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BLOCK 4 APPLICATIONS OF DIFFERENTIAL 
CALCULUS  

 
In Block3, you have learnt some techniques of differentiation, and have differentiated a 
wide variety of functions. In this block, we shall use the derivative to explore various 
geometrical features of a curve, like maxima/minima, concavity/convexity, tangents, 
normals, asymptotes and so on. For this we have to make use of not only the first 
derivative, but also some higher order derivatives. 

In Unit 12, we shall use the first derivative to find the limits involving an algebraic 
combination of functions in an independent variable, in which evaluation of limit gives form 

like ,0,0,,
0

0
∞

∞×

∞

∞
etc. Such a form is called indeterminate form.  

In the next three units, Unit 13, Unit 14 and Unit 15, we shall illustrate how we can find the 
exact shape of a curve, when its equation is given to us. You will be surprised at the 
amount of information which is revealed by the first and second derivatives. We shall use 
this information to trace various standard curves in Unit 16. In Unit 16, we shall also tell 
you how the properties of some remarkable curves are put to use. We shall also ask you 
to trace some curves yourself. Do try and trace them by systematically following the 
procedure which we have outlined in Unit 16. We are sure, that after reading this block 
you will be aware of the presence of many of these curves in the objects around you, as 
also in nature.  

We have also made a video programme, “Curves”, which you can watch after going 
through this block. This programme is available at your study center.  

A word about some signs used in the unit! Throughout each unit, you will find theorems, 
examples and exercises. To signify the end of the proof of a theorem, we use the sign    . 
To show the end of an example, we use ***. Further, equations that need to be referred to 
are numbered sequentially within a unit, as are exercises and figures. E1, E2 etc. denote 
the exercises and Fig. 1, Fig. 2, etc. denote the figures. 
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NOTATIONS AND SYMBOLS (used in Block 4) 

 

See the list of notations and symbols in Block 1, Block 2 and Block 3.  



 

 

5

Unit 12                                                                             Indeterminate Forms 

UNIT 12                                                        

INDETERMINATE FORMSINDETERMINATE FORMSINDETERMINATE FORMSINDETERMINATE FORMS    

StructureStructureStructureStructure                                Page NoPage NoPage NoPage No....    
 
12.1 Introduction                 5        

Objectives 

12.2 Indeterminate Forms                6         

12.3 L’Hôpital’s Rule for 
0

0
 Form               8 

12.4 L’Hôpital’s Rule for 
∞

∞
 Form             17 

12.5 Other Indeterminate Forms             23 

12.6 Summary               29 

12.7 Solutions/Answers              29 
            

12.1 INTRODUCTION 
 
In Unit 7, we have discussed limit of a function. In this unit, we shall discuss a 
general method for using derivatives to find limits. We shall begin with the 

limits in which numerator and denominator both approach 0 as 0x → . Limits 
which come in such forms are called indeterminate forms. We shall discuss 
such forms in Sec.12.2. The arguments we used in Unit 7, that is cancelling 
the common factor in numerator and denominator or sometimes using 
geometrical approach do not work for such limits. So in Sec.12.3 and 
Sec.12.4, we introduce a systematic method, known as L’Hôpital’s rule, for 
evaluating indeterminate forms. 

 
L’Hôpital’s rule, is named after the French mathematician L’Hôpital.  In this 
rule, we use the derivative for evaluating limit.  This is in contrast with what we 
have been doing so far, i.e., evaluating derivatives of functions by calculating 
certain limits. We shall discuss other indeterminate forms in Sec. 12.5.  

 
In this unit, we will see that we are now able to find the limit of a wide variety of 
indeterminate forms that we were unable to deal with earlier.  

 
And now we shall list the objectives of this unit. After going through the unit, 
please read this list again and make sure that you have achieved the 
objectives. 

 

Fig. 1:Fig. 1:Fig. 1:Fig. 1:    LLLL’HHHHôpitalpitalpitalpital    
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Objectives 

After reading this unit, you should be able to: 

• identify the types of indeterminate forms; 

• evaluate 
)x(g

)x(f
lim

ax→

 when )x(glim0)x(flim
axax →→

== or 

)x(glim)x(flim
axax →→

=∞=  

• find [ ])x(g)x(flim
ax

−
→

 when )x(glim)x(flim
axax →→

=∞=   

• evaluate [ ]
)x(g

ax

)x(flim
→

 when )x(glim0)x(flim
axax →→

== , or  

 ∞=
→

)x(flim
ax

 and 0)x(glim
ax

=
→

, or  

1)x(flim
ax

=
→

 and ∞=
→

)x(glim
ax

, where R∈a  

• compute [ ])x(g)x(flim
ax→

 when 0)x(flim
ax

=
→

 and ∞=
→

)x(glim
ax

 

• obtain all the above limits when a  is ∞  or ∞− . 
 

12.2 INDETERMINATE FORMS 
 
In Unit 7, we considered many limit problems, but deliberately avoided the 

forms ,,,
0

0
∞−∞

∞

∞
and a few others. In this section, we shall discuss these 

forms.  
 

Consider, ,
)x(g

)x(f
lim

ax→

where 0)x(flim
ax

→
→

 and 0)x(glim
ax

→
→

. This is unlike the 

problems, say of the form 
5

0
, all of which have the answer 0. The form 

0

0
can 

produce a variety of answers. Because of this unpredictability, the limit form 

0

0
is called indeterminate. In general, a limit form is indeterminate when 

different problems with the same form can have different answers. You may 
recall two special exceptions in the limits in Example 22 in Unit 7, where 

1
x

xsin
lim

0x
=

→

was shown using the squeezing theorem and some careful 

manipulation of inequalities, and 0
x

xcos1
lim

0x
=

−

→

then followed using the 

identity 1xcosxsin
22

=+ . These limits are actually special cases of these 
derivatives, as can be seen by  

1
x

xsin
lim

0x

0sinxsin
lim)x(sin

dx

d

0x0x
0x

==

−

−
=

→→

=

  

and  

0
x

xcos1
lim

0x

0cosxcos
lim)x(cos

dx

d

0x0x
0x

=
−

=

−

−
=

→→

=
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What makes these limits bothersome is the fact that the numerator and 

denominator both approach 0 as 0x → . This means that the limit of the 
numerator is making the quotient very small, whereas the limit of the 
denominator is making the quotient very large. Such limits are called 

indeterminate forms of type 0/0 . 
 

If )x(hlim0)x(glim
axax →→

== , then 
)x(hlim

)x(glim

ax

ax

→

→  is an expression of the form 
0

0
.  In 

this case, we say that 
)x(h

)x(g
 is an indeterminate form of the type 

0

0
 at ax =  or 

as ax → .   
 

Some other examples of 
0

0
form are 1

x

x
lim

0x
=

→

(see Fig. 2 (a)), 0
x

x
lim

3

0x
=

→

(see 

Fig. 2(b)), 2
1x

1x
lim

2

1x
=

−

−

→

(see Fig. 2 (c)).  

 
 
        (a)               (b)            (c) 
 

Fig. 2 

 
There are other types of indeterminant forms also; for example, if the limit of 
the numerator is ∞  and is making the quotient very large and at the same 
time the limit of the denominator is also ∞ , which makes the quotient very 

small. Such forms are indeterminate forms of type 
∞

∞
. 

If )x(hlim)x(glim
axax →→

=±∞= , then we say that 
)x(h

)x(g
lim

ax→

 is an indeterminate 

form of the type 
∞

∞
 at ax = . 

For example, ,
xlnlim

elim

xln

e
lim

x

x

x

x

x ∞

∞
==

∞→

∞→

∞→

and
∞

∞
==








−

−∞→

−∞→

−
−∞→

x

x

2

x

x

2

x elim

xlim

e

x
lim   

Other examples of indeterminate form of ∞∞ / are ,
x

e
lim,

x

xln
lim

3

x

x
2

x ∞→∞→

 

2
x

3

x e

x
lim

→∞

, etc. 

 
You may think of many other such forms, in which the final answer of limit 
does not tend to a single value rather pulls the answer to two different and far 
away values. Due to which the limit is said to be in indeterminate form.   

Other types such as, ,1,,0,0
oo ∞

∞∞× and ∞−∞ are also indeterminate forms. 
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Here we are giving various types of indeterminate forms in the following table:  
 

Type of other Indeterminate forms Example 

∞∞∞∞−−−−∞∞∞∞ form: Large value is subtracted from 
another large value 

)xtanx(seclim

2
x

−
π

→

 

∞∞∞∞

1111 form: The behaviour of a large power of a 
number depends on whether the number is less 
than 1 or more than 1. 

2
x/1

0x x

xsin
lim 








→

,

x

x x

1
1lim 








+

→∞

 

0000

0000 form: The limit is pulled towards 0 by the 

base and towards 1 by the exponent.  

xcos1x

0x

)1e(lim
−

→

−  

0000

∞∞∞∞ form: The limit is pulled towards by the base 
and towards 1 by the exponent 0. 

2
x/1x

x

)e(lim
→∞

 

 
We have said it before, and we repeat it once again that the methods 
developed by us so far do not enable us to calculate the limits in many 
situations mentioned above.  In what follows we describe methods which 
would enable us to deal with almost all these situations.  But first, see if you 
can do this exercise. 
 

 

E1) Identify the types of indeterminate forms in the following cases: 

 i) N∈
→∞

n,
x

e
lim

n

x2

x
    

 ii) 
2

0x xcosx

x3sin
lim

→

     

 iii) 







−

→ x

1
xeccoslim

0x
  

 iv) 








−→ xcos1

xsin
lim

0x
 

 v) xlnxlim
0x→

. 

 

 
In the following section, we will give a simple method for calculating the limits 

of functions which are in the 
0

0
 form. 

 

12.3  L’HÔPITAL’S RULE FOR 
0

0  FORM 

 
Marquis de L’Hôpital, a French mathematician, was a student of Johann 
Bernoulli.  He published the first textbook on calculus in 1696.  This book was 

based on Bernoulli’s lectures, and contained a method for evaluating 
)x(g

)x(f
lim

ax→
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when the limit is an indeterminate form of the type 
0

0
 at ax = .  This result is 

now universally known as L’Hôpital’s rule, even though it was proved by 
Bernoulli.  Before we state the rule, let us consider an example.  
 

Consider the limit 
xsin

1e
lim

x

0x

−

→

, this can be expressed as the ratio of two 

derivatives.  

1
0cos

e

)x(sin
dx

d

)e(
dx

d

)0x/()0sinx(sin

)0x/()ee(
lim

xsin

1e
lim

0

0x

0x

x

0x

0x

x

0x
===

−−

−−
=

−

=

=

→→

 

This method can be stated more generally. Suppose that f and g are 

differentiable functions at ax = and that 
)x(g

)x(f
lim

ax→

is an indeterminate form of 

type 0/0 , that is, 0)x(flim
ax

=
→

and 0)x(glim
ax

=
→

.  

 
In particular, the differentiability of f and g at ax = implies that f and g are 

continuous at ax = , and hence 0)x(flim)a(f
ax

==
→

and 0)x(glim)a(g
ax

==
→

. 

Furthermore, since f and g are differentiable at ,ax =  

)a(f
ax

)a(f)x(f
lim

ax

)x(f
lim

axax

′=

−

−
=

− →→

and )a(g
ax

)a(g)x(g
lim

ax

)x(g
lim

axax

′=

−

−
=

− →→

 

If 0)a(g ≠′ , then, the indeterminate form can be evaluated as the ratio of 

derivative values, as given below 

)a(g

)a(f

ax

)a(g)x(g
lim

ax

)a(f)x(f
lim

)ax/()x(g

)ax/()x(f
lim

)x(g

)x(f
lim

ax

ax

axax ′

′

=

−

−

−

−

=

−

−
=

→

→

→→

  …(1) 

If )x(f ′ and )x(g′ are continuous at ax = , the result in Eqn. (1) is a special 

case of L’Hôpital’s rule, which converts an indeterminate form of type 0/0 into 
a new limit involving derivatives. Moreover, L’Hôpital’s rule is also true for 
limits at ∞− and at ∞+ . We state the result in the following theorem without 
proof.  
 

Theorem 1 (L’Hôpital’s rule for form 0/0 ): Suppose that f and g are 

differentiable functions on an open interval containing ax = , except possibly 

at ax = , and that 0)x(flim
ax

=
→

and 0)x(glim
ax

=
→

. 

If )]x(g/)x(f[lim
ax

′′
→

has a finite limit, or if this limit is ∞+ or ∞− , then 

)x(g

)x(f
lim

)x(g

)x(f
lim

axax ′

′

=
→→

. 

Moreover, this statement is also true in the case of a limit as 

,x,ax,ax −∞→→→
+− or as +∞→x . 

 
Caution: You may note that when applying L’Hôpital’s rule, we differentiate 
the numerator and denominator separately, which is not the same as 

differentiating 
)x(g

)x(f
. 
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In the following examples we apply L’Hôpital’s rule using the following three-
step process: 

Step 1: Check that the limit of )x(g/)x(f is an indeterminate form of type 
0

0
. If 

it is not, then L’Hôpital’s rule cannot be used.  
 

Step 2: Differentiate f and g separately. 
 

Step 3: Find the limit of )x(g/)x(f ′′ . If this limit is finite, ∞+ , or ∞− , then it is 

equal to the limit of )x(g/)x(f . 
 

Here are examples which illustrate the utility of Theorem 1. 
 

Example 1: Evaluate 
8x

128x
lim

3

7

2x −

−

→

. 

Solution: Note that this is an indeterminate form because 128x)x(f
7

−=  and 

,8x)x(g
3

−=  both are differentiable around 2 and approach 0 as 2x → . 

Therefore, we can apply L’Hôpital’s rule. Applying L’Hôpital’s rule, we get 

 
2

6

2x3

7

2x
3

7

2x x3

x7
lim

)8x(
dx

d

)128x(
dx

d

lim
8x

128x
lim

→→→

=

−

−

=

−

−
    

  
3

x7
lim

2x

4

→

=    

  
3

112

3

)2(7
4

==    

     *** 
   

Example 2: Find the following limits: 

i) 
xsin

xcos1
lim

0x

−

→

 

ii) 
xcos

)2/x(
lim

2

2/x

π−

π→

 

Solution: i) Let xsin)x(g,xcos1)x(f =−= . Since, 

00cos1xcos1lim
0x

=−=−
→

 and 0xsinlim
0x

=
→

, therefore, they both are 0 and 

forms 
0

0
form. Hence, we can apply L’Hôpital’s rule and obtain 

   0
1

0

0cos

0sin

xcos

xsin0
lim

)x(sin
dx

d

)xcos1(
dx

d

lim
xsin

xcos1
lim

0x0x0x
===

+
=

−

=
−

→→→

. 

ii) Since, 0)2/x(lim
2

2/x

=π−
π→

and ,0xcoslim
2/x

=
π→

therefore, the limit is in 

0

0
form. We can apply L’Hôpital’s rule. We get   

   0
1

)0(2

xsin

)2/x(2
lim

)x(cos
dx

d

2
x

dx

d

lim
xcos

)2/x(
lim

2
x

2

2
x

2

2
x

=

−

=

−

π−
=








 π
−

=
π−

π
→

π
→

π
→

. 

*** 
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Example 3: Evaluate 
xsec

xcos1
lim

0x

−

→

. 

Solution: You must always remember to check that you have an 
indeterminate form before applying L’Hôpital’s rule. The limit is  

 0
1

0

xseclim

)xcos1(lim

xsec

xcos1
lim

0x

0x

0x
==

−

=
−

→

→

→

 

 
Warning: If you blindly apply L’Hôpital’s rule in Example 3, you obtain the 
WRONG answer: 

 
xtanxsec

xsin
lim

xsec

xcos1
lim

0x0x →→

=
−

   

  1
1

1

xsec

xcos
lim

0x
===

→

 

This answer is WRONG. Why? 

If we find ,
xsec

xcos1
lim

0x

−

→

we do not get indeterminate form. Therefore, 

L’Hôpital’s rule cannot be applied. 

*** 
 

Example 4: Find 
xsin

)x/1sin(x
lim

2

0x→

. 

Solution: To find 
xsin

x

1
sinx

lim

2

0x→

, we first note that 
xsin

x

1
sinx

2

 is in the 
0

0
 form as 

0x → .  But L’Hôpital’s rule is not applicable, because, 

( )
xcos

x

1
sinx2

x

1
cos

lim

xsin
dx

d

x

1
sinx

dx

d

lim
0x

2

0x

+−

=










→→

 does not exist.  

How can we be sure that this limit does not exist?  

Note that if 
xcos

x

1
cos

x

1
sinx2

lim
0x

−

→

 exists, then 





−

→ x

1
cos

x

1
sinx2lim

0x
 would exist 

and consequently 
x

1
coslim

0x→

 would exist, which is not true. As 
x

1
cos,0x →  

oscillates between 1− and 1, and does not tend to any limit. 

However, we can still evaluate the limit of 
xsin

x

1
sinx

2

 as 0x → . 

We have |x|
xsin

x

xsin

x

xsin

x

1
sinx 2

2

=< .  [Since, 0|h|
h

1
sinh →≤ ] 

Since 1
xsin

x
→  as 0x → , it follows that 0

xsin

x
lim.xlim

xsin

x
lim

0x0x

2

0x
==

→→→

 and 

therefore, 0
xsin

x/1sinx
lim

2

0x
=

→

. 

*** 

h

)0(f)h(f

0h

lim)0(f
−

→

=′       

        
h

1
sinh

0h
lim
→

=  

        0=  
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The next example shows that L’Hôpital’s rule 








′

′

=
→→ )x(g

)x(f
lim

)x(g

)x(f
lim

axax

 is  

applicable only to those quotients which are in indeterminate form of the type 

0

0
 at the given point. 

 

Example 5: Find 
xsin

x
lim

2

2

0x→

.   

Solution: Let 2
x)x(f =  and xsin)x(g

2
= .  It is clear that 

xsin

x
2

2

 is in the 
0

0
 

form at 0x = .  Now, 

 
xcos.xsin2

x2
lim

)x(g

)x(f
lim

0x0x →→

=

′

′

 

          

xcos
x

xsin

1
lim

0x→

=   

          

xcoslim.
x

xsin
lim

1

0x0x →→

=  

          1=  

Therefore, using Theorem 1, 1
xsin

x
lim

2

2

0x
=

→

. 

You may note that here 0)0(g =′ , but 
)x(g

)x(f
lim

ax ′

′

→

exists. 

*** 
 
We, now, illustrate few examples, in which L’Hôpital’s rule is applied for one-
sided limits. 
 

Example 6: Evaluate 
xcos

xsin1
lim

2/x

−

−
π→

.  

Solution: It is clear that 
xcos

xsin1
lim

2/x

−

−
π→

 is in the 
0

0
 form. 

The functions xsin1−  and xcos are differentiable. 
Therefore, we can apply L’Hôpital’s rule here.  Thus,  

 0
2/sin

2/cos

xsin

xcos
lim

xcos

xsin1
lim

2/x2/x

=

π

π
=

−

−
=

−

−−
π→π→

. 

*** 
 

Example 7: Find 
xx

xln
lim

1x −
+

→

. 

Solution: Here ,xln)x(f = and xx)x(g −= .  Clearly, )x(f  and )x(g  are 

differentiable and )x(glim0)x(flim
1x1x

++
→→

== . Also, 2

x2

1
1

x/1
lim

)x(g

)x(f
lim

1x1x

=

−

=

′

′

++
→→

. 
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Thus, L’Hôpital’s rule gives us 2
xx

xln
lim

1x

=

−
+

→

. 

*** 
 

Example 8: Evaluate 
2

0x x

xtan
lim

−
→

. 

Solution: The numerator and denominator have a limit of 0, so the limit is an 

indeterminate form of type 
0

0
. Applying L’Hôpital’s rule yields 

 −∞==
−−

→→ x2

xsec
lim

x

xtan
lim

2

0x
2

0x

 

*** 
 

Now, let us discuss a few examples of the form 
0

0
, in which ∞→x or 

−∞→x and L’Hôpital’s rule is applied.  
 

Example 9: Evaluate 
)x/1sin(

)x/3tan(
lim
x ∞→

.  

Solution: Let 
x

3
tan)x(f =  and 

x

1
sin)x(g = .  Then 

)x(g

)x(f
 is in an 

indeterminate form of the type 
0

0
 as ∞→x .  Clearly, both )x(f  and )x(g  

are differentiable for all 0x ≠ , and 
)x/1cos()x/1(

)x/3(sec)x/3(
lim

2

22

x −

−

→∞

 

3
)x/1cos(

)x/3(sec3
lim

2

x
==

∞→

. 

 Thus, L’Hôpital’s rule for 
0

0
 form at ∞  is applicable, and therefore, 

3
)x/1sin(

)x/3tan(
lim
x

=
∞→

. 

*** 
 

Example 10: Evaluate 
x

5
sinxlim

x −∞→

. 

Solution: Let 
x

1
)x(g,

x

5
sin)x(f =








= .  Then 

)x(g

)x(f
 is 

0

0
 form at ∞− , and  

5
x/1

x

5
cos

x

5

lim
)x(g

)x(f
lim

2

2

xx
=

−
















 −

=

′

′

−∞→−∞→

 

Therefore,  

  5
)x(g

)x(f
lim

x/1

x

5
sin

lim
xx

=

′

′

=










−∞→−∞→

. 

*** 

Now try and evaluate the limits in the following exercise by applying    
Theorem 1. 
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E2) Find the following limits 

 i) 
xsin

xsinx
lim

0x

−

→

  ii) 
5x6x

1x
lim

2

4

1x +−

−

→

 

 iii) 
2

2

0x xsin

xcos1
lim

−

→

  iv) 
xcos

4x9x2
lim

2

2/1x π

+−

→

 

 v) 0,
x

x
lim

nn

mm

x
>α

α−

α−

α→

 vi) 
x4

)x41ln(
lim

0x

+

→

 

 vii) 
xsin1

xsinln
lim

2/x −π→

  viii) 
x

23
lim

xx

0x

−

→

 

 ix) 
4/x

xcosxsin
lim

4/x π−

−

π→

 x) 
4x

412x
lim

2

2

2x −

−+

→

. 

 
E3) Evaluate the following limits: 

 i)  
1x

xln
lim

1x −
+

→

 

 ii) 
xcos1

xsin
lim
x −

−
π→

 

 
E4) Evaluate the following limits:  

 i) 
)x/1sin(

x
lim

3/4

x

−

→∞

   ii) )x/1(tanxlim
1

x

−

∞→

  

 iii) 
1e

)x/1sin(
lim

x/1
x −−∞→

   iv) )1e(xlim
x/1

x

−
∞→

 

 

 
There are also situations where we need to apply L’Hôpital’s rule multiple 

times. For an example, consider the functions xcos1)x(f −=  and 2
x)x(g = , 

which are differentiable on R .  Let us try to evaluate 
2

0x x

xcos1
lim

−

→

.  Here 

xsin)x(f =′ , and x2)x(g =′ , and 
)x(g

)x(f

′

′

 is again in an indeterminate form of 

the type 
0

0
 as 0x → .  But let us now turn our attention to the functions )x(f ′  

and )x(g′ .  We find that the functions )x(f ′  and )x(g′  are also differentiable 

functions, and 2)x(g,xcos)x(f =′′=′′ .  Clearly, 
2

1

)x(g

)x(f
lim

0x

=

′′

′′

→

.  This means 

that we can apply L’Hôpital’s rule to the quotient of )x(f ′  and )x(g′  at 0x = , 

and get 
2

1

)x(g

)x(f
lim

)x(g

)x(f
lim

0x0x

=

′′

′′

=

′

′

→→

. 

Now since 
2

1

)x(g

)x(f
lim

0x

=

′

′

→

, applying L’Hôpital’s rule to 
)x(g

)x(f
 we get  

 
2

1

)x(g

)x(f
lim

)x(g

)x(f
lim

0x0x

=

′

′

=
→→

. 



 

 

15

Unit 12                                                                             Indeterminate Forms 

Thus, we can write, 

 
2

1

2

xcos
lim

x2

xsin
lim

x

xcos1
lim

0x0x
2

0x
===

−

→→→

. 

We often come across similar situations where repeated use of L’Hôpital’s rule 
enables us to evaluate the required limits.  We now state the general result in 
the following theorem.  
 

Theorem 2: Let )x(f  and )x(g  be two real-valued functions such that 

 1nk0),x(glim0)x(flim
)k(

ax

)k(

ax

−≤≤==
→→

, for some N∈n . If 
)x(g

)x(f
lim

)n(

)n(

ax→

  

exists (may be equal to ∞  or ∞− ), then  

)x(g

)x(f
lim

)x(g

)x(f
lim

)n(

)n(

axax →→

= . 

(Here, gg,ff
)0()0(

== , and 
)k(

f  denotes the k -th order derivative of f  for 

1nk1 −≤≤ .) 
 

Now we give some general observations in the form of remarks. 
 

Remark 1: Note that if for some 
)x(g

)x(f
lim,n

)n(

)n(

ax→

 does not exist, and 

1nk0),x(g,lim0)x(flim
)k(

ax

)k(

ax

−≤≤==
→→

, then 
)x(g

)x(f
lim

ax→

 cannot be 

evaluated using L’Hôpital’s rule. 
 

Remark 2: We can now state the general L’Hôpital’s rule for one sided limits. 

Let )x(f  and )x(g  be two real-valued functions such that 

1nk0),x(glim0)x(flim
)k(

ax

)k(

ax

−≤≤==
++

→→

 for some N∈n . 

If 
)x(g

)x(f
lim

)n(

)n(

ax
+

→

 exists (may be equal to ∞+  or ∞− ), then  

)x(g

)x(f
lim

)x(g

)x(f
lim

)n(

)n(

axax
++

→→

= . 

If we replace +

a  wherever it occurs by −

a , we get the statement for the left 
hand limit. 
 

We now give examples to illustrate the above discussion. 
 

Example 11: Evaluate 
1xxx

4x5x
lim

23

5

1x +−−

+−

→

.  

Solution: If we take 4x5x)x(f
5

+−=  and 1xxx)x(g
23

+−−= , then  

  )x(glim0)x(flim
1x1x →→

==  

  0)5x5(lim)x(flim
4

1x1x

=−=′

→→

 

  0)1x2x3(lim)x(glim
2

1x1x

=−−=′

→→

 

 and   5
2x6

x20
lim

)x(g

)x(f
lim

3

1x1x
=

−

=

′′

′′

→→

 

Therefore, by Theorem 2, i.e., by repeated use of L’Hôpital’s rule, we obtain, 

  5
2x6

x20
lim

1x2x3

5x5
lim

1xxx

4x5x
lim

3

1x
2

4

1x
23

5

1x
=

−

=

−−

−
=

+−−

+−

→→→

. 

*** 
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Example 12: Evaluate 
xcos1

1x3e
lim

x3

0x −

−−

→

. 

Solution: If 1x3e)x(f
x3

−−=  and xcos1)x(g −= , then  

 3e3)x(f
x3

−=′  and xsin)x(g =′ .  Also, 

  0)x(flim)x(flim
0x0x

=′=
→→

, and  

  0)x(glim)x(glim
0x0x

=′=
→→

. 

Therefore, 9
xcos

e9
lim

)x(g

)x(f
lim

x3

0x0x
==

′′

′′

→→

, which shows that 9
xcos1

1x3e
lim

x3

0x
=

−

−−

→

. 

*** 
 

Example 13: Evaluate 
3

0x x

xsinx
lim

−

→

. 

Solution: This is an indeterminate form of the type 0/0 , and we find that  

2
0x

3
0x x3

xcos1
lim

x

xsinx
lim

−
=

−

→→

after applying L’Hôpital’s rule once.  

This is still the indeterminate form of the type 0/0 , so L’Hôpital’s rule can be 
applied once again and we obtain.  

 
6

1
)1(

6

1

x

xsin
lim

6

1

x6

)xsin(
lim

x3

xcos1
lim

0x0x
2

0x
===

−−
=

−

→→→

 

*** 
 
It may happen that even when L’Hôpital’s rule applies to a limit, it is not the 
best way to proceed, as illustrated by the following example.  
 

Example 14: Evaluate 
xcosx

x4sin)xcos1(
lim

3
0x

−

→

. 

Solution: This limit has the form 0/0 , but direct application of L’Hôpital’s rule 
leads to a real mess (try it!). Instead, we compute the given limit by using the 
product rule for limits first, followed by two simple applications of L’Hôpital’s 
rule. Specifically, using the product rule for limits (assuming the limits exist), 
we have 

 
















 −
=

−

→→→→ xcos

1
lim

x

x4sin
lim

x

xcos1
lim

xcosx

x4sin)xcos1(
lim

0x0x
2

0x
3

0x
 

    

















=

→→→ xcos

1
lim

1

xcos4
lim

x2

xsin
lim

0x0x0x
 

    2)1()4(
2

1
=








=  

*** 
 
See if you can solve these exercises now. 
 

 

E5) Evaluate the following limits: 

 i) 
)x1ln(

)x(tan
lim

2

21

0x +

−

→

   v) 
3

0x x

x3x3sin
lim

−

→
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 ii) 
xsinx

xtanx
lim

1

0x −

−
−

→

   vi) 
x2cos1

xsin1
lim

2/x +

−

π→

 

 iii) 
xsinx

xcos1
lim

22

2

0x

−

→

   vii) 
xsinx

x2ee
lim

xx

0x −

−−
−

→

 

 iv) 
xtanx

xxtan
lim

22

22

0x

−

→

   

 

E6) Find the value of k  for which the following limits are finite and hence 
evaluate the limit.  

 i) 
3

0x x

x2sinkx2sinh
lim

+

→

 

 ii) 
xcos1

x2kee
lim

xx

0x −

−+
−

→

 

 

E7) Show that 0
xtan5

x/1sinx
lim

2

0x
=

→

. Also show that this limit cannot be 

evaluated by using L’Hôpital’s rule. 
 

 

In this section, we have seen how to evaluate 
)x(g

)x(f
lim

ax→

 by L’Hôpital’s rule 

when 
)x(g

)x(f
 is in the 

0

0
 form at ax = .  Now we shall study the rule for 

evaluating 
)x(g

)x(f
lim

ax→

 when 
)x(g

)x(f
 is in the 

∞

∞
 form at ax = . 

 

12.4 L’HÔPITAL’S RULE FOR 
∞∞∞∞

∞∞∞∞  FORM 

 

Consider the limit of 
n

x

x

e
as ∞→x . As, you can see, this is of the form 

∞

∞
. In 

order to evaluate 
)x(g

)x(f
lim

ax→

 when )x(glim)x(flim
axax →→

=±∞= , we have results 

similar to those proved in the last section. Here, we state these results without 
proofs, and then illustrate them. 
 

Theorem 3 (L’Hôpital’s rule for form ∞∞ / ): Suppose that f and g are 

differentiable functions on an open interval containing ax = , except possibly 

at ax = , and that ±∞=
→

)x(flim
ax

and ±∞=
→

)x(glim
ax

. 

If )]x(g/)x(f[lim
ax

′′
→

has a finite limit, or if this limit is ∞+ or ∞− , then  

 
)x(g

)x(f
lim

)x(g

)x(f
lim

axax ′

′

=
→→

 

Moreover, this statement is also true in the case of a limit as  

−∞→→→
+−

x,ax,ax , or as +∞→x . 

 
We had also seen, in Theorem 2, how repeated use of L’Hôpital’s rule 
sometimes helps us in evaluating the required limit.  We now state an  
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analogous result for indeterminate forms of the type 
∞

∞
. 

 

Theorem 4: Let )x(f  and )x(g  be two real-valued functions such that 

i) )x(glim)x(flim
)k(

ax

)k(

ax →→

=±∞= , 

 where n,1nk0 −≤≤  is a natural number and a  is any real number, ∞  

or ∞− , and  

ii) If 
)x(g

)x(f
lim

)n(

)n(

ax→

 exists, and may even be infinite, then, 

 
)x(g

)x(f
lim

)x(g

)x(f
lim

)n(

)n(

axax →→

= . 

Here is another point that you should note. 

If 
)x(g

)x(f
)k(

)k(

 is an indeterminate form for nk0 ≤≤  and 
)x(g

)x(f
)n(

)n(

 fails to tend to a 

limit as ax → , then this does not mean that 
)x(g

)x(f
lim

ax→

 does not exist.  It only 

means that we cannot apply L’Hôpital’s rule, and that we have to adopt a 
different procedure to establish the existence or non-existence of the limit 
under consideration. 
 
We shall bring out this and various other points with the help of a number of 
examples.  Go through these carefully.  They will help you to get a better 
understanding of the concepts involved. 
 

Example 15: Show that 1n,
x

e
lim

n

x

x
≥∞=

∞→

, 

Solution: Let 1n,x)x(g,e)x(f
nx

≥== .  Then 

)x(glim)x(flim
xx ∞→∞→

=∞= . If 1n = , then ∞==

′

′

∞→∞→ 1

e
lim

)x(g

)x(f
lim

x

xx
and therefore, 

by L’Hôpital’s rule ∞=
∞→ x

e
lim

x

x
. 

If 1n > , then it is clear that, nko),x(glim)x(flim
)k(

x

)k(

x

≤≤=∞=
∞→∞→

  and 

∞==
∞→∞→ !n

e
lim

)x(g

)x(f
lim

x

x
)n(

)n(

x
. 

Consequently, ∞=
∞→

n

x

x x

e
lim  for all 1n ≥ . 

*** 
 

Example 16: Find 0n,
x

xln
lim

n
x

>
∞→

.  

Solution: Let 0n,x)x(g,xln)x(f
n

>==  

The function )x(f  and )x(g  satisfy the requirements of Theorem 3. 

Therefore, 0
nx

1
lim

nx

x/1
lim

)x(g

)x(f
lim

)x(g

)x(f
lim

n
x

1n
xxx

===

′

′

=
∞→

−
∞→∞→∞→

. 

*** 



 

 

19

Unit 12                                                                             Indeterminate Forms 

Example 17: Evaluate
xtanln

x2tanln
lim

0x
+

→

. 

