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BLOCK 3 DIFFERENTIATION 
 
This is the third of the five blocks which you will be studying for the course “Calculus”. We 
shall begin this block by defining derivatives of various functions which we discussed in 
Block 2.  

In Unit 9 we shall find derivatives of some standard functions using the definitions of 
derivatives. We shall also discuss algebra of derivatives. In this unit we shall find that 
continuity is necessary for a function to be differentiable.  

In Unit 10 we shall continue our discussion of derivatives to find derivative of logarithmic, 
exponential and hyperbolic functions. We shall also discuss other differentiation 
techniques such as method of logarithmic differentiation and implicit differentiation. 

In Unit 11 we shall find derivative of a derivative of a function and will extend our 
discussion to higher order derivatives. We shall apply higher order derivatives to find 
polynomial approximation.  

In Unit 9 to 11, we have included a number of examples. Please go through them carefully 
they will help you in a better understanding of the concepts discussed and will also serve 
as a guideline in solving the exercises.        

At the end of the block, you will find miscellaneous examples and exercises covering the 
concepts you have studied across the units. Please solve the exercises on your own. At 
the end of each unit, and after the miscellaneous exercises, we do provide some 
solutions/answers to the exercises concerned. These are only as a support for you to be 
able to check whether you have been able to solve the problem correctly or not. Please do 
not look at these solutions till you have spent enough time on studying the unit and trying 
all the exercises.  

After the miscellaneous examples and exercises, you will find two appendices.  

Appendix 1: Parametric Representation of curves 

Appendix 2: Partial Fractions 

A word about some signs used in the unit! Throughout each unit, you will find theorems, 
examples and exercises. To signify the end of the proof of a theorem, we use the sign    . 
To show the end of an example, we use ***. Further, equations that need to be referred to 
are numbered sequentially within a unit, as are exercises and figures. E1, E2 etc. Denote 
the exercises and Fig. 1, Fig. 2, etc. denote the figures.  
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NOTATIONS AND SYMBOLS (used in Block 3) 
 
w.r.t.  with respect to  

)y(D,y,y,
dx

dy )1(
′  the first derivative of y w.r.t. x . 

)x(f),x(f(
dx

d
′  the first derivative of )x(f w.r.t x . 

)x(f,y,
dx

yd )2(

2

2

′′  the second derivative of y or )x(f w.r.t. x . 

)x(f,y,
dx

yd )n()n(

n

n

 the nth derivative of y or )x(f w.r.t. x . 

≈  is approximately equal to  

Also, see the list of notations and symbols in Block 1 and Block 2.  
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UNIT 9                                                        

    AN INTRODUCTION TO AN INTRODUCTION TO AN INTRODUCTION TO AN INTRODUCTION TO 

DDDDIFFERENTIATIONIFFERENTIATIONIFFERENTIATIONIFFERENTIATION    

StructureStructureStructureStructure                                Page NoPage NoPage NoPage No....    
 
9.1 Introduction                 5 

Objectives 

9.2 The Derivatives                 6 

9.3 Continuity versus Derivability             16 

9.4 Some Simple Differentiation             19 

Derivative of a Constant Function 

Derivative of the Power Function 
nx    

9.5 Algebra of Derivatives              23 

9.6 The Chain Rule               32 

9.7 Derivatives of Trigonometric Functions           34       

9.8 Derivatives of Inverse Functions            40 

9.9 Summary               46 

9.10 Solutions/Answers                 47 
 

9.1 INTRODUCTION 
 
In the previous block, we have introduced the concepts of ‘limit’ and 
‘continuity’. We have also talked about the algebra of limits and operations on 
continuous functions. This unit will build on these concepts and take you a 
step further in your study of calculus.  
 
In this unit on differentiation, we introduce the concept of a derivative which is 
a basic tool of calculus.  Leibnitz was motivated directly by the problem of 
finding tangent to a given curve at a given point, a problem which was of great 
significance for scientific applications.  He recognised the derivative as the 
slope of the tangent to the curve at the given point. Earlier, Newton, on the 
other hand, arrived at it by considering some physical problems such as 
determining velocity or acceleration of a particle at a particular instant.  He 
recognised the derivative as rate of change of physical quantities.  We shall 
now show you how both these considerations are built on to the concept of 
derivative as the limit of a ratio.  To understand what a derivative is, you will 
have to go through Sec. 9.2 thoroughly. In Sec 9.3, you will see that all the  

 

 

Fig. 1: Newton 
(1642-1727) 
 



 

 

6

Block 3                                                                                        Differentiation 

functions which are continuous may not be differentiable.  
 
We will differentiate some standard functions using the definition of the 
derivative in Sec. 9.4.  The algebra of derivatives can be effectively used to 
write down the derivatives of several functions which are algebraic 
combinations of these functions which have been discussed in Sec. 9.5.  We 
shall also discuss the chain rule of differentiation which offers an unbelievable 
simplification in the process of finding derivatives in Sec. 9.6. In Sec.9.7, we 
will discuss the derivatives of trigonometric functions. In Sec. 9.8, we will go on 
to study the inverse function theorem, and apply it to find derivatives of 
inverses of some standard functions.  
 
And now we will list the objectives of this unit. After going through the unit, 
please read this list again and make sure that you have achieved the 
objectives. 
 

Objectives 

After studying this unit, you should be able to: 

• find the slope of a curve at a given point; 

• determine the rate of change of a given quantity with respect to another; 

• obtain the derivatives of some simple functions from the first principles; 

• find the derivatives of the sum, difference, product and quotient of 
functions whose derivatives you already know; 

• derive, and apply, the chain rule of differentiation for finding the derivatives 
of the composition of two or more functions; 

• find the relationship between continuity and derivability of a function; 

• find the derivatives of trigonometric functions; 

• state and apply, the inverse function theorem; and 

• find the derivatives of inverse trigonometric functions. 

 

9.2 THE DERIVATIVES  
 
There are many real life situations where it is desirable to know the rate of 
change of a particular parameter with respect to some other parameter. For 
example, it is important to know the depth of water at several instances of time 
to predict the overflow in a dam, the change in distance travelled at various 
times is needed to compute the precise velocity, etc. In this section, we shall 
find the rate of change of a variable with respect to another variable using the 
tangent to a curve.  
 
Let us consider the problem of finding a tangent to a given curve at a given 
point.  What do we mean by the tangent to a curve?  Euclid (300 B.C.) thought 
of a tangent to a curve as a line touching the curve exactly at one point.  The 
word ‘tangent’ derives from the Latin word ‘tangentem’, meaning ‘touch’. A 
tangent line touches a curve at a single point only, in the same way as the 
tangent line touches the circle in Fig. 4(a). A line that cuts the curve more than 
once is called secant line as shown in Fig. 4(a). In Fig. 4(b), the line L  

touches the curve exactly once in the small interval containing P . The point 
P is called the point of tangency. We are not concerned with the behaviour of 

the line far from the point of tangency. We see that L does pass through the 
curve elsewhere, but it is still considered a tangent line to the curve at the 
point P .  

Fig. 2: Leibnitz 
(1646-1716) 
 

 

Fig. 3: Euclid 
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       (a)        (b) 

Fig. 4: Some curves and tangents to them 

 
We now define a tangent to a curve at P  to be a line which best approximates 

the curve near P .  To do this, we use the notion of limit which you have 
studied in Unit 7.  

 
Let P  be a fixed point on the curve in Fig. 5 (a). To obtain the tangent line to 

the curve at point P , consider a secant line PQ . As the point Q approaches 

P through say 21 Q,Q and so on, the secant lines, 21 PQ,PQ and so on, 

approach the line L as shown Fig. 5 (a). Each secant line has a slope. The 

slopes  321 m,m,m and so on, of the secant lines approach the slope m of line 

L . Now, we define line L as the tangent line, the line that contains point P and 
has slope m , where m is the limit of the slopes of the secant lines as the point 

Q  approaches P  as shown in Fig. 5(b). Slope m is the instantaneous rate of 

change of P . 

 
 

Fig. 5: Tangent line at P   

 
You may think of the sequence of secant lines as an animation as the point 

Q moves closer to the fixed point P , the resulting secant lines ‘lie down’ on 

the tangent line.  

 
We have said earlier that the tangent at point P  is the limiting position of the 

secant PQ .  With reference to a system of coordinate axes OX  and OY   

(Fig. 6), we can also say that the tangent at P  is a line through P  whose 

slope is the limiting value of the slope of the secant through P and Q  as Q  

approaches P  along the curve.  Therefore, the problem of determining the 
tangent is, then, the problem of finding the slope of the tangent line. 
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Fig. 6 

 
Suppose the curve )x(fy =  is given in Fig. 6.  Let ))x(f,x(  be the point 

P and let ))xx(f,xx(Q δ+δ+  be any other point on the curve near P .  (The 

prefix δ  before a variable quantity means a small change in the quantity.  

Thus, xδ  means a small change in the variable x .) The coordinates of 

,Q ))xx(f,xx( δ+δ+  indicate that Q  is very very near P along the curve f . If 

θ  is the angle which PQ  makes with the x -axis, then the slope of the secant 

line
x

)x(f)xx(f
PM/QMtanPQ

δ

−δ+
==θ= . 

The limiting value of the slope of PQ , as Q  tends to P , (and hence 0x →δ ), 

then gives us the slope of the tangent at P .  Thus, we have the following:  

The slope of the tangent line at ))x(f,x(
x

)x(f)xx(f
lim

0x δ

−δ+
=

→δ

          ... (1) 

This limit is also the instantaneous rate of change of )x(f  with respect to x . 

This indicates that the tangent line will exist only if the limit of 
x

)x(f)xx(f

δ

−δ+
 

exists as 0x →δ . 
 

Remark 1: In Fig. 6 we have taken xδ  to be positive.  But our discussion is 

valid even for negative values of xδ . 

 
We shall find the slope of a tangent line to the graph of a function f in the 
following example. 

 

Example 1: Consider the function RR→:f , defined by 2xx3)x(f −= . Find 

the instantaneous rate of change of f at .2x =   

Solution: Here, 2xx3)x(f −= . When 2x = , 2)2(f = . 

Thus, 
[ ]

x

2)x2()x2(3

x

)2(f)x2(f 2

δ

−δ+−δ+
=

δ

−δ+
 

   1x
x

xx 2

−δ−=
δ

δ−δ−
=  

Therefore, 1
x

)2(f)x2(f
lim

0x
−=

δ

−δ+

→δ

. 

Hence, we can say that  

Caution: xδ is one 

inseparable 
quantity. It is not 

.x×δ  
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• The tangent line to the curve at the point )2,2( has slope 1−  as shown in 

Fig. 7. 

• The instantaneous rate of change at 2x = is 1− . 

 
Fig. 7 

*** 
 

Example 2: Find the slope of the tangent line to the curve 
x

1
)x(f =  at 2x = . 

Solution: We have  
)x2(2

1

x

]2/1[]x2/1[

x

)2(f)x2(f

δ+

−
=

δ

−δ+
=

δ

−δ+
 

We want to find 
4

1

)x2(2

1
lim

x

)2(f)x2(f
lim

0x0x
−=

δ+

−
=

δ

−δ+

→δ→δ

 

This is the slope of the tangent line at 2x = . 

*** 
 
It may not always be possible to have tangents at some points. In fact, there 
are curves which do not have a tangent at any point. For example, 

x)x(f = has a corner (not smooth) at 0x = , and would seem to have many 

tangent lines at )0,0( , and thus many slopes as shown in Fig. 8(a). Also, the 

limit of the slope of the vertical tangent at any point as shown in Fig.8 (b) is 
undefined.  

 
          (a)                (b) 

Fig. 8 

   
Now, try the following exercises. 
 
 

E1) Find the slope of the tangent to the following curves at the given points 
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 i) x/1y =  at )2/1,2( . 

 ii) 3xy =  at )1,1( . 

 
E2) Does the slope of the tangent stay the same at different points? Justify 

your answer.  
 

 
Now let us consider another problem, that is, the rate of change from the 
Newtonian view. Let us begin with an example. Consider that a car travels 

km150 in h3 . Its average rate of change (speed) is h3/km150 . Suppose that 

the car is on a free way and the driver begins accelerating. Looking at the 
speedometer, it is seen that at that instant the instantaneous rate of change is 

h/km50 . 

 

Now, suppose a function f is defined by ),x(f and consider a small change in 

the value of x that is xδ . The change in x  is ,x)xx( −δ+ and the change in 

f due to the change in x is )x(f)xx(f −δ+ . The average rate of change of 

f with respect to x as x changes from x to xx δ+ , is the ratio of the change in 

f to the change in x . Thus, we have the following: 
 

The average rate of change of f due of change xδ in x is ,
x)xx(

)x(f)xx(f

−δ+

−δ+
 

where 0x ≠δ . 
 
The average rate of f with respect to x is also called the difference-quotient.  
 
But this does not give the instantaneous rate of change.  How do we calculate 
this? 
 

If xδ  is very small, then xx δ+  is very near x  and so the average rate of 
change would be the instantaneous rate of change at 

x

)x(f)xx(f
limx

0x δ

−δ+
=

→δ

. 

Thus, the instantaneous rate of change of f with respect to x .  

 
x

)x(f)xx(f
lim

0x δ

−δ+
=

→δ

                 …(2) 

If we look at the graph of the function in Fig. 9, we see that the average rate of 

change is the slope of the secant line from P to Q . Thus, the slope of the 

secant line is interpreted as the average rate of change of f from x to xx δ+ . 

Also, the instantaneous rate of change is the slope of the tangent line.  

 
Fig. 9 
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We find average rate of change in the following examples.  
 

Example 3: Find the average rate of change of the function f  defined by 

R∈∀+= x2x)x(f , at 0x = . 

Solution: We shall first calculate the average rate of change of f  in an 

interval ]x,0[ δ , i.e. 0x >δ . 

This average rate of change of f  in ]x,0[ δ  is 

x

)0(f)x(f

0)x0(

)0(f)x0(f

δ

−δ
=

−δ+

−δ+
1

x

x

x

22x
=

δ

δ
=

δ

−+δ
= . 

Hence, the rate of change of f  at 0x = , which is the limiting value of this 

average rate as 0x →δ , is 

 11lim
x

)0(f)x0(f
lim

0x0x
==

δ

−δ+
=

→δ→δ

. 

You can check that a similar argument provides the rate of change of f at 

0x = as 1 using 0x <δ . 
 *** 

 
Example 4: Suppose a particle is moving along a straight line and the 
distance s (in metres) covered in time t (in seconds) is given by the equation 

2t)2/1(s = . Find the velocity of the particle after 2 seconds.  

Solution: We know that 2t
2

1
)t(s = . The velocity )t(v , after t seconds, is 

given by 
t

)t(f)tt(f
lim)t(v

0t δ

−δ+
=

→δ

m/s 

 

( )

t

t
2

1
tt

2

1

lim

22

0t δ

−δ+

=
→δ

m/s 

 







+

δ
=

→δ

t
2

t
lim

0t
m/s 

 t= m/s. 

∴The velocity after 2 sec is .s/m2)2(v =  

*** 
 

Remark 2: i). If the path of a particle moving according to )t(fs = , is shown in 

the ts -plane and if P  and Q  are points on the path which correspond to 

1tt =  and 2tt = , then the average velocity of the particle in time 

)tt( 12 −  is given by the slope of PQ  and the velocity at time 1t  is given 

by the slope of the tangent at P . 

ii)  Distance is always measured in units of length (metres, centimetres) and 
so velocity v  really means v  units of distance per unit of time.  The 
slope of the tangent is a dimensionless number, while the velocity has 
the dimension of length/time. 

 
Now you can try some exercises. 
 
 

E3) Consider the curve ( ) 2
t

2
1s = in its ts -plane. Find the slope of the 

tangent of the curve at 2t = . Also, compare your result with the velocity 
found in Example 4. 
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E4) A particle is thrown vertically upwards in the air.  The distance it covers 

in time t  is given by 2gt)2/1(ut)t(s −=  where u  is the initial velocity 

and g  denotes the acceleration due to gravity.  Find the velocity of the 

particle at any time t . 
 
E5) The area of a circle is a function of its radius. Find the rate of change of 

the area of a circle with respect to its radius when the radius is 2 cm.  
 

E6) Find the average rate of change of the function f , defined by 

R∈∀+= x1x2)x(f 2  in the interval ]h1,1[ +  and, hence, evaluate the 

rate of change of f  at 1x = . 
 

 
We have seen that the slope of a tangent and the instantaneous rate of 
change have a common concept behind them.  Won’t it be better, then, to give 
a separate name to this concept, and study it independently of its diverse 
applications?  The name of it is “derivative”, and we define it now. 
 

Definition: Let f  be a real-valued function whose domain is a subset D  of 

R and let Dx ∈ .  Then 
δx

f(x)δx)f(x
lim

0δx

−+

→

 , if this limit exists, is called the 

derivative of f  at x . This is usually denoted by )x(f ′  or Df . Sometimes we 

denote )x(f by y . Then, we denote )x(f ′ by 
dx

dy
 or 

dx

df
. 

 

Now, if we write yy)xx(f δ+=δ+ , then derivative of 
x

y
limf

0x δ

δ
=

→δ

, where yδ  

denotes the change in y  caused by a change xδ  in x . 

 

Note that f ′ is also a function and the value of )x(f ′  at a point 0x  is denoted 

by )x(f 0
′ .  Thus, 

 
δx

)f(xδx)f(x
lim)(xf 00

0δx
0

−+
=′

→

, if limit exists. 

Here )x(f 0
′ quantifies the change in )x(f at 0x with respect to x . We write 

,xxx 0 δ+=  then 0xxx −=δ and 0xx0x →⇔→δ . Therefore, an 

equivalent way of stating the definition of the derivative is 

0

0

xx
0

xx

)f(xf(x)
lim)(xf

0 −

−
=′

→

. 

If ),x(fy = then, we also use the notations 

0xxdx

dy

=

or 

0xxdx

dy

=




for )x(f 0

′ , that 

is, the derivative of the function f at 0xx = . 

 

Caution: (i) 'dy'  and 'dx'  in the expression 
dx

dy
 are not separate entities. 

That is dy is meaningless without .dx In fact, it is )y(
dx

d
and means the 

derivative of y with respect to x .  

(ii)  You cannot cancel 'd'  from dx/dy  to get x/y . The notation only 

suggests the fact that the derivative is obtained as a ratio. 

The notation for 

dx/dy  is due to 

Leibnitz and )x(f ′  is 

due to Lagrange. 

)x(f ′ is read as 

“ f dash x ”. 
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Let us state another definition. 
 

Definition: Let R→D:f be a function. The function f  is derivable (or 

differentiable) at x if )x(f ′  exists.  When f  is differentiable at each point of 

its domain D , then f  is said to be a differentiable function.  The process of 
obtaining the derivative is called differentiation. The process of finding the 
derivative of a function by actually calculating the limit of the ratio 

x

)x(f)xx(f

δ

−δ+
 is called differentiating from first principles, or 

differentiating ab initio.  
 
Let us find more derivatives in the following examples. 
 

Example 5: Find the derivative of the function RR→:f defined by 

x2)x(f = at 1x = . 

Solution: We have 
x

)1(f)x1(f
lim)1(f

0x δ

−δ+
=′

→δ

.2
x

2)x1(2
lim

0x
=

δ

−δ+
=

→δ

 

Therefore, the derivative of f at 1x = is 2. 

*** 
 

Example 6: Find )0(f ′ and )1(f −′ for the function RR→:f defined by 

5xx)x(f 2
−+= . 

Solution: We have 
x

)0(f)x0(f
lim)0(f

0x δ

−δ+
=′

→δ x

]5[]5x)x[(
lim

2

0x δ

−−−δ+δ
=

→δ

 

     1)x1(lim
0x

=δ+=
→δ

 

and 
x

)1(f)x1(f
lim)1(f

0x δ

−−δ+−
=−′

→δ

 

       
x

]5)1()1[(]5)x1()x1[(
lim

22

0x δ

−−+−−−δ+−+δ+−
=

→δ

 

      1)1x(lim
0x

−=−δ=
→δ

 

*** 
 
Now, try the following exercise.  

 
 

E7) Find the derivative of the function RR→:f defined by 

9x8x)x(f 2
+−= at the point c . 

 

 
The function f ′  which associates to each point x  of D , the derivative )x(f ′  at 

x , is called the derived function of f , because it has been derived from f by 

limiting operation.  Thus, f ′ is a function from D′ to R , where 

=′D )x(f:Dx{ ′∈  exists}. The domain of f ′ may be smaller than the domain 

of f . 

 
We are talking about the function f ′ , now it is important to see the relationship 
between the graph of a function f and its derivative f ′ . From the definition of 

f ′ , it is clear that at point x , when ,0)x(f >′ the tangent line must be tilted 

upward and the graph is rising as tangent line has positive slope. Similarly, 

when ,0)x(f <′ that is the slope of the tangent line is negative, the tangent line 

‘Ab initio’ is Latin term 
used for ‘from the 

beginning’.  
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is tilted downward, and the graph is falling. But when ,0)x(f =′ the tangent line 

is horizontal at x , so the graph flattens. Fig. 10 illustrates the same.  

 
Fig. 10: Sign of f ′  

 

We will see the graphs of f and f ′ in the following examples. 
 

Example 7: If ,x3x)x(f 3
−= find a formula for )x(f ′ . Also, compare the 

graphs of f and f ′ . 

Solution: 
h

)x(f)hx(f
lim)x(f

0h

−+
=′

→

 

    
h

]x3x[)]hx(3)hx[(
lim)x(f

33

0h

−−+−+
=′

→

 

   )1x(33x3 22
−=−=  

Fig. 11(a) shows the graph of the function f . 

 
(a) Graph of f                                                            (b) Graph of f ′  

 
Fig. 11 

 

Notice that the graph of f is rising for 1x −< and 1x > and it is falling for 

1x1 <<− and it has horizontal tangent lines at 1x −=  and 1. Thus, the graph 

of f ′ is above the −x axis that is 0)x(f >′ for 1x −< and ,1x > it is below the 

−x axis for 1x1 <<− that is 0)x(f <′  and cuts the −x axis at 1x = and at 

1x −= . One possible graph of these features is shown in Fig. 11(b). 

*** 
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Example 8: Check whether or not the function RR→:f , defined by 

|x|)x(f = , is differentiable. If f ′ exists, compare the graphs of f and f ′ . 

Solution:  i)   If ,0x > then xx = and we can choose xδ small enough such 

that 0xx >δ+ and hence xxxx δ+=δ+ . Therefore, for ,0x > we 

have 
x

x)xx(
lim

x

xxx
lim)x(f

0x0x δ

−δ+
=

δ

−δ+
=′

→δ→δ

11lim
x

x
lim

0x0x
==

δ

δ
=

→δ→δ

 

 and so f is differentiable for any .0x >  

ii) Similarly, for 0x < we have xx −= and xδ can be chosen small 

enough that 0xx <δ+ and so ).xx(xx δ+−=δ+ Therefore, for 0x < , 

the derivative is 

x

xxx
lim)x(f

0x δ

−δ+
=′

→δ x

)x()xx(
lim

0x δ

−−δ+−
=

→δ

1
x

x
lim

0x
−=

δ

δ−
=

→δ

 

 and so f is differentiable for any .0x <  

iii) When ,0x = we have to find ,
x

)0(f)x0(f
lim)0(f

0x δ

−δ+
=′

→δ

if it exists. 

Here, 1)0(flim
0x

=′
+

→δ

and 1)0(flim
0x

−=′
−

→δ

. Since these limits are different,  

)0(f ′ does not exist. Thus, f is differentiable at all x except 0. From 

above, the function f ′ is defined as 





<−

>
=′

0xif,1

0xif,1
f . 

The graphs of f and f ′ are given in Fig. 12 (a) and (b) respectively.  

 
         (a)                                                                      (b)  

Fig. 12: Graphs of (a) f and (b) f ′  

*** 
 
You can now try the following exercises. 

 
 

E8) Use the definition of derivative to find )x(f ′ for the function f given by 

1x2x3)x(f 2
++= . Also, draw the possible graph of f ′ . 

 
E9) Find ,dx/dy  wherever it exists, using first principles, for each of the 

following: 

 i) 3xy =  

 ii) |1x|y +=  
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 iii) 
2

1
x,1x2y −≥+=  

 

E10) Show that each of the following functions is derivable at 2x = .  Find 

)2(f ′  in each case. 

 i) RR→:f  given by x)x(f =  

 ii) RR→:f  given by bax)x(f += , where a  and b  are fixed real 

numbers. 
 

 
So far, we have discussed the derivatives. Now we will establish an important 
relation between continuity and differentiability in the following section. 
 

9.3 CONTINUITY VERSUS DERIVABILITY 
 

Let us begin with an example that is x)x(f = . In Unit 8, we have proved that 

the function |x|y =  is continuous R∈∀x ,  and in Example 8, we saw that 

this function is derivable at every point except at 0x =  .  This means that the 

function |x|y =  is continuous at 0x = , but is not derivable at this point.  This 

shows that a function can be continuous at a point without being derivable at 
that point.  However, we will now prove that if a function is derivable at a point, 
then it must be continuous at that point or derivability ⇒  continuity. In other 
words, we expect the following theorem to be true. 
 

Theorem 1: Let f  be a function defined on an interval I .  If f  is derivable at a 

point Ix 0 ∈ , then it is continuous at 0x . 

 

Proof:  To prove that f is continuous at 0x ,we have to show that 

)x(f)x(flim 0
xx 0

=
→

. We do this by showing that the difference 

)x(f)x(f 0− approaches 0. If 0xx ≠ but 0xx → , then, we divide and multiply 

)x(f)x(f 0− by ),xx( 0− and we may write 

)xx(
)xx(

)x(f)x(f
)x(f)x(f 0

0

0
0 −

−

−
=− . 

Since, f  is derivable at 
0

0

xx
0

xx

)x(f)x(f
lim,x

0 −

−

→

 exists and equals )x(f 0
′ . 

Thus, taking limit as 0xx → , we have, 

)]x(f)x(f[lim 0
xx 0

−
→ 








−
−

−
=

→

)xx.(
xx

)x(f)x(f
lim 0

0

0

xx 0

 

        )xx(lim
xx

)x(f)x(f
lim 0

xx
0

0

xx 00

−
−

−
=

→→

 

        00)x(f 0 =×′=  

Therefore, 0)x(flim)x(flim 0
xxxx 00

=−
→→

. 

That is, )x(f)x(flim)x(flim 00
xxxx 00

==
→→

 

Consequently, f  is continuous at 0x . 

 
You may note that the converse of Theorem 1 is not true. There are functions  
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that are continuous but not differentiable. For example, the function |x|y =  is 

continuous at 0 but not derivable at only one point, 0x = .  But, there are 
some continuous functions which are not derivable at infinitely many points.  
For instance, look at Fig. 13. 

 
Fig. 13 

 
Fig. 13 shows the graph of a continuous function which is not derivable at 
infinitely many points.  Can you mark those infinitely many points at which this 
function is not derivable?  You can take your hint from the graph of the 

function |x|y = . 

 
Note that a function is differentiable only if the limit in the definition of 

derivative exists. At points where a function f is not differentiable, we say that 

the limit of the derivative of f does not exist at those points. Three common 

reasons for a derivative to not exist at a point 0x in the domain of f are as 

given below: 

i) If the graph of a function f has a ‘corner’ in it, then the graph of f has no 
tangent at this point and f is not differentiable there. Fig. 14 (a) shows a 
corner in a graph of a function. 

ii) If the curve has a vertical tangent line when 0xx = , that is f is continuous 

at 0x and ∞=′
→

)x(flim
0xx

or −∞=′
→

)x(flim
0xx

. This means that the tangent 

lines become steeper and steeper as 0xx → . Fig. 14 (b) shows this. 

iii) Theorem 1 gives another reason for a function not to have a derivative. It 

says that if f is not continuous at ,x0 then f is not derivable at 0x . So at 

any discontinuity, f will not be differentiable. Fig. 14 (c) strengthens this.   

 
(a)               (b)              (c)  

Fig. 14: Graph of functions not differentiable at
0

x  ((a) A corner, (b) A vertical  

              tangent, and (c) A discontinuity) 
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We now give another example of a function, which is continuous but not 
differentiable.  
 

Example 9: Let 





≥−

<−
=

1xif,3x

1xif,x2
)x(f  

i) Draw the graph of f ; 

ii) Show that f is continuous, but not differentiable, at 1x = . 

Solution: i)  The graph of f is shown in Fig. 15 

 
Fig. 15: Graph of f  

 

ii)  The function f is defined at 1 and 2)1(f −= , then, 2)x(flim
1x

−=
−

→

and 

2)x(flim
1x

−=
+

→

. Therefore, )1(f)x(flim
1x

=
→

and the function f is continuous 

at 1x = . Since, the graph of the function f has a corner at 1x = , 
therefore, the graph cannot have any tangent at 1x = . Thus, f is not 

differentiable at 1x = . So, the function f is continuous at 1x = but not 
differentiable at 1x = . 

*** 
 
There are functions which are continuous everywhere but differentiable 
nowhere.  The discovery came as a surprise to the nineteenth century 
mathematicians who believed, till then, that if a function is such that it is not 
derivable at any point, then it cannot be continuous at every point.  The first 
such function was put forth by the mathematician Weierstrass (although he is 
said to have attributed the discovery to Riemann) in 1872.  He showed that the 

function f  given by ∑
∞

=

π=

0n

nn
)xacos(b)x(f , where a  is an odd integer and b  

is a positive constant between 0  and 1 such that 2/31ab π+> , is a function 

which is continuous everywhere, but derivable nowhere.  We will not prove this 
assertion in this course. 
 
Try the exercises now. 
 
 

E11) Is the function R→]1,0[:f given by 
2x9

)3x2(
)x(f

50

+

+
= continuous at  

1.0x = ? 
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E12) Give an example of a function that is continuous on [,] ∞∞− but is not 

differentiable at 5x = . 
 

 
In the following section, you will study some basic differentiation rules for 
constant function and power function. 
 

9.4 SOME SIMPLE DIFFERENTIATION  
 
As we will see later, it is not always necessary to find a derivative from the first 
principles.  We shall develop certain rules which can be used to write down the 
derivatives of some functions.  Some such rules are obtained as given below. 
 

9.4.1 Derivative of a Constant Function 

Let RR→:f  be a constant function f  defined as c)x(f =  for all 

,R∈x where c  is a real number.  Let us see, if f ′ exists. 

  00lim
x

cc
lim

x

)x(f)xx(f
lim)x(f

0x0x0x
==

δ

−
=

δ

−δ+
=′

→δ→δ→δ

. 

Hence, a constant function is differentiable and its derivative is equal to 
zero at each point of its domain. 

Thus, R∈∀= x0)c(
dx

d
. You may recall the constant function and its 

geometric representation from Unit 2. In Fig. 16, if we join any two points, P  

and Q , the  line PQ  is the line ,cy = and is parallel to the x -axis.  Hence, the 

angle made by PQ  with the x -axis is zero.  This means that the slope of PQ  

is 00tan = . Since, )x(f ′  is the limit of this slope as PQ → , we get 0)x(f =′ . 

This is true for any x  in the domain of f . 

 
Fig. 16: Graph of f and f ′  

 
We will find derivative of few constant functions in the following example.  
 
Example 10: Find the derivatives of the following with respect to x : 

(i) R∈∀π= x)x(f   

(ii) R∈∀= x10)x(f  

Also, define the domain and range f ′ in each case and draw the graph of f ′ in 
each case. 
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Solution: (i) 0)(
dx

d
))x(f(

dx

d
=π= (since π is a constant) 

Domain of f ′ is R and range of f ′ is 0.  

(ii)  0)10(
dx

d
))x(f(

dx

d
==  

Domain of f ′ is R , and range of f ′ is 0.  

*** 
 
Now try the following exercise. 
 
 

E13) Find the derivatives of the following with respect to x . 

i) 2y =  

ii) ey = . 
 

 
Now in the following subsection we will differentiate the power function.  
 

9.4.2 Derivative of the Power Function )( nx  

If n  is a positive integer, let us find the derivative of 
n

x . According to the 

definition of the derivatives,  
x

x)xx(
lim)x(

dx

d
nn

0x

n

δ

−δ+
=

→δ

. 

 

Instead of xδ , we can also use the letter h  to denote the small change in the 

variable x .  We are, in fact, free to use any notation, but xδ  or h  are the 

most commonly used ones. Then, we rewrite the derivative of 
n

x by replacing 

xδ with h . 

h

x)hx(
lim)x(

dx

d
nn

0h

n −+
=

→

 

  
h

x)hxhChxCx(
lim

nn2n2

2

n1n

1

nn

0h

−++++
=

−−

→

L
 

  { }1n2n

2

n1n

0h
hhxCnxlim −−−

→

+++= L  

  
1n

nx
−

=  [since ( ) ]0h...xhClim 1n2n

2

n

0h
=++

−−

→

 

Therefore, 1nnn nx)x(D)x(
dx

d −
== .   

 

Let us find the derivative of 
n

x in the following example. 
 

Example 11: Find the derivatives of 
6

x and 
11

x with respect to x . 

Solution: 
{ {{

5

x

16

n
x

6 x6x6)x(
dx

d

1n
n

==
−

−  

     
{ { {

10

x

111

n
x

11 x11x11)x(
dx

d

1n
n

==
−

−  

*** 
 

We shall show later, that 1nn nx)x(
dx

d −
=  for all 0x > if n is any real number.   

Binomial Theorem: 

.bC...

baCbaC

aC)ba(

n

n

n

22n

2

n1n

1

n

n

0

nn

++

+

+=+

−−
 

Where n is a non-
negative integer and 

b,a are arbitrary.  

(using the binominal theorem) 
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If 0n = , then 1x
n

= for all x and hence, 0)x(
dx

d n
=  for all R∈x .  This 

means that the result is trivially true for 0n = .  Now, we are in a position to 

prove this result for 2/1n = .  That is, ( ) 2/1
x

2

1
x

dx

d −









= , and this we do in the 

following example. 
 

Example 12: Show that the function f  defined by ,0x,x)x(f ≥=  is 

differentiable.   

Solution: We have, 
h

xhx
lim

h

)x(f)hx(f
lim))x(f(

dx

d

0h0h

−+
=

−+
=

→→

  

     
( )( )

( )xhxh

xhxxhx
lim

0h ++

++−+
=

→

      

     
( )xhxh

x)hx(
lim

0h ++

−+
=

→

 

 
2/1

0h
x

2

1

x2

1

xx

1

xhx

1
lim −

→

==
+

=
++

= , 0x > . 

Thus, .0x,
x2

1
)x(

dx

d
>= You may note that x)x(f = is defined for all 

,0x ≥ whereas its derivative 
x2

1
)x(f =′ is defined for .0x > This shows that 

a function need not be differentiable throughout its entire domain. What 

happens at ,0x = the function f has vertical tangent at ,0x = and the slope of 

a vertical tangent is undefined.  

 

Fig. 17: Graph of xf(x) =  

***  
 

Now, try the following exercise. 
 
