarly, the division yx ÷  (also denoted by y/x ) is defined as 1xy− , 

provided 0y ≠ . 
 

Now we are ready to list a few more properties of real numbers. 

1. x)x(,0x0 =−−= and ,xx)1( −=− for all x inR . 

2. )y()x()yx( −+−=+−  for all y,x  in R . 

 For example: 9)5()4()54( −=−+−=+−  

3. If 0xy = , then either 0x =  or 0y =  

 For example: 0)2x()1x( =−− gives 01x =− or .02x =−  

4. x)x( 11
=

−−  for all 0x ≠  in R . 

 For example: ( ) 5)51()5( 111
==

−−−  

5. If x  and y  are non- zero numbers such that 11 yx −−
= , then yx = . 

 

Example 1: A person calculates 
9

80
using the following steps: 

  
54

80

9

80

+
=  (Line 1) 

     
5

80

4

80
+=  (Line 2) 

    1620 +=  (Line 3) 

    36=   (Line 4) 
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which line of the calculation is wrong and why? 

Solution: Line 2 is wrong because distributive law does not work for division. 

That is 
c

a

b

a

cb

a
or)ca()ba()cb(a +≠

+
÷+÷≠+÷ . 

*** 
 
Try the following exercises now. 
 
 

E1) Is the following subset of R closed w.r.t. multiplication? Give reasons. 

  }.3,2,1,
2

1
,

3

1
,0,

3

1
,

2

1
,1,2,3{ −−−−−=S  

 
E2) Find the mistake done in the following lines of some calculation. Explain 

the nature of the error. 

 )3700(15736971573 −−=−  Line 1 

      3)7001573( −−=  Line 2 

     3873 −=   Line 3 

      870=   Line 4 
   

 

Now, we shall discuss the order relation onR . 
 

Order Relation onR : The order relation ''> , which you have been already 
using, has the following properties: For example, all positive numbers are 
greater than zero. 

1O  Law of Trichotomy holds. 
 For any two real numbers y,x , one and only one of the following holds: 

 yx,yx,yx <=> .  

 For example: Since ,59 > therefore 59 ≠ and 9 .5</  

2O   ''> is transitive. 

 If yx >  and zy > , then, R∈∀> z,y,x,zx . 

 For example: Since 
7

1

5

1
> and ,

9

1

7

1
> therefore, 

9

1

5

1
>  

3O  Addition is monotone. 

 If z,y,x , in R  are such that yx > , then, zyzx +>+ . 

For example: Since ,5.75.9 > therefore, 45.745.9 +>+ , i.e. 

.5.115.13 >  

4O  Multiplication is monotone only under a specific condition. 

 If z,y,x  in R are such that yx >  and 0z > , then, yzxz > . 

 For example: Since 36 > therefore, 2326 ×>× , i.e. .612 >  

 Caution: yx >  and yzxz0z <⇒< . 

 For example: Since ,36 > therefore, )2(3)2(6 −×<−× , i.e. .612 −<−  

 Some more properties are:  

1. If ba <  and dc < , then, dbca +<+ . 

 For example: Since 75 < and ,64 < therefore, 6745 +<+  

2. 2a  is non-negative for all a  in R . 

 For example: 25)5)(5()5( 2
=−−=− is non-negative. 

 The only ∈a R for which 0a 2
= is .0a =  

Symbol ''∀  denotes ‘for 

all’ or ‘for each’. 

We write yx < (and read 

x is less than y) to mean 
.xy > We write 

yx ≤ (and read x is less 

than or equal to y ) to 

mean either yx < or 

yx = . We write 

yx ≥ (and read x is 

greater than or equal to 

)y if either yx > or 

yx = . 
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3. If a  and b  are positive real numbers, then  

i) baba 22
=⇔= . 

ii) baba 22
>⇔>  

iii) baba 22
<⇔<  

For example: “If x is positive then .1x1x 2
>⇔> ” 

4. If 0b > , then babba 22
<<−⇔< . 

If the square of a real number is less than the square of a positive real 
number, then the number must lie between the positive and negative 
value of the positive real number.  

 For example: .5x525x2
<<−⇔<   

5. For any reals x and ,y  if ,yx ≠ then 
2

yx +
is between x and .y  That is  

 y
2

yx
x <

+
< or .x

2

yx
y <

+
<  

 For example: Take 4x =  and ,10y = .107
2

104
4 <=

+
<  

 
Now we shall discuss supremum and infimum in the following section. 
 

6.3 SUPREMUM AND INFIMUM 
 

Now consider a real number such as 2 , which we wish to plot on the real 
number line. How do we determine its location? First we see that 1 is smaller 

than 2 (since ),2112
<= while 2 is larger (since ).2422

>= So 2 lies 

between 1 and 2. By considering one-tenths we can get a better idea of the 

location. We see that 1.4 is too small ),296.14.1( 2
<= while 1.5 is too large 

).225.25.1 2
>= So 2 lies between 1.4 and 1.5. If we need more accurancy 

we can zoom into the one-hundredths level and see that 2 lies between 1.41 

and 1.42 2988.141.1( 2
<= and ).2016.242.1 2

>= Thus, to plot a number 

which is not precisely known, we seek known numbers which are just above 
and below it. 
 
Instead of a single number, we may be worried about the location of an entire 
set and it may not be easy to figure out each element of the set. For example, 

can you precisely list the elements of ?}01xx:x{A 4
=−+∈= R Probably 

not. But you can at least see that no 1x > satisfies ,01xx 4
=−+ since in this 

case .11111xx 44
=−+>−+ Thus, the set A lies entirely to the left of 1. 

Similarly, we see that no 2x −< is a solution, since in this case 

131)7()2(1)1x(x1xx 34
=−−−>−+=−+ . Thus, the set A is entirely to the 

right of 2− . We have learned that all the elements of A lie between 2− and 1. 
Often, such knowledge is enough to reach useful conclusions about A.  

 
This leads to the following definition: 
 

Definition: Let S  be a subset of R .  An element u  in R is said to be an 

upper bound of S  if xu ≥  holds for every x  in S .  In other words, for a 

given set, a number which is greater than or equal to all the elements is known 
as upper bound of that set. We say that S  is bounded above, if there is an 

upper bound of S . 

The symbol ⇔  denotes 

‘implies and is implied by’ 

which is equivalent to ‘if and 

only if’. 
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Working on similar lines, we define the lower bound in the following definition. 
 

Definition: A lower bound for a given set S  is a real number v  such that 

xv ≤  for all Sx ∈ .  We shall say that a set is bounded below, if we can find 
a lower bound for it. 
 
Let us find upper and lower bounds in following example:  
 

Example 2: Find the upper and lower bounds of 








∈
+

= Nn:
n

2n
A . 

Solution: For an upper bound, we need to find a number u such that 

u
n

2n
≤

+
for all N∈n . 

We have N∈∀≤+=
+

n3
n

2
1

n

2n
. Thus, 3 is an upper bound of the set A. 

Also, N∈∀≥+=
+

n1
n

2
1

n

2n
. Thus, 1 is a lower bound of the set A.  

*** 
 

You may notice that if u  is an upper bound of a set S , then so is 1u + . In fact, 

...,3u,2u ++ , ru + , where r  is any positive real number are all upper 

bounds of S . In general, from among all the upper bounds of a set S , can we 
always choose an upper bound u  such that u  is less than or equal to every 

upper bound of S ? We can, and this upper bound has a special name, we call 

this u  the least upper bound (l.u.b.) or the supremum of S . For example, 

1−  is the supremum of 
−
Z , where }1,2,3,4{... −−−−=

−
Z . 

 
This leads to the following definition: 
 

Definition: The upper bound of any subset S of R , which is less than any 
other upper bound of S is called its supremum or least upper bound (l.u.b.). 

Further, the lower bound of S  which is greater than any other lower bound of 

S  will be called its infimum or greatest lower bound (g.l.b.). 
Sometimes, we write supremum of a set S as Sup(S) and infimum of a set as 
Inf(S). 
 

Example 3: Consider the set }4x:x{T 2
≤∈= R , find its supremum and 

infimum. 

Solution: Here .2x24x 2
≤≤−⇒≤ Here all members of the set T are less 

than or equal to 2. Thus, 2 is an upper bound of T and all the reals greater 
than 2 are the upper bounds of T, since 2 is the least from all the upper 
bounds. Thus 2 is the supremum of T.  

Similarly, all the members of T are greater than or equal to 2− . Thus 2− is a 

lower bound of T. All the real numbers less than 2− are also lower bounds of 
T. Here 2− is the greatest of all the lower bounds of T. Thus 2− is infimum of 
T. 

*** 
 

Remark 1: Note that for the set T  considered in Example 3 the l.u.b. belongs 
to the set.  This may not be true in general.  Consider the set of all negative 

real numbers }0x:x{ <=
−
R .  What is the l.u.b. of this set? Wouldn’t it be 0 . 

Here −
∉R0  but it is the l.u.b. of 

−
R .  
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As in the case of l.u.b., remember that the g.l.b. of a set may or may not 

belong to the set. For example, consider }2x1,x{S <<∈= R . The infimum 

1)S( =  does not belong to S. Now, does every set have an upper and a lower 

bound? Consider, }5x:x{S 2

1 <∈= R . Here, ,5)S(Sup 1 =  and 

,5)S(Inf 1 −= therefore, 1S is bounded. Now, consider }.8x:x{S2 >∈= R  

2S has no upper bound but has a lower bound. If a set has an upper bound, it 

is called bounded above and if a set has a lower bound, it is called bounded 
below, and is given in the following definitions:  
 

Definition:  A set R⊂S  is bounded if it has both an upper bound and a 
lower bound.  
 

Would you agree, that the set T  given in Example 3 is bounded?  
Based on this discussion you would be able to solve the following exercises. 
 
 

E3) Find the supremum and infimum of the following subsets of R . 

 i) }2x1:x{S1 <<∈= R  

 ii) }5x:x{S 2

2 <∈= R  

 iii) }7x:x{S 2

3 >∈= R  

 iv) }x:
x

1
{S4 N∈−=    

 

E4) Give an example, with justification, of each of the following: 

i) a set of real numbers having a lower bound, but no upper bound. 

ii) a set of real numbers without any lower bound, but with a 
supremum. 

iii) a set of real numbers whose g.l.b. does not belong to it. 

iv) a bounded set of real numbers, whose inf and sup do not lie in it.  
 

 

Now we are ready to state an important property of R . 
 

Archimedean Property: If a  and b  are any real numbers such that 0b > , 

then there is a positive integer n  such that anb > , that is 

ab...bbb
timesn

>++++ 44 344 21 . It is shown in Fig. 1. 

 
 

Fig. 1: For any reals a and b, where 0,b > ∃  N∈n such that bna <  

 
For example, if a = 1 and b = ½ > 0, then there is 3n = , say, then anb > . Note 

that n  is not unique. If anb > , then ab)1n( >+ and so on. 

 
If a  is any real number, there is a positive integer n  such that an >  

(Archimedean property applied to a  and1). 

Archimedean property is 
named after the ancient 
Greek Mathematician 
Archimedes. 
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Try the following exercises now. 
 
 

E5) Let 








∈+= Nn:
n

1
1A . Is it bounded? If yes, find supremum and 

infimum of A. If it is not bounded, find a subset of it that is bounded. 
 
E6) Prove that supremum and infimum of any set are unique, if they exist. 
 

 
Now, let us discuss absolute value of a real number. 
 

6.4 ABSOLUTE VALUE 
 
You may recall the modulus function and its graph discussed in Unit 3. In this 
section we shall define the absolute value. You will realise the importance of 
this simple concept as you study the later units. 
The absolute value of a real number is its magnitude, or the distance between 
the origin and the point representing the real number on the real number line. 
For this, consider two points 2.5 and -2.5 on the real number line. The 
distance of both the points from O (origin or 0) is 2.5. We denote this distance 

by 5.2 and 5.2− and call it the absolute value. 

 

Definition: If x  is a real number, its absolute value, denoted by |x|  (read as 

modulus of x , or mod x ), is defined by the following rules:  

 




<−

≥
=

0xif,x

0xif,x
|x|  

For instance, 

 4)4(|4|,4|4| =−−=−= , 

 3|3|,5.2|5.2| =−= . 

Note that the absolute value of a real number is never negative, as x− is 
positive if x is negative. 

The absolute value of a real number is either positive or zero.  Moreover, 0  is 

the only real number whose absolute value is 0. Therefore, 0|0| = . 

 
Example 4: Find the Absolute value of the following numbers: 

i) ,2−π   ii) π−2 . 

Solution: i) 22 −π=−π     [since 02 >−π ] 

       ii) .2)2(2 −π=π−−=π−    [since 02 <π− ] 

*** 
 

Example 5: Solve 52x =−  

Solution: Now 




<−−−

≥−−
=−

02x;)2x(

02x;2x
2x  

If 52x =− , then the two possibilities are 52x =− or 

5)2x( =−− . We get 7x = , .3−    

*** 

The notation x , with a 

vertical bar on each side 
was introduced by Karl 
Weierstrass in 1841. 
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You may now try the following exercises. 
 
 

E7) Evaluate the following: 

 i)  |15| −     ii)  
3

2
     

 iii) |3.4| −      iv)  |6| −−    v)   22 −  

 

E8) Evaluate 
x

|x|
 for i) 0x >  and  ii) 0x < . 

 

E9) Place appropriate symbol ><,(  or )=  between the following pairs of 

real  numbers. 

 i) |5|  and |7| −  

 ii) 
8

1

−
 and 

8

1
 

 iii)  |2| x and |)2(| x
− for any natural number x. 

 iv) |10| −−  and |10| −  
 

 

We shall discuss some of the important properties of |x|  in the following 

theorems, which we shall be using in calculus: 
 

Theorem1: If a  and b  are any real numbers, then  

i) 0|a| ≥  [Non-negativity] 

ii) }a,amax{|a| −=  
 

Proof: (i)  By the law of trichotomy ( 1O in Sec. 6.2), applied to the real 

numbers a and 0 we have 0aor0a,0a <=> . So, we get the 

following three cases: 

i) If ,0a > then 0a|a| >=  

ii) If ,0a = then 0|a| =  

iii) If ,0a < then 0aa >−=  

   Thus, from (i), (ii) and (iii), we get 0a ≥ for all R�∈a . 

 (ii)  Again using these cases for any 0.aor0aor0a,a <=>∈R  

i)    Since ,0a > therefore, aa = and aa −> . So that, 

a}a,a{max =− .  Hence, }a,amax{a −=   

ii)   Since ,0a = therefore, .0a =− Also 0a = . So that, 

0}a,a{max =− .    Hence, a}a,a{max =−  

iii)  Since ,0a < therefore, aa −= and aa >− . So that, 

a}a,a{max −=− .    Hence, }a,amax{a −=  

   Thus, from (i), (ii) and (iii), we get 

}a,amax{a −=  
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The identity given in the following theorem is sometimes used as a definition of 
absolute value of a real number.  
 

Theorem 2: For any real number aa,a
2

= . 

 

Proof: Since ,)a(a 22
−=  a and a− are the two square roots of .a2  

 If aa,0a 2
=≥  

 If aa,0a 2
−=<  

 It follows that .aa
2

=  

 
Some additional useful properties of the absolute value are given in the 
following theorem: 
 
Theorem 3: If x and y are real numbers, then 

i) xx =−  [Evenness (reflection symmetry of the graph)] 

ii) yxyx =  [Multiplicativity of absolute value] 

iii) .0yif,
y

x

y

x
≠=  [Preservation of division] 

 

Proof: i) Using Theorem 2, .xx)x(x
22

==−=−  

ii)  Again using Theorem 2, 

 yxyxyx)xy(yx
22222

====  

iii)  You may like to prove it yourself. 
 
Remark 2: The result of Theorem 3 (ii) can be generalised as given below. 

If n321 x,.....x,x,x are real numbers, then .x.....xxx....xx n21n21 =  

If ,xx....xx n21 ==== then .xx
nn

=  

In the following theorem, we shall prove the triangle inequality. 
 
Theorem 4 (The triangle inequality): If x and y are two real numbers, then 

 yxyx +≤+  

 
Proof: Let us consider i) 0yx ≥+  and  ii) 0yx <+  

i) If 0yx ≥+ , yxyx +=+  

  yx +≤ [since xx ≤ and yy ≤ , using Theorem 1, 

    }]x,x{maxx −=  

ii) If )yx(yx,0yx +−=+<+  

     )y()x( −+−=  

     yx +≤ [since yyandxx ≤−≤− , using Theorem1].  

Therefore, .yxyx +≤+  

 
Two other useful properties concerning inequalities are: 
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i) babba ≤≤−⇔≤  

ii) .aborbaba ≤−≤⇔≥  

 
These relations may be used to solve inequalities involving absolute values. 
For example: 

 11)5x(11115x ≤−≤−⇔≤−  

              16x6 ≤≤−⇔  
 

Example 6: Calculate 7232 −π+−π+−π . 

Solution: The quantities 2−π and 3−π are positive, so they remain 

unchanged when the absolute bars are dropped. However, because 72 −π is 
negative, we get 

)72(327232 −π−−π+−π=−π+−π+−π   

     2=  

*** 
 

Example 7: Find the value of 







−× 5.0

3

2
2 . 

Solution: 
6

1
25.0

3

2
2 ×=








−×  

        
3

1

3

1
== . 

*** 
 

Example 8: Solve the equation 

 .14x3x =−+−  

Solution: We need to discuss the following three cases: 

i) 3x ≤  
 

ii) 4x3 ≤<  
 

iii) 4x ≥  
 

i) When .3x ≤  

 1)4x()3x(14x3x =−−−−⇒=−+−  

     3x =⇒  

ii) When 4x3 ≤<  

 1)4x(3x14x3x =−−−⇒=−+−  

    4x3 ≤<⇒ is a solution. 

iii) When 4x >  

 14x3x14x3x =−+−⇒=−+−  

    .4x =⇒  

Since we assumed ,4x > there is no solution for the case .4x >  

In conclusion, the solution of the equation 14x3x =−+− are .4x3 ≤≤  

*** 
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Now, try the following exercises. 
 
 

E10) Which of the following is the graph of ?0xfor
x

x
y ≠=  

 

 
Fig. 2 

 
E11) Prove the following for any real numbers :y,x  

 i)  0|x|0x =⇔=  

 ii) |x|/1|x/1| = , if 0x ≠  

 iii) |y||x||yx| +≤− . 

 

 
Inequalities involving absolute values arise at several places in calculus.  In 

the next section, we shall see how the set }k|ax:|x{ <−  can be represented 

geometrically. 
 

6.5 INTERVALS ON THE REAL NUMBER LINE 
 
We have discussed that the absolute value or the modulus of any number a  is 
nothing but the distance between the point denoting it from the point 0 on the 

real number line.  In the same way, |ba| −  denotes the distance between the 

points corresponding to the two numbers a  and b .  It may be noted that 

ba <  if and only if a  lies to the left of b  on the real number line, as shown in 
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Fig.3(a), and ba > if and only if a lies to the right of b on the real number line 
as shown in Fig. 3(b). 
 

 
   (a) ab >    (b) ba >  

 

Fig. 3: Representation of ab > and ba >  
 

Now, let us consider the set S of all real numbers which lie between two given 

real numbers say 0 and 2.3. So }3.2x0x{S ≤≤∈= R . Here we say that x 

attains the values from 0 to 2.3. 
 
For example, the interval 2 to 4 include all real numbers such as: 

7937.3,2/7,,80001.2,75.2,5.2,1111.2,1.2 π and a lot more.  

 

A convenient notation for representing intervals on a number line is called 

interval notation. Given two real numbers a and b with ,ba < the closed 

interval ]b,a[ is defined as the set of all real numbers x such that xa ≤ and 

bx ≤ or more concisely, .bxa ≤≤ The open interval [b,a] is defined as the set 

of all real numbers x such that .bxa <<  
 

For example, consider the interval ]15,5[  

 
            [ or ] 5  ,   15 [ or ] 
 
 
 
    [     ]        [          ] 
        including   not including  not including  including 
            5    5          15               15   

 
It may be noted that a mix of brackets can also be used. For example, 

]13,4] means from 4 to 13, do not include 4 but do include 13. 

 
On real number line, we draw a thick line to show the values we are including 
and a filled-in circle, when we want to include the endpoints or a hollow open 
circle when we do not want to include the endpoints. 
For example, 
 
  
 
            5   15 
 
means all the numbers between 5 and 15, but do not include 5, and do include 
15.    
 

The inclusion of the endpoints in the interval gives the four different sets as 

given in Table 1. In the representation of this closed interval, we put thick 

black dots at a  and b  to indicate that they are included in the set.  The 

endpoints of a closed interval are included in the interval.  
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The endpoints of an open interval are not included in the interval.  Note that 

in this case we draw a hollow circle around a  and b  to indicate that they are 
not included in the number line.  
 
The sets [a, b[ and ]a, b] are called half-open (or half-closed) intervals or semi-
open (or semi-closed) intervals, as they contain only one endpoint. 

 
Table 1: Intervals on the Real Number line. 

 
S.No Notation Interval 

Type 
Sets Geometrical  

Representation 

1. [b,a]  Open 
interval 

}bxa:x{ <<

not including 
a and b. 

 

 
 

2. ]b,a[  Closed 
interval 

}bxa:x{ ≤≤

 including 
both a and b. 

 

 
 

3. ]b,a]  Half 
open or 
half 
closed 
or open 
on left 
and 
closed 
on right 
 

}bxa:x{ ≤<

including b, 
but not a 

 

 
 

4. [b,a[  Closed 
on left 
and 
open 
on right 

}bxa:x{ <≤

Including a 
but not b. 

 

 
 

 

In particular, if φ==== [a,a[]a,a][a,a],ba  and a]a,a[ = . 

 

You may check that the four types of intervals given in Table 1 are bounded.  

If both the endpoints in an interval are reals, then that interval is called a finite 

interval (bounded interval) . A bounded interval is open if it includes neither 

of its endpoints, half-open if it includes only one endpoint, and closed if it 

includes both endpoints. The symbol ""∞ (pronounced infinity) is used for 

intervals that are not limited in one direction or another. 
 
Note that ∞   does not denote a real number, it merely indicates that an 
interval extends without end. We use open bracket with infinity, because we 
do not reach it. We can say that an interval having ∞ or ∞− as one of its end-
points is  

• left-bounded, if the left endpoint is a real.  

• right-bounded, if the right endpoint is a real.  

• unbounded, if none of the endpoints are reals, both of them are infinite 
endpoints.  

 
Apart from the four types of intervals listed in Table 1, there are a few more 
types.  These are given in Table 2. 
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Table 2: Unbounded Intervals on Real Number line. 
 

Notation Interval 
Type 

Sets Geometrical Representation 

[,a] ∞  open 
right 
ray 

}xa:x{ <  

greater than a 

 

 
 

[,a[ ∞  closed 
right 
ray 

}xa:x{ ≤  

greater than 
or equal to a 

 

 
 

[b,] ∞−  open 
left ray 

}bx:x{ < less 

than b 

 

 
 

]b,] ∞−  closed 
left ray 

}bx:x{ ≤ less 

than or equal 
to b 

 

 
 

[,] ∞∞−  open 
interval 

R   

 
 

 
Based on this here is an example. 
 
Example 9: Describe the subset of real numbers that the following inequalities 
represent.  Also, show them on real number line. 
a) 4x ≤   b) 2x3 <≤− . 

Solution: a) The inequality 4x ≤  denotes all the real numbers less than or 

equal to 4 as shown in Fig.4 

 
 

Fig. 4: Representation of 4x ≤≤≤≤  

 

b) The inequality 2x3 <≤−  denotes that 3x −≥  and 2x < .  This “double 

inequality” denotes all the real numbers between 3−  and 2 , including 

3− but not including 2  as shown in Fig. 5. 

 
 

Fig. 5: Representation of 2x3 <≤− . 

*** 
 

You may now try the following exercises. 
 
 

E12) State whether the following are true or false. Give reasons for your 
answers. 

 i)  ]8,1[0∈   ii) [2,]1 ∞−∈−  

 iii) ]2,1[1∈   iv) [,5]5 ∞∈ . 
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E13) Write the inequalities for the intervals given in E12. Also, show these on 
the real line. 

 

 
You have studied functions in Unit 2. Now, in the following section, we shall 
discuss various functions with their graphs. 
 

6.6 FUNCTIONS AND THEIR GRAPHS 
 
You have already studied the notion of a function along with some special 

functions like constant function, identity function, linear, 
2

x and x  etc. along 

with their graphs in Unit 2 and Unit 3. Addition, subtraction, multiplication, 
division, composition of two functions, etc. have also been studied in Unit 2. 
As the concept of function is of paramount importance in Mathematics and in 
other disciplines as well, we would like to extend our study about functions 
from where we finished earlier.  
 
In this course throughout, we shall consider functions whose domain and co-
domain are both subsets of R .  Such functions are often called real 
functions or real-valued functions of a real variable.  We shall, however, 
simply use the word ‘function’ to mean a real function. 
 
In functions, the variable x  used in describing a function is often called a 
dummy variable because it can be replaced by any other letter.  Thus, for 

example, the rule N∈−= x,x)x(f  can as well be written in the form 

N∈−= t,t)t(f .  The variable x  (or t  or u ) is also called an independent 

variable, and )x(f  is dependent on the independent variable. Sometimes, we 

write ,y)x(f = where y is the dependent variable.  

 
Let us discuss more examples based on functions. 
 

Example 10: Suppose xx2)x(f 3
−= .  Find )hx(f),(f),2(f),0(f),1(f +π−  

and 
h

)x(f)hx(f −+
, where x  and h  are real numbers and 0h ≠ . 

Solution: In this case, the rule defined for the function f  tells us to subtract 
the independent variable x  from twice its cube.  Thus, we have  

 112)1()1(2)1(f 3
−=+−=−−−=−  

 0)0()0(2)0(f 3
=−=  

 6)2()2(2)2(f 2
=−=  

 π−π=π
32)(f  

To find ),hx(f +  we begin by writing the formula for f  in more neutral terms, 

say as  

 )()(2)(
2

−=f  

 

Then, we insert the expression hx +  inside each box, we obtain  

 )hx()hx(2)hx(f 2
+−+=+  

             )hx()hxh3hx3x(2 3223
+−+++=  

             hxh2xh6hx6x2 3223
−−+++=  

Finally, if 0h ≠  
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h

]xx2(]hxh2xh6hx6x2[

h

)x(f)hx(f
33223

−−−−+++
=

−+
 

    1h2xh6x6 22
−++= . 

*** 
 

You may note that the expression 
h

)x(f)hx(f −+
 is called a difference 

quotient and will be used in later units to compute the derivatives. 
 
Example 11: It is known that an object dropped from a height in a vaccum will 

fall a distance of d  metre in t  seconds according to the formula 

0t,t9)t(d 2
≥= . 

i) How far will the object fall in the first second?  In the next 2 seconds? 

ii) How far will it fall during the time interval 1t =  to h1t +=  seconds? 

iii) What is the average rate of change of distance (in m/sec.) during the 

time  1t =  sec. to 3t =  sec.? 

iv) What is the average rate of change of distance during the time xt =  

sec.  to hxt += sec.? 

Solution: i) 9)1(d =  

In the first second, the object will fall m9 . 

In the next two seconds, the object will fall m72981)1(d)3(d =−=− .   