Solution: Let xtanln)x(g,x2tanln)x(f == . Then 

)x(glim)x(flim
0x0x

++
→→

=−∞=  and 
2cosec2x

x4eccos4
lim

)x(g

)x(f
lim

0x0x
++

→→

=

′

′

1
x2cos

1
lim

0x

==
+

→

. 

Therefore, 1
xtanln

x2tanln
lim

0x

=
+

→

. 

Here, we cannot talk of 
xtanln

x2tanln
lim

0x→

 because x2tan  and xtan  are negative 

for 0x <  and therefore, we cannot take their logarithms.   
 

*** 
 

Example 18: Find the limit 
x

)x(ln
lim

n

x ∞→

, where n  is an integer, 0n ≥ . 

Solution: For 0n = , the result is clear.  For 1n = , the result has been proved 

in Example 16. Let n
)x(ln)x(f =  and x)x(g = .  Then, the functions )x(f  

and )x(g  are differentiable for 0x > , and )x(glim)x(flim
xx ∞→∞→

=∞= . 

Therefore, 
x

)x(lnn
lim

)x(g

)x(f
lim

)x(g

)x(f
lim

1n

xxx

−

→∞→∞→∞

=

′

′

= , provided the right-hand side 

limit exists.  Considering the functions 1n
)x(ln

−  and x  instead of n
)x(ln  and 

x , we get 
x

)x(ln)1n(n
lim

x

)x(lnn
lim

x

)x(ln
lim

2n

x

1n

x

n

x

−

∞→

−

∞→∞→

−
== ,  

provided the right-hand side limit exists.  Repeating the above process 

n times, we obtain 0
x

!n
lim

x

)x(ln
lim

x

n

x
==

∞→∞→

. 

*** 
 

Example 19: Evaluate 0n,0m,
x

)x(ln
lim

n

m

x
>>

∞→

 and m  is an integer. 

Solution: Let m
)x(ln)x(f = and n

x)x(g = .  Then, )x(f and )x(g  are 

differentiable for 0x > , and )x(glim)x(flim
xx ∞→∞→

=∞= . 

Therefore, 
n

1m

x
n

m

x nx

)x(lnm
lim

x

)x(ln
lim

−

∞→∞→

= , provided the right hand side limit 

exists.  Considering the functions 1m
)x(ln

−  and 
n

x  instead of m
)x(ln  and 

n
x respectively, we obtain 

n2

2m

x
n

m

x xn

)x(ln)1m(m
lim

x

)x(ln
lim

−

∞→∞→

−
= provided the 

right-hand side limit exists.  Thus, repeating the above process, we obtain, 

0
x

1
.

n

!m
lim

x

)x(ln
lim

nm
x

n

m

x
==

∞→∞→

. 

*** 

Example 20: Let 
0

1m

1m

m

m
axaxa)x(P +++=

−

−
L  and  
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0

1n

1n

n

n
bxbxb)x(Q +++=

−

−
L  be two polynomials with real coefficients, 

0b,0a
nm

≠≠ . Evaluate 
)x(Q

)x(P
lim
x ∞→

. 

Solution: Let us take the case when nm = . 

If )x(Plim,mk0
)k(

x ∞→

≤≤  and )x(Qlim
)k(

x ∞→

 are infinite, and  

 
m

m

m

m

x
)m(

)m(

x b

a

!mb

!ma
lim

)x(Q

)x(P
lim ==

∞→∞→

. 

Therefore,  
m

m

)m(

)m(

xx b

a

)x(g

)x(f
lim

)x(Q

)x(P
lim ==

∞→∞→

 by Theorem 4. 

Now, suppose nm < . 

Again )x(Qlim),x(Plim
)k(

x

)k(

x ∞→∞→

 are infinite for mk0 ≤≤ , and  

 

∑
=

−
∞→∞→

+−−

=
n

mr

mr

r

m

x
)m(

)m(

x

x)1mr()1r(rb

a!m
lim

)x(Q

)x(P
lim

K

0= . 

Thus, 0
)x(Q

)x(P
lim

)x(Q

)x(P
lim

)m(

)m(

xx
==

∞→∞→

. 

Now, if nm > , it is obvious that  

 )x(Qlim),x(Plim
)k(

x

)k(

x ∞→∞→

 are infinite for nk0 <≤ , and  

 
n

m

nr

nr

r

x
)n(

)n(

x b!n

x)1nr()1r(ra

lim
)x(Q

)x(P
lim

∑
=

−

∞→∞→

+−−

=

K

 

        ±∞= , according as 0
b

a

n

m
>  or 0< . 

Thus, ∞==
∞→∞→ )x(Q

)x(P
lim

)x(Q

)x(P
lim

)n(

)n(

xx
 or ∞− , according as 0

b

a

n

m
>  or 0< . 

Therefore, 













>∞±

<

=

=
∞→

negativeorpositiveis
b

a
toaccording,nmif,

nmif,0

nmif
b

a

)x(Q

)x(P
lim

n

m

n

m

x
 

*** 
 

Example 21:  Evaluate 
7x6x5

6x4x5x7
lim

4

23

x ++

+++

∞→

.  

Solution: By applying L’Hôpital’s rule repeatedly, we get  

 
6x20

4x10x21
lim

7x6x5

6x4x5x7
lim

3

2

x
4

23

x +

++
=

++

+++

∞→∞→

 

             0
x120

42
lim

x60

10x42
lim

x
2

x
==

+
=

∞→∞→

. 

Alternatively, using algebra of limits, we can find the above limit in a very 
simple way as follows: 
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0
x/7x/6x5

x/6x/4x/57
lim

7x6x5

6x4x5x7
lim

32

32

x
4

23

x
=

++

+++
=

++

+++

∞→∞→

, as 0x/1 →  

when ∞→x . 
*** 

 
In the next example, you will find a situation where L’Hôpital’s rule is not 
applicable. 
 

Example 22: Evaluate 
2

x x1

xsinx2
lim

+∞→

.  

Solution: Can we apply L’Hôpital’s rule to evaluate this limit? 

No. L’Hôpital’s rule is not applicable because xsinx2lim
x ∞→

 does not exist. 

However, 0
x1

xsinx2
lim

2
x

=

+∞→

 

because, 
22

x1

x2

x1

xsinx2

+

≤

+

, and 0
x1

x2
lim

2
x

=

+∞→

. 

*** 
 
We now give an example where L’Hôpital’s rule is applicable but it yields no 
result.  But such situations are very rare. 
 

Example 23: Evaluate 
xx

xx

x ee

ee
lim

−

−

∞→ +

−
. 

Solution: Let us see what happens if L’Hôpital’s rule is applied to evaluate its 
limit as ∞→x .  We get  

 
xx

xx

x
xx

xx

x ee

ee
lim

ee

ee
lim

−

−

∞→
−

−

∞→ −

+
=

+

−
 

The right hand side is again in the 
∞

∞
 form, but if we apply L’Hôpital’s rule to 

evaluate it, we get back to where we started.  Thus, it is useless to apply 
L’Hôpital’s rule in this case.  But we can still evaluate the limit as follows. 

1
e1

e1
lim

ee

ee
lim

x2

x2

x
xx

xx

x
=

+

−
=

+

−

−

−

∞→
−

−

∞→

, because 0elim
x

x

=
−

∞→

. 

*** 
  

Example 24: Evaluate 
2x5x3

1x3x2
lim

2

2

x −+

+−

+∞→

. 

Solution: We could compute this limit by multiplying and dividing by )x/1(
2 . 

Instead, we note that this is of the form ∞∞ / and apply L’Hôpital’s rule: 

 
5x6

3x4
lim

2x5x3

1x3x2
lim

x
2

2

x +

−
=

−+

+−

+∞→+∞→ 3

2

6

4
lim

x
==

+∞→

 

*** 
 

Example 25: Evaluate 
xcosx

xsinx
lim

x −

+

+∞→

. 

Solution: The limit has the indeterminate form ∞∞ / . If you try to apply 
L’Hôpital’s rule, you find  
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xsin1

xcos1
lim

xcosx

xsinx
lim

xx +

+
=

−

+

+∞→+∞→

 

The limit on the right does not exist, because both xsin and xcos oscillate 

between 1− and 1 as +∞→x . Recall that L’Hôpital’s rule applies only if 

L
)x(g

)x(f
lim

cx

=

′

′

→

or is ∞± . This does not mean that the limit of the original 

expression does not exist or that we cannot find it. It simply means that we 
cannot apply L’Hôpital’s rule. To find this limit, factor out an x  from the 
numerator and denominator and proceed as follows: 

 1
01

01

x

xcos
1

x

xsin
1

lim

x

xcos
1x

x

xsin
1x

lim
xcosx

xsinx
lim

xxx
=

−

+
=

−

+

=









−









+

=

−

+

+∞→+∞→+∞→

 

*** 
 
After going through the above examples you should have no difficulty in 
solving these exercises. 
 

 

E8) Evaluate the following limits: 

 i) 
x

0

1m

1m

m

m

x e

axaxa
lim

+++
−

−

∞→

L
, where m,,1,0i,a

i
K=∀∈R . 

 ii) 
xcosln

xtan
lim

)2/(x

−

π→

  

 iii) 
xtan

x3tan
lim

2/x π→

    

 iv) 
1x5x2

xlnx
lim

46

6

x ++

+

∞→

   

 v) 
1x5x5x3

1x6x5x2
lim

78

378

x +++

+++

−∞→

. 

 

E9) Show  that 1
xcosx

xsinx
lim
x

=

+

+

∞→

and that L’Hôpital’s rule cannot be used to 

evaluate it. 
 
E10) Evaluate the following limits and show that L’Hôpital’s rule is not 

applicable in each case. 

 i)  
2

22

x x

xsinx
lim

−

∞→

 

 ii) 
x

xcosx
lim
x

−

∞→

 

 iii) 
x

|xcos||xsin|
lim
x

+

∞→

 

 iv) 
2

x x

xcosxsinx
lim

+

∞→
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In the following section, we shall discuss other indeterminate forms. 
 

12.5 OTHER INDETERMINATE FORMS 
 

So far we have discussed indeterminate forms of type 
0

0
and 

∞

∞
. However, 

these are not the only possibilities. In general, the limit of an expression that 

has one of the forms )x(g)x(f),x(g)x(f,)x(f),x(g)x(f,
)x(g

)x(f )x(g
+−⋅ is called 

an indeterminate form if the limits of )x(f and )x(g individually exert conflicting 

influences on the limit of the entire expression. For example, the limit 

xlnxlim
0x

+
→

is an indeterminate form of type ∞⋅0 because the limit of the first 

factor is 0, the limit of the second factor is ,∞− and these two limits exert 

conflicting influences on the product. On the other hand, the limit 

)]x1(x[lim
2

x

−
+∞→

is not an indeterminate form because the first factor has a 

limit of ∞+ , the second factor has a limit of ∞− , and these influences work 
together to produce a limit of ∞− for the product.  
 

Caution: It is tempting to argue that an indeterminate form of type ∞⋅0 has 

value 0 since “zero times anything is zero”. However, this is false, since ∞⋅0 is 

not a product of numbers, but rather a statement about limits. For example, 

the following limits are of the form ∞⋅0 : 

  +∞=⋅=⋅=⋅
+++

→→→ x

1
xlim,0

x

1
xlim,1

x

1
xlim

0x

2

0x0x

 

Indeterminate forms of type ∞⋅0 can sometimes be evaluated by rewriting the 

product as a ratio, and then applying L’Hôpital’s rule for indeterminate forms of 

type 
0

0
or 

∞

∞
. 

 
You will understand this more clearly if you go though the following example. 
 

Example 26: Evaluate xln
2

x
tanlim

1x







 π

→

.  

Solution: Note that xln
2

x
tan

π
 is a ∞.0 form at 1x = .  Now, we write  

xln
)2/xcos(

)2/xsin(
xln

2

x
tan

π

π
=







 π
 

We know that 1
2

x
sinlim

1x
=






 π

→

.  So, let us try to find 
)2/xcos(

xln
lim

1x π→

. 

Now, 
)2/xcos(

xln

π

 is 
0

0
 form at 1x = . 

Therefore, by L’Hôpital’s rule 

 
π

−=

ππ−

=

π →→

2

2/).2/xsin(

x/1
lim

)2/xcos(

xln
lim

1x1x

 

Thus, 
)2/xcos(

xln)2/xsin(
limxln

2

x
tanlim

1x1x π

π
=







 π

→→
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)2/xcos(

xln
lim

2

x
sinlim

1x1x π

π
=

→→

 

  








π

−=
2

.1
π

−=
2

. 

*** 
 

Example 27: Find qxp

x

exlim
−

∞→

 where q,p  are positive integers. 

Solution: We can write 
qx

p

x

qxp

x e

x
limexlim

∞→

−

∞→

=  

Now, 
qx

p

e

x
 is in an indeterminate form of the type 

∞

∞
 to which L’Hôpital’s rule is 

applicable.  Thus, we get, 

 0
eq

!p
lim

e

x
lim

qxp
x

qx

p

x
==

∞→∞→

, so that 0exlim
qxp

x

=
−

∞→

. 

*** 
 

Example 28: Evaluate xtan
2

xlim
)2/(x








 π
−

−
π→

. 

Solution: This limit has the form ∞⋅0 , because 

 0
2

xlim
)2/(x

=






 π
−

−
π→

and +∞=
−

π→

xtanlim
)2/(x

 

Write 
xcot

1
xtan = to obtain 

 
xcot

2
x

limxtan
2

xlim
)2/(x)2/(x

π
−

=






 π
−

−−
π→π→

  






0

0
Form  

     
xeccos

1
lim

2
)2/(x −

=
−

π→

 

     1)xsin(lim
2

)2/(x

−=−=
−

π→

 

*** 
 
Now, we shall discuss another indeterminate form. A limit problem that leads 

to one of the expressions; ),()(),()( −∞−−∞+∞−+∞ )()(),()( +∞+−∞−∞++∞  

is called an indeterminate form of type ∞−∞ . Such limits are indeterminate 
because the two terms exert conflicting influences on the expression: one 
pushes it in the positive direction and the other pushes it in the negative 
direction. However, limit problems that lead to one of the expressions; 

),()(),()( −∞−+∞+∞++∞  )()(),()( +∞−−∞−∞+−∞ are not indeterminate, 

since, the two terms work together. 
 
Indeterminate forms of type ∞−∞ can sometimes be evaluated by combining 
the terms and manipulating the result to produce an indeterminate form of type 

0

0
or 

∞

∞
, as you will see in the following examples. 
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Example 29: Evaluate limit 







−

→ x

1
xeccoslim

0x
. 

Solution: Clearly the function is of the type ∞−∞ . 

We can write ,
xsinx

xsinx

x

1

xsin

1

x

1
xeccos

−
=−=−  so that the right hand side is 

in the 
0

0
 form at 0x = , to which L’Hôpital’s rule is applicable. 

Thus, 
xsinx

xsinx
lim

x

1
xeccoslim

0x0x

−
=







−

→→

 

  
xcosxxsin

xcos1
lim

0x +

−
=

→

 [ by L’Hôpital’s rule ] 

  
xsinxxcos2

xsin
lim

0x −

=
→

, [ by L’Hôpital’s rule ]    

 0
2

0

)xsinxxcos2(lim

xsinlim

0x

0x
==

−

=

→

→ . 

*** 
 

Example 30: Find 








−

−
−

π→ )xsin1(

1
xseclim

)2/(x

. 

Solution: Now, 
)xsin1(xcos

xcosxsin1

xsin1

1

xcos

1

xsin1

1
xsec

−

−−
=

−

−=

−

−  

and the right hand side is in the 
0

0
 form as 

−








 π
→

2
x , to which L’Hôpital’s 

rule is applicable.  Thus,  

 
xcosxsinxcos

xcosxsin1
lim

xsin1

1
xseclim

)2/(x)2/(x −

−−
=









−

−
−−

π→π→

 

      
x2cosxsin

xsinxcos
lim

)2/(x −−

+−
=

−
π→

, by L’Hôpital’s rule 

          








−−

+−=
−−

π→π→ x2cosxsin

1
lim).xsinxcos(lim

)2/(x)2/(x

 

                 ∞=∞= .1 . 

*** 
 

Example 31: Evaluate 




 +
−

→
2

0x x

)x1ln(

x

1
lim . 

Solution: We can write 




 +−
=




 +
−

→→
2

0x
2

0x x

)x1ln(x
lim

x

)x1ln(

x

1
lim  

And L’Hôpital’s rule can be applied to evaluate the limit on the right hand side.  
Therefore, 

 






 +
=

















+

−

=




 +−

→→→ 2

)x1/(1
lim

x2

x1

1
1

lim
x

)x1ln(x
lim

2

0x0x
2

0x 2

1
= . 

*** 
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Let us now discuss the limits of the form )x(g
)x(flim , which give rise to 

indeterminate forms of type ,,0
00

∞  and 
∞

1 . For example, the limit 
x/1

0x

)x1(lim +
+

→

whose value we know to be e [Recall Unit 7] is an indeterminate 

form of type 
∞

1 . It is indeterminate because the expressions x1+ and 

x/1 exert two conflicting influences; the first approaches 1, which drives the 
expression toward 1, and the second approaches ∞+ , which drives the 
expression toward ∞+ . 
 

Indeterminate forms of types ,,0
00

∞ and 
∞

1 can sometimes be evaluated by 

first introducing a dependent variable )x(g
)x(fy = and then calculating the limit 

of yln by expressing it as )]x(fln)x(g[lim)])x(f([lnlimylnlim
)x(g

== . Once 

the limit of yln is known, the limit of )x(g
)x(fy = itself can generally be 

obtained by a method that we shall illustrate in the next example.  
 

Example 32: Evaluate )1x/(1

1x

xlim
−

→
+

. 

Solution: It is clear that 
)1x/(1

x
−

 is in an indeterminate form of the type 
∞

1  as 

+

→ 1x .  Let )1x/(1
xy

−

= .  Then, xln
1x

1
yln

−

=    

Now, 
1x

xln

−

 is in the 
0

0
 form as +

→1x , and L’Hôpital’s rule is applicable to it. 

Therefore, 1
1

x/1
lim

1x

xln
lim

1x1x

==

−
++

→→

. 

Hence, 1eeelimxlim
0

ylnlim
yln

1x

)1x/(1

1x

1x
====

+
→

++
→

−

→

. 

*** 
 

Example 33: Evaluate 

x

0x x

1
lnlim 








+

→

.  

Solution: Let 

x

x

1
lny 








= ,  so that y  is in the form 

0
∞  as +

→ 0x .  

Then, 
ylnlim

yln

0x0x

x

0x

0xeelimylim
x

1
lnlim

+
→

+++

===







→→→

   …(2) 

But, 







=

++
→→ x

1
lnlnxlimylnlim

0x0x x/1

x

1
lnln

lim
0x










=
+

→

  

Now 
x/1

x

1
lnln 









 is in the 
∞

∞
 form as +

→ 0x .  Therefore, L’Hôpital’s rule gives 

 0
x/1

x

1
.

)x/1ln(

x

limylnlim
2

2

0x0x

=

−

−

=
++

→→

. 

Substituting this in Eqn. (2) we get  

 1e
x

1
lnlim

0

x

0x

==







+

→

. 

*** 
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Example 34: Find xcos

2/x

)x(coslim
−

π→

. 

Solution: Let 2/x0,)x(cosy
xcos

π<<= .  Then, 

xsec

xcosln
xcoslnxcosyln == , and therefore by applying L’Hôpital’s rule we 

obtain  

 0
xtanxsec

xtan
lim

xsec

xcosln
limylnlim

2/x2/x2/x

=
−

==
−−−

π→π→π→

. 

Thus, 

 1ee)x(coslim
0

ylnlim
xcos

2/x

2/x
===

−
π→

−
π→

. 

*** 

Example 35: Show that e
x

1
1lim

x

x
=








+

+∞→

. 

Solution: Note that this limit is indeed of the indeterminate form 
∞

1 . Let  

 

x

x x

1
1limL 








+=

+∞→

 

Take the logarithm both the sides, we get 

 



















+=

+∞→

x

x x

1
1limlnLln  

  

x

x x

1
1lnlim 








+=

+∞→

  [ xln is continuous] 

  







+=

+∞→ x

1
1lnxlim

x
  [Property of logarithms] 

  

x

1

x

1
1ln

lim
x









+

=
+∞→

  






0

0
Form  

  

2

2

x

x

1

x

1

x/11

1

lim

−









−

+
=

+∞→

 [L’Hôpital’s rule] 

  

x

1
1

1
lim
x

+

=
+∞→

   [Simplifying] 

  
01

1

+

=  

  1=  

Thus, 1Lln = and eeL
1

== . 
*** 

 

Example 36: Find xsin

0x

xlim
+

→

. 

Solution: This is a 0
0 indeterminate form. We begin by using properties of 

logarithm. 

Let  xsin

0x

xlimL
+

→

=  



 

 

28

Block 4                                                   Applications of Differential Calculus 

 xsin

0x

xlnlimlnLln
+

→

=  

  xsin

0x

xlnlim
+

→

=    [ ln is continuous] 

  xln)x(sinlim
0x

+
→

=   [This is ∞⋅0 form.] 

  
xeccos

xln
lim

0x
+

→

=   [This is 
∞

∞
form.] 

  
xcotxeccos

x/1
lim

0x −

=
+

→

 [L’Hôpital’s rule]  

  
xcosx

xsin
lim

2

0x

−
=

+
→

 

  






 −









=

+
→ xcos

xsin

x

xsin
lim

0x

 

  0)0()1( ==   

Thus, 1eL
0

== . 
*** 

 

Example 37: Find x/1

x

xlim
+∞→

. 

Solution: This is a limit of the indeterminate form 
0

∞ . 

If x/1

x

xlimL
+∞→

= , then x/1

x

xlimlnLln
+∞→

= xln
x

1
lim

x +∞→

=  

     
x

xln
lim

x +∞→

=  [This is 
∞

∞
form.] 

     
1

x/1
lim

x +∞→

=   [L’Hôpital’s rule] 

     0=  

Thus, we have 0Lln = . Hence, 1eL
0

== . 

*** 
 
Now, try the following exercise.  
 
 

E11)  Evaluate  

  i) 
x

1
sinxlim

x ∞→

   

  ii) xlnxlim
0x

+
→

 

  iii) x2sec)xtan1(lim
4/x

−
π→

 

 
E12)  Evaluate the following limits 

  i)  )xtanx(seclim
2/x

−
−

π→

 

  ii) 







−

−
→ xsin

1

x

1
lim

0x

 

 
E13) Evaluate the following limits.  In each case, you will have to first identify 

the type of indeterminate form, and then decide upon the procedure. 
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  i)  x/1

0x

)x1(lim +
+

→

  

  ii)  
2

x/1

0x

)x(coslim
+

→

 

  iii)  x

0x

xlim
+

→

 

  iv)  x2sin

0x

)x(tanlim
+

→

 

  v)  x2sin

)2/(x

)x(tanlim
+

π→

  

 

E14)  Show that e)x1(lim
x/1

0x

=+
→

. 

 

 
That brings us to the end of this unit.  Let us summarise all that we have learnt 
in it. 
 

12.6 SUMMARY  
 
In this unit we have, covered the following points:   
 

1. A limit of the form 
)x(g

)x(f
lim

ax→

where )x(flim
ax→

and )x(glim
ax→

are either both 

0 or both ∞ , such limits are called 
0

0
indeterminate forms and 

∞

∞
indeterminate forms respectively. 

 

2. The other indeterminate forms are ,.0,,0 ∞∞−∞
∞ etc. 

 
3. A rule to evaluate such indeterminate forms known as L’Hôpital’s rule, 

which relates the evaluation to a computation of ,
)x(g

)x(f
lim

ax ′

′

→

if limit exists. 

 
4. We described how to reduce indeterminate forms of the types 

∞∞

∞−∞ 0,1,  and 0
0 , to the forms 

0

0
 or 

∞

∞
. 

 

12.9  SOLUTIONS/ANSWERS  
 

E1) i) 
∞

∞
.   

 

 ii) 
0

0
   

  
 iii) ∞−∞    
  

 iv) 
0

0
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 v) −∞×0 . 
 

E2) i) 0
1

11

xcos

xcos1
lim

xsin

xsinx
lim

0x0x
=

−
=

−
=

−

→→

. 

 

  ii) 
5x6x

1x
lim

2

4

1x +−

−

→

 

  1
4

4

5x

1xxx
lim

23

1x
−=

−

=

−

+++
=

→

. 

 
 iii) By L’Hôpital’s rule  

  
2

0x
2

2

0x xcosx2

xcosxsin2
lim

xsin

xcos1
lim

→→

=
−

 

  Now, 1
xcos

xcos
lim

x

xsin
lim

xcosx2

xcosxsin2
lim

2
0x0x

2
0x

==
→→→

 

  Therefore, the required limit is 1. 
 
 iv) π/7  
 

 v) 
nm

n

m
−

α







 

 

 vi) 1 
 

 vii) 1−  
 

 viii) 2/3ln  
 

 ix) 2  
 
 x) 8/1  

 

E3) i) 01lnxlnlim
1x

==
+

→

and 0)1x(lim
1x

=−
+

→

 

  According to L’Hôpital’s rule,  

  
1

x/1
lim

1x

xln
lim

1x1x
++

→→

=

−

 

   1
x

1
lim

1x

==
+

→

 

 

 ii) ,
xcos1

xsin
lim
x −

−
π→

 

Here 0xsin → as −

π→x but )xcos1( − does not approach 0 as 
−

π→x .  

0
)1(1

0

xcos1

xsin
lim
x

=

−−

=

−
−

π→

. 

 

E4) i) The 










−

∞→

x

1
sin

x
lim

3

4

x
is in 

0

0
 form. Therefore, L’Hôpital’s rule can be  
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  applied. 

















−

−

=

−

→∞

−

→∞

x

1
cos

x

1

x
3

4

lim
)x/1sin(

x
lim

2

3/7

x

3/4

x
 

           
( )x/1cos

x
3

4

lim

3/1

x

−

∞→

=  

           0
1

0
== . 

  
 ii) 1  
  
 iii) 1  
  
 iv) 1 
 

E5) i) 1 
 

 ii) 2  
 

 iii) The given limit is of 
0

0
form. Thus, we can apply L’Hôpital’s rule.  








 −
=

−

→→ xsin

x

x

xcos1
lim

xsinx

xcos1
lim

2

2

4

2

0x
22

2

0x

 

  
2

1

x

xsin

2

1
lim

x4

xsinx2
lim

x

xcos1
lim

2

2

0x
3

2

0x
4

2

0x
=








==

−

→→→

 

  
2

1

xsin

x
lim.

x

xcos1
lim

xsinx

xcos1
lim

2

2

0x
4

2

0x
22

2

0x
=







−
=

−
∴

→→→

 

  A direct application of L’Hôpital’s rule will also yield the result. 
 

 iv) The given limit is of 
0

0
form. Thus, we can apply L’Hôpital’s rule. 








 −
=

−

→→ xtan

x
.

x

xxtan
lim

xtanx

xxtan
lim

2

2

4

22

0x
22

22

0x

 

  
3

2

0x
4

22

0x x4

x2xsecxtan2
lim

x

xxtan
lim

−
=

−

→→

 

           
3

1

x6

1xtanxsec2xsec
lim

2

224

0x
=

−+
=

→

   

  For, 

  
x12

xtanxsec3
lim

x6

1xsec
lim

4

0x
2

4

0x →→

=
−

 

            
3

1

x

xtan
lim.xsec

3

1
lim

0x

4

0x
==

→→

, 

  and 
3

1

x6

xtanxsec2
lim

2

22

0x
=

→

 

  

 v) 
2

9
−  



 

 

32

Block 4                                                   Applications of Differential Calculus 

 

 vi) 
4

1
 

 

 vii) 2 . 
 

E6) i) ,1k −= and the limit is 
3

8
. 

  

 ii) ,1k −= and the limit is 0. 

 

E7) 

x

xtan
5

x

1
sinx

lim
xtan5

x/1sinx
lim

0x

2

0x →→

=  

   

x

xtan
lim5

x

1
sinxlim

0x

0x

→

→

=   

   
5

0
= , since 1

x

1
sin ≤ , and since 1

x

xtan
lim

0x
=

→

 

   0=  

L’Hôpital’s rule cannot be applied as
xsec5

x

1
cos

x

1
sinx2

lim
2

0x

−

→

 does not exist, 

because 







−

→ x

1
cos

x

1
sinx2lim

0x
 does not exist. 

 

E8) i) 0
e

a!m
lim

e

axa
lim

x

m

x
x

0

m

m

x
==

++

∞→∞→

L
. 

 
 ii) ∞  
 
 iii) By L’Hôpital’s rule  

  
xsec

x3sec3
lim

xtan

x3tan
lim

2

2

2/x2/x π→π→

=  

  which is again 
∞

∞
 form.  It can be handled more easily by 

converting it into 
0

0
 form. 

  
x3cos

xcos3
lim

xsec

x3sec3
lim

2

2

2/x
2

2

2/x π→π→

=  

     
x3sinx3cos6

xsinxcos6
lim

2/x −

−
=

π→

 

     
x6sin

x2sin
lim

2/x π→

=  

     
3

1

x6cos6

x2cos2
lim

2/x
==

π→
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 iv) 
2

1
 

 

 v) 
3

2
 

 

E9) 1
1

1

x

xcos
1

x

xsin
1

lim
xcosx

xsinx
lim

xx
==

+

+

=

+

+

∞→∞→

. 

 Since, xsin  and xcos  are bounded functions, and 0
x

1
→  as ∞→x . 

 You may note that the given limit is an 
∞

∞
form. Therefore, L’Hôpital’s 

rule can be applied. But, when we take derivatives after applying            

L’ Hôpital’s rule, we get 
xsin1

xcos1

−

+
and that does not have a limit.  

 

E10) i) 
1

x

xsin
1

lim
x

xsinx
lim

2

2

x
2

22

x

−

=
−

∞→∞→

   

     1= , since 2
xsin  is bounded, and 0

x

1
2

→  as ∞→x  

 
 ii) 1. L’Hôpital’s rule cannot be applied by the argument similar to the 

one in i). 
 

 iii) 0. L’Hôpital’s rule is not applicable as 
)x(g

)x(f
 is not in an 

indeterminate form as ∞→x . 

 

 iv) 0
x

xcos

x

xsin
lim

2
x

=+
∞→

. 

  L’Hôpital’s rule is not applicable since )xcosxsinx(lim
x

+
∞→

 does not 

exist. 
 

E11) i) This is ∞⋅0 Form is  

  Therefore, 
x/1

x/1sin
lim

x

1
sinxlim

xx ∞→∞→

=  

                 1
x

1
coslim

x
==

∞→

 

 
 ii) The factor x has a limit of 0 and the factor xln has a limit of ∞− , 

so the stated problem is an indeterminate form of type ∞⋅0 . There 

are two possible approaches: we can rewrite the limit as 
x/1

xln
lim

0x
+

→

 

or 
xln/1

x
lim

0x
+

→

the first being an indeterminate form of type 
∞

∞
and 

the second an indeterminate form of type 0/0 . However, the first 
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form is the preferred initial choice because the derivative of x/1 is 

less complicated than the derivative of xln/1 . That choice yields 

0)x(lim
x/1

x/1
lim

x/1

xln
limxlnxlim

0x
2

0x0x0x

=−=

−

==
++++

→→→→

. 

 

 iii) The stated problem is an indeterminate form of type ∞⋅0 . We will 

convert it to an indeterminate form of type 0/0 : 

  
x2cos

xtan1
lim

x2sec/1

xtan1
limx2sec)xtan1(lim

4/x4/x4/x

−
=

−
=−

π→π→π→

 

       1
2

2

x2sin2

xsec
lim

2

4/x
=

−

−
=

−

−
=

π→

  

 

E12) i) 
( )

)xtanx(seclim
2/x

−
−

π→

 

  
( )









−=

−

π→ xcos

xsin

xcos

1
lim

2/x

 

  
( )








 −
=

−

π→ xcos

xsin1
lim

2/x

 

  
( )










−

−
=

−

π→ xsin

xcos
lim

2/x

 

  0=  

 The use of L’Hôpital’s rule is justified because 0xsin1 →− and 

0xcos → as ( )
−

π→ 2/x . 

 

 ii) As it stands, this has the form ∞−∞ , because +∞→

x

1
and 

+∞→

xsin

1
as 0x → from the right. However, using a little algebra, 

we find 

   
xsinx

xxsin
lim

xsin

1

x

1
lim

0x0x

−
=








−

++
→→

 

This limit is now of the form 0/0 , so the hypothesis of L’Hôpital’s 

rule are satisfied. Thus, 

   
xcosxxsin

1xcos
lim

xsinx

xxsin
lim

0x0x +

−
=

−

++
→→

   

Again, the form 
0

0
, therefore 

xcos)xsin(xxcos

xsin
lim

xsinx

xxsin
lim

0x0x +−+

−
=

−

++
→→

 

          0
2

0
== .  

 

E13) i) 
∞

1 .  If x/1
)x1(y += , then 

x

)x1ln(
yln

+
=  is in the 

0

0
 form  

  1
x1

1
lim

x

)x1ln(
limylnlim

0x0x0x

=

+

=
+

=∴
+++

→→→

. 
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  eeylim)x1(lim
1

0x

x/1

0x

===+∴
++

→→

. 

 

 ii) 
∞

1 .  If 
2

x/1

x

xcosln
yln,xcosy

2

== , which is in the 
0

0
 form as 

0x → . 

  
2

1

x2

xtan
lim

x

xcosln
limylnlim

0x
2

0x0x
−=

−
==∴

→→→

 

  
e

1
e)x(coslim

2/1x/1

0x

2

==∴
−

→

. 

 

 iii) 0
0 form,  If x

xy = , then xlnxyln = , which is −∞⋅0  form as 
+

→ 0x . 

  
x/1

xln
limxlnxlimylnlim

0x0x0x
+++

→→→

==∴  

       
2

0x x/1

x/1
lim

−

=
+

→

 

       0xlim
0x

=−=
+

→

. 