 

E14) Find the derivative of the following with respect to x . 

 i)   8xy =  

 ii)  1000xy =  

 iii) 10y = . 

x is not defined for 

.0x <  

[ multiplying numerator and 

denominator by )].xhx( ++  
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A function is said to be differentiable in an interval ]b,a[ if it is differentiable at 

every point of ]b,a[ . As in the case of continuity, at the end points a and b , 

we take the right hand limit and left hand limit, which are nothing but the left 
hand derivative and the right hand derivative of the function at b and 
a respectively. Similarly, a function is said to be differentiable in an interval 

[b,a] if it is differentiable at every point of [b,a] . 

 

That is 
h

)x(f)hx(f
lim)x(f 00

0h
0

−+
=′

→

is a two-sided limit and only a one-sided 

limit makes sense at an endpoint. To deal with this situation, we define 

derivatives from the left and right. These are denoted by 
−
′f and 

+
′f , 

respectively, and are defined in the following definition.  
 

Definition: (i) 
h

)a(f)ha(f
lim)a(fR)a(f

0h

−+
=′=′

+
→

+
, if it exists, is called the 

right hand derivative of )x(f  at ax =  and is written as )a(fR ′ or 

)a(f
+
′  . At points where )a(fR ′ exists we say that the function f is 

differentiable from the right.    

(ii)  
h

)a(f)ha(f
lim)a(fL)a(f

0h

−+
=′=′

−
→

−
 if it exists, is called the left hand 

derivative of )x(f  at ax =  and is written as )a(fL ′ or )a(f
−
′ .  

At points where )a(fL ′ exists, we say that the function f is differentiable 

from the left. If we say derivative of function at any point exists, that 

means left hand derivative and right hand derivative of the function f  at 
that point must be equal to the value of the derivative of the function at 

that point. That is if )a(f ′  exists, we must have )a(f)a(fL)a(fR ′=′=′  . 

Geometrically, )a(fR ′ is the limit of the slopes of the secant lines 

approaching a  from the right, and )a(fL ′ is the limit of the slopes of the 

secant lines approaching a from the left. Fig. 18 shows the geometrical 

representations of )a(fR ′ and )a(fL ′ . 

 

 
 

Fig. 18: Right and Left Derivatives 

 

Example 13: Sketch the graph of the function f defined by 3
2

x)x(f = . Also 

check whether f is differentiable at 0x = or not.  

Solution: Fig. 19 shows the graph of f . 
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Fig. 19: Graph of 
2/3

xf(x) =  

 
Now, let us find its left and right hand derivatives. 

3/1
0h

3/23/2

0h0h h

1
lim

h

0)h(
lim

h

)0(f)h0(f
lim)0(fR

+++
→→→

=
−

=
−+

=′ +∞=  

−∞==
−

=
−+

=′
−−−

→→→
3/1

0h

3/23/2

0h0h h

1
lim

h

0h
lim

h

)0(f)h0(f
lim)0(fL  

Thus, f is not differentiable at 0x = . Fig. 19 shows that graph of 3/2x)x(f = , 

which has a corner at 0x = and a vertical tangent as well. Therefore, the 

function f is not differentiable at 0x = . 
*** 

 
Now you can try following exercise.  
 
 

E15) Check whether the function f given by 3/1x)x(f = is differentiable at 

0x = or not. 
 

 
So far, we have obtained derivatives of certain functions by differentiating from 
the first principles. When new functions are formed from old functions by 
adding, subtracting, multiplying by a constant, their derivatives can be 
calculated in terms of derivatives of the old functions. We will find the 
derivatives of these new functions in the following section. 
 

9.5 ALGEBRA OF DERIVATIVES 
 

Consider the function f defined by 
1x

x3x2
)x(f

4

23

−

+
= .  If we try to find the 

derivative of this function from the first principles, we will have to do lengthy, 
complicated calculations.  However, a close look at this function reveals that it 
is composed of several functions: constant function like 2, 3 and 1− , and 

power functions like 23 x,x  and 
4

x .  We already know the derivatives of these 

functions.  Can we use this knowledge to find the derivative of )x(f ?  In this 

section, we shall state and prove some theorems related to this.  
 

Theorem 2 (The Constant Multiple Rule): If f  is a differentiable function and 

R∈c  then cf  is differentiable,  and )]x(f[
dx

d
c)]x(cf[

dx

d
= .   
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Proof: Let RR→:f  be a differentiable function and let R∈c .  Then, 

consider the function cfy = . We know that f  is derivable. So, )x(f ′ exists. 

Now the derivative of y  with respect to x  is   

                     

h

)x(cf)hx(cf
lim

h

)x(cf)hx()cf(
lim

dx

)]x(cf[d

dx

dy

0h0h

−+
=

−+
==

→→

  

   




 −+
=

→ h

)x(f)hx(f
clim

0h
 

   




 −+
=

→ h

)x(f)hx(f
limc

0h
  

   )]x(f[
dx

d
c)x('fc ==  

Thus,cf is differentiable and fc)cf( ′=′ . 
 

Example 14: Find ,
dx

dy
if  

i) 2xy −=  

ii) 10x
4

3
y =  

iii) 
2

x2

1
y =  

Solution:  

i) 
{ {

)x(f

2

c)x(f.c

2 )x(
dx

d
)1()x(

dx

d

dx

dy
−=−=

321
x2−=  

ii) 

321
)x(f.c

10x
4

3

dx

d

dx

dy








=

{
{

)x(f

10

c

)x(
dx

d
.

4

3
=

9x10.
4

3
=

9x
2

15
=  

iii) 
{
{

312

)x(f

2

c
)x(f.c

2

2
xx)2(.

2

1
)x(

dx

d

2

1
x

2

1

dx

d

x2

1

dx

d −−−−−
−=−==








=









43421

 

A common mistake is to write an expression such as 
2

x2

1
as 2)x2( − , which is 

incorrect. The exponent 2 applies only to x and the 2 is the part of the 

coefficient 
2

1
. 

*** 
 

Example 15: The volume V of a spherical tumor can be approximated by 

,r
3

4
)r(V 3

π= where r is the radius of the tumor, in cm.  

i) Find the rate of change of the volume with respect to the radius.  

ii) Find the rate of change of volume at cm5.1r = . 

Solution: i) 
223

r4r3
3

4
r

3

4

dr

d

dr

dV
π=⋅π⋅=








π=  

ii)  22 cm28)5.1(4)5.1(V ≈π=′  

[ as c is constant] 
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Thus, when the radius is cm5.1 , the volume is changing at the rate of 
3cm28 for every change of cm1 in the radius.  

*** 
 
Try the following exercise now. 
 
 

E16) Differentiate the following with respect to x , using Theorem 2. 

 i) 3x)3/5(y = for all R∈x . 

 ii) x8y = for x . 

 iii)  x2y = for all R∈x . 

 

E17) Differentiate |x|7y = with respect to x . 
 

 
Now, let us discuss the derivative of sum of two or more functions.  
 

Theorem 3 (The Sum Rule): The sum of two differentiable functions f  and g  

is a differentiable function and )x(g)x(f)]x(g)x(f[
dx

d
′+′=+ . 

 

Proof: Let f  and g  be differentiable functions from R  to R .  Let us examine 

whether gf + , the sum of the functions f  and g , is differentiable.  Now, 

h

)}x(g)x(f{)}hx(g)hx(f{
lim)]x(g)x(f[

dx

d

0h

+−+++
=+

→

   

     






 −+

+
−+

=
→ h

)x(g)hx(g

h

)x(f)hx(f
lim

0h
 

               
dx

)x(dg

dx

)x(df

h

)x(g)hx(g
lim

h

)x(f)hx(f
lim

0h0h
+=

−+
+

−+
=

→→

 

     )x(g)x(f ′+′=  

Thus, we have proved the theorem. 
The above result can be easily extended to the sum of any number of 
functions, that is,  

 
dx

df

dx

df

dx

df
)fff(

dx

d n21
n21 +++=+++ LL , 

where n1 f,,f K  are differentiable functions. 

 

Remark 3: From Theorem 2 and Theorem 3, it follows that if f  and g  are 

differentiable functions, then gf −  is also a differentiable function (since 

g)1(g −=− and ))g(fgf −+=− , and )x(g)x(f)x()gf( ′−′=′− . 

 
Let us see how Theorem 2 and Theorem 3 are is useful in the following 
example. 
 
Example 16: Differentiate  the following w.r.t. x . 

i) 10x2x4x6x 2356
++−+  

ii) 
x

5
xx12 +−  
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Solution: i) )10x2x4x6x(
dx

d 2356
++−+  

 10)x2(
dx

d
)x4(

dx

d
)x6(

dx

d
)x(

dx

d 2356
++−++=         [applying Theorem 3] 

 )10(
dx

d
)x(

dx

d
2)x(

dx

d
)4()x(

dx

d
6x6 2355

++−++= [applying Theorem 2] 

 0)x2(2)x3(4)x5(6x6 245
++−+=  

  x4x12x30x6 245
+−+=  

 Thus, x4x12x30x6)10x2x4x6x(
dx

d 2452356
+−+=++−+ . 

ii)  







+−=








+−

x

1

dx

d
5)x(

dx

d
)x(

dx

d
.12

x

5
xx12

dx

d 2/1
 

         
11

1
2

1

x)1(5x
2

1
1.12

−−
−

−+−=  

         
2x

5

x2

1
12 −−=  

 Thus, 
2x

5

x2

1
12

x

5
xx12

dx

d
−−=








+− . 

*** 
 
You are now in a position to solve these exercises. 
 
 

E18) Differentiate the following with respect to x . 

 i) 6x2x5 3
+− . 

 ii) n

n

2

210 xaxaxaa ++++ L , where R∈1a  for n,,2,1i K= . 

 

E19) Find the points on the curve 4x8xy 24
+−= where the tangent line is 

horizontal.  
 

 
Now derivative of product of two functions is in the following theorem. 
 
Theorem 4 (The Product Rule): The product of two differentiable functions is 
again a differentiable function and its derivative at any point x  is given by the 
formula 

 )x(g)x(f)x(g)x(f)]x(g)x(f[
dx

d
′+′=  

  

Proof: Let f  and g  be two differentiable functions on R .  We want to find out 

whether their product fg  is also differentiable. 

h

)x(g)x(f)hx(g)hx(f
lim)]x(g).x(f[

dx

d

0h

−++
=

→

       

           
h

)x(f)}x(g)hx(g{)hx(g)}x(f)hx(f{
lim

0h

−+++−+
=

→

 

   [We have added and subtracted )hx(g)x(f + ] 

           















 −+
+









+






 −+
=

→→

)x(f
h

)x(g)hx(g
lim)hx(g

h

)x(f)hx(f
lim

0h0h
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 )x(flim
h

)x(g)hx(g
lim)hx(glim

h

)x(f)hx(f
lim

0h0h0h0h →→→→







 −+
++







 −+
=  

)x(f
dx

)x(gd
)x(g

dx

)x(df
+=   

 

 

Therefore, )x(g)x(f)x(g)x(f)]x(g)x(f[
dx

d
′+′= . 

 
We can extend this result to the product of three differentiable functions.  This 

gives us )x(h)x(g)x(f)x(h)x(g)x(f)x(h)x(g)x(f)x()fgh( ′+′+′=′ . 

 
You see, you have to differentiate only one function at a time.  This result can 
also be extended to the product of any finite number of differentiable functions.  

Thus, if n1 f,,f K  are differentiable functions, then  

)x(f)x(f)x(f)x()fff( n21n21 KK ′=′  

   )x(f)x(f)x(f)x(f)x(f)x(f)x(f n21n321
′++′+ KLK  

 
Caution: Unlike the sum rule of differentiation, in the product rule 

)x(g)x(f])x(g)x(f[ ′′≠′ . It is different.  

 
Theorem 4 is very useful in simplifying calculations, as you can see in the 
following example. 
 
Example 17: Differentiate the following with respect to x .  

i) )4x(x 2
+  

ii) )xx3()9x2x( 32
−−+  

Solution:  i) We take 2x)x(f = and 4x)x(g += . We differentiate each of 

these, obtaining x2)x(
dx

d
)x('f 2

==  and 

101
dx

)4(d

dx

)x(d
)4x(

dx

d
)x('g =+=+=+=  . 

By the product rule, the derivative of the given function is the 

)x(f.)x(g)x(g.)x(f)]x(g).x(f[
dx

d
′′+′=  

=+∴ ))4x(x(
dx

d 2 2x1)4x(x2 ×++  

        22 xx8x2 ++=  

    x8x3 2
+= . 

 

ii)  )xx3(
dx

d
.)7x2x()]xx3()7x2x[(

dx

d 3232
−−+=−−+  

     )7x2x(
dx

d
.)xx3( 23

−+−+  

 







−−+=

x2

1
x9.)7x2x(

22  

  )2x2(.)xx3( 3
+−+    

*** 

)x(f)x(g)x(g)x(f ′+′=
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Remark 4: You could also have differentiated )4x(x 2
+  without using 

Theorem 4, as follows: 

 232 x4x)4x(x +=+  

Therefore, )x4x(
dx

d
))4x(x(

dx

d 232
+=+  

        )x4(
dx

d
)x(

dx

d 23
+=  [By Theorem 3] 

        x8x3)x2(4x3 22
+=+=  

This shows that the same function can be differentiated by using different 
methods.  You may use any method that you find convenient.  This 
observation should also help you to check the correctness of your result.  (We 
assume that you would not make the same mistake while using two different 
methods!) 

*** 
 
Example 18: Differentiate the function f defined by 

0t),t32(t)t(f >+= w.r.t. .t  

Solution: [ ])t32(t
dt

d
)t(f

dt

d
+=  

     )t3t2(
dt

d 23
+=  

     
23

t3

t2

2
+=  

     t2
t

1
+= . 

*** 
 
You may try following exercises. 
 
 

E20) Using Theorem 4, differentiate the following functions.  Also, differentiate 
these functions without using Theorem 4, and compare the results. 

 i) xx . 

 ii) 235 )5x2x( ++  

 iii) )3x()2x()1x( +++ . 

 

E21) If )x(gx)x(f = and it is known that 2)3(g = and ,5)3(g =′ find )3(f ′ . 
 

 
We shall discuss derivative of the quotient of two functions in the following 
theorem. 
 

Theorem 5 (The Quotient of Rule): The quotient g/f  of two differentiable 

functions f  and g  such that 0)x(g ≠ , for any x  in its domain, is again a 

differentiable function and its derivative at any point x  is given 

by
2))x(g(

)x(g)x(f)x(f)x(g

)x(g

)x(f

dx

d ′−′
=
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This can also be written as  

=








rDenominato

Numerator

dx

d
 

2or)(Denominat

r)Denominato of e(derivativ)(NumeratorNumerator) of e(derivativ or)(Denominat −

 

Proof: Let g/f=φ , where f  and g  are differentiable functions on R , and 

0)x(g ≠ .  Then,   

h

)x()g/f()hx()g/f(
lim

h

)h()hx(
lim

dx

)x(d

)x(g

)x(f

dx

d

0h0h

−+
=

φ−+φ
=

φ
=








→→

 









−

+

+
=

→ )x(g

)x(f

)hx(g

)hx(f

h

1
lim

0h
 

 
( ))hx(g)x(gh

)hx(g)x(f)hx(f)x(g
lim

0h +

+−+
=

→

 

 
)x(g)hx(g

h

)x(g)hx(g
)x(f

h

)x(f)hx(f
)x(g

lim
0h +
















 −+

−






 −+

=
→

 

  

)x(g)hx(glim

h

)x(g)hx(g
)x(f

h

)x(f)hx(f
)x(glim

0h

0h

+
















 −+

−






 −+

=

→

→

 

 
)x(glim)hx(glim

h

)x(g)hx(g
)x(flim

h

)x(f)hx(f
)x(glim

0h0h

0h0h

→→

→→

+
















 −+

−














 −+

=  

 
2))x(g(

)x(g)x(f)x(f)x(g ′−′
=  

Thus, 
( )

,
)x(g

)x(g)x(f)x(f)x(g

)x(g

)x(f

dx

d
2

′−′
=








if .0)x(g ≠  

 
We will obtain an important corollary to Theorem 5 now. 
 

Corollary 1: If g  is a function such that 0)x(g ≠  for any x  in its domain, then  

 
2))x(g(

)x(g

)x(g

1

dx

d ′−
=

′









. 

 

Proof: In the result of Theorem 5, take f  to be the constant function 1.  Then 

0)x(f =′  for all x . 

Therefore, 

 














=

′−′
=

′








′×−×
=

′









1f(x)  

))x(g(

)x(g)x(f)x(f)x(g

)x(g

)x(f

))x(g(

)x(g10)x(g

)x(g

1
22

whereas

   
2))x(g(

)x(g′−
= . 

[ by adding and 
subtracting 

)x(g)x(f in the 
numerator] 
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As we said earlier that the derivative of 
n

x can be found for any real n . In the 

next example, we will find the derivative of 
n

x for any negative integer n using 
the quotient rule. 
 

Example 19: Show that 1nn nx)x(
dx

d −
= , where n  is a negative integer and 

0x ≠ .   

Solution: Consider the function RR →}0{\:f  given by mx)x(f −
= , where 

N∈m .  Then R∈∀= xx/1)x(f m .  Thus, g/1f = , where mx)x(g =  for all 

0x,x ≠∈R .  g  is a differentiable function and 0)x(g ≠  if 0x ≠ .  So, except 

at 0x = , we find that  

 
2)}x(g{

)x(g
)x(f

′−
=′  (from Corollary 1) 

          ]mx)x(g[
)x(

mx 1m

2m

1m
−

−

=′
−

=  

          
1m

m2

1m

mx
x

mx −−

−

−=
−

=  

Denoting m−  by n , we get nx)x(f = , and 1nnx)x(f −
=′ . 

*** 
 
In the next example, we will apply the quotient rule to find the derivative of a 
rational function. 
 

Example 20: Differentiate the function f  given by )x2x/()2x()x(f 23
++= w.r.t. x .  

Solution: We can write f  as the quotient h/g  where )2x()x(g 3
+=  and 

x2x)x(h 2
+= . Here ,0)x(h = when 2,0x −= . Thus, the function f is 

differentiable except 2,0x −= . 

Now, 223 x30x3)2(
dx

d
)x(

dx

d
)x(g =+=+=′ . 

Also, 2x2)x(h +=′ . 

Therefore, 
2))x(h(

)x(h)x(g)x(g)x(h
)x(f

′−′
=′  

     
22

322

)x2x(

)2x2()2x()x3()x2x(

+

++−+
=  

      
22

3434

)x2x(

4x4x2x2x6x3

+

−−−−+
=  

     
22

34

)x2x(

4x4x4x

+

−−+
= , if 2,0x −≠ . 

*** 
 
Caution: You should not use the quotient rule every time, wherever you see a 
quotient. Sometimes it is easier to rewrite a quotient first to put it in a form that 

is simpler for the purpose of differentiation. For example, 
x

x3x2
)x(f

3
+

= can 

be rewritten as 2
1

2
5

x3x2)x(f += , and is easier to differentiate the later form 

of )x(f .  
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Example 21: The population P , in thousand, of a small city is given by 

9t2

t500
)t(P

2
+

= , where t is the time, in years.  

i) Find the growth rate.  

ii) Find the population after 12 years.  

iii) Find the growth rate at 12t = yrs. 

Solution: i) The growth rate 
22

2

)9t2(

t10004500
)t(P

+

−
=′ . 

ii) 22
297

6000

9288

6000
)12(P ≈=

+
=  

iii) 6.1
88209

139500

)297(

140004500
)12(P

2
−≈−=

−
=′  

The population function is given in Fig. 20. 
 

 

   Fig. 20 

*** 
 
Now, try the following exercises. 
 
 

E22) Differentiate following w.r.t. x . 

 i) 
5x

1x2

+

+
, if 5x ≠  

 ii) 
32 dxcxbxa

1

+++
 where d,c,b,a  are fixed real numbers, if 

0dxcxbxa 32
≠+++ . 

 iii) 
1x

x3x2
4

23

−

+
, if 01x 4

≠− . 

 

E23) Obtain the derivative of )x(f/1  by differentiating from first principles, 

assuming that 0)x(f ≠ , for any x . 

 

E24) Differentiate 
5

1

x

x7x52
)x(f

−
++

=  by three different methods. 
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Sometimes we are asked to differentiate the functions for which we cannot 

apply any rule of differentiation directly. For example, if 1x)x(f += , we 

cannot find the derivative of )x(f directly using any rule. But if you observe 

)x(f , you will find that it is a composite function [Recall Unit 2 for composite 

functions]. That is t)t(g = and 1x)x(h += . We can also write hogf = . If 

the functions g  and h are differentiable and we can find their derivatives, then 

using the chain rule, we can find the derivative of f . Therefore, the chain rule 
of differentiation is a rule for differentiating composite functions; it is a 
remarkable rule which helps us to differentiate complicated functions in an 
easy and elegant way. In the following section, we will discuss the chain rule. 
 

9.6 THE CHAIN RULE  
 
We establish the rule in the following theorem. 
 

Theorem 6 (The Chain Rule): Let )u(gy =  and )x(fu = .  If both du/dy  and 

dx/du  exist, then 
dx

dy
exists and is given by 

dx

du

du

dy

dx

dy
×= . 

 

Proof: We first note that )x()gof())x(f(g)u(gy === , so that y  is the 

composite function gof .  We are given that y , regarded as a function of 

u and is differentiable w.r.t. u .  We want to prove that y , regarded as a 

function of x , is also differentiable.  To do this, we must show that x/ylim
0x

δδ
→δ

 

exists, where yδ  is the change in the variable y  corresponding to a change 

xδ  in the variable x .   

x

y
lim

dx

dy

0x δ

δ
=

→δ

 

  
x

u

u

y
lim

0x δ

δ
⋅

δ

δ
=

→δ

 

  
x

u
lim

u

y
lim

0x0x δ

δ
⋅

δ

δ
=

→δ→δ

 

  
x

u
lim

u

y
lim

0x0u δ

δ
⋅

δ

δ
=

→δ→δ

 

 
 

  
dx

du

du

dy
⋅=  

Therefore,  

 
dx

du

du

dy

dx

dy
⋅=  

Hence dx/dy  exists and is equal to 
dx

du

du

dy
× , that is the product of derivative 

of y w.r.t. u  and of u w.r.t. x . 

You may find it more convenient to remember and use the rule in the following 
form: 

If ))x(f(g)x(h =  is the composite of two differentiable functions g  and f , 

then, h  is differentiable and )x(f))x(f(g)x(h ′′=′ . 

 
To clarify this rule let us try the following example. 

[Q 







δ

δ

δ
=δ

→δ→δ

x
x

u
limulim

0x0x
xlim

x

u
lim

0x0x
δ×

δ

δ
=

→δ→δ

 

00
dx

du
=×= . This means that 0u →δ  as 0x →δ .] 
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Example 21: Differentiate 3)1x2(y +=  with respect to x . 

Solution: Let 1x2u += .  Then 33 u)1x2(y =+= . 

Now y  is a differentiable function of u  and u  is a differentiable function of .x  

Here, 2u3
du

dy
=  and 2

dx

du
= .  Hence, we can use the chain rule to get 

222 )1x2(6u62.u3
dx

du
.

du

dy

dx

dy
+==== . 

*** 
 
You might be thinking that there was really no necessity of using the chain rule 

here.  We could simply expand 3)1x2( +  and then write the derivative.  But the 

situation is not always as simple as in this example.  You would appreciate the 
power of the chain rule after using it in the next example. 
 

Example 22: Differentiate 10023 )1x2x( −+ with respect to x. 

Solution: Let 10023 )1x2x(y −+=  and let )1x2x(u 23
−+= .  Then, 100uy = .  

Since 
du

dy
 and 

dx

du
 both exist, and 99u100

du

dy
=  and x4x3

dx

du 2
+= , therefore, 

by chain rule,  

dx

du
.

du

dy

dx

dy
=   

 )x4x3.(u100 299
+=  

 )x4x3()1x2x(100 29923
+−+= . 

*** 
 
Our next example illustrates that this rule can be extended to composition of  
three functions. 
 

Example 23: Differentiate 410 }3)2x5{( ++  with respect to x. 

Solution: We write 3)2x5(u,}3)2x5{(y 10410
++=++=  and 2x5v += . 

Then 4uy =  and 3vu 10
+= .  That is, y  is a function of u,u  is a function of 

v , and v  is function of x .  By extending the chain rule, we get  

 
dx

dv

dv

du

du

dy

dx

dy
⋅⋅=  

This gives, 

 9393 vu200)5).(v10()u4(
dx

dy
==  

      9310 )2x5(]3)2x5[(200 +++=  

*** 

 
This example illustrates that there may by situations in which we may go on 
using chain rule for a function of a function of a function…, and so on.  This 

perhaps justifies the name ‘chain’ rule.  Thus, if n1 g,,g K  and h  are functions 

such that )x()ggg(h n21 οοο= K , then  

 )x(g).x)(g(g)x)(gg(g))x()gg(g)x(h nn1nn32n21
′′οο′οο′=′

−
KKK  

 
Example 24: A spherical balloon is filled with air. At any time t , the volume of 

the balloon is )t(V and its radius is )t(r . 
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i) What do the derivatives 
dr

dV
and 

dt

dV
represent? 

ii) Express 
dt

dV
in terms of 

dt

dr
. 

Solution: i)    
dr

dV
is the rate of change of volume with respect to radius 

and
dt

dV
is the rate of change of volume with respect to time.  

ii)    We know that the volume of a sphere with radius r is 3r
3

4
V π= . 

Differentiating V with respect to t , we get  

 
dt

dr

dr

dV

dt

dV
⋅= (using the chain rule) 

     
dt

dr
r4

dt

dr

dr

r
3

4
d

2

3

π=⋅









π

= . 

***                 

 
Now, try the following exercises. 

 
 

E25) Find dx/dy  for each of the following using the chain rule: 

 i) 
2

x7x51

5

++
. 

 ii) 
3

2

)3x2(1

)3x2(

++

+
  

 iii) 733 })5x9()5x9{( −
+++ . 

 

E26) Find ),x(f ′ if x1)x(f += . 

 

E27) A particle moves along a straight line with displacement )t(s and velocity  

)t(v . Explain the difference between the meanings of the derivatives 

dt

dv
and 

ds

dv
. Also, express 

dt

dv
in terms of 

ds

dv
. 

 

 
Let us find derivatives of the trigonometric function in the following section. 
 

9.7 DERIVATIVES OF TRIGONOMETRIC     
FUNCTIONS 

 
In this section, we shall calculate the derivatives of the six trigonometric 

functions: xsec,xcot,xtan,xcos,xsin  and xeccos .  You already know that 

these six functions are related to each other.  For example, we have: 

i) 1xcosxsin 22
=+  ii) xcos/xsinxtan = , and many more identities which 

express the relationships between these functions.  As you will soon see, our 
job of finding the derivatives of all trigonometric functions becomes a lot easier 
because of these identities.   
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We shall now find out the derivative of xsin  from the first principles.  If 

xsin)x(fy == , then by definition 

h

xsin)hxsin(
lim

h

)x(f)hx(f
lim

dx

dy
)x('f

0h0h

−+
=

−+
==

→→

 

 =  
h

)2/hxcos()2/hsin(2
lim

0h

+

→

  

 )2/hxcos(lim
2/h

)2/hsin(
lim

0h0h
+=

→→

 

 xcosxcos1 =×=   [Recall Example 25 of Unit 7, 1
x

xsin
lim

0x
=

→

] 

Thus, we get  

 xcos)x(sin
dx

d
=  

Now, let us consider the cosine function given by xcos)x(fy ==  and find its 

derivative.  In this case, 

h

xcos)hxcos(
lim)x(cos

dx

d

0h

−+
=

→

 

 
h

)2/hxsin()2/hsin(2
lim

0h

+−
=

→

 

 )2/hxsin(lim
2/h

)2/hsin(
lim

0h0h
+−=

→→

 

 xsinxsin1 −=⋅−=  

Thus, we get xsin)x(cos
dx

d
−=  

Actually, having first calculated )x(sin
dx

d
, we could also have found out the 

derivative of xcos  by using the formulae )2/xsin(xcos π+= .  This gives us, 

))2/x(sin(
dx

d
)x(cos

dx

d
π+=  

  
dx

dt
)t(sin

dt

d
×= where 2/xt π+=   [ using chain rule] 

      ( ) xsin2/xcostcos1tcos −=π+==×= . 

 
Let us solve a few examples. 
 

Example 25: Find 
dx

dy
for the following 

i) x2siny = , 

ii) xcosy 2
= , 

iii) x3sinxsin5y 7
= , 

iv) ( )2
x

1siny =  . 

Solution: i) )x2(sin
dx

d

dx

dy
=

dx

dt
)t(sin

dt

d
×=  where x2t =  

          )x2(
dx

d
tcos ×= x2cos2= . 






 +−
=−

2

)BA(
cos

2

)BA(
sin2BsinAsinSince






 +−
=−

2

BA
sin

2

AB
sin2BcosAcosSince
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ii) )x(cos
dx

d

dx

dy 2
=  

             
dx

dt

dt

dt2

×=   where xcost =  

      )x(cos
dx

d
t2 ×= xsinxcos2−=  

 

iii) )x3sinxsin5(
dx

d

dx

dy 7
=  

      





×+×= )x3(sin

dx

d
xsinx3sin)x(sin

dx

d
5

77
 

      







××+××=

dx

du
)u(sin

du

d
xsinx3sin

dx

dt

dt

dt
5

7
7

 

                                    where xsint = and x3u =   

      ]3x3cosxsinx3sinxcosxsin7[5 76
××+××=  

      x3cosxsin15x3sinxcosxsin35 76
+= . 

 

iv) 
dx

dt

dt

)t(sind

dx

dy
⋅= where 

2x

1
t =  

      







⋅=

2x

1

dx

d
tcos  

      
3

2

x

)x/1cos(2−
= . 

*** 
 
Before, we find the derivatives of the other four trigonometric functions by 
using a similar formula, it is time to do some exercises. 
 
 

E28) Find dx/dy of the following: 

 i) x9cosxy 3
=   ii) )xcos(siny =   

 iii) )1xsin(y 2
+=   iv) xcos1siny +=  

 

 
Let us now find the derivatives of other four trigonometric functions 
 

i) Suppose ,xtan)x(f = where [2/,2/]x ππ−∈ .  We know that 

xcos

xsin
xtan =  

 Then 







=

xcos

xsin

dx

d
)x(tan

dx

d
and 0xcos ≠  

    
xcos

)x(cos
dx

d
xsin)x(sin

dx

d
xcos

2

−

=      

    
xcos

)xsin(xsinxcos.xcos
2

−−
=   

    xsec
xcos

1

xcos

xsinxcos 2

22

22

==
+

=   

[quotient rule of 

derivatives] 
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 Hence,  .xsec)x(tan
dx

d 2
=  

 

ii) Now, suppose xcot)x(fy == .  Since xtan/1xcot = , we get  

 







=

xtan

1

dx

d
)x(cot

dx

d

xtan

)x(tan
dx

d
.1)1(

dx

d
.xtan

2

−

=  

     
xtan

xsec.10.xtan
2

2
−

= xeccos
xtan

xsec 2

2

2

−=
−

=  

 Thus, .xeccos)x(cot
dx

d 2
−=  

 

iii) Now, let xsec)x(fy == .  Since, we know that xcos/1xsec = , 

proceeding as in ii), we get  

 
xcos

)x(cos
dx

d
.1)1(

dx

d
.xcos

xcos

1

dx

d
)x(sec

dx

d
2

−

=







=  

     
xcos

)xsin.(10.xcos
2

−−
= xtanxsec

xcos

xsin
2

==  

 Thus, xtanxsec)x(sec
dx

d
= . 

 

iv) Now, let xcosec)x(fy == . Since ,xsin/1xcosec = we get 

 







=

xsin

1

dx

d

dx

)xec(cosd
 

       
xsin

)x(sin
dx

d
.1)1(

dx

d
.xsin

2

−

=
xsin

xcos.10.xsin
2

−
=  

       xcotxeccos
xsin

xcos
2

−=−=  

 Thus, xcotxeccos
dx

)xec(cosd
−=  

When you memorise the derivatives of the trigonometric functions, you may 
notice that the minus signs go with the derivatives of the ‘co-functions’ that is 
cosine, cosecant and cotangent. 
 
Let us summarise our results in Table 1. 
 

Table 1 
 

Function Their Derivatives 

xsin  xcos  

xcos  xsin−  

xtan  xsec2
 

xcot  xeccos 2
−  

xsec  xtanxsec  

xeccos  xcotxeccos−  

 
Remark 5: Here again we note that the angle is measured in radians.  Thus, 

 
°° π

=






 ππ
=







 π
= xcos

180180

x
cos

180180

x
sin

dx

d
)x(sin

dx

d
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We shall now see how we can use these results to find the derivatives of some 
more complicated functions.  The chain rule and the algebra of derivatives with 
which you must have become quite familiar by now, will come in handy again. 
 
Example 26: Differentiate following with respect to x : 

i) xsec3  ii) xcotxtanxsec +  ,  iii) xeccosx
3

+  

Solution: i) Let xsecy 3
= .  If we write xsecu = , we get 3uy = .  Thus,  

   
dx

du

du

dy

dx

dy
=  

         xtanxsecu3 2
=  

         xtanxsec3 3
=    

 
ii) If xcotxtanxsecy += , then 

  )x(cot
dx

d
)xtanx(sec

dx

d

dx

dy
+=   

         xeccos)x(sec
dx

d
xtan)x(tan

dx

d
xsec 2

−+=  

         xeccos)xtanx(secxsec 222
−+= . 

 

iii) 
dx

xeccosxd
3

+
 

    
dx

du

du

ud
⋅= where xeccosxu 3

+=  

    
dx

)xeccosx(d

u2

1 3
+

⋅=  

    )xcotxeccosx3(
xeccosx2

1 2

3
−⋅

+

=  

    
xeccosx2

xcotxeccosx3

3

2

+

−
=  

*** 
 
Example 27: A mass on a spring vibrates horizontally on a smooth level 

surface as shown in Fig. 21. Its equation of motion is tsin8)t(x = where t is in 

seconds and x in centimetres.  

 
Fig. 21 
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i) Find the velocity at time t . 

ii) Find the position and velocity of the mass at time 
3

2
t

π
= . In which 

direction is it moving at that time? 

Solution: i)  Given is tsin8)t(x =  

The velocity at time 
dt

)t(dx
t =  

                  tcos8
dt

)tsin8(d
==  

 

ii)  The position at time 






 π
=

π

3

2
x

3

2
 

   






 π
=

3

2
sin8  

   34
2

3
8 =










= cm.  

 The velocity at time 






 π
=

π

3

2
cos8

3

2
 

   4
2

1
8 −=







 −
= cm/s. 

 It is moving in the left direction as 0)t(x <′ . 

*** 
 

Remark 6: The functions xeccos,xsec,xcos,xsin  are periodic functions 

with period π2 .  Their derivatives are also periodic with period π2 .  xtan  and 

xcot  are periodic with period π .  Their derivatives are also periodic with 
period π . 