Therefore, the object will fall 72 m in next 2 sec. 

ii) The required distance h18h9)1(9)h1(9)1(d)h1(d 222
+=−+=−+= . 

iii) Average rate of change of distance 

     36
2

72

13

)1(d)3(d

timeinchange

distanceinchange
==

−

−
==  m/sec. 

iv) Average rate of change of distance from xt = to hxt += is  

     18h9
h

x9)hx(9

h

)x(d)hx(d

x)hx(

)x(d)hx(d 22

+=
−+

=
−+

=
−+

−+
= . 

*** 
 
Certain functions are defined differently on different parts of their domain and 
are expressed in terms of more than one formula.  We refer to such functions 
as piecewise-defined functions. The following example is of piecewise-
defined function.  
 
Example 12: Let f be a function from R to R  defined 

by




≥−

<
=

2xif1x3

2xifxcosx
)x(f

2
, find )2/(f),5.0(f π−  and )2(f . Here, x is in 

radian. 

Solution: To find )5.0(− , we use the first line of the formula because 

25.0 <− . 

35.127.05.05.0cos5.0)5.0cos(5.0)5.0(f −=×−≈−=−−=−  

To find )2/(f π , we use the first line of the formula because 

257.1
2

<≈
π

; 0)0(
22

cos
2

)2/(f =
π

=
ππ

=π  

’This is used for the 
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Finally, because 22 ≥ , we use the second line of the formula to find )2(f . 

111)2(3)2(f 2
=−= . 

*** 
 

Now, you may try the following exercises. 
 
 

E14) Find the domain and range of the following functions defined as 

)x(fy = : 

 i) |x|3y −=   

 ii) 
x

12
y =  

 iii) 3x2xy 24
−−= . 

 

E15) If 16t)t(f 2
−= , find all values of t , for which, )t(f  is a real. Also,   

 find t , for which, 3)t(f = . 

 

E16) If 
xx

x4
)x(g

2

2

+

−
= , find the domain of )x(g .  Also, solve 0)x(g = . 

 

E17) Let 0x,
x

|x|
)x(f ≠= . 

 i) Find )7(f −  and )3(f . 

 ii) For what value of x , the function is defined. 

 iii) Find the range of f . 

 iv) Does )82(f +  equal )8(f)2(f + ?  Justify. 

 v) Does )61(f +−  equal )6(f)1(f +− ?  Justify. 

 

E18) Let 2x3)x(f += .  Does )a(f 2  ever equal 2))a(f( ?  Justify. 

 

E19) A charter bus has 50 seats and will not run unless at least 30 of those 
seats are filled.  When there are 30 passengers, a ticket costs Rs.30, but 
each ticket is reduced by Rs.5 for every passenger over 30.  Express the 
total amount collected by the charter bus as a function of the number of 
passengers p . 

 

 

In addition to various types of functions, you have studied in Unit 2, we extend 
our study to more functions such as greatest integer function, rational function, 
polynomial function, trigonometric functions, etc.  
 

1. The Greatest Integer Function: Take a real number x .  Either it is an 
integer, say n  (so that nx = ) or it is not an integer.  If it is not an 
integer, using l.u.b. property it can be shown that there is an Z∈n such 

that .1nxn +<≤ [The proof of this is not included in this course.] 
Further, for a given real number x , we can find only one such integer n .  
We say that n  is the greatest integer not exceeding x , and denote it by 

]x[ .  For example, 3]3[ =  and 4]5.3[,3]5.3[ −=−= .   

 

 Let us consider the function RR→:f  defined by ]x[)x(f = , R∈x , 

which assumes the value of the greatest integer, that is less than or 
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equal to x .  Such a function is called the greatest integer function.  
The graph of the function is as shown in Fig. 6.  (It resembles the steps 
of an infinite staircase). 

 

 
Fig. 6: [x]f(x) =  

 
Notice that the graph consists of infinite many line segments of unit 

length, all parallel to the x -axis. Also, from the definition of ],x[ we can 

see that 

2]x[ −= for 1x2 −<≤−  

1]x[ −= for 0x1 <≤−  

0]x[ = for 1x0 <≤  

1]x[ = for 2x1 <≤  

2]x[ = for 3x2 <≤ and so on. 

 
2. Polynomial Functions: A polynomial function is a function 

RR→:f defined by  n

1n

1

n

0 a...xaxa)x(f +++=
− , where 

R∈n10 a...,,a,a  and n  is a non-negative integer. If 0a0 ≠ , the integer 

n is called the degree of the polynomial. The functions defined by  

,
2

1
x5x2)x(f 3

−+=  ,xx2)x(f 4
π−= etc, are some examples of 

polynomial functions, whereas the function g defined by 

3x2)x(g 2

1

+= is not a polynomial function. (why?)  

 
3. Rational Functions: A rational function is the quotient of two polynomial 

functions. It can be written in the form )x(k/)x(g)x(f = , where )x(g  

and )x(k  are polynomial functions of degree n  and m .  This is defined 

for all real x , for which 0)x(k ≠ . For example, 

,
5x2x

3x2
)x(f

4
−+

−
= .etc,

x

1
)x(f

2
=  

 

4. Signum Function: The function RR→:f defined by  

 









<−

=

>

=

0xif,1

0xif,0

0xif,1

)x(f  
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 is called the signum function. The domain of the signum function is 

R and the range is }1,0,1{− . The graph of the signum function is given 

in Fig. 7. 
 
 

 
Fig. 7: The Signum Function 

 

5. Trigonometric (or Circular) Functions: Trigonometric functions are the 
sine, cosine, tangent, secant, cosecant, and cotangent functions. The 
forms of  trigonometric functions with their domain, range and graph are 
given in Table 3. 

 
Table 3: Trigonometric functions. 

 
Functions 
 

Domain  Range Graph 

xsin)x(f =  R  ]1,1[−   

 
 

xcos)x(f =  R  ]1,1[−   
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xtan)x(f =  









∈
π

+− ZR n:
2

)1n2(  
R   

 
 

ecxcos)x(f =  { }ZR ∈π− n:n  [1,1]−−R   

 
xsec)x(f =  









∈
π

+− ZR n:
2

)1n2(  
[1,1]−−R   

 
xcot)x(f =  }n:n{ ZR ∈π=  R   

 
 

 
Let us draw the graph of functions in the following examples.  
 

Example 13: Consider the function RR→:f given by R∈== x,x)x(fy 2 . 

Complete the Table given below. What is the domain and range of the 

function? Draw the graph of f . 
 
 

x  4−  3−  2−  1−  0  1 2  3  4  
2x)x(fy ==           
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Solution: The completed table is given below: 

 
 
 
 

 

Domain of }x:x{f R�∈= . Range of }x:x{f 2
R∈= . The graph of f is given 

by Fig. 8. 

 
Fig. 8: Graph of  

2xf(x) =  

*** 
 

Example 14: Draw the graph of the function RR→:f defined by 

R∈= x,x)x(f 3 .  

Solution: We have  

,27)3(f:27)3(f,8)2(f,8)2(f,1)1(f,1)1(f,0)0(f −=−=−=−=−=−== etc.  

The graph of f is given in Fig. 9. 
 

 
Fig. 9: Graph of 

3xf(x) =  

*** 
 

Example 15: Consider the real valued function RR →− }0{:f defined by 

}0{x,
x

1
)x(f −∈= R  . Complete the table given below using this definition. 

What is the domain and range of the function? 

x  4−  3−  2−  1−  0  1 2  3  4  
2x)x(fy ==  16 9 4 1 0 1 4 9 16 
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x  2−  5.1−  1−  5.0−  25.0  5.0  1 5.1  2  

x

1
y =  

... ... ... ... ... ... ... ... ... 

 

 
Solution: The completed table is given by 
 
 

  x  
2−  5.1−  1−  5.0−  25.0  5.0  1 5.1  2  

x

1
y =  5.0−  67.0−  1−  2−  4  2  1 67.0  5.0  

 
The domain is the set of all real numbers except 0 and its range is also the set 

all real numbers except 0. The graph of f is given in Fig. 10. 
 

 
 

Fig. 10: Graph of 
x

1
f(x) =  

*** 
 

Example 16: Draw the graph of the equation 16yx 22
=+ .  

Solution: The graph of the equation 16yx 22
=+ is a circle of radius 4, 

centered at origin. Algebraically, by solving this equation for y in terms of x, we 
get 

 2x16y −±=  

This equation does not define y as a function of x because the right side is 
“multiple valued” in the sense that values of x in the interval ]-4, 4[ produce two 

corresponding values of y. For example, if x = 2, then 12y ±= , and hence 

(2, 12 ) and (2, 12− ) are two points on the circle that lie on the same 
vertical line as shown in Fig.11 (a). However, we can regard the circle as the 

union of two semicircles 2x16y −= and 2x16y −−= as shown in Fig. 11 

(b). 
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(a)        (b) 

 

Fig. 11: Graph of equation 16yx
22

=+  

*** 
Now, try the following exercises: 
 
 

E20) Sketch the graph of the function defined piecewise by the formula 









≥

<<−−

−≤

=

1x,x

1x1,x1

1x,0

)x(f 2  

 
E21)  Given below are the graphs of four functions depending on the notion of 
 absolute value.  The functions are 

 |1x|x|,1x|x,1|x|x|,x|x −→+→+→−→ , though not necessarily 

 in this order. (The domain in each case isR ).  Can you identify them? 

 
 

Fig. 12 
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So far, in this section, we have discussed functions and their graphs. You 

have studied that the inverse of a function f , which is denoted by 
1

f
−

, exists if 

f is one-one and onto in Unit 2. Here, we shall extend our study about the 
inverse functions. 
 
Let us begin this with some examples. 
 

Example 17: Consider a function f from R  to R , defined as 2
5

x
)x(f

5

+= .  

Find 
1

f
−

 . 

Solution: Before finding the inverse, let us first check whether the function is 
one-one and onto.  

Let R∈y,x such that )y(f)x(f =  

yx2
5

y
2

5

x
55

=⇒+=+ . 

Therefore, f is one-one. 

Now, we solve y2
5

x
5

=+  for x in terms of y. 

This gives us 5

1

)}2y(5{x −= .   

Thus, we have found the required pre-image for f and hence f is onto by 
definition. 

Hence, f  is one-one onto. Thus, 
1

f
−

exists, and 
1

f
−

 is the function on 

R defined by 5

1

1 )}2y(5{)y(f −=
− . 

*** 
 

Example 18: Consider the funciton }4,2{}5,3{:f → .  If 4)3(f =  and 

2)5(f = , find if inverse is possible, )2(f),5(f),4(f),3(f 1111 −−−− . 

Solution: The given function f is one-one and onto. Thus, 
1

f
−

exists. The 

domain of f is }5,3{ and range of f is }2,4{ . Accordingly, domain of 
1

f
−

is }2,4{ and range of
1

f
−

is }5,3{ . Thus, )3(f 1−  does not exist. 

Similarly, 3)4(f 1
=

− , )5(f 1−  does not exist and 5)2(f 1
=

− . 

*** 
 
Now, let us take up the problem of drawing the graph of an inverse function. 
 
There is an interesting relation between a pair of the graphs of a function and 
its inverse function because of which, if the graph of one of them is known, the 
graph of the other can be obtained easily. 
 

Let YX:f →  be a one-one and onto function, and let XY:g →  be the 

inverse of f .  A point )q,p(  lies on the graph of 

)p,q()q(gp)p(fqf ⇔=⇔=⇔  lies on the graph of g .  Now the points 

)q,p(  and )p,q(  are reflections of each other with respect to (w.r.t.) the line  

xy = .  Therefore, we can say that the graphs of f  and g  are reflections (or 

mirror image) of each other w.r.t. the line xy = . 

 

Therefore, it follows that, if the graph of one of the functions f  and g  is given, 

that of the other can be obtained by reflecting it w.r.t. the line xy = .  As an 

w.r.t stands for 
with respect to  
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illustration, the graphs of the functions 3xy =  and 3/1xy =  are given in Fig. 

13. 
 
Do you agree that these two functions are inverses of each other?  If the sheet 
of paper on which the graphs have been drawn is folded along the line xy = , 

the two graphs will exactly coincide. 

 
 

Fig. 13: Graph of two inverse functions 
3

xy =  and 
1/3

xy =  

 
If a given function is not one-one and onto on its domain, we can choose a 
subset of the domain as well as codomain on which it is one-one and onto, 
and then define its inverse function in the domain in which the function is one-

one and onto.  For example, consider the function .xsin)x(f =  We know that 

xsin)2xsin( =π+ . The function is neither one-one nor onto on R .  But if we 

restrict the domain to the inverval ]2/,2/[ ππ−  and codomain to ]1,1[− , we 

find that it is one-one and onto.  Thus, if ]2/,2/[xxsin)x(f ππ−∈∀= , then 

we can define  

 y)x(sin)x(f 11
==

−−  if xysin = . 

Similarly, we can define 1cos−  and 1tan−  functions as inverse of cosine and 

tangent functions if we restrict the domains to ],0[ π   and [2/,2/] ππ− , 

respectively. The inverse trigonometric functions along with their domains and  
ranges are given in Table 4. 

 
Table 4: Inverse Trigonometric Funcitons 

 
Inverse Trigonometric 
Function 

Domain Range 

1sin −  ]1,1[−  






 ππ
−

2
,

2
 

1cos−  ]1,1[−  [ ]π,0  
1eccos −  [1,1]−−R  

}0{
2

,
2

−




 ππ
−  

1sec−  [1,1]−−R  
[ ]







π

−π
2

,0  

1tan−  R  






 ππ−

2
,

2
 

1cot−  R  ] [π,0  
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Remark 3: The function xsin 1− should not be confused with 1)x(sin − . In fact, 

xsin

1
)x(sin 1

=
− and similarly for other trigonometric functions. 

 
Try the following exercise. 
 
 

E22) Draw the graph of inverse trigonometric functions given in Table 4 and 
compare them with corresponding trigonometric functions. 

 

 
Now let us discuss various types of functions in the following section. 
 

6.7 TYPES OF FUNCTIONS 
 
In this section, we shall talk about various types of functions, namely, even, 
odd, increasing, decreasing and periodic functions.  In each case, we shall 
also try to explain the concept through graphs. 

 

6.7.1 Even and Odd Functions 

Consider the function f  defined by R∈∀= xx)x(f 2 . You will notice that 

R∈∀==−=− x)x(fx)x()x(f 22 . 

 
This is an example of an even function.  Let’s take a look at the graph (Fig.14) 
of this function.  We find that the graph (a parabola) is symmetrical about the 
y -axis.  If we fold the paper along the y -axis, we shall see that the parts of 

the graph on both sides of the y -axis completely coincide with each other.  

Such functions are called even functions.   
 
Thus, a function f , defined on a domain D is even function, if for each 

)x(f)x(fDx =−∈ , . 

 
 

Fig. 14: Graph of even function 

 
The graph of an even function is symmetric with respect to the y -axis.  We 

also note that if graph of a function is symmetric with respect to the y -axis, the 

function must be an even function.  Thus, if we are required to draw the graph 
of an even function, we can use this property to our advantage.  We only need 
to draw that part of the graph which lies to the right of the y -axis and then just 

take its reflection w.r.t. the y -axis to obtain the part of the graph which lies to 

the left of the y -axis. 
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Now, try the following exercise. 
 
 

E23) Given below are two examples of even functions, along with their 
graphs. Try to convince yourself, by calculations as well as by looking at 
the graphs, that both the functions are, indeed, even functions. 

 i) The absolute value function on R |x|x:f → . The graph of f  is 

shown in Fig. 15(a). 

 ii) The function g  defined on the set of non-zero real numbers by 

setting 0x,x/1)x(g 2
≠= .  The graph of g  is shown in Fig. 15(b). 

 
(a)                   (b) 

Fig. 15 
 

 

Now, let us consider the function f  defined by setting R∈∀= xx)x(f 3 .  We 

observe that R∈∀−=−=−=− x)x(fx)x()x(f 33 .   

 

If we consider another function g , given by xsin)x(g = , we shall be able to 

note again that )x(gxsin)xsin()x(g −=−=−=− . 

 
The functions f  and g  above are similar in one respect, that is, the image of 

x−  is the negative of the image of x .  Such functions are called odd funtions.  
Thus, a function f  defined on D  is said to be an odd function if 

Dx)x(f)x(f ∈∀−=− . 

 
(a)                   (b) 

Fig. 16: Graph of odd function 

 

If ))x(f,x(  is a point on the graph of an odd function f , then ))x(f,x( −−  is 

also a point on it.  This can be expressed by saying that the graph of an odd 
function is symmetric with respect to the origin.  In other words, if you rotate 
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the graph of an odd function through o180  about the origin you will find that 
you get the original graph again as shown in Fig. 16.  Conversely, if the graph 
of a function is symmetric with respect to the origin, the function must be an 
odd function.  The above facts are often useful while handling odd functions. 
 

Now, try the following exercise.  
 
 

E24) We are giving below two functions along with their graphs in Fig. 17(a) 
and 17 (b) respectively. By calculations as well as by looking at the 
graphs, find out whether each is ever or odd. 

 i) The identity function f onR defined as x)x(f = shown in Fig.17 

(a).  

 ii) The function g  defined on the set of non-zero real numbers by 

  setting 0x,x/1)x(g ≠= shown in Fig. 17(b).   

 
Fig. 17 

 

 

While many of the functions that you will come across in this course will turn 
out to be either even or odd, there will be many more which will be neither 
even nor odd.   
 

Consider, for example, the function f on ,R defined by  
2)1x()x(f +=  

Here 1x2x)1x()x(f 22
+−=+−=− .  Is R∈∀−= x)x(f)x(f ? 

The answer is ‘no’.  Therefore, f  is not an even function.  

Is R∈∀−−= x)x(f)x(f ?  Again, the answer is ‘no’.  Therefore f  is not an 

odd function.  The same conclusion could have been drawn by considering the 

graph of f  which is given in Fig. 18. 

 
  

Fig. 18: Graph of a function neither ever nor odd. 
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You will observe that the graph is symmetric neither with respect to the y -

axis, nor with respect to the origin. 
 

Now, there should be no difficulty in solving the exercise below. 
 
 

E25) Which of the following functions are even, which are odd, and which are 
 neither even nor odd? 

 i) R∈∀+→ x1x)x(f 2  

 ii) R∈∀−→ x1x)x(f 3  

 iii) R∈∀→ x,xcos)x(f  

 iv) R∈∀→ x|x|x)x(f  

 v) 




=
irrationalisxif1,

rationalisxif,0
)x(f  

 

 

6.7.2  Monotonic Functions 

Does the profit of a company increase with production?   
Does the volume of gas decrease with increase in pressure?   
Problems like these require the use of increasing or decreasing function.  Any 
function which is any one of these types is called a monotone function.  
Now, let us see what we mean by an increasing function. 
 

Example 19: Consider the functions g  and h  defined by  

3x)x(g =  and 




>

≤−
=

0xif1

0xif1
)x(h  

Note that whenever 12 xx > , we get 3

1

3

2 xx > , that is, )x(g)x(g 12 > . 

In other words, as x  increases, )x(g  also increases.  This fact can also be 

seen from the graph of g  shown in Fig. 19. 

 
 

Fig. 19: Graph of g 
 

Let us find out how )x(h  behaves as x  increases.  In this case, we see that if 

12 xx > , then )x(h)x(h 12 ≥ .  (You can verify this by choosing any values for 

1x  and 2x ).  Equivalently, we can say that )x(h  increases (or does not 

decrease) as x  increases.  The same can be seen from the graph of h  in   
Fig. 20. 
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Fig. 20: Graph of h 

 

Functions like g  and h above are called increasing or non-decreasing 

functions. This leads to the following definition:  
 
Definition: A function f  defined on a domain D  is said to be increasing (or 
non-decreasing) if, for every pair of elements 

)x(f)x(fxx,Dxx 121221 ≥⇒>∈ .  Further, we say that f  is strictly 

increasing if )x(f)x(fxx 1212 >⇒>  (strict inequality). 

Clearly, the function 3x)x(g =  discussed above, is a strictly increasing 

function while h is not a strictly increasing function. 

*** 
 
We shall now study another concept which is, in some sense, complementary 
to that of an increasing function. 
 

Example 20: Consider the function f  defined on R  by setting 









≥−

<<−−

−≤

=

1xif,1

1x1if,x

1xif,1

)x(f  

The graph of f  is as shown in Fig. 21. 

 
Fig. 21: The graph of f 

 
From the graph we can easily see that as x  increases f  does not increase. 

That is, )x(f)x(fxx 1212 ≤⇒>  or )x(f)x(f 12 >/ . 

 

Now consider the function )x(xx:g 3
R∈−→ . 

 
The graph of g  is shown in Fig. 22. 
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Fig. 22: The graph of g 

 

Since )x(g)x(gxxxxxx 12

3

1

3

2

3

1

3

212 <⇒−<−⇒>⇒> , we find that as x  

increases, )x(g  decreases.  Functions like f  and g  are called decreasing or 

non-increasing functions.   

*** 

 
The above example suggests the following definition: 

 
Definition: A function f  defined on a domain D  is said to be decreasing (or 

non-increasing) if for every pair of elements Dx,x 21 ∈ with 12 xx > we 

have )x(f)x(f 12 ≤ .  Further, f  is said to be strictly decreasing if 

)x(f)x(fxx 1212 <⇒> . 

 
We have seen in Example 20 that, from the two decreasing functions f  and 

g , the function g  is strictly decreasing, while f  is decreasing but not strictly 

decreasing.   
 
Let us now give the definition of monotonic function.  
 
Definition: A function f  defined on a domain D  is said to be a monotonic 

function if it is either increasing or decreasing on D . 
 
The phrases ‘monotonically increasing’ and ‘monotonically decreasing’ are 
often used for ‘increasing’ and ‘decreasing’, respectively. While many 
functions are monotone, there are many others which are not monotone.  

Consider, for example, the function )x(xx:f 2
R∈→ . You have seen the 

graph of f  in Fig. 8.  This function is neither increasing nor decreasing. 

 
If we find that the given function is not monotone, we can still determine some 
subsets of the domain on which the function is increasing or decreasing.  For 

example, the function 2x)x(f =  is strictly decreasing in ]0,] ∞−  and is strictly 

increasing in [,0[ ∞ . 

 
Now, try the following exercise.   
 
 

 
E26) Fig. 23 shows the graphs of some functions.  Classify them as non-
 decreasing, strictly decreasing, neither increasing nor decreasing: 
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(a)                (b)                   (c) 

 
Fig. 23 

 

 
Now, we shall discuss periodic functions. 

6.7.3 Periodic Functions 

Periodic functions occur very frequently in applications of mathematics to 
various branches of science.  Many phenomena in nature such as propogation 
of water waves, sound waves, light waves, electromagnetic waves, 
heartbeats, orbits, etc. are periodic and we need periodic functions to describe 
them.  Similarly, seasons, monsoon etc. can also be described in terms of 
periodic functions. 

 
Look at the following patterns: 

 

  
 

(a)         (b) 

 
Fig. 24: Patterns 

 
You must have come across patterns similar to the ones shown in Fig. 24 on 
the borders of sarees, wall papers etc.  In each of these patterns a design 
keeps on repeating itself.  A similar situation occurs in the graphs of periodic 
functions.  Look at the graphs in Fig. 25. 
 

 
 
         (a)                            (b) 
 

Fig. 25: Graph of a periodic function 

 
In each of the figures shown above the graph consists of a certain pattern 
repeated infinitely.  Both these graphs represent periodic functions.  To 
understand the situation, let us examine these graphs closely. 
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Consider the graph in Fig. 25(a).  The portion of the graph lying between 

1x −=  and 1x =  is the graph of the function |x|x →  on the domain 

1x1 ≤≤− . 
 
This portion is being repeated both to the left as well as to the right, by 
translating (pushing) the graph through two units along the x -axis.  That is to 

say, if x  is any point of ]1,1[− , then the ordinates at K,6x,4x,2x,x ±±±  

are all equal.  The graph, therefore, represents the function f  defined by  

|x|)x(f = , if 1x1 ≤≤−  and )x(f)2x(f =+ . 

 
The graph in Fig. 25(b) is the graph of the sine function, R∈∀→ x,xsinx .  

You will notice that the portion of the graph between 0  and π2  is repeated 

both to the right and to the left.  You know already that ,xsin)2xsin( =π+  

R∈∀x .  We now give a precise meaning to the term “a periodic function”. 
 

Definition: A function f  defined on a domain D  is said to be a periodic 

function if there exists a positive real number p  such that )x(f)px(f =+  for 

all Dx ∈ .  The number p  is said to be a period of f . 

If there exists a smallest positive p  with the property described above, it is 

called the period of f . 

 
As you know, N∈∀=π+ nxtan)nxtan( .  This means that N∈π n,n  are all 

periods of the tangent function.  The smallest of these, that is π , is the period 

of the tangent function.  

 
See if you can do this exercise. 

 

 
E27) i) What are the periods of the functions given in Fig. 25? 

 ii) Can you give one other period of each of these functions? 
 

 
As another example of a periodic function, consider the function f  defined on 

R  by setting ]x[x)x(f −= . 

 
Let us recall that ]x[  stands for the greatest integer not exceeding x . 

The graph of this function is as shown in Fig. 26. 

 
From the graph (as also by calculation) we can easily see that 

R∈∀=+ x)x(f)nx(f , and for each positive integer n . 

 

 
 

Fig. 26: Graph of f 
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The given function is therefore periodic, the numbers 4,3,2,1  being all the 

periods.  The smallest of these, namely 1 , is the period. 

Thus, the given function is periodic and has the period 1. 
 
Remark 4: Monotonicity and periodicity are two properties of functions which 
cannot coexist except for a constant function.  A monotone function can never 
be periodic, and a periodic function can never be monotone. 
In general, it may not be easy to decide whether a given function is periodic or 
not.  But sometimes it can be done in a straightforward manner.  
 

Example 21: Find whether the function R∈∀→ xxx:f 2  is periodic or not.   

Solution: We start by assuming that it is periodic with period p . 

Then, we must have 0p >  and x)x(f)px(f ∀=+ . 

xx)px( 22
∀=+⇒  

x0pxp2 2
∀=+⇒  

x0)px2(p ∀=+⇒  

Considering 2/px −≠ , we find that 0px2 ≠+ .  Thus, 0p = .  This is a 

contradiction. 

 
Therefore, there does not exist any positive number p  such that 

R∈∀=+ x),x(f)px(f  and, consequently, f  is not periodic. 

*** 
 
Now try the following exercises. 
 

 
E28) Examine whether the following functions are periodic or not.  Write the 
 periods of the periodic functions. 

 i) xcosx →   ii) 2xx +→  

 iii) x2sinx →   iv) x3tanx →  

 v) )5x2(cosx +→  vi) x2sinxsinx +→  

 
E29) The graphs of three functions are given below in Fig. 27. Classify the 

functions as periodic and non-periodic. 
 

 
 

(a) 
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(b) 
 

 
 

(c) 

 
Fig. 27 

 

E30) Is the sum of two periodic functions also periodic?  Give reasons for your
 answer. 
 

 
We end with summarising what we have discussed in this unit. 
 

6.8 SUMMARY  
 
In this unit we have covered the following points: 
 
1.  Briefly revised the basic properties of real numbers for addition, 

multiplication, archimedean property, etc. 