  1exlim
0x

0x

==∴
+

→

. 

 

 iv) 1)x(tanlim.0
x2sin

0x

0
=

+
→

. 

 

 v) 
0

∞ .  If xtanlnx2sinyln,)x(tany
x2sin

==  

  
x2cosec

xtanln
limylnlim

2/x2/x
−−

π→π→

=∴  

       
x2cotx2cosec2

xsec
xtan

1

lim

2

2/x
−

π→

=  

       

x2sin

x2cos2

x2sin

2

lim

2

2/x −
=

−
π→

 

       0
x2cos

x2sin
lim

2/x

=
−

=
−

π→

 

  1e)x(tanlim
0x2sin

2/x

==∴
−

π→

. 

 

E14) We begin by introducing a dependent variable x/1
)x1(y += and taking 

the natural logarithm of both sides: 

  
x

)x1ln(
)x1ln(

x

1
)x1ln(yln

x/1 +
=+=+=  

 Thus, 
x

)x1ln(
limylnlim

0x0x

+
=

→→

which is an indeterminate form of type 
0

0
,  
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 so L’Hôpital’s rule 1
1

)x1/(1
lim

x

)x1ln(
limylnlim

0x0x0x

=
+

=
+

=
→→→

. Since we 

have shown that 1yln → as 0x → , the continuity of the exponential 

function implies that 1yln
ee → as ,0x → and this implies that ey → as 

0x → . Thus, e)x1(lim
x/1

0x

=+
→

.  
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UNIT 13                                                        
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13.1 Introduction               37        
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13.2 Relative Extrema              38 

13.3 Absolute Extrema              43 

13.4 Increasing and Decreasing Functions           52 
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13.6 Second-Derivative Test             57 

13.7 Mean Value Theorems             60 

Rolle’s Theorem 

 Lagrange’s Mean Value Theorem 

13.8 Summary               70       

13.9 Solutions/Answers              71 
            

13.1 INTRODUCTION 
 
One of the principal goals of calculus is to investigate the behaviour of various 
functions. As a part of the investigation, we will be laying the groundwork for 
solving a large class of problems that involve finding the maximum or 
minimum value of a function, if one exists. Such problems are called 
optimisation problems. For instance, honeycombs have hexagonal cells 
because this shape enables bees to store a fixed amount of honey by using 
the minimum of wax for sealing, the drops of oil on the surface of water 
coalesce so as to minimise the total surface tension, a drop of water is 
spherical due to minimum surface tension. 
 
In Secs. 13.2 and 13.3 we shall discuss an important technique involved in 
solving the problem of maximising or minimising various functions.  This 
technique, as you will soon see, involves the use of derivatives. In Sec. 13.4, 
we apply the derivatives to find if a function is increasing, or decreasing, or 
neither in a given interval.  
 
In Secs. 13.5 and 13.6, we will see other applications of derivatives using the  
first derivative test and second derivative test respectively. In Sec. 13.7, we 
shall discuss Rolle’s theorem and Lagrange’s mean value theorem, which 
have a very important role in your study of calculus.  
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Now we shall list the objectives of this unit. After going through the unit, please 
read this list again and make sure that you have achieved the objectives. 
 

Objectives 

After going through this unit, you should be able to: 

• obtain the relative and absolute maximum and minimum values of some 
functions, if they exist; 

• apply maxima and minima in real life situations; 

• state and apply Rolle’s theorem and Lagrange’s mean value theorem; 

• find whether a function is monotonic or not using its derivatives. 
 

13.2 RELATIVE EXTREMA 
 
In this section, we will discuss methods for finding the high and the low points 

on the graph of a function. If we imagine the graph of a function f to be a two-
dimensional mountain range with hills and valleys, then the tops of the hills are 
called relative maxima, and the bottoms of the valleys are called relative 
minima. Relative maxima and relative minima are the high and low points 
respectively in their immediate vicinity as shown in Fig. 1. Maxima and minima 
are collectively known as extrema, which is the plural of extremum.   

Fig. 1: Hills and Valleys. 

The extrema of a continous function occur either at endpoints of the interval or 

at points where the graph has a “peak” or a “valley” (point where the graph is 

higher or lower than all nearby points). For example, the function f in Fig. 2 (a) 

and Fig. 2 (b) has “peaks” at R,Q and S and “valleys” at P and T . Such 

peaks and valleys are what we call relative extrema.  

 
(a)          (b) 

Fig. 2: Peaks and valleys shown in graphs of functions. 

Maxima and minima 
are the respective 
plurals of maximum 
and minimum. 
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So, let us formally define the terms we have been using in the following 
definitions:    
 

Definition: A function f is said to have a relative maximum at a point 
0

x if 

)x(f)x(f
0

≥ for all x in an open interval containing 
0

x . Similarly, f is said to 

have a relative minimum at 
0

x if )x(f)x(f
0

≤ for all x in an open interval 

containing 
0

x . Relative maximum and relative minimum are called relative 

extremum. 
 
Next, we will formulate a procedure for finding relative extrema. By looking at 

Fig. 2 (a), we see that there are horizontal tangents at Q,P and R , which 

means that the derivative of the function is zero at Q,P and R , while in Fig. 2 

(b), the derivative does not exist at the point P . This suggests that the relative 
extrema of f occur either where the derivative is zero or where the derivative 

does not exist. The point at which 0f =′ or f ′ does not exist, has a special 
name, critical point, which we define in the following definition:  
 

Definition: If f is defined at 
0

x and either 0)x(f
0

=′ or )x(f
0

′ does not exist, 

then the number 
0

x is called a critical number of ,f and the point 

))x(f,x(P
00

on the graph of f is called a critical point. 

 

You may note that if )x(f
0

is not defined, then 
0

x cannot be a critical number.  

 
Now, let us understand this in the following example.  
 

Example 1: Find the critical points for the function f , defined by 

23x21x24x5)x(f
23

+−−= . 

Solution: Let ,23x21x24x5)x(f
23

+−−= then 21x48x15)x(f
2

−−=′ is 

defined for all values of x .  

Now, 0)x(f =′ gives 021x48x15
2

=−−  

0)1x3()7x5(3 =+−⇒  

On solving it, we get 
3

1
,

5

7
x −= , which are the critical numbers. 

Accordingly, 
25

1003

5

7
f −=








and 

27

733

3

1
f =








−  

Therefore, the critical points are 






 −

25

1003
,

5

7
 and 








−

27

733
,

3

1
. 

*** 

Example 2: Find the critical points of the function f defined by 
5x

e
)x(f

x2

−

= . 

Solution: Note that f is defined for R except at 5x = . 

Here, 
2

x2

2

x2x2

)5x(

)11x2(e

)5x(

)1(ee)5x(2
)x(f

−

−
=

−

−−
=′  [Note that 5x ≠ .] 

The derivative is not defined at 5x = and f is not defined at 5x = either, so 

5x = is not a critical number.  

When ,0)x(f =′ it gives 0
)5x(

)11x2(e
2

x2

=

−

−
, which gives

2

11
x = , which is the only  
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critical number because 0e
x2

> and cannot be zero. Therefore, the critical 

point is ,
2

11
f,

2

11
















that is 







 11
e2,

2

11
. 

*** 
 
Example 3: Find the critical numbers and the critical points for the function 

f defined by )1x()2x()x(f
2

+−= . Also, show these points on the graph of f . 

 
Solution: Given function f is a polynomial function and we know that it is 
continuous and its derivative exists for all x . Thus, we find the critical numbers 

by using the equation 0)x(f =′ . We obtain 

 )1x()1()2x(2)1()2x()x(f
2

+−+−=′  

 )]1x(2)2x[()2x( ++−−=  

 )2x(x3 −=  

The critical numbers are 2,0x = . To find the critical points, we need to find 

the y -coordinate for each critical number. 

 4)10()20()0(f
2

=+−=  

 0)12()22()2(f
2

=+−=  

Thus, the critical points are )4,0( and )0,2( . The graph of 

)1x()2x()x(f
2

+−= is shown in Fig. 3, in which P and Q are the critical 

points. 

 
 

Fig. 3: Graph of f . 
 
You may observe how the relative extrema occur at the critical points. You can 
see in Fig. 3 that the relative extrema occur only at points on a graph where 
there is a horizontal tangent line.  

*** 
 
In the examples above, you have found the critical points. In the following 
theorem, you will see how critical numbers are used to find relative extrema. 
 

Theorem 1(Critical number theorem): If a continuous function f has a 

relative extremum at a point 
0

x in its domain, then 
0

x must be a critical 

number of f . 
We are not giving the proof of the theorem here, but let us look at an 
application.  
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Now, Theorem 1 states that a relative extremum of a continuous function 

f can occur only at a critical number, but it does not say that a relative 
extremum must occur at each critical number.  
 

For example, if ,x)x(f
3

= then 2
x3)x(f =′ and 0)0(f =′ , so 0 is a critical 

number. But there is no relative extremum at 0x
0

= on the graph of f because 

the graph is rising for 0x < and also for 0x > , as shown in Fig. 4. Thus, the 

graph of 3
x)x(f = has no relative extremum at 0x

0
= even though 0)0(f =′ .  

 

 

Fig. 4: Graph of 
3

xy = . 

 
Similarly, it is also quite possible for a continuous function g to have no 

relative extremum at a point 
0

x where )x(g
0

′ does not exist. Fig. 5 shows the 

graph of a function, for which tangent at the point P does not exist. Therefore, 

although )1(g −′ does not exist, no relative extremum occurs at 1x
0

−= .  

 
 

 
 

Fig. 5 

 
So, we can say that the critical number theorem is only a necessary condition. 
Let us find relative extrema in the following example:  
 
Example 4: Find the relative maxima or minima, if any, for the function 

f defined by 1x)x(f −= on the interval [2,2] − .  
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Solution: Fig. 6 shows the graph of f . If ,1x > then 1x)x(f −= and 1)x(f =′ . 

However, if 1x < , then )1x()x(f −−= and 1)x(f −=′ . Therefore, neither  

0)x(f =′ nor )x(f ′ does not exist on [2,2]− if 1x <  and 1x > . Now, we need 

to check what happens at 1x = .  

 
x

)11(f)1x1(f
lim)1(f

0x ∆

−−−∆+
=′

→∆

 

  
x

0x
lim

0x ∆

−∆

=
→∆

 

  
x

x
lim

0x ∆

∆

=
→∆

 

 

Fig. 6: Graph of f. 

 
We consider the left hand limit and right hand limit: 

 1
x

x
lim

x

x
lim

0x0x

=

∆

∆
=

∆

∆

++
→∆→∆

 

and  

 1
x

x
lim

x

x
lim

0x0x

−=

∆

∆−
=

∆

∆

−−
→∆→∆

 

Since these limits are not equal, therefore, the derivative of f  does not exist at 

1x = . Since, )1(f is defined and [2,2]x)x(f)1(f −∈∀≤ , therefore, 1 is the 

only critical number, at which f has relative minima. Fig. 6 also verifies this.  

*** 
 
Now, try to solve the following exercise:  
 
 

E1) Find the relative maxima and minima for f , where f is defined as 
follows:  

 i) 2)x(f = for all R∈x   ii) x)x(f = for all R∈x  

 iii) x)x(f = for 4x0 <<   iv) 2
x)x(f = for all R∈x  

 v) x)x(f = for all ]25,9[x ∈ . vi) 3x)x(f −= on ]4,4[−  

 vii) 
x

xln
)x(f = on ]3,1[   viii) x

ex)x(f
−

= on ]2,0[  
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 ix) xcosxsin)x(f
2

+= on 




 π

2
,0  x) x)x(f = on ]1,1[−  

 

 
So far, we were concerned with the values of the function only in an open 
interval around the extreme point. Thus, the concept of relative maxima-
minima is essentially a local phenomenon. What happens globally, or 
elsewhere? Let us discuss that now in the following section:   
 

13.3  ABSOLUTE EXTREMA 
 

So far, we have discussed relative extrema. In Fig. 1, there exist the highest 
peaks as well as deepest valley. If we talk about finding the maximum and 
minimum values of a function, we find the highest point and the lowest point. 
These highest and lowest values of the function are absolute maximum and 
absolute minimum, respectively, and are given in the following definition:  
 

Definition: If f is a function defined on an interval I that contains the number 

0
x , then )x(f

0
is an absolute maximum of f on the interval I if 

)x(f)x(f
0

≥ for all x in I . Similarly )x(f
0

is an absolute minimum of f on I if 

)x(f)x(f
0

≤ for all x in I .  

 
Sometimes we drop the word ‘absolute’ and just use the terms maximum 

and/or minimum. Together, the absolute maximum and minimum of f on the 
interval I are called the extreme values, or the absolute extrema, of f on I . 
An absolute maximum or absolute minimum is sometimes called global 
maximum or global minimum. A function does not necessarily have extreme 

values on a given interval. For instance, the continuous function x)x(f = has 

neither a maximum nor a minimum on the open interval [1,1]− , as shown in 

Fig. 7. This is because there exists no 
0

x for which either )x(f)x(f
0

≥ or 

)x(f)x(f
0

≤ for all [1,1]x −∈ . 

 

 
Fig. 7: Graph of x)x(f = on [1,1]− . 

 

The function f defined by 




=−

≠−

=

0xfor25

0xforx
)x(f

2

, which is discontinuous at 

0x = , has a minimum in the closed interval ]5,5[− , but no maximum, as 

shown in Fig. 8.  
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Fig. 8 

 
This graph also illustrates the fact that a function may assume an absolute 
extremum at more than one point. In this case, the minimum occurs at the 

points ),25,0(),25,5( −−− and )25,5( − . If a function f is continuous and the 

interval I is closed and bounded, it can be shown that both an absolute 
maximum and an absolute minimum must occur. This result plays an 
important role in finding maxima and minima and is called the extreme value 
theorem, and is given as follows: 
 
Theorem 2 (The extreme value theorem): A continuous function f has both 

an absolute maximum and an absolute minimum on any closed interval ]b,a[ . 

We are not proving this theorem, but giving a geometrical interpretation, which 
is shown in Fig. 9. If a continuous function f has no peaks it would be 
increasing throughout or decreasing throughout its domain. In this case, the 

maximum and minimum occur at the endpoints of ]b,a[ . If it does have peaks, 

the maximum would correspond to the highest peak or to an endpoint. 
 

 
Fig. 9: Peaks and depths of a continuous function in a closed interval. 

 

If f is not continuous in the closed interval or the interval is not closed, you 
cannot conclude that f has both a largest and smallest value. Sometimes, 
there are extreme values even when the conditions of the theorem are not 
satisfied, but if the conditions hold, the extreme values exist.  
 
You may note that the maximum of a function occurs at the highest point on its 
graph and the minimum occurs at the lowest point. For example, consider the 

function f  whose graph is shown in Fig. 10.  
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Fig. 10: A continuous function on ]b,a[ . 

 
The highest point on the graph occurs at the left endpoint that is at P , and the 

lowest point at Q . Thus, the absolute maximum is )a(f , and the absolute 

minimum is )x(f
1

. Here, the existence of maxima and minima as required by 

the extreme value theorem can be seen clearly , but there are times when it 
seems that the extreme value theorem fails. Let us illustrate another instance, 
where you will see that any of the conditions of the extreme value theorem is 
not satisfied.  
 

Example 5: Verify the extreme value theorem for the function f  defined 

by




≤≤

<≤

=

4x2if,2

2x0if,x3
)x(f  

Solution: From the graph of the function f shown in Fig. 11, you can see that 

the function f has no maximum. It takes on all values less than, but arbitrarily 

close to 6 . However, it never reaches the value 6 . This function does not 

contradict the extreme value theorem because f is not continuous on ]4,0[ .  

 

Fig. 11: Graph of f . 

*** 
 

Example 6: Verify the extreme value theorem for the function f , defined by 
2

x)x(f = on 5x0 ≤< . 



 

 

46

Block 4                                                   Applications of Differential Calculus 

Solution: The graph of f  given in Fig. 12 shows that the values of the 

function f become arbitrarily small as x approaches 0 . )x(f never reaches 

the value 0 . So, f has no minimum. The function f is continuous on the 

interval ],5,0] but the extreme value theorem is not contradicted as the interval 

is closed only at one end.  

 

Fig. 12: Graph of 
2

x on ]5,0] . 

*** 

 
Now, we are giving a procedure to find the absolute extrema of a continuous 

function f on ]b,a[ in the following steps: 

• Find all the critical numbers of f on ]b,a[  using 0)x(f =′ or )x(f ′ does not 

exist. 

• Evaluate f at the critical numbers as well as at the end points of the 
interval. 

• Of these values, the largest value of f is the absolute maximum of f on 

]b,a[ , and the smallest value of f is the absolute minimum of f on ]b,a[ . 

 
Let us understand this with the help of the following examples. 
 
Example 7: Find the absolute extrema of the function f defined by 

5x8x)x(f
24

+−= on ]3,3[− . Show these values on the graph of f . 

Solution: Here, f is a polynomial function, it is continuous on the closed 

interval ]3,3[− . Theorem 2 states that there must be an absolute maximum 

and an absolute minimum on the given closed interval. 
For this, we differentiate it and find the critical numbers.  

 )x2(8x4)x(f
3

−=′ )4x(x4
2

−= )2x()2x(x4 +−=  

Thus, the critical numbers are 2,0x = and 2− . 

Now, let us find the values of the function at end points of the interval and at 

the critical numbers. We get 14)3(f = , 14)3(f =− , 5)0(f = , 11)2(f −= , and 

11)2(f −=− . 

 

We can say that the absolute maximum of f occurs at 3x =  and 3x −= . The 

absolute maximum value of f  is 14)3(f)3(f =−= . The absolute minimum of 

f occurs at 2x = and 2x −= . Thus, the absolute minimum value of f is 

11)2(f)2(f −=−= . The graph of f is shown in Fig. 13, which verifies that 

there are four absolute extrema. 
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Fig. 13: Graph of f . 

*** 
 

In the following example, we shall find the absolute extrema when the 
derivative does not exist.  
 

Example 8: Find the absolute extrema of the function f  defined by 

)x35(x2)x(f
3/2

−= on the interval ]1,1[− . Show these values on the graph of 

f .  

Solution: To find the derivative, we rewrite the given function as 

3/53/2
x6x10)x(f −= , then )x32(x

3

10
x10x

3

20
)x(f

3/13/23/1
−=−=′

−− . 

We find critical numbers by solving 0)x(f =′ . This gives 3/2x = .  

Here, )0(f exists, you may note that )0(f ′ does not exist. Thus, the critical 

numbers are 0x = and 3/2x = . 

  
Let us now find the values of the function at the endpoints and at the critical 

numbers, we get 16)1(f =− , 4)1(f = , 0)0(f = , 579.432)3/2(f
3/13/5

≈⋅= . 

It is clear that the absolute maximum of f occurs at 1x −= and the maximum 

value of f is 16)1(f =− . The absolute minimum of f occurs at 0x = and the 

minimum value of f  is 0)0(f = . The graph of f , shown in Fig. 14, verifies 

these values. 
 

 
Fig. 14: Graph of f . 

*** 
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In the next example, we shall find the absolute extrema of a trigonometric 
function.  
 

Example 9: Find the absolute extrema of the function f defined by 

)xsinx(cos
2

1
xcos2x)x(f

2
+−−−= on the interval ],0[ π . 

Solution: To find the critical numbers, we find )x(f ′ . 

 )xcosxsinxcos2(
2

1
xsin21)x(f −++−=′  

  )xcosxsinxcos2xsin42(
2

1
−++−=  

  )]2x(cos)2x(cos)x(sin2[
2

1
+−+=  

  )]1xsin2()2x[(cos
2

1
−+=  

Since, the factor )2x(cos + is never zero on ],0[ π , therefore, 0)x(f =′  when 

01xsin2 =− , which gives 
6

x
π

= or 
6

5π
in ],0[ π . 

Let us evaluate the function at the endpoints and the critical numbers. We get 

2

5
)0(f

−
= , 641.1

2

3
)(f −≈+π−=π , 881.2)6/(f −≈π and 511.1

6

5
f −≈







 π
. 

The absolute maximum of f is at 
6

5
x

π
= and the absolute minimum of f is at 

6
x

π
= . The maximum and minimum values of f are 511.1− and ,881.2−  

respectively. 
*** 

 

Now, try the following exercises. 
 
 

E2) Find the critical numbers of the following:  

 i) )x6(x2)x(f −= on R . 

 ii) 3
x)x(f = on 




−
1,

2

1
 

 iii) 
x

xln
)x(f = on ]3,1[  

 iv) xcosxsin)x(f
2

+= on 




 π

2
,0  

 
E3) Find the critical points, if they exist, for the functions given in E2). 
 

E4)   Find the absolute extrema of each of the functions f defined as follows:  

 i) ]4,4[x)3x()5x()x(f −∈∀−−=   

 ii) ]10,10[x7x5x13x)x(f
23

−∈∀+++=  

 iii) R∈∀+= x3xsin)x(f  

 iv) ]1,1[xx2)x(f −∈∀=  
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 v) ]2,2[x2x)x(f −∈∀+=  

 vi) ]5,5[x1xx)x(f −∈∀−+=  

 vii) 0x
x

1
x)x(f >∀+=   

 

 
In our next few examples, we shall apply some maximisation or minimisation 
in real life situtaitons.  
 
Example 10: A rectangular playground is to be fenced. What is the maximum 
area for this playground if it is to be fitted into a right-triangular plot having 
perpendicular sides 8m and 15m? 

Solution: Fig. 15 shows a right triangular plot with perpendicular sides 8m and 
15m. Let x and y denote the length and width of the inscribed rectangular 

playground. The area of the rectangle is, xyA = . 

 

Fig. 15: Area of a rectangle. 

 

The function A is of two variables and the method we discussed here deals 
with the functions of one variable. Therefore, first we must express A as a 
function of a single variable. To do this, we need to substitute either x in terms 
of y or y in terms of x with the given conditions of the right-triangular plot. 

Since, PQR∆ is similar to ,STR∆ therefore, the corresponding sides of these 

triangles are proportional. Thus, we have 
15

x

8

y8
=

−
, which gives 

15

x8
8y −=  

Therefore, area A can be rewritten as 
2

x
15

8
x8x

15

8
8x)x(A −=








−=  

The domain of the function A is 15x0 ≤≤ . The critical numbers for A are the 

values of x such that 0)x(A =′ (since )x(A′ exists for all x ). Since,  

,x
15

16
8)x(A −=′  therefore, the only critical number is 

2

15
x = . Now, let us 

evaluate )x(A at the endpoints and the critical number, we get 

,0)15(A = ,0)0(A = 30
2

15
A =








 

The area is maximum when ,m
2

15
x = . This gives m4

2

15

15

8
8y =×−= . 
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Thus, the largest rectangular playground that can be built in the triangular plot 

is a rectangle with dimensions m
2

15
 and m4 along the sides m15 and 

m8 respectively. The maximum area of the rectangular playground is 2
m30 . 

*** 
 

Example 11: An open-topped cuboidal box is to be made out of a square 
sheet of tin, with each side a cm. For this, squares out of each corner of the 
sheet are to be cut and then the edges of the sheet are bent upward to form 
the sides of the box. What should be the height of the box, so that the volume 
of the box is maximum?  

Solution:  Fig. 16 shows the square sheet and the corners cut from it. Let the 
sides of the squares to be cut on corners be x cm. The box will be x cm deep, 

)x2a( − cm long, and )x2a( − cm wide. The volume of the box 
3

cm)x2a()x2a(x)x(V −−= and this is the quantity to be maximized. To find 

the domain, we note that the dimensions must all be non-negative; therefore, 

0x2a,0x ≥−≥ (or )2/ax ≤ . This implies that the domain of the function V  

is 






2

a
,0 . 

 
Fig. 16: Square of side a . 

 

To find the critical numbers (the derivative is defined everywhere in the 
domain), we find values for which the derivative is 0 . 

 

Here, 6/a,2/ax0)x4x2a()x2a()x(V =⇒=−−−=′ . Evaluating )x(V at 

the critical numbers and the endpoints, we get 

27

a2

6

a
V,0)2/a(V,0)0(V

3

=







== . 

Thus, the volume of the box is maximum when 
6

a
x = . Such a box has 

dimensions 
6

a
,

3

a2
,

3

a2
. Hence, the height of the box will be 

6

a
cm, so that the 

volume of the box is maximum. 
*** 

 

You will note in Example 11, that we did not have to test whether the critical 
point was a maximum or a minimum, but knew that it was a maximum 

because the continuous function V is non-negative on the interval ]2/a,0[ and 

is zero at the endpoints. Since, there is only one critical number 
6

a
x = in 
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between, it must have the maximum. Similar reasoning can be used in many 
examples.  
 
In the following example, we will see how we can maximize the illumination by 
adjusting the height of a lamp just above the center of a circular table. 
 
Example 12: A lamp with adjustable height hangs directly above the center of 

a circular table of radius 1m. The illumination I at the edge of the table to be 

directly proportional to the cosine of the angle θ and inversely proportional to 

the square of the distance ,d where θ and d are as shown in Fig. 17. How 

close to the table should the lamp be lowered to maximise the illumination at 
the edge of the table?  

 
Fig. 17 

 

Solution: According to the question, illumination  θ∝ cosI and 
2

d

1
I ∝ ,so 

we have 
2

d

cosk
I

θ
= , where k is a (positive) constant of proportionality. Again 

here, I is a function of two variables θ and d . We will substitute d in terms of 

θ . From Fig. 17, 
d

1
sin =θ or 

θ

=

sin

1
d . 

Hence, 








θ

θ=
2

)sin/1(

1
coskI θθ=

2
sincosk , where θ may vary from 0 to 

2/π only. Hence, we need to find the absolute maximum of the function on 






 π

2
,0 . 

 

Let us now differentiate I w.r.t. θ ,  

)]sin(sin)cossin2([cosk)(I
2

θ−θ+θθθ=θ′  

 )sinsincos2(k
32
θ−θθ=  

 )sincos2(sink
22

θ−θθ=  

,0)(I =θ′ when, either 0sin =θ or 0sincos2
22

=θ−θ . If ,0sin =θ that means  

0=θ (since, )00sin = and if 0sincos2
22

=θ−θ , then 2tan
2

=θ  and 

2tan
1−

=θ , ignoring other value as θtan is positive in 




 π

2
,0 .  

The critical numbers are 0 and 2tan
1− . Evaluating )(I θ at the endpoints, and 

critical numbers we get  

''∝ is used as the 
sign of 
proportionality.  
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0)0(sin)0(cosk)0(I
2

== ,  

0
2

sin
2

cosk
2

I
2

=






 π








 π
=







 π
, )9553.0(I)2(tanI

1
≈

−  

                 )9553.0(cosk≈  )9553.0(sin
2

 

                              k3856.0≈ . 

Also, from Fig. 17, height
θ

=

tan

1
. 

Since, 2tan =θ when I is maximum, therefore, the  

height m7075.0
2

1

tan

1
≈=

θ

= . 

To maximise the illumination, the lamp should be placed about 

m7075.0 above the center of the table. 

*** 
Now, try the following exercises.  
 
 

E5) A manufacturer estimates that when x units of a particular item are 
produced each month, the total cost (in thousand rupees) will 

be 200x4x
8

1
)x(C

2
++=  and all the items can be sold at a price of 

x49)x(p −= rupee per item when 49x0 ≤≤ . Determine the selling 

price so that profit is maximum. 
 
E6) Consider an asset whose market price after t years from now is given 

by =)t(V  
t

e10000 . If the prevailing rate of interest is %8  per annum 

compounded, when should the asset be sold? 
 

E7) Let )t(C denote the concentration of a drug injected into the body 

intramuscularly in the blood at time t . In a study, it was observed that 

the concentration may be modelled by 

 0t;)ee(
ab

k
)t(C

btat
≥−

−

=
−− where b,a (with )ab > , and k are positive 

constants that depend on the drug. At what time does the largest 
concentration occur? What happens to the concentration as +∞→t ? 

 

So far, we have discussed the necessary condition for the existence of an 
extreme point.  We have also seen that the condition is not a sufficient one.  In 
the following section, we shall show how derivatives are used to find whether 
the function is increasing or decreasing.   
 

13.4  INCREASING AND DECREASING 
FUNCTIONS 

 

In this section, we shall see how information about the derivative f ′ can be 
used to determine the shape of the graph of f . We begin by showing how the 

sign of f ′ is related to whether the graph of f is rising or falling, that is, whether 
f  is increasing or decreasing which you have studied in Unit 6, but here the 
difference is that we are making use of derivatives to identify whether a 
function is monotonic or not.    
 

Let us begin with an example. Consider a population of a certain species as a 

function f of the time t (months) as shown in Fig. 18. From the graph shown in 
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Fig. 18, we can say that the population is increasing between 0t = and 24t = . 

If the graph represents a fuctions f , we shall say that f is increasing on the 

interval ]24,0[ . Similarly, we say that it is decreasing on the interval ]36,24[ . 

 
Fig. 18  

 

In Fig. 18, the curve between A and B has tangent lines with positive slopes 

and so 0)t(f >′ . But between B and C , the curve has tangent lines with 

negative slopes and so 0)t(f <′ . Thus, it appears that f increases when the 

derivative of f that is f ′ is positive and decreases when f ′ is negative. We can 

also say that the graph of a function f is rising when 0f >′ [see Fig. 19 (a)] 

and falling when 0f <′ [see Fig. 19 (b)]. 

 
(a)    Rising Graph   (b)   Falling Graph 

Fig. 19 

This leads to the following theorem:  
 

Theorem3:  Let f be differentiable on the open interval [b,a] . If 0)x(f >′ on 

[b,a] , then f is increasing on [b,a] . If 0)x(f <′ on [b,a] , then f is 

decreasing on [b,a] . 
 

We now apply this theorem to find whether a function is increasing or 
decreasing in the following examples: 
 

Example 13: Determine where the function f  defined by 

2x9x3x)x(f
23

+−+= is increasing and where it is decreasing. Also, 

compare the graphs of f and f ′ .  

Solution: Given that ,2x9x3x)x(f
23

+−+= we differentiate f w.r.t. x and 

get 

 )3x()1x(39x6x3)x(f
2

+−=−+=′  

To find whether f is increasing or decreasing, we have to find where 

0)x(f >′ and where 0)x(f <′ . This depends on the signs of the two factors of 

,f ′ namely, )1x( − and )3x( + . We divide the real line into intervals whose 
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endpoints are critical numbers 3− and 1 as shown in Fig. 20 (a). Then, in 

these intervals, we find the sign of f ′ and finally mark each interval as 
increasing or decreasing according to whether the derivative is positive or 

negative, respectively. This is shown in Fig. 20 (b). When 3x −< , both the 

factors in f ′ are negative, therefore, ,0f >′ and f is increasing. Similarly, when 

)1x(,1x3 −<<− is negative and )3x( + is positive, therefore, ,0f <′ and f is 

decreasing. Also, when ,1x > both the factors )1x( − and )3x( + are positive, 

therefore, f is increasing.  

 
(a)       (b) 

Fig. 20 

 

The graph of f and f ′ are shown in Fig. 21 (a) and Fig. 21(b) respectively. 

From the graph, it is clear that when 3x −< and when 1x > , the graph of f ′ is 

above the −x axis, and when ,1x3 <<− the graph of f ′ is below the x -axis. 

The critical numbers of f are where 0)x(f =′ that is, at 3x −= and 1x = , so 

they are the x -intercepts of the graph of f ′ .  

 
(a)  Graph of f     (b) Graph of f ′  

Fig. 21 

*** 

Now, try the following exercises: 
 

 

E8) Find where the function f defined by 5x12x4x3)x(f
234

+−−= is 

increasing and where it is decreasing. 
 

E9) Find the sub intervals on which f is increasing or decreasing.  

 i) xcosxsin)x(f += on ]2,0[ π  

 ii) xx2
ee)x(f

−

+= on R  

 iii) xlnxx)x(f
2

−−= on 
+

R   
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Going back to the extrema, you may recall that if f has a maximum or 

minimum at any point, then the point must be a critical number of f . But not 
every critical number gives rise to a maximum or minimum. So, is there a test 

that will tell us whether or not f has a maximum or minimum at a critical 
number? Let’s look into this in the following sections.  
 

13.5 THE FIRST DERIVATIVE TEST 
 
Every relative extremum is a critical point. However, as you saw in Sec.13.3,  
not every critical point of a continuous function is necessarily a relative 
extremum. Look at the graphs given in Fig. 22 (a), you can see that both the 
graphs have a maxima at A and B respectively. Now consider the derivative 
at these points after this. What do you notice? If the derivative is positive to the 
immediate left of a critical number and negative to its immediate right, the 
graph changes from increasing to decreasing and the critical point must be a 
relative maximum, as shown in Fig. 22 (a). If the derivative is negative to the 
immediate left of a critical number and positive to its immediate right, the 
graph changes from decreasing to increasing and the critical point is a relative 
minimum as shown in Fig. 22 (b) on the points C and D . However, if the sign 

of the derivative is the same on both immediate sides of the critical number, 
then it is neither a relative maximum nor a relative minimum as shown by 

points E and F in Fig. 22 (c).  
 

 
 (a)         (b)                  (c) 

 

Fig. 22: Three patterns of behaviour of f near a critical point. 
 

The following steps are done to apply the first derivative test to find relative 
extrema:  

1. First of all, find all the critical numbers of a continuous function f . That 

is, find all the numbers 
0

x such that )x(f
0

is defined and either 

0)x(f
0

=′ or )x(f
0

′ does not exist.  

2. Classify each critical point ))x(f,x(
00

as given in Table 1. 
 

Table 1 
 

Point Nature of the 
point 

Observation 

))x(f,x(
00

 Relative maximum 0)x(f >′ (graph rising) for all x in an 

open interval [x,a]
0

to the left of 
0

x , 

and 0)x(f <′ (graph falling) for all 

x in an open interval [b,x]
0

to the 

right of 
0

x . 
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))x(f,x(
00

 Relative minimum 0)x(f <′ (graph falling) for all x in an 

open interval [x,a]
0

to the left of 

0
x , and 0)x(f >′ (graph rising) for all 

x in an open interval [b,x]
0

to the 

right of 
0

x . 