 
We have been considering variables which are dimensionless.  Actually, in 
practice, we may have to consider variables having dimensions of mass, 
length, time etc., and we have to be careful in interpreting their derivatives.  
Thus, we may be given that the distance x  travelled by a particle in time t  is 

btcosax = .  Here, since bt  is dimensionless (being an angle), b  must have 

the dimension 
T

1
.  Similarly, btcosa/x =  has to be dimensionless.  This 

means that a  must have the same dimension as x .  That is dimension of a  is 

L . 
 

Now btsinab
dt

dx
−=  has the dimension of T/LT/1Lab =×= , which is not 

unexpected, since 
dt

dx
 is nothing but the velocity of that particle. 

See if you can do these exercises now. 
 
 

E29) Find the derivatives of the following with respect to x . 

 i) x2eccos   ii) xeccosxcot +  

 iii) x9cot5   iv) 85 )xcotx1( −
+  
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E30) An object with mass m is dragged along a horizontal plane by a force 
acting along a rope attached to the object. If the rope makes an angle 

θ with the plane, then the magnitude of the force is ,
cossin

mg
F

θ+θµ

µ
=  

where µ is a constant called coefficient of friction.  

 i)   Find the rate of change of F w.r.t. θ . 

 ii)  When is the rate of change equal to 0? 
 

E31) Use the chain rule to show that if θ is measured in degrees, then 

θ
π

=θ
θ

cos
180

)(sin
d

d
o

.  

 

 
Now, in the following section, we shall find the derivatives of inverse 
trigonometric functions. 
 

9.8 DERIVATIVES OF INVERSE FUNCTIONS 
 
Recall Unit 6, wherein we discussed that the graphs of a function and its 
inverse are very closely related to each other.  If we are given the graph of a 
function, we have only to take its reflection in the line xy = , to obtain the 

graph of its inverse.  In this section, we shall establish a relation between the 
derivatives of a function and its inverse. 
 

Consider a function f defined by 3x5)x(f += . You may check that this 

function is one-one and onto and hence its inverse exists and is 

5

3x
)x(f 1 −

=
− . Both f and 

1
f

−
are linear functions. You may note that the 

slope of the graph of f is 5 and the slope of the graph of 
1

f
−

 is 5/1 . This is 
because, when we reflect across ,xy = we take the reciprocal of the slope. 

This geometrical observation gives the differentiation formula for inverse 
functions. From Fig. 22, we have  

=
− ))x(f(

dx

d 1 Slope of M   

  
LofSlope

1
=  

  
)y(f

1

′
=  

  
))x(f(f

1
1−

′
=  

So, we have been able to find some relation between the derivatives of these 
inverse functions.  Let us state our results more precisely. 
 

Theorem 7 (The Inverse Function Theorem) : Let f  be differentiable and 

strictly monotonic on an interval I.  If 0)x(f ≠′  at a certain x  in I, then 
1

f
−

 is 

differentiable at )x(fy =  and  

 )x(f/1)y()f( 1
′=′

− or
)]x(f[f

1
)]y(f[

dy

d
1

1

−

−

′
=  

Thus, the inverse function rule gives 

 
 
 Fig. 22 
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)x(f

1
)y()f( 1

′
=′

−
, or 

dx/dy

1

dy

dx

)x('f

1
)y)(f(

dy

d 1
==

− or  [as ]x)y(f 1
=

−  

The derivative of the inverse function is the reciprocal of the derivative of the 
given function. 
 
Soon we shall see that this rule is very useful if we want to find the derivative 
of a function when the derivative of its inverse function is already known.  This 
will become clear when we consider the derivatives of the inverses of some 
standard functions.  But first, let us use this rule to find the derivative of 

rx)x(f = , where r  is a rational number.   

 

Example 28: If rx)x(fy == , where r  is a rational number for which 
r

x  and 

1r
x

−
 are both defined, then show that 1rr rx)x(

dx

d −
= . 

Solution: Let us first consider the case when ,q/1r = where q is any non-zero 

integer.  In this case, q/1x)x(fy == .  Its inverse function g  will be given by 
qy)y(gx == .  This means  

 
1qqy)y(g)y(g

dy

d

dy

dx −
=′==  

Thus, by the inverse function theorem, we get  

 
1q

qy

1

dy/dx

1

dx

dy
−

==  

       
1qq/1 )x(q

1
−

= [Since ]xy 2
1

=  

       
q/)1q(

q/)1q(
x

q

1

qx

1 −−

−
==  

       
1r1)q/1( rxx

q

1 −−
== . 

So far, we have seen that the theorem is true when r  is of the form q/1 , 

where q  is a non-zero integer.  Now, having proved this, let us take the 

general case when q(q,p,q/pr Z∈=  is, of course non-zero).  Here  

 q/pr xx)x(fy ===  

So, pq/1q/p )x(
dx

d
)x(

dx

d

dx

dy
==  

Now, )x(
dx

d
)x(p)x(

dx

d q/11pq/1pq/1 −
= , [ using chain rule ] 

      1)q/1(1pq/1 x)q/1()x(p −−
=  

      1)q/p(x)q/p( −
=  

Thus,  1r1)q/p(r rxx)q/p()x(
dx

d

dx

dy −−
===  

*** 
 

Example 29: Differentiate 11/16/5 )xx(y += with respect to x . 

Solution: We write xxu
6/5

+= .  This gives us, 11/1uy =  

By chain rule, we get  

r
x  may not be always 
defined.  For example, if 

1x −=  and 

1
r

x,2/1r −==  is not 

defined in R . 



 

 

42

Block 3                                                                                        Differentiation 

 









+










=+=×=

−
−−

2

1
1

6

5
1

11

1

2165111 x
2

1
x

6

5
.u

11

1
)xx(

dx

d
).u(

du

d

dx

du

du

dy

dx

dy
 

    







++=

−−− 2/11)6/5(1)11/1(6/5
x

2

1
x

6

5
)xx(

11

1
 

Thus, 

 )x3x5()xx(
66

1

dx

dy 2/16/111/106/5 −−−
++=  . 

*** 
 

Why don’t you try these exercises now? 
 
 

E32) Differentiate following with respect to x . 

 i) )xx(5 3/13
+   ii)     ( ) 295 xxx −  

 

 

We have seen how the inverse function theorem helps us in finding the 

derivative of 
n

x , where n  is a rational number.  We shall now use this 
theorem to find the derivatives of inverse trigonometric functions. 
 
We have noted in Unit 6, that sometimes when a given function is not one-
one, we can still talk about its inverse, provide we restrict its domain suitably.  
Now, xsin  is neither a one-one, nor an onto function from R  to R .  But if we 

restrict its domain to ]2/,2/[ ππ− , and co-domain to ]1,1[− , then it becomes a 

one-one and onto function, and hence the existence of its inverse is assured.  
In a similar manner, we can talk about the inverses of the remaining 
trigonometric functions if we place suitable restrictions on their domains and 
co-domains. 
 
Now that we are sure of the existence of inverse trigonometric functions, let us 
go ahead and find their derivatives. 
 

Let us consider the function xsin)x(fy ==  in the domain ]2/,2/[ ππ− . Its 

inverse is given by x)y(sin)y(g 1
==

− .  We can see clearly that xsin  is 

strictly increasing on ]2/,2/[ ππ− (Refer Unit 6). 

 

We also know that the derivative xcos)x(sin
dx

d
=  exists and is non-zero for 

all [2/,2/]x ππ−∈ . 

 

This means that xsin  satisfies the conditions of the inverse function theorem.  

We can, therefore, conclude that ysin 1−  is differentiable on [1,1] − , and  

 
xcos

1

)x(f

1
))y((sin

dy

d 1
=

′
=

−
 

          
2y1

1

−

=   

Thus, we have the result 
2

1

t1

1
)t(sin

dt

d

−

=
− . 

 

Remember, xsin 1−  is not the same as xsin/1)x(sin 1
=

−  or 

x/1sinxsin 1
=

− . 

[Since 2y1xsin,yxcos −==  for π<< x0 .] 



 

 

43

Unit 9                                                      An Introduction to Differentiation 

We shall follow exactly the same steps to find out the derivative of the inverse 
cosine function. 
 

Let’s start with the function xcos)x(fy == , and restrict its domain to ],0[ π  

and its co-domain to ]1,1[− .  Its inverse function ycos)y(g 1−
=  exists and the 

graphs of xcos  and xcos 1−  are continuous (Refer Unit 7). 
 
As in the earlier case, we can now check that the conditions of the inverse 

function theorem are satisfied and conclude that ycos 1−  is differentiable in 

[1,1] − .  Further 

 )y(cos
dy

d
))y(g(

dy

d 1−
=

)x(f

1

′
=

xsin

1

−
=  

     
2

1

1

y−

−
=  

This gives us the result 
2

1

t1

1
)t(cos

dt

d

−

−
=

− . 

 

Example 30: Find ,
dx

dy
if  

i) )x3(cosy 1−
=  

ii) )x(siny 31−
=  

Solution: i) 
dx

du

du

)u(cosd

dx

dy 1

⋅=

−

 where x3u =  

     
222 x91

3
3

x91

1
3

41

1

−

−
=×

−

−
=×

−

−
=  

ii) 
dx

dt
))t((sin

dt

d

dx

dy 1
⋅=

− where 3
xt =  

   )x(
dx

d

t1

1 2/3

2
⋅

−

=  

   2/

3
)x(

2

3

x1

1 1
⋅

−

=  

   
3x12

x3

−

= . 

*** 
 
You can apply these two results to get the derivatives in the following 
exercises. 
 
 

E33) Differentiate following with respect to x . 

 i) )5(sin 1
x

−  ii) x
1cos−  

 iii) )2(cossin 31
+

−
xx . 

 

 

After finding the derivatives of xsin 1− and ,xcos 1− we shall find the derivatives 

of xtan 1− and xcot 1− .  

[Since 21sin,cos yxyx −==  

for π<< x0 .] 
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Derivatives of xtan 1− and xcot 1−  
 
Consider the graph of xtan  given in Fig. 23, let us indicate the interval to 
which the domain of xtan  should be restricted so that the existence of its 

inverse is guaranteed. 

 
Fig. 23: Graph of tanx  

 

Fig. 23 shows that xtan  restricted to [2/,2/] ππ−  is strictly increasing one-

one function of x . Thus, its inverse exists when restricted to [2/,2/] ππ− . 

The domain of xtan 1−  is [,] ∞∞− . 

 If xtan)x(fy == , then 
22

1

y1

1

xsec

1

)x(f

1
)y(tan

dy

d

+
==

′
=

−
  

Hence 
2

1

x1

1
)x(tan

dx

d

+
=

− . 

 
You may check for the conditions of inverse function theorem and find the 
interval in which xcot has inverse. 

xcot)x(fy ==  

xeccos

1

)x('f

1
)x(cot

dx

d
2

1 −
==

−

2y1

1

+

−
=  

 
Now, we shall find derivatives of two remaining inverse trigonometric 
functions. 
 

Derivatives of xsec 1−  and xcosec 1−  
 

Let’s find the inverse of the remaining two trigonometric functions now. 

If xsecy 1−
= , then xysec =  or xycos/1 = ,   which means that ycosx/1 = .   

This gives us )x/1(cosy 1−
= , where 1|x| ≥ .  

We have seen that tcos 1−  is defined in the interval ]1,1[− . 
Thus, 1|x|),x/1(cosxsecy 11

≥==
−−  

From this we get  

 ))x/1((cos
dx

d

dx

dy 1−
=   

     )x/1(
dx

d

x/11

1

2
−

−
=   [ using chain rule ] 

]xtan1xsec[ 22
+=Q  
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      )x/1(
1x

|x| 2

2
−

−

−
=  

      1|x|,
1x|x|

1

2
>

−

=  

Thus, we have  

 1|x|,
1x|x|

1
)x(sec

dx

d

2

1
>

−

=
−  

Note that although xsec 1−  is defined for 1|x| ≥ , the derivative of xsec 1−  

does not exist when 1x = . 

Following exactly similar steps, we can find the derivative of xeccos 1−
.  

)x/1(sinyx/1ysinxyeccosxeccosy 11 −−
=⇒=⇒=⇒=  where 1|x| ≥ . 

Thus, ))x/1((sin
dx

d

dx

dy 1−
=  

       )x/1(
x/11

1 2

2
−

−

= )x/1(
1x

|x| 2

2
−

−

=  

       1|x|,
1x|x|

1

2
>

−

−
=   

1|x|,
1x|x|

1
)xec(cos

dx

d

2

1
>

−

−
=

− .  

 
Let us now apply these in the following example. 
 

Example 31: Find the derivative of x2secy 1−
= with respect to x . 

Solution: )x2(sec
dx

d

dx

dy 1−
=  

           
dx

dt
)t(sec

dt

d 1
×=

−   where x2t =  [using chain rule] 

            
dx

dt

1tt

1

2
×

−

= ( )x2
dx

d

1x4x2

1

−
=  

            
x

1

1x4x2

1
×

−
=

1x4x2

1

−
=  

*** 
 

Now, you will be able to solve these exercises using the results about the 
derivatives of inverse trigonometric functions. 
 
 

E34) Differentiate following with respect to x . 

 i) )2/x(cot 1−   ii) 
)1x(tan

)1x(cot
1

1

+

+

−

−

 

 iii) )4x5(cos 1
+

−   iv) 








θ−

θ−

cosx1

sinx
sec

1
, θ is a constant. 

 v) )1x(sec)1x(eccos 11
−++

−−  
 

 

We conclude this unit by summarising what we have covered in it. We have 
discussed following points. 
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9.9 SUMMARY  
 

We have discussed followings points in this unit. 
 

1. For any function )x(fy = , =′ )x(f
x

)x(f)xx(f
lim

0x δ

−δ+

→δ

 (if it exists) is 

called the derivative of f  at x , denoted by )x(f ′ .  The function f ′  is 

the derived function.  The derivative )x(f ′  is the slope of the tangent to 

the curve )x(fy =  at the point )y,x( .  The derivative also gives the 

average rate of change of the function with respect to the independent 
variable. 

 

2. There are three steps in calculating a derivative using first principle.  

• Write difference quotient 
x

)x(f)xx(f

δ

−δ+
 

• Simplify difference quotient.  

• Find the limit as xδ approaches 0 . 
 

3.  Every derivable function is continuous.  The converse is not true, that is, 
there exist functions which are continuous but not differentiable. 

4. The derivative of a constant function is 0 , that is, ,0)c(
dx

d
= where 

R∈c . 
 

5. 1nn nx)x(
dx

d −
= , 

 Where n  is any integer (and 0x ≠  if 0n < ). 
 

6. ( )
x2

1
x

dx

d
= , where 0x >  

 

7. The function |x|y =  is derivable at every point except at 0x = . 
 

8. The derivatives of the following:  

 i) )x(f
dx

d
.c)]x(f.c[

dx

d
=  

 ii) )x(g
dx

d
)x(f

dx

d
)]x(g)x(f[

dx

d
+=+  

 iii) )x(g
dx

d
)x(f

dx

d
)]x(g)x(f[

dx

d
−=−  

 iv) )x(f
dx

d
.)x(g)x(g

dx

d
.)x(f)]x(g.)x(f[

dx

d
+=  

 v) 
2)]x(g[

)x(g.)x(f)x(f.)x(g

)x(g

)x(f

dx

d ′−′
=








, provided 0)x(g ≠  

 vi) ,
)]x(f[

)x(f

)x(f

1

dx

d
2

′−
=








provided 0)x(f ≠ . 

9. The chain rule: If )x(fy = and )x(gu = , then 
dx

du
.

du

dy

dx

dy
=  

10. The derivatives of trigonometric functions: 
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Function Derivative 

xsin  xcos  

xcos  xsin−  

xtan  xsec2
 

xcot  xeccos 2
−  

xsec  xtanxsec  

xeccos  xcotxeccos−  

 

11. The inverse function theorem states the rule 

 
)y(f

1
))x(f(

dx

d 1

′
=

−
,where f is differentiable and strictly monotonic and 

.0)y(f ≠′  
 

12. 1rr rx)x(
dx

d −
= , where r  is a rational number and x is non-zero. 

 

13. The derivatives of inverse trigonometric functions using the inverse 
function theorem are as follows: 

 

Function Derivative 

xsin 1−
 

1x1,
x1

1

2
<<−

−

 

xcos 1−
 

1x1,
x1

1

2
<<−

−

−
 

xtan 1−
 

R∈
+

x,
x1

1
2

 

xcot 1−
 

R∈
+

−
x,

x1

1
2

 

xsec 1−
 

1|x|,
1x|x|

1

2
>

−

 

xeccos 1−
 

1|x|,
1x|x|

1

2
>

−

−
 

 

9.10 SOLUTIONS/ANSWERS  
 

E1) i) Let 
x

1
)x(fy == , then slope at 









2

1
,2  is  

       
x

)2(f)x2(f
lim

0x δ

−δ+
=

→δ

 

       
x

2

1

x2

1

lim
0x δ

−
δ+

=
→δ 2

1

x2

1
lim

0x
−=

δ+

−
=

→δ

 

 ii) Let ,x)x(fy 3
== then slope at )1,1(  

       
x

)1(f)x1(f
lim

0x δ

−δ+
=

→δ

 

           3
x

1)x1(
lim

3

0x
=

δ

−δ+
=

→δ
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E2) No, give justification.  
 

E3) To calculate the slope of the tangent at the point )),2(s,2(P  we choose a  

 point 







δ+δ+

2
)t2(

2

1
,t2R  on the curve, near P .  Then, the required 

rate of change is 
0t

lim
→δ

 (slope of PR ) 

2
t2

)t4(t
lim

2)t2(

2)t2(
2

1

lim
0t

2

0t
=

δ

δ+δ
=

−δ+

−δ+

=
→δ→δ

.  

Fig. 24 shows the curve represented by 2t
2

1
s =  taking time along 

−x axis and distance along −y axis. 

 
Fig. 24 

 

Hence, the velocity at 2t =  is the same as the slope of the tangent at 

))2(s,2(P . 
 

E4) 
t

gt
2

1
ut)tt(g

2

1
)tt(u

lim
t

)t(s)stt(s
limv

22

0t0t δ

+−δ+−δ−

=
δ

−+
=

→δ→δ

 

             gtu
t

)tg
2

1
gtu(t

lim
0t

−=
δ

δ−−δ

=
→δ

 

 

E5) 2r)r(A π=  

Rate of change of area of a circle with respect to its radius when radius 

is 2 cm
2

22

0r
cm4

r

2.)r2(
lim =

δ

π−δ+π
=

→δ

 

 

E6) Average rate of change of f  in ]h1,1[ +
h

)1(f)h1(f −+
=  

                 
h

)112(1)h1(2 22
+×−++

=  

       h24 +=  

Rate of change of f  at 
h

)1(f)h1(f
lim)1x(

0h

−+
==

→

,   

                                        4)h24(lim
0h

=+=
→

 

[ where h  may be  

positive or negative] 
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E7) 
x

)c(f)xc(f
lim)c(f

0x δ

−δ+
=′

→δ

 

   
x

9c8c9)xc(8)xc(
lim

22

0x δ

−+−+δ+−δ+
=

→δ

 

  
x

x8xxc2
lim

2

0x δ

δ−δ+δ
=

→δ

 

  )8xc2(lim
0x

−δ+=
→δ

 

  8c2 −= . 
  

E8) 
x

)x(f)xx(f
lim)x(f

0x δ

−δ+
=′

→δ

 

  
x

)1x2x3(]1)xx(2)xx(3[
lim

22

0x δ

++−+δ++δ+
=

→δ

 

  2x6 +=  

 
3

1xwhen,0)x(f −>>′  

 
3

1xwhen,0)x(f −<<′  

 
3

1xwhen,0)x(f −==′  

 
 

Fig. 25: Graph of f ′  
 

E9) i) 
222

0h

33

0h
x3)hxh3x3(lim

h

x)hx(
lim

dx

dy
=++=

−+
=

→→

 

  

 ii) If 01x,1x >+−> , choose 0h >  s.t. |1x|h +<  

  then, 01hx >++  and 
h

|1x||1hx|
lim

0h

+−++

→

 

          1
h

)1x()1hx(
lim

0h
=

+−++
=

→

 

  If 1
h

|1x||1hx|
lim,1x

0h
−=

+−++
−<

→

 

 Thus, dx/dy  exists, when 1x −>  or when 1x −< .  It does not 

exist, when 1x −= , since, 1)1(fR =−′  and 1)1(fL −=−′  
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iii) 
1x21)hx(2

1x21)hx(2

h

1x21)hx(2
lim

dx

dy

0h ++++

++++
×

+−++
=

→

 

      
1x2

1

1x21)hx(2

2
lim

0h +
=

++++
=

→

 

 

E10) i) 1
h

2h2
lim

h

)2(f)h2(f
lim)2(f

0h0h
=

−+
=

−+
=′

→→

 

 ii) 
h

)b2a(b)h2(a
lim)2(f

0h

+×−++
=′

→

 

       a
h

ah
lim

0h
==

→

 

 

E11) 
2

5049

)2x9(

)3x2(9)2x9(2)3x2(50
)x(f

+

+−++
=′  

 exists at 1.0x = .  Hence, the function is continuous at 1.0x = . 

E12) 
h

)x(f

1

)hx(f

1

lim
)x(f

1

dx

d

0h

−
+

=







→

 

       
)hx(f)x(f

)hx(f)x(f

h

1
lim

0h +

+−
=

→

 

       
)hx(flim)x(f

h

)hx(f)x(f
lim

0h

0h

+

+−

=

→

→

 

       
2)x(f

)x(f ′−
=  

 

E13) i)  0   ii) 0  
 

E14) i) 7188 x8x8)x(
dx

d
==

−  

 ii) 999110001000 x1000x1000)x(
dx

d
==

−  

 iii) 0)10(
dx

d
=  

 

E15) 
h

0)h0(
lim)0(fL

3
1

3
1

0h

−+
=′

−
→

 

    −∞==
−

→ 3
2

0h
h

1
lim  

 
h

0)h0(
lim)0(fR

3
1

3
1

0h

−+
=′

+
→

 

     +∞==
+

→ 3
2

0h
h

1
lim  

 Therefore, f is not differentiable at 0x = .   
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E16) i) 
2233

x5x3
3

5
)x(

dx

d

3

5
x

3

5

dx

d
=×==








 

 ii) ( ) ( )
x

4
x

dx

d
8x8

dx

d
==  

 iii) 










=

<−

>

=

0xwhen;existnotdoes

0xwhen;2

0xwhen;2

x2
dx

d
  

 

E17) We apply the scalar multiple rule obtained in Theorem 2 at all points 

where |x|  is differentiable and get  

 )|x|(
dx

d
7)|x|7(

dx

d
=  

 But, in view of Example 9, when )|x|(
dx

d
,0x =  does not exist.   

 When 1
dx

dx
)|x|(

dx

d
,0x ==>   

 and, when 1
dx

)x(d

dx

)x(d
)|x|(

dx

d
,0x −=−=

−
=< . 

 Therefore, )|x|(
dx

d
7)|x|7(

dx

d
=    









=

<−

>

=

0xwhenexist;not does

0xwhen;7

0xwhen;7

 

 

E18) i) 2x15 2
−  

 

 ii) 1n

n21 xnaxa2a −
+++ L  

 

E19) Horizontal tangent occurs when the derivatives is 0. Thus,  

 )4(
dx

d
)x(

dx

d
8)x(

dx

d

dx

dy 24
+−=  

  x16x4 3
−= . 

Since, ,0
dx

dy
= therefore, ,0x16x4 3

=− that is .2,2,0x −= So, the given 

curve has horizontal tangents when 2,0x = and 2− . The corresponding 

points are )12,2(),4,0( − and )12,2( −− . 
 

 
Fig. 26 
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E20) i) Using Theorem 4, ( ) x
dx

d
.xx.)x(

dx

d
xx

dx

d
+=  

    2/1x
2

1
.xx.1 −

+=  

    x
2

3
x

2

1
x =+=  

  Without using Theorem 4, 2

1

2
3

x
2

3
)x(

dx

d
)xx(

dx

d
==  

 ii) )}5x2x()5x2x{(
dx

d 3535
++++  

  )5x2x()x6x5()x6x5()5x2x( 35242435
+++++++=  

  )x6x5()5x2x(2 2435
+++=  

 iii) )2x()1x()3x()1x()3x()2x(dx/dy ++++++++=  
 

E21) 
dx

)x(gd
x)x(g

dx

)x(d
)]x(xg[

dx

d
)x(f +==′  

    )x(gx)x(g)1( ′+=  

 Put 3x =   

 )3(g3)3(g)3(f ′+=′  

   .17)5(32 =+=  
 

E22) i) 
22 )5x(

9

)5x(

)1x2()5x(2

5x

1x2

dx

d

+
=

+

+−+
=









+

+
, where 5x ≠  

 ii) 
232

2

32 )dxcxbxa(

)dx3cx2b(

dxcxbxa

1

dx

d

+++

++−
=









+++
 

 iii) 








−

+

1x

x3x2

dx

d
4

23

 

  
24

32324

)1x(

)x4()x3x2()x6x6()1x(

−

+−+−
= , where 01x 4

≠−  

  
24

54

)1x(

)3x2(x4)1x()1x(x6

−

+−−+
=  

E23) 
2))x(f(

)x(f
dx

d
.)1()x(f.)1(

dx

d

)x(f

1

dx

d
−

=







 

     
2))x(f(

)x(f0 ′−
=  

     0)x(f,
))x(f(

)x(f
2

≠
′

−=  

 

E24) i) As a sum of three terms, we get 645 x7x5x2)x(f −−−
++=  

  756 x42x20x10)x(f −−−
−−−=′  

 ii) Applying quotient rule; we get      

10

1425

x

)x7x52(x5)x75(x
)x(f

−−
++−−

=′  

        )x10x42x20(x 43510
−−−=

−   

        675 x10x42x20 −−−
−−−=   
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 iii) As a product of two functions, )x7x52(x)x(f 15 −−
++=  

  )x7x52(x5)x75(x)x(f 1625 −−−−
++−−=  

      675 x10x42x20 −−−
−−−=  

 

E25) i) u/5y,x7x51u 2
=++=  

  
)x7x51(

x7025
)x145()u/5(dx/dy

2

2

++

−−
=+−=  

 ii) )u1/(uy,3x2u 32
+=+=  

  2
)u1(

u3)u1(u2

dx

dy
23

43

×
+

−+
=  

   
23

43

])3x2(1[

)3x2(6])3x2(1[)3x2(4

++

+−+++
=  

 iii) 733 vy,uuv,5x9u =+=+=
−  

  9)u3u3(v7dx/dy 426
×−=

−  

             ])5x9(3)5x9(3[])5x9()5x9[(63 42633 −−
+−++++=  

 

E26) Let ),x(goh)x(f = where t)t(g = and 1x)x(h +=  

 
t2

1
)t(g =′ and 1)x(h =′  

 )x(h.))x(h(g)x(f ′′=′  

  ,
1x2

1
1

1x2

1

+
=⋅

+
= if 1x −> . 

 

E27) 
dt

dv
represents the rate of change in velocity with respect to time and 

ds

dv
 

represents the rate of change in velocity with respect to displacement.  

 Also, 
dt

ds

ds

dv

dt

dv
⋅=  

 

E28) i) )x9cosx(
dx

d

dx

dy 3
=  

   )x9(cos
dx

d
xx9cos)x(

dx

d 33
×+×=  

   )x9sin9(xx9cosx3 32
−+×=  

   x9sinx9x9cosx3 32
−= . 

  

 ii) ))x(cos(sin
dx

d

dx

dy
=  

   
dx

dt
)t(cos

dt

d
×=   where xsint =  

   xcos).xsin(sin)x(sin
dx

d
tsin −=×−=  

  

 iii) ))1x(sin(
dx

d

dx

dy 2
+=  
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dx

dt
).t(sin

dt

d
= where 1xt 2

+=  

   
dx

)1x(d
.tcos

2
+

=  

   )x2(.)1xcos( 2
+=  

   )1x(cosx2 2
+=  

 iv) 
dx

dt

dt

)t(sind

dx

dy
⋅= where xcos1t +=  

    
dx

du
.

du

ud
.tcos= where xcos1u +=  

   
xcos12

xcos1cosxsin

+

+
−=  

 

E29) i) )x2(
dx

d
)x2ec(cos

)x2(d

d
)x2ec(cos

dx

d
×=  

        .x2cotx2eccos2−=  

 

 ii) )xeccos(
dx

d
)x(cot

dx

d
)xeccosx(cot

dx

d
+=+  

           
dx

dt
)t(

dt

d
xeccos 2

×+−=   where xeccost =  

         )xec(cos
dx

d

t2

1
xeccos 2

×+−=  

         xcot.xeccos
xeccos2

1
xeccos 2

−×+−=  

         
xeccos2

xcotxeccos
xeccos 2

−−=  

 

 iii) )x9(cot
dx

d
5)]x9(cot5[

dx

d
=  

                  )x9(
dx

d
)x9eccos(5 2
×−=  

     9x9eccos5 2
×−=  

     x9eccos45 2
×−= . 

 

 iv) [ ]85 )xcotx1(
dx

d −
+  

  
dx

du
.

du

du 8−

= where xcotx1u 5
+=  

  
dx

)xcotx1(d
.u8

5
9 +

−=
−

 

  )]x(cotx5)xeccos(x.[)xcotx1(8 42595
+−+−=

−  

  )xcotx40xeccosx8.()xcotx1( 42595
−+=

−  

 

E30) i)   The rate of change of Fw.r.t. θ is 
2)cossin(

)sincos(mg

d

dF

θ+θµ

θ−θµµ−
=

θ
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 ii)   )(tantan0sincos0
d

dF 1
µ=θ⇒µ=θ⇒=θ−θµ⇒=

θ

−  

 

E31) )(sin
d

d
θ

θ
, where θ is in degree 

 






 π
θ

θ
=

o180
.sin

d

d
 

 θ
π

= cos
180o

 

 

E32) i) )xx(
dx

d
5)xx(5

dx

d
3

1

33

1

3
+=+  

          







+= )x(

dx

d
x

dx

d
5 3

1

3  

          







+=

−1
3

1

2 x
3

1
x35  

          3

2

2
x

3

5
x15

−

+= . 

 

 ii) 295 x]xx[
dx

d
− ]xx[

dx

d
x]xx[

dx

d 9/195/1129/15/1
−=−=  

             )x(
dx

d
)x(

dx

d 9/195/11
−=  

                           1
9

19
x

9

19
x

5

11 1
5

11

−−=
−

 

            9/105/6 x
9

19
x

5

11
−= . 

 

E33) i) 
dx

dt
)t(sin

dt

d
)]x5([sin

dx

d 11
×=

−−   where x5t =  

         )x5(
dx

d

t1

1

2
×

−

=  

         5
x251

1

2
×

−

=  

         
2

x251

5

−

=  

 

 ii) 
dx

dt
)t(cos

dt

d
)x(cos

dx

d 11
×=

−−  where xt =  

        
dx

xd

t1

1

2
×

−

−
=  

        2
1

x
2

1

x1

1 −

×
−

−
=  

        .
)x1(x2

1

−

−
=  
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 iii) ))2x(cosx(sin
dx

d 31
+

−                           

)2x(cos).x(sin
dx

d
))2x((cos

dx

d
.xsin 3131

+++=
−−  

  )2x(cos.xcos
dx

dt
)t(cos

dt

d
.xsin 311

++×=
−−   where 2xt 3

+=  

  )2x(cos.xcosx3
t1

1
.xsin 312

2
++×

−

−
=

−  

  )2x(cosxcos
)2x(1

xsinx3 31

23

2

++

+−

−=
−

 

 

E34) i) 
dx

dt
tcot

dt

d
))2/x((cot

dx

d 11
×=

−−  where 2/xt =  

                           
2

1
.

t1

1
2

+

−
=  

                          
)4/x1(2

1
2

+

−
=  

 

 ii)  








+

+

−

−

)1x(tan

)1x(cot

dx

d
1

1

 

  
21

1111

))1x((tan

)1x(cot)).1x((tan
dx

d
))1x((cot

dx

d
)1x(tan

+

++−++

=
−

−−−−

 

  
21

2

1

2

1

))1x((tan

)1x(1

1
)1x(cot

)1x(1

1
)1x(tan

+










++
+−









++
+−

=
−

−−

 

 

 iii) 
dx

dt
)t(cos

dt

d
)4x5(cos

dx

d 11
×=+

−−   where 4x5t +=  

             
2)4x5(1

5

+−

−
=  

 

 iv) 
dx

dt
tsec

dt

d

cosx1

sinx
sec

dx

d 11
×=









θ−

θ −−
   where 

θ−

θ
=

cosx1

sinx
t  

  








θ−

θθ+θ−θ

θ−

θ

θ−

θ

=
222 )cosx1(

cossinx)cosx1(sin

)cosx1(

sinx

cosx1

sinx

1
  

 

 v)   ))1x(sec)1x(ec(cos
dx

d 11
−++

−−  

  ))1x((sec
dx

d
))1x(ec(cos

dx

d 11
−++=

−−  

  
1)1x(|1x|

1

1)1x(|1x|

1

22
−−−

+

−++

−
=  

[apply quotient 
rule to find out 

dx

dt
] 
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10.1 Introduction               57 
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10.2 Derivative of Logarithmic Function            58 

10.3 Derivative of Exponential Function            63         

10.4 Derivative of Hyperbolic Functions and their            68 

Inverse Functions 

10.5 Method of Logarithmic Differentiation            71 

10.6 Implicit Differentiation              74 

10.7 Other Differentiation Techniques            78 

10.8 Summary               81      

10.9 Solutions/Answers              82 
             

10.1 INTRODUCTION 
 

In Unit 7, we discussed exponential functions, which occupy an important 
place in pure and applied science. Laws of growth and decay are very often 
expressed in terms of these functions. In Sec. 10.2, we will study the 
derivatives logarithmic of exponential functions. The inverse function theorem 
which we stated in Unit 9 will then help us to differentiate their inverse, the 
exponential functions in Sec. 10.3. In particular, you will find that the natural 
exponential function is its own derivative. 
 

Further, we will differentiate hyperbolic functions and their inverse functions in 
Sec. 10.4. In Sec. 10.5, we will study logarithmic method of differentiation. We 
will extend our process of differentiation to differentiate implicit functions in 
Sec. 10.6, and at the end, we will study other methods of differentiation in  
Sec. 10.7. 
 

With this unit we come to the end of our quest for the derivatives of some 
standard, frequently used functions. And now we shall list the objectives of this 
unit. After going through the unit, please read this list again and make sure 
that you have achieved the objectives. 
 

Objectives 

After reading this unit you should be able to: 

• find the derivatives of exponential and logarithmic functions; 
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• use the method of logarithmic differentiation;  

• differentiate hyperbolic functions and inverse hyperbolic functions; 

• differentiate implicit functions; and 

• compute the derivatives of those functions which are defined with the 
help of a parameter. 