2.  Let S  be a subset of R .  An element u  in R is said to be an upper 

bound of S  if xu ≥  holds for every x  in S .  In other words, for a given 
set, a number which is greater than or equal to all the elements is known 

as upper bound of that set. We say that S  is bounded above, if there is 

an upper bound of S . 
 

3. A lower bound for a given set S  is a real number v  such that xv ≤  for 

all Sx ∈ .  We shall say that a set is bounded below, if we can find a 
lower bound for it. 

 
4. The upper bound of any subset S of R , which is less than any other 

upper bound of S is called its supremum or least upper bound (l.u.b.). 

Further, the lower bound of S  which is greater than any other lower 

bound of S  will be called its infimum or greatest lower bound (g.l.b.). 
 

5. A set R⊂S  is bounded if it has both an upper bound and a lower 
bound. 
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6. The absolute value of a real number x  is defined as 

  




<−

≥
=

0xifx

0xifx
x  

 

7. The various types of intervals in R , where R∈b,a , are 

 Open: }bxa:x{[b,a] <<∈= R  

 Closed: }bxa:x{]b,a[ ≤≤∈= R  

 Semi-open:   }bxa:x{]b,a] ≤<∈= R   or    }bxa:x{[b,a[ <≤∈= R  

 
8. We discussed the graph of inverse function.  
 
9. A function f , defined on a domain D , is even function, if for each 

)x(f)x(f,Dx =−∈ . 

 
10. A function f , defined on a domain D , is odd function, if for each 

,Dx ∈ )x(f)x(f −=− . 

 
11.  A function f  defined on a domain D  is said to be increasing (or non-

decreasing) if, for every pair of elements 

)x(f)x(fxx,Dxx 121221 ≥⇒>∈ .  Further, we say that f  is strictly 

increasing if )x(f)x(fxx 1212 >⇒>  (strict inequality). 

 Clearly, the function 3x)x(g =  discussed above, is a strictly increasing 

function while h is not a strictly increasing function. 
 
12. A function f  defined on a domain D  is said to be decreasing (or non-

increasing) if for every pair of elements Dx,x 21 ∈ with 12 xx > we 

have )x(f)x(f 12 ≤ .  Further, f  is said to be strictly decreasing if 

)x(f)x(fxx 1212 <⇒> . 

 
13. A function f  defined on a domain D  is said to be a monotonic 

function if it is either increasing or decreasing on D . 
 
14. A function f  defined on a domain D  is said to be a periodic function if 

there exists a positive real number p  such that )x(f)px(f =+  for all 

Dx ∈ .  The number p  is said to be a period of f . If there exists a 

smallest positive p  with the property described above, it is called the 

period of f . 
 

6.9 SOLUTIONS/ANSWERS  
 

E1) No, S∉=−×− 6)2()3(  

 

E2) Line 2, As associative law does not work for subtraction, i.e. 

.c)ba()cb(a −−≠−−  

 

E3) i)    Clearly 2 is an upper bound of ,S1 and all other upper bounds are   

greater than 2. Therefore, Sup 2)S( 1 = .  

  Similarly, 1 is a lower bound of 1S and all other lower bounds are 

less than 1. Thus, .1)S(Inf 1 =  
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 ii)   Note that }5x5:x{S2 <<−∈= R So, 5 is the least upper 

bound of 2S . Sup 5)S( 2 = . 5− is the greatest lower bound of 

2S . Thus .5)S(Inf 2 −=   

 iii)  Sup )S( 3 does not exists and )S(Inf 3 does not exist. 

 iv)  Sup 0)S( 4 =  , 1)S(Inf 4 −=  

 
E4) Any example satisfying the condition may be given.  One example of 
 each set is given below: 

 i) The set },3,2,1{ K  has a lower bound, e.g., 0 . 

 ii) The set ...},2,1,0,1,2,3{... −−−  does not have a lower  

  bound. 

 iii) The g.l.b. of the set },n/1,,3/1,2/1,1{S KK=  is 0  and S0 ∉ . 

 iv) R∈x:x{  and }2x1 ≤≤  is a bounded set as it is bounded above 

by  2  and below by 1. 
 
E5) Yes, it is bounded, as supremum of A = 2 and Infimum of A = 1. Since 

the set A is bounded above as well as bounded below, it is bounded. 
 
E6) Let us prove that the supremum of a set, if it exists, is unique. Suppose 

that R⊆S is bounded above and that R∈b,a are supremum of S . You 

may note that both a and b are upper bounds of S . Since a is the least 

upper bound of S and b is an upper bound of S , therefore ba ≤ . 

Similarly, b is a least upper bound and a is an upper bound of S , 

therefore ab ≤ . Thus ba = , shows that the supremum of a set is 
unique. 

 You may like to prove the uniqueness of infimum yourself. 
 

E7) i) 15 ,   ii) 3/2 ,    iii) 3.4 , iv) 6− , v) 22 −  
 

E8) i) If 0x > , then x|x| =  and 1
x

x

x

|x|
==  

 ii) If 0x < , then x|x| −=  and 1
x

x

x

|x|
−=

−
= . 

 

E9) i)  |7||5| <− ,  ii)  |
8

1
||

8

1
| =
−

, iii) ( )xx
22 −= for all natural number x, 

 iv) |10||10| −<−−  

 

E10) If ,0x > then ,xx = which imples .1
x

x

x

x
y ===  

 If 0x < , then ,xx −= which implies .1
x

x

x

x
y −=

−
==  

 Therefore, answer (a) is correct.  
 

E11) i) }x,xmax{|x| −= .  Hence 0x0x =⇒=  

  0x0}x,x{max0|x| =⇒=−⇒=  

  ii) If x|x|,0x =>  and |x|/1x/1|x/1| ==  
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  If x|x|,0x −=<  and |x|/1x/1|x/1| =−=  

 iii) |y||x||y||x||)y(x||yx| +=−+≤−+=−  

 
E12) i) False, ii) True, iii) True, iv) False 
 

E13) i)  8x1 ≤≤ , ii)  2x <<∞− , iii)  2x1 ≤≤ , iv)  ∞<< x5  

 
 

Fig. 28 

 

E14)  i)   Domain = R  
      Range = ] ], 3∞−  

 ii)  Domain = }0{−R  

      Range =R  

 iii)  Domain = R  
       Range = R  
 

E15)  4t4,16t 2
≥≥−≥  

 5or5t25t916t316t3)t(f 222
−=⇒=⇒=−⇒=−⇒= .  

 

E16)  Domain of g = }1,0{ −−R  

         .2,2x0)x(g −=⇒=  

 

E17)  i) ,1
7

7
)7(f −=

−

−
=−  .1

3

3
)3(f ==  

 ii) The function f  is defined for }0{−R  

 iii) Range of f is }1,1{ −  

 iv) 1
82

82
)82(f =

+

+
=+  

      211
8

8

2

2
)8(f)2(f =+=+=+  

      Thus, )8(f)2(f)82(f +≠+  

 v) 1
61

61
)61(f =

+−

+−
=+−  

     211
6

6

1

1
)6(f)1(f =+=+

−
=+−  
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     Thus, )6(f)1(f)61(f +−≠+−  

 

E18)  2a3)a(f 22
+=  

 4a12a9)2a3())a(f( 24222
++=+=  

 Thus, 22 ))a(f()a(f ≠  

 

E19)  Let the number of passengers be p and )p(T denote the total amount 

collected. Then, 




>≥−+

=
=

30p50if,25).30p(900

30pif,900
)p(T  

       

E20)  

 
 

Fig. 29 

 

E21) i) |1x|x −→  

 ii) |x|x −→  

 iii) |1x|x +→  

 iv) 1|x|x +→  

 
E22)  
 

 
 

(a)  Graph of xsin 1−
and xsin   (b)   Graph of xcos 1−

and xcos  
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(c)  Graph of xtan 1−
and xtan   (d)   Graph of xeccos 1−

 

 

 
 (e)  Graph of xsec 1−

   (f)   Graph of xcot 1−  
 

Fig. 30 

 
E23) i) )x(f|x||x|)x(f|x|)x(f ==−=−⇒= .  Hence, f  is even. 

 ii) )x(g)x/(1)x(gx/1)x(g 22
=−=−⇒= .  Hence, g  is even. 

 
E24) i) )x(fx)x(fx)x(f −=−=−⇒= .  Hence, f   is odd. 

 ii) )x(gx/1)x(gx/1)x(g −=−=−⇒= .  Hence, g  is odd. 

 
E25) i), iii) and v) are even 

 iv) is odd 

 ii) is neither even nor odd 

 
E26) i) neither increasing, nor decreasing 

 ii) non-decreasing 

 iii) strictly decreasing 

 
E27) i)   The period of the function in Fig. 25(a) is 2 . Other periods are    

K,8,6,4  
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    ii)  The period of the function in Fig. 25(b) is π2 .  Other periods are      

K,6,4 ππ  

 

E28) i) Periodic with period π2  

  Since xcos)2xcos( =π+  for all x . 

 ii) not periodic. 

 iii) Periodic with period π . 

 iv) Periodic with period 3/π . 

 v) Periodic with period π . 

 vi) Periodic with period π2 . 

 
E29) i) and ii) are periodic, iii) is not. 
 

E30) No.  For example, ]x[x −  and |xsin|  are periodic, but their sum is not. 
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UNIT 7                                                        

LIMITLIMITLIMITLIMIT    

StructureStructureStructureStructure                                Page NoPage NoPage NoPage No....    
 

7.1 Introduction             47  

 Objectives 

7.2 Limit (An Intuitive Approach)           48 

7.3 Limit (A Formal Approach)           57 

7.4 Limit at Infinity             63 

7.5 Theorems on Limits            67 

7.6 Exponential and Logarithmic Functions         73  

7.7 Hyperbolic Functions and Their Inverse Functions        82 

7.8 Summary             85 

7.9 Solutions/Answers            87          

           

7.1 INTRODUCTION 
 
We now begin the study of calculus, starting with a concept of fundamental 
importance to it, namely, ‘limit’.  As you read the later units, you will realise 
that the seeds of calculus were sown as early as the third century B.C.  But it 
was only in the nineteenth century that a rigorous definition of a limit was given 
by Weierstrass.  Before him, Newton and Cauchy had clear ideas about limit, 
but none of them had given a formal and precise definition.  They had 
depended, more or less, on intuition (without actually defining it) or on 
geometry. 
 
The introduction of limit revolutionised the study of calculus.  The cumbersome 
proofs which were used by the Greek mathematicians have given way to neat, 
simpler ones. 
 
You may already have an intuitive idea of limit, which we shall discuss in   
Sec. 7.2. In Sec. 7.3, we shall give you a precise definition of this concept.  
The limit at infinity has been discussed in Sec. 7.4. We extend our study of 
limit by discussing theorems based on limits in Sec. 7.5. In Sec. 7.6, we shall 
introduce exponential and logarithmic functions. In Sec. 7.7, we shall discuss 
hyperbolic functions and their inverse functions. 
 
The functions that you will come across in this course will be real valued as we 
discussed in Unit 6.    
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And now we shall list the objectives of this unit. After going through the unit, 
please read this list again and make sure that you have achieved the 
objectives. 
 

Objectives 
 

After reading this unit, you should be able to: 

• find the limits of functions whenever they exist;  

• define limit formally using δ−ε ; 

• apply operations like addition, subtraction, etc. on limit; 

• define exponential function and logarithmic function; and 

• define hyperbolic functions and their inverses. 
 

7.2 LIMIT (AN INTUITIVE APPROACH) 
 
The concept of limit is the fundamental building block on which all other 
concepts of calculus are based. In this section, we shall study limits informally 
with the objective of developing an “intuitive feel” for the basic ideas. 
 
You must have heard limits in various situations in daily life such as 

• A vehicle stops at red-light by reducing its speed from say 40 km/hr to 0 
by getting closer and closer to 0. 

• Any object reaches terminal velocity when falling.  
 
In the examples given above, you find that there is some target fixed. 
Sometimes, we cannot work something out directly but we can see what it 
should be as we get closer and closer! 
 
Suppose, we have a real function and we want to know how the function 
behaves at the values close to a given value ax = . We choose values of x  
that get closer and closer to ax =  and we evaluate the function at these 

values. 
 
Here is an example that illustrates the numerical and graphical approaches of 
the concept of limit. 
 
Let us investigate the behaviour of the function f defined 

by ,1x,
1x

1x
)x(f

2

≠
−

−
=  at the values of x near 1.  

 

We see that the function f  is not defined at 1xas1x −= is in the 

denominator. Taking the values of x  which are near 1, but not equal to 1, we 

can write 1x
)1x(

)1x()1x(

1x

1x
)x(f

2

+=
−

+−
=

−

−
= as 01x ≠− and, so, division by 

)1x( − is possible. The Table 1 gives the values of )x(f for the values of x 

close to 1 from the left ),1x( < but not equal to 1. 

 
Table 1 

 
x  -1 0 0.5 0.8 0.9 0.94 0.99 0.999 0.9999 0.99999 

f(x)  0 1 1.5 1.8 1.9 1.94 1.99 1.999 1.9999 1.99999 
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When we examine the bottom row of Table 1, we see that )x(f has the values 

1.9 at 9.0x = , 1.99 at ,99.0x = 1.999 at ,999.0x = and so on. Therefore, as 

x moves closer to 1, )x(f moves closer to 2. In fact, it appears that we can get 

the value of )x(f as close as we like to 2 by making x sufficiently close to 1. 

Table 2 gives the values of )x(f for values of x close to 1 from the 

right )1x( > , but not equal to 1. 

 
Table 2 

 

x  x  1.5 1.2 1.1 1.05 1.01 1.001 1.0001 1.000001 

f(x)  )x(f  2.5 2.2 2.1 2.05 2.01 2.001 2.0001 2.000001 

 

Again, from Table 2, we observe that )x(f moves closer to 2, when x moves 

sufficiently closer to 1. This is somewhat strengthened by considering the 

graph of the function f given by )x(fy = in Fig. 1. 

 

 
 

Fig. 1: Graph of ,
1x

1x
f(x)

2

−

−
= near 1x =  

 

Fig. 1 shows that as x  gets closer to 1 (on either side of 1), )x(f gets close to 

2. 
 
In this illustration, the value which the function should assume at a given value 

1x = , did not really depend on how x  is tending to 1. Note that there are 
essentially two ways x could approach 1 either from left or from right, i.e. all 
the values of x near 1 could be less than 1 or could be greater than 1. 
Therefore, it is clear that in both the cases (from left and from right) as x  gets 

closer and closer to 1, )x(f gets closer and closer to 2.  

 
We express this by saying that as x tends to 1 or x approaches 1, 

1x)x(f += tends to 2 or 1x)x(f += approaches 2. We abbreviate the 

statement with the notation 1xas2)x(f →→ . 

The symbol 
→ denotes “tends 

to”. 
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Another way of expressing this is to say that the limit of )x(f at 1x = is 2, which 

we write as .2)x(flim
1x

=
→

  

 
In general, if the limit of a function f at a given point a is L , we write the limit 

as L)x(flim
ax

=
→

and read “the limit of )x(f , as x approaches a, equals L”. The 

function f has a limit L at ,ax = as )x(f moves closer and closer to the number 

L whenever x  gets closer and closer to a number a. An alternate notation is 

L)x(f → as ,ax → which is generally read as “ )x(f approaches L as x 

approaches a”. As you see, we are interested in the behaviour of the function 
near a, ax ≠ that is x  is near a. This means that we never consider ax = in 

finding the limit of a function as x tends to a. In fact, )x(f  need not be even 

defined at .ax =  

 

 
Fig. 2: f(x) when x takes values close to a 

 

Fig. 2 shows that ,L)a(f ≠ but .L)x(flim
ax

=
→

 

 
Let us consider more examples to understand this.  
 

Example 1: Investigate the limit of the function f defined by xsin)x(f = as x  

gets closer to 2π . The angle x  is measured in radians. 

Solution: Here, we tabulate the approximate values of )x(f near 2π . Table 3 

gives the values of )x(f for values of x that approach 2π . From the values of 

Table 3, we observe that 1xsinlim
2x

=
π→

. 

 

Table 3: sinxf(x) =  

 

2x π>  xsin)x(f =  2x π<  xsin)x(f =  

2.0 0.909297 1.0 0.841471 

1.8 0.973848 1.2 0.932039 

1.6 0.999574 1.5 0.997495 

1.59 0.99816 1.55 0.999784 

1.58 0.999958 1.57 0.999999 

 

Fig. 3 illustrates that 1xsinlim
2x

=
π→

from either side, that is left as well as right.  
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Fig. 3: sinxf(x) = when x takes values close to 2/ππππ  

*** 
 

Example 2:  Guess )x(flim
1x→

, if RR→:f  is defined by 1x)x(f 2
+= .   

Solution: First, we tabulate values of )x(f near 1 from the left side and the 

right side. Table 4 gives the values of )x(f  as x  takes values nearer and 

nearer to 1. We see that as the values of x  approach 1, )x(f tends to 2. 
 

Table 4: 1xf(x)
2

+=  

 
 
 
 
 
 
 
 

 

We find that, as x  gets closer and closer to )x(f,1  gets closer and closer to 

2.  Alternatively, we express this by saying that as x   approaches 1, 

)x(f approaches 2. That is, the limit of )x(f  is 2, at 1x = . We write 

.2)1x(lim)x(flim 2

1x1x
=+=

→→
 

*** 
 
Now the question arises, whether the limit of a function is useful? It is indeed 
useful. Often we find functions that are undefined at certain values. This 
means that the function equals something like 0/0, or infinity over infinity for 
specific values of “ x ”. We do not know what those expressions mean! We 
shall study these expressions in Unit 12. But using limits, we can know what 
the function is approaching when the variable “ x ” approaches that value. We 
don’t need to care whether or not the function is defined at that point. 
 

Example 3: Consider the function
x

xsin
, and investigate its limit as .0x →  

Solution: This function is not defined at 0x = , but it has no bearing on finding 
the limit. Table 5 and Table 6 show samples of x -values approaching 0 from 
the left side and from the right side respectively. In both cases, the values of 

x

xsin
are calculated to four decimal places. 

( )1x >  1.2 1.1 1.05 1.01 1.005 1.001 

)x(f  2.44 2.42 2.103 2.02 2.01 2.002 

( )1x <  0.8 0.9 0.95 0.99 0.999 0.995 

)x(f  1.64 1.81 1.903 1.9801 1.9989 1.990 
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Table 5: Values of 
x

sinx
as 0x → from the left. 

 

x (in radian) -1.0 -0.8 -0.6 -0.4 -0.2 -0.01 

x

xsin
)x(f =  

0.8415 0.8967 0.9411 0.9736 0.9934 0.9999 

                                       
Left side    

  

Table 6: Values of 
x

sinx
as 0x → from the right. 

 
 
 
 
      

    
         Right side 

 
The graph of this is shown in Fig. 4, it has a missing point at (0,1). 

 
Fig. 4: 1f(x) → as 0x → from left as well as right side. 

 
From Table 5, Table 6 and Fig. 4, we see that as x approaches 0, the values 
of the function appear as 0.9999.... and so we guess that  

.1
x

xsin
lim

0x
=

→
 

*** 

 
Have these examples helped you to reach the meaning of ‘limit’? Would you 
agree with the following definition. 
 

Limit (An Informal View): Given a function ,:f RR→ and ,x R∈ if the 

values of )x(f can be made as close as we like to R∈L  by taking values of 

x sufficiently close to a (but not equal to a), then we write  

  L)x(flim
ax

=
→

 

This is read as “the limit of )x(f as x approaches a is L”. 

 
Here the limit is commonly called a two-sided limit because it requires the 

value of )x(f to get closer and closer to L as the values of x are taken from 

both sides (left and right) of ax = .  

 
However, some functions show different values on the two sides of x -values.  

x (in radian) 0.01 0.2 0.4 0.6 0.8 1.0 

x

xsin
)x(f =  

0.9999 0.9934 0.9736 0.9411 0.8967 0.8415 
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Now try the following exercise.  

 

 
E1) Comment on the following limits at the given value of x . 

 i)   .3xas
3x

9x
)x(f

2

→
−

−
=   

 ii)  
4x

x2x
)x(f

2

2

−

−
= as .2x →  

 iii)  .0xas1x4)x(f →−=  

 

 

If the values of the function f approach a limit 1L as x approaches ‘a’ from the 

left, we say that the left hand limit (LHL) of )x(f is 1L as ax → . We denote it 

by writing 1
ax

L)x(flim =
−

→

or  .0h,L)ha(flim 1
0h

>=−
→

 

 

Similarly, if )x(f approaches a limit 2L as x approaches ‘a’ from the right we 

say, that a right hand limit (RHL) of )x(f as ax → is .L2 We write it as  

2
ax

L)x(flim =
+

→

or .0h,L)ha(flim 2
0h

>=+
→

 

 

One-sided limits 1L and 2L are illustrated in Fig. 5. 

 

 
 

 a)  1Lf(x)
ax

lim =
→ −

     b)    2Lf(x)
ax

lim =
→ +

 

 
Fig. 5 

 
Let us illustrate a function in the following example, where the left hand limit 
and the right hand limit are not equal. 
 

Example 4: Consider the function f defined by ,
0x,4

0x,2
)x(f





>

≤
= comment on 

its limit at .0x =  

Solution: Graph of this function is shown in the Fig. 6. It is clear that the left 

hand limit of f at 0 is 2)x(flim
0x

=
−

→

. 

Similarly, the right hand limit of f at 0 is 4)x(flim
0x

=
+

→

. 

The superscript ""−  
indicates a limit from 
the left and the 
superscript 

""+ indicates a limit 
from the right. 
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Fig. 6 

 
In this case, the right and left hand limits are different, and hence we say that 

the limit of )x(f  does not exist as x tends to zero (even though the function is 

defined at 0).  

*** 

 
In this discussion, you would have noted that there are situations where 

RHLLHL = and where RHLLHL ≠ . In such cases, we say that the limit of f  

as x approaches a does not exist, as the values of )x(f  do not get closer 

and closer to some single number L as ax → . In general, the following 
condition must be satisfied for the two-sided limit of a function to exist. 

 
The relationship between one-sided and two-sided limits: The two-sided 

limit of a function f  exists at a if and only if both of the one-sided limits exist at 
ax =  and have the same value, i.e.,  

 L)x(flim
ax

=
→

ifonly  and if )x(flimL)x(flim
axax +−

→→

== . 

 
Remark 1: If one or both of the one-sided limits fail to exist, the two-sided limit 
does not exist. Sometimes, we will be interested in the limit of a function from 
only one side. 

 
Let us now discuss more examples. 

 
Example 5: Consider the function f defined by .10x)x(f +=  Find the limit of 

the function f  at 2x = . 

Solution: Let us compute the value of the function f at x very near to 2. Some 
of the points near and to the left of 2 are 1.9, 1.95, 1.99, 1.995..., etc. Values 
of the function at these points are tabulated below. Similarly, the real numbers 
2.001, 2.01, 2.1 are also points near and to the right of 2. Values of the 
function at these points are also given in Table 7. 

 
Table 7 

 

x  1.9 1.95 1.99 1.995 2.001 2.01 2.1 

)x(f  11.9 11.95 11.99 11.995 12.001 12.01 12.1 

 

From the Table 7, we deduce that the value of )x(f at 2x = should be greater 

than 11.995 and less than 12.001. It is reasonable to assume that the limit of 

)x(f at 2x = from the left of 2 is 12, i.e., .12)x(flim
2x

=
−

→
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Similarly, when x approaches 2 from the right, )x(f should be taking value 12, 

i.e., .12)x(flim
2x

=
+

→

 

Hence, it is likely that the left hand limit of )x(f and the right hand limit of 

)x(f are both equal to 12. Thus,  

.12)x(flim)x(flim)x(flim
2x2x2x

===
→→→

+−
 

Therefore the limit of the function f at 2x = is equal to 12. Also, we observe 
that th e value of the function f at 2x = also happens to be equal to 12. 

*** 
 

Example 6: Consider the function f defined by .x)x(f 3
=  Find the limit of the 

function f at 1x = . 

Solution: Proceeding as in the previous example, we tabulate the value of 

)x(f at x near to 1. These values are given in the Table 8. 

 
Table 8 

 

x  0.9 0.99 0.999 1.001 1.01 1.1 

)x(f  0.729 0.970 0.997 1.003 1.030 1.331 

 

From Table 8, we deduce that the limit of )x(f at 1x = should be greater than 

0.997 and less than 1.003. It is reasonable to assume that the limit of the 

)x(f at the left of 1 is 1, i.e., .1)x(flim
1x

=
−

→

 

Similarly, when x approaches 1 from the right, )x(f should be taking value 1, 

i.e., .1)x(flim
1x

=
+

→

 

Hence, it is likely that the left hand limit of )x(f and the right hand limit of 

)x(f are both equal to 1. Thus, 

  .1)x(flim)x(flim)x(flim
1x1x1x

===
→→→

+−
 

Therefore, the limit of the function f at 1x = is equal to 1.  
We observe, again, that the value of the function f  at 1x = also happens to be 
equal to 1. 

*** 
 
Example 7: Consider the function x2)x(f = . Let us try to find the limit of this 

function at 1x = . 

Solution: Table 9 is now self-explanatory.  
 

Table 9 

 

x  0.9 0.95 0.99 0.999 1.001 1.01 1.1 

)x(f  1.8 1.90 1.98 1.998 2.002 2.02 2.2 

 
We observe that as x approaches 1 from either left or right, the value of 

)x(f seem to approach 2. We get, 2)x(flim)x(flim)x(flim
1x1x1x

===
→→→

+−
. 



 

 

56

Block 2                                                                            Limit and Continuity 

 
 

Fig. 7 

 
Its graph is shown in Fig. 7, which strengthens this fact.  
 

Here, again we note that the value of the function at 2x = coincides with the 

limit at .2x =  
*** 

 

Example 8: Check the existence of ],x[lim
2x→

where [ ] is the greatest integer 

function. [You may refer Unit 6 for greatest integer function] 

Solution: The value of [ ]x  is the largest integer which is less than or equal to 

x . 
Now, let us draw its graph. 

 
Fig. 8: Graph of ][x  

 

If we consider the graph of the function ]x[)x(f = , shown in Fig. 8, we see 

that if x  approaches 2 from the left then )x(f  seems to tend to 1.  At the 

same time, if x  approaches 2 from the right, then )x(f  seems to tend to 2.  

This means that the limit of f exists if x  approaches 2 from only one side (left 

or right) at a time, and thus RHLLHL ≠ .   

Thus, [ ]xlim
2x→

does not exist. 

*** 
 

Now try the following exercises. 
 
 

E2) Find the following limits.  
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 i)    Consider the constant function f defined by 3)x(f = . Find its limit 

at   .2x =  

   ii)   Consider the function f defined by xx)x(f 2
+= . Find ).x(flim

1x→
 

 iii)  Consider the function f defined by xcosx)x(f += . Find the 

)x(flim
0x→

.  

 

E3)    Investigate )1xx(lim 2

2x
+−

→
. 

 

E4) Evaluate .
x

1
lim

22x→
 

 

E5) Find ),x(flim
0x→

where 

   









>+

=

<−

=

0x,2x

0x,0

0x,2x

)x(f  

 
E6) Check whether the following limits exist or not.  

 i)  
1x

1x
lim

1x −

−

→
 

 ii) ]x[lim
nx→

where N∈n  

 

E7) Find ,
1x3

1x9
lim

2

3/1x −

−

→
if it exists. 

 

 
So far, we have discussed limits informally. In the following section, we shall 
discuss, and apply, the formal definition of a limit. 