))x(f,x(
00

 Not an extremum If the derivative )x(f ′ has the same 

sign for all x in open intervals 

[x,a]
0

and [b,x]
0

on each side of 

0
x .  

 
Suppose we apply this first-derivative test to the polynomial 

2x9x3x)x(f
23

+−−= . We find that the critical numbers of f are 3− and 1. 

Also, f is increasing when 3x −< and 1x > and decreasing when 1x3 <<− . 

The first-derivative test tells us that there is a relative maximum at 3− and a 

relative minimum at 1. To understand this let us solve few more examples. 
 

Example 14: Find all critical numbers of xsin2x)x(f −= for π≤≤ 2x0 , and 

determine whether each corresponds to a relative maximum, a relative 

minimum, or neither. Sketch the graph of f .  

Solution: Here, xsin2x)x(f −= , differentiating it w.r.t. x , we get 

xcos21)x(f −=′ , which exists for all ,x therefore, the critical number occurs 

when 0)x(f =′ . This gives 
2

1
xcos = . On solving, we find that the critical 

numbers for )x(f on the interval ]2,0[ π , these critical numbers are 
3

π
and 

3

5π
. 

Next, we examine the sign of )x(f ′ , which is given in Table 2. 

 
 Table 2 
 

Interval Sign of (x)f ′  Monotonicity of f  

3
x0

π
<<  

ive−  decreasing 

3

5
x

3

π
<<

π
 

ive+  increasing 

π<<
π

2x
3

5
 

ive−  decreasing 

 
According to the first-derivative test, we can say that the sign of f ′ is changing 

from –ive to +ive at ,
3

x
π

=  therefore, there is a relative minimum at 
3

x
π

= . 

Similarly, the sign of f ′ is changing from +ive to –ive at ,
3

5
x

π
= therefore, 

there is a relative maximum at 
3

5
x

π
= . The graph of f is shown in Fig. 23, 

which also verifies this.  
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Fig. 23: Graph of f . 

 
*** 

 
Now try the following exercises: 
 

 

E10) Find all possible relative extreme values of each of the following 
functions by applying the first derivative test. 

 i) 1x5x5x)x(f
345

−+−=  for all ]3,0[x ∈ . 

 ii) 15x24x4x8x2)x(f
234

+−−+=  for all R∈x  

 iii) )1x()1x()x(f
2

+−=  for all R∈x . 

 iv) x6x)x(f −= on ]6,0[  

 v) 
2

x
e)x(f

−

= on ]1,1[− . 

 
E11) Find the local maximum and minimum values of the function f defined 

as xsin2x)x(f += on ]2,0[ π . 
 

 
You may recall Unit 11, where in we discussed the second derivative. One of 
the applications of the second derivative is to test for maximum and minimum 
values. We discuss the second derivative test in the following section: 
 

13.6 SECOND DERIVATIVE TEST 
 
We now investigate another condition which, if satisfied, does away with the 

need to examine the sign of )x(f ′  as in the first derivative test.  This condition 

is also only sufficient, but very useful. 
 
The Second-Derivative Test for Relative Extrema 

Let f be a function such that 0)x(f
0

=′ and the second derivative exists on an 

open interval containing 
0

x . 

If 0)x(f
0

>′′ , there is a relative minimum at 
0

xx = . 

If 0)x(f
0

<′′ , there is a relative maximum at 
0

xx = . 
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Remark: You must have observed that this test says nothing about the case 

when )x(f
0

′′  is zero.  In this case, the function may have a maximum or a 

minimum value or neither as shown in the following examples: 

i) 4
x)x(f −= , for all R∈x . 

Here )0(f0)0(f ′′==′ , but the function has a maximum at 0 .  (see  

Fig 24(a)). 

ii) 4
x)x(f = , for all R∈x . 

 Here )0(f0)0(f ′′==′ , but  the function has a minimum at 0 .  (see Fig 

24 (b)). 

iii) 3
x)x(f = , for all R∈x . 

 

Here )0(f0)0(f ′′==′  and the function has neither a maximum nor a 

minimum at 0  (see Fig 24(c)).   
Thus, the first derivative test does have some merit. 

 
                  (a)       (b)            (c) 

Fig. 24 

 
Let us apply second derivative test in the following examples:  
 
Example 15: Find the extreme values of the function f  defined by 

,
x

3
x2)x(f += for all 0x ≠ , using the first derivative and second derivative 

tests. What do you conclude about ease of procedure here? 

Solution: Here, 
2

x

3
2)x(f −=′ , and therefore 2/3x0)x(f ±=⇒=′ . 

Using the first derivative test, we can say that the sign of f ′ is changing from   

–ive to +ive at 
2

3
x = , therefore, f has a minima and the minimum value is 

62 . Similarly, the sign of f ′ is changing from +ive to –ive at ,
2

3
x −=  

therefore, f has a maxima and the maximum value of f is 62− .   

 

Also, 3
x6)x(f

−

=′′ .  This means 0)2/3(f >′′  and 0)2/3(f <−′′ . Thus, 

using the second derivative test, we can say that f  has a minimum at 2/3  

and a maximum at 2/3− .  The minimum value is 62)2/3(f = , and the 

maximum value is 62)2/3(f −=− . 
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Sometimes, the second derivative test is inconclusive when 0)x(f
0

=′′ . In 

other words, at such a point there might be a maximum or minimum or neither. 

The second derivative test also fails when )x(f
0

′′ does not exist. In such 

cases, the first derivative test must be used. You can see in this example that 
even when both tests apply, the first derivative test is the easier one to use.  

*** 

Let us apply second derivative test in the following example:  

 

Example 16: From each corner of a square paper of side 24 cm, suppose we 
remove a square of side x  cm and fold the edges upward to form an open 
cuboid box.  Find that value of x  which will give us a box with maximum 
capacity. 

Solution: Clearly, 12x0 ≤≤  for a box to be formed.  Also, the box thus 

formed has dimensions )x224(),x224( −−  and x  (see Fig 25). 

 
(a)    (b)   (c) 

Fig. 25 

 

The volume )x(f  is a function of x  given by  

 12x0,x)x224()x(f
2

≤≤−= , 

      x576x96x4
23

+−= . 

 )12x()4x(12576x192x12)x(f
2

−−=+−=′  

Now, 12x0)x(f =⇒=′  or 4x = . 

Here, 192x24)x(f −=′′ , 019296)4(f <−=′′  and 0192288)12(f >−=′′ . 

Hence, 4x =  is a maximum point of f .  The maximum value )4(f  of f  (that 

is, the maximum capacity of the box) is 3
cm1024 . 

 
Are you surprised that the box is not a cube for maximum capacity?  But, had 

it been a cube, four squares each of side cm8  (the removed portions) would 

have been wasted, whereas now four squares each of side only cm4  have 

been thrown away.  There had to be a compromise between the waste 
material and making the box as near a cube as possible!   

*** 
 
Here are some exercises for you to solve. 
 

 

E12) Find the extremum points for each of the following functions. Using the 
second derivative test, point out which of them are maximum, which are 

minimum and which are neither.  Also, find the extremum values of f . 
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 i) R∈= x,x)x(f
2 . 

 ii) R∈−= x,x)x(f
3 . 

 iii) R∈++= x,1x7x3)x(f
2 . 

 iv) n2

n

4

2

2

10
xaxaxaa)x(f ++++= L , where R∈x  and each 

i
a  is 

positive. 

 v) ∞<<+= x0),1x/(x)x(f
2 . 

 
E13) Show that 3/π  is a critical number of f , where 

R∈+= x),xcos1(xsin)x(f . Does f  have a maximum or a minimum at 

this point? 

 
E14) Show that the rectangle of maximum area which can be inscribed in a 

circle, is a square. 

 
E15) Reena wants a name-plate with display area equal to 2

cm48  bordered 

by a white strip cm2  along top and bottom and cm1  along each of the 
two remaining sides.  What dimensions should the plate have so that the 
total area of the plate is a minimum? 

 

 
In the following section, we shall discuss Rolle’s theorem and Lagrange’s 
mean value theorem. 
  

13.7 MEAN VALUE THEOREMS 
 
Let us begin with an example. For example, suppose the average speed of a 
vehicle was 60 Kmph. Then the instantaneous speed cannot always have 
been more than 60, for then the average would also be more than 60. 
Similary, the instantaneous speed cannot always have been less than 60. 
Hence, at least at one point of time the instantaneous speed must have been 
60 as well. This is called a mean value result as it relates mean values to 
actual values. In this section, we shall study the mean value theorems.  These 
theorems have proved to be very handy tools in proving other theorems not 
only in calculus, but also in other branches of mathematics, such as Numerical 
Analysis.  Their importance lies in their wide applicability and tremendous 
usefulness. 
 

13.7.1 Rolle’s Theorem  

We shall first consider Rolle’s Theorem, which is a special case of Lagrange’s 
mean value theorem.  We shall not attempt the proofs of these theorems here, 
but you will agree that both are intuitively obvious.  We shall discuss their 
geometrical significance and illustrate their usefulness through some 
examples. 
 
Rolle’s Theorem was not actually proved by Rolle.  He had only stated it as a 
remark.  In fact, Michel Rolle (1652-1719) was known to be a critic of the 
newly found theory of Newton and Leibniz.  It is ironical, then, that one of the 
most important theorems of this theory is known after him.  Now, let us see 
what this theorem is. 

 



 

 

61

Unit 13                                                                              The Ups and Downs 

 
       (a)                (b) 

Fig. 26 

 
In Fig. 26 (a) and Fig. 26 (b), we see the graphs of two continuous functions 

defined on the closed interval ]b,a[ . Here, we observe few features common 

to both of them as given in Table 3. 
 

Table 3 
 

S.No. Rough Statement Precise Statement 

1. The curve is drawn without 
breaks or gaps. 

The function f  is continuous on 
]b,a[ . 

2. There are no corners in the 
curve. 

The function is differentiable in the 

open interval [b,a] . 

3. The two end points of the 
curve lie on the same 
horizontal line. 

)b(f)a(f =  

4. The curve admits a horizontal 
tangent (drawn as a dotted 
line) at some point. 

0)c(f =′  for some c  in [b,a] . 

 
The line joining the two end points may be imagined to be pushed upward or 
downward, keeping it always horizontal, and keeping the curve unmoved.  
Then, there is a position, shown by the dotted line, where it touches the curve.  
This makes us believe that the fourth property holds for all the functions 
satisfying the first three properties.  This is what Rolle’s Theorem asserts.  
 

Theorem 4 (Rolle’s Theorem): Let f  be a function continuous on the closed 

interval ]b,a[  and differentiable in the open interval [b,a] .  Further, let 

)b(f)a(f = .  Then, there is some c  in [b,a]  such that 0)c(f =′ . 

 
For example, if a train on a straight track is at the same location at both 1 PM 
and 5 PM, then at some time between 1 PM and 5 PM it was not moving, that 
is, to return to the same position, it would have needed to stop and reverse at 

some point. Here, let the position of the train at time t be )t(f . If ),5(f)1(f =  

then the train is at the same place at both 1t = and 5t = . Rolle’s theorem 
states that the derivative should be zero somewhere between 1 and 5. Now, 
we give an example to illustrate this theorem. 
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Example 17: Consider xsin)x(f =  on the interval ]2,0[ π . Check whether 

Rolle’s theorem is verified.  

Solution: The function f , given by xsin)x(f = is continuous on ]2,0[ π and is 

also differentiable on [2,0] π . Thus, all assumptions of Rolle’s theorem are 

satisfied here.   

Now, )2(f0)0(f π== . 

 

Therefore, according to Rolle’s theorem, there should exist c  in [2,0] π , such 

that, 0)c(f =′ .  Here, xcos)x(f =′ and ccos)c(f =′ . 

 

Can we find an element c  such that 0ccos = ? 
 

Yes.  In fact, there are two such points c  in [2,0] π , namely 2/π  and 2/3π . 

 
Fig. 27 

 

At 2/π , the function xsin  attains its maximum value. 

At 2/3π , the function xsin  attains its minimum value. 

Both these belongs to the interval [2,0] π . Fig. 27 also verifies this. 

*** 
 

Rolle’s theorem asserts that there is at least one c  in [b,a]  such that 

0)c(f =′ .  Example 17 shows us that there may be more than one point in 

[b,a]  at which 0)x(f =′ . 

 

In Rolle’s theorem, a function f  on ]b,a[  has to satisfy three conditions. 

i) f  is continuous on ]b,a[  

ii) f  is differentiable on [b,a]  

iii) )b(f)a(f =  
 

Now, we shall see through some more examples that each of these conditions 
is essential.  We cannot drop any one of them and still prove the theorem. 
 

Example 18: Check whether the function f defined by 

=−= ]x[x)x(f fractional part of x , on ]1,0[  verifies Rolle’s theorem. 

Solution: The function f  can be rewritten as 




=

<≤

=

1xif,0

1x0if,x
)x(f  

Here, 0)1(f)0(f == .  f  is differentiable in the open interval [1,0] .  Thus, two 

of the three conditions of Rolle’s theorem are satisfied by f .  The derivative of 
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f  is 1 at every point of [1,0] .  There is no point in [1,0] , where the 

derivative is zero.  What happens to Rolle’s Theorem in this example?   

Obviously, its conclusion does not hold here. The graph of f is shown in Fig. 
28. 

 
Fig. 28: Graph of f. 

 

The reason is that f  is not continuous on the closed interval ]1,0[ , since it 

fails to be continuous at 1. 
*** 

 
In the next example, we shall see that the assumption of differentiability in 

[b,a]  cannot be omitted. 

 

Example 19: Consider the function f defined by |x|)x(f =  on ]1,1[− , and 

check whether Rolle’s theorem holds or not. 

Solution: There is no c  in [1,1] −  such that 0)c(f =′ .  Actual computation 

shows that  

 









=

<<

<<−−

=′

0at xexist not  does

1x0if,1

0x1if,1

f  

f  is continuous on ]1,1[− . Also, )1(f)1(f =− . 

But f  is not differentiable in [1,1]− . Therefore, Rolle’s theorem does not 

hold. Fig. 29 shows graph of f .  

 
 Fig. 29: Graph of f . 

*** 
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Our next example shows that the assumption )b(f)a(f =  is essential in 

Rolle’s Theorem. 
 

Example 20: Check Rolle’s theorem for 3
x)x(f =  on ]1,0[ .   

Solution: f  is continuous on ]1,0[ , and is differentiable in [1,0] .  But 

)1(f)0(f ≠ . 

In this case, 0x3)x(f
2

≠=′  for any [1,0]x ∈ .  Thus, we see that the 

conclusions of Rolle’s theorem may not hold when )b(f)a(f ≠ . 

*** 
 
Lastly, we give an example where Rolle’s Theorem is applicable and yields a 
unique c . 
 

Example 21: Consider 2
x)x(f =  on ]1,1[− .  Verify Rolle’s theorem. 

Solution: Let 2
x)x(f = on ],1,1[−  then x2)x(f =′ . 

Here all the three conditions of Rolle’s Theorem are satisfied.  There is only 

one c , namely 0c = , such that 0)c(f =′ . Fig. 30 shows the corresponding 

graph.  

 
Fig. 30: Graph of f . 

*** 
 
You will now be able to solve these exercises. 
 
 

E16) Can Rolle’s theorem be applied to each of the following function?  Find 
‘ c ’ in case it can be applied. 

 i) xsiny
2

=  on interval ],0[ π . 

 ii) 1x)x(f
2

+=  on ]2,2[− .  

 iii) xx)x(f
3

+=  on ]1,0[ . 

 iv) xcosxsin)x(f +=  on ]2/,0[ π . 

 v) xcosxsin)x(f −=  on ]2,0[ π . 

 

E17) Consider the function f given by 2x3x)x(f
2

+−= .  Prove that 

)4(f)1(f =− .  Find a point c  between 1−  and 4, such that the derivative 

of f  vanishes at c .  Is this point the midpoint of 1−  and 4? 
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E18) Let cbxax)x(f
2

++=  be the given function.  If p  and q  are two real 

numbers such that )q(f)p(f = , prove that 0
2

qp
f =




 +
′ . 

 

E19) Consider the curve cbxaxy
2

++= .  Let 
0

x  be the unique real number 

such that the tangent at )y,x(
00

 to this curve is horizontal.  Prove that 

the function y  is one-one on the interval [,x[
0

∞ .  

 

E20) Let I  be an open interval of R .  Let R→I:f  be a differentiable 

function such that f  does not vanish on I .  Prove that f  is one-one on 
I . 

 

 
Now, we shall discuss the mean value theorem.  It was proved by Joseph 
Louis Lagrange, a mathematician of the eighteenth century. 
 

13.7.2 Lagrange’s Mean Value Theorem 
 
We have already mentioned that Rolle’s theorem is a special case of the mean 
value theorem.  Let us recall the statement of Rolle’s theorem in the following 
form: 
 

Let f  be a continuous function on the closed interval ]b,a[ , and differentiable 

in the open interval [b,a] .  The graph of f  is a curve in the plane.  If the 

endpoints of this curve lie in the same horizontal line, (that is, )b(f)a(f = ), 

then, there is a point c  on the curve where the tangent to the curve is 

horizontal )0)c(f( =′ . 

 
The last sentence can be restated as follows. 
 
If the endpoints of this curve lie in the same horizontal line, then, there is a 
point on the curve, where the tangent to the curve is parallel to the line joining 
its endpoints. 
 
The mean value theorem asserts the same conclusion, even without the 
assumption of horizontality of the line joining the endpoints of the curve. Fig. 

32 illustrate this difference.  Here P  and Q  are the end points of the curve.  

The line PQ  is horizontal in Fig. 32 (a), but not in Fig. 32 (b).  But in both the 

cases the point R  on the curve has the property that the tangent to the curve 

at R  is parallel to the line PQ .  The number c  is the x -coordinate of the point 

R . 

 
        (a)      (b) 

Fig 32 

 
 

Fig. 31: Lagrange 
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Fig. 32 (a) illustrates Rolle’s theorem, whereas Fig. 32 (b) illustrates 
Lagrange’s mean value theorem. 
 

The two end points of the curve are ( ))a(f,a  and ))b(f,b( .  The line joining 

these two points has the slope )ab/()]a(f)b(f[ −− .  Any line parallel to this 

line will also have the same slope.  Therefore, the conclusion of the mean 

value theorem is 
)ab(

)]a(f)b(f[
)c(f

−

−
=′  for some bca << . 

 

This is because, we already know that )c(f ′  is the slope of the tangent to the 

curve at ))c(f,c( .  Now, we are ready to give the precise statement of the 

theorem. 
 
Theorem 5 (Lagrange’s Mean Value Theorem): Let f  be a continuous 

function on a closed interval ]b,a[ .  Let f  be differentiable in the open 

interval [b,a] .  Then, there is a point c  in the open interval [b,a]  such that 

ab

)a(f)b(f
)c(f

−

−
=′ . 

 
Rolle’s Theorem has three assumptions namely, a continuity assumption, a 

differentiability assumption, and the assumption )b(f)a(f = . 

 
The mean value theorem has only two assumptions.  These are the same as 
the first two assumptions of Rolle’s Theorem. 
 
Suppose in addition to the two assumptions of the mean value theorem, 

)b(f)a(f =  also holds.  Then what does the mean value theorem yield?  It 

says that  

 
ab

)a(f)b(f
)c(f

−

−
=′  for some bca << .  But 0)a(f)b(f =− . 

Therefore, we get 0)c(f =′  for some bca << . This is the same as the 

conclusion of Rolle’s theorem.  This proves our contention that Rolle’s 
theorem can be deduced from the mean value theorem. 
 

But why the name mean value theorem?  What is the mean value here? )a(f  

is the initial value of f . )b(f  is the final value of f . Therefore, )a(f)b(f −  is 

the total change in the value of f .  This change has occurred when the x -

coordinate has changed from a  to b .  For a change of )ab( −  in the domain, 

there is a change of )a(f)b(f −  in the value of f .  Therefore, the mean value, 

that is, the average value of the rate of change is )ab/()]a(f)b(f[ −− .  The 

mean value theorem asserts that this average value of the rate of change of f  

is assumed at some point c  by derivative f ′ . 
 
We shall illustrate the same thing by means of an example.  Consider a car 

moving from time a  to time b . Let )t(f  be the position of the car at time t .  

Then, the average speed of the car is distance/time
)ab(

)]a(f)b(f[

−

−
= . According 

to mean value theorem, the speedometer of the car would have shown this 

)ab(

)]a(f)b(f[

−

−
 at some time between a  and b . For instance, if the car has 

travelled 100 kms in two hours, then at some point of time, its speed would 
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have been actually 50 kmph (which is its average speed over the span of two 
hours). 
Now, let us see how to verify the theorem in the following examples. 
 
Example 22: Verify Lagrange’s mean value theorem for the function 

x2x)x(f
2

−=  on the interval ]2,1[ . 

Solution: This is a polynomial function.  Therefore, it is continuous on ]2,1[  

and differentiable in [2,1] .  Here, 2b,1a == , 121)a(f −=−= , 

0222)b(f
2

=×−= , and 1
12

)1(0

ab

)a(f)b(f
=

−

−−
=

−

−
 

We want to check that 1)c(f =′  for some c  such that 2c1 << . 

Now 2x2)x(f −=′ .  For what value of x  will it be 1? 

Now, 12x2 =− , when, 2/3x = , and [2,1]
2

3
∈ .  Thus, we see that  

 
12

)1(f)2(f
)2/3(f

−

−
=′ . 

Now, consider the function R→]b,a[:f  which satisfies the assumptions of 

mean value theorem.  Let p  and q  be any two points such that bqpa ≤<≤ .  

Is there some c  between p  and q  such that 
)pq(

)]p(f)q(f[
)c(f

−

−
=′ ?  To 

answer this, consider the restriction of f  to the interval ]q,p[ .  It satisfies the 

assumptions of the mean-value-theorem.  Therefore, such a point c  exists. 

This result can be geometrically interpreted as follows. ))p(f,p(  and ))q(f,q(  

are two points on the curve )x(fy = . The line joining them is called a chord of 

the curve and 
)pq(

)p(f)q(f

−

−
 is the slope of this chord.  What we have shown is 

that the slope of this chord is the same as the slope of the tangent at the point 

))c(f,c( .  This means, that the tangent at ))c(f,c(  is parallel to the chord 

(see Fig. 33).  Thus, for any chord of the curve, there is a point on the curve 
where the tangent is parallel to the chord. 
 

 
 

Fig. 33 

*** 
 
Let us solve few examples: 
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Example 23:  i) Find the point c  in [4/,4/] ππ−  such that the tangent to 

xcos)x(f =  at ))c(f,c(  is parallel to the chord joining ))4/(f,4/( π−π−  and 

))4/(f,4/( ππ . 

ii) We shall further prove that for the same c , the tangent at ))c(g,c(  to 

the curve xxxcos)x(g
2

++=  is parallel to the chord joining 

))4/(g,4/( π−π−  and ))4/(g,4/( ππ . 

Solution: i) The slope of the chord joining ))4/(f,4/( π−π−  and 

))4/(f,4/( ππ  is 0
2/

2/12/1

)4/(4/

)4/(f)4/(f
=

π

−
=

π−−π

π−−π
. 

Therefore, we seek c  that 0)c(f =′ .  We have xsin)x(f −=′ . 

The only point in [4/,4/] ππ− , where this vanishes is at 0c = . 

The corresponding point on the curve is )1,0())0(f,0( = . 

ii) )4/()16/()2/1()4/(g
2

π−π+=π−  

 )4/()16/()2/1()4/(g
2

π+π+=π . 

 The slope of the chord joining ))4/(g),4/(( π−π−  and ))4/(g,4/( ππ  is 

1
)4/()4/(

)4/()4/(

)4/(4/

)4/(g)4/(g
=

π+π

π+π
=

π−−π

π−−π
. 

 When 0c = , we want to prove that the tangent at ))c(g,c(  to the curve 

)x(g  also has the same slope 1.  In other words, we must prove that 

1)0(g =′ . 

 Now 1x2xsin)x(g ++−=′  

 1100)0(g =++−=′∴ . 

This proves that, for both the functions )x(f  and )x(g  over [4/,4/] ππ− , it 

is the same point c  where the conclusion of the mean value theorem holds. 

*** 
 

Example 24: For the curve xlny = , find a point on the curve where the 

tangent is parallel to the chord joining the points )0,1(  and )1,e( . 

Solution: Since, 01ln =  and 1eln = , therefore these two points )0,1(  and 

)1,e(  lie on the curve xlny = .  Consider this function on the closed interval 

]e,1[  (see Fig 34).  It is continuous there.  It is also differentiable on [e,1] . 

Therefore, by the mean value theorem, there is a point c  between 1 and e  

such that the tangent at )cln,c(  is parallel to the chord joining )0,1(  and 

)1,e( .  We have to find this point.  Now x/1y =′ . Its value at c  is c/1  

 
Fig. 34 
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The required point is given by  

 
1e

1

1e

01

1e

1lneln

c

1

−

=

−

−
=

−

−
=  

1ec −=∴  

The required point on the curve is ))1e(ln,1e( −− . 

*** 
 

Remark: Let R→]b,a[:f  satisfy the assumptions of the mean value 

theorem.  Then 10, <θ<θ , such that ))ab(a(f)ab()a(f)b(f −θ+′−+= . 

This is because any point c  between a  and b  is of the form )ab(a −θ+  for 

some 10 <θ< .  Note that )ab(0aa −+=  and )ab(1ab −+= . 

 
Just as in the case of Rolle’s theorem, there may be more than one points at 
which the tangents may be parallel to the chord joining the end points of a 
curve represented by a function which is continuous at every point in the 
closed interval and is differentiable at every point in the open interval (see Fig 
35). 

 
 

Fig. 35 

 
Both Rolles’ theorem and Lagrange’s mean value theorem are existence 
theorems.  They tell us that there exists at least one point where the tangent is 
parallel to the chord joining the end points.  But they do not tell us how many 
such points are there, nor how to find these points.   
 

For example, consider the function xsinx)x(f
3

−=  on ]5,0[ π . It satisfies the 

conditions of the mean value theorem.  So, there is at least one value c  at 

which 22
25ccosc3 π=− . The mean value theorem assures us that the 

equation 22
25xcosx3 π=−  has at least one solution, c .  But it does not 

enable us to find the value or values of c .  You can study methods of solving 
such equations in the course on numerical analysis. 
 
Now, try the following exercises:  
 
 

E21) Verify the mean value theorem for 1x)x(f
2

+=  on the following 

intervals  

 i) ]1,1[−     ii) ]2,1[−  
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E22) Verify the mean value theorem on the interval ]2,0[  for the following 

functions. 

 i) xsin)x(f π=    ii) 3x2)x(f
2

+=  

 

E23) i) Let 3
x)x(f =  on ]1,0[ .  Find a point c  in [1,0]  as in the mean 

value theorem. 

ii) Let 3
x)x(f =  on ]0,1[− .  Find a point c  in [0,1]−  as in the mean 

value theorem. 

iii) Let 3
x)x(f =  on ]1,1[− .  Show that there are two points c  in 

[1,1] −  such that 
)1(1

)1(f)1(f
)c(f

−−

−−
=′ . 

 

E24) Let f  be a function on ]b,a[  satisfying the assumptions of the mean 

value theorem.  Let c  be a point guaranteed by the mean value 

theorem.  Prove that if 1)x(f)x(g
1

+=  and x)x(f)x(g
2

+=  for all x  in 

]b,a[ , then the same point c  satisfies )c(g
ab

)a(g)b(g
1

11
′=

−

−
 and 

)c(g
ab

)a(g)b(g
2

22
′=

−

−
 also. 

 

E25) At what point is the tangent to the curve n
xy =  parallel to the chord 

from  

 i) )0,0(  to )2,2(
n ? 

 ii) )0,0(  to )1,1( ? 
 

 
That brings us to the end of this unit.  Let us summarise all that we have done 
in it. 
 

13.6  SUMMARY 
 
In this unit, we have discussed the following points: 
 

1. A function f  is said to have a maximum/ minimum value at a point 
0

x  of 

its domain if )x(f)x(f)x(f)x(f
00

≥≤ for all x in the domain.  Maximum 

and minimum values are known as the extreme values of the function. 
 

2. If the derivative of a function f at 
0

x , does not exist or is zero, then 

0
x may not be an extreme point. 

 
3. Critical points for a function are those where either the derivative does 

not exist or else has the value zero.  A critical point may fail to be an 
extreme point. 

 

4. A sufficient condition for a function f  to have an extreme value at 

0
xx =  is that f  is continuous at 

0
x  and the derivative f ′  changes sign 

in passing through 
0

x .  If the change is from positive to negative, 
0

x is a 
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maximum point.  In the other event, 
0

x is a minimum point.  This test is 

known as the first derivative test. 
 
5. Second derivative test, another sufficient condition for the existence of 

extreme points asserts that if 0)x(f
0

=′  then 0)x(f
0

>′′  implies f  has a 

minimum at 
0

xx =  and 0)x(f
0

<′′  guarantees  a maximum value at 
0

x . 

 

6. In Rolle’s theorem, if a function f  is continuous on ]b,a[ , differentiable 

on [b,a] and ),b(f)a(f = then there is some c in [b,a] such that 

0)c(f =′ . 

 

7. In Lagrange’s mean value theorem, if a function f is continuous on 

],b,a[ and differentiable on [,b,a] then, there is a point c in the open 

interval [b,a] such that 
)ab(

)a(f)b(f
)c(f

−

−
=′ .  

 

13.7  SOLUTIONS/ANSWERS 
 
E1) i) All points of R  are maxima as well as minima. 
 

ii) no maxima or minima on R . 
 

iii) no maxima or minima on [4,0]  

 
iv) R∈0  has a minimum.  No maxima. 

  

 v) 9x =  has a minimum, 25x = has a maximum. 
  

 vi) 3x = has a minimum and 4x −= has a maximum. 
  

 vii) 1x = has a minimum and ex = has a maximum. 
  

 viii) 1x = has a maximum and 0x = has a minimum. 
  

 ix) 
3

x
π

= has maximum.  

  

 x) 0x = is a minimum. 1x = and 1x −= are maxima.   

 

E2) i) )x6(x2)x(f −=  

  )1(x2)x6(
x

2

1
2

)x(f −+−

⋅

=′  

   
x

x36
x3

x

6
x2)x6(

x

1 −
=−=−−=  

  ,0)x(f =′ gives 2x = and )x(f ′ does not exist, gives 0x = . 

  Thus, 2,0x = are the critical numbers. 

  

 ii) 2
x3)x(f =′ , here  0x = is the only critical number.  
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 iii) 
2

x2

xln21
)x(f

−
=′  

  ex0)x(f =⇒=′ and )x(f ′ does not exist 0x =⇒  

  The critical number is e , as ]3,1[0∉ . 

  

 iv) 0)x(f =′  

  0xsin =⇒ or 2/1xcos =  

  3/,0x π=⇒ are the critical numbers. 

 

E3) i) )28,2(),0,0( are the critical points.  

 

 ii) 0x = is critical number but no critical point as there is no relative 

extrema at 0x = . 
 

 iii) 








e2

1
,e is the only critical point 

 

 iv) )1,0( and 






 π

4

5
,

3
are the critical points.     

 

E4) i) 8x2)5x()3x()x(f −=−+−=′  

  4x0)x(f =⇒=′  

  4x =∴  is a critical number. 

  Now, 1)4(f,63)4(f −==− . Thus, f has absolute maxima at 

4x −= and absolute minima at 4x = . The maximum and 

minimum values are 63and 1− respectively.  
 

 ii) ⇒=++=′ 05x26x3)x(f
2

47.8,197.0)15413(
3

1
x −−=±−=  

   257)10(f =−  

  2357)10(f =  

  512.6)197.0(f ≈−  

  636.289)47.8(f ≈−  

  Thus, maxima is at 10x = and minima is at 197.0x −= . 
 

 iii) Absolute minima is at Z∈π= n,nx and absolute maxima is at 

Z∈
π

+= n,
2

)1n2(x . 

 

 iv) Absolute maxima is at 1,1x −= and absolute minima is at 0x = . 

 

 v) Absolute maxima is at 2,2x −= and absolute minima is at 0x = . 

 

 vi) All points x  for which 1x0 ≤≤  are critical points because the 
function is defined as  

   









≤<−

≤≤

<≤−−

=

5x1if1x2

1x0if1

0x5if,x21

)x(f  

  0)x(f =′  if 1x0 <<  and f  is not derivative at 0x =  and at 1x = . 
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  Absolute maxima is at 5x −= and absolute minima is at 1x0 ≤≤ . 
 

 vii) Absolute minima is at 1x = and absolute maxima cannot be found 
as the interval is not closed.  

 

E5) The marginal cost is 4x
4

1
)x(C +=′ .  

The revenue is )x(px)x(R =  )x49(x −=
2

xx49 −=  

The marginal revenue is x249)x(R −=′ .  

The profit is maximised when )x(C)x(R ′=′ .  

Thus, we get 4x
4

1
x249 +=−  and 20x =  

Hence, the price that corresponds to the maximum profit is 

=−= 2049)20(p `29 

 
E6) The present value of the asset in t years is given by the function 

tr
e)t(V)t(P

−

= , where r is the annual interest rate and t is the time in 

years. Thus, t08.0t
ee10000)t(P

−

=
)t08.0t(

e10000
−

=  

 Differentiating )t(P w.r.t. t , we obtain 

    







−⋅=′

−

08.0
t

1

2

1
e10000)t(P

)t08.0t(   

0)t(P =′ when 008.0
t2

1
=− or 06.39t ≈ years. Thus, the asset should 

be held for 39 years and then sold. 
 

E7) To locate the extrema, we solve 0)t(C =′ . 