 

10.2 DERIVATIVE OF LOGARITHMIC FUNCTION 
 
In this section, we will find the derivative of a logarithmic function. For this, you 
first recall the definition of a logarithmic function, discussed in Unit 7. To find 
the derivative of the logarithmic function, we will use the definition of the 
derivative and the fact that the logarithmic function is a continuous function. 

We will also use the limit e)n1(lim n/1

0n
=+

→

.   

 

Let ,xlog)x(f a= where 0x > , then 

h

)x(f)hx(f
lim))x(f(

dx

d

0h

−+
=

→

 

  
h

xlog)hx(log
lim aa

0h

−+
=

→

 

  
h

x

hx
log

lim
a

0h








 +

=
→

  [Since, 
n

m
lognlogmlog aaa =− ] 

 
h

x

h
1log

lim
a

0h









+

=
→

 

 







+=

→ x

h
1log

h

x
lim

x

1
a

0h
  [Multiplying and divide by x ] 

 
h

x

a
0h x

h
1loglim

x

1








+=

→

  [Since, ]nlognlogm m

aa =  

 
x/h

1

a
0h x

h
1loglim

x

1








+=

→

 

 






















+=

→

x/h

1

0h
a

x

h
1limlog

x

1
   [Since, mlog a is continuous] 

 elog
x

1
a=   [Since e)n1(lim n/1

0n
=+

→

and ,x/hn = as 0n,0h →→ ] 

Therefore, elog
x

1
)x(log

dx

d
aa = , 0x > . 

We can also write eloga in terms of the natural logarithmic function, which 

gives 

aln

eln
.

x

1
elog

x

1
)x(log

dx

d
aa == [changing base] 

  
alnx

1
= , 0x > . [Since 1eln = ] 

In particular, if ,ea = then we get the derivative of the natural logarithmic 

function, which is  



 

 

59

Unit 10                                                              Some More Derivatives 

 
x

1
)x(ln

dx

d
= , 0x >  

Thus, among all possible bases, the base ea = produces the simplest formula 

for the derivative of xlog a . This is one of the reasons why the natural 

logarithm function is preferred over other logarithms in calculus. Fig.1 shows 

the graphs of 0x,xlny >= and its derivative.  

 
Fig. 1: Graph of lnx with tangent lines 

 

The slopes of the tangent lines at the points 3,1,
2

1
,

3

1
x = and 5 are 

3

1
,1,2,3x/1 = and 

5

1
, which is consistent with Fig.1 also. From the graph it 

does not appear that there are any horizontal tangent lines. This is confirmed 

by the fact that 
x

1

dx

dy
= is not equal to 0 for any real value of x . 

We give a few examples to find the derivatives of the logarithmic functions. 
 

Example 1: Differentiate )2x2xln(y 2
+−= with respect to x . 

Solution:   Since, 1)1x(2x2x 22
+−=+−  and hence, is positive for all x , 

therefore, )22ln( 2
+− xx  is well defined. 

          ))2x2x((ln
dx

d

dx

dy 2
+−=   

   
dx

dt
).t(ln

dt

d
= where 2x2xt 2

+−=  

   )2x2x(
dx

d

t

1 2
+−=   

              
2x2x

2x2
2

+−

−
=  

*** 
 

Example 2: Find the derivative of xln  w.r.t. x . 

Solution: The function xln is defined for all x , except 0x = . Therefore, we 

will consider two cases 0x > and 0x < separately. 

i) When 0x > , xlnxlny ==  
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Here, )x(ln
dx

d

dx

dy
=  

 ,
x

1
= if 0x > . 

ii) When )x(lnxlny,0x −==< . 

Here ,
dx

dt
).tln(

dx

d
)]x[ln(

dx

d

dx

dy
=−= where xt −=  

 
x

1

x

1
)1(.

t

1
=

−

−
=−= . 

 Therefore, ( )










<

>

=

0xwhen,
x

1

0xwhen,
x

1

xln
dx

d
. 

 Thus, ( )
x

1
xln

dx

d
= for all 0x ≠ . 

*** 
 

Example 3: Differentiate 1x,
x1

x1
lny

2

2

≠
−

+
= with respect to x .  

Solution: If we want to differentiate 1|x|,
x1

x1
lny

2

2

≠
−

+
= , we will consider 

two cases: i) 1|x| >  and ii) 1|x| < . 

i) If 1|x| > , we get 
)x1(

x1

x1

x1
2

2

2

2

−−

+
=

−

+
 

        
1x

1x
2

2

−

+
= .  

 So, in this case, 


















−

+
=

1x

1x
ln

dx

d

dx

dy
2

2

 

  ,
dx

dt
).t(ln

dt

d
= where 

1x

1x
t

2

2

−

+
=  

  








−

+

+

−
=

1x

1x

dx

d

1x

1x
2

2

2

2

 

 After  simplification, we get 
4x1

x4

dx

dy

−
=  

 

ii) When 
2

2

2

2

x1

x1

x1

x1
,1|x|

−

+
=

−

+
<  and so, 

  








−

+

+

−
=

2

2

2

2

x1

x1

dx

d

x1

x1

dx

dy
 

               
4x1

x4

−
=  

 So, we see that 
4x1

x4

dx

dy

−
=  for all x  such that 1|x| ≠ . 

*** 

[Since, 1|x| > , therefore )x1( 2
−  is 

negative] 
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Example 4: Differentiate )x(tanlogy 3

7= w.r.t. x . 

Solution:  ))x(tan(log
dx

d

dx

dy 3

7=  

   
dx

dt
.)t(log

dt

d
7= , where xtant 3

=  

   )x(tan
dx

d
.elog

t

1 3

7=  

          )x(tan
dx

d
.xtan3.

xtan

1
elog 2

37= [By chain rule] 

                xsecxtan3
xtan

1
elog 22

37=  

                
xtan

xsec
elog3

2

7=  

*** 
 

Example 5: Differentiate xln)x(f = with respect to x when 1x ≥ . 

Solution: ( ) ( ) ,
dx

dt
.t

dt

d
xln

dx

d
= where xlnt =  

    
x

1
.

t2

1
=  

    
xlnx2

1
=  

*** 
 

Example 6: A particle is moving along the curve xlnxy = . Find all the values 

of x at which the rate of change of y with respect to time is three times that of 

x . 

Solution: 
dt

dx
.

dx

dy

dt

dy
=  

   
dt

dx
xln.1

x

1
.x 








+=  

  
dt

dx
)xln1( +=      ... (1) 

Given is 
dt

dx
3

dt

dy
=       ... (2) 

Comparing (1) and (2), we get 

 3)xlnl( =+    (assuming that 0
dt

dx
≠ ) 

2xln =⇒  
2ex =⇒  

*** 
 
Example 7: An aeroplane takes off from an airport at sea level and its altitude 

(in meters) at time t (in minutes) is given by )1t(ln500h += . Find the rate of 

climb at time 3t = min. Also, compare the graphs of h and h′ .  

Solution: Given is )1t(ln500h += . To find, the rate of climb, we need to find 

the first derivative.  
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))1t(ln500(
dt

d

dt

dh
+=  

 
t1

500

+
=  

At ,3t = we have min/m125
dt

dh
=  

So, the required rate of climb is 125 m/min. Fig. 2 shows the graph of h (solid 
line) and h′ (dotted line).  

 
Fig. 2: Graph of h and h′  

 
The graph shows that at low altitudes the rate of climb is good, but as you go 
higher, the rate decreases. 

*** 
 
Example 8: Find the equation of the tangent line to the graph of 

)x6(ln)xx(y 2
−= at 2x = . 

Solution: To find the equation of the tangent at any point on the graph of 

function, we need slope of the tangent at that point. We have ,2x = which 

gives )12(ln2y = . Thus, the point is ))12(ln2,2( .  

Slope
))12(ln2,2(atdx

dy






=  

 
))12(ln2,2(at

2 6.
x6

1
.)xx()x6ln()1x2( 





−+−=  

 1)12ln(3 +=  

Thus, the equation of the tangent is  

)2x(]1)12(ln3[)12(ln2y −+=−  [Recall Unit 3 for equation of a line] 

*** 
Now, try the following exercises. 
 
 

E1) Find the derivative of the following w.r.t. x . 

 i) x2log 2    ii) )2x5(log7 2

11 +   

 iii) xlnx
2

   iv) 1|x|,
x1

x1
ln <









−

+
   

 v) )xln(sin 4    vi) )xsin2(log10 +  
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E2) Let the sound pressure P for a given sound is given by 

,
w

w
log10P

o

= where w is the sound power and ow is a constant used 

for lowest threshold. Find the rate of change of the sound pressure 

P with respect to time ,t  if 212

o m/watt10w,2.7w −
== and 5.0

dt

dw
= at 

some given time t .  
 

 
In the following section, we will use the inverse function theorem to find the 
derivatives of the exponential function and natural exponential function.  
 

10.3  DERIVATIVE OF EXPONENTIAL FUNCTION 
 
You may recall the definitions of exponential and logarithmic functions. These 
functions are inverses of each other. To find the derivative of the exponential 

functions ,a x where 0a > , we will use the inverse function theorem. Consider 
xay = . We know that the logarithmic function is differentiable, and its 

derivative is non-zero. We know that the inverse of xlog a is differentiable that 

is xa is differentiable and using the inverse function theorem, the derivative is  

( )ylog
dy

d

1
)a(

dx

d

a

x
=  [Since, ,ay x

= therefore, ylogx a= ] 

 alnaalny

elog
y

1

1 x

a

=== . 

Therefore, alna)a(
dx

d xx
= . 

In a particular, if ,ea = then xxx eelne)e(
dx

d
== . 

You may observe that natural exponential function is its own derivative. This is 
the simplest differentiation formula and is used often in calculus. The natural 

exponential function gives its value 1, at 0x = , that is, 

,e)x(f x
=

xe)x(f =′ and 1e)0(f 0
==′ .  

 

 
Fig. 3: Graph of 

x
e slope of tangent at 2x =  
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We can say that the slope of the tangent, where it cuts the −y axis, is 1. Also, 

the slope of a tangent to the curve xey = at any point x is equal to the 

−y coordinate of the point. Let us take the example when 2x = . At this point, 

the −y value is 39.7e2
≈ . Since the derivative of xe is xe , then the slope of 

the tangent at 2x = is also 39.7e2
≈ . We can see that this is true in Fig.3.  

 
Let us now see if it is true at some other values of x . For example at 

,4x = 6.54e4
≈ and at ,5x = 4.148e5

≈ . We can also verify it by finding the 

slope of the tangent of the function xey = at 4x = and at 5x = .  

Slope of tangent at 4x = is 6.54e
x

)1e(e
lim

x

ee
lim

4
x4

0x

4x4

0x
≈=

δ

−
=

δ

−
δ

→δ

δ+

→δ

 

Similarly, slope of tangent at 5x = is 4.148e
x

)1e(e
lim

5
x5

0x
≈=

δ

−
δ

→δ

 

Thus, we can say that the value of the derivative and the slope of the tangent 
are the same. Fig. 4 shows these values.   

 
Fig. 4: Graph of 

x
e and the tangents at 4x = and 5x =  

 

Remark 1: It is important to distinguish between differentiation of the 

exponential function xa (variable exponent and constant base) and the power 

function 
a

x (variable base and constant exponent).  
For example, 

910 x10)x(
dx

d
= and 

10ln10)10(
dx

d xx
= . 

Now you can find derivatives of exponential functions in the following 
examples.  
 

Example 9: Find the derivatives of the following w.r.t. x  

i) )x2x( 2

e
+   ii) 

xx

xx

ee

ee
−

−

−

+
 iii) xsin 1

a
−

 

Solution: i) Let )x2x( 2

ey +
= .  Then, by chain rule 

    
dx

dt
.

dt

dy

dx

dy
= , where x2xt 2

+=  

         )2x2(e )x2x( 2

+=
+  
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 Hence,  )x2x()x2x( 22

e)1x(2]e[
dx

d ++
+= . 

ii) 
2xx

xxxxxxxx

xx

xx

)ee(

)ee(
dx

d
)ee()ee(

dx

d
)ee(

ee

ee

dx

d
−

−−−−

−

−

−

−+−+−

=








−

+
  

             
            

            
2xx

xxxxxxxx

)ee(

)ee()ee()ee()ee(
−

−−−−

−

++−−−
=  

            
2xx

2xx2xx

)ee(

)ee()ee(
−

−−

−

+−−
=  

            
2xx )ee(

4
−

−

−
=   

iii) We apply the chain rule again to differentiate xsin 1

a
−

  

   
dx

dt
).a(

dt

d
)a(

dx

d txsin 1

=
−

 where xsint 1−
=  

      )x(sin
dx

d
alna 1xsin 1

−
−

=  

      alna
x1

1 xsin

2

1−

−

=  

*** 
 

Example 10: Find ,y′ if x3siney x2−
= . 

Solution: )x3sine(
dx

d

dx

dy
y x2−

==′  

   x3sin.)e(
dx

d
)x3(sin

dx

d
.e x2x2 −−

+=  

     

   x3sin.)2(e3.x3cos.e x2x2
−+=

−−  

   ]x3sin2x3cos3[e x2
−=

− . 

*** 
 
Example 11: The growth in length of a particular plant at time t  is 

,
ea1

1
)t(L

kt−
+

= where t is time and a and k are constants. Find the rate of 

growth with respect to time.  

Solution: The rate of growth 








+
=′=

−ktea1

1

dt

d
)t(L  

                ( ))k(ea.
)ea1(

1 kt

2kt
−

+
−=

−

−
 

                 
( )

2kt

kt

ea1

eak

−

−

+

=  

*** 
 
Example 12: The charge q  of a capacitor in a circuit containing a capacitor of 

capacitance C , a resistance R and a source of voltage E is given by 

[using 
quotient  
rule of  
derivatives] 

[ xx ee
dx

d −−
−=Q ] 

[applying product rule of 
derivatives] 

[applying chain rule] 
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)e1(CEq RC/t−
−= coulomb. 

Show that q satisfies the equation E
c

q

dt

dq
R =+ . 

Solution: Given is  )e1(CEq RC/t−
−=  

so )RC/te(
RC

CE

dt

dq −
=  

 RC/te
R

E −
=  

Now )e1(EEe
c

q

dt

dq
R RC/tRC/t −−

−+=+  

    )e1e(E RC/tRC/t −−
−+=  

    E= . 
*** 

 
Example 13: A glass of lemonade with a temperature of 4o C is left to sit in a 
room whose temperature is a constant 25o C. Using a principle of physics, 
called Newton’s law of cooling, one can show that if the temperature of the 
lemonade reaches 15o C in 1 hour, then the temperature T of the lemonade as 
a function of the elapsed time t is modelled by the equation.  

t5.0e2125T −
−=  

where T is in o C and t is in hours. The graph of this equation is shown in 
Fig.5, which also confirms to our everyday experience that the temperature of 
the lemonade gradually approaches the temperature of the room. 

i) What happens to the rate of temperature rise over time? 

ii) Use a derivative to confirm your conclusion in i). 
 

 

Fig. 5 

 
Solution: i) The rate of change of temperature with respect to time is the 

slope of the curve t5.0e2125T −
−= . As t increases, the curve rises such 

that its slope decreases to 0. Thus, the temperature rises at an over-
decreasing rate.  

ii) The rate of change of temperature with respect to time is 

t5.0t5.0t5.0 e5.10e)5.0(21)e2125(
dt

d

dt

dT −−−
=−−=−= . As t increases, this 

derivative decreases, which confirms the conclusion in part i). 

*** 
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where m is a constant 

Although we do not prove it here, the exponential function kxce)x(f = is the 

only function for which the derivative is a constant times the function itself. 

That is ky
dx

dy
= or )x(fk)x(f ⋅=′ , where kxecy = or kxec)x(f = for some 

constant c . 

 

For example, if y5
dx

dy
= , then ,ecy x5

= where c is an arbitrary constant. We 

may check this, as we get ,ecy x5
= then y.5e.5.cy x5

==′ . We can say that, 

the solution of 115x2 =+ is the number ,3 and the solution of the equation 

ky
dx

dy
= is the function kxec)x(y = . Now, let us see its application in the 

following example.  
 
Example 14: The population of a particular species was approximately 

04.8 thousand at the beginning of 2010. From the estimation, it is known that 

the population is growing exponentially at the rate of 02.0 or %2 per year. 

Thus, ,P02.0
dt

dP
= where P is the growth and t is the time in years.  

i) Find P as a function of t . 

ii) What would be the population at the beginning of 2050. 

iii) After what period of time will the population be double of what it was in 
2010?  

Solution: i) t02.0kt e04.8ec)t(P ==  

ii)  1889.17e04.8e04.8)40(P 8.0)40(02.0
≈≈== thousand 

iii)  Let the time period, in which population would be double, is t , then  

 2e t02.0
=  

 Taking ln both the sides, we get ,2lnt02.0 = and 33
02.0

2ln
t ≈= yrs.  

 Thus, the population in 2010 would double itself in 2043. 

*** 
 
See if you can solve this exercise now. 
 
 

E3) Find the derivative of: 

 i) T)2x( 2

e5
− , where T is a constant ii) x/)1x(e +  

 iii) xe)2x( +     iv) xtanm 1

e
−

− , 

 v) 
x2

2     vi) xcos7  
 

E4) How much faster is x2)x(f =  increasing at 2/1x =  than at 0x = ? 

 

E5) Find the function that satisfies )t(f3)]t(f[
dt

d
−= . 

 

 
In the following section, we shall find the derivatives of hyperbolic functions. 
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10.4 DERIVATIVE OF HYPERBOLIC FUNCTIONS 
AND THEIR INVERSE FUNCTIONS 

 
Now, let us find derivatives of hyperbolic functions, which you have studied in 
Unit 7. Recall that the hyperbolic functions are defined in terms of the natural 
exponential function, whose derivative we already know, therefore, it is very 

easy to calculate their derivatives.  For example, 
2

ee
xsinh

xx −
−

= .  This 

means, 

 xcosh
2

ee
)ee(

dx

d

2

1

2

ee

dx

d
)x(sinh

dx

d xx
xx

xx

=
+

=−=






 −
=

−

−

−

 

Similarly, 
2

ee
xcosh

xx −
+

=  gives us xsinh
2

ee
)x(cosh

dx

d
xx

=
−

=

−

 

In the case of 
xx

xx

ee

ee
xtanh

−

−

+

−
= , we get  

 
2xx

xxxxxxxx

)ee(

)ee()ee()ee()ee(
)x(tanh

dx

d
−

−−−−

+

−−−++
=  

        
2xx

2xx2xx

)ee(

)ee()ee(
−

−−

+

−−+
=  

        

2

xx

xx

2xx

2xx

ee

ee
1

)ee(

)ee(
1 









+

−
−=

+

−
−=

−

−

−

−

 

        xsechxtanh1 22
=−=  

 

We can adopt the same method for finding the derivatives of xsech,xcoth  

and xcosech . You may like to find the derivatives of these. You would 

observe that the derivatives of functions with co are negative as in case of 
derivatives of trigonometric functions. In Table 1 we have collected all these 
results. 

Table 1: Derivatives of Hyperbolic Functions 
 

Function Derivative 

xsinh  xcosh  

xcosh  xsinh  

xtanh  xsech 2
 

xcoth  xcosech2
−  

xsech  xtanhxsech−  

xcosech  xcothxcosech−  

 
Try some examples. 
 

Example 15: Find dx/dy  when )x1(tanhy 2
−= . 

Solution:     )x1(
dx

d
).x1(sech

dx

dy 222
−−=  

                  )x1(sechx2 22
−−=  

*** 
 

Example 16: Differentiate xcosh w.r.t. x . 
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Solution: ( )
x2

xsinh
x

dx

d
.xsinh)x(cosh

dx

d
== . 

*** 
 

Example 17: Find the slope of the tangent of the catenary 







=

10

x
cosh10y at 

5x = . 

Solution: 















=

10

x
cosh10

dx

d

dx

dy
 

  
10

1

10

x
sinh.10 ×








=  

  







=

10

x
sinh  

5xatdx

dy

=

















=

2

1
sinh  

∴ The required slope
2

ee 2/12/1 −
−

=  

*** 
 

See if you can solve these exercises on your own. 
 
 

E6) Find )x(f ′  when =)x(f  

 i) 
5

1x4
tanh

+
   ii) x2esinh   

 iii) )x/1(coth    iv) )x(lnsech    

 v) xcoshex    

 

E7) At what point of the curve xcoshy = does the tangent have slope 1? 
 

 
Now, we shall find derivatives of inverse hyperbolic functions. Recall Unit 7 for 
inverse hyperbolic functions. 
 
Let us start with the inverse hyperbolic sine function. 

( )( )21 x1xln
dx

d
)x(sinh

dx

d
++=

−  

    ( )2

2
x1x

dx

d

x1x

1
++

++

=  

    










+

+

++

=
22 x1

x
1

x1x

1

2
x1

1

+

=  

Thus, 
1x

1

x1

1
)x(sinh

dx

d

22

1

+

=

+

=
−  

 

Further, ( )1xx
dx

d

1xx

1
)x(cosh

dx

d 2

2

1
−+

−+

=
−  
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             1x,
1x

1

2
>

−

= . 

Note that the derivative of xcosh 1−  does not exist at 1x = . 
 
Now, we can find the derivatives of each of these inverse hyperbolic functions.  
We proceed exactly as we did for the inverse hyperbolic sine and cosine 
functions and the derivatives are given in Table 2.  

 
Table 2: Derivatives of inverse hyperbolic functions 

 

Function Derivative 

xsinh 1−  

1x

1

2
+

 

xcosh 1−  
1x,

1x

1

2
>

−

 

xtanh 1−  
1x,

x1

1
2

<
−

 

xcoth 1−  
1x,

x1

1
2

>
−

 

xhsec 1−  
1x0,

x1x

1

2
<<

−

−
 

xechcos 1−  
0x,

x1x

1

2
≠

+

−
 

 
Let us use these results to solve some problems now. 
 
Example 18: Find the derivatives of  

i) )x(tansinh)x(f 1−
= , and ii) )e(costanh)x(g x1−

= with respect to x . 

Solution: i)  Let’s start with )x(tansinh)x(f 1−
= . 

  )x(tan
dx

d

1xtan

1
)x(f

2
+

=′  

         |xsec|xsec
|xsec|

1 2
==  

ii)   Now if )e(costanh)x(g x1−
= , this means that  

  )e(cos
dx

d

ecos1

1
)x(g x

x2
−

=′  

           xx

x2
e).esin(

esin

1
−=  

           
xx

x

x

ecosece
esin

e
−=

−
=  

*** 
 
We are now listing some functions for you to differentiate. 
 
 

E8) Differentiate the following functions on their respective domains. 

 i) ( )x5cosech 1−    ii) 3/121 )]x(cossech[ −   



 

 

71

Unit 10                                                              Some More Derivatives 

 iii) )e(coth )6x5x(1 2
−+−    iv)       )x2(coth)x(cothtanh 11 −−

+  

 v) )x2(coshxsinh 211 −−
+   

 

 
In the following section, we shall study different methods of finding derivatives. 
 

10.5  METHODS OF LOGARITHMIC 
DIFFERENTIATION  

 
In this section, we shall study different methods of finding derivatives.  We 
shall also see that the problem of differentiating some functions is greatly 
simplified by using these methods.  Some of the results we derived in the 
earlier sections will be useful to us here. 
 

In Unit 9 we have seen that 1rr rx)x(
dx

d −
=  when r  is a rational number.  Now, 

we are in a position to extend this result to the case when r  is any real 

number.  So, if rxy = , where 0x >  and R∈r , we can write this as 

xlnrxln eey
r

== , since the natural exponential and logarithmic functions are 

inverses of each other. 

Thus, )xlnr(
dx

d
e)e(

dx

d

dx

dy xlnrxlnr
==   

      
1r

r
xlnr

rx
x

rx

x

1
re

−
===  

This proves that  

 1rr rx)x(
dx

d −
=  for R∈> r,0x . 

 
We are sure, you will be able to solve this exercise now. 
 
 

E9) Differentiate  

 i) 
2

x    ii) 
e

x    
 

 
Sometimes we find that the process of taking derivatives becomes simple if we 
take logarithms before differentiating.  Here, we shall illustrate this point 
through some examples. But to take the logarithm of any quantity we have to 
be sure that it is non-negative.  To overcome this difficulty, let us first try to find 

the derivatives of |)x(|ln  not by the definition of modulus function as we did in 

Example 2.  
 

You may recall from Unit 6, that 
2

xx = . 

Therefore, 2xln|)x(|ln = , and  

 ( )2

2

2 x
dx

d

x

1
xln

dx

d
|x|ln

dx

d
==  

            
x

1

x

x

x

x

x

1
222

===  

Thus, we get, 

If 
r

x,0x <  may not be 

a real number.  For 
example 

R∉−=− 33
2/1

. 



 

 

72

Block 3                                                                                        Differentiation 

 
x

1
|)x(|ln

dx

d
= . 

Using chain rule we can now conclude that if u  is any function of x , then 

dx

du
.

u

1
|)uln(|

dx

d
= . Here we can say that whenever we calculate derivatives of 

the functions involving products, quotients or powers, we can use the method 
of logarithmic differentiation. For this we follow the following steps: 

i) Take natural logarithm of both the sides of )x(fy = . 

ii) Simplify the equations using various properties of logarithms. 

iii) Differentiate with respect to x . 

iv) Solve the result to obtain y′ . 

 
Let us see how this result helps us in simplifying the differentiation of some 
functions. 
 

Example 19: Differentiate 
5/134/3

2/124

)3xx()2x(

)3x()1x(
−

++−

−+
with respect to x . 

Solution: Let 
5/134/3

2/124

)3xx()2x(

)3x()1x(
y

−
++−

−+
= . In y , all the terms except 

5/13 )3xx( −
++ are positive. Thus, before taking the logarithm, we take 

modulus of y . 

Thus, 
5/134/3

2/124

|3xx||2x|

|3x||1x|
|y|

−
++−

−+
=  

Then, taking logarithms of both sides, we get  

)|3xx||2xln(|)|3x||1xln(||y|ln 5/134/32/124 −
++−−−+=  

)|3xxln(|)|2xln(|)|3xln(|)|1xln(| 5/134/32/124 −
++−−−−++=  

|3xx|ln
5

1
|2x|ln

4

3
|3x|ln

2

1
|1x|ln4 32

+++−−−++=  

Differentiating throughout we get, 

)3xx(5

1x3

)2x(4

3
)x2(

)3x(2

1

1x

4

dx

dy

y

1
3

2

2
++

+
+

−
−

−
+

+
=  










++

+
+

−
−

−
+

+
=∴

3 )3xx(5

1x3

)2x(4

3

3x

x

1x

4
y

dx

dy 2

2
 

 








++

+
+

−
−

−
+

+
++−

−+
=

3
− )3xx(5

1x3

)2x(4

3

3x

x

1x

4

)3xx()2x(

)3x()1x( 2

2

5

1

34

3

2

1

24

. 

*** 
 

Example 20: Differentiate 0x,x xsin
> , with respect to x . 

Solution: Let us write xsinxy = . Since ,0x > therefore, 0y >  and so we can 

take logarithms of both sides to the base e  and write  

 xln.xsinxlnyln xsin
==  

Differentiating throughout, we get, 

]blnaln)b/a(ln[ −=Q

]blnaln)ab(ln[ +=Q

]alnb)a(ln[
b

=Q
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 xlnxcos
x

1
xsin

dx

dy

y

1
+=   

         xlnxcos
x

xsin
+=   

Therefore, 







+= xlnxcos

x

xsin
y

dx

dy
 

or,        







+= xlnxcos

x

xsin
x

dx

dy xsin
 

*** 
 

Example 21: Differentiate xxcos )x(cosx +  with respect to x . 

Solution: Let xcosx)x(f =  and xxcos)x(g = .  To ensure that )x(f  and )x(g  

are well defined, let us restrict their domain to ]2/,0[ π . 

0)x(g)x(f)x(cosxy xxcos
>+=+=  for ]2/,0[x π∈  

Let us differentiate both )x(f  and )x(g  by taking logarithms.   

We have, xcosx)x(f =  

Therefore, xlnxcos)x(fln = . 

Thus, 
x

1
xcosxlnxsin)x(f

)x(f

1
+−=′  

That is, 







+−=′

x

xcos
xlnxsin)x(f)x(f  

             






 +−
=

x

xcosxlnxsinx
x

xcos
 

            )xlnxsinxx(cosx 1xcos
−=

−  

Similarly, x)x(cos)x(g =  and so xcoslnx)x(gln =  

Then, )xsin(
xcos

x
xcosln)x(g

)x(g

1
−+=′  








 −
=′⇒

xcos

xsinxxcoslnxcos
)x(cos)x(g

x
 

        )xsinxxcoslnx(cos)x(cos 1x
−=

−  

Hence, )x(g)x(f
dx

dy
′+′=  

        )xsinxxcoslnx(cosxcos)xlnxsinxx(cosx 1x1xcos
−+−=

−−  

*** 
 
If you have followed these examples you should have no difficulty in solving 
these exercises by the same method. 
 
 

E10) Differentiate the following with respect to x . 

 i) 53622 )1x()2x()1x( −+−  ii) 
765 )3x()2x()1x(

1

−−−
 

 iii) xtanx )x(cos)x(sin +   iv) )x(xx x

x)x( +  

 v) xxln x)x(sin +  
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It is not always necessary to express y  explicitly in terms of x  (as in 

))x(fy =  to find its derivative.  We shall now see how to differentiate a 

function defined implicitly by a relation in x  and y  (such as, )0)y,x(f =  in 

the following section. 
 

10.6  IMPLICIT DIFFERENTIATION 
 

So far, we saw that most functions were written in the form ),x(fy = that is 

dependent variable is expressed in terms of independent variable. In such 
functions, y is said to be an explicit function of x . Sometimes, with an 

equation like ,21yxyxy 4224
=−+ it may be cumbersome or nearly 

impossible to express y in terms of x . In such a case, we have an implicit 

relation between the variables x and y . Then, we can find the derivative of 

y with respect to x  using a process called implicit differentiation. Not only in 

case of implicit function, sometimes implicit differentiation also allows us to 

find dx/dy without solving for y .  

 

For example, consider the equation xy3
= . This equation can be solved for 

y in terms of x , but we can use implicit differentiation to find dx/dy . To do 

so, we use chain rule.  

x
dx

d
y

dx

d 3
=  

1
dx

dy
y3 2

=⇒  

3/223/1

2
x

3

1
)x(

3

1

y3

1

dx

dy −−
===⇒ . 

Now, consider another equation 16yx 22
=+ . On solving the equation, we get 

2x16y −±= , where 2x16y −= represents the top half of the circle and 

2x16y −−= represents the bottom half. So y is a function of x on the top 

half and y is a different function of x on the bottom half.  

 
 

Fig. 6: Graph of 16yx
22

=+  
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But let us consider the circle as a whole. The equation does represent a curve 
which has a tangent line at each point. The slope of this tangent can be found 
by differentiating the equation of the circle with respect to x .  
That is  

)16(
dx

d
)yx(

dx

d 22
=+  

0)y(
dx

d
)x(

dx

d 22
=+⇒ . 

If we think that y is a function of x and apply the chain rule, we get 

0
dx

dy
y2x2 =+  

On solving, we get 
y

x

dx

dy
−= . 

Here, you see the derivative depends on both x and y instead of just on x . 

This is because for each −x value (except for )4x ±= there are two 

−y values, and the curve has a different slope at each one.  

 
If x and y both are positive, then we are in first quadrant and the slope is 

negative. Similarly the slope is negative when both x and y are negative. For 

x positive and y negative or x negative and y positive, the slope is positive. 

Also, the slope at )0,4( and )0,4(− has denominator zero, that means the 

tangents are vertical at these points.  
 
In general, this process of implicit differentiation leads to a derivative 
whenever the expression for the derivative does not have a zero in the 
denominator. 
 

Example 22: Find the values of y at −x values 1.7,0.7,9.6,8.6 and 2.7 for the 

equation 6xyy3
−=− near 2y,7x == . 

Solution:  To find the values of y for the given values of x , we would like to 

solve for y in terms of x , but we cannot isolate y  by factoring. There is a 

formula for solving cubics, somewhat like the quadratic formula, but it is too 
complicated to be useful here. Instead, first observe that 7x = and 

2y = satisfies the equation. Now, we shall use the implicit differentiation to 

find 
dx

dy
. 

That is )6(
dx

d
)xyy(

dx

d 3
−=−  

 0
dx

dy
.xy.1

dx

dy
.y3

2
=








+−  

On simplifying, we get 
xy3

y

dx

dy
2

−
= . 

 
)2,7(atdx

dy









5

2

712

2
=

−
=  

Thus, the equation of the tangent at )2,7( is  

 )7x(
5

2
2y −=−  

8.0x4.0y −=⇒ . 
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Fig.7 shows the graph of the curve, in which we see that the tangent is very 

close to the curve near the point )2,7( . Therefore, we use the equation of the 

tangent line to calculate the approximate values of y at the given values of x . 

 

Fig. 7: Graph of 6 -xyy
3

=−  

 
The approximate values of y are given in Table 3. 

 
Table 3 

 

x  8.6  9.6  0.7  1.7  2.7  
y  92.1  96.1  00.2  04.2  08.2  

*** 
 
See if you can solve these exercises now. 
 
 

E11) Find all the points where the tangent line to 6xyy3
−=− is either 

horizontal or vertical. 
 
E12) Find the equations of the tangents of the following curves at the 

mentioned point. 

 i)  x2)xyln( = at )e,1( 2  

 ii) 3/23/23/2 ayx =+ at )0,a( . 
 

 
Let us apply implicit differentiation in some more equations given in the 
following examples. 
 

Example 23: Find 
dx

dy
 if x  and y  are related by  

 0cfy2gx2byhxy2ax 22
=+++++  

Solution: Differentiating throughout with respect to x , we get  

 0
dx

dc

dx

dy
f2

dx

dx
g2)y(

dx

d
b)xy(

dx

d
h2)x(

dx

d
a 22

=+++++  

0
dx

dy
f2g2

dx

dy
by2

dx

dy
.hx2y.1.h2ax2 =+++++⇒  
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or,  g2hy2ax2)f2by2hx2(
dx

dy
−−−=++  

or,  
)fbyhx(

)ghyax(

dx

dy

++

++−
= . 

*** 
 

Example 24: Find 
dx

dy
if 22 xysiny5 =+ . 

Solution: [ ] ]x[
dx

d
ysiny5

dx

d 22
=+  

x2]y[sin
dx

d
]y[

dx

d
5 2

=+⇒  

x2
dx

dy
.ycos

dx

dy
.y2.5 =+⇒  

ycosy10

x2

dx

dy

+
=∴  

*** 
 

Example 25: Find ,
dx

dy
if xy4yx 33

=+ . Find the tangent to xy4yx 33
=+ at 

the point )2,2( . Also, find the point in the first quadrant, where that tangent is 

horizontal.  

Solution: Differentiating xy4yx 33
=+ both the sides w.r.t. x , we get 

dx

dy
x4y4

dx

dy
y3x3 22

+=+  

x4y3

x3y4

dx

dy
2

2

−

−
=⇒ . 