 

7.3 LIMIT (A FORMAL APPROACH) 
 

After studying Sec. 7.2, you would have developed some understanding of 

what a limit is. It is not always convenient to guess the limit intuitively, thus we 

must use the precise definition of limit. Let us consider the function f defined 

by 




=

≠−
=

.1xwhen;4

1xwhen;1x3
)x(f  

 

Intuitively, we say that ,2)x(flim
1x

=
→

since, when x is close to 1 but not equal to 

1, )x(f is close to 2. Can you find the closeness of x to 1, so that the 

difference between )x(f and 2 is less than a very little amount, say 0.01? 

Mathematically we can write this as ,01.02)x(f <− if δ<−1x (say), where 

δ is a very small number. )1x(33x32)1x3(2)x(f −=−=−−=−  

01.01x3 <−=  that is 01.02)x(f <− if 
3

01.0
1x0 <−< or 0033.01x0 <−< . 
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We get an answer to our question, that the little amountδ is 0.0033. This 

means that if x is within a distance of 0.0033 from 1, then )x(f will be within a 

distance of 0.01 from 2. 
 

In the same way, if we change 0.01 to 0.001, we get  

001.02)x(f <− if .00033.01x0 <−<  

 

We can take 0.01, 0.001 or any other small positive number. For example, 
take it to be ε , which is any arbitrary positive number, then, in the same way 
you should check that 

ε<− 2)x(f if .
3

1x0
ε

<−< So, 
3

ε
is a real number such that  

.2)x(f
3

1x0 ε<−⇒ε<−<  

 

This leads us to the following definition: 
 

Definition: Let f  be a function defined at all points near a  (except possibly at 

)a .  Let L  be a real number.  We say that f  approaches the limit L  as x  

approaches a  if, for each real number 0>ε , we can find a real number 0>δ , 
depending on ε , such that  

 ε<−⇒δ<−< |L)x(f||ax|0 . 

δ<− |ax|  means that δ<−<δ− )ax(  i.e. δ+<<δ− axa  

i.e. [a,a]x δ+δ−∈  and |ax|0 −<  means that ax ≠ .  That is, 

δ<−< |ax|0  means that x  can take any value lying between δ−a  and 

δ+a  except a . 
 

The limit L  is denoted by )x(flim
ax→

.  We also write L)x(f →  as ax → .  

 

Note that, in the definition above, we take any real number 0>ε  and then 

choose some 0>δ , so that ε+<<ε− L)x(fL , whenever δ<− |ax| , that is, 

δ+<<δ− axa . 
 

In Unit 6, we have mentioned that |ax| −  can be thought of as the distance 

between x  and a .  In the light of this the definition of the limit of a function 

can also be interpreted as: 
 

Given 0>ε , we can choose 0>δ  such that if we choose x  whose distance 

from a  is less than δ , then the distance of its image from L  must be less 
than ε .  The picture in Fig. 9 may help you absorb the definition. Here, we first  

 
  Fig. 9: δδδδ    −ε  definition of limit   

ε  (epsilon) and δ  (delta) 
are Greek letters . 

The δ−ε  definition does 
not give us the value of 
L .  It just helps us check 
whether a given number 
L  is the limit of )x(f . 
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pick a number, 0>ε and consider two horizontal lines ε−= Ly and ε+= Ly . 

Now, we take the band of width ε2 around the number L on the y-axis, and 
find a band around the number a on the x-axis, corresponding to the point of 

intersection of these lines with ),x(f  so that for all x-values (excluding 

)ax = inside the band, the corresponding y-values lie inside the band. 

 
We can do this in the following steps: 

1. We first pick a given closeness, [L,L] ε+ε− to L. 

2. Then, we get close enough to a, [a,a] δ+δ− , so that all the 

corresponding y-values fall inside it. If 0a >δ can be found for each 

value of ε , then, we can say that L is the correct limit. 
 
If the process fails, then the limit L has been incorrectly computed, or the 
limit does not exist. 

 

Remember, the number ε  is given first and the number δ  is to be produced, 
depending on ε . 
 
Now, let us take up the following examples. 
 

Example 8: Consider the function RR→:f  defined by 3x)x(f = .  How can 

we find )x(flim
0x→

using δ−ε definition of limit? 

Solution: 

 

 
 

Fig. 10: Graph of 
3

x  

 

Look at the graph of f  in Fig. 10.  You will see that when x  is small, 
3

x  is 

also small.  As x  comes closer and closer to 3x,0  also comes closer and 

closer to zero.  It is reasonable to expect that 0)x(flim =  as 0x → . 

Let us prove that this is what happens.   

Take any real number 0>ε .  Then, 
3/133

|x||x|0x|0)x(f| ε<⇔ε<<∈⇔−⇔ε<−  .   

Therefore, if we choose 3/1
ε=δ  we get ε<− |0)x(f|  whenever 

δ<−< |0x|0 .  This gives us 0)x(flim
0x

=
→

. 

*** 
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General Rule: A useful general rule to prove L)x(flim
ax

=
→

 is to write down 

L)x(f −  and then express it in terms of ax − and relate ε  and δ as much 

as possible. 
 
Let us now see how to use this rule to calculate the limit in the following 
examples. 
 

Example 9: Let us calculate
1x

1x
lim

2

1x −

−

→
using δ−ε definition. 

Solution: We know that division by zero is not defined.  Thus, the function 

1x

1x
)x(f

2

−

−
=  is not defined at 1x = .  But, as we have mentioned earlier, 

when we calculate the limit as x  approaches 1, we do not take the value of 

the function at 1x = .  Now, to obtain 
1x

1x
lim

2

1x −

−

→
, we first note that 

)1x()1x(1x 2
+−=− , so that, 1x

1x

1x 2

+=
−

−
 for 1x ≠ .  Therefore 

)1x(lim
1x

1x
lim

1x

2

1x
+=

−

−

→→
. 

As x  approaches 1, we can intuitively see that this limit approaches 2, as 
shown in the example considered in Sec 7.2.  

To prove that the limit is 2, we first write 1x21xL)x(f −=−+=− , which 

is itself in the form ax − , since 1a =  in this case.   

Let us take any number 0>ε .  Now, 

 ε<−⇔ε<−+ |1x||2)1x(|  

Thus, if we choose ε=δ , in our definition of limit, we see that 

ε<−=−⇒ε=δ<− |1x||L)x(f||1x| .  This shows that 2)1x(lim
1x

=+
→

.  

Hence, 2
1x

1x
lim

2

1x
=

−

−

→
. 

*** 
 

Example 10: Prove that 5)1x(lim 2

2x
=+

→
, using δ−ε definition. 

Solution: We shall prove that 0,0 >δ∃>ε∀  such that ε<−+ |51x| 2  

whenever δ<− |2x| . 

Here, 4x5)1x(L)x(f 22
−=−+=− , and 2xax −=− . 

Now we write |4x| 2
−  in terms of |2x| − : 

 |2x||2x||4x| 2
−+=−  

Thus, apart from |2x| − , we have a factor, namely |2x| + .  To decide the 

limits of |2x| + , let us put a restriction on δ .  Remember, we have to choose 

δ .  So let us say we choose a 1≤δ .  What does this imply? 

 12x121|2x||2x| +<<−⇒<−⇒δ<−  

       52x33x1 <+<⇒<<⇒ .  [Recall Unit 6] 

Thus, we have |2x|5|4x| 2
−<− .  But our aim is to prove ε<− |4x| 2 . 

For this we shall try to make ε<− |2x|5 .  Now when will this be true?  It will 

be true when 5/|2x| ε<− .  So this 5/ε  is the value of δ  we were looking 
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for.  But we have already chosen 1≤δ .  This means that given 0>ε , the δ  

we choose should satisfy 1≤δ  and also 5/ε≤δ . 

In other words, }5/,1min{ ε=δ , should serve our purpose.  Let us verify this: 

12x|2x| <−⇒δ<−  and ε=ε<−+=−⇒ε<− 5/.5|2x|.|2x||4x|5/|2x| 2 . 

*** 
 

Remark 2: If f  is a constant function on R , that is, if R∈∀= xk)x(f , where 

k  is some fixed real number, then k)x(flim
ax

=
→

. 

 

Now, please try the following exercises. 
 
 

E8) Using δ−∈ definition of limit, show that 

 i) 
2

1

x

1
lim

2x
=

→
 

 ii) 3
1x

1x
lim

3

1x
=

−

−

→
 

 

E9)     Show that the function f , defined by 








=

≠







=

0x;0

0x;
x

1
sin

)x(f does not 

approach 0 as .0x →  
 

E10)   Check, whether 0
x

1
sinxlim

0x
=

→
is correct or not. 

 

 

So far, in this section, you have studied formal definition of limit. Let us now 
see if analogous definitions hold for one-sided limits. 
 

Definition: Let f  be a function defined for all x  in the interval f[,b,a]  is said 

to approach a limit L  as x  approaches a from right if, given any 0>ε , 

there exists a number 0>δ  such that ε<−⇒δ+<< |L)x(f|axa . 

In symbols, we denote this limit by L)x(flim
ax

=
+

→

. 

 

Similarly, the function R→[b,a:]f  is said to approach a limit L  as x  

approaches b  from the left if, given any 0,0 >δ∃>ε  such that 

ε<−⇒<<δ− |L)x(f|bxb . 

This limit is denoted by )x(flim
bx −

→

. 

Note that in computing these limits, the values of )x(f  for x  lying on only one 

side of the interval are taken into account. 
 

Let us apply this definition to the function ]x[)x(f = .  We know that for 

1]x[[,2,1[x =∈ .  That is, ]x[  is a constant function on [2,1[ .  Hence 

1]x[lim
2x

=
−

→

.  Arguing similarly, we find that since 2]x[ =  for all ]x[[,3,2[x ∈  

is, again, a constant function on [3,2[ , and 2]x[lim
2x

=
+

→

. 

 
Let us improve our understanding of the definition of one-sided limits by 
looking at some more examples. 
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Example 11: Let f  be defined on R  by setting  

 







=

≠
=

0x0

0x,
x

|x|

)x(f

 if   ,
if

  

We shall show that )x(flim
0x −

→

 equals 1− . 

Solution: When x|x|,0x −=< , and therefore, 1x/)x()x(f −=−= .   

In order to show that )x(flim
0x −

→

 exists and equals 1− , we have to start with any 

0>ε  and then find a 0>δ  such that, if 0x <<δ− , then ε<−− |)1()x(f| . 

Since 1)x(f −=  for all 0|)1()x(f|,0x =−−<  and, hence, any number 0>δ   

will work.   

Therefore, whatever 0>δ  we may choose, if 0x <<δ− , then 

ε<=−− 0|)1()x(f| .  Hence, 1)x(flim
0x

−=
−

→

. 

*** 
 

Example 12: f  is a function defined on R  by setting  

 ]x[x)x(f −= , for all R∈x . 

Let us examine whether )x(flim
1x −

→

 exists. 

Solution: This function can be written as x)x(f = ,  if 1x0 <≤ . 

 1x)x(f −=  if 2x1 <≤ , and, in general 

 nx)x(f −=  if 1nxn +<≤  (see Fig. 11) 

 

 
 

Fig. 11: Graph of ][xx −  

 

Since x)x(f =  for the values of x  less than 1 but close to 1, it is reasonable 

to expect that 1)x(flim
1x

=
−

→

.  Let us prove this by taking any 0>ε  and 

choosing },1{min ε=δ .  We find that x)x(f1x1 =⇒<<δ−  and 

ε≤δ<−=− |1x||1)x(f| . 

Therefore, 1)x(flim
1x

=
−

→

. 

Proceeding exactly as above, we note that 1x)x(f −=  if 2x1 <≤ , we can 

similarly prove that 0)x(flim
1x

=
+

→

. 

*** 
 
Now try the following exercise. 
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E11) Prove that  

 i) 1]x[xlim
3x

=−
−

→

. 

 ii) 1
x

|x|
lim

0x
=

+
→

. 

 iii) 2
x

|x|)2x(
lim

2

0x
−=

+
−

→

. 

 

 
So far, we have been discussing limit of any real valued function at a finite 
value of .x  Now, let us discuss the behaviour of function at ∞ or ∞− in the 

following section. 
 

7.4 LIMITS AT INFINITY 
 

Take a look at the graph of the function 0x,
x

1
)x(f >=  in Fig. 12.  We see 

from Fig. 12 that )x(f  comes closer and closer to zero as x  gets larger and 

larger.  This situation is similar to the one where we have a function )x(g  

getting closer and closer to a value L  as x  comes nearer and nearer to some 

number a , that is when L)x(glim
ax

=
→

. 

 
 

Fig. 12: Graph of 
x

1  

 

The only difference is that in the case of x),x(f  is not approaching any finite 

value, and is just becoming larger and larger.  We express this by saying that 

0)x(f →  as ∞→x , or 0)x(flim
x

=
∞→

.   

 
Note that, ∞  is not a real number.  We write ∞→x  merely to indicate that x  

becomes larger and larger. 
 
We now formalise this discussion in the following definition. 
 

Definition: A function f is said to tend to a limit L as x tends to ∞  if, for each 

0>ε  it is possible to choose K  such that ε<− |L)x(f|  whenever Kx > . 
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In this case, as x  gets larger and larger, )x(f  gets nearer and nearer to L .  

We now give another example of this situation. 

 

Example 13: Let f  be defined by setting 2x/1)x(f =  for all {0}x \R∈ . 

Comment on )x(flim
x ∞→

. 

Solution:  Here f  is defined for all real values of x  other than zero.  Let us 

substitute larger and larger values of x  in 2x/1)x(f =  and see what happens 

(see Table 10). 

 
Table 10 

 

x  100 1000 100,000 
2x/1)x(f =  0.0001 0.000001 0.0000000001 

 
We see that as x  becomes larger and larger, )x(f  comes closer and closer to 

zero.  Now, let us choose any 0>ε .  If ε> /1x , then ε<
2x/1 .  Therefore, 

by choosing ε= /1K , we find that ε<⇒> |)x(f|Kx .  Thus, 0)x(flim
x

=
∞→

. 

Fig. 13 gives us a graphical idea of how this function behaves as ∞→x . 

 

 
   

Fig. 13: 
2

x

1
f(x) = at ∞→x  

*** 
 

Sometimes we also need to study the behaviour of a function )x(f , as x takes 

smaller and smaller negative values.  This leads to the following definition. 

 
Definition: A function f  is said to tend to a limit L  as −∞→x  if, for each 

0>ε , it is possible to choose K , such that ε<− |L)x(f|  whenever Kx −< . 

The following example will help you in understanding this idea. 
 

Example 14: Consider the function RR→:f  defined by 
2x1

1
)x(f

+
= . 

Comment on )x(flim
x −∞→

. 

Solution: The graph of f  is as shown in Fig. 14. 



 

 

65

Unit 7                                                                                   Limit 

 

Fig. 14: Graph of 
2

x1

1
f(x)

+
=  

 

What happens to )x(f  as x  takes smaller and smaller negative values?  Let 

us make a table (Table 11) to get some idea. 
  
Table 11 

 

x  10−  100−  1000−  

2x1

1
)x(f

+
=  101 10001 1000001 

 

We see that as x  takes smaller and smaller negative values, )x(f  comes 

closer and closer to zero.  In fact ε<+ )x1/(1 2  whenever ε>+ /1x1 2 , that is, 

whenever 1)/1(x 2
−ε> , that is, whenever either 

2/1

1
1

x −
ε

−<  or 

2/1

1
1

x −
ε

> .  Thus, we find that if we take 

2/1

1
1

K −
ε

= , then 

ε<⇒−< |)x(f|Kx .  Consequently, 0)x(flim
x

=
∞−→

. 

In this example, we also find that 0)x(flim
x

=
∞→

. 

 

Let us see how )x(flim
x ∞→

 can be interpreted geometrically. 

 

In the above example, we have the function )x1/(1)x(f 2
+= , and as ∞→x , 

or 0)x(f,x →∞−→ .  From Fig. 14, you can see that, as ∞→x  or 

∞−→x , the curve )x(fy =  comes nearer and nearer the straight line 0y = , 

which is the x -axis. 

Similarly, if we say that L)x(glim
x

=
∞→

, then it means that, as ∞→x  the curve 

)x(gy =  comes closer and closer to the straight line Ly = . 

*** 

Example 15: Show that 1
)x1(

x
lim

2

2

x
=

+∞→
. 

Solution: Now, 
222

2

x1

1

x1

1
1

x1

x

+
=

+
=−

+
.  In the previous example, we 

have shown that ε<+ |)x1/(1| 2  for Kx > , where 2/1|1/1|K −ε= .  Thus,  
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given 0>ε , we choose 2/1|1/1|K −ε= , so that  

 ε<−
+

⇒> 1
x1

x
Kx

2

2

.  This means that 1
x1

x
lim

2

2

x
=

+∞→
. 

We show this geometrically in Fig. 15. 
 

 

Fig. 15: Graph of 
2

2

x1

x

+
 

*** 
 
You can try these exercises. 
 
 

E12) Show that  

 i) 0x/1lim
x

=
∞→

. 

 ii) 0x/1lim 2

x
=

→∞
. 

 

E13) i) If for some 0>ε , and for every Kx,K >∃  s.t. 

 ε>− |L)x(f|  what will you infer? 

 ii) If L)x(flim
px

≠
→

, how can you express it in the δ−ε  form? 

 

 
We end this section with the following important remark. 

 
Remark 3: In case we have to show that a function f  does not tend to a limit 

L  as x  approaches a , we shall have to negate the definition of limit.  Let us 

see what this means.  Suppose we want to prove that L)x(flim
ax

≠
→

.  Then, we 

should find some 0>ε  such that for every 0>δ , there is some 

[a,a]x δ+δ−∈  for which ε>− |L)x(f| .   

Through our next example we shall illustrate the negation of the definition of 

the limit of )x(f  as ∞→x . 

 

Example 16: Show that 1x/1lim
x

≠
∞→

. 

Solution: We have to find some 0>ε  such that for any K  (howsoever large) 

we can always find an Kx >  such that ε>− |1x/1| .  Take 4/1=ε .  Now, for 
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any 0K > , if we take }1K,2max{x += , we find that Kx >  and 

4/1|1x/1| >− .  This clearly shows that 1x/1lim
x

≠
∞→

. 

*** 
 
In the following section, we shall discuss theorems about limits.  
 

7.5 THEOREMS ON LIMITS 
 

Before we go further, let us ask, ‘Can a function )x(f  tend to two different 

limits as x  tends to a’, or ‘Is the sum of two limits the limit of sum of two 
functions at a’? These questions will be answered in the following theorems. 
 

Theorem 1 (Uniqueness of Limit): If L)x(flim
ax

=
→

 and M)x(flim
ax

=
→

, then 

ML = . 
 

Proof: Suppose ML ≠ , then 0|ML| >− .  Take ,
2

|ML| −
=ε then .0>ε  

Since L)x(flim
ax

=
→

, 01 >δ∃  such that 

 ε<−⇒δ<− |L)x(f||ax| 1  

Similarly, since 0,M)x(flim 2
ax

>δ∃=
→

 such that  

 ε<−⇒δ<− |M)x(f||ax| 2  

If we choose },{min 21 δδ=δ , then 1δ≤δ and .2δ≤δ So δ<− |ax|  will mean 

that 1|ax| δ<−  and 2|ax| δ<− .  In this case, we will have both 

ε<− |L)x(f| , as well as, ε<− |M)x(f| . 

So that |M)x(f||L)x(f||M)x(f)x(fL||ML| −+−≤−+−=−  

    ε+ε<  (using )baba +≤+  

              |ML|2 −=ε=  

That is, we get |ML||ML| −<− , which is a contradiction. Therefore, our 

supposition is wrong.  Hence ML = . 
 

Let us state some basic properties of limits in the following theorem without 
proof. 
 

Theorem 2: Let f  and g  be two functions such that both )x(flim
ax→

 and 

)x(glim
ax→

exist. Then  

i) )x(glim)x(flim)]x(g)x(f[lim
axaxax →→→

+=+   (Sum rule) 

ii) )x(glim)x(flim)]x(g)x(f[lim
axaxax →→→

−=−   (Difference rule) 

iii)      [ ] [ ])x(glim)x(flim)]x(g)x(f[lim
axaxax →→→

=   (Product rule) 

iv) 
)x(glim

)x(flim

)x(g

)x(f
lim

ax

ax

ax

→

→

→
= , provided 0)x(glim

ax
≠

→
 (Reciprocal rule) 

v) kklim
ax

=
→

, where k is a constant   (Constant function rule) 

vi) axlim
ax

=
→

     (Identity function rule) 
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vii) n

ax

n

ax
)]x(flim[)]x(f[lim

→→
= , where n is a positive integer. (Power rule) 

 In particular, if x)x(f = , ,axlim nn

ax
=

→
where n is a positive integer. 

viii) n
ax

n

ax
)x(flim)x(flim

→→
= , where n is a positive integer, and if n is even, we 

assume that 0)x(flim
ax

>
→

. 

 
The properties given in Theorem 2 are also applicable for one-sided limits. 
Using the properties that we have just stated, we will calculate the limit in the 
following example. 
 

Example 17: Find the limits of polynomial function f at .ax =   

Solution: We know that axlim
ax

=
→

. Hence 

2

axaxax

2

ax
aa.axlim.xlim)x.x(limxlim ====

→→→→
 and so on.....Thus, we get 

nn

ax
axlim =

→
 

Now, let a polynomial function f be given by n

n

2

210 xa...xaxaa)x(f ++++= . 

Thinking of each of n

n

2

210 xa,....,xa,xa,a as a function, we have 

 ]xa...xaxaa[lim)x(flim n

n

2

210
axax

++++=
→→

 

          n

n
ax

2

2
ax

1
ax

0
ax

xalim...xalimxalimalim
→→→→

++++= [using Theorem 2 (i),] 

           n

ax
n

2

ax
2

ax
10 xlima...xlimaxlimaa

→→→
++++=  

           n

n

2

210 aa...aaaaa ++++=  

           )a(f=  

(Make sure that you understand the justification for each step in the above!) 

*** 
 

Example 18: Find the limit of the rational function h defined by
)x(g

)x(f
)x(h = , 

where )x(f and )x(g are polynomials such that 0)x(g ≠ . 

Solution: Here, 
)a(g

)a(f

)x(glim

)x(flim

)x(g

)x(f
lim)x(hlim

ax

ax

axax
===

→

→

→→
 

However, if ,0)a(g = there are two cases – (i) when 0)a(f ≠ and (ii) when 

0)a(f = . In the former case, the limit does not exist because non-zero divided 

by zero is not a real number. In the later case, we can write 

),x(f)ax()x(f 1

m
−= where m is the maximum of powers of )ax( − in )x(f . 

Similarly, )x(g)ax()x(g 1

n
−= as 0)a(g = . Now, if ,nm > we have  

  
)x(g)ax(lim

)x(f)ax(lim

)x(glim

)x(flim
)x(hlim

1

n

ax

1

m

ax

ax

ax

ax −

−
==

→

→

→

→

→
 

     0
)a(g

)a(f.0

)x(glim

)x(f)ax(lim

1

1

1
ax

1

)lm(

ax ==
−

=

→

−

→  

If ,nm < the limit is not defined. 

 *** 

[using Theorem 2 (iii), and 
2 (v)] 
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A general rule that needs to be kept in mind while evaluating limits is the 
following.  
 

Say, given that the limit 
)x(g

)x(f
lim

ax→
exists and we want to evaluate this. First, we 

check the value of )a(f and ).a(g If both are 0, then we see if we can get the 

factor which is causing the terms to vanish, i.e., see if we can write 

)x(f)x(f)x(f 21= so that 0)a(f1 = and .0)a(f2 ≠ Similarly, we write 

),x(g)x(g)x(g 21= where 0)a(g1 = and 0)a(g2 ≠ . Cancel out the common 

factors from )x(f and )x(g (if possible) and write 

  ,
)x(q

)x(p

)x(g

)x(f
= where .0)x(q ≠  

Then,  .
)a(q

)a(p

)x(g

)x(f
lim

ax
=

→
 

Now, let us understood few examples. 
 
Example 19: Find the limits  

i) 
1x2

x4x3
lim

2

2x +

+

→
 

ii) 
xx2x

1x
lim

23

2

2x +−

−

→
 

Solution:  The required limit is of a rational function. Hence, we first evaluate 

these functions at the prescribed points. If this is of the form ,
0

0
we try to 

rewrite the function cancelling the factors which are causing the limit to be of 

the form
0

0
.  

i) We have, 
1limx2lim

x4limx3lim

)1x2(lim

)x4x3(lim

2x2x

2x

2

2x

2x

2

2x

→→

→→

→

→

+

+
=

+

+
  

       
1limxlim2lim

xlim4limxlimxlim3lim

2x2x2x

2x2x2x2x2x

→→→

→→→→→

+

+
=   

       4
5

20

122

24223
==

+×

×+××
=  

 

ii)  
21x23

2

1x )1x(x

)1x)(1x(
lim

xx2x

1x
lim

−

−+
=

+−

−

→→
 

    
0

2

)11(1

2

)1x(x

)1x(
lim

1x
=

−
=

−

+
=

→
which is not defined. 

*** 

Example 20: Find 
5x2

1x3
lim
x +

+

∞→
. 

Solution: We cannot apply Theorem 2 directly since the limits of the 
numerator and the denominator, as ∞→x , cannot be found. 
Instead, we rewrite the quotient by multiplying the numerator and denominator 

by x/1 , for 0x ≠ . 
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Then, 
)x/5(2

)x/1(3

5x2

1x3

+

+
=

+

+
, for 0x ≠ .  Now, we use that 0x/1lim

x
=

∞→
, which 

you must have proved in E12 (i), to get  

)x/5(2

)x/1(3
lim

5x2

1x3
lim

xx +

+
=

+

+

∞→∞→
 

     
2

3

02

03

)x/52(lim

)x/13(lim

x

x =
+

+
=

+

+
=

∞→

∞→  

*** 
 
Next, we will discuss an important theorem. 
 

Theorem 3 (Sandwich theorem or Squeeze theorem): Let g,f  and h  be 

real functions defined on an interval I  containing a , except possibly ata .  
Suppose 

i) }a{\Ix)x(h)x(g)x(f ∈∀≤≤  

ii) )x(hlimL)x(flim
axax →→

==  

Then, )x(glim
ax→

 exists and is equal to L . This is illustrated in Fig. 16 

 
Fig. 16: Graph of three functions 

 

Proof: By the definition of limit, given 0,0 1 >δ∃>ε  and 02 >δ  such that 

ε<− |L)x(f|  for 1|ax|0 δ<−<  and ε<− |L)x(h|  for 2|ax|0 δ<−< . 

Let },min{ 21 δδ=δ .  Then, 

 ε<−⇒δ<−< |L)x(f||ax|0  and ε<− |L)x(h|  

            ε+≤≤ε−⇒ L)x(fL , and ε+≤≤ε− L)x(hL  

We also have }a{\Ix)x(h)x(g)x(f ∈∀≤≤ . 

Thus, we get ε+≤≤≤≤ε−⇒δ<−< L)x(h)x(g)x(fL|ax|0 . 

In other words, ε<−⇒δ<−< |L)x(g||ax|0 . 

Therefore, L)x(glim
ax

=
→

. 

 
Remark 4: This is called sandwich theorem as g  is being sandwiched 

between f  and h .   
 