  





−

−

=′
−−

)ee(
ab

k

dt

d
)t(C

btat
 

     )aebe(
ab

k
]e)b(e)a[(

ab

k atbtbtat −−−−

−

−

=−−−

−

=  

 We see that 0)t(C =′ when atbt
aebe

−−

=  

 which gives atbtatbt
eee

a

b
−−

== , 
a

b
lnatbt =−  and 

a

b
ln

ab

1
t

−

=  

Therefore, the largest concentration would occur when 

ab;
a

b
ln

ab

1
t >

−

= . Let us now find the concentration as .t +∞→    

  ]ee[
ab

k
lim)t(Clim

btat

tt

−−

+∞→+∞→

−

−

=  

     





−

−

=
+∞→+∞→

bt
t

at
t e

1
lim

e

1
lim

ab

k
 

    ]00[
ab

k
−

−

=  

                 0=  
This shows that the longer the drug is in the blood, the closer the 

concentration is to 0 . The graph of C is shown in Fig. 36. 

Intuitively, we would expect the concentration function to begin at 0 , 

increase to a maximum, and then gradually drop off to 0 in a finite 

amount of time. Fig. 36 indicates that )t(C does not have these 

characteristics, because it does not quite get back to 0 in finite time.  
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Fig. 36: Graph of C(t) . 

 

E8) 5x12x4x3)x(f
234

+−−=  

 x24x12x12)x(f
23

−−=′  

   )2x()1x(x12 −+=  

 We divide the real line into intervals whose endpoints are the critical 

numbers 0,1− and 2 as given in the Table 4. 

 
Table 4 

 
Interval 12x  1x +  2-x  (x)f ′  Monotonicity of f  

1x −<  ive−  ive−  ive−  ive−  decreasing on 

[1,] −∞−  

0x1 <<−  ive−  ive+  ive−  ive+  increasing on  

[0,1] −  

2x0 <<  ive+  ive+  ive−  ive−  decreasing on 

[2,0]  

2x >  ive+  ive+  ive+  ive+  increasing on 

[,2] ∞  

 
 

Fig. 37 

  

 The graph of f is shown in Fig. 37, which verifies the monotonicity  of 

f given in the last column of Table 4. 
 

E9) i)  Increasing on 




 π

4
,0 and 





π

π
2,

4

5
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   Decreasing on 




 ππ

4

5
,

4
. 

 ii)  Increasing on 





∞− ,2ln

3

1
 

   Decreasing on 





−∞− 2ln

3

1
,  

 iii)  Increasing on [,1] ∞  

   Decreasing on [1,0] . 

 
E10) i) Maximum at 1x = , minimum at 3x = , and the maximum and 

minimum values are 0  and 28−  respectively.  0x =  is not an 

extremum because there is a neighbourhood of 0  in which )x(f ′  

has the same sign on either side of 0 . 

 ii) Minima is at 3x,1x −== . 

  Maxima is at 1x −=  

  Extreme values are 3− and 29 . 

iv) Minima is at 1x = and maxima is at 3/1x −= , extreme values are 

0  and 27/32 . 

v) Maxima at 4x = , and the maximum value is 24 . 

vi) Maxima at 0x = , and the maximum value is 1. 
 

E11) xsin2x)x(f +=  

 xcos21)x(f +=′  

 0)x(f =′ gives 
2

1
xcos

−
= . The solution of this equation are 

3

2π
and 

3

4π
. 

 
Table 5 

 
Interval (x)f ′  Monotonicity of f  

3

2
x0

π
<<  

ive+  increasing 

3

4
x

3

2 π
<<

π
 

ive−  decreasing 

π<<
π

2x
3

4
 

ive+  increasing 

  

 From Table 5, it is clear that )x(f ′ changes sign from positive to negative 

at 
3

2π
, the first derivative test tells us that there is a local maximum at 

3

2π
, and the maximum value is 83.33

3

2

3

2
f ≈+

π
=







 π
. 

 Similarly, )x(f ′ changes sign from negative to positive at ,
3

4π
therefore 

f has a local minima and the minimum value is  
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 46.23
3

4

3

4
f ≈−

π
=







 π
.   

 

E12) i) At 0x = , minima, extreme value 0=  
 

ii) There are no extreme points. 
 

 iii) Minimum at 6/7x −= and the minimum value is 12/37− . 
 

 iv) )x(xg)x(f =′  where )x(g  is polynomial in 
2

x  with all co-efficients 

positive.  Hence, 0)x(g >  for all 0x ≠ .  Therefore, the only 

extreme point of f  is 0x = .  Clearly, 
0

a)0(f =  and 

0x,a)x(f
0

≠> .  Hence, 0x =  is minima and the minimum value 

is 
0

a . 

 

 v) 
x

1
x

)x(f

1
)x(g +== .  Extreme points of g  are 1x ±= . Minima at 

1x = and maxima at 1x −= . Hence, the extreme value of f are 

2/1± . 
 

E13) )xsin(xsin)xcos1(xcos)x(f −++=′  

          0x2cosxcos =+=  

 01xcosxcos20)x(f
2

=−+⇒=′  

               0)1xcos2()1x(cos =−+⇒  

      
2

1
,1xcos −=⇒  

      
3

x
π

=⇒ is a critical number 

 f has maxima at 
3

x
π

= .  

 

E14) If a  and b  are the sides of the inscribed rectangle. 

 2222
adbdba −=⇒=+

2  

 Area 22
adaabA −===  

     0A =′  if 2/da =  

     0A <′′  for 2/da2/da =⇒=  is max. 

  ⇒=⇒= 2/db2/da  the rectangle is a square.  
 

E15) Suppose the display area is a rectangle with dimensions a  cm and b  

cm.  Then the dimensions of the name plate are )2a( +  cm and )4b( +  

cm. 

 a/48b48ab =⇒= . 

 )4a/48()2a()4b()2a(A ++=++=  

 62a24
4

96
a0

a

96
4

da

dA 2

2
=⇒==⇒=−=  

    64b =⇒  

 0
a

198

da

Ad
32

2

>=  for ⇒= 62a  This is a minimum. 

 Dimensions of the plate: )61(4),61(2 ++ . 
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E16) i) Yes.  0x2sinxcosxsin2y ===′  if ],0[2/x π∈π=  

 

ii) Yes.  0x2)x(f ==′  if ]2,2[0x −∈=  

 

 iii) No.  01x3)x(f
2

≠+=′  for ]1,0[x ∈ .  Rolle’s theorem does not 

hold as )1(f)0(f ≠ . 

 

 iv) Yes.  0xsinxcos)x(f =−=′  if ]2/,0[4/x π∈π= . 

 

v) Yes.  0xsinxcos)x(f =+=′  if 
4

3
x

π
=  or ]2,0[

4

7
π∈

π
 

 

E17) 2x3x)x(f
2

+−= , f is continuous on ]4,1[− and is differentiable on 

[4,1] − .  

)4(f6)1(f ==− . 

03c2)c(f =−=′ gives [4,1]
2

3
c −∈=  

Rolle’s theorem is verified. 
 

E18) 0bqaqbpapcbqaqcbpap
2222

=−−+⇒++=++  

         0)qp(b)qp(a
22

=−+−⇒  

         0b)qp(a =++⇒  (since, )qp ≠  

 bax2)x(f +=′  

 0b)qp(a
2

qp
f =++=







 +
′ . 

 

E19) Suppose )x(f  is not one-one on [,x[
0

∞  

 [,x[q,p
0

∞∈⇒ , such that qp ≠  and )q(f)p(f =  

 0
2

qp
f =







 +
′  by E18). 

 
0

x
2

qp
=

+
, as 

0
x  is the unique point with 0)x(f

0
=′  

 Therefore either 
0

xp <  or 
0

xq < , since p  and q  both cannot be equal 

to 
0

x .  This is a contradiction as we have taken [,x[q,p
0

∞∈ . 

 

E20) Suppose Iq,p ∈  s.t. qp ≠  and )q(f)p(f =   

 If qp <  we have f,I]q,p[ ⊂  is differentiable on ]q,p[  and )q(f)p(f = . 

 Thus, f  satisfies the conditions of Rolle’s theorem on ]q,p[  

 0)x(f
0

=′⇒  for some I]q,p[x
0

⊂∈ . 

 But, this is a contradiction. 

 Therefore, f  is one-one. 
 

E21) i) 0
)1(1

)1(f)1(f
)1(f2)1(f =

−−

−−
⇒==−  

  0x2)x(f ==′  if 0x =  

  ]1,1[0 −∈∃∴  s.t. 
)1(1

)1(f)1(f
)0(f

−−

−−
=′  
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 ii) You may like to try it yourself. 
 

E22) i) )2(f0)0(f ==  

  0)2/1(fxcos)x(f =′⇒ππ=′ . 

 ii) 4
02

)0(f)2(f
11)2(f,3)0(f =

−

−
⇒==  

  4)1(fx4)x(f =′⇒=′  

  ]2,0[1∈∃  s.t. 
02

)0(f)2(f
)1(f

−

−
=′  

 

E23) i) 1
01

)0(f)1(f
1)1(f,0)0(f =

−

−
⇒==  

  ]1,0[3/1x1x3)x(f
2

∈=⇒==′  

  3/1c =∴  

 ii) 1
)1(0

)1(f)0(f
0)0(f,1)1(f =

−−

−−
⇒=−=−  

  ]0,1[3/1x1x3)x(f
2

−∈−=⇒==′  

  3/1c −= . 

 iii) 1
)1(1

)1(f)1(f
=

−−

−−
 

  3/1,3/1c −=  are two points in ]1,1[−  

  such that 
)1(1

)1(f)1(f
)c(f

−−

−−
=′  

 

E24) 1
ab

)a(f)b(f
)c(f =

−

−
=′  

 )c(g)c(f
ab

)a(f)b(f

ab

)a(g)b(g
1

11
′=′=

−

−
=

−

−
 

 )c(g1)c(f1
ab

)a(f)b(f

ab

)a(g)b(g
2

22
′=+′=+

−

−
=

−

−
. 

 

E25) i) 1n
nxy

−

=′ .  Slope of the chord from )0,0(  to )2,2(
n  is  

  1n

12

12 2
xx

yy
−

=

−

−
 

  
)1n/(1

1n

1n1n1n

n

2
x

n

2
x2nx

−

−

−−−

=⇒=⇒=  

  Point: 







−− )1n/(n

n

)1n/(1
n

2
,

n

2
. 

 ii) Slope of the chord from )0,0(  to )1,1(  is 1 

  

1n

1

1n1n

n

1
xn/1x1nx

−

−−

=⇒==⇒=∴  

  Point: 







−− )1n/(n)1n/(1

n

1
,

n

1
. 
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14.1 INTRODUCTION 
 
In the last unit, we discussed some geometrical features of functions, like 
maxima, minima, monotonicity, etc. We continue this discussion in this unit to 

find what the second derivative f ′′ says about f in Sec.14.2. We started our 
study of Calculus by stating two problems.  One of them was the problem of 
finding a tangent to a curve at a given point. In Unit 9, we have seen that the 
solution of this problem was instrumental in the development of differential 
calculus.  Now having studied various techniques of differentiation, we shall 
once again take up this problem. We shall study the tangents to a curve and 
normals in Sec.14.3.  

  
If two curves intersect at any point, then the tangents to both the curves at that 
point form an angle. This angle is the angle of intersection of the two curves, 
which we shall discuss in Sec.14.4. What happens if the curve passes through 
a point twice or more? Such points, where the curve shows different behaviour 
are not ordinary points, they are called singular points, which we shall study in 
Sec.14.5.  You will see that all these will prove very useful when we tackle 
curve tracing in Unit 16. 

 
Now, we shall list the objectives of this unit. After going through the unit, 
please read this list again and make sure that you have achieved the 
objectives. 
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Objectives 

After going through this unit, you should be able to: 

• determine whether a curve is concave, or convex, or neither in a given 
interval; 

• find the points of inflection and the curvature of a curve; 

• obtain the equations of the tangent and the normal to the curve at a given 
point; 

• calculate the angle of intersection of two curves at a given point of 
intersection; 

• define, and identify, a singular point.  
 
Recall the increasing and decreasing functions in Unit 13. There, you got an 
idea whether a certain graph is increasing, or decreasing on the basis of a 
visual of the graph. Sometimes, rising or falling of a graph does not give the 
complete picture of the graph, it gives only a partial picture of the graph. To 
get a more clear picture of the graph, we shall discuss concavity and convexity 
of a curve using the second derivative in the following section.  
 

14.2 CONCAVITY 
 
In this section, we shall use the second derivative to get a better picture of the 

graph of a function f . Let us begin with an example. Consider the function 

f defined by 6x)x(f
2

+= . We get x2)x(f =′ and 2)x(f =′′ . Observe that 

2)1(f −=−′ and 2)1(f =−′′ . Here, 0f >′′ for all x around 1− . Since, 

02)1(f <−=−′ , therefore, we can say that f is decreasing at 1− at the rate of 

2− . At the right of 1x −= , since, )1(f −′′ is positive, therefore, )x(f ′ is larger 

than )1(f −′ . That is, )x(f ′ is less negative than )1(f −′ . If we further move to 

the right, )x(f ′ is still less negative. If we continue, then there would be some 

slope )x(f ′ , which may become positive. In Fig. 1, the arrow starting from 1−  

shows that the slope of )x(f ′ is decreasing.  

 
Fig. 1: Graph Bending Upwards. 

 

We can say that when 0)a(f >′′ , the graph of f near the point a , is bending 

upward, whether 0)a(f <′ or 0)a(f >′ . On the other hand, when 0)a(f <′′ , the 

graph of f near the point a is bending downward, whether 0)a(f <′ or 

0)a(f >′′ . The “bending” behaviour of a graph is called its concavity. This 

leads to the following definition.  
 

Definition: When the chord lies above the graph in an interval I , the graph is 

concave upward and when it lies below the graph in an interval I , the graph is 
concave downward.  
 
Fig. 2 (a) and Fig. 2(b) shows this respectively.  
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(a)  Concave upward              (b)  Concave downward 

Fig. 2 

 
We can also say that, if f is twice differentiable on an interval I and f ′ is 
increasing on that interval, the graph of f is concave upward on I . If f ′ is 
decreasing on I , the graph of f is concave downward on I . 
 
We know that the slope of the tangent line is computed through derivative. 
Therefore, from the discussion above, we conclude that the graph of a function 

f is concave upward if f ′ is strictly increasing and the graph of a function f is 

concave downward if f ′ is strictly decreasing. This can further be said that if 

f ′ is increasing, then 0)f( >′′ (recall from Unit 13), which means that the graph 

of f is concave upward where the second derivative f ′′ satisfies 0f >′′ . 

Similarly, the graph is concave downward where 0f <′′ . We can use this 
observation to test concavity of a graph of a function, which is as follows. 
 
Concavity Test:  

i) If 0)x(f >′′ for all x on ,I then the graph of f is concave upward on I . 

ii) If 0)x(f <′′ for all x on ,I then the graph of f is concave downward on I . 

 
You may note that a function can be concave upward and increasing or 
concave upward and decreasing or concave downward and increasing or 
concave downward and decreasing or concave upward/downward but neither 

increasing nor decreasing, like 2
xy = . This means that concavity and 

monotonicity are independent.  
 
Some books use the term ‘convex downward’ for concave upward and 
‘convex upward’ for concave downward. Sometimes, we drop upward and 
downward and simply write concave (for concave downward or convex 
upward) and convex (for concave upward or convex downward).  
 

We also say that a function f  is concave at a point, if it is concave in a small 
open interval around that point. Similarly, a function f is convex at a point, if it 
is convex in a small open interval around that point.  
 
Remark: i) Only concave and convex functions have the property that each of 
their tangents intersects their graph exactly once in the interval of concavity.  
 

ii) If f is concave on I , then f− is convex on I . Similarly, if f is convex on I , 

then f− is concave on I .   
 
Let us investigate concavity in the following examples: 
 

Example 1: Find the concavity of the graph of the function f defined by 

5x2x3)x(f
3

++= . Also, draw its rough sketch.  
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Solution: We have 5x2x3)x(f
3

++= , and we get 2x9)x(f
2

+=′ and 

x18)x(f =′′ . 

Here, 0)x(f <′′ , when 0x < , and 0)x(f >′′ , when 0x > . 

So, the graph of f is concave downward when 0x < and the graph of f is 

concave upward when 0x > as shown in Fig. 3 (a). The graph of f is shown in 
Fig. 3 (b). 

 
(a)            (b) 

Fig. 3 

*** 
 

Example 2: Sketch the graph of the function f defined by 

13x9x3x)x(f
23

−−+= . State, where it is concave upward or concave 

downward along with monotonicity.  

Solution: To find the concavity of f , we determine f ′ and f ′′ .  

)1x()3x(39x6x3)x(f
2

−+=−+=′  

)1x(66x6)x(f +=+=′′  

,0)x(f >′′ when 1x −> and ,0)x(f <′′ when 1x −< . Thus, the graph of f is 

concave upward when 1x −> and is concave downward when 1x −< . For the 

rough sketch of ,f let us see where f is increasing or decreasing. For this, we 

solve 0)x(f =′  

09x6x3
2

=−+  

0)1x()3x(3 =−+  

3x −= or 1x =  

When ,0f,3x >′−< therefore, f is increasing. When 0f,1x3 <′<<− , 

therefore, f is decreasing. When 0f,1x >′> , therefore, f is increasing. We 

can now plot the points )14,3(− and )18,1( − , including short arcs at each point 

to indicate the concavity of the graph as shown in Fig. 4(a). Then, by 
calculating and plotting a few more points, we can make a graph, as shown in 
Fig. 4 (b). 

 
                             (a)                                       (b) 

Fig. 4: Graph of f . 

*** 
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Example 3: From the graph given in Fig. 5, find the intervals in which f is 
concave upward and concave downward.  

 
Fig. 5 

 

Solution: Fig. 5 shows that the function f is concave upward on the intervals 

[e,d][,c,b] and [f,e] and concave downward on the intervals 

[d,c][,b,a] and [g,f] . 

*** 
 
Example 4: Suppose that water is poured in the vase as shown in Fig. 6, at a 
constant rate, measured in volume per unit time. The height of water at time 

t is )t(f . Comment on the concavity of the graph of depth of water in the 

vase.  
 
Solution: At the bottom of the vase, the water level would rise slowly, 
because, the base of the vase is wide and, so it would take a lot of water to 
make the height increase. However, as the vase narrows, the rate at which the 

water is rising, increases. This means that initially f ′ is increasing at an 
increasing rate and the graph is concave upward. The rate of increase in the 
water level is at a maximum when the water reaches the middle of the vase, 

where the diameter is smallest. After that, the rate at which f ′ increases starts 
to decrease again, and so the graph is concave downward. The graph of the 

height of water in the vase f against the time t is shown in Fig. 7. 
 

 
Fig. 7: Graph of f . 

*** 
Try the following exercises. 
 
 

E1) Sketch a possible graph of the function f that satisfies the following 
conditions: 

 
 

Fig. 6 
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i) 0)x(f >′ on [2,] ∞− and 0)x(f <′ on [,2] ∞ . 

ii) 0)x(f >′′ on [3,] −∞− and [,3] ∞ and 0)x(f <′′ on [3,3] − . 

iii) 4)x(flim
x

−=
∞−→

and 1)x(flim
x

=
∞→

 

 

E2) Find the intervals in which the curve 34
x4xy −= is concave or convex. 

 

 
So far, we were concerned only with the manner of bending of a graph. Now, 
let us discuss about that transition point which changes the graph from 
concave upward to concave downward. Look at the graph of the function in 

Example 2. The concavity of f changes from downward to upward at the point 

)2,1( −− . The point across which the direction of concavity changes is called a 

point of inflection or an inflection point. Fig. 8 shows the transition from 

concave upward to concave downward at the points P and R , and the 

transition from concave downward to concave upward at Q . The points 

Q,P and R  are points of inflection as the sign of f ′′ changes.  

 
Fig. 8: Point of inflection. 

 

In Fig. 8, as we move from left to right, we see that the concavity changes at 

Q,P and R and either the value of )x(f
0

′′ at P and Q must be 0 or )x(f ′′ must 

not exist at R . This leads to the following definition. 
 

Definition: A function f has a point of inflection at a point 
0

x , if the concavity 

changes at 
0

x . 
 

Therefore, we can say that for a curve to locate a point of inflection at 
0

x , the 

necessary condition is either 0)x(f
0

=′′ or )x(f
0

′′ does not exist. You may note 

that an inflection point must be on the graph, meaning )x(f
0

must be defined if 

there is an inflection point at 
0

xx = . You may also note that, this condition is 

only necessary. If 0)x(f
0

=′′ or )x(f
0

′′ does not exist, then, there may or may 

not be a point of inflection at 
0

x . There must be a change in the direction of 

concavity on either side of 
0

x for ))x(f,x(
00

to be a point of inflection.  
 

Now, let us understand this through the following examples. 
 

Example 5: Find the point of inflection of the function f defined by 4
x)x(f = , 

if it exists.  
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Solution: We have 3
x4)x(f =′ and 2

x12)x(f =′′ . Also, 0)0(f =′′ . Here, 

f does not have a point of inflection at 0x = even though 0)0(f =′′ (See Fig. 

9). This happens because 0x12)x(f
2

>=′′ for all 0x ≠ , and accordingly, it 

does not change sign in passing through 0. Thus, 0)x(f
0

=′′  is not sufficient , 

for f to have a point of inflection at 
0

xx = . 

 
Fig. 9: Graph of 

4
xy = . 

*** 
 

Example 6: Find the values of x for which the graph of the function f defined 

by }0{\x,x/1)x(f R∈= is concave upward and concave downward. Also, 

find the points of inflection, if any.  

Solution: We shall find if the graph (See Fig. 10) has any point of inflection. 

Here, ,x/1)x(f
2

−=′ and 3
x/2)x(f =′′ . 

Clearly, i) 0)x(f >′′ if 0x >  

  ii)  0)x(f <′′ if 0x <  

It follows from (i) that the graph of f  is concave upward in [,0] ∞ . From (ii) we 

deduce that the graph is concave downward in [0,] ∞− . From the fact that 

f ′′ exists for all x in the domain of f and not at 0x = , we conclude that the 

graph has no point of inflection. 

 

Fig. 10: Graph of 
x

1
y = . 

*** 

Example 7: Find the point(s) of inflection for ,x)x(f
1n2 +

= for all R∈x and 

N∈n . 
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Solution: We have n2
x)1n2()x(f +=′ and 1n2

x.n2).1n2()x(f
−

+=′′  

Here, 0x0)x(f =⇒=′′ . Also, when 0)x(f,0x <′′< and when 

0)x(f,0x >′′> . Therefore, the sign of f ′′ changes and direction of concavity 

changes accordingly, that is, f ′′ changes sign (from negative to positive) while 
passing through the origin. Thus, the origin is a point of inflection on the graph 

of 1n2
x)x(f

+

= .  

*** 
 

Example 8: Determine the point(s) of inflection for the function f given by 
35

x15x2)x(f −= and sketch the graph.  

Solution: The function f is given by 35
x15x2)x(f −= and its first and second 

derivatives are 24
x45x10)x(f −=′ and x90x40)x(f

3
−=′′ , respectively. We 

set the second derivative equal to 0 and solve for x .  

0x90x40
3

=−  

0
4

9
xx40

2
=








−  

0x = or 
2

3
x += or 

2

3
x −=  

Next, we check the sign of )x(f ′′ over the intervals bounded by these three x -

values, the change in sign of f ′′ is given in Table 2. 
 

Table 2 
 

Interval Sign of f ′′  Concavity of f  

2

3
x −<  

−  Concave downward 

0x
2

3
<<−  

+  Concave upward 

2

3
x0 <<  

−  Concave downward 

2

3
x >  

+  Concave upward 

 

The graph of f changes from concave downward to concave upward at 

2

3
x −= , concave upward to concave downward at 0x = and concave 

downward to concave upward at 
2

3
x = . Therefore, 

( ))0(f,0,
2

3
f,

2

3
















−− and 

















2

3
f,

2

3
are points of inflection.  

Since, 0)0(f,
16

567

2

3
f ==








− and ,

16

567

2

3
f −=








therefore, the points 

)0,0(O,
16

567
,

2

3
p 








− and 








−

16

567
,

2

3
Q are the points of inflection and these 

points are shown in Fig. 11. 
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Fig. 11: Graph of 
35

x15x2y −= . 

*** 
 

Example 9: Determine the concavity and point(s) of inflection for the function 

f given by 1)5x2()x(f
3/1

+−= .  

Solution: Derivaties of f are  

3/23/2
)5x2(

3

2
2)5x2(

3

1
)x(f

−−

−=⋅−=′  

3/53/5
)5x2(

9

8
2)5x2(

9

4
)x(f

−−

−−=⋅−−=′′  

When 0)x(f,
2

5
x >′′< , so, f is concave upward on 





∞−

2

5
, . When 

,0)x(f,
2

5
x <′′> so, f is concave downward on 





∞,

2

5
. To find the point of 

inflection, we find where 0)x(f =′′ and where )x(f ′′ does not exist. Since, 

)x(f ′′ is never 0, we only need to find where )x(f ′′ does not exist. Thus, the 

possible inflection point is ,
2

5
f,

2

5
















that is 








1,

2

5
. The graph is shown in 

Fig. 12. 

 
 

Fig. 12: Graph of 1)5x2(y 3

1

+−= . 

*** 
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Example 10: An efficiency study of the morning shift at a factory indicates that 
the number of units produced by an average worker in t hours after 8:00 am is 

given by t12t9t)t(Q
23

++−= . At what time in the morning is the worker 

performing most efficiently? 
 
Solution: We assume that the morning shift runs from 8:00 am until noon and 
that worker’s efficiency is maximized when the rate of production 

12t18t3)t(Q
2

++−=′  is as large as possible for 4t0 ≤≤ . The second 

derivative of Q is 18t6)t(Q +−=′′ , which is zero, when 3t = . This is the point 

of inflection, we can say that the rate of production )t(Q is greatest and the 

worker is performing most efficiently, when 3t = , that is, at 11:00 am. The 

graphs of the production function Q , its derivative and the rate of production 

function are shown in Fig. 13. Notice that the production curve is steepest and 

the rate of production is greatest when 3t = . 
 

 

Fig. 13: Graph of a production function curve showing the point of inflection. 

*** 
 
Try the following exercise. 
 
 

E3) Determine the concavity, convexity and points of inflection of the 
following functions.  

 i) R∈∀= x,x)x(f
3   

 ii) R∈∀= x,x)x(f
3/1   

 iii) R∈∀+−−= x,1x12x2x)x(f
234  

 iv) }3{x),3x/()2x()x(f −∈∀−−= R  

 v) 0x,xln)x(f >=   

 vi) π<<= 2x0,xcos)x(f  

 

 
Let us now discuss the measure of the bending of a graph at a point, which is 
known as the curvature at that point.  For this, we draw a circle that closely 
fits nearby points on a local section of a curve, as given in Fig. 14.  
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Fig. 14 

 
We say that the curve and the circle osculate, as both the curves (the circle 
and the curve) have the same tangent at the point where they meet.  
 
The radius of curvature of the curve at a particular point is defined as the 
radius of the approximating circle. The radius changes as we move along the 
curve. How do we find this changing radius of curvature?  

We measure the curvature at ))c(f,c(  by the ratio.  

 
( )

2/32
])c(f1[

)c(f
)c(k

′+

′′

=  

The radius of curvature at ))c(f,c(  is denoted by )c(ρ  and is defined by 

)c(k

1
)c( =ρ , if 0)c(k ≠ . 

 
Let us find the radius of curvature in the following examples. 
 

Example 11: Find the radius of curvature for the cubic 3xx2y
3

+−=  at 

1x = . 

Solution: Here, 3xx2)x(f
3

+−= . First, let’s draw the graph of the function 

f  as given in Fig. 15. 

 

Fig. 15 
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To find the radius of curvature, we need derivatives. Thus, 1x6)x(f
2

−=′ , 

and 5)1(f =′ . Also, 25))1(f(
2

= . Here, x12)x(f =′′ and 12)1(f =′′ . 

Now, we are ready to substitute these values in the formula to get the radius at 
any point c . We get 

( )[ ]
05.11

12

)251(

)c(f

)c(f1
)c(

2/32/3

≈
+

=

′′

′+
=ρ  

To show what we have done, let’s look at the graph of the curve with the 
approximating circle overlaid. The circle is a good approximation for the curve 

at )4,1( as shown in Fig. 16. 

 
Fig. 16 

 
Now try the following exercises. 
 

 
E4) Find the radius of curvature of the function f , defined by,  

2x5.2x5.1)x(f
2

+−= at )3,2( . 

 
E5) Find the curvature at an arbitrary point of the graph of the function 

  i) R∈−= x,5x)x(f . 

 ii) R∈+= x,9x)x(f
2  

 iii) R∈= x,xsin)x(f  

 iv) 1x1,)x1()x(f
2

<<−−=  

 

 
So far, we discussed the applications of the second derivative. We go back to 
the first derivative now and discuss tangents and normals in the following 
section.  
 

14.3 EQUATIONS OF TANGENTS AND NORMALS 
 
In Unit 9, we have seen how a derivative can be defined precisely with the help 
of the slope of the tangent at any point to a curve. We have noted that the 

slope of a tangent to the curve )x(fy =  at )y,x(
00

 is given by )x(f
0

′ , 

whenever it exists.  In fact, we had also obtained the equations of the tangents 
of some simple curves.  Once, we know how to find the equation of a tangent, it 
is easy to find the equation of a normal using slope of the tangent.  A normal to 
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a curve, )x(fy =  at )y,x(
00

 is a line which passes through )y,x(
00

 and is 

perpendicular to the tangent at that point.  This means that the slope of this 

normal will be 
)x(f

1

0
′

− , if 0)x(f
0

≠′ . You may recall Unit 3, where we 

discussed that a line 
1

L  is perpendicular to a line 
2

L  iff  1mm
21

−= , where 

1
m  and 

1
m  are the slopes of 

1
L  and 

2
L , respectively. 

Now, what happens when 0)x(f
0

=′ ? The derivative  0)x(f
0

=′  implies that 

the slope of the tangent at )y,x(
00

 is zero, that is, this tangent is parallel to 

the x -axis.  In this case, the normal (which is perpendicular to the tangent) 
would be parallel to the y -axis.  The equation of this normal, would then be 

0
xx = . 

 

Now, let us look at various curves and try to obtain the equations of their 
tangents and normals using derivatives.  
 
Example 12: Find the equation of the tangent and normal to the 

curve 0a,ax2y ≠= . 

Solution: Consider the curve given in Fig. 17. Here, 
y

a2

x

a

dx

dy
== .  Thus, 

dx

dy
 exists and is non-zero for all 0y ≠ .  Now, y  will be zero, only if, x  is zero.  

Thus, we can find the equations of tangent and normal to this curve at any 

point, except the origin )0,0( .  The slope of the tangent at any point )y,x(
00

 

will be 
0

y/a2 .  The slope of the normal at )y,x(
00

will, therefore, be a2/y
0

− .  

Thus, the equation of the tangent at )y,x(
00

 is )xx(
y

a2
yy

0

0

0
−=−  

0

2

00
ax2ax2yyy −=−⇒  

0

2

00
ax2yax2yy −+=⇒  

)xx(a2yy
00

+=⇒   [since, 
0

2

0
ax4y = ] 

The equation of the normal at )y,x(
00

 is )xx(
a2

y
yy

0

0

0
−

−
=− , which is 

0000
xyyxay2ay2 −+= after simplification, as shown in Fig. 17.  

 

Fig. 17: Tangent and Normal of ax2y = . 

*** 

Recall Unit 3, where we 
learnt that the equation 
of a line passing through 

the point )yx(
00

,  and 

having a slope m  is 

)xx(myy
00

−=− . 
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Example 13: The position of a moving car at time t is given by 

5t2t)t(f
23

+−= . 

i) Suppose the car is moving around a corner and is driven over something 
slippery on the road (like oil, ice, water or loose gravel) and also suppose 
that the car starts to skid (see Fig. 18). What would be the equation of the 

path is which car skids at 2t = .  

ii) If the car is moving fast around a circular track, the force that the traveller 
feels pushing outwards is normal to the curve of the road. The force that 
is making the traveller go around that corner is actually directed towards 
the center of the circle, that is, normal to the circle. Hence, find the 
equation of the normal.  

iii) Draw  the graph of the tangent and normal to the road at 2t = . 

 

Fig. 18: A skidding car at the corner. 

Solution: At 5)2(f,2t == . The car will start to skid and continue in a direction 

along the tangent. Here, t4t3)t(f
2

−=′ .  

The slope of the tangent to the road at the point where the car starts to skid is 

4)2(fm
1

=′= . 

Equation of the tangent is )2t(45y −=− , that is, 03yt4 =−− . 

The slope of the normal is 
4

1

m

1
m

1

2
−=−= . 

Equation of the normal is )2t(
4

1
5y −−=−  

That is, 022y4t =−+ . 

Fig. 19 shows the graph of the tangent and normal to the curve at 2t = . 
 

 
Fig. 19 
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Example 14: Find the points on the graph of 23
x6x)x(f +−= at which the 

tangent line is horizontal.  

Solution: We use the derivative to find the slope of a tangent line, and a 
horizontal tangent line has slope 0. Therefore, we need to find all x for which 

0)x(f =′ . Setting 0)x(f =′  

[ ] 0x6x
dx

d 23
=+−  

0x12x3
2

=+−  

0x = or 4x = . 

To find the points, we need to find y -coordinate also, which is 0)0(f = and 

32)4(f = . Thus, the points, at which tangents are horizontal, are )0,0( and 

)32,4( . These points are origin O and P, as shown in Fig. 20. 

 

Fig. 20: Graph of f with horizontal tangents. 

*** 
Now, let us find the tangents and normal of the curves in the following 
examples where the equation of the curve is given in the parametric form.  In 
Block 3, we have already discussed parametric equation. 
 
Example 15: Find the equations of the tangent and the normal at the point 

4/π=θ  to the curve given by θ=θ=
33

sinay,cosax .  

Solution: The rough sketch of the curve is given in Fig. 21. Let us find the 
derivative of y with respect to x , so that we get the slope of the tangent line.  