Slope of the tangent at 







=

dx

dy
)2,2( at )2,2(  

     1
)2(4)2(3

)2(3)2(4
2

2

−=
−

−
=  

Equation of the tangent )2,2( with slope 1− is )2x()1()2y( −−=− or 

04yx =−+ . Now, the tangent line is horizontal when slope of the tangent is 

0. Therefore, 0
dx

dy
= gives 0x3y4 2

=− (provided )0x4y3 2
≠− . Solving 

,0x3y4 2
=− we get 

4

x3
y

2

= . 

Substituting the value of y in the given equation of the curve, we get 









=








+

4

x3
x4

4

x3
x

2
3

2
3  

3
6

3
x3

64

x27
x =+⇒  

0
27

x128
x

3
6

=−⇒  
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0x =⇒ or 
3

2 3/7

 

Since 0x = is not in first quadrant, thus 
3

2
x

3/7

= and corresponding 3/82y = . 

Hence 






 3/8
3/7

2,
3

2
is the point in the first quadrant, where the tangent of the 

curve is horizontal. 
*** 

 

Example 26: For the demand equation ,y100x
3

−= where y is the sale 

price (in thousand rupees), and x is sale, differentiate implicity to find dx/dy . 

Solution: 3y100
dx

d
x

dx

d
−=  

dx

dy
.)y3(.)y100(

2

1
1 22/13

−−=⇒ −  

dx

dy
.

y1002

y3
1

3

2

−

−
=⇒  

2

3

y3

y1002

dx

dy

−

−
=⇒  

*** 
 

See, if you can find 
dx

dy
 for the following implicit functions. 

 
 

E13) Find 
dx

dy
 if x  and y  are related as follows: 

 i) 1yx 22
=+    v) 1y2x4 22

=−  

 ii) ax4y2
=     vi) y3xy 2

−=  

 iii) 01xyyxyx 2233
=+++  

 iv) 0xtanx2xsinyycosxcos 212
=+−

−  

 

E14) Find ,
dx

dy
if the equation of the curve is )2x)(1x(x)2y()1y(y 2

−−=−− . 

Find the points, where this curve has horizontal tangents. 
 

E15) Two cars start from the same point at the same time. One travels 
towards south at 40 km/h, and other travels towards west at a special of 
30 km/h. How fast is the distance between them increasing at the end of 
1 h? 

 

 

In the following section, you will study various other techniques of 
differentiation. 
 

10.7  OTHER DIFFERENTIATION TECHNIQUES 
 

Till now we were concerned with functions which were expressed as )x(fy = . 
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We called x  an independent variable, and y , a dependent variable.  But 

sometimes the relationship between two variables x  and y  may be 

expressed in terms of another variable, say t .  That is, we may have a pair of 

equations )t(y),t(x ψ=φ= , where the functions φ  and ψ  have a common 

domain.  For example, the circle 222 ayx =+  is also described by the pair of 

equations, π≤≤== 2t0,tsinay,tcosax . 

In such cases, the auxiliary variable t  is called a parameter and the equations 

)t(y),t(x ψ=φ=  are called parametric equations.  Such representation is 

called parametric representation. You may refer Appendix 1 for parametric 

representation of curves. Let )t(fx = and )t(gy = . Suppose, we are able to 

eliminate the parameter from this parametric equation and can write the 

parametric equation in the form )x(Fy = . Doing this gives ))t(f(F)t(g = . 

Now, differentiating with respect to t , we get  

))]t(f(F[
dt

d
)]t(g[

dt

d
=   

)t(f.))t(f(F)t(g ′′=′⇒  

dt

dx
.)x(F

dt

dy
′=⇒  

,
dt/dx

dt/dy
)x(F =′⇒ provided 0

dt

dx
≠ . 

dt/dx

dt/dy

du

dy
=⇒ . 

Now, suppose a function is defined in terms of a parameter.  To obtain its 
derivative, we need only to differentiate the relations in x  and y  separately 

with respect to the parameter.  The following example illustrates this method. 
 

Example 27: Find 
dx

dy
 if θ= cosax  and θ= sinby , where θ is a parameter. 

Solution: We differentiate the given equation w.r.t θ , and get  

 θ=
θ

cosb
d

dy
, and θ−=

θ
sina

d

dx
 

Now, θ−=
θ−

θ
=

θ

θ
= cot

a

b

sina

cosb

d/dx

d/dy

dx

dy
 

*** 
 
Try to use this method now. 
 
 

E16) Find 
dx

dy
 if  

 i) θ=θ= sinay,cosax   

 ii) at2y,atx 2
==  

 iii) θ=θ=
33 sinby,cosax  

 iv) )cos1(ay),sin(ax θ−=θ−θ=   

 
E17) Find the equation of the tangent line to the parametric curve given by 

235 ty,t4tx =−= at )4,0( . 
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Sometimes, the process of finding derivatives is simplified to a large extent by 
making use of some suitable transformations. We shall see some examples 
which will illustrate this fact. 
 

Example 28: Find the derivative of )x3x4(cosy 31
−=

− using transformation. 

Solution: As you know, we can differentiate this function by using the formula 

for the derivative of xcos 1−  and the chain rule.  But suppose we put θ= cosx , 
then we get  

 )cos3cos4(cosy 31
θ−θ=

−  

    )3(coscos 1
θ=

−   ]cos3cos43cos[ 3
θ−θ=θQ  

    θ= 3  

    xcos3 1−
= .   

Now this is a much simpler expression, and can be differentiated easily as: 

 
2x1

3

dx

dy

−

−
= . 

*** 
 

Example 29: Using the transformation, differentiate 












 −+
=

−

x

1x1
tany

2
1 with 

respect to x .  

Solution: Use the transformation θ= tanx .  This gives us, 

 








θ

−θ
=















θ

−θ+
=

−−

tan

1sec
tan

tan

1tan1
tany 1

2
1  

    








θθ

θ−−
=









θ

θ−
=

−−

2/cos2/sin2

)2/sin21(1
tan

sin

cos1
tan

2
11   

    )2/(tantan 1
θ=

−  

    
2

xtan
2/

1−

=θ= . 

Now, we can write 
)x1(2

1

dx

dy
2

+
= . 

*** 
 
Let’s tackle another problem. 
 

Example 30:  Differentiate 








−

−

2

1

x1

x2
tan  with respect to 









+

−

2

1

x1

x2
sin .  

Solution:  For this, let 








−
=

−

2

1

x1

x2
tany  and 









+
=

−

2

1

x1

x2
sinz .  Our aim is to 

find dz/dy .   

We shall use the transformation θ= tanx .  This gives us  

 θ=θ=








θ−

θ
=

−−
2)2(tantan

tan1

tan2
tany

1

2

1
, and  

 θ=θ=








θ+
=

−−
2)2(sinsin

tan1

0tan2
sinz

1

2

1
. 

Now if we differentiate y  and z  with respect to θ , we get 2d/dy =θ  and 

2d/dz =θ . 










θ−=θ

θθ=θ

2/sin21cos

2/cos2/sin2sin

2

Q
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Therefore, 1
d/dz

d/dy

dz

dy
=

θ

θ
= . 

*** 
 
So, you see, a variety of complex problems can be solved easily by using 
transformations.  The key to a successfully solution is, however, the choice of 
a suitable transformation.  We are giving some exercises below, which will 
give you the necessary practice in choosing the right transformation. 
 
 

E18) Find the derivatives of the following functions using suitable 
transformation: 

 i) )x4x3(sin 31
−

−   ii) )x21(cos 21
−

−  

 iii) 








+

−

2

1

x1

x2
sin   iv) 









−

−−

2

3
1

x31

xx3
tan  

 v) 








+

−−

2

2
1

x1

x1
cos   

 

 
Now let us summarise the points covered in this unit. 
 

10.8 SUMMARY  
 
In this unit we have covered the following points. 
 
1. Obtained derivatives of the exponential and logarithmic functions, 

hyperbolic functions and their inverses.  We give them in the following 
table. 

 
Function Derivative 

xe  
xe  

xln  

x

1
 

xa  alna x
 

xloga  
elog

x

1
a  

xsinh  xcosh  

xcosh  xsinh  

xtanh  xsech 2
 

xcoth  xcosech2
−  

xsech  xtanhxsech−  

xcosech  xcothxcosech−  

 
2. The derivatives of inverse hyperbolic functions. 
 

Function Derivative 

xsinh 1−
 

1x

1

2
+

 

xcosh 1−
 

1x,
1x

1

2
>

−
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xtanh 1−
 

1|x|,
x1

1
2

<
−

 

xcoth 1−
 

1|x|,
x1

1
2

>
−

 

xsech 1−
 

1x0,
x1x

1

2
<<

−

−
 

xcosech 1−
 

0x,
x1|x|

1

2
≠

+

−
 

 

3. Extended the result 1rr rx)x(
dx

d −
=  to all R∈r  and 0x >  

 
4. Logarithm Differentiating: 

• Take modulus, if the function attains negative value for some x . 

• Take logarithm both the sides.  

• Differentiate using chain rule as 
)x(f

)x(f
))]x(f[ln(

dx

d ′
= . 

 
5. Implicit Differentiation:  

• Differentiate both the sides of the equation with respect to x or 
whatever variable you are differentiating with respect to. 

• Apply the rules of differentiation as necessary.  

• Combine all the terms with 
dx

dy
as a factor on one side of the 

equation.  

• Find 
dx

dy
. 

 
6. Differentiation of Parametric Equations:  

 If )t(fx = and ),t(gy = then 
dt/dx

dt/dy

dx

dy
= . 

 
7. Various transformations can also be used to find derivatives.  

 

10.9 SOLUTIONS/ANSWERS  
 

E1) i) elog
x

1
)x2(

dx

d
.

x2

1
.elog)x2(log

dx

d
222 ==  

  

 ii) ))2x5((log
dx

d
7))2x5(log7(

dx

d 2

11

2

11 +=+  

         )2x5(
dx

d

2x5

1
.elog7 2

211 +
+

=  

          .elog
2x5

x70
112

+
=  
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 iii) )x(
dx

d
.xln)x(ln

dx

d
x)xlnx(

dx

d 222
+=  

       xln)x2(x += . 

 

 iv) 








−

+

+

−
=<

















−

+

x1

x1

dx

d
.

x1

x1
1x,

x1

x1
ln

dx

d
 

           
2)x1(

)1)(x1()1()x1(
.

x1

x1

−

−+−−

+

−
=  

            .1x,
)x1(

2
2

<
−

=  

 

 v) )x(sin
dx

d
.

xsin

1
))x(ln(sin

dx

d 4

4

4
=  

           xsin
dx

d
.xsin4.

xsin

1 3

4
=  

            xcot4
xsin

xcos4
== . 

 

 vi) ,
dx

dt
.)t(log

dx

d
))xsin2((log

dx

d
1010 =+ where xsin2t +=  

     )xsin2(
dx

d
.elog

t

1
10 +=  

     
)xsin2(

xcos.elog10

+
=  

 

E2) Given is 212

o m/w10w −
=  

   
1210

w
log10P

−
=  

    ]10log12w[log10 −=  

Now, using the formula for the derivative of a logarithm, and because 

10log is a constant, we get 

  





−= 0

dt

dw
.elog

w

1
10

dt

dP
10  

    





=

dt

dw
.elog

w

1
10 10  

Now, we substitute our given values for w and 
dt

dw
for some t , we 

obtain 

  





= )5.0(.elog

2.7

1
10

dt

dP
10  

    s/Bd302.0= . 

The unit of 
dt

dP
is s/Bd because the sound pressure P is in dB is 

changing over time.   
 

E3) i) )e(
dx

d
5)e5(

dx

d T)2x(T)2x( 22
−−

=  
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dx

dt
.e

dt

d
5 t

=   where T)2x(t 2
−=  

         T)x2(.e5 T)2x( 2
−

=  

         .eTx10 T)2x( 2
−

=  

 

 ii) 






 +
=

++

x

)1x(

dx

d
.ee

dx

d x/)1x(x/)1x(
 

    
2

x/)1x(

x

dx

dx
)1x()1x(

dx

d
x

.e

+−+

=
+

 

    
2

x/)1x(

x

1).1x(1.x
.e

+−
=

+

x/)1x(

2x

e
+

−=  

 iii) xxx e
dx

d
)2x()2x(

dx

d
e)e)2x((

dx

d
+++=+  

           x
dx

d
.e).2x(1.e xx

++=  

           
x2

1
.e).2x(e xx

++=  

           
x2

e
).2x(e

x
x

++=  

 

 iv) 
dx

dt
).e(

dt

d
)e(

dx

d txtanm 1
−−

=
−

  where xtanmt 1−
=  

        )xtanm(
dx

d
.e 1t −

−=  

        
2

xtanm

x1

m
.e

1

+
−=

−
−  

        
2

xtanm

x1

em
1

+

−
=

−
−

 

 

 v) 
dx

dt
).2(

dt

d
)2(

dx

d tx2
=   where x2t =  

            2.2ln2 t
=  

            2ln2 1x2 +
=  

 

 vi) xcos
dx

d
.7ln.7)7(

dx

d xcosxcos
=  

    )xsin(.7ln.7 xcos
−=  

    xcos7.7lnxsin−=  

 

E4) 2ln2)x(f x
=′  

 2ln)0(f =′  

 2ln22ln2)2/1(f 2/1
==′  

 Hence f  increases 2  times faster at 2/1x =  than at 0x = . 
 

E5) t3ec)t(f −
=  
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E6) i) 






 +
=







 +







 +
=

5

1x4
hsec

5

4

5

1x4

dx

d
.

5

1x4
hsec)x('f

22
 

 

 ii) x2x2x2x2x2x2 ecoshe2)x2(
dx

d
.e.ecoshe

dx

d
.ecosh)x('f ===  

 

 iii) 







=−=

x

1
echcos

x

1
)x/1(

dx

d
).x/1(cosech)x('f

2

2

2
 

 

 iv) 
x

)xtanh(ln)x(lnhsec
)x(ln).(ln tanh )h.(ln sec)x('f

−
=−=

dx

d
xx  

 

 v) )xcoshx(sinhexcosh.exsinh.e)x('f xxx
+=+=  

 

E7) xcoshy =  

 1xsinh
dx

dy
==  

 1xsinh =  

 1
2

ee
xx

=
−

⇒
−

 

 2ee xx
=−⇒ −  

 02ee xx
=−−⇒ −  

 0e21e xx2
=−−⇒  

 21
2

442
e

x
±=

+±
=⇒  

 21e
x

+= as it cannot be ive− . 

  )21(lnx +=⇒  

 2
2

ee
y

xx

=
−

=

−

 

 Therefore, the points is )2),21((ln + .  

 

E8) i) 
x251x2

1

x2

5

x251x5

1

+

−
=








+

−
 

 

 ii) 3/121 )]x(cosh[sec
dx

d −  

  )xsin(xcos2
xcos1xcos

1
)]x(cosh[sec

3

1

42

3/221
−











−

−
=

−−
 

  .
xcos1xcos

)]x(cosh[secxsin2

4

3/221

−

=

−−

 

 

 iii) )5x2(e
e1

1 )6x5x(

)6x5x(2

2

2
+

−

−+

−+
 

 

 iv) 
)x41(

2

xcoth1

xcosech
22

2

−
+

−

−
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 v) 
1x4

x4

x1x2

1

4
−

+
+

 

 

E9) i) )12(
x2

−  

 ii) 1eex −  
 
E10) i) We take logarithm both the sides, and get  

  |1x|ln5|2x|ln6|1x|ln|y|ln 322
−+++−=  

  Differentiate both the sides with respect to x . 

  
1x

x15

2x

x12

1x

x2

dx

dy

y

1
3

2

22
−

+
+

+
−

=  

  Thus, 








−
+

+
+

−
−+−=

1x

x15

2x

x12

1x

x2
)1x()2x()1x(

dx

dy
3

2

22

53622  

 

 ii) |3x|ln7|2x|ln6|1x|ln5|y|ln −−−−−−=  

  








−
+

−
+

−−−−

−
=

3x

7

2x

6

1x

5

)3x()2x()1x(

1

dx

dy
765

 

 

 iii) Let x)x(sin)x(f =  and xtan)x(cos)x(g =  

Then )xcotxxsin(lnxsin)x(f x
+=′  and 

)xtanxcoslnx(secxcos)x(g 22xtan
−=′  

)x(g)x(f
dx

dy
′+′=  

 

iv) Let 0x,x)x(g,)x()x(f )x(xx x

>==  

If xlnxyln,xy x
==  

)xln1(x
dx

dy x
+=⇒  

xxlnx)x(fln =  

)xln1(xxln)x(f
)x(f

1 x
++=′⇒  

)]xln1(xx[ln)x()x(f xxx
++=′⇒  

xlnx)x(gln x
=  

)xln1(xxln
x

x
)x(g

)x(g

1 x
x

++=′⇒  

)]xln1(xlnxx[x)x(g x1x)x( x

++=′⇒ −  

Answer )x(g)x(f ′+′=  

            )]xln1(xlnxx[x)]xln1(xx[ln)x( x1x)x(xxx x

+++++=
−  

 

 v) 







+=

x

xsinln
xcotxln)x(sin)x(sin

dx

d xlnxln
 

  )xln1(x)x(
dx

d xx
+=  

  Answer )xln1(x
x

xsinln
xcotxln)x(sin

xxln
++








+=  
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E11) ]6[
dx

d
]xyy[

dx

d 3
−=−  

 0
dx

dy
.xy.1

dx

dy
y3

2
=





+−⇒  

 
xy3

y

dx

dy
2

−
=⇒  

For the horizontal tangent, numerator of 
dx

dy
equals 0, that is 0y = . 

When we substitute 0y = in the given equation of the curve, we get 

60 −= , which is impossible. Therefore, there is no point on the curve 

where the tangent is horizontal. 

For the vertical tangent, denominator of 
dx

dy
equals 0, that is 

0xy3 2
=− giving 2y3x = . Substituting this in the equation of the curve 

and solving, we get 3 3y = and 
3 3

9
x = . 

 

E12) i) 2]y.1
dx

dy
.x[

xy

1
)x2(

dx

d
)]xy([ln

dx

d
=+=  

  
x

yxy2

dx

dy −
=  

  2

)e,1(at

e
dx

dy

2

=  

  Thus, the equation of the tangent is )1x(eey 22
−=−  

 

 ii) 0
dx

dy
y

3

2
x

3

2
)a(

dx

d
]yx[

dx

d 3/13/13/23/23/2
=+⇒=+

−−  

  
3/1

3/1

y

x

dx

dy
−

−

−=⇒  

  ∞=⇒
)0,a(atdx

dy
 

Since, the slope at )0,a( is undefined, therefore, the curve has a 

vertical tangent at )0,a( . The equation of this tangent is ax = .

  

E13) i) 
y

x

dx

dy
0

dx

dy
y2x2 −=⇒=+  

 

 ii) 
y

a2

dx

dy
a4

dx

dy
y2 =⇒=  

 

 iii) 0y
dx

dy
xxy2

dx

dy
yx2yx3

dx

dy
yx3 223223

=+++++  

  )yxy2yx3(
dx

dy
)xyx2yx3( 232223

++−=++⇒  

  
)xyx2yx3(

)yxy2yx3(

dx

dy
223

232

++

++
−=⇒  
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 iv) xtanx4
)x1(

2
xsin

dx

dy
y2ycosxsin

dx

dy
ysinxcos

2

1
+

−

−−−−
−  

    0xsecx2 22
=+  

  
)xsiny2ysinx(cos

xsecx2xtanx4
)x1(

y
ycosxsin

dx

dy
1

22

2

2

−
+−

−−

−

+

=⇒  

 

v) )1(
dx

d
)y2x4(

dx

d 22
=−  

0
dx

dy
y4x8 =−⇒  

.
y

x2

y4

x8

dx

dy
==⇒  

 

vi) )y3(
dx

d
)xy(

dx

d 2
−=  

 
dx

dy

dx

dy
y2.xy.1 2

−=+  

 
1xy2

y

dx

dy 2

+
=  

 

E14) ))2x()1x(x(
dx

d
))2y()1y(y(

dx

d 2
−−=−−  

 
dx

dy
)1y(y

dx

dy
)2y(y2)2y()1y(

dx

dy 222
−+−+−−  

   )2x(x)1x(x)2x()1x( −+−+−−=  

)1y(y)2y(y2)2y)(1y(

)2x()1x()2x(x)1x(x

dx

dy
222

−+−+−−

−−+−+−
−= . For horizontal tangent  

0
dx

dy
=  

 

E15) Suppose the cars start at O and after time ,t they reach A and 

B respectively as shown in Fig. 8.  

 Suppose kmxOA = and kmyOB =  

 222 yxdAB +==  

 Also, after 1 h, 222 4030d +=  

 km50d =⇒  

 Therefore, 222 yx)50( +=  

 ]yx[
dx

d
)2500(

dx

d 22
+=⇒  

 
dx

dy
y2x20 +=⇒  

 
y

x

dx

dy
−=⇒ . 
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Fig. 8 

 

E16) i) θ=
θ

θ−=
θ

cosa
d

dy
,sina

d

dx
 

  θ−=
θ

θ
= cot

d/dx

d/dy

dx

dy
 

 

 ii) 
t

1

at2

a2

dt/dx

dt/dy

dx

dy
===  

 

 iii) θ−=
θθ−

θθ
=

θ

θ−
= tan

a

b

sincosa3

cossinb3

d/dx

d/dy

dx

dy
2

2

 

 

 iv) 
)cos1(

sin

)cos1(a

sina

d/dx

d/dy

dx

dy

θ−

θ
=

θ−

θ
=

θ

θ
=  

 

E17) t2
dt

dy
,t12t5

dt

dx 24
=−= . 

 
dt/dx

dt/dy

dx

dy
=  

  
2

−
=

t12t5

t2
4

 

  
24

t12t5

t2

−
=  

Since 0x = and ,4y = therefore 22335 t4)4t(tt4t0 =⇒−=−= . Thus, 

2t ±= . 

8

1

dx

dy

2tat

=

=

 

∴The tangent line is x
8

1
4y =− . 
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Also, 
8

1

dx

dy

2tat

−=

−=

 

∴The tangent line is x
8

1
4y −=− . The graph shown in Fig. 9 shows 

the tangents.  

 
Fig. 9 

 

E18) i) Put θ= sinx  

  θ=θ=−
−− 3)3(sinsin)x4x3(sin 131  

   xsin3 1−
=  

  
2

31

x1

3
))x4x3((sin

dx

d

−

=−∴
− . 

 
ii) Put θ= sinx  

  )2cos(cos
dx

d
))x21((cos

dx

d 121
θ=−

−−  

     )2(
dx

d
θ=  

    )xsin2(
dx

d 1−
=  

        
2x1

2

−

=  

 

iii) Put 
22

1

x1

2

x1

x2
sin

dx

d
,tanx

−

=
















+
θ=

−  

 

iv) Put θ= tanx  

 
22

3
1

x1

3

x31

xx3
tan

dx

d

+
=


















−

−−  

 

v) Put θ= tanx  

 
22

2
1

x1

2

x1

x1
cos

dx

d

+
=


















+

−− . 



 

 

91

Unit 11                                                                     Higher Order Derivatives 

  UNIT 11                                                        

    HIGHER ORDER DERIVATIVESHIGHER ORDER DERIVATIVESHIGHER ORDER DERIVATIVESHIGHER ORDER DERIVATIVES    

StructureStructureStructureStructure                                Page NoPage NoPage NoPage No....    
 

11.1 Introduction               91 

Objectives 

11.2 Second Order Derivatives             92       

11.3 Higher Order Derivatives             97 

11.4 Leibniz Theorem            103 

11.5 Polynomial Approximations           106 

Linear Approximation 

Quadratic Approximation 

Taylor Approximation 

11.6 Summary             120 
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11.1 INTRODUCTION 
 
We have already seen that the concept of differentiation was motivated by 
some physical concepts (like the velocity of a moving particle) and also by 
geometrical notions (like the slope of a tangent to a curve).  The second and 
higher order derivatives are also similarly motivated by some physical 
considerations (like the acceleration) and some geometrical ideas (like the 
curvature of a curve). 

 
In Unit 9 and Unit 10, we studied about differentiation of functions.  You know 

that the derivative f ′  of a function f  is again a function, and is called the 
derived function of f . This new function f ′ may have a derivative of its own, 
which will again be a new function. In this unit, we will consider such functions. 

 
We will find the second and third order derivatives in Sec. 11.2 and will 
continue the process of differentiation to find higher order derivatives in Sec. 
11.3.  Leibniz theorem, which is given in Sec. 11.4, gives us a formula for 
finding the higher derivatives of a product of two functions.  Later in Sec. 11.5, 
we will consider how a polynomial is used to find the approximate value of a 
function at a point.   
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Now we shall list the objectives of this unit. After going through the unit, please 
read this list again and make sure that you have achieved the objectives.  
 

Objectives 

After readying this unit, you should be able to: 

• find the second and third order derivatives of differentiable function f ; 

• calculate the nth higher order derivatives of a given function f ; 

• use the Leibniz theorem to find the nth derivatives of product of two 
functions; and 

• find the approximate value of a function at a given point using polynomial 
approximation. 

 

11.2 SECOND ORDER DERIVATIVES 
 
Let f be a given function which is differentiable. When we differentiate f , we 
get f ′ . We know that f ′ is a new function derived from f , so f ′ may or may 

not have its own derivative. If f ′ is differentiable, on differentiating f ′ again we 
get a new function.  

 

For example, consider the function f defined by 5x)x(f = .  We know that 
4x5)x(f =′ .  Now, this f ′  is again a polynomial function and hence, can also 

be differentiated.  We can think of the derivative of f ′ as the rate of change of 

the slope of the tangent line of f . It can also be regarded as the rate at which 
f ′ is changing with respect to the independent variable. This rate of change of 
the slope of the tangent line develops curvature, which we shall study in Unit 

14. Coming back to the derivative of ,f ′ we use the notation f ′′ for the 

derivative of f ′ , that is, f)f( ′′=′′ .  Thus, 3x20)x(f =′′ . )x(f ′′  is called the 

second derivative of the function f  at the point x .  

 
Let )x(fy = , then we write the second derivative of y with respect to x as  

2

2

dx

yd

dx

dy

dx

d
=








 (read as d  square y  by xd  square) or 

)2(
f  or yD2 or y ′′ or 

f ′′ . Now let us find the second derivative in the following examples. 
 

Example 1: Find f ′′ , if x2x)x(f 2
+= . Also draw the graphs of f,f ′ and f ′′ . 

What is the relationship you see between the graphs, if any? 

Solution: Given is that x2x)x(f 2
+= . On differentiating )x(f with respect to 

x , we get 2x2)x(f +=′ . Again on differentiating )x(f ′ with respect to x , we 

get 2)x(f =′′ . You may note that f is a polynomial function, which is 

differentiable, f ′  is again a polynomial function which is differenatible. Fig. 1 

shows the graphs of f,f ′ and f ′′ . 

 
Look at the graph of all three functions f,f ′ and f ′′ . We see that f represents  

a parabola, f ′ represents a straight line. Next, f ′′ is the line showing a fixed 
value, this is parallel to −x axis. We can conclude that.  

)x(f ′′ is the slope of the curve )x(fy ′= at the point ))x(f,x( . You may note 

that f ′′ is positive, therefore f ′′ lies above the x -axis.  
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Fig. 1: Graph of ff, ′  and f ′′  

*** 
 

Example 2: If 5xcos3xsin2y ++= , then prove that 5yy =+′′ . 

Solution: Now, 5xcos3xsin2y ++=  

Differentiating y with respect to x , we get 

 xsin3xcos2y −=′  

Again differentiating w.r.t. x , we obtain  

 xcos3xsin2y −−=′′  

Now 55xcos3xsin2xcos3xsin2yy =+++−−=+′′  

*** 
 

In the introduction, we had mentioned that f ′ may not be differentiable. The 

next example gives a function f for which f ′  exists but f ′′  does not exist. 
 

Example 3: Consider the function |x|x)x(f =  for all x  inR . Find the second 

derivative of f . Also, find the domain and range of the functions f ′ and f ′′ . 

Solution: The function )x(f  can be rewritten as 






<−

≥
=

0xif,x

0xfi,x
)x(f

2

2

 














<−

≥
=

0x,x

0x,x
|x|Q  

At points other than 0 , we have x2)x(f =′  if 0x > and x2)x(f −=′  if 0x <  

At 0x = , the right derivative of f is given by 

h

0h
lim)0(fR

22

0h

−
=′

+
→

0hlim
0h

==
+

→

, and the left derivative of f is 

0hlim
h

0h
lim)0(fL

0h

22

0h
==

−
=′

−−
→→

. 

Therefore, 0)0(f =′ . 

Thus, |x|2)x(f =′  for all x  in R .The domain of f ′ is R and the range of f ′ is 

[,0[ ∞ . 

We already know that the absolute value function |x|  fails to be differentiated 

at 0 [Refer Unit 9].  Therefore, f ′  is not differentiable at 0x = .  Therefore, 

)0(f ′′  does not exist. 

*** 
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In the next example, we find the second order derivative, if both the variables 
are depending on a third variable.  
 

Example 4: If )tsintt(cosax += and )tcostt(sinay −= , find 
2

2

dx

yd
. 

Solution: Differentaiting x and y w.r.t t , we obtain 

)tsintcosttsin(a
dt

dx
++−= tcosta=  

and  )tcostsintt(cosa
dt

dy
−+= tsinta=  

dt/dx

dt/dy

dx

dy
=∴ , provided 0

dt

dx
≠  

   ttan=  

dx

dt
).t(tan

dt

d

dx

dt
.

dx

dy

dt

d

dx

dy

dx

d

dx

yd
2

2

=







=








=∴  [Using chain rule] 

  
tcosta

1
.tsec2

=
tcosta

1
3

=  

*** 
 
In the next example, we find the second order derivative of an implicit function. 
 

Example 5: If ,1byhxy2xa 22
=++ find 

2

2

dx

yd
. 

Solution: Differentiating the given equation w.r.t. x .  

0
dx

dy
yb2y

dx

dy
xh2ax2 =+








++  

or 
byhx

hyax

dx

dy

+

+
−=        ... (1) 

Differentiating again w.r.t. x , we get  

22

2

)byhx(

dx

dy
bh)hyax(

dx

dy
ha)byhx(

dx

yd

+









++−








++

−=  

Substituting 
dx

dy
from (1) and solving it, we get 

3

2

2

2

)byhx(

)abh(

dx

yd

+

−
= . 

*** 
 
You may recall that the first derivative is the rate of change, therefore, the 
second derivative is the rate of change of the rate of change w.r.t. the same 
variable. For example, the rate of change of position of any object with 
respect to time is velocity. Velocity itself is a function of time. When a jet takes 
off or a vehicle comes to a sudden stop, the change in velocity is easily felt by 
the passengers. The rate at which velocity changes is called acceleration. 

Suppose that two cars start at rest. Car A reaches a speed of 60 km/h in 10 s 

and car B  reaches a speed of 60 km/h in  8 s, then car B has a faster 

acceleration than A . We generally use the letter ‘a’ for acceleration. Let 

)t(v),t(s and )t(a be the position function, velocity and acceleration of an 

object respectively, then 

)t(s
dt

d
)t(v = and ))t(s(

dt

d
)t(s

dt

d

dt

d
))t(v(

dt

d
)t(a

2

2

=







== .  
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Let us find acceleration in the following examples. 
 

Example 6: The equation of motion of a particle is ,t3t)t(s 3
−= where s is in 

meters and t is in seconds. Find  

i) the velocity and acceleration as functions of t , 

ii) the acceleration after 2 seconds, and  

iii) the acceleration when the velocity is 0. 

Solution: i) We have t3t)t(s 3
−= . 

3t3)t3t(
dt

d
))t(s(

dt

d
)t(v 23

−=−==∴  

and t6)3t3(
dt

d
))t(v(

dt

d
)t(a 2

=−== . 

ii)   The acceleration after 2 seconds 2s/m12)2(a == . 

iii)   When velocity is 0,we have ,0)t(v = which gives 03t3 2
=− or 1t ±= . As  

time cannot be negative, time 1=  second. Now acceleration after 1 

second is 2s/m6)1(a = . 

*** 
 
Example 7: A new product is placed on the market and becomes very 
popular. Its quantity sold N is given as a function of time t , where t is in 
weeks, 

0t,
)1t2(

t250000
)t(N

2

2

>
+

= . 

Find )t(N ′′ , then use it to calculate )52(N ′′ and )208(N ′′ and interpret these 

results in the given situations.  

Solution: To determine )t(N′ and )t(N ′′ , we use the quotient rule.  










+
=′

2

2

)1t2(

t250000

dt

d
)t(N  

 

[ ]
4

2222

)1t2(

)1t2(
dt

d
.t250000)t250000(

dt

d
)1t2(

+

+−+

=  

 
3)1t2(

t500000

+
=   [On simplification] 

)]t(N[
dt

d
)t(N ′=′′  

 








+
=

3)1t2(

t500000

dt

d
 

 
4)1t2(

500000t2000000

+

+−
=   [On simplification] 

At ,52t = we have 

852.0
]1)52(2[

500000)52(2000000
)52(N

4
−≈

+

+−
=′′  

Thus, after 52 weeks (1 year), the rate of the rate of sales is decreasing at 

852.0− units per week per week. 
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014.0
]1)208(2[

500000)208(2000000
)208(N

4
−≈

+

+−
=′′ . 

After 208 weeks (4 years), the rate of sales have slowed to almost zero nearly 
at a loss. Fig. 2 shows this. 

 

Fig. 2 

*** 
 
Try some exercises before going any further. 
 
 

E1) Find the second derivatives of the following with respect to x . 

 i) 4x)x(f 3
−=  

 ii) x2ey =  

 

E2) If ,bxsiney ax
= show that 0y)ba(ya2y 22

=++′−′′ . 

 

E3) Find the value of integer k  in each of the following 

 i) xksin)x(f =  and 32)6/(f )2(
=π  

 ii) 1kxx)x(f 2k
++=  and 12)1(f )2(

=  

 

E4) The position function of a particle is given by ,t7t5.4t)t(s 23
−−= 0t ≥ . 

i) When does the particle reach a velocity of s/m5 ? 

ii) When is the acceleration 0? What is the significance of this value 
of t ? 

 

E5) The function 
75t4

t2000
)t(p

+
= models the population p in an area after 

t months. 

i) Find )50(p),10(p ′′ and )100(p′ . 

ii) Find )50(p),10(p ′′′′ and )100(p ′′ . 
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iii) Interpret the meaning of your answers to parts (i) and (ii). What is 
happening to this population in the long term? 

 

 
As we saw, the first derivative is again a function and can be differentiable. 

Similarly, the second derivative of )x(fy = is a function, which can further be 

differentiated. In the following section, we shall find higher order derivatives.  
 