Let us see how this theorem can be used to find the limits of trigonometric 
functions in the following examples. 
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Example 21: Prove that 1
x

xsin
xcos << for 

2
x0

π
<< . 

Solution: We know that xsin)xsin( −=− and xcos)xcos( =− . Hence, it is 

sufficient to prove the inequality for 
2

x0
π

<< . 

 

 
 

Fig. 17 

 
In the Fig. 17, O is the centre of the unit circle such that the angle POR is 

x radians and .
2

x0
π

<< Line segments QP and RS are perpendicular to OP. 

Further, join PR. Then Area of OPR∆ < Area of sector OPR < Area of OPQ∆ .  

i.e., .PQ.OP
2

1
)OP(..

2

x
RS.OP

2

1 2
<π

π
<  

i.e., PQOP.xRS <<        ... (1) 

From ,ORS∆
OP

RS

OR

RS
xsin ==  and hence .xsinOPRS =  

Also from ,OQP∆  
OP

PQ
xtan = and hence .xtan.OPPQ =   

Now substituting the values of RSand PQ in the inequality (1). 

Thus, xtan.OPx.OPxsinOP << . 

Since length OP is positive, we have 

xtanxxsin <<        ... (2) 

Since xsin,
2

x0
π

<< is positive and thus, dividing the inequality (2) 

throughout by ,xsin  we get .
xcos

1

xsin

x
1 << Taking reciprocals throughout, 

we have 

  1
x

xsin
xcos << . 

Hence proved.  
 *** 

 
Example 22: Find the two important limits.  



 

 

72

Block 2                                                                            Limit and Continuity 

i) .1
x

xsin
lim

0x
=

→
 ii)   .0

x

xcos1
lim

0x
=

−

→
 

Solution: i) The inequality in Example 21 says that the function 
x

xsin
is 

sandwiched between the function xcos and the constant function which takes 

value 1. Further, since ,1xcoslim
0x

=
→

we see that the proof of (i) is complete by 

sandwich theorem.  

ii) You may recall the trigonometric identity .
2

x
sin2xcos1

2








=−  

 Then, 
















=










=
−

→→→ 2

x
sin.

2

x

2

x
sin

lim
x

2

x
sin2

lim
x

xcos1
lim

0x

2

0x0x
 

                        00.1
2

x
sinlim.

2

x

2

x
sin

lim
0x0x

==
















=
→→

 

Observe that we have implicitly used the fact that 0x → is equivalent to 

.0
2

x
→ This may be justified by putting .

2

x
y =  

*** 
 
Example 23: Evaluate 

i) 
xsin

x3sin
lim

0x→
 ii)  

x

xtan
lim

0x→
 

Solution: i) 





=

→→ xsin

x3
.

x3

x3sin
lim

xsin

x3sin
lim

0x0x
 

    















÷







=

→ x

xsin

x3

x3sin
lim.3

0x
 

    





÷





=

→→ x

xsin
lim

x3

x3sin
lim.3

0x0x3
 

    )0x3,0xas(31.1.3 →→==  

ii) We have, 11.1
xcos

1
lim.

x

xsin
lim

xcosx

xsin
lim

x

xtan
lim

0x0x0x0x
====

→→→→
 

*** 
 
You can similarly calculate the limits in the following exercises. 
 
 

E14) Prove v) and vi) of theorem 2. 
 

E15)  Show that 3
x

3
lim

1x
=

→
. 

 

E16) Calculate 
















+
+

→
2

2

1x x1

x
5x2lim . 
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Let us see how the concepts of one-sided limit and limit are connected in the 
following theorem. 
 
Theorem 4: The following statements are equivalent. 

i) )x(flim
px→

 exists. 

ii) )x(flim
px +

→
 and )x(flim

px −
→

exist and are equal. 

 
Proof: To show that i) and ii) are equivalent, we have to show that i) ⇒  ii) and 

ii) ⇒  i).  We first prove that i) ⇒  ii).  For this, we assume that L)x(flim
px

=
→

.  

Then given 0,0 >δ∃>ε  such that ε<− |L)x(f|  for δ<−< |px|0 . 

Now, δ+<<⇒δ<−< pxp|px|0  and pxp <<δ− .  Thus, we have 

ε<− |L)x(f|  for δ+<< pxp  and for pxp <<δ− .  This means that 

)x(flimL)x(flim
pxpx +−

→→
== . 

We now prove the converse, that is, ii) ⇒  i).  For this, we assume that 

L)x(flim)x(flim
pxpx

==
+−

→→
.  Then, given 0,,0 21 >δδ∃>ε  such that  

 ε<− |L)x(f|  for pxp 1 <<δ−  

 ε<− |L)x(f|  for 2pxp δ+<<  

Let },{min 21 δδ=δ .  Then, for both pxp <<δ−  and δ+<< pxp , we have 

ε<− |L)x(f| .  This means that ε<− |L)x(f| , whenever, δ<−< |px|0 . 

Hence, L)x(flim
px

=
→

. 

Thus, we have shown that i) ⇒  ii) and ii) ⇒  i), proving that they are 

equivalent. 
 

From Theorem 4, we can conclude that if )x(flim
px→

 exists, then )x(flim
px +

→
 and 

)x(flim
px −

→
 also exist and further 

)x(flim)x(flim)x(flim
pxpxpx −+

→→→
== . 

 

Remark 5: If you apply Theorem 4 to the function ]x[x)x(f −= , you will see 

that }]x[x{lim
px

−
→

 does not exist as }]x[x{lim}]x[x{lim
pxpx

−≠−
−+

→→
. 

 
In Unit 6, we introduced polynomial functions and rational functions and 
trigonometric functions. In the following section, we will complete our list of the 
elementary functions typically used in calculus by using limits to introduce 
exponential functions and their inverses, the logarithmic functions.  

 

7.6 EXPONENTIAL AND LOGARITHMIC 
FUNCTIONS 

 
So far, we have learnt some aspects of different types of functions like 
modulus function, greatest integer function, polynomial function, rational 
function and trigonometric functions. In this section, we shall discuss about a 
new type of function called exponential function and its inverse function called 
logarithmic function.  
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Fig. 18 

 

Fig. 18 shows the graph of 3

3

2

21 x)x(fy,x)x(fy,x)x(fy ====== and 

4

4 x)x(fy == . Observe that the curves gets steeper as the power of 

x increases. Steeper the curve, faster is the rate of growth. What does this 

mean? It means that for a fixed increment in the value of ),1(x > the increment 

in the value of )x(fy n= increases as n increases for 4,3,2,1n = . It is 

conceivable that such a statement is true for all positive values of ,n where 
n

n x)x(f = . Essentially, this means that the graph of )x(fy n= leans more 

towards the −y axis as n increases. For example, consider 5

5 x)x(f = and 

.x)x(f 10

10 = If x increases from 1 to 4, 5f increases from 1 to 
5

4 whereas 

10f increases from 1 to
10

4 . Thus, for the same increment in 10f,x grows faster 

than 5f . 

 
From the above discussion, it is clear that the growth of polynomial functions is 
dependent on the degree of the polynomial function that is higher the degree, 
greater is the growth. Is there a function which grows faster than any polynomial 
function? The answer is yes and an example of such a function is 

.10)x(fy x
==  

 

Our claim is that this function f grows faster than n

n x)x(f = for any positive 

integer .n For example, we can prove that x10 grows faster than 100

100 x)x(f = . 

For large values of x like ,10x 3
= note that 3001003

100 10)10()x(f == whereas 

1000103 1010)10(f
3

== . Clearly )x(f is much greater than )x(f100 . It is not 

difficult to prove that for all )x(f)x(f,10x 100

3
>> . But, we will not attempt to 

give a proof of this here. Similarly, by choosing large values of ,x one can 

verify that )x(f grows faster than )x(fn for any positive integer n . This leads 

to the following definition. 
 
Definition: The exponential function with positive base a is the 

function f defined by xa)x(fy == .  

Let us explain it.  

If x is a positive integer, then 
321

timesn

n a....a.aa = .  

If x is 0, then 1ao
= . 
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If x is a negative integer, then 
n

n

a

1
a =

− .  

If x is a rational number that is 
q

p
x = , where p and q are integers and 

,0q ≠ then q/1pq/px )a(aa ==
pq/1 )a(=

pq
)a(= . 

Now, the question is how would we define xa , if x  is an irrational number? 

For example, ,10,5,2 23π etc.  

 

To answer this, look at the graph of x10y = in Fig. 18, where x is rational. If 

we expand the domain of x10y = from rational to both rational as well as 

irrational, then, there will be holes in the graph corresponding to irrational 
values of x . How do we fill these holes? For this, consider 

5.124.1
101010 << [Since 5.124.1 << ] 

 

We further approximate 2 , then, from left side, we get ,414.1,41.1,4.1  

,...41423.1,4142.1 and from the right side we get 1.5, 1.42,1.418, 1.4143,... 

Using the approximation process, we can write 4142.12
1010 ≈ . 

Also, the holes can be filled by these approximations. Thus, we can 

define r

xr

x alima
→

= , where r is rational and for any irrational x . For example, 
π

2  

is the limit of the sequence of numbers ,....2,2,2,2 1415.3141.314.31.3  

 

Now, let us draw the graph of xa for different positive values of x . Fig. 19 
shows these graphs. 
 

 
Fig. 19: Graph of 

x
a for 1/101/5,1/2,10,5,2,1,a =  

 

Fig. 19 shows three types of exponential functions xay = . These are 

i) When 1a0 << , the exponential function decreases. 

ii) When 1a = , the exponential function is constant. 

iii) When 1a > , the exponential function increases. 
 

You may notice that the graph of x)a/1( is just the reflection of the graph of 

xa about −y axis. This is because ( ) x

x

x
a

a

1
a/1 −

== . You may also notice that  
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all the graphs pass through the same point )1,0( because 1ao
= for 0a ≠ . 

 
We are giving some of the properties of the exponential functions.  

i) Domain of the exponential function is R ,  

ii) Range of the exponential function is [,0] ∞ . 

iii) 0a x
> for all 0a,x >∈R . 

iv) The point )1,0( is always on the graph of the exponential function, since 

1ao
= for every real .1a >  

v) Exponential function is increasing i.e., as we move from left to right, the 

graph rises above for 1a > . The function is decreasing for 1a0 << . 
Since, the exponential function is monotonic, therefore, it is one-one and 
onto. 

vi) ( ) ,aa,aa,
a

1
a,1a

mn/1n/mmm/1

m

m0
====

−  where m and n are reals. 

vii) If ,1a ≠ then nmiffaa nm
== . 

viii) nmnm aaa +
=  

ix) 
nm

n

m

a
a

a −
=  

x) 
m

mm

b

a

b

a
=








 

xi) If nm > and ,1a > then nm aa > .  Also, If nm > and ,1a0 << then 
nm aa < .  

The exponential function whose base is 10, is called the common 
exponential function.  
 
Let us discuss the following example to understood more.  
 
Example 24: Solve each of the following equations. 

i) 813
3x2

=
+  ii) 43232 x1x

=
+       iii)       ( )

2

4
2

x
x

=  

Solution: i)  Writing 81 as 3 raised to the power 4, so that powers can be 
equated on same base, we get. 

  43x
33

2

=
+  

  43x 2
=+   

           or 1x
2

= , hence, 1x ±=  

ii) 43232 x1x
=

+  

  4323.2.2 xx
=  

  2163.2 xx
=  

  2166x
=   

  3x 66 =  

       or 3x =   

iii) ( )
2

4
2

x
x

=  
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2

4
)2(

x

2

x

=  

 
2

2
)2(

x2

2

x

=   

 1x22

x

2)2( −
=   

 1x2
2

x
−=   

       or .
3

2
x =  

*** 
 
We can read the following limits from the graphs given in Fig. 19. 

i) ,alim x

x
∞=

→∞
when 1a > . 

ii) ,0alim x

x
=

∞−→
when 1a > . 

iii) ,0alim x

x
=

→∞
when 1a0 << . 

iv) ,alim x

x
∞=

∞−→
when 1a0 << . 

 
You may find these limits using the definition of a limit at infinity. 
 

Example 25: Find )15(lim x

x
−

−

→∞
. Also, draw the graph of 15 x

−
− . 

Solution: Let 15y x
−=

− . 

)1(lim)5(lim)15(lim
x

x

x

x

x →∞

−

→∞

−

→∞
−=− 1

5

1
lim

x

x
−








=

→∞
110 −=−= . 

Fig. 20 shows the graph of 15 x
−

− . 
 

 
Fig. 20: Graph of 15

x
−

−
 

*** 
 
One of the most convenient base chosen for calculus is a number e , which is 

defined as x/1

0x
)x1(lime +=

→
. Accordingly xx ea = , when ea = . Let us find the 
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value of e intuitively. Table 12 shows the value of x/1)x1( + corresponding to 

the values of x close to 0. 
 

Table 12 
 

x  1 1.0  01.0  0001.0  000001.0  0000001.0  
x/1)x1( +  2  5937.2  7048.2  7181.2  71828.2  71828.2  

 

Since 71828.2)x1(lime x/1

0x
≈+=

→
 

 

You may notice that the decimal places of e are non repeating because e is an 
irrational number. This leads to the following definition. 
 

Definition: The function f defined as xe)x(f = is called the natural 

exponential function with domain R and range [,0] ∞ . Thus, 0ex
> for all x . 

Fig. 21 shows the graph of xe . You may observe that the graph of xe lies 

between the graphs of 
x

2 and x3 as e lies between 2 and 3 . 

 
Fig. 21: Graph of 

x
e  

 

From the graph of xe , given in Fig. 21, it is clear that  

i) The graph passes through the point )1,0( . 

ii) 0elim x

x
=

∞−→
 

iii) ∞=
→∞

x

x
elim . 

The natural exponential function is commonly used in calculus and its 
applications. Now, let us find the limit of exponential function in the following 
example. 
 

Example 26: Find )x2/(3

2x
elim −

→
+

. 

Solution: Let 
x2

3
t

−
= . 

As −∞→
−

⇒→−⇒→
−+

x2

3
0x22x . 

Therefore, 0elimelim t

t

)x2(

3

2x
==

∞−→

−

→
+

. 

*** 
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Try the following exercises.  
 
 

E17) Solve 93
xx2

=
− . 

 

E18) Find 
1e

e
lim

x2

x2

x +∞→
. 

 

E19) Compare the graphs of 2x)x(f = and x2)x(g = . 
 

 
It would be interesting to know if the inverse of the exponential function exists 
and has nice interpretation. If 0a > and 1a ≠ , the exponential function 

xa)x(f = is either increasing or decreasing and so it is one-one and onto. 

Therefore, it has an inverse function, which is called the logarithmic function 

with base a and is denoted by alog . This gives the following definition. 

 

Definition: Let 0a > and 1a ≠ , then xloga is called the logarithmic function. 

It is read as logarithm of x to base a .  
 

Thus, yxloga = if xa y
= . That is x)y(fy)x(f 1

=⇔=
− . Thus, if 0x > , then 

xloga is the exponent to which the base a must be raised to give x . For 

example, 2100log10 = because 100102
= . Let us work with a few explicit 

examples to get a feel for this. We know that 932
= . In terms of logarithms, 

we can rewrite this as 29log3 = . Similarly, 1000103
= is equivalent to saying 

31000log10 = . Also, 48 42256 == is equivalent to saying 8256log2 = or 

4256log4 = or if we fix a base ,1a > we may look at logarithm as a function 

from positive real numbers to all real numbers. This function is called 

logarithmic function, and is R→∞[,0:]f defined by yxlog)x(f a == if 

.xay
=  

 
If the base 10a = , we say it is common logarithmic function and if ea = , 
then we say it is natural logarithmic function. Often natural logarithm is 

denoted by ln . Fig. 22 gives the plot of logarithm function to base 2, 5,e and 

10.  
 

 
 

Fig. 22 

The letter e  was chosen 

to represent this number 
in honour of the great 
Swiss mathematician 
Leonhard Euler, who 
discovered many of its 
special properties and 
investigated applications 
in which e plays a vital 
role. 
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Here, we are listing the properties of the logarithmic function to any base 

1a > .  

i) The domain of log function is [,0] ∞ , since, there cannot be a meaningful 

definition of logarithm of non-positive reals. 

ii) The range of logarithmic function is the set of all real numbers.  

iii) The graph of logarithmic function xloga is the reflection of the graph of 

xay = about the line xy = . The point )0,1( is always on the graph of the 

logarithmic function.  

iv) The logarithmic function is always increasing, i.e., as we move from left 
to right the graph rises.  

v) For x very near to zero, the value of xlog can be made lesser than any 

given real number. In other words, in the fourth quadrant the graph 
approaches −y axis (but never meets it).  

 

 
 

Fig. 23: Graph of 
xe and xln  

 

vi) Fig. 23 shows the plot of xey = and xlny = . It is of interest to observe 

that the two curves are the mirror images of each other reflected along 
the line xy = .  

vii)  
alog

xlog
xlog

b

b
a = or xlogalog.xlog bba = .[Change of base property] 

viii) ylogxlog)xy(log aaa +=  

ix) ylogxlog
y

x
log aaa −=








 

x) ,xlogr)x(log a

r

a = where r is a real number 

xi) x)eln( x
= , for all R∈x  

xii) xe xln
= for 0x > . 

xiii) 1eln = . 

 
Let us attempt few examples based on this. 
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Example 27: Solve the equation 1)3x(log2)1x2(log 55 =−−+  

Solution: Given that 1)3x(log)1x2(log 2

55 =−−+  

1
)3x(

)1x2(
log

25 =
−

+
 [using (ix)]  

2

1

)3x(

1x2
5

−

+
=  [using definition] 

1x2)9x6x(5 2
+=+−  

044x32x5 2
=+−  

5

22
,2x =  

Note that for .03x,2x <−= Thus, the given logarithmic equation has only 

5

22
x = as a solution. 

*** 
 

Example 28: Is it true that xlogex = for all real x ? Justify. 

Solution: First, observe that the domain of log function is set of all positive 
real numbers. So, the above equation is not true for non-positive real 

numbers. Now, let xlogey = . If 0y > , we may take logarithm which gives us 

xlogelog.xlog)elog(ylog xlog
=== . Thus, xy = . Hence, xlogex = is true 

only for positive values of x . 
*** 

 

Example 29: Find x , if 8xln = . 

Solution: Here, 8xln = means xe8
= . 

Therefore, 8ex =  
*** 

 

Example 30: Solve 1e 3x2
=

+ . 

Solution: 1e 3x2
=

+ . 

Taking natural logarithm both the sides, we get 

  1lneln 3x2
=

+  

  03x2 =+  

  
2

3
x −=  

*** 
 
Now, try the following exercises. 
 
 

E20) Solve the equation 








+
+=









− x1

x2
lnxln

x1

x
ln

2

. 

 

E21) Find )x(tanloglim 2

10
0x→

. 

 

 
In the next section, we shall discuss hyperbolic functions and their inverses.  
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7.7 HYPERBOLIC FUNCTIONS AND THEIR 
INVERSE FUNCTIONS 

 
In applications of mathematics to other sciences, we, very often, come across 

certain combinations of xe and xe− . Because of their importance, these 
combinations are given special names, like the hyperbolic sine, the hyperbolic 
cosine etc. These names suggest that they have some similarity with the 
trigonometric functions. Let’s look at their precise definitions and try to 
understand the points of similarity and dissimilarity between the hyperbolic and 
the trigonometric functions.  

Definition: The hyperbolic sine function is defined by 
2

ee
xsinh

xx −
−

= for all 

R∈x . The range of this function is R . You will notice that  

2

ee

2

ee
)xsinh(

xx)x(x −−−−
−

−=
−

=− )xsinh(−= . 

Definition: The hyperbolic cosine function is defined by 
2

ee
xcosh

xx −
+

= for 

all R∈x . The range of this function is ],1[ ∞ . You will notice that 

xcosh
2

ee

2

ee
)xcosh(

xx)x(x

=
−

−=
−

=−
−−−−

. 

It is clear that, the hyperbolic esin is an odd function, while the hyperbolic 

cosine is an even function. Fig. 24(a) and (b) show the graphs of these two 
functions respectively. 
 

 
Fig. 24: Graph of (a) xsinh (b) xcosh  

 

Example 31: Prove that 1xsinhxcosh 22
=− . 

Solution: Here 

2
xx

2
xx

22

2

ee

2

ee
xsinhxcosh 







 −
−







 +
=−

−−

 

        
4

2ee

4

2ee
x2x2x2x2

−+
−

++
=

−−

1=  

This identify refers to the reason for the name hyperbolic function. We 

represent a point )tsin,t(cos on a unit circle 1yx 22
=+ . Likewise, if t is any 

real number, then, the point )tsinh,t(coshP lies on the right branch of the 

hyperbola ,1yx 22
=− because 1tsinhtcosh 22

=− and 1tcosh ≥ . Fig. 25 

shows the point P . 
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[We have used the formula for finding the roots of a 
quadratic equation here. Note that if 

,x1xe 2y
+−= then ,0ey

< which is impossible. 

Therefore, we ignore this root.]  
 

 
Fig. 25: A point on hyperbola 

 

We also define four other hyperbolic functions as given below. 

xx

xx

xx

xx

ee

ee
xcoth,

ee

ee
xtanh

−

−

−

−

−

+
=

+

−
= , 

.
ee

2
xechcos,

ee

2
xhsec

xxxx −−
−

=
+

=  

 

Let us discuss the inverse hyperbolic sine function.  
 

From Fig. 24(a) you can see that the hyperbolic sine is a strictly increasing 
function. This means that its inverse exists, and 

2

ee
ysinhxxsinhy

yy
1

−
− −

==⇔=  

  yy eex2 −
−=⇔  

  01xe2e yy2
=−−⇔  

  01xe2)e( y2y
=−−⇔  

  ( )2y x1xe ++=⇔  

   

  ( )2x1xlny ++=⇔  

 

Thus, ( ) ] [.,x,x1xlnxsinh 21
∞∞−∈++=

−  In Fig. 26, we have drawn the 

graph of xsinh 1− .  

 
Fig. 26: Graph of xhsin

1−  
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In the case of the hyperbolic cosine function, we see from Fig. 24(b), that its 

inverse will exist if we restrict its domain to [.,0[ ∞ The domain of this inverse 

function will be [,,1[ ∞ and its range will be [.,0[ ∞  

Now 
2

ee
ycoshxxcoshy

yy
1

−
− −

==⇔=  

   01xe2e yy2
=+−⇔  

   1xxe
2y

−+=⇔  
    

   )1xx(lny 2
−+=⇔  

Thus, .1x),1xx(lnxcosh 21
≥−+=

−  

Fig. 27 shows the graph of .xcosh 1−  

 
Fig. 27: Graph of xhcos

1−  

 

Fig. 28 (a), (b) and (c) show the graphs of xcoth,xtanh and xechcos . You 

can see that each of these functions is one-one and strictly monotonic. Thus, 
we can talk about the inverse in each case. 
 

 
 (a)          (b)            (c) 

 
Fig. 28: Graph of (a) xtanh , (b) xcoth , (c) xcosech  

 

Arguing as for xsinh 1− and ,xcosh 1− we get 

1x,
x1

x1
ln

2

1
yytanhxxtanhy

1
<









−

+
=⇔=⇔=

−
 

1x,
1x

1x
ln

2

1
yycothxxcothy

1
>









−

+
=⇔=⇔=

−
 

0x,
1

x1

x

1
lnyyechcosxxechcosy

2
1

≠












 +
+=⇔=⇔=

−  

[Again we ignore the root 

,1xxe 2y
−−= because then 

,1ey
< which is impossible since .0y > ] 
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Since, ,
xcosh

1
xhsec = we shall have to restrict the domain of each xhsec to 

[,0[ ∞ before talking about its inverse, as we did for xcosh , xhsec 1− is defined 

all ],1,0]x ∈ and we can write 1x0.
x

x11
lnxhsec

2
1

≤<












 −+
=

− . 

 

Now, try the following exercises. 
 
 

E22) Verify that  

i) 
xcosh

xsinh
xtanh =  

ii) .xhsecxtanh1 22
=−  

 

E23) Derive an identify connecting xcoth and xechcos . 
 

 

Now, let us summarise the unit. 
 

7.7 SUMMARY  
 
We end this unit by summarising what we have covered in it. 
 

1. Informal view of limit: If the values of )x(f can be made as close as we 

like to L by taking values of x sufficiently close to a. (but not equal to a), 

then .L)x(flim
ax

=
→

 

 
2. One-sided limits. 
 

3. The limit of a function f  at a point p  of its domain is L  if given 

0,0 >δ∃>ε , such that ε<− |L)x(f|  whenever δ<− |px| . 

 

4. )x(flim
px→

 exists if and only if )x(flim
px +

→

 and )x(flim
px −

→

 both exist and both 

are equal. 
 
5. Uniqueness of limit i.e. 

 If L)x(flim
ax

=
→

 and  ,M)x(flim
ax

=
→

then ML = . 

 
6. Algebra of limits: 

 Let f  and g  be two functions such that )x(flim
ax→

 and )x(glim
ax→

exist. 

Then  

 i)  )x(glim)x(flim)]x(g)x(f[lim
axaxax →→→

+=+   (Sum rule) 

 ii)  )x(glim)x(flim)]x(g)x(f[lim
axax

a

ax →→→
−=−   (Difference rule) 

 iii)  [ ][ ])x(glim)x(flim)]x(g)x(f[lim
axaxax →→→

=   (Product rule) 

 iv)  
)x(glim

f

)x(g

f
lim

ax

ax

→

→
= , provided 0)x(glim

ax
≠

→
 (Reciprocal rule) 
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 v)  kklim
ax

=
→

      (Constant function rule) 

 vi)  axlim
ax

=
→

      (Identity function rule) 

 vii) n

ax

n

ax
)]x(flim[)]x(f[lim

→→
= , where n is a positive integer. (Power rule) 

   In particular, if x)x(f = , ,axlim nn

ax
=

→
where n is a positive integer. 

 viii) n
ax

n

ax
)x(flim)x(flim

→→
= , where n is a positive integer, and if n is 

even, we assume that 0)x(flim
ax

>
→

. 

7. Sandwich theorem or Squeeze theorem: 

Let g,f  and h  be functions defined on an interval I  containing a , 

except possibly at a .  Suppose 

i) }a{\Ix)x(h)x(g)x(f ∈∀≤≤  

 ii)   )x(hlimL)x(flim
axax →→

==  

 Then )x(glim
ax→

 exists and is equal to L . 

 

8. The exponential function f defined by 1a,a)x(f x
>= , and the natural 

exponential function f is defined by xe)x(f = . 

 

9. The logarithmic function f is defined by 1a,xlog)x(f a >= , and the 

natural logarithmic function f is defined by xln)x(f = . 

 

10. The hyperbolic functions are  

 i) 
2

ee
xsinh

xx −
−

=  

 ii) 
2

ee
xcosh

xx −
+

=  

 iii) 
xx

xx

ee

ee
xtanh

−

−

+

−
=  

 iv) 
xx

xx

ee

ee
xcoth

−

−

−

+
=  

 v) 
xx

xx

ee

ee
xhsec

−

−

+

−
=  

 vi) 
xx

ee

2
xechcos

−
−

= . 