 θ−=

θθ−

θθ
=

θ

θ
= tan

sincosa3

cossina3

d/dx

d/dy

dx

dy
2

2

 

 
Fig. 21: Graph of parametric curve. 
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The slope of the tangent at 4/π=θ  is 1)4/tan( −=π− .  The slope of the 

normal at this point, thus, comes out to be 1.  Now, if 
2

1
cos,4/ =θπ=θ  and 

2

1
sin =θ . 

Thus, 
22

a
x =  and 

22

a
y = . 

The equation of the tangent at 








22

a
,

22

a
 is  

 







−−=−

22

a
x1

22

a
y  

That is, 
2

a
yx =+  or a)yx(2 =+  

The equation of the normal at 








22

a
,

22

a
 is  

 







−=−

22

a
x1

22

a
y or xy = . 

*** 

By now, you are quite familiar with the fact that )x(f ′  or dx/dy  may not exist 

at some points.  At such points either the tangent does not exist, or else, is 
parallel to the y -axis, that is vertical.  To examine the existence of vertical 

tangents at )y,x(
00

, we examine 

)y,x( 00

dy

dx








.  If 0

dy

dx

)y,x( 00

=







, then, we 

conclude that there is a vertical tangent at )y,x(
00

.  In such cases, the 

equation of the tangent can be written as 
0

xx = . 

 
The normal corresponding to a vertical tangent will be horizontal or parallel to 

the x -axis.  This means, we can write its equation as 
0

yy = , as its passes 

through 
0

xx = . 

 

If you consider the curve taken in Example 15, you will find that 
dx

dy
 does not 

exist when 2/π=θ .  Let us examine 
dy

dx
 at this point 0cot

dy

dx
=θ−=  if 

2/π=θ . This means, that the curve has a vertical tangent and, consequently, 

a horizontal normal at this point.  Now, when 0x,2/ =π=θ  and ay = .  

Thus, the equation of the tangent at )a,0(  is 0x =  and that of the normal is 

ay = . 

 
Let us now look at another example. 
 
Example 16: A flight of a paper aeroplane, follows the trajectory 

tsin3tx −= and )0t(,tcos34y ≥−= . 

but crashes into a wall at time 10t = . 

i) At what time was the aeroplane flying horizontally? 

ii) At what time was it flying vertically? 
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Solution: i) The aeroplane was flying horizontally at those times when 

0dt/dy = and 0dt/dx ≠ . From the given trajectory, we have 

 tsin3
dt

dy
= and tcos31

dt

dx
−=  

Setting 0dt/dy = yields the equation ,0tsin3 = or, more simply, 0tsin = . 

This equation has four solutions in the time interval 10t0 ≤≤ and are 

π=π=π== 3t,2t,t,0t . 

Now, tcos31
dt

dx
−−=  

 2
dt

dx

0t

−=








=

 

 4
dt

dx

t

=








π=

 

 2
dt

dx

2t

−=








π=

 

 4
dt

dx

3t

=








π=

 

Since, 0tcos31dt/dx ≠−= for these values of t , the aeroplane was flying 

horizontally at times ,28.62t,14.3t,0t ≈π=≈π== and 42.93t ≈π=  which 

is consistent with Fig. 22. 
 

 

Fig. 22 

ii) The aeroplane was flying vertically at those times when 0dt/dx = and 

0dt/dy ≠ . Setting 0dt/dx = , we get  0tcos31 =−  or 
3

1
tcos =  

 This equation has three solutions in the time interval 10t0 ≤≤ , these 

are 
3

1
cos2t,

3

1
cos2t,

3

1
cost

111 −−−

+π=−π== . 

 Since tsin3dt/dy = is not zero at these points, it follows that the 

aeroplane was flying vertically at times 

51.723.12t,05.523.12t,23.1
3

1
cost

1
≈+π≈≈−π≈≈=

−  

*** 
Now, let us find the tangent line of the curve in polar form. To find a method for 

obtaining slopes of tangent lines to polar curves of the form )(fr θ= in which 

r is a differentiable function of θ . We express x and y parametrically in terms 
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of the parameter θ by substituting )(f θ for r in the equations θ= cosrx and 

θ= sinry . This yields  

 θθ=θθ= sin)(fy,cos)(fx  

Now, differentiating x and y with respect to θ , we obtain  

 θ

θ

+θ−=θθ′+θθ−=

θ

cos
d

dr
sinrcos)(fsin)(f

d

dx
 

 θ

θ

+θ=θθ′+θθ=

θ

sin
d

dr
cosrsin)(fcos)(f

d

dy
 

Thus, if θd/dx and θd/dy are continuous and if ,0d/dx ≠θ then y is a 

differentiable function of x , and the derivative dx/dy  with θ in place of 

t yields  

 

θ

θ+θ−

θ

θ+θ

=

θ

θ
=

d

dr
cossinr

d

dr
sincosr

d/dx

d/dy

dx

dy
 

Now, let us find the slope of tangent of polar curve in the following example:  
 

Example 17: Find the slope of the tangent line to the circle θ= cos4r at the 

point where 4/π=θ . 

Solution: Here, θ= cos4r , we obtain  

 θ−=

θ−

θ
=

θθ−

θ−θ
= 2cot

2sin4

2cos4

cossin8

sin4cos4

dx

dy
22

 

Thus, at the point where 4/π=θ the slope of the tangent line is  

 0
2

cot
dx

dy
m

4/

=
π

−==

π=θ

 

which implies that the circle has a horizontal tangent line at the point where 

4/π=θ (Fig. 23). 

 

Fig. 23 

*** 
 

The following example illustrates the method of finding the equations of 
tangents and normals when the equation of the curve is given in the implicit 
form. 
 
Example 18: Find the equations of the tangent and the normal to the curve 

defined by 0xy6yx
33

=−+  at a point )y,x(P
00

 on it. 
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Solution: Fig. 24 shows the rough sketch of the curve 0xy6yx
33

=−+ . To 

find the equations of tangent and normal, we first find the slope of the tangent 
using derivative.  

 

Fig. 24: Graph of 0xy6yx
33

=−+ . 

 
In Unit 10, we have seen how to calculate the derivative when the relation 
between x  and y  is expressed implicitly.  We shall follow the same procedure 

again.  Differentiating the given equation throughout with respect to x , we get  

 0
dx

dy
x6y6

dx

dy
y3x3

22
=−−+ , which gives 

x2y

xy2

dx

dy
2

2

−

−
=  

Thus, the slope at the point )y,x(
00

 is 
0

2

0

2

00

x2y

xy2

−

−
. 

Hence, the equation of the tangent at )y,x(
00

 is  

 )xx(
x2y

xy2
yy

0

0

2

0

2

00

0
−

−

−
=−  

On simplifying and using the relation 
00

3

0

3

0
yx6yx =+ , the equation of tangent 

reduces to  

 0yx2y)yx2(x)xy2(
00

2

00

2

00
=+−+−  

Now, the normal at )y,x(
00

 is a line passing through )y,x(
00

 and having 

slope
2

00

0

2

0

xy2

)x2y(

−

−−
.  Hence, the equation of the normal at )y,x(

00
 is 

)xx(
xy2

x2y
yy

02

00

0

2

0

0
−

−

−
−=− . 

On simplifying, we get 

0)y2yxx2()yx(y)xy2(x)x2y(
000000

2

000

2

0
=++−+−+− . 

*** 

Example 19: Find the equations of those tangents to the curve 3
xy =  , which 

are parallel to the line 03yx12 =−− .  

Solution: We first observe that the slope of the line 03yx12 =−−  is 

12 [Recall Unit 3, and compare the equation of line with slope intercept form, 

cmxy += ] .  Thus, the slope of any line parallel to this line should also be 12 .  

Now, the slope of the tangent to the curve 3
xy =  at any point )y,x(  is 

2
x3)x(f =′ . 



 

98

 

Block 4                                                   Applications of Differential Calculus 

If we equate )x(f ′  to 12 , we will get those points on the curve where the 

tangent is parallel to 03yx12 =−− . 

Thus, 12x3
2

= , or 4x
2

= , that is, 2x ±= . 

If 8xy,2x
3

===  and when 8xy,2x
3

−==−= . 

Thus, the points are )8,2(  and )8,2( −− .  The equations of the tangents at 

these points are )2x(128y −=−  and )2x(128y +=+ , respectively. 

*** 
If you have followed these examples, you should have no problem is solving 
the following exercises. 
 
 

E6) Find the equations of the tangent and the normal to each of the following 
at the specified point. 

 i) 1x2xy
2

++=  at )4,1(  

 ii) tsinby,tcosax ==  at the point given by 4/t π=  

 iii) 25yx
22

=+  at )4,3(− . 

 

E7) Find the points on the graph of 23
x6x)x(f +−= at which the tangent 

line has slope 9. 
 
E8) Find the equations of the tangent and the normal to each of the following 

curves at the point ‘ t ’: 

 i) at2y,atx
2

== . 

 ii) )tcos1(ay),tsint(ax −=+= . 

 
E9) Find the equation of the tangent to each of the following curves at the 

point )y,x(
00

. 

 i) 01y6x4yx
22

=−+++  

  ii) axy =  

 

E10) Prove that the line 1y3x2 =+  touches the curve x2
ey3

−

=  at a point 

whose x -coordinate is zero. 

E11) Prove that the equation of the normal to the hyperbola 1
b

y

a

x
2

2

2

2

=−  at a 

point )b,2a(  is 2)ba(y2bax
22

+=+  

E12) Without eliminating the parameter t , find dx/dy and 22
dx/yd at the 

points )1,1( and )1,1( − on the semicubical parabola 2
tx = and 3

ty = .  

 

E13) A bee follows the trajectory tcos22y,tsin2tx −=−= , where 0t ≥ . 

It lands on a wall at time 10t = . 

 i)  At what time was the bee flying horizontally? 

 ii) At what time was the bee flying vertically? 
 

E14) Find the points on the cardioid θ−= cos1r at which there is a 
horizonatal tangent line, or a vertical tangent line. 
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E15) Are there any points on the following curves where the tangent is parallel 
to either axis?  If yes, find all such points. 

 i) x2xxy
23

−−= . 

 ii) xsiny = . 

E16) Find the equation of the tangent to the curve 
4

x
y

2

= and is parallel to 

02yx3 =+− . 
 

We have seen that the slope of the tangent at a point is its derivative at that 
point. We can use slopes of two curves at a point to find the angle of 
intersection between these two curves at that point.  
 
In the following section, we will find the angle of intersection of two curves.  
 

14.4 ANGLE OF INTERSECTION OF TWO CURVES  
 
The concept of a tangent to a curve has proved very useful in describing 
various geometrical features of the curve.  In this section, we shall look at one 
such features. 
 
When two curves intersect at a point, their angle of intersection at that point 
can be defined with the help of their tangents there.  In fact, we say that if two 
curves intersect at a point P , the angle of intersection of these two curves at 

P  is an angle between the tangents to these curves at P , such that 

2/0 π≤θ≤  (see Fig. 25). 

 

 

Fig. 25 

 
We now prove a theorem which gives us the angle of intersection at a point 
when the equations of the two curves are known. 
 

Theorem 1: If two curves )x(fy =  and )x(gy =  intersect at a point 

)y,x(P
11

, then the angle θ  of intersection of these curves at )y,x(P
11

 is 

given by  

 
)x(g)x(f1

)x(g)x(f
tan

11

11

′′+

′−′

=θ . 
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Proof: From Fig. 25, )tan(tan φ−ψ=θ  

           
φψ+

φ−ψ
=

tantan1

tantan
  

           
)x(g)x(f1

)x(g)x(f

11

11

′′+

′−′

= . 

Fig. 25 shows that φ−ψ is an acute angle.  But if the curves f  and g  were as 

in Fig. 26, then angle ),( φ−ψ−π=θ since, we take the acute angle as the 

angle of intersection. 

 

Fig. 26 

 

In this case, )tan()](tan[tan Φ−ψ−=Φ−ψ−π=θ . 

 

But we are not in a position to decide whether we should take θtan  as 

)tan( Φ−ψ  or )tan( Φ−ψ− , unless we have drawn the curves.  Since, it 

would be tedious to first draw the curves and then decide, therefore, we think 
of an alternate scheme.  We observe that since θ  lies between 0  and 

,2/π therefore, θtan is non-negative.  Thus, we take θtan  to |)tan(| Φ−ψ . 

Hence, 
)x(g)x(f1

)x(g)x(f
tan

11

11

′′+

′−′

=θ .  

 
Having proved this theorem, we can easily deduce the following corollaries. 
 

Corollary 1: Two curves )x(fy =  and )x(gy =  touch each other )y,x(
11

, 

that is, have common tangent at )y,x(
11

, iff 0=θ , that is, iff )x(g)x(f
11

′=′ . 

 
Corollary 2: Two curves cut each other at right angles, or orthogonally, at 

)y,x(
11

 iff 1)x(g)x(f
11

−=′′ . 

 
If your go through the following examples carefully, you will have no difficulty 
in solving the exercises later. 
 

Example 20: Find the angle of intersection of the parabola x2y
2

=  and the 

circle 8yx
22

=+ . 

Solution: First, we find the points of intersection of these curves, if there are 
any.  The coordinates of these points will satisfy both the equation to the 
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parabola and the equation to the circle.  So substituting x2y
2

=  in 

8yx
22

=+ , we get 8x2x
2

=+ , or 4x −=  or 2 . 

It is clear from x2y
2

=  that the abscissa )2/y(x
2

=  of any common point 

must be non-negative.  So, we reject the value 4x −= .  When 2y,2x ±== .  

Hence, the common points are )2,2(P  and )2,2(Q − .  Since, both the curves 

are symmetric about the x -axis (see Fig. 27) and since, P  and Q  are 

reflections of each other w.r.t. the x -axis, then it is sufficient to find the angle 

at one point, say P because the angle at Q  is equal to the angle at P . 

 
Differentiating the two equations w.r.t x , we get  

 2
dx

dy
y2 =  and 0

dx

dy
y2x2 =+  

 

Fig. 27 

 

Hence, the values of )x(f ′  and )x(g′ , that is, the slopes of the tangents to the 

two curves at )y,x(  are y/1  and y/x− .  Thus, the slopes of the tangents at 

)2,2(  to the two curves are 2/1  and 1−  respectively.  Hence, if θ  is the 

required angle, then  

 3
)1(2/11

)1(2/1
tan =

−+

−−
=θ  

Hence, o
56.713tan

1
≈=θ

− . 

*** 
 
Example 21: Find the angle between cubic polynomial 

14x14x6xy
23

+−+−= and quadratic polynomial 6x6xy
2

−+−= .  

Solution: To find the point where the curves intersect, we should solve their 

equations simultaneously. Therefore,  6x6x14x14x6x
223

−+−=+−+−  or 

020x20x7x
23

=−+− . You may recall what you learnt in Unit 5, to find the 

root of the cubic equation. The only real root of this cubic is 2x = .  
 
Then, we calculate the slopes of the tangents drown to the given cubic and the 
quadratic polynomial by evaluating their derivatives at 2x = . Thus, taking 

14x14x6x)x(f
23

+−+−= , we get 14x12x3)x(f
2

−+−=′ , then 2)2(f −=′  

and 6x6x)x(g
2

−+−= , we get g′ , then 2)2(g =′ . 
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Finally, we put the slopes of tangents into the formula to find the angle between 
given curves, as shown in Fig. 28. 

 
3

4

)2(21

22

)x(f)x(g1

)x(f)x(g
tan

00

00
=

−⋅+

−−
=

+

−

=θ . 

then, ,
3

4
tan

1








=θ

−

which is approximately 753
o

′ . 

 

Fig. 28 

*** 
 

Example 22: At which point of the cubic polynomial 2x2x3xy
23

−+−= is its 

tangent perpendicular to the line xy = .  

Solution: Since, the slopes of perpendicular lines are the negative reciprocals 
of each other, therefore, the slope of the tangent to the cubic has to be 

1)x(f −=′ which is to be perpendicular to the given line whose slope is 1. 

 

Therefore, ,2x6x3)x(f
2

+−=′ and 1)x(f −=′ , thus, 12x6x3
2

−=+− , which 

gives 1x = , the abscissa of the tangency point. Then, we put 1x = into the 

given cubic to calculate its ordinate, 2x2x3xy
3

−+−= , 2)1(y −= , so the 

tangency point is )2,1( − , as shown in Fig. 29. 

 
Fig. 29 

*** 
You can try these exercises now. 
 

 

E17)  Find the angle of intersection of the parabola x4y
2

=  and y4x
2

= . 
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E18)  Show that the ellipse 8y4x
22

=+  and the hyperbola 4y2x
2

=−  cut 

each other orthogonally (at right angles) at four points. 
 

E19) Show that the curves 2
axy =  and a2yx

22
=+  touch each other 

(have a common tangent) at two points. 
 

 

You may recall Unit 3, where we discussed polar coordinates. Suppose we are 

given an initial line OX  in a plane (see Fig. 30(a)).  Then a point P  can be 
located if we know 

i) r , its distance from O , and  

ii) θ , the angle made by OP  with OX . 

 
          (a)               (b) 

Fig. 30: Polar Coordinates. 

r  and θ  are called the polar coordinates of P  . From Fig. 30 (b), it is clear 

that if x  and y  are the cartesian coordinates of P , then θ= cosrx  and 

θ= sinry .  This also gives 222
yxr +=  and x/ytan =θ .  The equation of a 

curve is sometimes expressed in polar coordinates by an equation )(fr θ= .  

For example, the equation of a circle with centre O  and radius r  is ar = .  
Now, let us turn once again to the problem of finding the angle of intersection 
of two curves. The model that we have been following till now, cannot be used 
if the equation of the curve is given in the polar form.  In this case, we follow a 
somewhat indirect method. 

 
Fig. 31 

Take a look at Fig. 31.  It shows that a curve whose equation is given in the 

polar form as )(fr θ= .  ),r(P θ  and ),rr(Q δθ+θδ+  are two points on this 
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curve.  PT  is the tangent at P  and OPR  is the line through the origin and the 

point P .  We shall now try to find θ , the angle between PT  and OR . 
 

We note here, that the tangent PT  is the limiting position of the secant PQ . If 

we denote the angle between PQ  and OR  by α  then, we can similarly say 

that φ  is the limit of α  as PQ →  along the curve. 

Now, from OPQ∆  we have  

 
OQPsin

OPQsin

OP

OQ

∠

∠
=  

or,  
)sin(

)sin(

r

rr

δθ−α

α−π
=

δ+
 

or,  
)sin(

)sin(

r

r
1

δθ−α

α−π
=

δ
+  

or,  
)sin(

)sin(sin

r

r

δθ−α

δθ−α−α
=

δ
 (since, )sin)sin( α=α−π  

or,  
δθδθ−α








 δθ








 δθ
−α

=

δθ

δ

).sin(

2
sin

2
cos2

r

r

1
 

       

2

2
sin

)sin(

2
cos2

δθ








 δθ

⋅

δθ−α








 δθ
−α

=   

As 0,,PQ →δθφ→α→  and 0r →δ .  Hence, as PQ → , we get  

 φ=

φ

φ
=

θ

cot
sin

cos

d

dr

r

1
  

So that 
dr

d
rtan

θ
⋅=φ  

 

This formula helps us to find the angle between OP  and the tangent at the 

point P  on the curve defined by the equation )(fr θ= . 

 

We shall use this result to find the angle between two curves 
1

C  and 
2

C  

which intersect at P  (say).  If the angles between OP  and the tangents to 
1

C  

and 
2

C  at P  are 
1

φ  and 
2

φ , respectively, then, the angle of intersection of 
1

C  

and 
2

C  will be ||
21

φ−φ  (see Fig. 32). 

 
Fig. 32 

Remember the sine rule for 
a ABC∆ ? 

C

Csin

B

Bsin

A

Asin
==  

BsinAsin −  
















 +−

=

2

BA
cos

2

BA
sin2

 

Recall 1

2

2
sin

lim
0

=

δθ

δθ










→δθ
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This can be easily calculated as we know 
1

tan φ  and 
2

tan φ . 

Thus, 
21

21

21
tantan1

tantan
||tan

φφ+

φ−φ
=φ−φ  

Further, if the curves intersect orthogonally, 1tan.tan
21

−=φφ .  The following 

examples will help clarify this discussion. 
 

Example 23: Find the angle of intersection of the curves θ= 2sinar  and 

θ= 2cosar  at the point )8/,2/a(P π .   

Solution: The coordinates of P  satisfy both the equations θ= 2sinar  and 

θ= 2cosar . 

If 
1

φ  is the angle between OP  and the tangent to θ= 2sinar , then 

2

1
2tan

2

1

2cosa2

2sina

d/dr

2sina

dr

d
rtan

1
=θ=

θ

θ
=

θ

θ
=

θ
=φ  

Similarly, if 
2

φ  is the angle between OP  and the tangent to θ= 2cosar , then 

2

1
2cot

2

1

dr

d
rtan

2
−=θ−=

θ
=φ  

Thus, 
3

4

4/11

2/12/1

tantan1

tantan
tan

21

21

21
=

−

+
=

φφ+

φ−φ
=φ−φ  

Thus, o
13.53)3/4(tan

1

21
≈=φ−φ

− , which is the required angle. 

*** 
 
Now try to do a few exercises on your own. 
 
 

E20) Find the angle between the line joining a point ),r(P θ  on the curve to 

the origin and the tangent for each of the following curves 

 i) θ= 2cosar
22   ii) θ+= cose1r/1  

 iii) θ= mcosar
mm   iv) )msinm(cosar

mm
θ−θ=  

 
E21) Check whether the following two curves intersect orthogonally. 

 i) θ

= aer  and bre =
θ   

 ii) )sin1(ar θ+=  and )sin1(ar θ−= . 
 

 
In the following section, we shall discuss the special points which show 
behaviour different from ordinary points. Such points are called singular points. 
 

14.5 SINGULAR POINTS 
 

An equation of the type )x(fy =  determines a unique value of y  for a given 

value of x .  This means, every straight line parallel to the y -axis meets the 

curve )x(fy =  in a unique point.  However, the equation of a curve is often 

given as 0)y,x(f = .  If )y,x(f  is not a linear expression in y , then it may 

not be possible to write 0)y,x(f =  in the form )x(Fy =  uniquely.  For 

example, if 32
xy)y,x(f −= , then 0)y,x(f =  gives 32

xy = . 

This gives us two relations 2/3
xy +=  and 2/3

xy −=  of type )x(Fy = . 
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The curve has 2 branches, as you can see from Fig 33. 

 
Fig 33: Graph of 

3

= xy
2

. 

 
The origin is common to the two branches of the curve. We can say that two 

branches of the curve 32
xy = pass through points A  and B and meet at the 

origin.  We have a generic name, ‘singular point’, for points like O . Also, 

32
xy =  gives ,

y2

x3

dx

dy
2

=  which is indeterminate at )0,0( . We call such points 

also singular points. We cannot make a general statement about the 
behaviour of curves at singular points, we analyse these case by case. A 
precise definition is as follows. 
 

Definition: If k  branches of a curve pass through a point P  on the curve 

0)y,x(f =  and 1k > , then P  is said to be a singular point or a multiple 

point of order k . 
 

Fig. 34 shows the graph of the function with multiple points.  

 

           (a)                                                  (b)  

Fig. 34: Double and Multiple point. 

 

Multiple point of order two is known as double point.  Thus, the point O in Fig. 
34 (a) is a double point.  Obviously, a curve will have more than one tangent at 
a double point (one corresponding to each branch). Depending upon whether 
tangents at double points are distinct, coincident or imaginary, we shall give 
special names to such points such as node, cusp and conjugate as given in 
the following definition:  
 
Definition: A double point is known as  
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i) a node if the two tangents at that point are real and distinct, 
ii) a cusp if the two tangents are real and coincident, 
iii) a conjugate (or isolated) point if the two tangents are imaginary. 

 

In Fig 35, we show example of each. In Fig. 35 (a), for the curve 0)y,x(f = , 

the origin is a node.  In Fig. 35 (b), for the curve 0)y,x(g = , the points 

321
P,P,P  and 

4
P  are cusps, while the point Q  on the curve 0)y,x(h =  is a 

conjugate point in Fig. 35 (c). Thus, a conjugate point is an isolated point.  

 

(a)  Node     (b)  Cusp    (c)  Isolated Point 

Fig. 35 
 

Example 24: Determine whether the graph of the given functions has a 
vertical tangent or a cusp at the origin.  

i)  323
)3x(xy +=  

ii) 
33

)1x(xy +=  

Solution: i) We have 
323

)3x(xy += or )3x(xy
3/2

+=  

  
3/23/5

x3xy +=  

 
3/13/2

x2x
3

5
y

−

+=′  

   )x6x5(
3

1 3/13/2 −

+=  

   )6x5(x
3

1 3/1
+=

−

 

when ,y,0x −∞→′→
−

and as +∞→′→
+

y,0x . In this case, where 

y′ approaches ∞+ from one side of a point and ∞− from other side of the 

point, the curve is said to have a cusp at that point. Hence, there is a cusp at 
the origin as shown in Fig. 36. 

 
Fig. 36 
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ii) )1x(xy
3/1

+=  

 3/23/1
x

3

1
x

3

4
y

−

+=′  

  )1x4(x
3

1 3/2
+=

−  

As ∞→′→
−

y,0x and ∞→→
+

y,0x . Since ∞→′y as 0x → from both the 

sides. This means that a vertical tangent occurs at origin as shown in Fig. 37. 
 

 

Fig. 37 

*** 
 
Now, try the following exercises. 
 

 

E22) Check whether the following curves has a vertical tangent or a cusp at 
the origin. 

 

i) 5/35/7
xx5y −=  

ii) 525
)1x2(xy +=   

 

 
Now, let us summarize what we have studied in this unit.  
 

14.6 SUMMARY 
 
In this unit, we have covered the following points. 
 

1. If 0)x(f >′′ on some interval then f is convex on it. If ,0)x(f <′′ then f is 

concave on it.  
 

2. If 0)x(f
0

=′′ or does not exist and f ′′ changes sign in passing through 

0
x , then f has a point of inflection at 

0
xx = . This means that the 

tangent at ))x(f,x(
00

crosses the graph of f at this point.  

 

3. The radius of curvature at point c on the function f is 

)c(f

))c(f(1(
)c(

2/32

′′

′+
=ρ  and curvature 

)c(

1
)c(k

ρ

= . 
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4. The equation of the tangent at )y,x(
00

 to the curve )x(fy =  is 

)xx()x(fyy
000

−′=− . 

 

5. The curve has a vertical tangent at )y,x(
00

 if 0
dy

dx
=  at this point. 

 

6. The angle θ  of intersection of two curves )x(gy)x(fy == and  is the 

acute angle between the tangents at that point to the curves.  It is given 

by the relation 
)x(g)x(f1

)x(g)x(f
tan

′′+

′−′

=θ . 

 

7. )x(fy =  and )x(gy =   cut each other orthogonally at )y,x(
00

 if 

1)x(g)x(f
00

−=′′ . 

 

8. The angle φ  between the tangent and the radius vector of the curve 

)(fr θ=  at the point θ  is given by 
dr

d
rtan

θ
=φ . 

 
9. If k  branches of a curve pass through a point P  on the curve 

0)y,x(f =  and 1k > , then P  is said to be a singular point or a multiple 

point of order k .  Singular points of order two are known as double 
points.  A double point is known as a node, a cusp or a conjugate 
(isolated) point according as the two tangents at that point are real and 
distinct, real but coincident, or imaginary. 

14.7 SOLUTIONS/ANSWERS 
 

E1) From condition (i), it is clear that f is increasing on [2,] ∞− and 

decreasing on [,2] ∞ . From (ii), it can be said that f is concave upward 

on [3,] −∞− and [,3] ∞ and f is concave downward on [3,3]− . 

 4)x(flim
x

−=
∞−→

says that f approaches 4− as x approaches ∞− and 

1)x(flim
x

=
∞→

says that f approaches 1 as x approaches ∞ .  

 The graph sketch of f will look like this (Fig. 38). 

 
Fig. 38 

 

E2) ,x4x)x(f
34

−= we get 
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 23
x12x4)x(f −=′  

 )2x(x12x24x12)x(f
2

−=−=′′  

 Thus, 0)x(f >′′ when 2x > and 0x < . Also, 0)x(f <′′ when 2x0 << . 

Hence, the curve is concave upward on [0,] ∞− and [,2] ∞ and the 

curve is concave downward on [2,0] . The possible graph is shown in 

Fig. 39. 

 
Fig. 39 

 

E3) i) Concave upward in [,0] ∞ ; concave downward in [0,] ∞− ; point 

of inflection )0,0(  
 

 ii) Concave upward in [0,] ∞− ; concave downward in [,0] ∞ ; point 

of inflection: )0,0(  
 

 iii) Concave upward in [,2][1,] ∞∪−∞− ; concave downward in 

[2,1] − ; Points of inflection are )47,2(),8,1( −−−  
 

 iv) Concave upward if 3x > ; concave downward if 3x < ; no point of 
inflection 

 

 v) Concave downward for all 0x > ; no point of inflection 
 

 vi) Concave upward in [2/3,2/] ππ ; concave downward in 

[2,2/3][2/,0] ππ∪π ; point of inflection are )0,2/(π  and 

)0,2/3( π . 
 

E4) We see that this parabola passes through each of the 3 points B,A  and  

C as shown in Fig. 40.  

 

Fig. 40 
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Using the given function, we get 5.2x3
dx

dy
−= . At 5.3

dx

dy
,2x ==  

 Now, 
2

2

dx

yd
at 2x = is 3 . 

 The radius of curvature at )3,2( is 08.16
3

])5.3(1[
2/32

≈
+

. The 

corresponding circle is shown in Fig. 41. 

 

Fig. 41 

E5) i) 0  

 ii) 
2/32

)x41(

2

+

 

  

 iii) 
2/32

)xcos1(

xsin

+

−
 

  

 iv) 1−  
 

E6) i) 4
dx

dy

1x

=








=

.   

  Equation of the tangent at )4,1(  is )1x(4)4y( −=− , which is 

0yx4 =−  

  Slope of the normal at 4/1)4,1( −=  

  Equation of the normal at )4,1(  is )1x()4/1()4y( −−=− , which 

is 17y4x =+ . 
 

 ii) Slope of the tangent at 
4

t
π

= is a/b−  

Slope of the normal at 
4

t
π

=  is b/a  

  At 
2

b
y,

2

a
x,4/t ==π= .   

  Equation of the tangent: 







−

−
=








−

2

a
x

a

b

2

b
y  

  Equation of the normal: 







−=−

2

a
x

b

a

2

b
y . 

 

 iii) Slope of the tangent 4/3=  

Slope of the normal 3/4−=  
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Equation of the tangent: )3x()4/3(4y +=−  

Equation of the normal: )3x()3/4(4y +−=− . 
 

E7) x12x3)x(f
2

+−=′  

 9x12x39)x(f
2

=+−⇒=′  

 09x12x3
2

=−+−  

 03x4x
2

=+−  

 1x = or 3x = . 

 5)1(f = and 27)3(f =  

 Thus, the points at which slope of the tangent is 9 are )5,1( and )27,3( . 
 

E8) i) Equation of the tangent: 2
atxty +=  

Equation of the normal: )t2(attxy
2

+=+  
 

 ii) Equation of the tangent: )atx(tsiny)tcos1( −=+ which is            

)2/tsin(aty)2/tcos(x)2/tsin( =−  

  Equation of the normal: 

)2/tcos(at)2/tsin(a2x)2/tcos(y)2/tsin( +=+  

 

E9) i) )xx(
3y

2x
yy

0

0

0

0
−









+

+
−=− . 

 

 ii) )xx()x/y(yy
0000

−−=− . 
 

E10) 
3

2

dx

dy
ey3

0x

x2
−=⇒=

=

− . When −x coordinate is zero, )3/1,0(  is a 

point on this curve.  The tangent at )3/1,0(  is given by x
3

2

3

1
y −=− or, 

1y3x2 =+ . 

 

E11) 
a

2b

dx

dy
1

b

y

a

x

)b,2a(

2

2

2

2

=⇒=−  

 ⇒  Slope of the normal 
2b

a
−=  

 ⇒  Equation of the normal is )2ax(
2b

a
by −

−
=−  

 

E12) Since, t2
dt

dx
= and ,t3

dt

dy
2

= therefore  

 t
2

3

t2

t3

dt/dx

dt/dy

dx

dy
2

===      )0t( ≠  

 Also, 
t4

3

t2

2/3

dt/dx

)t2/3(
dt

d

dt/dx

dt/yd

dx

yd

dx

yd
2

2

===

′

=

′

=  

 

 Since the point )1,1( on the curve corresponds to 1t = in the parametric 

equations, therefore we get 

 
2

3

dx

dy

1t

=

=

and 
4

3

dx

yd

1t

2

2

=

=
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 Similarly, the point )1,1( − corresponds to 1t −= in the parametric 

equations, we get 

 
2

3

dx

dy

1t

−=

−=

and 
4

3

dx

yd

1t

2

2

−=

−=

 

 
 The graph shown in Fig. 42 also verifies the values we obtained for the 

first and second derivatives. Since at )1,1( on the upper branch of the 

graph, the tangent line has positive slope and the curve is concave up, 

and at )1,1( − on the lower branch, the tangent line has negative slope 

and the curve is concave down.  
 

 Finally, we observe observe that we were able to find dx/dy and 
22

dx/yd  for both 1t = and 1t −= , even though the points )1,1( and 

)1,1( − lie on different branches.  

 
Fig. 42 

E13) tcos21
dt

dx
−= and ,tsin2

dt

dy
= therefore, 

tcos21

tsin2

dx

dy

−

= . 

 

E14) The curve will have a horizontal tangent line when 0d/dy =θ and 

0d/dx ≠θ . Similarly, the curve has a vertical tangent line when 

0d/dy ≠θ and 0d/dx =θ , and a singular point when 0d/dy =θ and 

0d/dx =θ . We can find these derivatives. However, an alternative 
approach is to go back to basic principles and express the cardioid 

parametrically by substituting θ−= cos1r in the conversion 

formulas θ= cosrx  and θ= sinry . We get ,cos)cos1(x θθ−=  

θθ−= sin)cos1(y where π≤θ≤ 20 . 