11.3 HIGHER ORDER DERIVATIVES 
 

Consider a fucniton f defined by ,x)x(f
4

= we have 
3

x4)x(f =′ and 
2x12)x(f =′′ . Differentiating f ′′ again with respect to ,x we get x24)x(f =′′′  

where f ′′′  denotes the derivative of f ′′ , or the third derivative of f .  Other 

notations for )x(f ′′′  are 
3

3

dx

yd
 or 

)3(
f  or yD3 . Differentiating f ′′′ , we get the 

fourth derivative of 0
dx

yd
)x(f,f

4

4
)4(

== . 

 
Thus, repeatedly differentiating (if possible) a given function f , we get the 

second, third, fourth, … derivatives of f .  These are called the higher order 
derivatives of f . 
 

If n  is any positive integer, then the 
th

n  derivative of f , a function of x , is 

denoted by 
)n(

f , or by 
n

n

dx

fd
 (read as fnd  by nxd ), or by ny , or yDn , 

where )x(fy = . 

 

Note that in the notation 
)n(

f  the bracket is necessary to distinguish it from
n

f , 

that is, f  raised to the power n .  This process of differentiating again and 
again, in succession, is called successive differentiation. 
 

We have already seen that there are functions f  that are not differentiable.  In 

other words f ′  need not always exist.  Similarly even when f ′ exists, it is 
possible that f ′′  does not exist. In general, for each positive integer n  there 

are functions f  such that 
)n(

f  exists, but 
)1n(

f
+

 does not exist.  However, most 
functions that we consider in these sections possess all higher derivatives. 
 

A twice differentiable function is a function f  such that f ′′  exists.  Let n  be a 

positive integer.  A function f  such that 
)n(

f  exists is called an n-times 

differentiable function.  If 
)n(

f  exists for every positive integer n , then f  is said 
to be an infinitely differentiable function. 

 
Now we give some simple examples of problems related to higher derivatives. 
 
Example 8: If the third derivative of the function f , given by 

cbxax)x(f 3
++=  R∈c,b,a has the value 6  at the point 1x = , find the 

value of a . 

Solution: Here, cbxax)x(f 3
++=  

Differentiating this we get bax3)x(f 2
+=′ . Differentiating this again, we get 

ax6)x(f =′′ . Differentiating once again, we get a6)x(f )3(
= .  

Taking the value at 1x = , 
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6)1(f )3(
=  

Thus, 6a6 = .  Therefore, 1a = . 
*** 

 

Example 9: If 32 xx2)x(f −= , find )x(f),x(f),x(f ′′′′′′ and )x(f ′′′′ . Compare 

the graphs of f,f,f,f ′′′′′′ . Check whether the graphs are consistent with the 

geometric interpretation of these derivatives. 

Solution: The function f is )x2(xxx2)x(f 232
−=−=  

First derivative: )x34(xx3x4)x(f 2
−=−=′  

Second derivative: x64)x(f −=′′  

Third derivative: 6)x(f −=′′′  

Fourth derivative: 0)x(f =′′′′  

The graphs of f,f,f,f ′′′′′′ are given in Fig. 3. We can interpret )x(f ′′ as the 

slope of the curve )x(fy ′= at the point ))x(f,x( ′ . In other words, it is the rate 

of change of the slope of the original curve )x(fy = . You may note that f ′′ is 

negative when f ′ has negative slope and positive when f ′ has positive slope. 

Similarly, f ′′′ is the slope of the curve )x(fy ′′= at the point ))x(f,x( ′′ . So, the 

graphs in Fig. 3 serve as a check on our calculations.   

 

 
Fig. 3: Graph of y,yy, ′′′  and y ′′′  

*** 
 
You may try the following exercises now. 
 
 

E6) Find )4/(f )3(
π  for the following functions. 

 i) xsec)x(f =  

 ii) x2cosx2sin)x(f += . 

 

E7) Find )x(sin
dx

d
99

99

. 
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Now, we will find rules for obtaining the 
th

n derivatives of some functions. 

When a function f  is given by a formula, it is often possible to express its 
th

n  

derivative also by a formula using f  and n .  Often, one can guess 
)n(

f  after 

working out )2()1( f,f  and 
)3(

f and seeing a pattern emerging. In fact, such 

formulas can be proved also, using the principle of mathematical induction. 
However, in this section, we will not prove any such formulae. We will derive 

the formulas for the 
th

n  derivative of various functions by observing the first 
few derivatives.  Study them carefully as we shall be using them in later 
sections. 
 

Below, we obtain formulas for the 
th

n  order derivatives of some standard 
functions. 

I. 
th

n derivative of axe with respect to x . 

Let axey = , on differentiating y successively w.r.t. x , we obtain 

 ax)1( eay = , 

 ax2)2( eay = , 

 

−−−−−−−

−−−−−−−

= ,eay ax3)3(

 

 axn)n( eay =  

Thus, we have 
axnax

n

n

ea)e(
dx

d
=  

In particular if 1a = , 
xx

n

n

e)e(
dx

d
=  

 

II. 
th

n derivative of the polynomial function mb)(ax + with respect to x . 

Let m)bax(y += , on differentiating y successively w.r.t. x , we get 

 1m)1( )bax(a.my −
+=  

 2m2)2( )bax(a)1m(my −
+−=  

  

−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−

+−−=
−3m3)3( )bax(a)2m()1m(my

 

  nmn)n( )bax(a)}1n(m).......{2m()1m(my −
+−−−−=  

Here, we see that 
th

n derivative depends on whether nm > , nm < or 
nm = . 

Let us consider these three cases one by one. 
 

i) Suppose a(nm = positive integer) 

Then, nnn)n( )bax(a.1).....2n()1n(ny −
+−−=

na!n= . 

 i.e, 
nn

n

n

a!n)bax(
dx

d
=+ . 

Here, you may note that when ,nm =  the 
th

n derivative is 

constant. 

 
ii) Suppose m is a positive integer and .nm >  

Then, nmn)n( )bax(a)}1n(m).....{1m(my −
+−−−=  
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          .)bax(a.
!)nm(

!m nmn −
+

−
=  

  i.e. 
nmnm

n

n

)bax(a
)!nm(

!m
)bax(

dx

d −
+

−
=+ . 

 
iii) Suppose m is a positive integer and .nm <  

 From case i), 
mm

m

m

a!m)bax(
dx

d
=+  

As ,mn >  on differentiating it further, the right hand side is zero. This 

is because, since 
th

m derivative is constant, therefore, the 
th)1m( + derivative is zero. 

Thus, 0)bax(
dx

d m

n

n

=+ if .mn >  

In particular, if 1a = and 0b = , then the 
th

n derivative of 
m

x is  













<

>
−

=

=

−

nmif,0

nmif,
!)nm(

x!m

nmif,!n

)x(
dx

d nm
m

n

n

 

 

III. 
th

n derivative of ,
bax

1

+
when 0bax ≠+ , with respect to x . 

Let 
bax

1
y

+
= , on differentiating y successively w.r.t. x , we get 

   
2

)1(

)bax(

a
y

+

−
=  

  
3

22

3

)2(

)bax(

a2.)1(

)bax(

)a2()a(
y

+

−
=

+

−−
=  

   
4

33

4

)3(

)bax(

a!3)1(

)bax(

)a3()a2()a(
y

+

−
=

+

−−−
=  

and  
1n

nn

1n

)n(

)bax(

a!n)1(

)bax(

)an.......()a3()a2()a(
y

++
+

−
=

+

−−−−
=  

 Thus 
1n

nn

n

n

)bax(

a!n)1(

bax

1

dx

d
+

+

−
=









+
 

 In particular, if 1a = and 0b = , 0x,
x

!n)1(

x

1

dx

d
1n

n

n

n

≠
−

=







+

. 

 

IV. 
th

n derivative of b)ln(ax + , with respect to x . 

Let )bax(lny += , we get 
bax

a
y )1(

+
= . 

 Differentiating again, 
2

2
)2(

)bax(

a
y

+
−= . 

 Differentiating once again, 
3

3
)3(

)bax(

a2
y

+
= . 

Can you guess )n(y now?  If you have guessed correctly, you must have 

arrived at these conclusions. 

[Multiplying and dividing by 
]!)nm( −  

 



 

 

101 

Unit 11                                                                     Higher Order Derivatives 

i) The denominator of )n(y  is n)bax( + . 

ii) Its sign is positive or negative according as n  is odd or even.  

iii) Its numerator has )1n(a n
− !  Do not think that it is merely )1n( − .  

There is a factorial symbol too.  To be convinced of this, calculate 
)4(y  and see. 

  Therefore, our guess ( )
n

n1n

n

n
)n(

)bax(

a!)1n()1(
)baxln(

dx

d
y

+

−×−
=+=

−

 

  In particular, if 1a = and 0b = , 
n

1n

n

n

x

!)1n()1(
)x(ln

dx

d −−
=

−

. 

  

V. 
th

n derivative of mxa , with respect to x . 

 Let .ay mx
=  Taking logarithm both the sides, we get 

  alnmxyln =  [Since ]mlnnmln n
= . 

 Differentiating w.r.t. x , we get 

  alnm
dx

dy
.

y

1
=  

 or  alnm.yy )1(
=  

  1

)2( y).alnm(y = y)alnm( 2
=  

  

−−−−−−−−−

−−−−−−−−−

= y)alnm(y 3)3(

 

  .y)alnm(y n)n(
=  

 or .a)alnm()a(
dx

d
y

mxnmx

n

n
)n(

==  

 In particular, if 1m = , 
mxnx

n

n

a)a(ln)a(
dx

d
= . 

 
Now let us use these results in the following examples. 
 

Example 10: Find the 
th

n derivative of 
)2x)(1x(

3x

++

+
 

Solution: Let 
)2x()1x(

3x
y

+−

+
= . To find the 

th
n derivative of this rational 

function is difficult. So, we first break into sum of rational functions in which the 
denominator is expressed in linear polynomial. For this, we are giving method 
of doing partial fractions in the Appendix 2 given at the end of this Block. 
By partial fractions, we get 

 
)2x(

B

)1x(

A

)2x()1x(

3x

+
+

−
=

+−

+
    ... (2) 

Then, )1x(B)2x(A3x −++=+  

Taking 34A1x =⇒=  and 31B2x −=⇒−=  

Substituting values of A and B in eqn. (2), we get 

 
)2x(3

1

)1x(3

4
y

+
−

−
=  

Now, on differentiation with respect to x , we obtain 
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+
−






−
=









+−

+

2x

1

dx

d

3

1

1x

1

dx

d

3

4

)2x()1x(

3x

dx

d
n

n

n

n

n

n

 

            
1n

n

1n

n

)2x(

!n)1(

3

1

)1x(

!n)1(

3

4
++

+

−
−

−

−
=  

            








+
−

−

−
=

++ 1n1n

n

)2x(

1

)1x(

4

3

!n)1(
 

*** 
 
Now, try the following exercises. 
 
 

E8) If r)x1(y += , where r  is a real number, find )n(y where n  is a natural 

number )rn( < . 

 

E9) Find the 
th

n  derivative of the following functions: 

 i) 3)bax()x(f +=    iv) xke)x(f =  

 ii) m)bax()x(f +=    v) 
)3x2)(1x(

x

−−
  

 iii) xe)x(f =     vi) 
22 ax

1

+
 

 

E10) Prove that the 
th

n  derivative of the polynomial function 
n

n

2

210 xaxaxaa)x(f ++++= L  is a constant. 
 

 

Now, let us find 
th

n derivative of a tringonometric function in the following 
example: 
 

Example 11: If x2cos)x(f = , find a formula for )0(f )n( . 

Solution: We first find )x(f )n(  when 4,3,2,1n = . 

We have x2cos)x(f = . 

On differentiating this successively, we get  

 x2sin2)x(f )1(
−=  

 x2cos4)x(f )2(
−=  

 x2sin8)x(f )3(
=  

 x2cos16)x(f )4(
=  

We see that in the formula for )x(f )n( , we have to have  

 

i) a sign (positive or negative), 
 
ii) a coefficient (some power of 2), and  
 

iii) a trigonometric function ( x2sin  or x2cos ) 
 
We observe that the first two terms carry negative sign, the next two carry 
positive sign, the next two negative and so on. 
We also observe that sin and cos occur alternately.  Therefore our guess is  

Recall that 

θ=π−θ

θ−=π+θ

θ−=π+θ

sin)2/cos(

cos)cos(

sin)2/cos(
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+

+−

+−

=

k4formtheofisnifx2cos2

3k4formtheofisnifx2sin2

2k4formtheofisnifx2cos2

1k4formtheofisnifx2sin2

)x(f

n

n

n

n

)n(     

We can also write this in a compact form as  

 )2/nx2cos(2)x(f n)n(
π+=        

You can easily check that both the results of )x(f )n( are equivalent by putting 

3k4,2k4,1k4n +++=  and k4  in later )x(f )n( .   

Now substitute 0x = in )x(f )n( .  We obtain 

 2/ncos2)0(f n)n(
π=  

This is the required answer. 
 

We can also write a general result about the 
th

n  derivative of a sum of two 
functions in the following theorem. 
 

Theorem 1: If f  and g  are two functions from R  to R  and if both of them 

are differentiable n -times, then 

i) )n()n()n( gf)gf( +=+  

ii) )n()n( f.c)cf( = , where c is a constant. 

 
Try to solve these exercises now. 
 
 

E11) If xsin)x(f = , find )x(f )n( . 

 

E12) If )baxsin(y += , find )n(y . 

 
E13) If xcosy =  and if n  is any positive integer, prove that 

1]y[]y[ 2)1n(2)n(
=+

+ . 
 

 
In the following section, we shall state Leibniz theorem which states the nth 
derviation of the product of two functions. 
 

11.4 LEIBNIZ THEOREM 
 
In Unit 9, we have stated some rules regarding the derivatives of the sum, 
scalar multiple, product and quotient of two differentiable functions.  These 
were  

 gf)gf( ′+′=′+  

 fc)cf( ′=′  

 fggf)fg( ′+′=′  

 0)x(g(
g

gffg
)g/f(

2
≠

′−′
=′  anywhere in the domain) 

In Theorem1, we have seen that the first two rules can be extended to the 
th

n  
derivatives if f  and g  are n -times differentiable functions.  In this section, we 

are going to extend the product rule of differentiation.  We shall give a formula 

for the 
th

n  derivative of the product of two functions. 
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Let u and v be the functions of x , then the product rule for two functions u  

and v  can also be written as vuvu)uv( ′+′=′ [Where u′ and v′ are the first 

derivatives of u and v respectively with respect to x ]. 

 

Now we look for a similar formula for )3()2( )uv(,)uv( , etc. 

 

To derive a formula for 
th

n derivative of product of two functions, we will need 

)r,n(C . You may recall the meaning of the notation )r,n(C , where n  and 
+

∈Zr  and nr ≤ .  This )r,n(C  stands for the number of ways of choosing r  

objects from n  objects.  Sometimes it is also denoted by r

n C  or 








r

n
. 

Also recall the formulas 

i) 
!)rn(!r

!n
)r,n(C

−
=  

ii) 1)n,n(C)0,n(C ==  

iii) )rn,n(C)r,n(C −=  

iv) )1r,1n(C)1r,n(C)r,n(C ++=++  

These are combinatorial identities, true for all positive integers r  and n  with 

nr ≤ . Now, we state Leibniz theorem, which is to find the 
th

n derivative of 
product of two functions. 
 
Theorem 2 (Leibniz Theorem): Let n  be a positive integer.  If u  and v  are 

n  times differentiable functions, then  
)n()2()2n()1()1n()n()n( uv)n,n(Cvu)2,n(Cvu)1,n(Cvu)0,n(C)uv( ++++=

−− L . 

Where )n(u and )n(v are the nth derivatives of u and v respectively. 

The pattern in the formula for n)uv(  can be compared with the expansion of 
n)yx( + .   

i) The coefficients are binomial coefficients and they appear in the same 

order as those in the expansion of n)yx( + .   

ii) The order of the derivative of u  goes on decreasing one at a time, and 
the order of the derivative of v  goes on increasing one at a time.   

iii) The number of terms is 1n + . 
 
Remark 1: We omit the proof of this theorem and merely indicate how this can 

be proved by mathematical induction on n .  Firstly, when 1n = , the above 
formula is the same as the already known product formula, and therefore is 

true.  Assuming that it is true for mn = , we can prove it for 1mn += , by 

applying the product rule for each term of the expansion of )m()uv( and by 

using the combinatorial identities mentioned.   
 
We start with a simple and direct application of the formula. 
 

Example 12: If xsinx)x(f = , find the fourth derivative of f , using Leibniz 

theorem. 

Solution: We first observe that for 4n = , the Leibniz theorem states 
)4()3()1()2()2()1()3()4()4( uv)4,4(Cvu)3,4(Cvu)2,4(Cvu)1,4(Cvu)0,4(C)uv( ++++=

   )4()3()1()2()2()1()3()4( uvvu4vu6vu4vu ++++= . 
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Here, we take xu =  and xsinv = , so that uvf =  

We have  xu = ,   xsinv =  

   1u )1(
= ,  xcosv )1(

=  

   )4()3()2( uu0u === , xsinv )2(
−=  

      xcosv )3(
−=  

      xsinv )4(
=  

Substituting these in the above formula, we get  

 xsin.x)xcos()1(4000)uv(f )4()4(
+−+++==  

       xcos4xsinx −=  
What happens if we attach the same problem directly without the use of 

Leibniz theorem?  We have xsinx)x(f =  

Differentiating this once, we get xsinxcosx)x(f )1(
+=  (by product rule) 

Differentiating once again, we get xcosxcos.1)xsin(x)x(f )2(
++−= , that is       

xsinxxcos2)x(f )2(
−=  

Differentiating once again, we get ),xsinxcosx(xsin2)x(f )3(
+−−=  that is          

xcosxxsin3)x(f )3(
−−=   

Differentiating once again, ]xcos)xsin(x[xcos3)x(f )4(
+−−−= , that is           

xcos4xsinx)x(f )4(
−=  

You may notice that we obtain the same answer.  In this direct method, we 
had to apply the product formula four times, once for each differentiation. 

*** 
 

It is clear that when we want the 
th

n  derivative for bigger values of n , Leibniz 
theorem provides an easier method to write down the answer, avoiding the 
difficulty of repeatedly applying the product formula. Let us apply the theorem 
in more examples. 
 

Example 14: If 21 )x(siny −
= , prove that 

0ynxy)1n2(y)x1( )n(2)1n()2n(2
=−+−−

++  for each positive integer n . 

Solution: Differentiating both sides of 21 )x(siny −
= , we get 

2

1
)1(

x1

xsin2
y

−

=

−

 

 

Squaring and cross multiplying, we get y4)x(sin4)y()x1( 212)1(2
==−

−  

Differentiating once again, we get )y4(
dx

d
])y()x1[(

dx

d 2)1(2
=−  

 )y(
dx

d
4)y(

dx

d
)x1()y()x1(

dx

d 2)1(22)1(2
=−+





−⇒  

         )1()2()1(22)1( y4yy2).x1()y)(x2( =−+−⇒  

 0y4)y(x2yy)x1(2 )1(2)1()2()1(2
=−−−⇒  

Dividing throughout by )1(y2 gives us 02xyy)x1( )1()2(2
=−−−  

Differentiating n  times, using Leibniz Theorem for each of the first two terms 
we get  

 { { { 0]2[DyxDy)x1(D n

u

)1(

v

n

u

)2(

v

2n
=−












−












−321 . 

]yD)x1(D)2,n(CyD)x1(D)1,n(CyD)x1[( )2(2n22)2(1n2)2(n2 −−
−+−+−⇒                                                                                                                                

     0)2(D]yD)x(D)1,n(CyD.x[ n)1(1n)1(n
=−+−

−  

[Since 21 )x(siny −
= ] 
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                                               2nif,0)x1(D[ 2n
>=−Q and ,0xDn

=  if ]1n >  

On solving this, we get 

 0}y)1,n(Cxy{y2)2,n(Cxy2)1,n(Cy)x1( )n()1n()n()1n()2n(2
=+−−−−

+++  

That is, 

 0ynxy)1n2(y)x1( )n(2)1n()2n(2
=−+−−

++ . 

*** 
 
The following exercises will give you some practice in applying Leibniz 
theorem. 
 
 

E14) State Leibniz Theorem when 5n = .  That is, )5()uv( . 

 

E15) Prove that when 1n = , Leibniz theorem reduces to the product rule of 
differentiation. 

 

E16) Find the third derivative of xsin 2  using Leibniz theorem.  Find the same 
directly also and verify that you obtain the same answer. 

 

E17) If xxe)x(f = , find the sixth derivative of f , using Leibniz formula. 

 

E18) Find the 
th

n  derivative xlnx
3

. 
 

E19) If 2ax xey =  prove that ]a)1n(nxna2xa[ey 2n1n2nax)n( −−
−++= . 

 

E20) i) Write down Leibniz formula for )m()uv( . 

 ii) Differentiate it term by term and obtain 

+++=
+++ )vuvu()1,m(Cvu)0,m(C)uv( )2()1m()1()m()1m()1m(  

    )1m(uv)m,m(C +
+L . 

 iii) Deduce that  

  ++++=
++ )1,m(C[vu)]1,m(C)0,m(C[vu)0,m(C)uv( )1()m()1m()1m(  

  )m()1()2()1m( vu)]m,m(C)1m,m(C[vu)2,m(C +−++
− L  

  )1m(uv)m,m(C +
+ . 

 iv) Deduce from part (iii) the Leibniz formula for )1m()uv( + . 
 

 
So far, we have discussed higher order derivatives. In the following section, 
we shall apply the concept of higher order derivatives to find approximations. 
 

11.5 POLYNOMIAL APPROXIMATION 
 
Recall Unit 9, where you have seen that a secant line can be approximated to 

find the slope of the tangent at any point 0x . In this section, we will 

approximate the given curves with the curves of the polynomial functions. Why 
do we use polynomial functions? It is because they have the simplified form of 
being built only with powers of x . The polynomials of degree 0 and 1 are 
straight lines and the polynomials of degree 2 or more have curvy graphs. 
 
Suppose we find a polynomial which passes through a particular point, then 
there may be three possibilities that a curve is  
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i) a straight line parallel to −x axis that is polynomial of degree 0. 

ii) a slant line that is a polynomial of degree 1. 

iii) a curve that is a polynomial of degree 2 or more. 
 
If the polynomial has its degree 0, then we do not have any choice that is the 
horizontal line passing through a given point is always unique. But if we find 
polynomials of degree 1, 2 or more, we can adjust constants to get different 
curves. So in this section, we will discuss approximation of linear polynomial 
(polynomial with degree 1), quadratic polynomial (polynomial with degree 2) 
and the Taylor polynomial (polynomial with degree n ). 
 

11.5.1 Linear Approximation   
 
Suppose we want a linear polynomial which approximates the curve at a 

particular point. For this consider a point ))x(f,x( 00 . We know that there are 

several straight lines passing through the point as given in Fig. 4. 
 

 

Fig. 4 

 
We can adjust the slope which will in turn tilt the line any way we like. This is 
linear approximation. The best linear approximation is when the slope of the 

line passing through ))x(f,x( 00 is same as the slope of the tangent to the 

curve at ))x(f,x( 00 . 

 

Here, we are considering the slope of the given function f at a particular point 

))x(f,x( 00 and try to approximate the graph of f . This is called linear 

approximation. For this, suppose that a function f is differenatiable at 0x , 

and the slope of the tangent of f at 0x is )x(f 0
′ . Then, the equation of the 

tangent at ( ))x(f,x 00 is )xx()x(f)x(fy 000 −′=− . 

 
Since this tangent line closely approximates the graph of f for the values of 

x near 0x , we can write the linear approximation of f at 0x as 

)xx()x(f)x(f)x(f 000 −′+≈ , provided x is close to 0x . If ,xxx 0 δ=− then 

x)x(f)x(f)xx(f 000 δ′+≈δ+ . Let us find the linear approximation in the 

following examples.  
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Example 12: Find the linear approximation of 1x)x(f += at 0x 0 = . Hence, 

find the approximate value of 1.1 . 

Solution: Given is 1x)x(f += , on differentiating )x(f with respect to x , we 

get 
1x2

1
)x(f

+
=′ . Here 0x 0 = , thus 11)0(f)x(f 0 === and 

2

1
)x(f)x(f 00 =′=′ . 

The linear approximation of f at 0x is )xx()x(f)x(f)x(f 000 −′+≈ . 

On substituting )x(f,x 00 and )x(f 0
′ , we get 

2

x
1)0x(

2

1
11x +=−+≈+ . 

We can say that as x is close to 0, 1x + is about 
2

x
1+ . Fig. 5 shows the 

graph of f and the graph of local linear approximation of 1x + at 0x = . 
 

 

Fig. 5: Graph of 1xy += and 
2

x
1y +=  

 

To find the approximate value of 1.1 , we put 1.0x = . Thus, the approximate 

value of 1.1 is 05.1
2

1.0
1 =+ . 

*** 
 

Example 13: Show that 1xcos ≈ if x is close to 0. 

Solution: Let ,xcos)x(f = and 0x 0 = . Then ,xsin)x(f −=′ and )x(f and 

)x(f ′ at 0x are 1)0(f)x(f 0 == and 0)0(f)x(f 0 =′=′ . Now the linear 

approximation of xcos is given by )0x()0sin(0cosxcos −−+≈ , that is 

01xcos +≈ . 

Thus, 1xcos ≈  
 

Fig. 6 shows the graph of xcos)x(f = near 0x = . 
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Fig. 6: Graph of cosx  near 0 

*** 
 
Now try the following exercise. 
 
 

E21) Find the local linear approximation of xsin at 0x 0 = . Hence, find the  

approximate value of o1sin . 
 

 

11.5.2  Quadratic Approximation 
 

In the local linear approximation, we have used the tangent line at the point of 
tangent. Now, we will extend our discussion to improve the approximation 
using polynomials of degree more than 1. As the polynomial of degree two are 
called quadratic polynomial, the equation of degree two used for 
approximation is called the quadratic approximation. Let us begin with 

quadratic approximation of f at 0. Suppose this approximation has the 

quadratic polynomial form 2

02010 )xx(a)xx(aa)x(p −+−+= where 

,a,a 10 and 2a are to be taken such that the value of )x(p and its first two 

derivatives at 0x  are equal to f and its first two derivatives at 0x respectively. 

That is,  

)x(f)x(p),x(f)x(p),x(f)x(p 000000
′′=′′′=′= . 

Let 2

02010 )xx(a)xx(aa)x(p −+−+=  

)xx(a2a)x(p 021 −+=′∴  

and 2a2)x(p =′′  

So, )x(fa)x(p 000 == , 

 )x(fa)x(p 010
′==′  

and 
2

)x(f
a)x(fa2)x(p 0

2020

′′
=⇒′′==′′ . 

Substituting 210 a,a,a in quadratic approximation of ,f we get 

2

0
0

000 )xx(
2

)x(f
)xx()x(f)x(f)x(p −

′′
+−′+= . 

Since we have taken )x(p as quadratic approximation of )x(f , therefore 

)x(p)x(f ≈ , which gives  

 2

00 )xx(
2

)0(f
)xx()0(f)0(f)x(f −

′′
+−′+≈ . 
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In particular, if we substitute 0x as 0 we get 2x
2

)0(f
x)0(f)0(f)x(p

′′
+′+=  

and the approximation of the function f is 2x
2

)0(f
x)0(f)0(f)x(f

′′
+′+≈ .  

Let us see how this quadratic approximation improves the linear 

approximation. In Example 12, we approximated 1x + at 0x 0 = using linear 

polynomial, now we will use quadratic approximation for the same function and 
compare the results. 

For this, 2x
2

)0(f
x)0(f)0(f1x

′′
+′+≈+  

or 2x
4

1
x

2

1
11x −+≈+  

 
Fig. 7: Graph of f and p  

 

Fig. 7 shows the quadratic approximation of 1x + at 0x = . It also 
strengthens that the quadratic approximation is better than the linear 
approximation. 

Hence 0475.1
4

01.0

2

1.0
11.1 =−+≈  

Therefore 0475.11.1 ≈  

If we compare the results obtained by linear approximation and quadratic 

approximation for 1.1 , you will find that the quadratic approximation gives 

improved value.  

In the following example, let us approximation the function about 0x other than 

0. 
 

Example 14: Find the quadratic approximation of 
2

x

1
)x(f = at 2x = . 

Solution: The quadratic approximation is  

 2)2x(
!2

)2(f
)2x()2(f)2(f)x(f −

′′
+−′+≈     (3) 

 Given that 
2

x

1
)x(f = and 

4

1
)2(f =  

 Differentiating this with respect to x and putting 2x = , we get 

 
3

x

2
)x(f

−
=′ and 

4

1
)2(f −=′ ; 

4
x

6
)x(f =′′ and 

8

3
)2(f =′′ . 

Substituing the values of )2(f , )2(f ′ and )2(f ′′ in Eqn. (3), we get 
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 2

2
)2x(

16

3
)2x(

4

1

4

1

x

1
)x(f −+−−≈= . 

Fig. 8 show this graphically. The dotted curve in Fig. 8 is the graph of the 

quadratic approximation of f at 2x = . 

 
Fig. 8: Graph of f and p(x) about 2x =  

*** 
 
Now, try the following exercises. 
 

 
E22) Find the quadratic approximation of the function f defined as 

)xcos()x2sin()x(f += at 0x = . 

 

E23) Find a quadratic approximation of f at 9x = for the function f defined 

by x)x(f = . Also, find the value of 1.9 . 

 

 
Now in the following subsection, we will generalize quadratic approximation to 

−n degree polynomial approximation. 
 

11.5.3 Taylor Approximation 
 
So far, we constructed polynomial of degree 0, degree 1 and degree 2 as 

approximation for a function f at the point 0xx = , which are summarised in 

Table 1. 
Table 1 

 

 
 
 
 
 
 
 
 
 
You may see a pattern in these formulations for the approximations so far. 
Similarly, we can find degree-three approximation called cubic 
approximation. The subsequent polynomial approximations are known as the 
Taylor polynomials. In this subsection, we will discuss Taylor and  Maclaurin 
polynomials.  

Degree Polynomial 

0 )x(f 0  

1 )xx()x(f)x(f 000 −′+  

2 
2

00000 )xx()x(f
2

1
)xx()x(f)x(f −′′+−′+  
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If we continue approximation by using a polynomial of degree n with the 
condition that the values of the polynomial and its first three derivatives at a 

point are same as those of f at the same point, then we will get improved 
approximations. If this process improves the accuracy, why not go on to the 
polynomial of higher degree? This leads us to consider the polynomial of 
degree n . 

Let n

n10 xa....xaa)x(p +++= such that 

)0(f)0(p),.....,0(f)0(p),0(f)0(p),0(f)0(p )n()n(
=′′=′′′=′= . 

Differentiating )x(p successively n -times, we get 
1n

n

2

321 xan....xa3xa2a)x(p −
++++=′ . 

.a.1.2)....2n()1n(n)x(p

.

.

.

xa)1n(n...xa3a2)x(p

n

)n(

2n

n32

−−=

−+++=′′
−

 

Substituting ,0x = the coefficients are 

),0(fa),0(fa 10
′==

!3

)0(f

2.3

)0(f
a,

2

)0(f
a 32

′′′
=

′′′
=

′′
=  and similarly, 

!n

)0(f
a

)n(

n = . 

If we substitute these values of coefficients s'a i where n...,1,.0i = in the 

polynomial approximation, we get 

n
)n(

32
x

!n

)0(f
...x

!3

)0(f
x

!2

)0(f
x)0(f)0(f)x(f ++

′′′
+

′′
+′+≈ . 

This is called the 
th

n  Maclaurin’s polynomial for f . 
This discussion leads to the following definition. 
 

Definition: Let f be a function whose derivatives upto n times exist at 0, then 

n
)n(

2

n x
!n

)0(f
...x

!2

)0(f
x)0(f)0(f)x(p ++

′′
+′+= , is called the 

th
n Maclaurin’s 

polynomial for f provided that the values of the polynomial and its first 

n derivatives are same as the values of f and its first n derivatives at 0x = . 

Accordingly )x(p1 and )x(p2 are the linear and quadratic Maclaurin’s 

polynomials of f at 0x = respectively.  
 

From this, we get the polynomial approximation of )x(f at ,0x = which is more 

accurate than linear or quadratic approximation.  

Hence n
)n(

2
x

!n

)0(f
...x

!2

)0(f
x)0(f)0(f)x(f ++

′′
+′+≈ . 

You may note that we are using )x(pn in the definition of Maclaurin 

polynomial. This is just to represent a polynomial of degree n . 
 
Now we will expand few functions in the following examples. 
 

Example 15: Find the 
th

n  Maclaurin’s polynomial for xsin . Hence deduce 

linear, quadratic and cubic polynomials for xsin . 

Solution: Let ,xsin)x(f = thus 0)0(f =  

Fig. 9: Scottish 
Mathematician Colin 
Maclaurin(1698-1746) 
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On differentiating )x(f and putting 0x = , the results we get, are 

1)0(f,xcos)x(f =′=′  

0)0(f,xsin)x(f =′′−=′′  

1)0(f,xcos)x(f −=′′′−=′′′  

k2nif,
2

n
xsin)x(f

...

...

...

0)0(f,xsin)x(f

)n(

iviv

=






 π
+=

==

 





+=−

=
=

,1k2nif,)1(

k2nif,0
)0(f

k

)n( where ,....2,1,0k =  

The 
th

n  Maclaurin’s polynomial is  

n
)n(

32

n x
!n

)0(f
...x

!3

)0(f
x

!2

)0(f
x)0(f)0(f)x(p ++

′′′
+

′′
+′+= . 

1k2
k

432

n x
!)1k2(

)1(
...x.

!4

0
x.

!3

)1(
x.

!2

0
x.10)x(p

+

+
+++

−
+++= , where ,....2,1,0k =  

or 1k2
k53

n x
!)1k2(

)1(
....

!5

x

!3

x
x)x(p

+

+

−
+−+−= . 

or 1k2
k53

x
!)1k2(

)1(
...

!5

x

!3

x
xxsin

+

+

−
+−+−≈ , where 2,1,0k = . 

You may observe that the Maclaurin polynomial for xsin has only odd powers 

of x because if you see the pattern of the derivatives at 0x = , you find it is 

.....,0,1,0,1 − . That is every alternate derivative is 0 at 0x = . Therefore, all the 

coefficients of even powers of x in the Maclaurin’s polynomial are zero. 
If we deduce the polynomials of order one, two and three, we get 

xx.10)x(p1 =+=  

xx.
!2

0
x.10)x(p 2

2 =++=  

!3

x
xx.

!3

)1(
x.

!2

0
x.10)x(p

3
32

3 −=
−

+++= . 

Fig.10 shows the graphs of )x(p),x(f 1 and )x(p3 . 

 
Fig. 10: Graph of )x(p,xsin 1 and )x(p3  

*** 
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Example 16: Find the Maclaurin’s polynomial for .ex  Also, draw the graphs of 

3210 p,p,p,p . Hence find the approximate value of 1.0e correct to 3 places of 

decimals.  