 

11. Inverse hyperbolic functions are 

 i)  ( ) ] [.,x,x1xlnxsinh 21
∞∞−∈++=

−  

 ii)  1x),1xx(lnxcosh 21
≥−+=

−  

 iii) 1x,
x1

x1
ln

2

1
xtanh

1
<









−

+
=

−
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 iv) 1x,
1x

1x
ln

2

1
xcoth

1
>









−

+
=

−
 

 v) 0x,
1

x1

x

1
lnxechcos

2
1

≠












 +
+=

−  

 vi) 1x0.
x

x11
lnxhsec

2
1

≤<












 −+
=

− . 

 

7.8 SOLUTIONS/ANSWERS 

E1) i)  
3x

9x
)x(f

2

−

−
=  

       
)3x(

)3x)(3x(

−

−+
=  

       )3x( +=  [because ]03xso,3x ≠−≠  
 

Table 13 
 

3x <  2.5 2.9 2.95 2.99 3x >  3.01 3.05 3.1 3.5 

)x(f  5.5 5.9 5.95 5.99 )x(f  6.01 6.05 6.1 6.5 

  

  
 In the above table, it is clear that as x  gets closer to 3, the 

corresponding value of )x(f also gets closer to 6. 

 However, in this case )x(f is not defined at .3x = The idea can be 

expressed by saying that the limiting value of )x(f is 6 when x 

approaches to 3.  

ii) 
2x

x

)2x)(2x(

)2x(x

4x

x2x
)x(f

2

2

+
=

+−

−
=

−

−
=  [as ]02x ≠−  

Now, we substitute values of x close to 2 but not equal to 2. 
 
 

Table 14 

 
  
 

  We see in the above that the value of )x(f gets closer to 0.5 as x 

gets values closer to 2. 
iii) For finding the limit, we assign values to x from the left and also 

from the right of 0. 
  Table 15 
 

0x <  - 0.5 - 0.1 - 0.01 - 0.001 - 0.001 

1x4)x(f −=  - 3 - 1.4 - 1.04 -1.004 -1.004 

 
 Table 16 
 

x  0.5 0.1 - 0.01 - 0.001 - 0.0001 

1x4 −  1 - 0.6 - 0.96 -0.996 -0.9996 

2x >  3.0 2.5 2.1 2.01 2.001 2x <  1.999 1.99 1.9 1.5 1.0 

)x(f  0.60 0.56 0.51 0.50 0.500 )x(f  0.500 0.501 0.52 0.55 0.33 

x x 

x x 
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It is clear from the above table that the limit of 1x4 − as 
x approaches 0 is -1. 

i.e. 1)1x4(lim
0x

−=−
→

 

 
E2) i)  This function being the constant function takes the same value (3, 

in this case ) everywhere, i.e., its value at points close to 2 is 3. 
Hence  

  3)x(flim)x(flim)x(flim
2x2x2x

===
→→→

+−
 

 Graph of 3)x(f = is anyway the line parallel to −x axis passing 

through (0, 3) and is shown in Fig. 29. From this it is also clear that 
the required limit is 3. In fact, it is easily observed that 

3)x(flim
ax

=
→

for any real number .a  

 ii)  We tabulate the values of )x(f near 1x = in Table  

 
Table 17 

 

x  0.9 0.99 0.999 1.01 1.1 1.2 

)x(f  1.71 1.9701 1.997001 2.0301 2.31 2.64 

  
 From this it is reasonable to deduce that 

.2)x(flim)x(flim)x(flim
1x1x1x

===
→→→

+−
 

 
Fig. 29 

 

From the graph of xx)x(f 2
+= shown in the Fig. 29, it is clear that 

as x approaches 1, the graph approaches (1, 2).  

Here, again we observe that the )1(f)x(flim
1x

=
→

. 

iii)  Here we tabulate the (approximate) value of )x(f near 0 (Table ). 
 

Table 18 

   

x  1.0−  01.0−  001.0−  001.0  01.0  1.0  

)x(f  0.9850 0.98995 0.9989995 1.0009995 1.00995 1.0950 

  

From the Table , we may deduce that  

  1)x(flim)x(flim)x(flim
0x0x0x

===
→→→

+−
 

In this case too, we observe that .1)0(f)x(flim
0x

==
→
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E3) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 30: Graph of 1xx
2

+− . 
 

Table 19 
 

x  1.0 1.5 1.9 1.95 1.99 1.995 1.999 

)x(f  1.000 1.750 2.710 2.853 2.970 2.985 2.997 

 
 
 

Table 20 
 

x  3.0 2.5 2.1 2.05 2.01 2.005 2.001 

)x(f  7.000 4.750 3.310 3.153 3.030 3.115 3.003 

 

 It is clear that 3)1xx(lim 2

2x
=+−

→
 

 

E4)         Table 21 (
−

→ 0x ) 
 

x  1−  5.0−  1.0−  01.0−  001.0−  0 

2x

1
)x(f =  

1 4 100 10000 6101×  Undefined 

         Table 22 (
+

→ 0x ) 
 

 x  1 5.0  1.0  01.0  001.0  0 

2
x

1
)x(f =  

1 4 100 10000 6101×  Undefined 

 

 

Fig. 31: Graph of 
2

x

1
 

Left sided limits 

Right sided limits 
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 It is clear from the graph that )x(fy = rises without bound .0x →  

Therefore, 
20x x

1
lim

→
does not exist. 

 

E5) As usual we make a table of x near 0 with ).x(f Observe that for 

negative of x we need to evaluate 2x − and for positive values, we need 
to evaluate 2x + . 

Table 23 
 

x  1.0−  01.0−  001.0−  001.0  01.0  1.0  

)x(f  1.2−  01.2−  001.2−  2.001 2.01 2.1 

 
 From the first three entries of Table 23, we deduce that the value of the 

function is decreasing to 2− and hence 

  2)x(flim
0x

−=
−

→

 

 From the last three entries of the table, we deduce that the value of the 
function is increasing from 2 and hence 

  2)x(flim
0x

=
+

→

 

 Since, the left and right hand limit at 0 do not coincide, we say that the 
limit of the function at 0 does not exist.  

 
 

Fig. 32 
 

 Graph of this function is given in Fig. 32. Here, we remark that the value 

of the function at 0x = is not even defined.  
 

E6) )h1(flim)x(flimLHL
0h1x

−==
+−

→→

 

  
1h1

1h1
lim

0h −−

−−
=

→
 

  1
h0

h0
lim

0h
−=

−

−
=

→
 

 )h1(flim)x(flimRHL
0h1x

+==
++

→→

 

    
1h1

1h1
lim

0h −+

−+
=

→
  

    1
h

h
lim

0h
==

→
. 

 
1x

1x
lim

1x −

−

→
does not exist. 
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E7) You may like to try it yourself. 
 

E8) i) To prove, if ,0,0 >δ∃>ε such that <∈−
2

1

x

1
whenever  

  .2x0 δ<−<  

  Let ε<−
2

1

x

1
 

  ε+<<ε−⇒
2

1

x

1

2

1
 

  
2

21

x

1

2

21 ε+
<<

ε−
⇒  

  
ε−

<<
ε+

⇒
21

2
x

21

2
 

  2
21

2
2x2

21

2
−

ε−
<−<−

ε+
⇒  

  
ε−

ε
<−<

ε+

ε−
⇒

21

4
2x

21

4
 

  Now let 
ε+

ε
=









ε−

ε

ε+

ε
=δ

21

4

21

4
,

21

4
min  

  Then, ε<−
2

1

x

1
, whenever .

21

4
2x

ε+

ε
=δ<−  

  Thus, .
2

1

x

1
lim

2x
=

→
 

 ii) )2x()1x(
1x

2x3x
3

1x

1x 33

+−=
−

+=
=−

−

−
, if 1x ≠ . 

  Given 0>ε , if we choose }2/1,)7/2min{( ε=δ , then  

  2/72x2/3x2/1|1x| <+⇒<⇒<−  and  

  ε=ε<−<+−=−
−

−
.7/2).2/7(|1x|)2/7(|)2x()1x(|3

1x

1x 3

. 

  That is, ε<−
−

−
⇒δ<− 3

1x

1x
|1x|

3

 

  Hence, 3
1x

1x
lim

3

1x
=

−

−

→
 . 

 

E9)   0
x

1
sinL)x(f −=−  (if 0x ≠ ) 

     
x

1
sin=      ....(3) 

 Now, clearly δ<−< 0x0  or δ<< x0  ....(4) 

 Take ,
2

1=ε if δ be any positive number, then, it is possible to find a 

positive integer n, such that 

  
π+

>δ
)1x4(

2
or 







 π
+π<

δ 2
n2

1
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 Now, from (3) and (4), we get ε>=






 π
+π=− 1

2
n2sinL)x(f  

 Hence, )x(f does not tend to 0 as .0x →  
 

E10)  <∈−=− 0
x

1
sinxL)x(f  

  <∈⇒
x

1
sinx  

  <∈⇒
x

1
sinx  

<∈<⇒ x0       [ 1
x

1
sin ≤Q except for 0x = . At, 0x = , it is 

indefined but we are not concerned with] 

δ<<⇒ x0  

Where =∈δ  

 Thus, .0
x

1
sinxlim

2x
=

→
 

 

E11) i) Since 3x2,2x]x[x <≤−=− , 

  12xlim]x[xlim
3x3x

=−=−
−−

→→

 

 ii) x|x|,1x/xlimx/|x|lim
0x0x

===
++

→→

 for 0x > . 

 iii) 
x

)x)(2x(
lim

x

|x|)2x(
lim

2

0x

2

0x _

−+
=

+
+

→→

since x|x| −=  for 0x <  

             2)2x(lim 2

0x _
−=+−=

→

 

 

E12) i) Given 0>ε  if we choose ε= /1K , then  

  ε=<=−⇒> K/1|x/1||0x/1|Kx . 

  Thus, 0/1lim =
→∞

x
x

. 

 ii) Given 0>ε , if we choose ε= /1K , then  

  ε=<=−⇒>
222 /1|/1||0/1| KxxKx  

  Hence, 0x/1lim 2

x
=

∞→
 

 

E13) i) L)x(flim
1x

≠
→

 

 ii) δ<−>δ∀>ε∃ |px|.s.tx0.s.t,0  and ε>− |L)x(f| . 

 

E14) Theorem 2 v) Here, ε<=−=− 0|kk||L)x(f| , whatever be the value 

of δ . 

 Theorem 2 vi) ε<−=− |px||L)x(f|  whenever δ<− |px| , if we choose 

ε=δ . 
 

E15) 31/3
xlim

3lim
x/3lim

1x

1x

1x
===

→

→

→
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E16) 
2

1x

2

1x

1x2

2

1x xlim1

xlim5
xlim2

x1

x
5x2lim

→

→

→→ +
+=









+
+  

        2/92/52
11

15
2 =+=

+

×
+=   

 

E17) 2xx
33

2

=
−  

 2xx
2

=−  

 02xx2
=−−  

 0)1x()2x( =+−  

 1,2x −= . 

 

E18) We divide the numerator and denominator by x2e  

 
x2xx2

x2

x e1

1
lim

1e

e
lim

−
→∞→∞ +

=
+

 

    1
01

1

elim1

1
x2

x

=
+

=
+

=
−

→∞

 

 We have used the fact that −∞→−= x2t as ∞→x and so 

0elimelim t

t

x2

x
==

∞−→

−

→∞
. 

 
E19)  

 
      

Fig. 33 

  

 Fig. 33 shows how the exponential function x2y = compares with the 

power function 2xy = . These graphs intersect three times, but 

ultimately the exponential curve x2y = grows far more rapidly than the 

parabole 2xy = . 

 

E20) 
x1

x2
.xln

x1

x
ln

2

2

+
=

−
 

  
x1

x2

x1

x
2

2

2

+
=

−
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  )x1(x2)x1(x 222
−=+  

 0)x221()x1(x 2
=+−+  

 
2

1
,1,0x −=  

 x cannot be 1,0 − as ln will be undefined for these. Thus, 
2

1x = is the 

only solution of the given equation.  
 

E21) As 00tanxtan,0x 22
=→→  

 Now, −∞===
+

→→
]xtant[tloglim)x(tanloglim 2

10
0t

2

10
0x

. 

 

E22) i) xtanh
ee

ee

2

ee

2

ee

xcosh

xsinh
xx

xx

xx

xx

=
−

+
=

−

+

=
−

−

−

−

 

 ii)  
xcosh

xsinhxcosh

xcosh

xsinh
1

2

22

2

2
−

=−  

     xhsec
xcosh

1 2

2
==  

 

E23) 1
2ee

2ee
1xcoth

x2x2

x2x2
2

−
−+

++
=−

−

−

 

   xechcos
2ee

4 2

x2x2
=

−+
=

−
. 
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8.6 Summary             115 
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8.1 INTRODUCTION 
 
In this unit, we will use the concept of limit to study “Continuity”. The word 
‘continuous’ means unbroken, that is without gaps, breaks, or holes. If we use 
continuous for the graphs of the real-valued functions, we mean the graphs 
without gaps, breaks. In Sec. 8.2, we shall learn about continuity and develop 
some fundamental properties of continuous functions in Sec. 8.4. 
 
In Sec. 8.3, we shall discuss the type of discontinuity. In Sec. 8.5, we shall use 
continuity to state ‘Intermediate Value Theorem’ for continuous function with 
its applications.  
 
And, now, we shall list the objectives of this unit. After going through the unit, 
please read this list again and make sure that you have achieved the 
objectives.  
 

Objectives 
 
After reading this unit, you should be able to:  

• define continuity of a function at given point; 

• check whether the function is continuous or not in the given domain; 

• identify the type of discontinuity; 

• apply various properties of continuity; and 

• state and apply intermediate value theorem. 
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Let us begin with continuity. 

 

8.2 CONTINUITY 
 

Continuous functions play a very important role in calculus.  As you proceed, 

you will be able to see that many theorems which we shall state in this course 

are true only for continuous functions.  You will also see that continuity is a 

necessary condition for the differentiability of a function.  

 

We begin the section with two examples to get a feel of continuity. Consider, 

the function f defined by  

 




>

≤
=

0xif,4

0xif,2
)x(f  

 
 

Fig. 1: Graph of f 

 

You may observe that this function is defined at every real number. Fig. 1 

shows the graph of this function. From the graph, it is clear that the value of 

the function at nearby points on −x axis remain close to each other except at 

0x = . At the points near and to the left of 0, i.e., at points like 

,001.0,01.0,1.0 −−− the value of the function is 2. At the points near and to the 

right of 0, i.e., at the points like ,001.0,01.0,1.0  the value of the function is 4. 

Using the concept of left and right hand limits, we say that the left hand limit of 

f at 0 is 2 and the right hand limit of f at 0 is 4. It is clear that the left and right 

hand limits do not coincide. We also observe that the value of the function at 

0x = coincides with the left hand limit. 

 

You will notice that when we try to draw the graph, we cannot draw it in one 

stroke, i.e., without lifting the pen from the plane of the paper. In fact, we need 

to lift the pen when we come to 0 from right and 0 from left. This is one 

instance of function being not continuous at 0x = .  

 
Now, consider the function defined as  

 




=

≠
=

0xif,4

0xif,2
)x(f  
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Fig. 2: Graph of f 

 
It is clear that this function is defined at every point. Left hand limit and the 

right hand limit of the function f at 0x = are equal to 2. But, the value of the 

function at 0x = is equal to 4 which does not coincide with the common value 
of the left and right hand limits. Again, we note that we cannot draw the graph 
of the function without lifting the pen. This is another instance of a function 

being not continuous at 0x = .  
 
Here, we may say that a function is continuous at a fixed point if we can draw 
the graph of the function around that point in one stroke that is without lifting 
the pen from the plane of the paper.  
 
From the above illustrations, we can say that a continuous process is one that 
goes on smoothly without any abrupt change.  Continuity of a function can 
also be interpreted in a similar way.  Look at Fig. 3.  The graph of the function 
f  in Fig. 3(a) has an abrupt cut at the point ax = , whereas the graph of the 

function g  in Fig. 3(b) proceeds smoothly.  We say that the function g  is 

continuous, while f  is not. 

 
   (a)                                                                            (b) 

Fig. 3: (a) Graph of f (b) Graph of g 
 

We have seen in Unit 7, that the limit of a function as x tends to a can often be 
found simply by calculating the value of the function at the values close to 
number a . If the value of a function at a is equal to the value of the limit of the 
function as x tends to a , then the function it is called continuous at a . This 

can be written as in the following definition:  
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Definition: Suppose f  is a real function on a subset of the real numbers and 

let a be a point in the domain of f . Then, f is continuous at a  if 

).a(f)x(flim
ax

=
→

 

 
This definition implicitly includes the following three criteria. 

i) The function f defined by )x(f is defined at ax = . 

ii) The limit )x(flim
ax→

exists. 

iii) The value of the limit of the function f at ax = is equal to the value of the 

function at a , that is )a(f)x(flim
ax

=
→

. 

Thus, unlike limit, for continuity it is essential for the function to be defined at 
that particular point. If f is not continuous at a , we say f is discontinuous at 

a (or f has a discontinuity at a or f is not continuous ata ), and a  is called a 

point of discontinuity of f .  
 

Example 1: Check the continuity of the following functions at the specified 
point.  

i) The function RR→:f defined by ,3x2)x(f += at .1x =  

ii) The function RR →:g defined by 2xat,

2xif,1x

2xif,3
2

x

)x(g −=








−≥−

−<+
=  

iii) The function RR→:h defined by .3xat,5x)x(h 2
=−=  

Solution: i)  Let us check all the conditions of continuity as given in its 
definition. 

i) The function f is given by )x(f , which is defined at the given point 1x = . 

ii) The limit of the function at 1x = is 53)1(2)3x2(lim)x(flim
1x1x

=+=+=
→→

. 

 Therefore, )x(flim
1x→

exists. 

iii) The value of the function at 1x = is 5. Thus, )1(f5)x(flim
1x

==
→

. 

Hence, the function f  is continuous at 4x = . The graph of f is shown in     
Fig. 4. From Fig. 4, it is clear that the function f is continuous at 1x = . 

 
Fig. 4: Graph of f 

 

ii) First note that the function g is defined at the given point 2x −= and 

3)2(g −=− . Then, 3)x(glim
2x

−=
+

−→

and 2)x(glim
2x

=
−

−→

. 
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 Since ),x(glim)x(glim
2x2x −+

−→−→

≠ therefore, )x(glim
2x −→

does not exist. Thus, g 

is not continuous at .2x −= The graph of g can be visualized in Fig. 5. It 

shows that there is a jump at ,2x −= which shows that g is not 

continuous at 2x −= or g has a discontinuity at 2x −= . 

 
Fig. 5: Graph of g 

 

iii)  Clearly, the function h is defined at ,3x = and )x(hlim
3x→

exists, 

and )3(h4)x(hlim
3x

==
→

. Therefore, h is continuous at .3x = The graph of 

this function is shown in Fig. 6. 

 
Fig. 6: Graph of h 

*** 
 
Example 2: Check whether the following functions are continuous at the 
specified point. 

i) The function RR→:f defined by 
3x

3x2x
)x(f

2

−

−−
= at 3x =         

ii) The function f onR defined by 









=

≠
−

−−

=

3x,1

3x,
3x

3x2x

)x(f

2

at 3x =  

Solution: i) The function f given by 
3x

3x2x
)x(f

2

−

−−
= is not defined at 

,3x = therefore, f is not continuous at .3x =  
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ii) Clearly the function f is defined at 3x = and 1)3(f = . Now, 

4)1x(lim
)3x(

)1x()3x(
lim)x(flim

3x3x3x
=+=

−

+−
=

→→→
. 

 Since the limit of f at 3x = does not concide with )3(f , the function f is 

not continuous at 3x = .  
*** 

 
Remark 1: You may note that in both (i) and (ii) of Example 2, the function is 

not continuous at 3x = , but the reason is different.  
 

Example 3: Check whether function f defined by 
x

1
)x(f =  is continuous at 

0x = or not. 

Solution: To check the continuity of the function f given by ,
x

1
)x(f = we try to 

find its right hand limit as well as left hand limit close to 0. We tabulate these 
values in the Table 1. 

Table 1 
 

x  )x(f  x  )x(f  

5.0  2  5.0−  2−  

3.0  33.3  3.0−  33.3−  

1.0  10  1.0−  10−  

01.0  100  01.0−  100−  

001.0  1000  001.0−  1000−  

00001.0  100000  00001.0−  100000−  

 
From Table 1, we observe that as x gets closer to 0 from the right, the value of 

)x(f shoots up higher. Hence, the value of )x(f may be made larger than any 

given real number by choosing a positive real number very close to 0. 

We can write as +∞=
+

→

)x(flim
0x

. You may recall that ∞+ is NOT a real 

number, thus the right hand limit of f at 0 does not exist.  

Similarly, from Table 1, it is clear that −∞=
−

→

)x(flim
0x

. We say that the left 

hand limit of f at 0 does not exist as ∞− is NOT a real number.  

Since, the limit of f does not exist at 0, therefore, f is not continuous at 0.  

*** 
 
Example 4: A shopkeeper sells an item by kilograms (kg), charging `15 per kg 
for quantities upto and including 10kg. Above 10 kg, the shopkeeper charges  
`12 per kg and a surcharge of c . If x represents the number of kg, the price 

function )p( is given by: 

 




>+

≤
=

10xif;cx12

10xif;x15
)x(p  

i) Find c such that the price p is continuous at .10x =  

ii) Why it is preferable to have continuity at 10x = . 

Solution: i) If p is continuous at ,10x = its limit must exist there as well and 

must be equal to ).10(p  Therefore, we must have  

 )10(p)x(plim)x(plim
10x10x

==
+−

→→
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 )10(p150)h10(15lim)h10(plim)x(plim
0h0h10x

==−=−=
→→→

−
 

 c120c)h10(12lim)h10(plim)x(plim
0h0h10x

+=++=+=
→→→

+
 

This simplifies to .30c = Thus if ,30c = the price function p will be continuous 

at .10x =  
The graph of p is given in Fig. 7. 

 
Fig. 7: Graph of p(x)  

 
ii) The graph given in Fig. 8 shows that the customer still get a cheaper 

rate per kg once x is above 10 kg. Also, the shopkeeper does not lose 
revenue. This is fair compromise, therefore continuity is preferred. 

*** 
 
Now try the following exercises.  
 
 

E1) Check for the continuity of the function f given by x)x(f = at .0x =  

 
E2) Give an example of any function which is not continuous at 5. 
 
E3) Check whether the following functions are continuous at the given 

number. Also, verify graphically. 

 i)   The function RR→:f defined by 




≥

<
=

0x;x

0x;x
)x(f

2
at 0x = . 

 ii)   The function RR→:f defined by 








=

≠
−=

2x;1

2x;
2x

1

)x(f at .2x =  

 iii)   The function RR→:f defined by ,
x1

x3x2
)x(f

3

2

+

−
= at 1x = . 

 

 
Now, you know how to test the continuity of a function at a point, we make a 
natural extension of this definition to discuss the continuity of a function in an 
interval.  
 

Definition: A real function f  defined on an interval, is said to be continuous 
on the interval, if it is continuous at every point in the interval. 
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This definition requires a bit of elaboration. Suppose f is a function defined on 

a closed interval ],b,a[ then for the function f to be continuous, it needs to be 

continuous at every point in ]b,a[ including the end points a  and b . Continuity  

at all end-points means one-sided continuity, which is defined as follows: 
 

Continuity of f at a means )a(f)x(flim
ax

=
+

→

and f is said to be continuous from 

the right at .ax = Similarly, continuity of f at b means )b(f)x(flim
bx

=
−

→
and f  is 

also said to be continuous from the left at bx = . You may observe that  

)x(flim
ax −

→

and )x(flim
bx +

→

do not make sense. From this, we can say that if the 

function f is defined only at one point, it is continuous there that is if the  

domain of the function f is a singleton, f is continuous function.  
 

You may note that if the function f is defined only on one endpoint of the 

interval that in on an half open or half close interval, then it is continuous from 

the left or from the right according to the endpoint at which f is defined.   
 
Let us see some more examples. 
 
Example 5: Is the identity function defined on the set of real numbers by 

,x)x(f = continuous at each real number? Justify. 

Solution: Let a be any arbitrary real number. The function f is clearly defined 

at every point and a)a(f = for each real number a. 

Also, axlim)x(flim
axax

==
→→

 

Therefore, )a(fa)x(flim
ax

==
→

and the function f is continuous at each real 

number. Hence, f is continuous at R . 

*** 
 

Example 6: Check whether the constant function f defined by c)x(f = is 

continuous.  

Solution: Clearly, the function f defined by c)x(f = is defined for every real 

number. Let a be an arbitrary real. Then cclim)x(flim
axax

==
→→

. 

Since, )a(fc)x(flim
ax

==
→

for every real number a , therefore, the function f is 

continuous at every real number. 

*** 
 

Example 7: Check for the continuity of the function f on R defined by 

0x,
x

1
)x(f ≠= .  

Solution: The given function f defined by 0x,
x

1
)x(f ≠= is defined for every 

real number except 0. Let a be any non-zero real number. Then,  

 
a

1

x

1
lim)x(flim

axax
==

→→
. Since, 0a ≠ , )x(flim

a

1
)a(f

ax→
== .  

Hence, f is continuous at every non-zero real number. Thus, f is a continuous 
function. Fig. 8 illustrates this.  



 

 

103 

Unit 8                                                                          Continuity 

 

Fig. 8: Graph of 
x

1
 

*** 
 

Example 8: Check for the continuity of the function f  defined by nx)x(f =  for 

all R∈x  and any 
+

∈Zn .   

Solution: The function f is defined on R and let a  be any real number. Then, 
nn

ax
axlim =

→
 for any R∈a .  Also, na)a(f =  

Since, )a(fa)x(lim)x(flim nn

axax
===

→→
. Hence, f  is continuous at every number 

in R . Therefore, we can say that f  is continuous on R . 

*** 
 

Example 9: The greatest integer function RR→:f  defined by ]x[)x(f = , 

where ]x[  denotes the greatest integer less than or equal to x, is not 

continuous. Verify. 

Solution: The function f is defined for all real numbers. Let us consider two 
cases:  

i) When a is an integer, a]x[lim)x(flim
axax

==
++

→→

and 

1a]x[lim)x(flim
axax

−==
−−

→→

. 

Since, the left hand limit and right hand limit do not coincide, therefore, 

f is not continuous at any integer.  

ii) When a is real but not equal to an integer. The function f is defined and 

]a[)a(f = . Also, ]a[]x[lim)x(flim
axax

==
→→

. Since, )a(f]a[)x(flim
ax

==
→

, 

therefore, f is continuous at all real numbers not equal to integers. Fig. 9 
shows that f is not continuous at every integral point. 

 
Fig. 9: Graph of [x]  

*** 



 

 

104

Block 2                                                                            Limit and Continuity 

Example 10: Check for the continuity of the function f defined by |x|)x(f =  

on R .   

Solution: The function f can be rewritten as x)x(f = , if 0x ≥ , and 

x)x(f −=  if 0x < .  

We consider three cases:  

i) When ,0a > the function f is defined and aa)a(f == . 

 Also, axlim)x(flim
axax

==
→→

 

 Since, ),a(fa)x(flim
ax

==
→

therefore, f is continuous at every real a . 

ii) When 0a = , the function f is defined and 0)0(f = . 

 00lim)x(flim
0x0x

==
→→

.  

 Since, ),0(f0)x(flim
0x

==
→

therefore, f is continuous at .0x =  

iii) When 0a < , the function f is defined for every a and a)a(f −= .  