 Differentiating these equations with respect to θ and then simplifying, we 

get )1cos2(sin
d

dx
−θθ=

θ

and )cos21()cos1(
d

dy
θ+θ−=

θ

.  

 Thus, 0d/dx =θ if 0sin =θ or 
2

1
cos =θ , and 0d/dy =θ if 

2

1
cos −=θ . 

Hence, the solutions of 0d/dx =θ on the interval π≤θ≤ 20 are 

π
π

π
π

=θ=

θ

2,
3

5
,,

3
,0:0

d

dx
 and the solutions of 0d/dy =θ on the 

interval π≤θ≤ 20 are π
ππ

=θ=

θ

2,
3

4
,

3

2
,0:0

d

dy
. 
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 Thus, the curve has horizontal tangent lines at 3/2π=θ and 

,3/4π=θ vertical tangent lines at ,,3/ ππ=θ and 3/5π . 

E15) i) Tangents are parallel to the x -axis at 
3

)71(
x

±
= . 

 ii) Tangents are parallel to the x -axis at all points where 
2

nx
π

+π=  

for some integer n .  There is no tangent parallel to the y -axis. 
 

E16) 
2

x

4

x2

dx

dy
==  

 Since, 6x3
2

x
=⇒= when 9y,6x == .  

 The equation of the tangent is )6x(39y −=−  

 94x3 =− . 
 

E17) y416/yx4/yxx4y
4222

==⇒=⇒=  at the point of intersection. 

 0y64y
4

=−⇒  

 0)64y(y
3

=−⇒  

 0)16y4y()4y(y
2

=++−⇒  

 4,0y =⇒  (other roots are complex) 

 0x =⇒  or 4 . 

 Slope of the tangent to x4y
2

=  at 2/1)4,4( =  

 Slope of the tangent to y4x
2

=  at 2)4,4( =  

 ⇒  angle of intersection )4/3(tan
1−

=  

 The tangent at )0,0(  to x4y
2

=  is vertical, and the tangent at )0,0(  to 

y4x
2

=  is horizontal. 

 Hence the angle of intersection of the curves at )0,0(  is 2/π . 
 

E18) The four points are  )3/2,3/4(),3/2,3/4( ±−± .  

 
dx

dy
 for 8y4x

22
=+  is y4/x−  

 
2

1

dx

dy

3

2
y,

3

4
x

−
=∴

==

 

 
dx

dy
 for 4y2x

22
=−  is y2/x  

 2
dx

dy

3

2
y,3/4x

=

==

 

 ∴ They cut orthogonally. 
 

E19) The points are )a,a( and )a,a( −−  
 

E20) i) 
dr

d
2sina2r2

2 θ
θ−=  

  
θ

−
=

θ
⇒

2sina

r

dr

d
2

 

  ⇒angle )2cot(tan
d

d
rtan

11
θ−=









π

θ
=

−−
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θ+

π+
=

−

2
2

)1n2(
tantan

1
 

   θ+
π

+= 2
2

.)1n2(  

  

 ii) 








θ

θ+
−

sine

cose1
tan

1  

  

 iii) Z∈θ+
π

+ n,m
2

)1n2(  

  

 iv) 
4

m
π

−θ . 

 

E21) i) 
θ

θθ

=
θ

⇒
θ

=⇒=

ae

1

dr

d

dr

d
.ae1acr  

  1
ae

r

dr

d
rtan

1
==

θ
=φ⇒

θ
 

  
dr

d
be1berbre

θ
−=⇒=⇒=

θ−θ−θ  

  1
be

r

dr

d
rtan

be

1

dr

d
2

−=
−

=
θ

=φ⇒
−

=
θ

⇒
θ−θ−

 

  ⇒−=φφ⇒ 1tantan
21

 the curves cut orthogonally.  
 

 ii) The curves cut orthogonally. 

E22) i)  5

2

5

2

x
5

3
x7y

−

−=′  

       









−=

−

5

3
x7x 5

4

5

2

 

   0
5

3
x70y 5

4

=−⇒=′  

  As ∞→′→
−

y,0x and as ,y,0x ∞→′→
+ therefore, the curve 

has vertical tangent at origin.  

 
Fig. 43 

 ii) 5

2

5

7

xx2y +=  
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  5

3

5

2

x
5

2
x

5

14
y

−

+=′  

  ( )1x7x
5

2
5

3

+=

−

 

 As ,y,0x −∞→′→
− and as ,y,0x +∞→′→

+ therefore, origin is a 

cusp. 

 
Fig. 44 
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UNIT 15                                                        

ASYMPTOTESASYMPTOTESASYMPTOTESASYMPTOTES    

StructureStructureStructureStructure                                Page NoPage NoPage NoPage No....    
 
15.1 Introduction               117 

Objectives 

15.2 Asymptotes Parallel to the Axes            117 

15.3 Slant/Oblique Asymptotes             128 

15.4 Summary               133 

15.5 Solutions/Answers              133
           

15.1 INTRODUCTION 
 
In the previous two units, we discussed the applications of first and second 
derivatives to visualise the graph of the function. In this unit, we shall discuss 
lines that approach a given curve as close as possible. Such lines are called 
asymptotes. You will see in Sec. 15.2 and Sec. 15.3 that there are three 
kinds of asymptotes: horizontal, vertical and slant/oblique asymptotes. You will 
see how all these will prove very useful when you learn curve tracing in the 
next unit. 
 
Now we shall list the objectives of this unit. After going through the unit, please 
read this list again and make sure that you have achieved the objectives. 
 

Objectives 

After going through this unit, you should be able to: 

• find the asymptotes parallel to axes; 

• define oblique asymptotes and obtain their equations. 
 
We shall now study a feature of curves which will prove very useful in tracing 
curves as you will see in the next unit.  This involves taking limits as ±∞→x  

or ±∞→y . In the following section, we will discuss asymptotes parallel to 

axes. 
 

15.2 ASYMPTOTES PARALLEL TO AXES 
 

Consider a rectangular hyperbola ,0c,cxy >=  shown in Fig. 1.  The equation 

cxy =  implies x/cy =  and this implies that as ∞→x  or 0y, →∞− .  Now 
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|y|  is the distance of a point )y,x(P  on the hyperbola from the x -axis.  So, 

we can say, that as ∞→x  or ∞− , the distance of a point, )y,x(P  on the 

hyperbola from the x -axis approaches zero.  In other words, this means that 
the −x axis is a line which seems to merge with the hyperbola. Such lines are 
called asymptotes. We give the definition of asymptote below. 
 
Definition: A straight line is said to be an asymptote to a curve, if as a point P  

moves to infinity along the curve, the perpendicular distance of P  from the 
straight line tends to zero. 
 

 

Fig. 1: Graph of cxy = . 

 

Writing cxy =  as y/cx = , and repeating the arguments exactly as above, we 

can see that the y -axis is also an asymptote of the hyperbola. Let us discuss 

following example. 
 

Example 1: Prove that the x -axis is an asymptote of the curve 
x1

10
y

+

= . 

Solution: From the equation of the curve, we see that 0y →  as ∞→x  or 

∞− .  Again, this means that the distance of the point )y,x(P  on the curve 

from the x -axis tends to zero as ∞→x  or ∞− .  This proves that the x -axis 

is an asymptote of the curve. Fig. 2 also shows this.  

 

 

Fig. 2: Graph of 
x1

10
y

+

= . 

*** 
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The asymptotes which are parallel to axes are either vertical or horizontal. We 
shall begin our discussion with vertical asymptotes. For this, let us look at 
some situations in the graphs of the functions given in Fig. 3.  

 

(a)  
1x

1
)x(f

−

=    (b)  
)1x(

1
)x(f

−

−
=    (c)  

2
)1x(

1
)x(f

−

=      (d)
2

)1x(

1
)x(f

−

−
=  

Fig. 3 

 

In Fig. 3 (a), the function f increases indefinitely as x approaches 1 from the 
right and decreases indefinitely as x approaches 1 from the left.  

Therefore, +∞=

−
+

→ 1x

1
lim

1x

and −∞=

−
−

→ 1x

1
lim

1x

. 

Similarly, in Fig. 3 (b), the function f decreases indefinitely as x approaches 1 
from the right and increases indefinitely as x approaches 1 from the left. 

Therefore, −∞=

−

−

+
→ 1x

1
lim

1x

and +∞=

−

−

−
→ 1x

1
lim

1x

 

Similarly, in Fig. 3 (c), the function f increases indefintely as x approaches 1 
from both the left and right.  

Therefore, +∞=

−

=

−

=

−
−+

→→→
2

1x
2

1x
2

1x )1x(

1
lim

)1x(

1
lim

)1x(

1
lim . 

Also in Fig. 3 (d), the function f decreases indefinitely as x approaches 1 from 
both the left and right.  

Therefore, −∞=

−

−
=

−

−
=

−

−

−+
→→→

2
1x

2
1x

2
1x )1x(

1
lim

)1x(

1
lim

)1x(

1
lim  

We can say that if +∞→)x(f as +

→1x or as −

→1x , then the graph of 

f rises without bound and comes closer to the vertical line 1x = on any side. If 

−∞→)x(f as +

→1x or as −

→1x , then the graph of f falls without bound 

and comes closer to the vertical line 1x = on any side of 1x = . In all these 

cases, the distance between any point )y,x(P on the curve and the straight 

line 1x =  tends to zero. Thus, we call the line 1x = vertical asymptote or 
asymptote parallel to −y axis. This leads to the following definition.  

 
Definition: A line ax = is called a vertical asymptote to the curve of the 

function f if +∞→)x(f or −∞→)x(f as x approaches a from either side. 

In vertical asymptotes, we have used limits to describe the behaviour of 

)x(f as x approaches a . 

 
Let us find vertical asymptotes in the following examples:  
 

Example 2: Determine the vertical asymptotes of the function f given by 

12xx

4x
)x(f

2

2

−+

−
= . 
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Solution: We can rewrite )x(f as 
)3x()4x(

)2x()2x(
)x(f

−+

−+
= . 

You may note that as x gets closer to 3 from the left, the value of the function  
gets smaller and smaller negatively, approaching ∞− . And as x gets closer to 
3 from the right, the value of the function f gets larger and larger positively 

approaching ∞+ . Thus, −∞=
−

→

)x(flim
3x

and ∞=
+

→

)x(flim
3x

. 

For this function, the line 3x = is a vertical asymptote. Similarly, 4x −= is 
another vertical asymptote as shown in Fig. 4. 

 

Fig. 4: Vertical asymptotes. 

*** 
 
In case of rational functions, it may not always be true that a factor in 

denominator is an asymptote. For example, 
)1x(

)1x()1x(

1x

1x
)x(f

2

−

−+
=

−

−
= does 

not have a vertical asymptote at 1x = , even though 1x = makes the 

denominator 0. This is because when we simplify 
)1x(

)1x(
2

−

−
, it has )1x( − as a 

common factor of the numerator and the denominator. Few possible ways in 
which a vertical asymptote can occur are given in Fig. 5. 

 

(a) +∞=
−

→

)x(flim
ax

  (b) +∞=
+

→

)x(flim
ax

       (c)  −∞=
−

→

)x(flim
ax

 (d)  −∞=
+

→

)x(flim
ax

 

Fig. 5: Vertical Asymptotes. 
 

*** 
Example 3: Find the vertical asymptotes of xcoty = .  

Solution: The contagent function is a periodic function with period π . 

However, from the identity 
xsin

xcos
xcoty == , you can see that the cotangent 
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function has vertical asymptotes when xsin is zero, which occurs at π= nx , 

where n is an integer. The graph of the cotangent function is shown in Fig. 6. 

 

Fig. 6: Graph of xcot . 

*** 
 
Example 4: Find the vertical asymptotes of xsecy = .  

Solution: The secant function is a periodic function with period π2 . This 
function has vertical asymptotes when xcos is 0, which occurs at 

,
2

)1n2(
x

π+
= where n is an integer. The graph of secant function is shown in 

Fig. 7. 

 

Fig. 7: Graph of xsec . 

*** 
 

Example 5: Find the vertical asymptotes of )4x3xln(y
2

−−= . 

Solution: )4x3xln(y
2

−−= has vertical asymptotes, when 04x3x
2

=−− . 

Thus, 4x = and 1x −= are the vertical asymptotes of )4x3xln(y
2

−−= . The 

graph of )4x3x(lny
2

−−= is shown in Fig. 8. 
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Fig. 8: Graph of )4x3x(lny
2

−−= . 

*** 
 
Now, try the following exercises:  
 
 

E1) Determine the vertical asymptotes of the following 

 i) 
)1x(x

1
)x(f

2
−

=  iv) 
2x

x
)x(f

+

=  

 ii) 
49x

7
)x(f

2
+

=  v) 
3

x
cot2)x(f =  

 iii) 
16x

x2
)x(f

2
−

=  vi) 







=

x

1
ln)x(f  

E2) Is 0x = is an asymptote of 
xx

x2x
)x(f

3

2

−

−
= ? Justify your answer. 

 

 
Similarly, we define horizontal asymptotes. For this, going back to Fig. 1, we 

can see that as x increases without bound, the value of 
x

c
)x(f = is positive, 

but gets closer and closer to 0 , and as x decreases without bound, the value 

of 
x

c
)x(f = is negative, and gets closer and closer to 0 . We write these limits 

as 0
x

c
lim

x
=

+∞→

and 0c,0
x

c
lim

x
>=

−∞→

. 

 

However, sometimes we will not be concerned with the behaviour of )x(f near 

a specific −x value, but rather with how )x(f behaves as x increases without 

bound or decreases without bound. This is sometimes called the end 
behaviour of the function because it describes how the function behaves for 
the values of x that are farther from the origin. 
 

In general, we can say that if L)x(f → as ,x ∞→ then the graph of 

)x(fy = gets closer and closer to the line Ly = as shown in Fig. 9 (a). We can 

also say that if L)x(f → as ,x −∞→ then the graph of )x(fy = gets closer 

and closer to the line Ly = as shown in Fig. 9 (b). In either case, we call the 
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line Ly = a horizontal asymptote or asymptote parallel to −x axis. This 

leads to the following definition.  

Definition: A line Ly = is called a horizontal asymptote to the curve of the 

function f if L)x(f → as +∞→x or as −∞→x . 

 

          (a)                 (b) 

Fig. 9 

 
Let us find the horizontal asymptotes in the following examples.  
 
Example 6: Determine the horizontal asymptotes of the function f given by 

x

5x2
)x(f

+
= . 

Solution: To find the horizontal asymptotes, we find 

 
x

5x2
lim)x(flim
xx

+
=

∞→∞→

 

   







+=

∞→ x

5
2lim

x
 

   2=  
Thus, the horizontal asymptote is the line 2y = . 

*** 
 

In Fig. 10 (a) and Fig. 10 (b), we see two ways in which a horizontal asymptote 
can occur.  

 

(a) L)x(flim
x

=
∞→

     (b)    L)x(flim
x

=
−∞→

 

Fig. 10 
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Example 7: Find the horizontal asymptotes of 
x

x

21

25
y

−

+
= . 

Solution: To find the horizontal asymptote, let us find the limits at infinity.  

 

1
2

1

1
2

5

lim
21

25
lim

x

x

x
x

x

x

−

+

=

−

+

+∞→+∞→

 

        1
10

10
−=

−

+
=  

and  

 5
01

05

21

25
lim

x

x

x
=

−

+
=

−

+

−∞→

 

Hence, its horizontal asymptotes are 1y −= and ,5y = which are shown in Fig. 

11. 
 

 
 

Fig. 11: Graph of 
x

x

21

25
y

−

+
= . 

*** 
 

Example 8: Find the horizontal asymptote(s) of x
exy = . 

Solution: Let us find limits at infinity.  

 








∞

∞
=

−
−∞→∞→

form
e

x
limexlim

x
x

x

x
 

   
x

x e

1
lim

−
−∞→ −

=  (Applying L’Hôptial’s rule) 

       0
1

=

∞−

= . 

Thus, 0y = is the horizontal asymptote of x
exy = , which is shown in Fig. 12. 



 

 

125

Unit 15                                                                                                                    Asymptotes 

 

Fig. 12: Graph of 
x

exy = . 

*** 
 
Now, try the following exercises.  
 
 

E3) Determine the horizontal asymptote of each of the following. 

 i) 
5xx

4x3
)x(f

23
+−

+
=  v) x

)001.1()x(f =  

 ii) 
xx

x3x2
)x(f

3

34

+

−
=  vi) xcose)x(f

x3−

=  

 iii) 
2x

1
)x(f

2
+

−
=  vii) 

x

1
x)x(f +=  

 iv) 
x

1
)x(f =  viii) 

x

x2sin
)x(f =  

 

E4) Determine a rational function ,f which has a horizontal asymptote at 

,0y = and vertical asymptotes at 2x −= and ,3x = and 1)1(f = . 
 

 
Now, we will see the procedure to compute asymptotes parallel to axes of a 
polynomial function. Here we shall derive tests to decide whether a given 
curve has asymptotes parallel to the x  and y  axes.  For this, we shall 

consider a curve given by 0)y,x(f = , where )y,x(f  is a polynomial in x  and 

y . 

 

Theorem 1: A straight line cy =  is an asymptote of a curve 0)y,x(f =  iff 

cy −  is a factor of the co-efficient of the highest power of x  in )y,x(f . 

 
This theorem can also be interpreted as follows. 
 
Asymptotes parallel to the x -axis are obtained by equating to zero the real 
linear factors of the co-efficient of the highest power of x  in the equation of the 
curve. 
 
We can also state another theorem, similar to Theorem 1, giving a test to 
decide whether a given curve has an asymptote parallel to the y -axis or not. 
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Theorem 2: A straight line cx = is an asymptote parallel to the y -axis iff 

cx − is a factor of the co-efficient of the highest power of y  in )y,x(f . 

 
Now, let us see some examples to find asymptotes parallel to axes.  
 
Example 9: Find the asymptotes parallel to either axis for the curve 

x

1
xy += . 

Solution: Writing the given equation in the form 0)y,x(f = , we get 

01xyx
2

=+− .  You can see the graph of this curve in Fig. 13. In 

,0)y,x(f = the highest power of x  is 2 and the co-efficient of 
2

x  is 1.  It has 

no factors of the form cy − .  Hence, there are no asymptotes parallel to the 

x -axis.  The highest power of y in 0)y,x(f = is 1 and the co-efficient of y  

when equated to zero gives 0x = .  Hence, there is one asymptote parallel to 
the y -axis and moreover, it is the y -axis itself. 

 

 

Fig. 13 

*** 
 
Example 10: Find the asymptotes parallel to axes of the curve 

x)ax(y
222

=− . 

Solution: The given equation can be re-written as 0x)ax(y
222

=−− . 

Asymptotes Parallel to −x axis: Equating the coefficient of 
2

x (highest 

power of x ) to zero, we get 0y
2

= . Which gives 0y = as an asymptote. 

Asymptotes Parallel to −y axis: Equating the coefficient of 2
y (highest 

power of y ) equal to zero, we get 0ax
22

=− ⇒ ax ±= i.e., ,ax = ax −= are 

the asymptotes parallel to −y axis. 

The required asymptotes are 0y,ax =±= . 

*** 
 
Example 11: Find the asymptotes parallel to the co-ordinate axes of the curve 

1
y

b

x

a
2

2

2

2

=− . 

Solution: The given equation can be re-written as 0yxxbya
222222

=−− . 
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Asymptotes Parallel to −x axis: Equating the coefficient of 
2

x (highest 

power of x ) to zero, we get 0by
22

=+ ⇒ iby ±= , which gives two 

imaginary asymptotes. 

Asymptotes Parallel to −y axis: Equating the coefficient of 2
y (highest 

power of y ) to zero, we get 0ax
22

=− ⇒ ax ±= . Thus, ,ax += ax −= are 

the asymptotes parallel to −y axis. 

*** 
 

Example 12: Find the asymptotes of the curve f given by 
x

1x2
y

+
= . 

Solution: We find the horizontal or vertical asymptotes by limits. Here, 

x

1
2y += and 2y → as ∞→x or ∞− . Therefore, 2y = is an asymptote 

parallel to −x axis. Also, as ,y,0x ∞→→ therefore, 0x = is the vertical 

asymptote as shown in Fig. 14. 

 

Fig. 14 

 
    ***  
 
See if you can do this exercise on your own. 
 
 

E5) For each of the following curves, find asymptotes parallel to either axis, if 
there are any. 

 i) y2yx
2

+=    ii) 222
y20x16xy +=  

 iii) 4x)yx(
22

+=+ .   iv) )yx(9yx
2222

+= . 

 v) 
1x

1
y

2
+

= .   vi) 
10x

x103
y

2
+

−
= . 

 

 
So far, we were finding the asymptotes which were parallel to axes. In the 
following section, we will find asymptotes which are not parallel to axes. These 
are called oblique or slant asymptotes.  
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15.3 SLANT/OBLIQUE ASYMPTOTES 
 
You may be wondering whether an asymptote must always be parallel to a 
coordinate axis.  No, there are many curves having asymptotes which are 

neither vertical nor horizontal. For example, consider 
2x

1x
)x(f

2

−

−
= . The graph 

of f is shown in Fig. 15.  
 

 

Fig. 15: Graph of 
2x

1x
2

−

−
. 

 

We can write 
)2x(

3
)2x()x(f

−

++= . We see that as 0
2x

3
,x →

−

∞→ , 

therefore, when x gets very large, y gets closer and closer to 2x + . Thus, the 

line 2xy += is called the slant asymptote or oblique asymptote.  

 

Definition: A line )0m(cmxy ≠+= is an oblique asymptote or slant 

asymptote to the graph of the function f if 0)]cmx()x(f[lim
x

=+−
+∞→

or 

0)]cmx()x(f[lim
x

=+−
−∞→

. 

For example, if we say that the lines 1xy −= and 1
2

x
y +−= are asymptotes 

to any curve, that means  

 

Fig. 16: Slant asymptotes. 
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that, as ∞→x , the graph of f approaches the line ,1xy −= so 1xy −= is an 

oblique asymptote to the graph of f at ∞ .Similarly, as −∞→x , the graph of 

f  approaches the line 1
2

x
y +−= , so 1

2

x
y +−= is an oblique asymptote to 

the graph of f at ∞− , as shown in Fig. 16. 
 
Going back to the definition of the oblique asymptotes, we can say that in the 

first case, the line cmxy += is an oblique asymptote of )x(f when x tends to 

∞ , and in the second case the line cmxy += is an oblique asymptote of 

)x(f when x tends to ∞− . The oblique asymptote, for the function )x(f will be 

given by the equation cmxy += . The value of m is computed first and is 

given by the following limit:  
 

Suppose cmxy += is a slant asymptote to f at ∞± , then 

0)]cmx()x(f[lim
x

=+−
±∞→

. 

 
On dividing this equation both the sides by x , we get  

 0
x

cmx

x

)x(f
lim

x
=




 +
−

±∞→

 

 0
x

c
m

x

)x(f
lim

x
=





−−

±∞→

 

 0m
x

)x(f
lim

x
=





−

±∞→

  





=

±∞→

0
x

c
lim

x
Q  

Thus, 
x

)x(f
limm
x ±∞→

= . 

 
We can solve m separately for two cases as ∞→x and as −∞→x . If this 

limit does not exist or is equal to zero, then, there is no oblique asymptote in 
that direction.  
 

Having ,m then the value of c can be computed by ]mx)x(f[limc
x

−=
±∞→

. If this 

limit does not exist, then there is no oblique asymptote in that direction, even if 
a limit defining m exists. 
 
Let us find slant asymptotes in the following examples: 
 

Example 13: Find the slant asymptotes of 
1x

x
y

2

3

−

= . 

Solution: We shall find m and c . 

    








−

==
±∞→±∞→ 1x

x

x

1
lim

x

y
limm

2

3

xx

 

      1

x

1
1

1
lim

2

x

=

−

=
±∞→

 

       







−

−

=−=
±∞→±∞→

x)1(
1x

x
lim)mxy(limc

2

3

xx

 

     0
1x

x
lim

2
x

=

−

=
±∞→
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Therefore, the slant asymptote is xy = . 

*** 
 

Example 14: Find the slant asymptotes of 1
b

y

a

x
2

2

2

2

=− . 

Solution: )ax(
a

b
1

a

x
by

22

2

2

2

2

22
−=








−=  

 





−±==

±∞→±∞→

22

xx
ax

a

b

x

1
lim

x

y
limm  

     
2

2

x x

a
1lim

a

b
−±=

±∞→

 

     
a

b
)1(

a

b
±=±= . 

 [ ]xaxlim
a

b
x

a

b
ylimc

22

xx
−−±=
















±−=

±∞→±∞→

 

      0

xax

a
lim

a

b

22

2

x

=

+−

−
±=

±∞→

. 

Thus, the slant asymptotes are x
a

b
y ±= . Fig. 17 shows these asymptotes. 

 

 
 

Fig. 17: Slant asymptotes in a Hyperbola. 

*** 
 

Example 15: Find the slant asymptote to the curve x9xy
2

+= . 

Solution: Slope 
x

x9x
limm

2

x

+
=

±∞→

 

     
x

x

9
1)x(

lim

2

x









+

=
±∞→

 

     
x

x

9
1x

lim
x

+

=
±∞→
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x

x

9
1x

lim
x

+

=
+∞→

 and 
x

x

9
1x

lim
x

+−

−∞→

 

  
x

9
1lim

x
+=

+∞→

 and 
x

9
1lim

x
+−

−∞→

 

  1= and 1−  

Now, let us find c for both the values of m . Where ,1m = we get:  

  [ ]xx9xlimc
2

x

−+=
±∞→

 

   
xx9x

xx9x
lim

2

22

x
++

−+
=

±∞→

 

   
xx9x

x9
lim

2x
++

=
±∞→

 

   











++

=
±∞→

1
x

9
1x

x9
lim

x
 

   

1
x

9
1

9
lim
x

++

=
±∞→

 

   
2

9
=  

Similarly, when ,1m −= we get [ ]
2

9
xx9xlimc

2

x
−=++=

±∞→

 

Hence, the slant asymptote to f  are 
2

9
xy += and 

2

9
xy −−= . 

*** 
 

Example 16: Show that xx)x(f += does not have a slant asymptote at ∞ . 

Solution: We shall do a proof by contradiction. Suppose f has a slant 
asymptote cmxy += . Then we must have  

 1
x

1
1lim

x

xx
lim

x

)x(f
limm

xxx
=







+=









 +
==

±∞→±∞→±∞→

or does not exist.  

so, cxy += . 

And then, we get  

 ( ) ( ) ∞==−+=−=
±∞→±∞→±∞→

xlimxxxlimx)x(flimc
xxx

or does not exist. 

Which is a contradiction (since c must be finite).  

Hence, f cannot have a slant asymptote at ∞ . 

*** 
 
Let us find the slant asymptote to a curve, where the equation of the curve is 

of the form 0)y,x(f = . 

 

Example 17: Find the oblique asymptotes for curve xy3yx
33

=− . 

Solution: Suppose that the given curve has an oblique asymptote cmxy += .  

The equation of the curve can be written as  
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 0xy3yx
33

=−− . 
 

Dividing throughout by 
3

x  we get  

 0
x

1
.

x

y3

x

y
1

3

3

=−−  

Thus, 0
x

1
.

x

y3

x

y
1lim

3

3

x
=








−−

±∞→

 

0
x

1
lim

x

y
lim3

x

y
lim1

xx
3

3

x
=
















−








−⇒

∞→∞→±∞→

 

0
x

y
lim1

3

3

x
=








−⇒

±∞→

, 





=

∞→

0
x

1
lim,Since
x

 

0
x

y
lim1

3

x
=
















−⇒

±∞→

 

1m1m
3

=⇒=⇒ , as the other roots of 01m
3

=−  are complex numbers.  

Rewriting the equation of the curve as xy3)yxyx()yx(
22

=++− , we have  

 








++

−
=−=−=

±∞→±∞→±∞→
22

xxx yxyx

xy3
lim)xy(lim)xmy(limc  

               



















++

−
=

±∞→

xy

y

xy

xy

xy

x

3
lim

22
x

  

               
111

3

++

−
= , [since, 1

m

1

x

y
lim

y

x
lim

1

xx
=








=








=

−

±∞→±∞→

] 

               1−=   
Hence, the required asymptote is 1xy −= . 

*** 

If a rational function 
)x(Q

)x(P
is such that the degree of the numerator exceeds 

the degree of the denominator by one, then the graph of 
)x(Q

)x(P
may have an 

oblique asymptote.  

To find the asymptote we write 
)x(Q

)x(R
)bax(

)x(Q

)x(P
++= , where, degree of 

<)x(R degree of )x(Q . 

Now, 0)bax(
)x(Q

)x(P
lim
x

=







+−

∞→

 [since ]0
)x(Q

)x(R
lim
x

=
∞→

 

and 0)bax(
)x(Q

)x(P
lim

x
=








+−

−∞→

 [since 0
)x(Q

)x(R
lim
x

=
∞→

] 

We can say that the graph of 
)x(Q

)x(P
approaches the line baxy += as 

∞→x or −∞→x . This line baxy += is oblique asymptote. 

 
Now, in the next example we shall find the oblique asymptote of a rational 
function.  
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Example 18: Find the oblique asymptote of 
2

3

x

4x3x2
y

+−
= . 

Solution: We can write 
2

x

4x3
x2y

+−
+=  

Here 0
x

4x3
lim

2
x

=
+−

∞→

and 0
x

4x3
lim

2
x

=
+−

−∞→

 

Thus, the line x2y = is an oblique asymptote.  

*** 
Try to solve these exercises now. 
 
 

E6) Find oblique asymptotes to each of the following curves. 

 i) 233
ax3yx =+    ii) 0xyyx

44
=+−  

 iii) 
5x

5x11xx2
y

2

23

+

+++
=   iv) 2xx2y

2
+−= . 

 
E7) The cost-function to produce x units of a product is given by 

80x3)x(C
2

+= . Find the oblique asymptote for the average cost and 

interpret its significance.  
 

 
Now, let us summarize what we have studied in this unit. 
 

15.4 SUMMARY 
 
In this unit, we have covered the following points. 
 
1. A straight line is said to be an asymptote to an infinite branch of a curve, 

if, as a point P  on the curve moves to infinity along the curve, the 

perpendicular distance of P  from the straight line tends to zero. 
 
2. Asymptotes parallel to the coordinate axes are obtained by equating to 

zero the real linear factors in the co-efficients of the highest power of x  
and the highest power of y  in the equation of the curve. 

 

3. A line )0m(cmxy ≠+= is an oblique asymptote or slant asymptote to 

the graph of the function f if 0)]cmx()x(f[lim
x

=+−
+∞→

or 

0)]cmx()x(f[lim
x

=+−
−∞→

. The values of m and c are 
x

)x(f
limm
x ±∞→

= and 

[ ]mx)x(flimc
x

−=
±∞→

. 

 

15.5 SOLUTIONS/ANSWERS 
 

E1) i) The vertical asymptotes are 1x,0x == and 1x −=  

  
 ii) No vertical asymptotes.  
 

 iii) The vertical asymptotes are 4x = and 4x −= . 
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 iv) The vertical asymptote is 2x −= . 
 

 v) The vertical asymptotes are ,n3x π= where Z∈n . 

 

 vi) The vertical asymptote is 0x = . 
 

E2) The line 0x = is not a vertical asymptote because 2)x(flim
0x

=
→

. 

 

E3) i) 

3

32

x

5

x

1
1

x

4

x

3

)x(f

+−

+

=  

  Since, 0)x(flim
x

=
∞→

and 0)x(flim
x

=
−∞→

, therefore, the line 0y = , is 

a horizontal asymptote.  
 
 ii) No horizontal asymptotes.  
 

 iii) The horizontal asymptote is 0y = . 

 

 iv) The horizontal asymptote is 0y =  

 

 v) ∞=
∞→

x

x

)001.1(lim and 0)001.1(lim
x

x

=
−

−∞→

. Thus, 0y = is horizontal 

asymptote.  
 

 vi) 0)xcos(elim
x3

x

=
−

∞→

. Thus, 0y = is horizontal asymptote.  

 
 vii) No horizontal asymptote.  
 

 viii) The horizontal asymptote is 0y =  

 

E4) One of the possible function is 
)3x()2x(

7x
)x(f

−+

−
= . 

 

E5) i) 02yyxy2yx
22

=−−⇔+=  

 

  Highest power of x  is 2 , and the coefficient of 
2

x  is y .  Hence 

0y =  is an asymptote.  

  
  Highest power of y   is 1, and the coefficient of y  is 

)1x()1x(1x
2

+−=− . 

 

  Hence, 1x −=  and 1x =  are two asymptotes parallel to −y axis. 

 
 ii) No asymptote parallel to the x -axis. 

  20x =  is an asymptote parallel to −y axis. 

 
 iii) No asymptote parallel to the y -axis. 

  0y =  is an asymptote. 

 

 iv) 3y ±=  are asymptotes parallel to −x axis. 
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  3x ±=  are asymptotes parallel to −y axis. 

 

 v) 0y =  is an asymptote. 

 

 vi) 0y =  is an asymptote. 

 

E6) i) 233
ax3yx =+   

 

  x/a3)x/y(1
3

=+⇒  

  
x

a3
lim

x

y
lim1

x

3

x ∞→∞→

=







+⇒  

  1m1m0m1
33

−=⇒−=⇒=+⇒ . 

 

  )xy(lim)mxy(limc
xx

+=−=
∞→∞→

 

     
2

x
22

2

x )x/y(x/y1

a3
lim

yxyx

ax3
lim

+−

=

+−

=
∞→∞→

 

     a
111

a3
=

++

=  

 
  Hence, the equation of the asymptote is axy =+  

 

 ii) 0c,1m == , Equation: xy =  

 

  0c,1m =−= , Equation: 0xy =+ . 