Solution: Let 1e)0(f,e)x(f 0x
===  

Differentiating )x(f successively with respect to x and putting 0x = in the 

results, we get 

1)0(f,e)x(f x
=′=′  

1)0(f,e)x(f x
=′′=′′  

1)0f,e)x(f x
=′′′=′′′  

1)0(f,e)x(f ivxiv
==  

1)0(f,e)x(f )n(x)n(
==

M
 

Therefore, 

n32

n x.
!n

1
...x.

!3

1
x.

!2

1
x.11)x(p +++++=  

or 
!n

x
...

!3

x

!2

x
x1)x(p

n32

n +++++=  

Substituting ,1.0x = we get 

!3

)1.0(

!2

)1.0(
1.01e

32
1.0

+++≈  

 0002.0005.01.01 +++=  

 1052.1=  

Thus, 105.1e 1.0
≈  

Now finding 3210 p,p,p,p , 

 1)x(p0 = , 

 x1)x(p1 += , 

 
!2

x
x1)x(p

2

2 ++= , 

and 
!3

x

!2

x
x1)x(p

32

3 +++= . 

The graph of these polynomials are given in Fig. 11. 

 
Fig. 11: Graphs of 3210 p,p,p,p  

*** 

[all other terms will not contiribute to the value upto 
three places of decimal, therefore, ignore all other] 
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Example 17: Write down Maclaurin polynomial for r)x1( +  around zero, 

where r  is a fixed real number. 

Solution: Let r)x1()x(f += .  Then 1)0(f = , 

 r)0(f;)x1(r)x(f 1r
=′+=′

−  

 )1r(r)0(f;)x1()1r(r)x(f )2(2r)2(
−=+−=

−  

 nr)n( )x1()1nr()1r(r)x(f −
++−−= K ; )1nr()1r(r)10(f )n(

+−−= K  

Therefore Maclaurin polynomial around zero is  

 L
K

L +
+−−

++
−

++≈+
n2r x

!n

)1nr()1r(r
x

!2

)1r(r
x

!1

r
1)x1(  

*** 
 

Example 18: Write down Maclaurin polynomial for the function xsin . 

Solution: Let .xsin)x(f =   Then successive derivatives of xsin at 0 are given 

by 

  









−

=

otherwise1

4bydivisiblenif1

evenisnif0

)0(f )n(  

 
2

n
sin)0(f )n( π

=  

We see that, as n  varies over ,7,6,5,4,3,2,1,0 K )0(f )n(  takes the values 

K,1,0,1,0,1,0,1,0 −−  

Therefore, Maclaurin polynomial for xsin  is  

 +++
−

+++= L432 x
!4

0
x

!3

)1(
x

!2

0
x

!1

1
0xsin  

         L+−+−=
!7

x

!5

x

!3

x

!1

x 753

 

*** 
 

Example 19: Find Maclaurin polynomial for x2cos  around zero.  

Solution: Let us write x2cos)x(f = .  We can find the 
th

n derivative of f  at 0, 

these are given as  

 
2

n
cos2)x(f n)n( π

=  and 


 −

=
oddisn0

evenisn)1(2
)0(f

2/nn

n  

Therefore, Maclaurin’s polynomial around zero is  
 













−

−
++−+−−+

−
++−+−−+

= −

−

oddisnif,
!)1n(

)1(2

!5

x.0

!4

x2

!3

x.0

!2

x2

!1

x.0
0

evenisnif,
!n

)1(2

!5

x.0

!4

x2

!3

x.0

!2

x2

!1

x.0
1

x2cos
2

1n

1n544322

2/nn544322

L

L

 

*** 
 
Example 20: Write down the following: 

i) the first four terms of Maclaurin polynomial for xtan . 

ii) the first three non-zero terms of this polynomial. 
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Solution: i) Let xtan)x(f = .  Then 0)0(f =  

         1)0(f,xsec)x(f 2
=′=′  

                 0)0(f,xtanxsec2)x(f 2
=′′=′′  

               xtanxsec4xsec2)x(f 224)3(
+=  

                   )tan2(secsec2 222
xxx +=  

               2)01(2)0(f )3(
=+=  

Therefore the first four terms of Maclaurin polynomial for xtan  are given 
by  

 32 x
!3

2
,x

!2

0
,x

!1

1
,0 , 

b)    Here, Maclaurin polynomial for xtan  is 
1n2

x

3

x
x

1n23

+
+++

+

L . 

 Now, we want the next non-zero term. 

 We have xtanxsec8xtanxsec16)x(f 324)4(
+=  and 0)0(f )4(

=  

Next 

xtanxsec16xtanxsec24xtanxsec64xsec16)x(f 4224246)5(
+++=  

 This means 16)0(f )5(
= . 

 Thus, required first three non-zero terms are  

 3x
!3

2
,x

!1

1
 and 5x

!5

16
, that is they are 

3

x
,x

3

 and 
15

x2
5

. 

 Thus, we have L+++=
15

x2

3

x
xxtan

53

 

*** 
 

Example 21: If in Maclaurin polynomial for kxsin , the coefficient of 
3

x  is 

given to be k6− , find all possible values of k . 

Solution: Since kxsin)x(f = , therefore kxcosk)x(f '
=  

  kxsink)x(f 2)2(
−= and kxcosk)x(f 3)3(

−=    

∴Maclaurin polynomial for kxsin  is given by  

L+−=
!3

xk

!1

kx
kxsin

33

   

The coefficient of 
3

x  in the expansion is )6/k( 3
−  

Therefore k6)6/k( 3
−=−  

This gives the equation 0)36k(k 2
=−  

The roots are 6,0k =  or 6−  

Thus, 6,0  and 6−  are all the possible values of k  such that the coefficient of 
3

x  in Maclaurin polynomial for kxsin  is k6− . 

*** 
 
Now, try the following exercises. 
 

 

E24) Find the Maclaurin’s polynomial 43210 p,p,p,p,p and np for  

  i)  xcos  iii) )x1(ln +  

  ii) 
x1

1

−
 iv) xex  
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E25) Find Maclaurin’s polynomial of degree three for 32 xxx21)x(f +−+= . 

 
E26) Write down Maclaurin polynomial for the following   

 i) 
2)x1(

1

+
 

 ii) 1)2x( 2
+−  

 iii) )x21/(1 −  

 
E27) Write down the first three non-zero terms in Maclaurin polynomial of 

the following  

 i) x3sin  

 ii) )x1(ln −  

 

 
So far, we have been focussing on approximating a function in the vicinity of 

0x = . Now, we will consider the more general case of approximating f in the 

vicinity of an arbitrary value 0x . Again we will be using the same idea which 

we used for Maclaurin’s polynomial, that is the valueS of the polynomial and 

the value of its successive derivatives at  0x (if exists) are same as those of f  

at 0x .  

 

Now consider the 
th

n degree polynomial in ascending powers of ),xx( 0− we 

have n

0n

3

03

2

02010n )xx(a...)xx(a)xx(a)xx(aa)x(p −++−+−+−+= . 

Again assuming the property 

)x(f)x(p),x(f)x(p),x(f)x(p 00n00n00n
′′=′′′=′= ... ),x(f)x(p 0

)n(

0

)n(

n = we get 

000n a)x(f)x(p ==  

100n a)x(f)x(p =′=′  

!2

)x(f
aa!2)x(f)x(p 0

2200n

′′
=⇒=′′=′′  

!n

)x(f
aa!n)x(f)x(p

.

.

.

!3

)x(f
aa!3)x(f)x(p

0

)n(

nn0

)n(

0

)n(

n

0
3300n

=⇒==

′′′
=⇒=′′′=′′′

 

Substituting these values in ),x(pn we obtain 

n

0
0

)n(

3

0
02

0
0

000n

)xx(
!n

)x(f
....

)xx(
!3

)x(f
)xx(

!2

)x(f
)xx()x(f)x(f)x(p

−++

−
′′′

+−
′′

+−′+=

 

This polynomial is called the 
th

n Taylor polynomial of f about 0xx = . It is 

defined in the following definition. 

 
 Fig. 12: Brook Taylor 
(1685-1731) 
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Definition: Let the function f be differentiable n times at 0x , then 
th

n Taylor 

polynomial of f at 0x is  

n

0
0

)n(
2

0
0

000n )xx(
!n

)x(f
...)xx(

!2

)x(f
)xx()x(f)x(f)x(p −++−

′′
+−′+= . 

In sigma notation, it can be written as  

i

0

n

0i

0

)i(

n )xx(
!i

)x(f
)x(p −=∑

=

. 

You may observe that 
th

n Maclaurin polynomial is a particular case of 
th

n Taylor polynomial about 0x0 = . Since Taylor polynomial is used to 

approximate )x(f , therefore )x(f)x(pn ≈ . 

 
Let us find Taylor polynomial in the following examples. 
 

Example 22: Find the first five Taylor polynomials for xln about 5x = . 

Solution: Let ,xln)x(f = then 5ln)5(f = . Differentiating f successively and 

putting 5x = , we get 

5

1
)5(f,

x

1
)x(f =′=′  

25

1
)5(f,

x

1
)x(f

2
−=′′−=′′  

125

!2
)5(f,

x

2.1
)x(f

3
=′′=′′′  

625

!3
)5(f,

x

3.2.1
)x(f IV

4

IV
−=−=  

The Taylor polynomials are  

5ln)5(f)x(p0 ==  

)5x(
5

1
5ln)5x()5(f)5(f)x(p1 −+=−′+=  

2

2 )5x(
!2

)5(f
)5x()5(f)5(f)x(p −

′′
+−′+=

2)5x(
50

1
)5x(

5

1
5ln −−−+=  

32

3 )5x(
375

1
)5x(

50

1
)5x(

5

1
5ln)x(p −+−−−+=  

432

4 )5x(
2500

1
)5x(

375

1
)5x(

50

1
)5x(

5

1
5ln)x(p −−−+−−−+= . 

*** 
 

Example 23: Find the 
th

n Taylor’s polynomial for x1 about 1x = . Also, write 

the polynomial in sigma notation. 

Solution: Let .x1)x(f =  There 1)1(f =  

Differentiating f successively and putting 1x = , we obtain 

1)1(f,
x

1
)x(f

2
−=′−=′  

!2)1(f,
x

!2
)x(f

3
=′′=′′  

!3)1(f,
x

!3
)x(f

4
−=′′′−=′′′  
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!n)1()1(f,
x

!n
)1()x(f

...

...

...

!4)1(f,
x

!4
)x(f

n)n(

1n

n)n(

IV

5

IV

−=−=

==

+

 

Thus, Taylor’s polynomial is  

32

n )1x(
!3

!3
)1x(

!2

!2
)1x()1(1)x(p −

−
+−+−−+=  

    n
n

4
)1x(

!n

!n)1(
...)1x(

!4

!4
−++−+ . 

That is nn32

n )1x()1(...)1x()1x()1x(1)x(p −++−−−+−−=  

In sigma notation, 

   ∑
=

−−=

n

0i

ii

n )1x()1()x(p  

*** 
 
Try the following exercises. 
 
 

E28) Consider the function bxtanay 1−
+=  where a  and b  are fixed real 

numbers.  We are given that its Taylor polynomial around zero is 

L+−+
3x9x32 .  Find the values of a  and b . 

 

E29) Find the coefficient of 
3

x  in Taylor polynomial around zero for the 

function xsin 1− . 
 

E30) i)   Fig. 13 shows a sector of radius π and central angle θ is small, use  

local quadratic approximation of θcos at 0=θ and show that 
8

x
2

θ
≈ . 

 
Fig. 13 

 

  ii) Assuming that the Earth is a sphere of radius 3000 km, use the result 
obtain part i) to approximate the maximum amount by which a 100 km 
arc along the equator will diverge from its chord. 

 

 
Now, let us summarize the unit. 
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11.6 SUMMARY 
 
In this unit, we have studied following points: 
 
1. Introduced higher order derivatives. 
 

2. Derived a formula (Leibniz’z Theorem) for the 
th

n  derivative of a product 
of two functions  

 

.uv)n,n(Cvu)2,n(Cvu)1,n(Cvu)0,n(C)uv( )n()2()2n()1()1n()n()n(
++++=

−− L

 

3. The linear approximation of a function f about any point 0x is 

)xx()x(f)x(f)x(f 000 −′+≈ . 

 

4. The quadratic approximation of a function f about the point 0x is 

2

0
0

000 )xx(
!2

)x(f
)xx()x(f)x(f)x(f −

′′
+−′+≈ . 

 
5. Written Maclaurin’s polynomial of a function by using the formula  

 LL +++
′′

+
′

+=
n

)n(
2

x
!n

)0(f
x

!2

)0(f
x

!1

)0(f
)0(f)x(f  

 

6. Written Taylor polynomial for a function f about the point 0x as 

n

0
0

)x(
2

0
0

000 )xx(
!n

)x(f
....)xx(

!2

)x(f
)xx()x(f)x(f)x(f −++−

′′
+−′+≈ . 

 

11.7 SOLUTIONS/ANSWERS 
 

E1) i) 2x3)x('f =   ii) x2e2'y =  

  x6)x("f =    x2e.4"y =  

 

E2) ,xbsiney xa
=  

 )ae(xbsin)b.xb(cosey xaxa

1 +=  

  ayxbcoseb xa
+=  

 or xbcosebayy xa

1 =−  

 Again differentiating both sides, 

 )a.e(xbcosb)b.xbsin(ebayy xaxa

12 +−=−  

               )ayy(ayb 1

2
−+−=  

 or 0y)ba(ay2y 22

12 =++−  

 

E3) i) kxsink)x(fkxsin)x(f 2)2(
−=⇒=  

        6/ksink)6/(f 2)2(
π−=π⇒  

  Now, 22 k/326/ksin326/ksink −=π⇒=π−  

  Since 06/k,06/ksin1 <π<π−<π<−  

  1k −=⇒  or 2−  

0k ≠  since   

3200k =⇒= ,  

which is impossible. 
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  Out of these, 2k −=  is the value which satisfies 
2k/326/ksin −=π  

 

 ii) kx2kx)x(f1kxx)x(f 1k2k
+=′⇒++=

−  

  3k12k2)1k(k)1(f =⇒=+−=′′  or 4−  

 

E4) Given is t7t5.4t)t(s 23
−−=  

i) Velocity 7t9t3)t(v 2
−−=  

 57t9t35)t(v 2
=−−⇒=  

         012t9t3 2
=−−⇒  

         012t3t12t3 2
=−+−⇒  

         0)4t(3)4t(t3 =−+−⇒  

         0)3t3()4t( =+−⇒  

         4t =⇒ , as t cannot be –ive.  

 

ii) acceleration 9t6)t(a −=  

 ,0)t(a = when 09t6 =− or 5.1t = sec. 

The acceleration 0 means that the rate of change of velocity is 0, 
which means further that the velocity is constant. 

 

E5) i) 
2)75t4(

)4(t2000)75t4(2000
)t(p

+

−+
=′  

  
2)75t4(

150000
)10(p

+
=′  

   34.11=  

  12.6)50(p =′  

  665.0)100(p =′  

 

 ii) 
3)75t4(

300000
)t(p

+

−
=′′  

  197.0)10(p −=′′  

  0144.0)50(p −=′′  

  003.0)100(p −=′′  

 

 iii)  )t(p′ represents the rate of change in population in t years. This 

rate of change in 10 years, 50 years and 100 years is 

665.0,12.6,34.11 respectively. Similarly the rate of change of 

population is represented by )t(p ′′ . It is also decreasing.  

 

E6) i) xtanxsec)x('f =  

  xsecxtanxsec)x(f 32)2(
+=   

  xtanxsec3xtanxsec2xtanxsec)x(f 333)3(
++=  

  21122.31.22.21.2)4/(f )3(
=++=π   

 

 ii) x2sin2x2cos2)x('f −=  

  x2cos4x2sin4)x(f −−=′′  

  x2sin8x2cos8)x(f )3(
+−=  

  8)4/(f )3(
=π  
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E7) Let xsiny =  

  xcosy1 =  

  xsiny2 −=  

  xcosy3 −=  

  xsiny4 =  

 Fourth derivative is xsin , therefore, afterwards derivative of every 

multiple of four order will be xsin . 

 Thus, xsin)x(sin
dx

d
96

96

=  

   xcos)x(sin
dx

d
97

97

=  

   xsin)x(sin
dx

d
98

98

−=  

   xcos)x(sin
dx

d
99

99

−=  

 

E8) nr

n )x1()1nr()1r(ry −
++−−= K , rn <  

 

E9) i) 








>

+
−=

−

3nif,0

;)bax(
!)n3(

a!3

)x(f
n3

n

)n(  if 3n ≤   

 

 ii) 








>

≤+
−=

−

mnif,0

mnif)bax(
!)nm(

a!m

)x(f
nm

n

)n(  

 

 iii) x)n( e)x(f =  
 

 iv) kxn)n( ek)x(f =  
 

 v) 
3x2

1
.

5

3

1x

1
.

5

1

)3x2()1x(

x

+
+

−
=

+−
[using partial fractions] 

 

E10) 1n

n21 xan..xa2a)x('f −
+++=  

 2n

n2 xa)1n(n......a2)x("f −
−++=  

 M  

 M  

 M  

 nn

n

)n( xa.1).......1n(n)x(f −
−=  

            .a!n n=  

 

E11) xsin)x(f,xcos)x(fxsin)x(f −=′′=′⇒= , 

 xsin)x(f,xcos)x(f )4()3(
=−=  and so on.  So our guess is that  

 













=

+=−

+=−

+=

=

k4nifxsin

3k4nifxcos

2k4nfixsin

1k4nifxcos

)x(f
)n(  
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 or 






 π
+=

2

n
xsin)x(f

)n(
. 

 

E12) )bax(siny +=  

 )bax(cosay1 +=  

 )bax(sinay 2

2 +−=  

 )bax(cosay 3

3 +−=  

 )bax(sinay 4

4 +=  

 Thus, 

 













=+

+=+−

+=+−

+=+

=

k4nfi),baxsin(a

3k4nfi),baxcos(a

2k4nif),baxsin(a

1k4nif),baxcos(a

)x(y

n

n

n

n

)n(  

 Thus, 






 π
++=

2

n
baxcosa)x(y

n)n(
 

 

E13) xcosy,xsiny,xcosy,xsinyxcosy 4321 ==−=−=⇒=  and so on. 

 )2/nxcos(yn π+=  

 )2/nxsin(y 1n π+−=⇒
+

 

 1)2/n(sin)2/n(cosyy 222

1n

2

n =π+π=+⇒
+

. 

 

E14) )5()4()1()3()2()2()3()1()4()5()5( vvu5vu10vu10vu5vu)uv( +++++=  

 

E15) )1()1()1( uvvu)uv( +=  which is the product rule of differentiation. 

 

E16) xcosxsin3xsinxcos)xsin.x(sin
dx

d

dx

)x(sind
3

3

3

23

−−==  

 xcosxsin8xsinxcosxcosxsin3 −=−−  

 Now, differentiating directly, we get 

 xcosxsin2)x(sin
dx

d 2
=  

 )xsinx(cos2)x(sin
dx

d 222

2

2

−=⇒  

 xcosxsin8)x(sin
dx

d 2

3

3

−=⇒  

 Both the results are same. 
 

E17) xev,xu ==     

uvuv6uv15uv20uv15uv6vu)uv( )6()1()5()2()4()3()3()4()2()5()1()6()6(
++++++=

           xxx e)6x(x.e1.e.600000 +=++++++=  

 

E18) !)3n()2,n(C6!)2n()1,n(C3!)1n[(
x

x)1(
)xlnx(D

n

31n
3n

−+−−−
−

=

+

 

                       ]!)4n()3,n(C6 −−  
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E19) ]xe[Dy 2xan)n(
=      [where 2xu = and xaev = ] 

       )xa2n22xa1n2xan2 e(D)x(D)2,n(C)e(D.)x(D)1,n(C)e(D.x −−
++=  

          
 
 

   xa2nxa1nxa2n e)a(.2.
!2

)1n(n
ea.x2.nexa −− −

++=  

       ]a)1n(nxan2xa[ea 222xa)2n(
−++=

−  

 

E20) i) m22m11mmm vu)m,m(C...vu)2,m(Cvu)1,m(Cvu)0,m(C)uv( ++++=
−−

. 

 
 ii) On differentiating again, we get  

  21m1m1m1m1m vu)1,m(Cvu)1,m(Cvu)0,m(Cvu)0,m(C)uv(
−++

+++=  

  1mm1 vu)m,m(Cvu)m,m(C...
+

+++  

 

 iii) 21m1m1m1m vu)2,1m(Cvu)1,1m(Cvu)0,1m(C[)uv(
−++

+++++=  

  ]vu)1m,1m(C... 1m+
++++  

 

E21) Let xcos)x(f,xsin)x(f =′=  

 0)x(f0x 00 =⇒= and 1)x(f 0 =′  

 )0x()0(f)0(fxsin −′+≈  

 )x(10xsin +≈  

 xxsin ≈  
 The Fig. 14 shows the graph  
 

 
Fig. 14: Graph of sinx near 0 

 

 






 π
×=

180
1sin1sin

o
(in radians) 

  01744.0)01744.0(sin
180

sin ≈=
π

=  

 Therefore, 01744.01sin o
≈ . 

 

E22) xcos)x2(sin)x(f += and 1)0(f =  

)x(D[ 23Q onwards all 

derivatives are zero] 



 

 

125 

Unit 11                                                                     Higher Order Derivatives 

 xsin)x2cos(2)x(f −=′ and 2)0(f =′  

 xcos)x2(sin4)x(f −−=′′ and 1)0(f −=′′  

 Thus, the quadratic approximatin of )x(f is 

2)0x(
2

)0(f
)0x()0(f)0(f)x(f −

′′
+−′+=  which gives us 

2x
2

1
x21)xcos()x2sin( −+=+ . Fig. 13 shows this graphically. 

 

Fig. 15: Graph of xcos)x2sin( + and 
2x

2

1
x21 −+  

 

E23) x)x(f = , 3)9(f =  

 
x2

1
)x(f =′ , 

6

1
)9(f =′  

 
2/3

x4

1
)x(f

−
=′′ ,

108

1
)9(f

−
=′′  

 2

2 )9x(
!2

)9(f
)9x(

!1

)9(f
)9(f)x(p −

′′
+−

′
+=  

  2)9x(
!2

)108/1(
)9x(

6

1
3 −

−
+−+=  

  2)9x(
216

1
)9x(

6

1
3 −−−+=  

 Now, 015.3)1.0(
216

1
)1.0(

6

1
31.9 2

=−+≈  

 

E24) i) 1)0(f,xcos)x(f ==  

  0)0(f,xsin)x(f =′−=′  

  1)0(f,xcos)x(f −=′′−=′′  

  0)0(f,xsin)x(f =′′′=′′′  

  1)0(f,xcos)x(f iviv
==  
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  1)x(p0 =  

  1x.01)x(p1 =+=  

  
!2

x
1x.

!2

)1(
x.01)x(p

2
2

2 −=
−

++=  

  
!2

x
1x.

!3

0
x.

!2

)1(
x.01)x(p

2
32

3 −=+
−

++=  

  
!4

x

!2

x
1x.

!4

1
x.

!3

0
x.

!2

)1(
x.01)x(p

42
432

4 +−=++
−

++=  

  and  

  ,
!)k2(

x
)1(...

!4

x

!2

x
1)x(p

k2
k

42

n −+++−= where ,...2,1,0k =  

 

 ii) 01ln)0(f),x1ln()x(f ==+=  

  1)0(f,
x1

1
)x(f =′

+
=′  

  1)0(f,
)x1(

1
)x(f

2
−=′′

+
−=′′  

  !2)0(f,
)x1(

2.1
)x(f

3
=′′′

+

+
=′′′  

  !3)x(f,
)x1(

3.2.1
)x(f iv

4

iv
−=

+

−
=  

  Now 

  0)x(p0 =  

  xx.10)x(p1 =+=  

  
2

x
xx.

!2

)1(
x.10)x(p

2
2

2 −=
−

++=  

  
3

x

2

x
xx.

!3

!2
x.

!2

)1(
x.10)x(p

32
32

3 +−=+
−

++=  

  4322

4 x.
!4

!3)1(
x.

!3

!2
x.

!3

!2
x.

!2

)1(
x.10)x(p

−
+++

−
++=  

   
4

x

3

x

2

x
x

432

−+−=  

  and  

  ,
n

x
)1(...

4

x

3

x

2

x
x)x(p

n
1n

432

n

−
−++−+−= where ,...2,1n =  

 

 iii)  
x.1

1
)x(f =  

  ,x....xx1)x(p n2

n ++++= ,...2,1,0n =  

  and 1)x(p0 =  
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  x1)x(p1 +=  

  2

2 xx1)x(p ++=   

  32

3 xxx1)x(p +++=  

  432

4 xxxx1)x(p ++++= . 

 

 iv) 0)0(f,ex)x(f x
==  

  1)0(f,exe)x(f xx
=′+=′   

  2)0(f,exee)x(f xxx
=′′++=′′  

  

.n)x(f

.

.

.

3)0(f,exeee)x(f

)n(

xxxx

=

=′′′+++=′′′

 

  0)x(p0 =  

  xx.10)x(p1 =+=  

  2

2 xx)x(p +=  

  
!2

x
xx)x(p

3
2

3 ++=  

  

...2,1,0nwhere,
!)1n(

x
...

!3

x

!2

x
xx)x(p

.

.

.

!3

x

!2

x
xx)x(p

n43
2

n

43
2

4

=
−

+++++=

+++=

 

 

E25) 1)0(f,xxx21)x(f 32
=+−+=  

 2)0(f,x3x22)x(f 2
=′+−=′  

 2)0(f,x62)x(f −=′′+−=′′  

 6)0(f,6)x(f =′′′=′′′  

 All other higher order derivatives will be zero. 

 32

3 x.
!3

6
x.

!2

2
x.21)x(p +

−
++=  

  
32

xxx21 +−+=  
 

E26) i) L+−+−
32 x4x3x21  

 

 ii) L++++−
432 x.0x.0xx45  
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 iii) L++++
3322

x2x2x21  

E27) i) 
!5

x3

!3

x3
x3

5533

+−  

 

 ii) 
3

x

2

x
x

32

−−−  

 

E28) We take that bxtan 1−  always takes value between 2/π−  and 2/π .  

Then, 3b,2a ==  

 

E29) 6/1  
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MISCELLANEOUS EXAMPLES AND EXERCISES 
 
The examples and exercises given below cover the concepts and processes 
you have studied in this block. Doing them will give you a better understanding 
of the concepts concerned, as well as practice in solving such problems. 
 

Example 1: Show that if 2x)x(f = , the function f is derivable at 1x = .  

Solution: Now 11)1(fx)x(f 22
==⇒= . 

To find the derivative of f  at 1x = , we use the definition of derivative at 

1x = and get 

h

)1(f)h1(f
lim)1(f

0h

−+
=′

→

 

 
h

hh2
lim

2

0h

+
=

→

 

 ,h2lim
0h

+=
→

[as ]0h ≠  

 2=  
Hence, f is derivable at 1x = and its derivative )1(f ′ is 2 . 

*** 
 

Example 2: For 
2

x)x(fy == , find the average rate of change as:  

i) x changes from 2 to 4. 

ii) x changes from 2 to 3. 

iii) x changes from 3 to 4. 

Solution: The graph shown in Fig. 1 gives a look at two of the secant lines 

AB and AC . We are computing slopes of these secant lines.  
 

 
Fig. 1 

 

i) When 2x1 = , 4)2(fy1 == and when 4x 2 = , 16)4(fy2 == . 

 The average rate of change is 
12

12

12

12

xx

)x(f)x(f

xx

yy

−

−
=

−

−
6

2

12

24

416
==

−

−
= . 

 

ii) When 4)x(fy,2x 111 === ; and when 3x 2 = , 9)3(fy2 == . 

 The average rate of change 5
23

49
=

−

−
= . 
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iii) When ;9)3(fy,3x 11 === and when 4x 2 = , 16)4(fy2 == . 

 The average rate of change 7
34

916
=

−

−
= . 

*** 
 

Example 3: For ,x3)x(f
2

= find the difference quotient for the following: 

i) 1x = and 1.0x =δ  

ii) 1x = and 01.0x =δ . 

Solution: i) We substitute 1x = and 1.0x =δ into the formula, we get 

 
1.0

)1(f)1.1(f

1.0

)1(f)1.01(f

x

)x(f)xx(f −
=

−+
=

δ

−δ+
 

 Now 63.3)1.1()1.1(f
2

== and 3)1(f = , and we have 

 3.6
1.0

63.0

1.0

363.3

1.0

)1(f)1.1(f
==

−
=

−
. 

ii) We substitute 1x = and 01.0x =δ into the formula, we get 

 
01.0

)1(f)01.1(f

01.0

)1(f)01.01(f

x

)x(f)xx(f −
=

−+
=

δ

−δ+
. 

 Now 0603.31)01.1()01.1(f
2

== and 3)1(f = , and we have 

 03.6
01.0

0603.0

01.0

30603.3

01.0

)1(f)01.1(f
==

−
=

−
. 

You may note the trend in the average rate of change as xδ gets closer to 0. 

*** 
 

Example 4: Find the derivative of f if 3x)x(f = using first principle. 

Solution: The domain of the function f is the entire set R of real numbers. Let 

R∈x . When 0x ≠δ , we have  

x2)x3xx3x(lim
x

x)xx(
lim

x

)x(f)xx(f
lim)x(f

22

0x

33

0x0x
=+δ+δ=

δ

−δ+
=

δ

−δ+
=′

→δ→δ→δ

 

Thus, R∈∀=′ xx3)x(f 2 . 

*** 
 

Example 5: Find the derivative of f if x)x(f = using first principle. 

Solution: The domain of the function f is the set of all non-negative real 

numbers i.e. the interval [,0[ ∞ . 

Let 0x > . We have, when 0x ≠δ  

x

x)xx(
lim

x

)x(f)xx(f
lim)x(f

0x0x δ

−δ+
=

δ

−δ+
=′

→δ→δ

 

    












+δ+

+δ+













δ

−δ+
=

→δ x)xx(

x)xx(

x

x)xx(
lim

0x
 

  













+δ+
=

→δ x)xx(

1
lim

0x
 

Therefore, 0x;
x2

1

x

)x(f)xx(f
lim

0x
>=

δ

−δ+

→δ
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Thus, for 0x > , x2/1)x(fx)x(f =′⇒= . 

We start afresh to examine the existence of the derivative at 0. We have 

∞→
δ

=
δ

δ
=

δ

−δ+

x

1

x

x

x

)0(f)x0(f
when 0x →δ through positive values. 

Thus, the derivative of f at 0x = does not exist. We know that h is not 

defined for negative values of h . Thus, [,0]x,x2/1)x(f ∞∈∀=′ . 

*** 
 

Example 6: Show that the tangent to the hyperbola x/1y = at )1,1( makes an 

angle 4/3π with −x axis. 

Solution: The hyperbola x/1y = gives 
2

x

1

dx

dy
−= . 

Now 
)1,1(atdx

dy








1−= . 

Slope of any line is always equal to the tangent of the angle it makes from 

−x axis. Therefore, 1tan −=θ , where θ is the angle of the tangent to the 

hyperbola x/1y = at )1,1( with −x axis. Thus, 4/3π=θ . 

*** 
 

Example 7: Find the differential dy and the increment yδ when 3xy = for  

i) aribitrary values of x and xδ  

ii) at 10x = and 1.0x =δ . 

Solution: i) We have 3)xx(yy δ+=δ+  

        3223 )x()x(x3xx3x δ+δ+δ+=  

         322 )x()x(x3xx3y δ+δ+δ=δ  

         x])x(xx3[xx3 22
δδ+δ+δ= . 

 Also, we have dxx3dy 2
= . 

 

ii)  For 10x = and 1.0x =δ , we have 

 dy30)1.0(300dxx3 2
===  

       )1.0(])1.0(1.030[30y 2
+×+=δ  

     3013030130 ⋅=⋅+=  

Thus, considering dy in place of yδ , we have an error of 301.0 . 

*** 
 
Example 8: A particle is moving in a straight line and the positions (in meter) 
in t  seconds. Find the velocity and acceleration (i) at the end of 3 seconds, (ii) 

initially, in each of the following cases. 

i) 3t2t)t(s 2
++=  

ii) )1t/(1)t(s +=  

iii) )1t()t(s += . 

Solution: i) We have 3t2t)t(s 2
++=  
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 The velocity at time t is 2t2
dt

ds
+=  

 The velocity at the end of 3 sec. is [ ] s/m82t2
dt

ds
3tat

3tat

=+=







=

=

  

 The initial velocity is 
0tatdt

ds

=









[ ] s/m22t2 0tat =+=

=
 

 The acceleration at time 3t = is [ ] 2

3tat

3tat

2

2

s/m22
dt

sd
==








=

=

 

 The acceleration at the end of s3 is 

3tat

2

2

dt

sd

=








 2s/m2= . 

 The initial acceleration is 

0tat

2

2

dt

sd

=








 2s/m2= . 

 

ii) Let 
1t

1
)t(s

+
=  

 The first derivative is 
2)1t(

1

dt

ds

+
−=  

 Velocity at the end of s3 is s/m
16

1

dt

ds

3tat

−=








=

. 

 Initial velocity is s/m1
dt

ds

0tat

−=








=

. 

 The second derivative is 
32

2

)1t(

2

dt

sd

+
=  

 Acceleration at the end of 
2

3tat

2

2

s/m
32

1

dt

sd
s3 =








=

=

 

 Initial acceleration 
2

0tat

2

2

s/m2
dt

sd
=








=

=

 

 

iii) Let 1t)t(s +=  

 
1t2

1

dt

ds

+
=  

 The velocity at 3t =  is 
3tatdt

ds

=









s/m

4

1
=  

 The initial velocity
0tatdt

ds

=









= s/m

2

1
=  

 The acceleration at 3t =  is 
2/32

2

)1t(4

1

dt

sd

+
−==  

 The acceleration at 3t =  is 

3tat

2

2

dt

sd

=









=

2s/m
32

1
−=  

 The initial acceleration 

0tat

2

2

dt

sd

=









=

2s/m
4

1
−= . 

*** 
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Example 9: Give the derivatives of functions with following values. 

i)  )4x3()x2x( 22
+−  

ii) 22 )1x( −  

iii) )4x()3x( 23
−+  

Solution: i) Let )4x3()x2x()x(f 22
+−=  

 )4x3(
dx

d
.)x2x()4x3(.)x2x(

dx

d
)x(f 2222

+−++−=′  

   )x6()x2x()4x3()2x2( 24
−++−=  

 

ii)  Let 22 )1x()x(f −=  

 22 )1x(
dx

d
)x(f −=′  

  
dx

dt

dt

)t(d
2

⋅= , where 1xt 2
−=  

  )x2(.)1x(2 2
−=  

 

iii) Let )4x()3x()x(f 23
−+=  

 )x2()3x()4x(x3)x(f 322
++−=′  

*** 
 
Example 10: Find the derivatives of the functions defined by the following 
expressions. 

i) )x1(
2

+  

ii) )]x1/()x1[( −+  

Solution:  i) We write uy,x1u 2
=+= so that )x1(y

2
+= . 