 Now, a)x(flim)x(flim
axax

−=−=
→→

 

 Since, ),x(fa)x(flim
ax

−=−=
→

therefore f is continuous at every ax = . 

Hence, from (i), (ii) and (iii), we can say that the function f is continuous on 
R . 

*** 
 
Example 11: Check for the continuity of the function f is defined by 

2x11)x(f −−= in the interval ].1,1[−  

Solution: Let a be any arbitrary real number and [1,1]a −∈ . The function f is 

defined on [1,1]−  and 2a11)a(f −−= . 

Then, we have )x11(lim)x(flim 2

axax
−−=

→→
 

       2

ax
x1lim1 −−=

→
 

    )x1(lim1
2

ax
−−=

→
[Using Theorem 2 (viii), Unit 7] 

       2a11 −−= . 

Since, ),a(fa11)x(flim 2

ax
=−−=

→
therefore, f is continuous at every a in the 

interval [1,1]− .      

Now, let us check the continuity at the endpoints of the interval. For this, we 
find the right hand limit at 1−  and the left hand limit at 1+ , which are as 
follows: 

)x11(lim)x(flim 2

1x1x
−−=

++
−→−→

 

       ))h1(11(lim 2

0h
+−−−=

→
 

       1)111(lim
0h

=−−=
→

)1(f −=  

Therefore, f is right continuous at one end of the interval that is at 1− . 

Now, )x11(lim)x(flim 2

1x1x
−−=

−−
→→

 

       1))h1(11(lim 2

0h
=−−−=

→
)1(f=  
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From the discussion above, we can say that f is continuous on [1,1]− , and 

f is also continuous from the right at ,1− and from the left at 1. Therefore, f is 

continuous in the interval ].1,1[−  

*** 
 

Example 12: Check the continuity of the function f defined by  

 




>+−

<+
=

0xif,1x

0xif,1x
)x(f . 

Solution: Clearly the function f is defined at all real numbers except 0. 

i) When ,0a < the function is defined and 1a)a(f += . 

Since, ),a(f1a)x(flim
ax

=+=
→

therefore, f is continuous for every 

negative real number. 

ii) When ,0a > the function is defined and ,1a)a(f +−= then, 

1a)1x(lim)x(flim
axax

+−=+−=
→→

. 

Since, ),a(f1a)x(flim
ax

=+−=
→

therefore, f is continuous for every 

positive real number.  
 
From (i) and (ii), we can say that f is continuous at all points in the domain of 

f . Hence, f is continuous.  
 

Fig. 10 shows the graph of f . You may note that we need to lift the pen while 

drawing the graph of f , but still the function is continuous. This is because we 
need to do that only for those points which are in the domain of the function f . 

 
Fig. 10: Graph of f 

*** 
 

Now, try the following exercises.  
 
 

E4) Prove that the polynomial function p defined by 

=)x(p n

n1o xaxaa +++ L , where R∈n1o aa,a K , is continuous on R . 

 

E5)   Show that the function RR→:f  given by )9x/(1)x(f 2
−=  is 

continuous at all point of R  except at 3x =  and 3x −= . 
 

E6) Check for the continuity of the function f given by 

 




<

≥
=

0xif,x

0xif,x
)x(f

2
. 
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So far, we have been seeing the continuity of rational functions. Now, let us 
check continuity of other functions.  
 
You may recall the graphs of xsin and xcos given in Unit 6, they are 

continuous curves as again given in Fig. 11 (a) and Fig. 11 (b) respectively. 
  

 
(a)                                                   (b) 

 
Fig. 11: Graph of (a) andsinx (b) cosx  

 
To prove that these functions are continuous everywhere, we must show that 
the following conditions hold for every real numbera . 

 asinxsinlim
ax

=
→

and .acosxcoslim
ax

=
→

 

We are proving these results by considering the behaviour of the point 

)xsin,x(cosP as it moves around a unit circle with centre O, where x is the 

angle made by OP from ,axisx − and is measured in radians. Let 

)asin,a(cosQ be the corresponding point on the unit circle, where a is a fixed 

angle in radian measure. As the angle x tends to angle a that is ax → , the 

point P moves along the circle towardsQ and this implies that the coordinates 

of P approach to the corresponding coordinates of Q . We can rewrite as 

acosxcos → and asinxsin → as shown in Fig. 12. 
 

 
 

Fig. 12: Points  QandP on unit circle 

 
Here, we can say that sine and cosine both functions are defined at each a  

inR . Also, ==
→

asinxsinlim
ax

value of the sine function at a and  

==
→

acosxcoslim
ax

value of the cosine function at a . 
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Thus, xsin and xcos are continuous in R .  
 

Example 13: Check the continuity of (i) 








x

1
sin at 0x = and (ii) 









x

1
sinx at 

.0x =  

Solution: (i) As ,
x

1
,0x +∞→→

+ we can see that 








x

1
sin as the sine of an 

angle that increases indefinitely as .0x +
→ As this angle increases, the 

function defined by 








x

1
sin keeps oscillating between 1− and 1without 

approaching a limit.  

Similarly, there exists no limit of 








x

1
sin  from the left since −∞→

x

1
as 

−
→ 0x  as again the function keeps oscillating between 1−  and1. 

Thus, the function defined by 








x

1
sin is not continuous at 0x = . We can verify 

these results by the graph given in Fig. 13 (a). You may observe that the 
oscillations become more and more rapid as x approaches 0 because 

x

1
increases (or decreases) more and more rapidly as x  approaches 0.  

ii)    when ,0x > we know 1
x

1
sin1 ≤








≤− and .x

x

1
sinxx ≤








≤−  Similarly, 

when .x
x

1
sinxx,0x −≤








≤<  

 Thus, for .x
x

1
sinxx,0x ≤








≤−≠  

Since both 0xlim
0x

=
→

and ,0xlim
0x

=−
→

therefore by Squeeze Theorem, we 

can conclude that .0
x

1
sinxlim

0x
=







→

 

Fig. 13 (b) shows the graph in support of this. It is clear that 0)0(f = because 










x

1
sin oscillates between 1− and 1 and 









x

1
sinx will be 0 at .0x = Thus 

)0(f0
x

1
sinxlim

0x
==








→

and the given function is continuous at .0x =  

 
 

(a)       (b) 
 

Fig. 13: Graph of (a) 







x

1
sin and (b) 








→

x

1
sinxx  

  
*** 
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Now, try the following exercises. 
 
 

E7) Check the continuity of the function f defined by 

 









=

≠








=

0xif,0

0xif,
x

1
sinx

)x(f

2

 at .0x =  

 
E8) Check the continuity of the following functions:  

 i) Exponential function 

 ii) Natural exponential function 

 iii) Logarithmic function  

 iv) Natural Logarithmic function. 
 

 
Let us go back to the definition of continuity, where we have stated three 
cirteria for a function to be continuous at a numbera . If any one or more 

condition is violated, the function is said to be discontinuous. You will see in 
the following section that the different types of discontinuity occur on the 
failure of any of these conditions. 
 

8.3 TYPES OF DISCONTINUITY 
Let us observe the graph of a function f  given in Fig. 14. We develop an 
intuitive, geometric feel for where a function is continuous and where it is 
discontinuous. 

 
 

Fig. 14: Graph of f 

 

Here, we see that the function f has breaks at four numbers a, b, c, d either 
due to a hole, or a jump or due to oscillation. But all these breaks are different. 
It looks as if there is a discontinuity when .ax =  The reason is that the 

function )a(f is not defined, thus, fails to satisfy the first condition of continuity. 

The graph also breaks at ,bx =  but the reason for discontinuity is different. 

Here, )x(flim
bx→

does not exist (because the left and right limits are different). 

So, f is discontinuous at b, and failing the second condition of the continuity. 

Now let us see discontinuity at cx = . Again, )x(flim
cx→

does not exist, because 

left and right limits are different. At ,dx = the function is defined at d and  

)x(flim
dx→

exists (because left and right hand limits are equal), but 
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),d(f)x(flim
dx

≠
→

failing the third condition of the continuity and f is 

discontinuous at .dx = You notice that the function f is discontinuous at 
different points a, b, c, and d but the reason of discontinuity is different at each 
point. This leads to the following types of discontinuity: 

1. Removable (point) Discontinuity: If )x(flim
ax→

exists but f is not 

continuous at ,ax = either because )a(f is not defined at a or 

)x(flim)a(f
ax→

≠ , then it is removable discontinuity or point 

discontinuity.  
The terminology removable discontinuity is appropriate because a 
removable discontinuity of a function at ax = can be removed by 

redefining the function or defining the function in case it is not defined at 

the point of discontinuity, that is )x(f at ax = is ).x(flim
ax→

 Fig. 15 shows 

removable discontinuity.  
 

 
Fig. 15: Removable Discontinuity 

 
2. Jump Discontinuity: In jump discontinuity, the left hand limit and the 

right hand limit of a function f  at ,ax = that is )x(flim
ax +

→

and )x(flim
ax −

→

are 

not equal. The function is approaching the different values depending on 
the direction a is coming from. For example, in the greatest integer 

function the function has jump discontinuity at each integer. This is 
because the left hand limit is always 1 less than the right hand limit at 
each integer. 

3. Infinite Discontinuity: In this type of discontinuity, the function rises 
infinitely large at ax = either from left or from right or from both left and 

right side. Fig. 16 (a) and Fig. 16 (b) illustrate infinite discontinuity. 

 
 

(a)           (b) 
 

Fig. 16: Infinite Discontinuity 
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Now, let us understand these through the following examples. 
 

Example 14: Consider the function RR→:f defined by  

 









>+

=

<+

=

2xif,6x

2xif,5

2xif,2x

)x(f

2

3

 

Check its continuity on R , and comment on the type of discontinuity, if any. 

Solution: When ,2x < the function f is a polynomial function, therefore, f is 

continuous. When ,2x >  the function f is a polynomial function and hence it is 

continuous. Now let us check its continuity at .2x =  Clearly, the function f is 

defined at 2x = and 5)2(f = . Then, 

10)2x(lim)x(flim 3

2x2x
=+=

−−
→→

 

10)6x(lim)x(flim 2

2x2x
=+=

++
→→

 

Since, ),2(f10)x(flim
2x

≠=
→

therefore, f the function is not continuous at 2x = , 

and the discontinuity is removable discontinuity.  
The removable discontinuity can be removed by redefining the function 

f defined by as  









>+

=

<+

=

2xif,6x

2xif,10

2xif,2x

)x(f

2

3

 

*** 
 

Example 15: Examine the type of discontinuity at 1x = for the function 

f defined by .
1x

x
)x(f

−
=  

Solution: The function f given by 
1x

x
)x(f

−
= is continuous at every real 

number except at 1. This is because the function f is a rational function and 

the denominator is non-zero except at 1x = . Now at ,1x = we have 

 +∞=
−

=
++

→→ 1x

x
lim)x(flim

1x1x
 

 −∞=
−

=
−−

→→ 1x

x
lim)x(flim

1x1x
 

Thus, the function f is discontinuous at 1x = and it has infinite discontinuity at 

.1x =  
*** 

 
You may now try the following exercises: 
 
 

E9) Find k which makes the function f defined by 

  




≥−

<−
=

1xif,4kx

1xif,2x
)x(f

2

  continuous at .1x =  

 
E10) Check the continuity of the function f defined by  

  




=
.irrationalisxif0

rationalisxif1
)x(f  

 Also, comment of the type of discontinuity. 
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E11) Check the continuity of the following functions at ;0x =  

 i)   The function f defined by ))x(f(f , where
x

1
)x(f = .  

 ii)   The function g defined by 







=

x

1
sin)x(g  

 iii)   The function h defined by 
x

x
)x(h =  

 Also, identify the type of discontinuity, if they are not continuous. 
 

E12) Check the continuity of the function ,x16)x(f 2
−= and comment on 

the type of discontinuity, if any. 
 

 
Now we know how to check whether a function is continuous or not, and if the 
function is not continuous, we can identify its type of discontinuity. Let us go 
further, and talk about the continuity of some combinations of functions in the 
following section. 
 

8.4 ALGEBRA OF CONTINUOUS FUNCTIONS 
 
In unit 7, we learnt some algebra of limits. Now we will study some algebra of 

continuous functions. Let f   and g  be functions defined and continuous on a 

common domain R⊆D , and let k  be any real number.  In Unit 2, we defined 

the functions g/f,fg,gf +  (provided 0)x(g ≠  everywhere in kf),D  and |f| .  

The following theorem tells us about the continuity of these functions. 
 

Theorem 1: Let f  and g  be the functions defined and continuous on a 

common domain D , and let k  be any real number.  The functions 

|f|,kf,gf +  and fg  are all continuous on D .  If 0)x(g ≠  everywhere in D , 

then, the function g/f  is also continuous on D . 

 
We shall not prove this theorem. 
 
In Theorem 2, we will talk about the continuity of the composition of two 
continuous functions.  Here again, we shall state the theorem without proof.  
 

Theorem 2: Let 21 DD:f →  and 32 DD:g →  be continuous on their 

domains.  Then, gof  is continuous on )D,D,D(,D 3211 R⊆ . 

 

Example 16: Prove that the function RR→:f defined by 32 )1x()x(f +=  is 

continuous at 0x = .  

Solution: We consider the functions RR→:g defined by 3x)x(g =  and 

RR→:h defined by 1x)x(h 2
+= .   

You can check that )x(goh)x(f = .   

The functions g and h are continuous because they are polynomials. Further, 

by Theorem 2, fgoh =  is continuous onR . 

*** 



 

 

112

Block 2                                                                            Limit and Continuity 

Let us see if the converse of the above theorems is true.  For example, if f  

and g  are defined on an interval ]b,a[  and if gf +  is continuous on ]b,a[ , 

does that mean that f  and g  are continuous on ]b,a[ ? 

No.  Consider the function f  and g  over the interval ]1,0[  given by  

 




≤<

≤≤
=

1x2/1,1

2/1x0,0
)x(f  and 





≤<

≤≤
=

1x2/1,0

2/1x0,1
)x(g  

Then, neither f  nor g  is continuous at 2/1x = .  (Why?)  But 

]1,0[x1)x()gf( ∈∀=+ .  Therefore, gf +  is continuous on ]1,0[ . 

Now if |f|  is continuous at a pointa , must f  also be continuous at a ?  Again, 

the answer is No.  Take, for example, the function RR→:f  given by 

 




>

≤−
=

0xfor1

0xfor1
)x(f  

Then, 1|)x(f| =  in R  and hence, |f|  is continuous. 

But f  is not continuous at 0x =  (Why?) 
 
Example 17: Prove that every rational function is continuous.  

Solution: The rational function f is given by 0)x(q,
)x(q

)x(p
)x(f ≠= , 

where p and q are polynomial functions. The domain of f is all real numbers 

except point at which q is zero. Since, polynomial functions are continuous, 

f is continuous by Theorem 1. 
*** 

 

Example 18: Find the interval in which the function defined by
1x

xxcos
)x(f

2
−

+
=  

is continuous. 

Solution: We know that x and xcos are continuous for all R∈x .  

The denominator of the function f defined by =)x(f ,1x 2
− is a polynomial, so 

it is continuous everywhere. 

Now, using Theorem 1 (for 0)x(g,gf ≠ ), the function f is continuous in R  

except where the denominator is 0 that is .01x 2
=−  

Hence, f is continuous in }.1,1{−−R  

*** 
 

Example 19: Prove that the function f defined by xtan)x(f = is a continuous 

function. 

Solution: The function 
xcos

xsin
xtan)x(f == .This is defined for all real 

numbers such that ,0xcos ≠ i.e., .
2

)1n2(x
π

+≠ We have just proved that both 

sine and cosine functions are continuous. Thus, xtan being a quotient of two 
continuous functions is continuous wherever it is defined.  

*** 
 

Example 20: Check the continuity of function f defined by )xsin()x(f 2
= .  

Solution: Observe that the function is defined for every real number. The 

function f may be thought of as a composition goh of the two functions g and 

h , where xsin)x(g = and 2x)x(h = . Since, both g and h are continuous 
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functions, therefore, by Theorem 2, it can be deduced that f is a continuous 
function. 

*** 
 
Try the following exercises. 
 
 

E13) Check for the continuity of sine function using algebra of continuity. 
 

E14) Comment on the continuity of the function f  defined by )xcos()x(f 2
= . 

 

E15) Check the continuity of the function f defined by  

 ,xx1)x(f +−= where x is any real number.  

 

 
Now, we shall state an important theorem concerning functions. Once again, 
we won’t prove this theorem here. But try to understand its statement because 
we shall use it in subsequent units. 
 

8.5 INTERMEDIATE VALUE THEOREM FOR 
CONTNUOUS FUNCTIONS 

 

Consider a function f defined by ),x(f which is continuous on the closed 

interval ]b,a[ as given in Fig. 17. We draw any horizontal line, say cy = , such 

that )a(f and )b(f lie on two opposite sides of line cy = . Then, this line must 

intersect the graph of )x(f  at least once in ]b,a[ . In other words, we can say 

that if f is continuous on ]b,a[ , then, the function f must take on every value c 

between )a(f and )b(f at least once as x takes values from a to b. 
 

 
 

Fig. 17: Graph of a continuous function 
 

For example, consider the polynomial function f defined by 6xx2)x(f 2
−+=  

has the value 3− at 1x = and the value 4 , at 2x = . Thus, it follows from the 

equation k6xx2 2
=−+ has at least one solution in the interval ]2,1[ for every 

value of k . 
 

This idea leads to the following theorem. 
 

Theorem 3 (Intermediate Value Theorem): If f is continuous on a closed 

interval ]b,a[ , and c is a real number lying between )a(f and )b(f , both 

inclusive, (that is )b(fc)a(f ≤≤ or ))a(fc)b(f ≤≤ , then, there exists at least 

one number ox in the interval ],b,a[ such that .c)x(f o =   
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This theorem can easily be interpreted geometrically as shown in Fig. 17. We 
know that the graph of a continuous function is smooth. It does not have any 

breaks or jumps. This theorem says that, if the point ))a(f,a( and ))b(f,b( lie 

on the opposite sides of a line ,cy = then the graph must cross the line .cy =  

 
You may note that this theorem guarantees only the existence of the 

number ox . It does not tell us how to find it. Another thing is that this ox need 

not be unique. 
 
This theorem can be used to show that there is a root of the given equation in 
the given interval. For this, we check for the change in sign in the values of the 
function and say the function must be zero. Fig. 18 illustrates that since 

)a(f and )b(f have opposite signs, therefore, 0 is between )a(f and )b(f . 

Thus, by Intermediate-value theorem there is at least one number 0x in 

]b,a[ such that .0)x(f 0 =  

 
 

Fig. 18: Showing b][a,x0 ∈  

 
Let us apply this theorem in the following examples. 
 
Example 21: Comment on the roots of the equation 

03xx2x 45
=−−− between 2 and 3. 

Solution: Let 3xx2x)x(f 45
−−−= . 5)2(f −= and 75)3(f = ,which shows 

that a root 0x lies in the interval ]3,2[ . To find the approximate value of the 

root, we divide the interval ]3,2[ in 5 equal parts and evaluate at each point of 

the subdivision. These values are given in Table 2. 
 

Table 2 

 

x  2 2.2 2.4 2.6 2.8 3 

)x(f  5−  51.0−  7.6 21.81 43.37 76 

 

In Table 2, the values of )2.2(f and )4.2(f have opposite signs, so using 

intermediate value theorem, we know that the root lies in the interval 

]4.2,2.2[ . The length of this interval is still large, so we can continue the 

process of dividing the interval ]4.2,2.2[ into 10 subdivisions and can 

approximate the root of the given equation.  

*** 
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Example 22: If ,xxx)x(f 23
+−= show that there is R∈0x such 

that 10)x(f 0 = . 

Solution: We want the point 0x such that the value of the function at 0x is 10. 

For, using intermediate-value theorem, we can find the two values of ),x(f  out 

of which one value is less than 10 and which other value is greater than 10. 

Let us begin with 0 and continue for other integers. ,6)2(f,1)1(f,0)0(f ===  

21)3(f = . So, it is clear that )3(f10)2(f << . Since, the function f being 

polynomial, is continuous everywhere, therefore, there must lie R∈0x such 

that 10)x(f 0 = . 

*** 
 
Now, try the following exercises 
 
 

E16) Show that there is a positive number c such that .2c2
=   

 
E17) Find an interval in which the smallest positive root of the equation 

1xx
2

+= lie. 
 

E18) Let f be a continuous function on ]1,0[ . Show that if 1)x(f1 ≤≤− for 

all ]1,0[x ∈ then there is ]1,0[c∈ such that .c)]c(f[ 2
=  

 
E19) Use the intermediate value theorem to show that there is a root of the 

given equation in the specified interval. 

 i)  ]1,0[,xxcos =  

 ii) ]2,1[,03xx 4
=−+  

 iii) ]1,0[,)x1(x 3
−= . 

  

 
This brings us to the end of the unit. 

 

8.6 SUMMARY 
 
We end this unit by summarising what we have covered in it. 

 

1. A function f  is continuous at a point ax =  if )a(f)x(flim
ax

=
→

. 

 
2. The function f defined on domain D is said to be continuous on D, if it is 

continuous at every point of D.  

 
3. The following three types of discontinuity: 

 i)   Removable Discontinuity. 

 ii)   Jump Discontinuity  

 iii)   Infinite Discontinuity. 

 
4. If the function f  and g  are continuous on D , then so are the function 

kf|,f|,fg,gf +  (where g/f)k R∈  where 0)x(g ≠  in D ). 
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5. The Intermediate Value Theorem: If f  is continuous on ]b,a[  and if 

)b(fc)a(f <<  (or ))b(fc)a(f >> , then  

 [b,a]x0 ∈∃  such that c)x(f 0 = . 

 

8.7 SOLUTIONS / ANSWERS 
 

E1) By definition 




≥

<−
=

0xif,x

0xif,x
)x(f clearly the function is defined at 0 and 

0)0(f = . Left hand limit of f at 0 is 0)x(lim)x(flim
0x0x

=−=
−−

→→

. Right hand 

limit f at 0 is 0)x(lim)x(flim
0x0x

==
++

→→

. 

 Thus, the left hand limit, right hand limit and the value of the function 
concide at 0x = . Hence, f is continuous at 0x = . 

 

E2) For example 
5x

1xx
)x(f

2

−

++
= . 

 Here )x(f is discontinuous at 5x = as it is not defined at .5x =  

 
E3) i)  For f to be continuous, let us check each of the conditions of 

continuity. 

a) )x(f is defined at 0x =  

b) 0)h0(lim)h0(flim)x(flim
0h0h0x

=−=−=
→→→

−
 

 0)h0(lim)h0(flim)x(flim 2

0h0h0x
=+=+=

→→→
+

 

 We see that )x(flim
0x→

exists .0x →  

c) Also, )0(f)x(flim
0x

=
→

 

Therefore, f is continuous at 0x = . You can visualize its graph in 
Fig. 19. 

 
Fig. 19 

 

 ii) a)   )x(f is defined at 2x =  

  b)   )x(flim
2x→

does not exist 

Therefore, f is not continuous at 2x = . Fig. 20 shows the 

corresponding graph, and it is clear that )x(flim
2x→

does not exist. 
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Fig. 20 

 

 iii), iv) You may like to try these out yourself. 
 

E4)    Let the function f defined by n

n

2

210 xa...xaxaa)x(f ++++= . 

 Let R∈a , clearly f is defined for every real number a  and  

 .aa...aaaaa)a(f n

n

2

210 ++++=  

 Then, ]xa...xaa[lim)x(flim n

n10
axax

+++=
→→

 

    n

n10 aa...aaa +++=  

    )a(f=  

 Thus, a polynomial function is continuous. 
 

E5) The function f  is defined for each real number except 3 and 3− .  

 Let },3,3{a −−∈R then )a(f is defined and given is .
9x

1
)x(f

2
−

=  

    
9x

1
limlim

2axax −
=

→→
 

  )a(f
9a

1
2

=
−

=  

 
E6) Clearly the function is defined at every real number. Graph of the 

function is given in Fig. 21. 

 
Fig. 21 

 

i) When ,0a < the function is defined and .a)a(f 2
=  

 22

axax
a)a(lim)x(flim ==

→→
. 
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ii) When ,0a > we have x)x(f = and it is easy to see that it is 

continuous.  

iii) When ,0a = the value of the function at 0 is .0)0(f =   

 The left hand limit of f at 0 is  

 00xlim)x(flim 22

0x0x
===

−−
→→

 

 The right hand limit of f at 0 is  

 0xlim)x(flim 2

0x0x
==

++
→→

 

Thus, )0(f0)x(flim
0x

==
→

and hence f is continuous at 0. This 

means that f is continuous at every point in its domain and hence, 
f is a continuous function. 

 
E7) Try yourself using Squeezing theorem. 
 

E8) i) Let R∈>= x,0a,a)x(f x . 

  Let k be any arbitrary real. )x(f exists for all k and xk)k(f = . 

  kx

kxkx
aalim)x(flim ==

→→
. 

  Thus, )k(f)x(flim
kx

=
→

. Therefore, exponential function is 

continuous. You may verify this with the graph of exponential 

function also. As, the graph of 0a,a x
> has no break, it is a 

continuous function. 

 ii) You may try this yourself. 

iii) From the graph of 0a,xloga > , it is clear that there is no break. 

Now let k be any arbitrary real and 0a,xlog)x(f a >= . Here, 

)k(f exists and 0a,klog)k(f a >= . Now, 

klogxloglim)x(flim aa
kxkx

==
→→

. 

Therefore, )k(f)x(flim
kx

=
→

and logarithmic function is a continuous 

function. 

 iv) You may like to solve it yourself.   
 

E9) 1)2x(lim)x(flim 2

1x1x
−=−=

−−
→→

 

 4k)4kx(lim)x(flim
1x1x

−=−=
++

→→

 

 Since )x(f is continuous, therefore )1(f)x(flim
1x

=
→

, which gives 

 .3k14k =⇒−=−  
 

E10) This function is not continuous because close to every real number there 

exist infinite rational and irrational numbers, and the left and right hand 

limits of this function do not exist. It has jump discontinuity.  
 

E11) i) 
x

1
)x(f =  

  ∞==+=
→→→

+ h

1
lim)h0(flim)x(flim

0h0h0x
 

  −∞=−=−=
→→→

− h

1
lim)h0(flim)x(flim

0h0h0x
 



 

 

119 

Unit 8                                                                          Continuity 

  This limit does not exist, therefore 
x

1
)x(f = is discontinuous at 

,0x = It is infinite discontinuity. Now for composite function 

   x

x

1

1

x

1
f))x(f(f ==








= which is continuous at .0x =  

 ii) 







=

x

1
sin)x(g  

   







=

→→ x

1
sinlim)x(glim

0x0x
 

  The limit of 








x

1
sin as 0x → does not attain a unique value, 

because as ∞→→
x

1
,0x and the value of the function 










x

1
sin will fluctuates in the interval ]1,1[− . Therefore, )x(glim

0x→
 

does not exist, and the function is not continuous at 0x = . Thus, it 

has jump discontinuity at 0x = . 

   Therefore, )x(g is discontinuous at .0x =  

 iii) 
x

x
)x(h =  

  




<−

>
=

.0xif;1

0xif;1
)x(h  

  )x(h is not defined at .0x = Therefore, it is discontinuous at 0x = . 

This is removable discontinuity.   
 

E12) The domain of this function is ],4,4[−  therefore we will need to check the 

continuity of f on the open interval [4,4] − and at the two endpoints. 

 )a(fa16x16lim)x(flim 22

axax
=−=−=

→→
 

 which proves that f is continuous at each point in the interval [4,4] − . 

Now, at end points, 

 )4(f0x16lim)x(flim 2

4x4x
==−=

−−
→→

 

 )4(f0x16lim)x(flim
2

4x4x
−==−=

++
→−→

 

 Thus, f is continuous on the interval ]4,4[− . 

 
E13) To see this we use the following facts. 

  0xsinlim
0x

=
→

 

 We have not proved it, but it is intuitively clear from the graph of 

xsin near 0. Now, observe that xsin)x(f = is defined for every real 

number. Let c be a real number. Put .hcx += If cx → we know that 

.0h → Therefore,  

  xsinlim)x(flim
cxcx →→

=  

   )hc(sinlim
0h

+=
→
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   ]hsinccoshcosc[sinlim
0h

+=
→

 

   ]hsinc[coslim]hcosc[sinlim
0h0h →→

+=  

    )c(fcsin0csin ==+=  

 Thus, )c(f)x(flim
cx

=
→

and hence f is a continuous function.  

 

E14) i) Let 2x)x(g = and xcos)x(h =  

  Now define hogf = we know that )x(g and )x(h are continuous in 

R . Using theorem 2, we say that f is continuous inR .  

 ii) ,
2

,
2

xif,0xcos,
xcos

xsin
xtan)x(h

π
−

π
=≠== therefore using 

theorem 1, xtan is continuous in 




 ππ
−

2
,

2
.  

 

E15) Define g by xx1)x(g +−= and h by x)x(h = for all real x . Then  

   ))x(g(h)x()goh( =  

         ( )xx1h +−=  

         )x(fxx1 =+−=  

 It is clear that h is a continuous function. Hence, g being a sum of a 

polynomial function and the modulus function is continuous. But then f  
being a composite of two continuous functions is continuous.  

 

E16) Let ,x)x(f 2
= then, f is continuous and )2(f420)0(f =<<= . By the 

intermediate value theorem, there is ]2,0[c∈ such that .2)c(fc2
==  

 

E17) Let 1xx)x(f 2
+−= . Then, f is continuous for all 

,1x −> 21)1(f −= and 34)2(f −= . Therefore, )2(f0)1(f << and by 

the intermediate value theorem there is ]2,1[x ∈ such that 0)x(f = . But 

then 01xx
2

=+− or 1xx
2

+− . 
 

E18) If )x(f is continuous on ]1,0[ then so is 2)]x(f[ . Set x)]x(f[)x(g 2
−= . 

Now 0)]0(f[0)]0(f[)0(g 22
≥=−= and 01)]1(f[)1(g 2

≤−= . 

 By intermediate value theorem, there is ]1,0[c∈ such that 

.0)c(g = Then, 0c)]c(f[ 2
=− or .c)]c(f[ 2

=  

 

E19) i) Let xxcos)x(f −=  

  We know )x(f is continuous in ].1,0[  

  1)0(f =  

  01)1cos()1(f <−=  

 Using intermediate value theorem, we can say that there exists a 

number 0x between 0 and 1, such that ,0)x(f 0 =  

 ii) & iii) you may like to work out on your own.   
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MISCELLANEOUS EXAMPLES AND EXERCISES 
 
The examples and exercises given below cover the concepts and processes 
you have studied in this block. Doing them will give you a better understanding 
of the concepts concerned, as well as practice in solving such problems. 
 
Example 1: Write the interval notation for each of the following set: 

i) }5x4x{ <<−  ii) }2xx{ −≥  

Solution:  

i) [5,4]}5x4x{ −=<<−  ii) [,2[}2xx{ ∞−=−≥  

*** 
 
Example 2: Write interval notation for each of the graph of Fig. 1. 
 

 
Fig. 1 

Solution: i) ]4,2]−  

ii) [1,] −∞− . 

*** 
 

Example 3: Find the domain of the function f defined by x)x(f = . 

Solution: Is there any number x for which we cannot calculate x ? The 

answer is no. Thus, the domain of f is the set of all real numbers. 
*** 

 
Example 4: Suppose that ` 500 is invested at the rate of interest 6%, 
compounded quarterly in a bank for t years. The amount in the account after 

t years is given by 

t4

4

06.0
1500)t(A 








+=

t4)015.1(500= . 

The amount A is a function of the number of years for which the money is 
invested. Determine the domain. 

Solution: We can substitute any real number for t into the formula, but a 

negative number of years is not meaningful. The context of the application 
excludes negative numbers. Thus, the domain is the set of all non-negative 

numbers, [,0[ ∞ . 

*** 
 
Example 5: Using the same set of axes, draw the graphs of the functions 

defined by 2x)x(f = and 3x)x(g = . 

Solution: First, we set up table of values, plot the points, and then draw the 
graphs. 
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Table 1 
 

 
Fig. 2: Graph of f and g 

*** 
 

Example 6: Draw the graph of the function f defined by x/1)x(f = . 

Solution: We make a table of values, plot the points, and then draw the 
graph. 

Table 2 
 

 
Fig. 3: Graph of f 

*** 

x  2−  1−  

2

1
−  

0  

2

1
 

1 2  

2
x  4  1 

4

1
 

0  

4

1
 

1 4  

3
x  8−  1−  

8

1
−  

0  

8

1
 

1 8  

x  3−  2−  1−  

2

1
−  

4

1
−  

4

1
 

2

1
 

1 2  3  

f(x)  

3

1
−  

2

1
−  

1−  2−  4−  4  2  1 

2

1
 

3

1
 



 

 

123

Block 2                                               Miscellaneous Examples and Exercises 

Example 7: Draw the graph of the function f defined by x)x(f −= . 

Solution: The domain of this function is the set of all non-negative real 

numbers, that is the interval [,0[ ∞ . we can find approximate values of square 

roots to draw the graph. We set up a table values, plot the points, and then 
draw the graph. 

Table 3 
 

 
 
 

 
Fig. 4: Graph of f 

*** 
 
Example 8: Find the equilibrium point for the demand and supply functions for 
the Ultra-Fine coffee maker. Here q represents the number of coffee makers 

produced, in hundreds, and x is the price, in rupees. 

Demand: x
4

1
50q −=  

Supply: 25xq −=  

Solution: To find the equilibrium point, the quantity demanded must match the 
quantity supplied. Therefore, we get 

x6025xx
4

1
50 =⇒−=−  

Thus, at 60x = , to Find q , we substitute x into either function. We select the 

supply function, we get 35256025xq =−=−= . 

Thus, the equilibrium quantity is 3500 units, and the equilibrium point is          
(60, 3500). 

*** 
 

Example 9: Consider the function f given by 3
2x

1
)x(f +

−
= . 

Draw the graph of the function, and find the following limits, if they exist. Also, 
find the following limits intuitively.  

i) )x(flim
3x→

 ii) )x(flim
2x→

 iii) )x(flim
x→∞

 

x  0  1 2  3  4  5  

x-f(x) =  0  1−  4.1−  7.1−  2−  2.2−  
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Solution: The graph of )x(f is shown in Fig. 5. You may note that it is the 

same as the graph of 
x

1
)x(f =  given in Fig. 3 but shifted 2 units to the right 

and 3 units up. 

 
Fig. 5: Graph of f 

 

i) As x approaches 3 from the left, )x(f approaches 4, so the limit from the 

left is 4. As x approaches 3 from the right, )x(f also approaches 4. 

Since the limit from the left, 4, is the same as the limit from the right, we 

have 4)x(flim
3x

=
→

. 

Table 4 
 

)3x(3x <→
−  )x(f  )3x(3x >→

+  )x(f  

1.2  13  5.3  667.3  

5.2  5  2.3  8333.3  

9.2  1111.4  1.3  9090.3  

99.2  0101.4  01.3  9901.3  

 

Fig. 5 also strengthens that the limit of )x(f from the left as well as from 

the right of 3 approaches 4. 
 

ii) As x approaches 2 from the left, )x(f becomes more and more 

negative, without bound. These numbers do not approach any real 
number, although it might be said that the limit from the left is negative 

infinity, ∞− . That is, −∞=
−

→
)x(flim

2x
 

As x approaches 2 from the right, )x(f becomes larger and larger, 

without bound. These numbers do not approach any real number, 
although it might be said that the limit from the right is infinity,∞ . That is, 

∞=
+

→
)x(flim

2x
 

Because the left-sided limit differs from the right-sided limit, 

)x(flim
2x→

does not exist. Table 5 shows that )x(flim
2x→

does not exist. 
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Table 5 
 

)2x(2x <→
−  )x(f  )2x(2x >→

+  )x(f  

5.1  1 5.2  5  

9.1  7−  1.2  13  

99.1  97−  01.2  103  

999.1  997−  001.2  1003  

 

Fig. 6 also strengthens that the limit of f at 2x = does not exist. 

 
Fig. 6 

 

iii) As x gets larger and larger, )x(f gets closer and closer to 3. We 

have 3)x(flim
x

=
→∞

. 

Table 6 
 

∞→x  )x(f  

5  3333.3  

10  125.3  

100  0102.3  

1000  0010.3  

  

 Fig. 7 also shows that 3)x(flim
x

=
→∞

. 

 
Fig. 7 

*** 
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Example 10: Find these limits and write limit property you use at each step. 

i) )6x3x2(lim 23

1x
−+

→
 

ii) 








−

−+

→ 2x3

1x5x2
lim

2

4x
 

iii) 2

2x
x31lim +

−→
 

Solution: i) )6(lim)x3(lim)x2(lim)6x3x2(lim
1x

2

1x

3

1x

23

1x
−+−+=−−

→→→→
 

 
  

   )6(lim)x(lim3)x(lim2
1x

2

1x

3

1x →→→
−−=  

   632 −−=  

   7−=  
 

ii) 
)2x3(lim

)1x5x2(lim

2x3

1x5x2
lim

4x

2

4x

2

4x −

−+
=

−

−+

→

→

→
 [Applying limit of quotient] 

 
)2(lim)x(lim3

)1(lim)x(lim5)x(lim2

4x4x

4x4x

2

4x

−+

−++
=

→→

→→→  

 
10

51

243

145162
=

−×

−×+×
=  

 

iii) 2

2x
x31lim +

−→
 

)x31(lim
2

2x
+=

−→
 ])x(flim)x(flim[

axax →→
=Q  

 )x(lim31lim
2

2x2x −→−→
+=  

 )4(31+=  

 13=  

*** 
 
Example 11: Is the function g , given by  








−≥−

−<+
=

,2xfor,1x

,2xfor,3x
2

1

)x(g  

continuous at 2x −= ? Why or why not? 

Solution: To find out if g is continuous at 2− , we must determine whether 

)2(g)x(glim
2x

−=
−→

. Thus, we first note that 312)2(g −=−−=− . To find 

)x(glim
2x −→

, we find left-and right-hand limits 2313)2(
2

1
)x(glim

2x
=+−=+−=

−
−→

 

and 312)x(glim
2x

−=−−=
+

−→

. 

Since ),x(glim)x(glim
2x2x +−

−→−→
≠ we see that )x(glim

2x −→
does not exist. Thus, g is 

not continuous at 2− . It is continuous at all other −x values. Fig. 8 also 
strengthens this. 

)]x(glim)x(flim

)]x(g)x(f[lim[

axax

ax

→→

→

+=

+

 

)]x(Cflim)x(Cflim[
axax →→

=  
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Fig. 8 

*** 
 
Example 12: A shopkeeper sells an item in bulk quantities. For quantities up 
to and including 500 kg, the shopkeeper charges ` 2.50 per kg. For quantities 
above 500 kg, he charges ` 2 per kg. The price function is stated as a 

piecewise function defined by 




>

≤<
=

.500xfor,x2

,500x0for,x50.2
)x(p  

where p is the price in rupees and x is the quantity in kg. Is the price function 

)x(p continuous at 500x = ? Why or why not? 

Solution: The graph of )x(p follows. 

 
Fig. 9 

 

As x approaches 500 from the left, we have 1250)x(plim
500x

=
−

→

, and when 

x approaches 500 from the right, we have 1000)x(plim
500x

=
+

→

. Since the left-

hand and right-hand limits are not equal, the limit )x(plim
500x→

does not exist. 

Thus, the function is not continuous at 500x = . Fig. 9 shows a price “break.” 
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The value of the function value at 500x = is 1250)500(p = , but this fact plays 

no role with regard to whether or not the limit exists. 

*** 
 

Example 13: A reservoir is empty at time 0t = minutes. It fills at a rate of 3 
gallons of water per minute for 30 minutes. At 30 minutes, the reservoir is no 
longer being filled and a value is opened, allowing water to escape at a rate of 
4 gallons per minute. The volume v after t minutes is given by the function  





>−

≤≤
=

.30tfor,t4k

,30t0for,t3
)t(v  

Determine k such that the volume function v is continuous at .30t = Explain 
why this must be true. 

Solution: )t(v is defined at 30x = and 90)30(v = gallons. Now, 90)t(vlim
30t

=
−

→
 

and 120k)t(vlim
30t

−=
+

→
. 

Since )t(v is continuous at ,30t = therefore ⇒=−⇒=
→

90120k30)t(vlim
30t

 

210k = . 

The amount of water (in gallons) is continuous as a function of time )t( . 

*** 
 

Example 14: Consider the function 




≥

<−
=

.2xfor,1

,2xfor,1
)x(C  

 

 
  Fig. 10 
 

i) Find )x(Clim
2x +

→
. 

ii) Find )x(Clim
2x −

→
. 

iii) Find )x(Clim
2x→

. 

iv) Find )2(C . 

v) Is C continuous at 2x = ? Why or why not? 

vi) Is C continuous at 95.1x = ? Why or why not? 
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Solution: i) 1)x(Clim
2x

=
+

→

 

ii)  1)x(Clim
2x

−=
−

→

 

iii) )x(Clim
2x→

does not exist. 

iv) 1)2(C =  

v)  Since )x(Clim
2x→

does not exist. C is not continuous at 2x = . 

vi) Since C is constant function when x is less than 2, therefore C is 

continuous at 95.1x = . 
*** 

 

Example 15: Show that 5)3x4(lim
2x

=−
→

using δ−ε definition. 

Solution: Here ,3x4)x(f −= and 5L = . 

53x4L)x(f −−=−  

  8x4 −=  

  2x4 −= whenever δ<− 2x for a given 0>ε , choose ,
4

ε
=δ then 

ε=






 ε
=δ<−=−

4
442x4L)x(f . 

*** 
 

Example 16: If 1xxy −+= , show that  

 









≥−

<<

≤−

=

1xif,1x2

1x0if,1

0xif,x21

y  

Solution: i) When, xx0x −=⇒≤ and ),1x(1x01x −−=−⇒≤− therefore 

x211xx)1x(x()x(y −=+−−=−−+−= . 

ii)  When, xx1x0 =⇒<< and )1x(1x01x −−=−⇒<− , therefore 

11xx))1x(x(xy =+−=−−+= . 

iii)  When, xx1x =⇒≥ and 1x1x01x −=−⇒≥− , therefore, 

1x2)1x(xy −=−+= . 

 Hence, 









≥−

<<

≤−

=

1xif,1x2

1x0if,1

0xif,x21

y  

*** 
 

Example 17: Find )xsinx(lim
0x→

. 

Solution: i) When 0xsin2/x0,0x >⇒π<<> for ,2/x0 π<< we have 
2xxsinxxxsin <⇒< . 

Let 0>ε , for values of x which are positive and less than ε , we have 

ε<
2x . Thus ε<< xsinx0 when ε<< x0 . It follows that 0xsinxlim

0x
=

+
→

. 

ii) When 0xsin0x2/,0x <⇒<<π−< . 
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The values of the function for two values of x whis are equal in magnitude but 
opposite in signs and equal. Hence, as in (i), we see that for any value of x in 

the interval [0,] ε− , the numerical value of the difference between 

xsinx and 0 is less than ε . 

Thus 0xsinxlim
0x

=
−

→
 

Combining the conclusion arrived at in (i) and (ii), we see that the 

corresponding to any positive ε , there exists an interval [,] εε− around 0 , 

such that for any x belonging to this interval, the numerical value of the 

difference between xsinx and 0 is ε< , i.e. ε<− 0xsinx . Thus 

0xsinxlim
0x

=
→

. 

*** 
 
Example 18: Check the continuity of the function f defined by 







=

≠+
=

0xif,e

0xif,)x31(
)x(f

3

x1

at 0x = . 

Solution: )x(f is defined at 0x = and 3e)0(f = . Now 

[ ]3x31

0x0x
)x31(lim)x(flim +=

→→
 

  [ ]3x31

0x
)x31(lim +=

→
 

  3e=   ]0x30x[ ⇒⇒→Q   

  )0(f=  

Hence f  is continuous at 0x =  
*** 

 
Now you may try the following exercises. 
 

E1) Sketch the graph of 3x4y −−= . 

 
E2) Determine whether f is even, odd or neither even nor odd. Verify your 

answer with the graph of f for the following functions. 

i) xx)x(f =  

ii) 1x2x)x(f 2
++=  

 

E3) A rectangular box with volume 3m2 has a square base. Express the 

surface area of the box as a function of the length of a side of the base. 
 

E4) Prove that 0xlim
0x

=
+

→

. 

 
E5) Guess the value of the limit, if it exists by calculating the function f given 

by 
2xx

)2x(x
)x(f

2
−−

−
= at ,8.1,5.1,0001.2,001.2,005.2,01.2,1.2,2.2,5.2x =  

999.1,995.1,99.1,95.1,9.1 . 

 

E6) Use the graph of the function f given by x)x(f = to find a number 

δ such that if ,9x δ<− then 1.03x <− . 
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Fig. 11 

 

E7) Let a function f defined by ,
2x

6xx
)x(f

2

−

−+
= find  

i) LHL and RHL of f at 2x = , 

ii) Does )x(flim
2x→

exists? Give reasons for your answer. 

iii) Sketch the graph of f . 
 

E8) Is the function f defined by 




>

≤
=

1xif,5

1xif,x
)x(f continuous at 0x = ? At 

1x = ? At 2x = ? Give reasons. 
 

E9) Check whether the function f defined by 5xsinx)x(f 2
+−= is 

continuous  at π=x .  
 

E10) For what value of k is the function f defined by  





>+

≤−
=

0xif,1x4

0xif),1x(k
)x(f

2

continuous at 0x = ? What about the 

continuity at 1x = ? 
 

E11) Suppose f and g are continuous functions such that 6)2(g = and 

36)]x(g)x(f)x(f3[lim
2x

=+
→

. Find )2(f . 

 
E12) The gravitational force exerted by the Earth on a unit mass at a distance 

r from the center of the planet is  










≥

<

=

Rrif,
r

GM

Rrif,
R

MrG

)r(F

2

3

 

where M is the mass of the Earth, R is its radius, and G is the 

gravitational constant. Check whether F is continuous function at 

Rr = or not. 
 
E13) Check which of the following function is continuous or discontinuous. 

Give reasons. 

i) The temperature of a specific place as a function of time. 

ii) The fare paid for a taxi as a function of distance travelled. 
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iii) The current in the circuit for the lights in a room as a function of time. 
 

E14) Find )12(lim x

x
−

−

→∞
. 

 
E15) Find the domain of the functions given below: 

i) x21)x(f −=  ii) )e(sin)x(f x−
=  

iii) 
xcos

e

x1+
 iv) 

2
x23x5e)x(f −−

=  

 

E16) Find )x(tanloglim 2

10
0x→

. 

 

E17) Check whether the function f given by ))1xxcos(log()x(f 2
++= is 

even or not. 
 

E18) Solve the inequality 41x1x <++− . 

 
E19) Find the period of the following functions: 

i) )3x7(sin5)x(f −=  

ii) 2xsin)x(f =  

iii) xtan)x(f =  

iv) xcosxsin)x(f += . 

 

E20) Check whether the function RR→:f defined by xsin)x(f = is 

continuous or not. 
 

SOLUTIONS/ANSWERS  
 
E1) The graph can be obtained by two transaltions that is first translate the 

graph of xy = right 3 units to obtain the graph of 3x − , then translate 

this graph up 4 units to obtain the graph of 43xy +−= as shown in Fig. 

12. 

 
 

(a)        (b)               (c) 
  

Fig. 12: (a) xy = , (b) 3xy −= , (c) 43xy +−=  

 

E2) i)   Given is xx)x(f =  , and )x(fxxxx)x(f −=−=−−=−  
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 Since ),x(f)x(f −−= therefore, f is odd function. We can rewrite 

the function f as 






<−

≥
=

0x,x

0x,x
)x(f

2

2

. 

 Fig. 13 shows the graph of the function f defined by xx)x(f = . 

The graph also strengthens that f is odd. 
 

 
 

Fig. 13: Graph of xx . 

 

ii)   1x2x)x(f 2
+−=−  The function f is neither even nor odd. The 

graph of f is given in Fig. 14, from which it is verified that f is 
neither even nor odd. 

 

 
 

Fig. 14: Graph of 12xx
2

++  
 

E3) Let the side of the base area be a and height be h . Then the volume 

haV 2
= . Since volume ,m2 3

= therefore, 2ha 2
= , which gives 

2a/2h = . Thus, Surface area ah4a2S 2
+=

a

8
a2

a

2
.a4a2 2

2

2
+=+= . 

Therefore, the surface area of the box is ,
a

8
a2 2

+ where a is the side of 

the square base of the box. 
 
E4) Let ε be given as a positive number, and we want to find δ such that if 

δ<< x0 , then ε<− 0x that is ε<x . But ε<x or 2x ε< . 

Hence 0xlim
0x

=
+

→

. Fig 15 shows this limit.  
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Fig. 15 

 

E5)      Table 7 
 

x  2.5 2.2 2.1 2.01 2.005 2.001 2.0001 

)x(f  714.0  688.0  677.0  668.0  667.0  667.0  667.0  

x  1.5 1.8 1.9 1.95 1.99 1.995 1.999 

)x(f  6.0  643.0  655.0  661.0  666.0  666.0  667.0  

 

  Therefore, 667.0)x(flim
2x

=
→

. 

 

E6) Given is, 1.03x <−  

1.03x1.0 <−<−  

1.3x9.2 <<  
22 )1.3(x)9.2( <<  

61.9x41.8 <<  

61.059.09x59.0 <<−<−  

59.09x <−  

Therefore, 59.0=δ or smaller positive number. 
 

E7) i)  )h2(flim)2(flimLHL
0h2x

−==
→→

−
 

    
2h2

6)h2()h2(
lim

2

0h −−

−−+−
=

→
  

    
h

6h2h4h4
lim

2

0h −

−−+−+
=

→
 

    55hlim
h

h5h
lim

0h

2

0h
−=−=

−
=

→→
 

  )h2(flim)2(flimRHL
0h2x

+==
→+

+
 

       
2h2

6)h2()h2(
lim

2

0h −+

−+++
=

→
 

     
h

6h2h4h4
lim

2

0h

−++++
=

→
 

    5
h

h5h
lim

2

0h
=

+
=

→
 

 ii)  Since ,RHLLHL ≠ therefore, )x(flim
2x→

does not exist. 
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 iii)  We can rewrite the function f as 




<+−

>+
=

2xif;)3x(

2xif;3x
)x(f . Fig. 16 

shows the graph of f . 

 
Fig. 16 

 

E8) At 0x = , the function f  is defined and 0)0(f = . ,0RHL,0LHL == so 

continuous at 0x = .  

At 1x = , the function f is defined and 1)1(f = . ,5RHL,1LHL == not 

continuous.  

At 2x = , the function f is defined and 5)2(f = . ,5RHL,5LHL ==  

therefore, )2(f)x(flim
2x

=
→

and f is continuous at 2x = .   

 

E9) The function f is defined at π=x and 550)(f 22
+π=+−π=π . 

Also, )(f5)x(flim 2

x
π=+π=

π→
. Therefore, f is continuous at π=x . 

 

E10) At k)0(f,0x −== . 1)x(flim,k)x(flim
0x0x

=−=
+−

→→
. Since f is continuous at 

,0x = therefore 1k −= . 

At 5)1(f,1x == . 5)x(flim
1x

=
−

→

and 5)x(flim
1x

=
+

→

. The function f is 

continuous at 1x = . 
 

E11) [ ] 36)x(g)x(f)x(f3lim
2x

=+
→

 

36)x(g)x(flim)x(f3lim
2x2x

=+
→→

 

36)2(g)2(f)2(f3 =+ [Since )x(f and )x(g are continuous, therefore 

)2(f)x(flim
2x

=
→

and )2(g)x(glim
2x

=
→

]. 

366).2(f)2(f3 =+  

4)2(f = . 

 

E12) 
2

R

GM
)R(f =  

 
23

RrRr R

GM

R

GMr
lim)r(flim ==

−−
→→

 

 
22

RrRr R

GM

r

GM
lim)r(flim ==

++
→→

. 

 Since ),R(f
R

GM
)r(flim

2Rx
==

→
therefore f is continuous at Rr = . 

 
E13) i) continuous. 
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ii) continuous. 

iii) discontinuous. 
 

E14) )1(lim)2(lim)12(lim
x

x

x

x

x →∞

−

→∞

−

→∞
−=−  

     1101)2(lim t

t
−=−=−=

∞−→
. 

 

E15) i) Domain ]0,] ∞−= . 

 ii) Domain R=  

 iii) Domain R=  

  iv) Domain 





=

2

3
,1 . 

 

E16) )x(tanlimlog)x(tanloglim 2

0x
10

2

10
0x →→

=  

   )0(log10=  

   −∞= . 

 

E17) }1)x()xcos{log{()x(f
2

+−+−=−  

    }]1xxcos[log{ 2
+−=  

    }]1xxlog{cos[ 2
++−=  [After raitonalization] 

   )x(f)]1xxcos[log( 2
=++=  

 Since )x(f)x(f =− , therefore, f is even. 

 

E18) i) When 4)1x()1x(,1x <+−−−−<  

     2x4x2 −>⇒<−⇒  

 Therefore, 1x2 −<<− . 

 ii) When ,1x1 <≤− we have  

 4)1x()1x( <++−  

     2x4x2 <⇒<⇒  

  Therefore, 2x1 <≤ . 

  Thus, the inequality holds when [2,2]x −∈ . 

 

E19) i) Since, xsin has a period π2 , so, )3x7(sin5 − will have its period 

7

2π
. 

 ii) Let the period of )x(f be T , then )x(f)Tx(f =+  

    22 xsin)Tx(sin =+⇒  

    22 xn2)Tx( ±π=+⇒  

    2n2 x)1(n)Tx( −+π=+⇒ .....(1) 

The only non-negative values of T that satisfies the equation (1) 

and is independent of x is 0. Therefore 2xsin)x(f = is not a 

periodic function. 

 iii) Let the period of xtan be T , then xtan)xTtan( =+  

  Z∈+π=+⇒=+⇒ n,xnxTxtan)xT(tan . 
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  Therefore the lease positive value of T is π . 

  So, the period of xtan is π . 

   iv) The period of the function xcosxsin + is 
2

π
.  

 

E20) xsin is defined for all real x and at each point.  

 Let R∈a , asin)a(f =  

 xsinlimxsinlim)x(flim
axaxax →→→

==  

     asin= . 

 Therefore, it is continuous everywhere.  