 We have 2/122/1 )x1(
2

1
u

2

1

du

dy
,x2

dx

du −−
+===  

 Hence 
)x1(

x
x2)x1(

2

1

dx

du

du

dy

dx

dy

2

2/12

+

=+=⋅=
− . 

 

ii)  We have )]x1/()x1[(y −+= . 

 Let   2/1uy,
x1

x1
u =

−

+
=  

 So that   








−

+
=

x1

x1
y . 

 We have 
2)x1(

dx

)x1(d
)x1(

dx

)x1(d
)x1(

dx

du

−

−
+−

+
−

=  

     
22 )x1(

2

)x1(

)1()x1(1)x1(

−
=

−

−+−−
= . 

   

2/1

2/1

x1

x1

2

1
u

2

1

du

dy
−

−










−

+
==  
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 Hence   
2

2/1

)x1(

2

x1

x1

2

1

dx

du

du

dy

dx

dy

−









−

+
=⋅=

−

 

   
2/32/1 )x1()x1(

1

−+
=  

*** 
 
Example 11: Find the derivatives of the functions defined by the following 
values:  

i) x2sin  

ii) xcos3  

iii) )x(sin  

Solution: i) Let x2siny = . We write x2u = so that usiny = . 

 Now x2cos22.ucos
dx

du

du

dy

dx

dy
==⋅=  

 Or briefly 

 x2cos22.x2cos
dx

)x2(d

)x2(d

)x2(sind

dx

)x2(sind
==⋅= . 

 

ii)  Let 33 )x(cosxcosy == . We write 

   xcosu = so that 3uy = . 

 Now xsinxcos3)xsin(u3
dx

du

du

dy

dx

dy 22
−=−=⋅= . 

 

iii) Let )x(siny = . We write 

   usinv,xu == so that vy = . 

 Now 
dx

du

du

dv

dv

dy

dx

dy
⋅⋅=  

   
x

1

)x(sin

xcos

4

1
x

2

1
.ucosv

2

1
2

1

2

1

⋅==
−−

. 

*** 
 
Example 12: Find the equation of the tangent to the following curves at the 
specified points.  

i) xsiny 1−
= at )0,0(  

ii) xcosy 1−
= at )0,1(  

Solution: i) The first derivative
2x1

1

dx

dy

−

=  

 1
dx

dy

)0,0(at

=







 

 Thus, the equation of the tangent is )0x(10y −=− , which is xy = . 

 

ii) 
2x1

1

dx

dy

−

−=  
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 ∞=








)0,1(at
dy

dx
 

 Thus, the equation of the tangent is 1x = . 

*** 
 
Example 13: Find the derivatives of the functions defined by the following 
expressions.  

i) )xtanx(secln +  

ii) )a( x  

Solution: i) Let xtanxsecu +=  

 
dx

du
.)u(ln

du

d
)xtanx(sec[ln

dx

d
=+  

               )xtanx(sec
dx

d

u

1
+⋅=  

            )xsecxtanx(sec
)xtanx(sec

1 2
+⋅

+
=  

            xsec= . 

 

ii) Let ua
x

= and vx = . 

 )x(
dx

d
)a(

dv

d

du

ud
)a(

dx

d vx
⋅⋅=





  

    
x2

1
alna

u2

1 v

2/1
⋅⋅=

−
 

    alna
x4

a x
x

⋅=  

*** 
 

Example 14: Find 
dx

dy
, when  

i) )tsintt(cosax += , 

 )tcostt(sinay −= , 

ii) tcos2tcos3x 3
−= , 

 tsin2tsin3y 3
−=  

Solution: i) ,
dt/dx

dt/dy

dx

dy
= provided 0

dt

dx
≠ . 

     
)tcosttsintsin(a

)tcostsintt(cosa

++−

−+
=  

     ttan=  

ii) ,
dt/dx

dt/dy

dx

dy
= provided 0

dt

dx
≠ . 

  
tsintcos6tsin3

tcos.tsin6tcos3
2

2

+−

−
=  

*** 
 

Example 15: Differentiate ])x(sinx[y xcosxtan
+= . 
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Solution: Let xcosxtan )x(sinv,xu ==  

Since ,vuy += therefore, 
dx

dv

dx

du

dx

dy
+=  

By taking logarithms and then on differentiating, we get 

 







+=

x

xtan
xlogxsecx

dx

du 2xtan
   ... (1) 

 







+−=

xsin

xcos
xsinlogxsin)x(sin

dx

dv
2

xcos  ... (2) 

Adding (1) and (2), we obtain 
dx

dy
. 

*** 
 

Example 16: Differentiate 

5

4

4

3

3

2

2

1

)x43()x32(

)x21(x
y

−−

−
= . 

Solution: All the factors given in the quotient of y are positive. Therefore, 

taking logarithms, we obtain 

)x43(ln
5

4
)x32(ln

4

3
)x21(ln

3

2
xln

2

1
yln −−−−−+= . 

On differentiating, we obtain 

x43

4

5

4

x32

3

4

3

x21

2

3

2

x

1

2

1

dx

dy

y

1

−

−
⋅−

−

−
⋅−

−

−
⋅+⋅=⋅  

  
)x43(5

16

)x32(4

9

)x21(3(

4

x2

1

−
+

−
+

−
−=  










−
+

−
+

−
−=⇒

)x43(5

16

)x32(4

9

)x21(3

4

x2

1
y

dx

dy
. 

*** 
 

Example 17: If )x/1sin(x)x(f 2
= when 0x ≠ and 0)0(f = , show that f is 

derivable for every value of x but the derivative is not continuous for 0x = . 

Solution: For 0x ≠ , 







−








+=′

2

2

x

1

x

1
cosx

x

1
sinx2)x(f  

      
x

1
cos

x

1
sinx2 −= . 

For ,0x = we have 

 0)0(f
x

1
sinx

x

x

1
sinx

0x

)0(f)x(f
2

=′⇒==
−

−
. 

Thus, the function possesses a derivative for every value of x given by 

 
x

1
cos

x

1
sinx2)x(f −=′ when 0)0(f,0x =′≠ . 

We now show that f ′ is not continuous for 0x = . 
We write  

 







−−=

x

1
cos

x

1
sinx2

x

1
sinx2

x

1
cos     
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Here, 0
x

1
sinx2lim

0x
=








→

. 

In case )x(flim
0x

′
→

, i.e., 







−

→ x

1
cos

x

1
sinx2lim

0x
had existed, it would follow that 









→ x

1
coslim

0x
would also exist.  

But, this is not the case. Hence )x(flim
0x

′
→

does not exist so that f ′ is not 

continuous for 0x = . 
*** 

 
Example 18: Examine the continuity and derivability for the function defined 
as follows: 






















∞π∈








π−+







π∈+

∞−∈

=

,
2

1
xif,

2

1
x2

,
2

1
,0xif,xsin1

[,0,]xif,1

)x(f

2

 

Solution: The function f is derivable for every value of x except perhaps for 

0x = and 2/x π= . 

i) Firstly, we check for the continuity of f at 0x = . 

 Now, 10sin1)0(f =+= . 

 1)x(flim
0x

=
−

→

and 1)x(flim
0x

=
+

→

 

 Thus, )0(f1)x(flim
0x

==
→

. 

 Hence, f is continuous for 0x = . 

 Now, let us find left hand derivative and right hand derivative at 0x = . 

 0
x

11
lim

0x

)0(f)x(f
limLHD

0x0x
=

−
=

−

−
=

−−
→→

 

 again 
x

xsin

0x

1xsin1

0x

)0(f)x(f
0x =

−

−+
=

−

−
⇒>  

 1
x

xsin
lim

0x

)0(f)x(f
limRHD

0x0x
==

−

−
=

++
→→

. 

 Thus, 
0x

)0(f)x(f
lim

0x

)0(f)x(f
lim

0x0x −

−
≠

−

−

++
→→

. 

 Hence, the function is not derivable at 0x = . 
 
ii) Now, to check whether the function is differentiable at 2/π or not, letus 

first check the continuity at 2/x π= . We have, 

 2
2

1

2

1
2)2/(f

2

=







π−π+=π  

 211)xsin1(lim)x(flim

2
x

2
x

=+=+=
−−








 π
→







 π
→

, 

  2
2

1
x2lim)x(flim

2

2
x

2
x

=




















−+=

++








 π
→







 π
→

. 

  )2/(f2)x(flim
2/x

π==∴
π→

. 
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 Hence, f is continuous for 2/x π= . 

 

x
2

1

xsin1

2

1
x

2)xsin1(

2

1
x

2

1
f)x(f

limLHD

2
x −π

−
=

π−

−+
=

π−









π−

=
−








 π
→

. 

 Putting ,tx
2

1
=−π we see that  

 
t

t
2

1
sin1

x
2

1

xsin1








−π−

=

−π

−
 

   

t
2

1

t
2

1
sin

t
2

1
sin

t

t
2

1
sin2

t

tcos1
2

==
−

= . 

 Thus, 0

x
2

1

xsin1
lim

2
x

=

−π

−

−








 π
→

. 

 







π−=

π−

−







π−+

=

π−









π−

=
+++








 π
→







 π
→







 π
→

2

1
xlim

2

1
x

2
2

1
x2

lim

2

1
x

2

1
f)x(f

limRHD

2
x

2

2
x

2
x

 

 Thus, 0

2

1
x

2

1
f)x(f

lim

2
x

=

π−









π−

+








 π
→

. 

 Hence, 







π′

2

1
f exists and is equal to 0. 

*** 
 
Now, you may try the following exercises. 
 
E1) Find the derivatives of f at the given values of x using first principle for 

the following:   

i) 4x3x2)x(f 2
−+= at 2/5x = . 

ii) x/1)x(f = at 5x = . 

iii) x)x(f = at 1x = . 

iv) x/1)x(f = at 1x = . 

 

E2) Find the derived function f ′ if )x(f is given as follows: 

 i)  )3x/(1 2
+   ii) x/1  

 iii) 
3

x    iv) cbxax2
++  
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E3) Show that if the function f defined by 1xx)x(f −+= is continuous for 

every real value of x , but not derivable for 0x = and 1x = . 

E4) Construct a function which is continuous in the interval ]5,1[ , but not 

derivable at the points ,3,2 and 4 .  

 

E5) For 3x)x(f = , find )x(f ′ . Then, find )1(f −′ and )5.1(f ′  and interpret 

these results. 
 

E6) The population of a city grows from an initial size of 000,100 to a size 

P given by 2t2000000,100)t(P += , where t is in years.  

i) Find the growth rate, dt/dP . 

ii) Find the population after 10 years. 

iii) Find the growth rate at 10t = . 

iv) Explain the meaning of your answer to part (iii). 
 

E7) The circular area ,A in square centimetres, of a healing wound is 

approximated by 2r14.3)r(A = , where r is the wound’s radius, in 

centimetres.   

i) Find the rate of change of the area with respect to the radius. 

ii) Explain the meaning of your answer to part (i). 
 
E8) A particle moves along a straight line such that the position at any time 

t is a quadratic function of t . Prove that its acceleration remains 

constant. 
 

E9) If 4t3t2t)t(s 23
−+−= , gives the position, find the velocity and 

acceleration of the particle at the end of 2,1,0 seconds. 

 

E10)  Find 
dx

dy
in each of the following cases. 

i) 
2

2

)1x(

1x
y

−

−
=  

ii) 
)3x(

)4x(
y

2

−

+
=  

iii) 
2x3x

1x
y

2

2

+−

+
=  

 
E11) Find the derivatives of the functions defined by the following 

expressions:  

i) )cbx2ax(
2

++  

ii) 
)1x()1x(

)1x()1x(

22

22

−++

−−+
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iii) 
)x1(x

1x2

2

2

+

−
 

 
E12) Suppose that the demand function for a product is given by  

 
p

000,80
)p(D = , and that price p is a function of time given by 

,9t6.1p += where t is in days. 

i) Find the demand as a function of time t . 

ii) Find the rate of change of the quantity demanded when 

100t = days.  
 

E13) Differentiate 
3/13/2

)x31()x31(y +−= . 

 

E14) Draw the graph of the function f given by x5x45x30x5)x(f 23
++−=  

and draw the graph of its derivative f ′ over the interval ]5,0[ . Then, 

estimate points at which the tangent line to f is horizontal.   
 
E15) Find the equation of the tangent line to the graph of the function 

f defined by xe)x(f −
= at the point )1,0( . 

 

E16) Find the 
dx

dy
, when 









+
=









+

−
=

22

2

t1

t2
by,

t1

t1
ax . 

 

E17) Find the 
th

n Taylor polynomial for the following at the specified 0x . 

  i)   xe at 1x0 =  iii) xsin π at 
2

1
x0 =  

  ii) 
x

1
at 1x0 −=  iv) xln at 1x0 =  

 

E18) Find the coefficient of 
9

x  in Maclaurin polynomial for the functions  

 i) x2cos  

 ii) 






 π
+

4
xsin . 

 

E19) If Maclaurin polynomial for xsin  is differentiated term by term, do you 
get Maclaurin polynomial for xcos ? 

 

E20) If Maclaurin polynomial for xe  is differentiated term by term, we get the 
same polynomial again.  Prove this. 

 

SOLUTIONS/ANSWERS  
 

E1) i) ( )
h

)2/5(f)h2/5(f
lim25f

0h

−+
=′

→
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h

4
2

5
3

2

5
24h

2

5
3h

2

5
2

lim

22

0h












−







+








−












−







++








+

=
→

 

     
h

4
2

15

2

25
4h3

2

15
h5h

4

25
2

lim

2

0h

+−−−++







++

=
→

 

   ( )13h2lim
h

h13h2
lim

0h

2

0h
+=

+
=

→→

 

   13=  
 

 ii) 
h

)5(f)h5(f
lim)5(f

0h

−+
=′

→

 

   
h

5

1

h5

1

lim
0h









−








+
=

→

 

   
)h()h5(5

h
lim

0h +

−
=

→

 

   
25

1

)h5(5

1
lim

0h
−=

+

−
=

→

 

 

 iii) 
h

)1(f)h1(f
lim)1(f

0h

−+
=′

→

 

   
h

1h1
lim

0h

−+
=

→

 

   
h

1...h
23

)2/3()2/1()2/1(
h

2

)2/1()2/1(
h

2

1
1

lim

32

0h

−





+

×

−−
+

−
++

=
→

 

   





+

−
+=

→

...h
2

)2/1()2/1(

2

1
lim

0h
 

   
2

1
=  

 

 iv)  
h

)1(f)h1(f
lim)1(f

0h

−+
=′

→

 

     
h

1

1

h1

1

lim
0h

−
+

=
→

 

     
h11

h11

h1h

h11
lim

0h ++

++
⋅

−

+−
=

→

 

     
)h11(h1h

)h1(1
lim

0h ++−

+−
=

→

 

   
)h11(h1

1
lim

0h ++−

−
=

→

 

   
2

1
−= . 
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E2) i) 
h

)x(f)hx(f
lim)x(f

0h

−+
=′

→

 

   
h

3x

1

3)hx(

1

lim
22

0h










+
−

++
=

→

 

   
}3)hx{()3x(h

3xh2hx3x
lim

22

222

0h +++

−−−−+
=

→

 

   
22220h )3x(

x2

}3)hx{()3x(

x2h
lim

+

−
=

+++

−−
=

→

 

 

 ii) The domain of the function f defined by 
x

1
)x(f = is the set of all 

positive real numbers that is [,0] ∞ . 

  Let 0x > , we have 

  
h

)x(f)hx(f
lim)x(f

0h

−+
=′

→

 

   
h

x

1

hx

1

lim
0h

−
+

=
→

 

   
)hxx(

)hxx(

hxxh

hxx
lim

0h ++

++
⋅

+

+−
=

→

 

   
)hxx(hxxh

h
lim

0h +++

−
=

→

 

   
)hxx(hxx

1
lim

0h +++

−
=

→

 

   
xx2

1−
= when 0x > . 

 

 iii) 
h

)x(f)hx(f
lim)x(f

0h

−+
=′

→

 

   
h

x)hx(
lim

33

0h

−+
=

→

 

   )]hx(x2h[lim 2

0h
++=

→

 

   
2

x2= , where R∈x  

 

 iv) 
h

)x(f)hx(f
lim)x(f

0h

−+
=′

→

 

   
h

cbxaxc)hx(b)hx(a
lim

22

0h

−−−++++
=

→

 

   3ax2]bax2ah[lim
0h

+=++=
→

, when R∈x . 

 

E3) 1xx)x(f −+= at ,0x = 1)0(f = . Also 1)x(flim
0x

=
−

→

and 1)x(flim
0x

=
+

→

. 

Thus, f is continuous at 0x = . Similarly, 1)1(f = , 1)1(f = and 

1)x(flim
1x

=
+

→

.  
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Thus, f is continuous at 1x = . 

 
Fig. 2 

 

Fig. 2 shows that at 0x = and 1x = , the graph has corners. So, no 
tangent exists at these points. Also, we can rewrite  









≥−

<≤

<+−

=

1xif,1x2

1x0if,1

0xif,1x2

)x(f  

We can find 2)0(f −=′
− and 0)0(f =′

+ and 0)1(f =′
− and 2)1(f =′

+ . 

Thus, f is not differentiable at 0x = and 1x = . 
 

E4) One of such function is 4x3x2x)x(f −+−+−= . 

 

E5) We have =
δ

−δ+
=

δ

−δ+

x

x)xx(

x

)x(f)xx(f
33

0x,xxx3x3 22
≠δδ+δ+ . 

 Then, 222

0x0x
x3)xxx3x3(lim

x

)x(f)xx(f
lim)x(f =δ+δ+=

δ

−δ+
=′

→δ→δ

. 

 Thus, 3)1(3)1(f 2
=−=−′ and 75.6)5.1(3)5.1(f 2

==′ . 

 

 
Fig. 3 

E6) i) t4000
dt

dP
=  
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 ii) 300, 000 people 
 
 iii) 40,000 people/year 
 
 iv) The growth rate shows the change in population with respect to 

the time.  

 
E7) i) r28.6)r(A =′  

 
 ii) The rate of change of area with respect to the radius is 6.28 times 

the radius.  

 
E8) Let cbtat)t(s 2

++=  

 3at2
dt

ds
+=  

 a2
dt

sd
2

2

=  

We can see that the second derivative of the distance w.r.t. time which is 
acceleration is a constant function. Thus, the acceleration will always 
remain constant.  

 

E9) The velocity 3t4t3
dt

ds 2
+−=  

 s/m3
dt

ds

0t

=








=

 

 s/m2
dt

ds

1tat

=








=

 

 s/m7
dt

ds

2tat

=








=

 

 The acceleration 4t6
dt

sd
2

2

−=  

 
2

0tat

2

2

s/m4
dt

sd
−=









=

 

 
2

1tat

2

2

s/m2
dt

sd
=









=

 

 
2

2tat

2

2

s/m8
dt

sd
=









=

 

 

E10) i) 
4

22

)1x(

)1x(2.)1x()1x(x2

dx

dy

−

−−−−
=  

   
4

2

)1x(

]1xx[)1x(2

−

−−−
=  
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2)1x(

2

−

−
=  

 ii) 
2

2

)3x(

)1(.)4x()3x()4x(2

dt

dy

−

+−−+
=  

   
2)3x(

)4x6x2()4x(

−

−−−+
=  

   
2)3x(

)10x()4x(

−

−+
=  

 iii) 
22

22

)2x3x(

)3x2()1x()2x3x(x2

dt

dy

+−

−+−+−
=  

 

E11) i) Let )cbx2ax(y
2

++=  

  )b2ax2(.)cbx2ax(2
dx

dy 2/12
+++=

−  

   
cbx2ax

)bax(4

2
++

+
= , when 0cbx2ax2

≠++ . 

 

ii) Let 
1x1x

1x1x

1x1x

1x1x
y

22

22

22

22

−−+

−−+
⋅

−++

−−+
=  

  
1x1x

1x2)1x()1x(
22

422

+−+

−−−++
=  

  1xx
42

−−=  

 
1x2

x4
x2

dx

dy
4

3

−

−=  

  
1x

x2
x2

4

3

−

−= ,where 01x4
≠−  

 

iii) Let 
2

2

x1x

1x2
y

+

−
=  

 
)x1(x

x1

x2
x1)1x2(x1x.x4

dx

dy
22

2

2
222

+










+

++−−+

=   

        

E12) i) 
9t6.1

80000
)t(D

+
=  

 

 ii) 482.4
dt

dD

100tat

−=








=

units/day 

 

E13) 
6/53/2 )x31()x31(2

x91

dx

dy

+−

−−
=  
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E14)  

 
Fig. 4 shows the graph of f and f ′ on ]5,0[ . 

 

E15) 1xy +−=  
 

E16) 
22)t1(

at4

dt

dx

+

−
=  

 
22

2

)t1(

)t1(a2

dt

dy

+

−
=  

 
t2

t1

dx

dy
2

−
−=  

 

E17) i) xe)x(f = and e)1(f =  

  e)x(p0 =  

  )1x(ee)x(p1 −+=  

  2

2 )1x(
2

e
)1x(ee)x(p −+−+=  

  

M

32

3 )1x(
!3

e
)1x(

2

e
)1x(ee)x(p −+−+−+=

 

  i
n

0i

n )1x(
!i

e
)x(p −=∑

=

 

 ii) ∑
=

+−=

n

0i

i

n )1x()1()x(p  

 iii) 

i2)2/n(

0i

i2i

n
2

1
x

!)i2(

)1(
)x(p 








−

π−
= ∑

=

 

 

 iv) 
i

n

1i

1i

n )1x(
i

)1(
)x(p −

−
=∑

=

−

 

 

E18) i) 0    ii) 2
!9

1
 

E19) Yes 
 
E20) Yes, you may try to prove it yourself. 
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APPENDIX 1: PARAMETRIC REPRESENTATION 
OF CURVES 
 
So far, most of the curves we have considered have been graphs of functions 

of the form )x(fy = . However, there are curves where the coordinates x and 

y of each point )y,x(P on the curve are themselves functions of a third 

variable, called a parameter. We will begin by examining parametric 

representations in 
2
R . 

 
Let f and g be continuous functions of t on an interval I , then the equations 

)t(fx = and )t(gy = are called parametric equations with parameter t . As 

t varies over the parametric set I , the points ))t(g),t(f()y,x( = trace out a 

parametric curve. 
 

You may note that the letter "t" used for the parameter does not necessarily 
denote time, although in many applications, time is a suitable parameter. 
Indeed, any letter or symbol may be used to denote a parameter. Let us go 
through the following examples to understand more.  
 

Example 1: Sketch the curve t
3

1
y,9tx 2

=−= for 2t3 ≤≤− . 

Solution: Values of x and y corresponding to various choices of the 

parameter t are shown in the Table 1. 
 

Table 1 

 

t  x  y   

3−  0  1−  (Starting or initial point) 

2−  5−  

3

2
−  

 

1−  8−  

3

1
−  

 

0  9−  0   

1 8−  

3

1
 

 

2  5−  

3

2
 

(Ending or terminal point) 

 
The graph is shown in Fig. 1. You may observe how the arrows show the 

orientation as t increases from 3− to 2 . 
 
Sometimes, however, we wish to eliminate the parameter to obtain a cartesian 

equation. For instance, here, we have t
3

1
y = , so ,y3t = and by substituting 

into the equation 9tx 2
−= , we obtain 

9y99)y3(x 22
−=−=  

which is the cartesian equation for a parabola that opens to the right. Because 
of the domain of the parameter ,t we see that the parametric curve in Fig. 1 is 

a subset of the set of points that satisfy the equation 9y9x 2
−= . 
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Fig. 1: Graph of ,t
3

1
y,9tx 2

=−= for 2t3 ≤≤−   

 

Remark: Parameterizations are not unique. For example, the curve with 
parametric equations given in example 1 can also be represented by 

t3y),1t9(9x 2
=−= for 

9

2
t

3

1
≤≤− . It is the same as the curve in Fig. 1. 

*** 
 

Example 2: Describe the path t2cosy,tsinx π=π= for 5.0t0 ≤≤ . 

Solution: We know that tsin21t2cos 2
π−=π . 

So that 2x21y −=  

We recognize this as a cartesian equation for a parabola.  
Since t is restricted to the interval 5.0t0 ≤≤ , therefore, the parametric 

representation involves only part of the right side of parabola 2x21y −= . The 

curve is oriented from the point )1,0( , where 0t = , to the point )1,1( − , where 

5.0t = , and is the portion of the parabola shown in Fig. 2. 

 
Fig. 2: The parabolaic arc t2cosy,tsinx π=π= for 5.0t0 ≤≤  

 

When it is difficult to eliminate the parameter from a given parametric 
representation, we can sometimes get a good picture of the parametric curve 
by plotting points. 

*** 
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Example 3: Discuss the path of the curve described by the parametric 

equations tsiney,tcosex tt −−
== for 0t ≥  

Solution: We have no convenient way of eliminating the parameter so we 

write the values of )y,x( corresponding to various values of t  in Table 2. The 

curve is obtained by plotting these points in a cartesian plane and passing a 
smooth curve through the plotted points, as shown in Fig. 3. 

 
Fig. 3: Graph of tsiney,tcosex tt −−

== for 0t ≥  

 

Table 2 

 

t  x  y  

0  1 0  

4

π
 

32.0  32.0  

1 20.0  31.0  

2

π
 

0  21.0  

2  06.0−  12.0  
π  04.0−  0  

2

3π
 

0  01.0−  

π2  00.0  0  

 

Note that for each value of t , the distance from )y,x(P on the curve to the 

origin is 
tt22t2t22

e)1(e)tsine()tcose(yx
−−−−

==+=+ . 

 

Because te− decreases as t increases, it follows that P gets closer and closer 

to the origin as t increases. However, because tcos and tsin vary between 

1− and 1+ , the approach is not direct but takes place along a spiral. 

*** 
 
So far, our examples have dealt with sketching a parametric curve given the 
parametric equations. In general, this process may be tedious. However, the 
reverse process, finding a suitable set of parametric equations for a given 
curve, is an art for which there is no simple procedure. Indeed, a given curve 
can have many different parameterizations and there are curves for which no 
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simple parameterization can be given. The following example illustrates 
various methods for paramererizing a given curve. 
 
Example 4: In each of the following cases, write the parameteric form of the 
curve: 

i) 2x9y =  ii) θ=
3cos5r  in polar coordinates. 

Solution: i) The usual parameterization for a parabola is to let the parameter 

t be the variable that is squared: 2t9y,tx == . However, another 

parameterization is to let x3t = so that t
3

1
x = and 2ty = . 

ii)   In polar coordinates we have θ=θ= sinry,cosrx , so we can 

parameterize x  and y in terms of the parameter θ : 

 θ= cosrx θθ= cos)cos5( 3
θ=

4cos5  

 θ= sinry θθ= sin)cos5( 3  

 Therefore the parametric form of the curve θ=
2cos5r is θ=

4cos5x and 

θθ= sincos5y 3 , where θ is the parameter. 

*** 
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APPENDIX 2: PARTIAL FRACTIONS 
 
Recall the rational functions you studied in Unit 6. Rational function is the ratio 
of the polynomials provided the polynomial in denominator is non-zero. Here, 
we will show how a rational function is expressed as a sum of simpler 
fractions, called partial fractions.  
 

Let us consider a rational function f defined by 
)x(q

)x(p
)x(f = , where )x(p and 

)x(q are polynomials and 0)x(q ≠ . If the degree of )x(p is less than the 

degree of )x(q ,then the rational function is said to be proper rational 

function. If the degree of )x(p is greater than or equal to the degree of )x(q , 

then the rational function is called improper rational function.  
 

Let us first consider that f is improper rational function that is degree of 

≥)x(p degree of )x(q . Then we divide )x(p by )x(q using long division 

method until the degree of )x(r is less than the degree of )x(q , where )x(r is 

the remainder polynomial.  
 

That is 
)x(q

)x(r
)x(s

)x(q

)x(p
)x(f +== , where )x(s and )x(r are the polynomials 

and are quotient and remainder respectively.  
 

After this form )x(f is the sum of a polynomial and a proper rational function. 

Following examples illustrate this. 
 

Example 1: Express 
5x

1x
4

−

+
as a sum of polynomial and proper rational 

function. 

Solution: Here 5x)x(q,1x)x(p 4
−=+= . Clearly degree of >)x(p degree of 

)x(q . Therefore, we divide )x(p by )x(q .  

120x24x5x

599

600x120

1x120

x120x24

1x24

x25x5

1x5

x5x

1x5x

23

2

2

23

3

34

4

+++

−

−

−

−

−

−

−

+−

 

Therfore, we can write 
5x

599
120x24x5x

5x

x 23
14

−
++++=

−

+

. 

*** 

 
In school, you must have studied the factorisation of polynomials. For 

example, we know that )3x()1x(3x4x2
−−=+− . Here )1x( − and )3x( − are 

two linear factors of 3x4x2
+− . You must have also come across polynomials 

like 1x
2

+ , which cannot be factorised into real linear factors. Thus, it is not 
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always possible to factorise a given polynomial into linear factors. But any 
polynomial can, in principle, be factored into linear and quadratic factors. We 
shall not prove this statement here. But we shall consider both the cases that 
is when the denominator can be factorised into linear factors and when the 
denominator can be factorised in linear and irreducible real quadratic factors. 
To find partial fractions, we shal consider the following examples. 
 

Example 2: Write the rational function f defined by 
6xx

8x6
)x(f

2
−−

−
= into 

partial fractions. 

Solution: Here )2x()3x(6xx2
+−=−− . Now  

)2x(

B

)3x(

A

)2x()3x(

8x6

6xx

8x6
2

+
+

−
=

+−

−
=

−−

−
   (1) 

One way to find the constants A and B is to multiply Eqn. (1) by 

)2x()3x( +− to clear fractions. This gives 

)3x(B)2x(A8x6 −++=−       (2) 

This relationship holds for all x , so it holds in particular for 2x −= and 3x = .  

Putting 2x −= in Eqn. (2), we get )32(B812 −−=−−  or 4B = . Similarly 

putting 3x = in Eqn. (2), we get )5(A818 =− or 2A = . 

Now substituting these values in Eqn. (1), we get  

)2x(

4

)3x(

2

6xx

8x6
2

+
+

−
=

−−

−
      (3) 

The other way to find the constants A and B from Eqn. (1) is that we collect 
and equate coefficients of like powers of x from left hand side as well as right 
hand side. Equating the coefficients of x and constant terms both the sides of 
Eqn. (2), we obtain 

BA6 += and B3A28 −=−  

Solving the system of equations for A and B , we get 2A = and 4B = as 
before. Therefore, the partial fractions decomposition is  

  
)2x(

4

)3x(

2

6xx

8x6
2

−
+

−
=

−−

−
. 

*** 
 
Let us consider another example where the denominator has repeated linear 
factors. 
 

Example 3: Write 
23

x2x

4x2

−

+
as a sum of partial fractions.  

Solution: 
)2x(x

4x2

x2x

4x2
223

−

+
=

−

+
. Here 

2
x is a quadratic factor, but it is not 

irreducible, since x.xx2
= . Thus the factor 

2
x introduces two partial fractions 

of the form 
2

x

B

x

A
+ and the factor )2x( − introduces one term that is 

)2x(

C

−
. 

So, the partial fractions are  

)2x(

C

x

B

x

A

x2x

4x2
223

−
++=

−

+
      (4) 

Multiplying Eqn (4) by )2x(x2
− , we get 

2xC)2x(B)2x(xA4x2 +−+−=+  

Equating the coefficients of 
2

x , x and constant both the sides, we get  
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Coefficient of CA0x2
+=⇒  

Coefficient of BA22x +−=⇒  

Constant term B24 −=⇒  

Solving the system of equations for B,A and C , we obtain 2B,2A −=−= and 

2C = . 

Now, the partial fractions are 
)2x(

2

x

2

x

2

x2x

4x2
223

−
+

−
+

−
=

−

+
 

*** 
 

Example 4: Reduce 
2x3x

x
3

+−
into partial fractions. 

Solution: The denominator 2x3x3
+− factors into )2x()1x( 2

+− . The linear 

factor )1x( − is repeated twice in 2x3x3
+− . In this case, we write  

 
23 )1x(

C

)1x(

B

)2x(

A

2x3x

x

−
+

−
+

+
=

+−
 

From this point we proceed as before to find B,A and C . We get 

)2x(C)1x()2x(B)1x(Ax 2
++−++−=  

We put 2x,1x −== and get 
3

1
C = and 

9

2
A −= . Then to find B , let us put 

any other convenient value, say 0x = . This gives us C2B2A0 +−=  or 

3

2
B2

9

2
0 +−

−
=  

This implies 
9

2
B = . Thus  

23 )1x(3

1

)1x(9

2

)2x(9

2

2x3x

x

−
+

−
+

+
−=

+−
 

*** 
 
In our next example, we shall consider the case when the denominator 
contains an irreducible quadratic factor that is a quadratic factor which cannot 
be further factored into linear factors. 

 

Example 5: Write 
x2xx2x

4x5x11x6
234

23

−+−

−+−
as a sum of partial fractions. 

Solution: We first factorise x2xx2x
234

−+− as )1x()2x(x 2
+− . 

Then we write 

1x

DCx

2x

B

x

A

x2xx2x

4x5x11x6
2234

23

+

+
+

−
+=

−+−

−+−
    (5) 

You may note that the irreducible quadratic factor )1x( 2
+ introduces the terms 

1x

DCx
2

+

+
. 

We multiply Eqn. (5) by )1x()2x(x 2
+− , and get 

)2x(.x.)DCx()1x(Bx)1x)(2x(A4x5x11x6 2223
−+++++−=−+− . 

Next, we substitute 0x = and 2x = to get 2A = and 1B = . 

Then we put 1x = and 1x −= (some convenient values) to get 3C = and 

1D −= . 
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Thus 
1x

1x3

2x

1

x

2

x2xx2x

4x5x11x6
2234

3

+

−
+

−
+=

−+−

−+−
 

*** 
 
In the following example, we will consider the repeated irreducible quadric 
factors. 
 

Example 6: Reduce 
22

234

)3x()2x(

9x20x16x4x3

++

++++
into partial fractions. 

Solution: Observe that since the numerator has degree 4 and the 
denominator has degree 5, therefore the given rational function is a proper 
rational function. Thus 

22222

234

)3x(

EDx

3x

CBx

)2x(

A

)3x()2x(

9x20x16x4x3

+

+
+

+

+
+

+
=

++

++++
   (6) 

We multiply by 22 )3x()2x( ++ both the sides and get 

)2x()EDx()3x()cBx()3x(A9x20x16x4x3 222234
+++++++=++++  

We now equate the corresponding coefficients and get the following system of 
equations, 

3BA =+  

4CB2 =+  

16DC2B3A6 =+++  

20ED2C3B6 =+++  

9E2C6A9 =++ . 

The solution of this system of equations gives ,1A = ,2B = ,0C = ,4D =  

0E = . 
Thus, the required partial fractions are 

22222

234

)3x(

x4

)3x(

x2

)2x(

1

)3x()2x(

9x20x16x4x3

+
+

+
+

+
=

++

++++
. 

*** 
 