 

 iii) 1x2y += . 

 

 iv) [ ])1mx()x(flim
x

+−
∞→

is not zero as 
x

2 is unbounded. Therefore, 

considering [ ])cmx()x(flim
x

+−
−∞→

 

 

    [ ])cmx(22x2lim
x

x

+−+−=
−∞→

 

 

    [ ])c2(2x)m2(lim
x

x

−+−−=
−∞→

 

  This limit is 0, only if 2m = and 2c = . Thus, the equation of the 

oblique asymptote is 2x2y += . 

 

E7) The average-cost function 
x

)x(C
)x(A =  

 
x

80
x3

x

80x3
)x(A

2

+=
+

=  

 Here, 0
x

80
lim
x

=
∞→

and 0
x

80
lim

x
=

−∞→

. 

 

 Thus, x3y = is an oblique asymptote, as shown in Fig. 18.  
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Fig.18 
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UNIT 16                                                        

CURVE TRACINGCURVE TRACINGCURVE TRACINGCURVE TRACING    

StructureStructureStructureStructure                                Page NoPage NoPage NoPage No....    
16.1 Introduction               137        

Objectives 

16.2 Tracing a Curve: Cartesian Equation            138 

16.3 Tracing a Curve: Parametric Equation           156 

16.4 Tracing a Curve: Polar Equation            160 

16.5 Summary               165       

16.6 Solutions/Answers              166      
 

16.1 INTRODUCTION 
 
A picture is worth a thousand words.  A curve which is the visual image of a 
function gives us a lot of information.  Of course, we can also obtain this 
information by analysing the equation which defines the functional relation.  
But studying the associated curve is often easier and quicker.  In addition to 
this, a curve which represents a relation between two quantities also helps us 
to easily find the value of one quantity corresponding to a specific value of the 
other.  In Sec. 16.2, we shall try to understand what is meant by the picture or 

the graph of a function like )x(fy =  and the curve with more than one 

branches at any point, expressed in the form 0)y,x(f =  and how to sketch 

them.  In Sec. 16.3 and Sec. 16.4, we shall discuss the tracing of a curve in 
parametric and polar form, respectively. We shall be using many results from 
the earlier units here.  With this unit we come to the end of Block 4, in which 
we have studied various geometrical features of functional relations with the 
help of differential calculus. 
 
Now we shall list the objectives of this unit. After going through the unit, please 
read this list again and make sure that you have achieved the objectives. 
 

Objectives 

After studying this unit, you should be able to: 

• list the properties which can be used for tracing a curve; 

• trace some curves whose equations are given in cartesian, parametric or 
polar form. 
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16.2 TRACING A CURVE: CARTESIAN EQUATION 
 

You may recall from Unit 2, that by the graph of a function R→D:f , we mean 

the set of points }Dx:))x(f,x{( ∈ .  Graphing a function means showing the 

points of the corresponding set in a plane. Thus, essentially curve tracing 
means plotting the points which satisfy a given relation. However, there are 
some difficulties involved in this. Let’s see what these are and how to overcome 
them. 
 
It is often not possible to plot all the points on a curve. The standard technique 
is to plot some suitable points and to get a general idea of the shape of the 
curve by considering tangents, asymptotes, singular points, extreme points, 
inflection points, concavity, monotonicity, periodicity etc.  Then, we draw a free 
hand curve as nearly satisfying the various properties as is possible. 
 
The curve or graph that we draw has a limitation.  If the range of values of 
either (or both) variables is not finite, then it is not possible to draw the 
complete graph.  In such cases, the graph is not only approximate, but is also 
incomplete. For example, consider the simplest curve, a straight line.  Suppose 

we want to draw the graph of RR→:f  such that 1)x(f = .  We know that this 

is a line parallel to the x -axis.  But it is not possible to draw a complete graph 
as this line extends infinitely on both sides.  We indicate this by arrows at both 
ends as in Fig 1. 

 
Fig. 1 

 
Now, we shall take up the problem of graphing a function by hand, when the 
equation is given in the cartesian form. 
 
Let us list some properties which, when taken, will simplify our job of tracing 
this curve. We have discussed all these properties. Now, we shall summarize 
these one by one.  

i) Simplify: If possible, simplify the function ),x(fy =  you wish to sketch. 

For example, if f is defined by 1x,
)1x(

2xx
)x(f

2

≠

−

−+
= , you must write it 

as 1x,2x)x(f ≠+= before beginning the procedure listed here. 

ii) Domain and Range: In case of ),x(fy = we find the domain and range 

and mark the regions accordingly.  

iii) Periodicity: Recall Unit 6, wherein we discussed periodic function. 
Periodicity is the tendency of a function to repeat itself in a regular 
pattern at a fixed interval. For example, all trigonometric functions have 
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periodicity. If )x(f)px(f =+ for all x in ,D where p is a positive constant, 

then, f is called a periodic function and smallest p is called the period of 

the function. While tracing a curve, if we know that the function is 
periodic and the period is ,p we can keep on translating to sketch the 

entire curve [Recall from Unit 3 for translation]. 

iv) Symmetry: The next step is to find out if the curve is symmetrical about 
any line, or about the origin.  A curve is symmetrical about a line if, when 
we fold the curve on the line, the two positions of the curve exactly 
coincide. A curve is symmetrical about the origin if we get the same 
curve after rotating it through 180o. We have already discussed 
symmetry of curves in Unit 6.  Fig. 2, shows you some examples of 
symmetric  curves. 

    
  

(a)     Symmetric about the x -axis.        (b)    Symmetric about the origin. 
 

 
(c)     Symmetric about the line xy = . 

Fig. 2 

 
Here, we give you some hints which will help you to determine the symmetry 
of a curve. 

 a) Symmetry about y -axis: The graph of a function )x(fy = is said 

to be symmetric about y -axis, if f is an even function, that is, the 

equation of the curve is unchanged when x is replaced by x− . For 

example, ,xy,xy,xcosy
2

=== etc. This means that our work is 

cut in half. If we know what the curve looks like for 0x ≥ , then we 
only need to reflect about the −y axis to obtain the complete 

curve.     

 b) Symmetry about origin: Recall Unit 6, wherein we learnt that odd 

functions are symmetric about origin. If  )x(f)x(f −−= , then the 
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curve is symmetrical about the origin.  In such cases, it is enough 
to draw the part of the graph above the x -axis and rotate it 

through o
180  to get the complete graph. Some such functions are: 

,xy
3

= ,xy,xsiny == etc.  

 c) Symmetry about the line xy = : If the equation of the curve does 

not change when we interchange x  and y , then the curve is 

symmetric about the line xy = .  

v) Points of intersection with axes: The next step is to determine the 

points where the curve intersects the axes.  If we put 0y =  in )x(fy = , 

and solve the resulting equation for x , we get the points of intersection 

with the x -axis.  Similarly, putting 0x =  and solving the resulting 
equation for y , we can find the points of intersection with the y -axis. 

For example, in the curve 32
xx3y −= , if ,0y = we get 3,0x = and if 

,0x = we get 0y = . Thus, the curve intersects axes at )0,0( and )0,3( . 

You can omit this step, if the equation is difficult to solve.  

vi) Points of discontinuity: Try to locate the points where the function is 
discontinuous. 

vii) Intervals of increasing and decreasing functions:  For this, calculate 

dx

dy
.  This will help you in locating the portions where the curve is rising 









> 0

dx

dy
 or falling 








< 0

dx

dy
. You may recall Unit 13. 

viii) Concavity and point(s) of inflection: Recall from Unit 14, and 

calculate second derivative of w.r.t. x . From ,
dx

yd
2

2

 you can find 

concavity. The curve is concave upward where 0
dx

yd
2

2

> and concave 

downward where 0
dx

yd
2

2

< . Inflection point occurs where the direction of 

concavity changes. These will give you a good idea about the shape of 
the curve. 

ix) Relative extrema: Recall from Unit 13, we use the second-derivative 
test to find the relative maxima or minima. We substitute the first-order 

critical numbers 
0

x in the following test: 

• If ,0
dx

yd

0xx

2

2

>








=

then relative minimum at 
0

x . 

• If ,0
dx

yd

0xx

2

2

<








=

then relative maximum at 
0

x . 

• If ,0
dx

yd

0xx

2

2

=








=

then the test fails. 

 
We can also use first derivative test.   

x) Tangents and normals: Compute the equations of the vertical tangents 
and corresponding normals. You may recall Unit 14. 
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xi) Asymptotes: The next step is to find the asymptote(s), if there are any. 
We can find asymptotes parallel to axes and oblique as discussed in 
Unit 15.  They indicate the trend of the branches of the curve extending 
to infinity. 

xii) Singular point: Another important step is to determine the singular 
points.  The shape of the curve at these points is, generally, more 
complex, as more than one branch of the curve passes through them. 
[Recall from Unit 14]. 

xiii) Plot points: Plot points where f has a relative maxima, minima or 
point(s) of inflection, x -intercepts, y -intercepts, etc.  

xiv) Sketch the curve: Now, try to draw tangents to the curve at some of 
these plotted points. Now join the plotted points by a smooth curve 
(except at points of discontinuity). The tangents will guide you in this, as 
they give you the direction of the curve. Sketch the asymptotes by dash 
lines. Finally, draw the curve using the information in items i) to xiii).  

 
We shall now illustrate this procedure through a number of examples.  You will 
notice that it may not be necessary to take all the steps mentioned above, in 
each case.  We begin by tracing some functions which were introduced in   
Unit 2 and Unit 6. 
 

Example 1: Sketch the graph of the function |x|y = .  

Solution: Let us begin using steps of curve tracing. We can rewrite y as 





<−

≥

=

0x,x

0x,x
y . 

i)  Domain and Range: The domain of this function is R and the range is 
non-negative reals. Therefore, y can take only positive values.  Thus, the 

graph lies above the x -axis.   

ii) Symmetry: Since, ,xx −= therefore, the function |x|y =  is 

symmetric about the y -axis.  

iii) Points of Intersection with axes: If ,0x = then, ,0y = therefore, the 

curve meets the axes only at the origin. On the right of the y -axis, 

0x > , and, so, x|x| = .  Thus, the graph reduces to that of xy =  and 

you know that this a straight line equally inclined to the axes (Fig. 3(a) 
below).Taking its reflection in the y -axis, we get the complete graph as 

shown in Fig 3(b).   

 
(a) Graph on the right of the y -axis.    (b) Complete graph. 

Fig 3 

*** 
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Example 2: Sketch the greatest integer function ]x[y = . 

Solution: Let us see which properties of curve tracing will be used to trace 
greatest integer function. 

i) Domain and Range: The domain of the function is R and the range is 
set of all integers. The curve lies in the first and third quadrant, because 

either 0x ≥ and 0y ≥ or 0x ≤ and 0y ≤ . 

ii) Symmetry: If we replace x  by x− , we get different value of y . 

Therefore, ]x[ is not symmetrical about y -axis. Also, ]x[y = is not an 

odd function, thus, not symmetrical about origin.  

iii) Points of intersection with axes: When ,0y,0x == thus, the curve 

passes through the origin. Also, when 1x0,0y <≤= therefore, the 

graph lies on x -axis. 

iv) Points of Discontinuity: ]x[y = is discontinuous at every integer point.  

Hence, there is a break in the graph at every integer point n .  In every 

interval [1n,n[ +  its value is constant, and is equal to n .  

v) Relative extrema: No maximum or minimum.  

vi) Asymptotes: There are no asymptotes. 

vii) Concavity: The graph is neither concave upward nor concave 
downward.  

 Hence, the graph is as shown in Fig 4.  Note that a hollow circle around 
a point indicates that the point is not included in the graph. 

 

Fig 4: Graph of ][y x= . 

*** 
 

Example 3: Sketch the graph of 3
xy = .   

Solution: Let us check for the properties for the curve 3
xy = . 

i) Domain and Range: The domain and range of the function is R . When 

0y,0x >> and when 0y,0x << . Thus, there is no portion of the graph 

in the second and fourth quadrants.   

ii) Symmetry: The function is an odd function. This means that the curve is 
symmetric about the origin.  Thus, it is sufficient to draw the graph above 

the x -axis and join it to the portion obtained by rotating it through o
180 . 

iii) Points of intersection with axes: If ,0x = then, 0y = . Therefore, the 

curve meets the axes only at the origin.  

iv) Tangents at origin: We have ,x3
dx

dy 2
= which is 0 at the origin. Thus, 

the tangent at origin is the x -axis. 
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v) Monotonicity: We find, 2
x3

dx

dy
= , which is always non-negative.  This 

means that as x  increases, so does y .  Thus, the graph keeps on 

rising. 

vi) Relative extrema: Here, 0
dx

dy
=  at )0,0(  and x6

dx

yd
2

2

=  is 0  at )0,0( . 

Since the second derivative test is not helpful to find extrema, let us look 

at the sign of 
dx

dy
on each side.  





<>

>>

==

0xfor,0

0xfor,0
x3

dx

dy 2  

Since, the sign of 
dx

dy
does not change, therefore, there are no extreme 

points.  

vii) Concavity and Point of Inflection: Here, 0
dx

yd
2

2

= at the origin. Also, 

0
dx

yd
2

2

< when 0x < and 0
dx

yd
2

2

> when 0x > . Therefore, the curve is 

concave upward when 0x > and concave downward when 0x < . Since 
the concavity is changing at origin, therefore, the point of inflection is 

)0,0( .   

viii) Asymptotes: The graph has no asymptotes parallel to the axes.  

Further 2

xx
xlim

x

y
lim

∞→∞→

=  and this does not exist.  This means that the 

curve does not have any oblique asymptote.   

ix) Singular Points: The curve has no singular points.   
 The graph is shown in Fig 5. 

 

Fig 5: Graph of 
3

= xy . 

  ***  
 

Example 4: Sketch the graph of 
2

x

1
y = .   

Solution: Let us list the properties to trace the curve.  



 

 

144 

Block 4                                                   Applications of Differential Calculus 

i) Domain and Range: The domain of the function is }0{−R and the 

range of the function is non-negative reals. The y -coordinates of any 

point on the curve cannot be negative.  So, the curve must be above the 
x -axis.  

ii) Symmetric: Here, ),x(f)x(f −= thus the curve is symmetric about the 

y -axis.  Hence, we shall draw the graph to the right of the y -axis first. 

iii) Points of intersection on axes: The curve does not intersect at the 
axes at all. 

iv) Monotonicity: We have 
3

x

2

dx

dy
−=  and 

42

2

x

6

dx

yd
= .  Since 0

dx

dy
<  for all 

0x > , therefore, the function is decreasing in [,0] ∞ , that is, the graph 

keeps on falling as x  increases. Also, since 0
dx

dy
> for all 0x < , 

therefore, the function is increasing in [0,] ∞− . 

v) Discontinuity: The graph of y is continuous in the domain of the 

function.  

vi) Relative extrema: Further, since, 
dx

dy
 is non-zero for all x in the 

domain, thus, there is no extreme point. 

vii) Concavity and point of inflection: Since, 
2

2

dx

yd
 is positive in the 

domain, therefore, the function is concave upward everywhere in the 
domain. Since, the concavity does not change, therefore, there is no 
point of inflection. 

viii) Asymptotes: Since ,
x

1
lim

2
0x

∞=
→

therefore, 0x = is the vertical 

asymptote. Also, ,0)x(flim
x

=
→∞

thus, 0y = is the horizontal asymptote.  

 
The curve is shown in Fig 6. 

 

Fig 6: Graph of 
2

x1y /= . 

  *** 
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Example 5: Sketch the graph of 
x

1
y = . 

Solution:  

i) Doman and Range: The domain of the function is }0{−R and the range 

is R . Here, we can see that either x  and y  both will be positive or both 

will be negative.  This means that the curve lies in the first and the third 
quadrants.  

ii) Symmetric: Here, ,
x

1
)x(f = and f is not an even function, therefore, it 

is not symmetric about y -axis. Further, it is symmetric about the origin 

and hence, it is sufficient to trace it in the first quadrant and rotate this 

through o
180  to get the portion of the curve in the third quadrant.   

iii) Interval of increasing or decreasing: Here, 
2

x

1

dx

dy −
= , which means 

that 0y < for all values of x in the domain. Hence, as x  increases, y  

decreases. 

iv) Asymptotes: Since, 0)x(flim
x

=
→∞

, therefore, 0y = is the horizontal 

asymptote. Also, ,)x(flim
0x

∞=
→

therefore, 0x = is the vertical asymptote. 

v) Relative extrema: We have 0
x

1

dx

dy
2

≠
−

=  for any x in the domain.  That 

is, there are no extrema. 
 
Considering all these points we can trace the curve in the first quadrant (see 
Fig 7(a)).  Fig 7(b) gives the complete curve. 

 

(a) Graph of 1xy =  in the first Quadrant.              (b) Complete graph. 

Fig. 7  

*** 

 
The curve traced in Example 5 is a hyperbola.  If we cut a double cone by a 
plane as in Fig 8(a), we get a parabola.  It is a section of a cone.  For this 
reason, it is also called a conic section.  Fig. 8(b) and Fig. 8(c) show a circle 
and an ellipse respectively. The curve in Fig 8(d) is called a hyperbola and 
that in Fig 8(e) is the pair of straight lines. 
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(a)    (b)  (c)  (d)  (e) 

Fig 8: Conic Sections [(a) Parabola, (b) Circle, (c) Ellipse (d) Hyperbola (e) Pair of 
straight lines.] 

 
The earliest mention of these curves is found in the works of a Greek 
Mathematician Menaechmas (fourth century B.C.).  Later Apollonius (third 
century B.C.) studied them extensively and gave them their current names. 
In the seventeenth century, Rene Descartes discovered that the conic sections 
can be characterised as curves which are governed by a second degree 
equation in two variables.  Blaise Pascal (1623-1662) presented them as 
projections of a circle.  (Why don’t you try this experiment?  Throw the light of 
a torch on a wall at different angles and watch the different conic sections on 
the wall).  Galileo (1564-1642) showed that the path of a projectile thrown 
obliquely (Fig 9) is a parabola.   

 

Fig 9: Projectile path 

Paraboloid curves are also used in arches and suspension bridges (Fig 10).  
Paraboloid surfaces are used in telescopes, search lights, solar heaters and 
radar receivers. 
 

 
Fig 10 

 
In the seventeenth century, Johannes Kepler discovered that planets move in 
elliptical orbits around the sun.  Halley’s comet is also known to move along a 
very elongated ellipse.  A comet or meteorite coming into the solar system 
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from a great distance moves in a hyperbolic path.  Hyperbolas are also used in 
sound ranging and navigation systems. 
Let’s look at the next example now. 
 

Example 6: Sketch the graph of 23
xxy += . 

 

Solution:  

i) Domain and Range: The domain and range of the function are R . 

ii) Symmetry: The function is neither even nor odd, thus, not symmetric 
about y -axis and origin.  

iii) Points of intersection: If ,0x = then ,0y = and if 1,0x,0y −== . Thus, 

the curve meets the axes at )0,0(  and )0,1(− .  

iv) Tangents: We have x2x3
dx

dy 2
+= . The x -axis is the tangent at the 

origin as 0
dx

dy
= , at 0x = .  Since, 1

dx

dy
=  when 1x −= , therefore, the 

tangent at )0,1(−  makes an angle of o
45  with the x -axis (Fig 11(a)).   

v) Relative extrema: Further, 0
dx

dy
= gives 0x = and 

3

2
x

−
= . Now,  

2x6
dx

yd
2

2

+= . Since, 0
dx

yd
2

2

>  at )0,0( , therefore, the point )0,0( has a 

relative minimum. The point 






 −

27

4
,

3

2
has a relative maximum as 

0
dx

yd
2

2

<  at 
3

2
x

−
= .  Thus, in Fig 11(b), O  is a valley and P  is a peak. 

vi) Point of inflection: Here, 0
dx

yd
2

2

=  at 
3

1
x −=  and changes sign from 

negative to positive as x  passes through 3/1− . Hence, 






 −

27

2
,

3

1
 is a 

point of inflection. Since, 0
dx

yd
2

2

< on 





−∞−

3

1
, , therefore, the curve is 

concave downward. Also, since 0
dx

yd
2

2

> on 





∞− ,

3

1
, therefore, the 

curve is concave upward in this interval. 

vii) Interval of increasing or decreasing function: If 0x
3

2
<<− , then 

0
dx

dy
< .  Thus, the graph rises in [3/2,] −∞−  and [,0] ∞ , but falls in 

[0,3/2] − . 

viii) Asymptotes: As x  tends to infinity, so does y .  As −∞→x , so does 

y .  There is neither horizontal nor vertical asymptote.For oblique 

asymptote, )]cmx()xx[(lim
23

x

+−+
→∞

does not exist, therefore, no oblique 

asymptote.   
 
Hence, the graph is as shown in Fig 11(c). 
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          (a)                   (b)              (c) 

Fig. 11 

*** 
 

Example 7: Sketch the curve 
1x

x3
y

2

2

−

= . 

Solution:  

i) Domain and Range: The domain is }1,1{−−R .  

ii) Symmetry: Since the powers of x are even, therefore, the curve is 
symmetric about the y -axis. 

iii) Point of intersection with the axes: The curve passes through origin.  

iv) Asymptotes: Since, 3

x

1
1

3
lim

1x

x3
lim

2

x
2

2

x
=

−

=

− ±∞→±∞→

 

 Therefore, the line 3y = is the horizontal asymptote. 

Also, ∞=

−
+

→ 1x

x3
lim

2

2

1x

, −∞=

−
−

→ 1x

x3
lim

2

2

1x

, ∞=

−
+

−→ 1x

x3
lim

2

2

1x

and 

−∞=

−
−

−→ 1x

x3
lim

2

2

1x

 

Therefore, the lines 1x = and 1x −= are vertical asymptotes. We can 
draw these asymptotes as shown in Fig.12 (a).  

    

v) Monotonicity: Here, 
2222

22

)1x(

x6

)1x(

x2x3)1x(x5
y

−

−
=

−

⋅−−
=′ . Since, 

0y >′ when 0x < and 0y <′ when 0x > , therefore, f is increasing on 

[1,] −∞− and [0,1] − and decreasing on [1,0] and [,1] ∞ .  

vi) Relative Extrema: When 0x,0y ==′ . Since, y′ changes from positive 

to negative at ,0 therefore, there is a local maximum by the first 

derivative test. 

vii) Concavity: We have
32

2

42

222

)1x(

)x31(6

)1x(

x2)1x(2x6)1x(6
)x(f

−

+
=

−

−⋅+−−
=′′  

Since, 0)x31(6
2

>+ for all ,x we have 1x01x0y
2

>⇔>−⇔>′′ and 

1x0y <⇔<′′ . Thus, the curve is concave upward on the intervals 
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[1,] −∞− and [,1] ∞ and concave downward on [1,1] − . Since, 1 and 

1− are not in the domain of f , therefore, there is no point of inflection. 
 Using the information in i) to vii), we sketch the curve in Fig. 12(b). 

 
             (a)       (b) 

Fig. 12 

*** 
 
In the next example, we will trace a curve with exponential function.  
 

Example 8: Trace the curve x
xey = . 

 
Solution:  

i) Domain and Range: The domain is R . 

ii) Points of intersection with the axes: The curve passes through origin.  

iii) Symmetry: There is no symmetry. 

iv) Asymptotes: Because both x and x
e become large as ,x ∞→ we have 

∞=
→∞

x

x

xelim . As ,x −∞→ however, 0e
x

→ and so, we have an 

indeterminate product that requires the use of L’Hôpital’s Rule:  

   0)e(lim
e

1
lim

e

x
limxelim

x

x
x

x
x

x

x

x
=−=

−

==
−∞→

−
−∞→

−
−∞→−∞→

 

 Thus, the −x axis is a horizontal asymptote. 

v) Monotonicity: We have xxx
e)1x(exey +=+=′ . Since, x

e is always 

positive, therefore, 0y >′ when ,01x >+ and 0y <′ when 01x <+ . So, 

y is increasing on [,1] ∞− and decreasing on [1,] −∞− . 

vi) Relative Extrema: Since 0
dx

dy

1x

=








−=

and 
dx

dy
changes from negative to 

positive at 1x −= , therefore, )e,1(
1−

−− a local minimum. 

vii) Concavity: We have xxx
e)2x(ee)1x(y +=++=′′ . Since, 0y >′′ if 

2x −> and 0y <′′ if ,2x −< therefore, the curve is concave upward on 

[,2] ∞− and concave downward on [2,] −∞− . The inflection point is 

[e2,2]
2−

−− . 

 

 We use this information to trace the curve in Fig. 13. 
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Fig. 13 

*** 
 
In the following example, we will trace a curve with trigonometric functions.  
 

Example 9: Trace the curve 
xsin2

xcos
y

+

= . 

Solution:  

i) Domain and Range: The domain is R . 

ii) Points of intersection with the axes: The curve passes through 










2

1
,0 and 







 π+
0,

2

)1n2(
where n is an interger.  

iii) Symmetry and Periodicity: The curve is not symmetric about any of 

the axes. We have, )x(f)2x(f =π+ for all x and so f is periodic and 

has period π2 . Thus, we need to consider only π≤≤ 2x0 and then 
extend the curve by translation. 

iv) Asymptotes: There is no asymptote.  

v) Monotonicity: We have 
2

)xsin2(

)x(cosxcos)xsin()xsin2(

dx

dy

+

−−+
= . 

            
2

)xsin2(

1xsin2

+

+
−=   

 Thus, 0
dx

dy
> when ⇔−<⇔<+

2

1
xsin01xsin2  

6

11
x

6

7 π
<<

π
. So, 

f is increasing on 




 ππ

6

11
,

6

7
and decreasing on 




 π

6

7
,0 and 







π

π
2,

6

11
. 

vi) Relative Extrema: From the first derivative test, we see that the local 

minimum value is 
3

1−
and the local maximum value is 

3

1
. 

vii) Concavity: If we differentiate )x(f again and simplify, we get 
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32

2

)xsin2(

)xsin1(xcos2

dx

yd

+

−
−=  

 

Since, 0)xsin2(
3

>+ and 0xsin1 ≥− for all ,x also we know that 

0
dx

yd
2

2

> when ,0xcos < that is, 
2

3
x

2

π
<<

π
, therefore, the curve is concave 

upward on 




 ππ

2

3
,

2
and concave downward on 




 π

2
,0 and 





π

π
2,

2

3
. The 

inflection points are 




π
0,

2
and 




 π
0,

2

3
. 

We draw the graph of the function only to π≤≤ 2x0 is shown in Fig. 14 (a). 
Then, we extend it, using periodicity, to the complete graph in Fig. 14 (b). 

 
    (a)          (b) 

   Fig. 14 

*** 
 
So far, all our curves were graphs of functions.  We shall now trace some 
curves which are not the graphs of functions, but have more than one branch. 

These curves are of the form 0)y,x(f = . 

 

Example 10: Trace the semi cubical parabola 32
xy = .  

 

Solution:  

i) Regions where the curve lies: We note that 
3

x  is always non-negative 
for points on the curve.  This means that x  is always non-negative and 
no portion of the curve lies on the left of the y -axis. 

ii) Symmetry: There is symmetry about the x -axis (even powers of y ). 

iii) Point of intersection with axes: The curve meets the axes only at the 
origin. 

iv) Double point: Here, 2/3
xy ±= . The derivative 2/1

x
2

3

dx

dy
±= . Here, 

0y →′ as +

→ 0x and does not exist as −

→ 0x . There are two real and 

equal tangents at origin, therefore, origin is a cusp.    

v) Increasing and decreasing behaviour: In the first quadrant y  

increases with x  and ∞→y  as ∞→x . 

vi) Asymptotes: There are no asymptotes. 
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We first draw the curve in the first quadrant as shown in Fig. 15 (a), and then 
take its reflection in the x -axis and we get the complete graph as shown in        
Fig. 15 (b). 

 
            (a)         (b) 

Fig 15 

*** 
 

Example 11: Trace the curve )4x()3x()2x(y
2

−−−= . 

 
Solution:  

i) Region where curve lies: We can see that )4x()3x()2x( −−− is non-

negative. If 2x < , we get a negative value for 2
y  which is impossible.  

So, no portion of the curve lies to the left of the line 2x = .  For the same 
reason, no portion of the curve lies between the lines 3x =  and 4x = . 

Therefore, the curve lies between the lines 2x = and 3x = and right to 

the line 4x = . 

ii) Symmetry: Since, y  occurs with even powers alone, therefore, the 

curve is symmetrical about the x -axis. Thus, we draw the curve above 
−x axis, and then get a reflection below the x -axis to complete the 

graph. 

iii) Point of intersection with axes: The curve meets the axes at points 

)0,3(),0,2( and )0,4( .  

iv) Tangents and normals: Here, )4x()2x()3x()2x[(
y2

1

dx

dy
−−+−−=  

 )]4x()3x( −−+ . Thus, the curve has vertical tangent at )0,3(),0,2( and 

)0,4( . Combining these facts, the shape of the curve near 

),0,3(B),0,2(A  )0,4(C must be as shown in Fig 16 (a). 

v) Interval of increasing or decreasing: Let us take 0y >  (i.e., consider 

point of the curve above the x -axis).  Then, 

)4x()3x()2x(2

26x18x3

dx

dy
2

−−−

+−
= .  This is zero at 3/13x ±= .  If 

3/13 +=α  and 3/13 −=β  then α  lies between 3  and 4 , and can 

therefore be ignored.  Also, )x()x(326x18x3
2

α−β−=+−  and 

432 <α<<β< .  For α−∈ x[,3,2]x  remains negative. Hence, for 
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0
dx

dy
,x2 >β<<  since, )x( α−  and )x( β−  are both negative. 

Similarly, for 0
dx

dy
,3x <<<β .  Hence, the graph rises in [,2] β  and 

falls in [3,]β .  Thus, the shape of the curve is oval above the x -axis, 

and by symmetry about the x -axis, we can complete the graph between 

2x =  and 3x =  as in Fig 16. (b). 

vi) Concavity: Now let us consider the portion of the graph to the right of 

4x = .  Shifting the origin to )0,4( , the equation of the curve becomes  

 x2x3x)2x()1x(xy
222

++=++= . 

As x  increases, so does y .  As ∞→x , so does y  (considering points 

above the x -axis).  When x  is very small, 
3

x  and 2
x3  are negligible as 

compared to x2 , so that near the (new) origin, the curve is 

approximately of the shape of x2y
2

= .  The large values of 2
x3,x  and 

x2  are negligible as compared to 
3

x , so that the curve shapes like 
32

xy =  for large x .  Thus, at some point the curve changes its 

convexity. 
This conclusion could also be drawn by showing the existence of a point 
of inflection. 

vii) Asymptotes: There are no asymptotes. 

viii) Multiple point: There is no multiple point. 
 
Considering the reflection along the x -axis, we have the complete graph as 
shown in Fig 16(c). 
 

 
           (a)    (b)                    (c) 

Fig. 16 

*** 
 

Example 12: Trace the curve 4)4y()1x(
22

=−− . 

 
Solution:  

i) Region, where the curve lies: Here, ,4
1x

4
y

2

2
+

−

= therefore, 

[1,1]x −∉ . Similarly, ,1
4y

4
x

2

2
+

−

= therefore, [2,2]y −∉ . 

ii) Symmetry: There is symmetry about both axes.  We can therefore, 
sketch the graph in the first quadrant only and then take its reflection in 
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the y -axis to get the graph above the x -axis.  The reflection of this 

graph in the x -axis will give the complete graph. 

iii) Point of intersection with axes: Notice that the origin is a point on the 
curve. The curve does not meet the axes at any other points. 

iv) Tangent at origin: The curve has tangents at origin and these are given 

by 0yx4
22

=+ .  These being imaginary, the origin is an isolated point 

on the graph.  

v) Asymptotes: Equating to zero the coefficients of the highest powers of x  

and y , we get 2y ±=  and 1x ±=  as asymptotes of the curve.  Thus, 

the portion of the curve in the first quadrant approaches the lines 1x =  

and 2y =  in the region far away from the origin. As 2y,x →∞→  and 

as 1x,y →∞→ . 

vi) Increasing and decreasing: In the first quadrant, as x  increases, so 

does 1x
2

− , and since 
)4y(

4
1x

2

2

−

=− , therefore, y  decreases as x  

increases. 

vii) Relative extrema: There are no extreme points. 
 
There are no singular points or points of inflection. Hence, the graph is as 
shown in Fig 17. 

 

Fig 17 

  *** 
 

Example 13: Trace the curve 22
)2x()1x(y −−= . 

 
Solution:  

i) Symmetry: Since, the power of y is even, therefore, there is symmetry 

about the x -axis. 

ii) Region: No portion of the curve lies to the left of 1x = , as 2
y cannot be 

negative. 

iii) Points of intersection with axes: Points of intersection with the axes 

are )0,1(  and )0,2( .  
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iv) Tangent: The tangent at )0,1(  is vertical.  Shifting the origin to )0,2( , 

the curve transforms into )1x(xy
22

+= .  The tangents at the new origin 

are given by 22
xy = .  This means that the point )0,2( is a node, and the 

tangents at )0,2(  are equally inclined to the axes.   

Let us try to build up the graph above the x -axis between 1x =  and 
2x = . Differentiating the equation of the curve with respect to x , we get  

   )2x()1x(2)2x(yy2
2

−−+−=′ )4x3()2x( −−=  

 or,  
y2

)4x3()2x(
y

−−
=′  

when 0)2x(,2x1 <−<< .  If y  is positive, then 0y >′  provided 

04x3 <− .  Thus, 0y >′  when 





∈

3

4
,1x  and 0y <′  when 







∈ 2,

3

4
x .  The tangent is parallel to the x -axis when 04x3 =− , that 

is, when 3/4x =  (see Fig 18 (a)).  Hence, for 2x1 << , the curve 

shapes as in Fig 18 (b). 

v) Intervals for increasing and decreasing:  As ,y,x ∞→∞→ in the 

first quadrant. Note that when )0,2(  is taken as the origin, the equation 

of the curve reduces to  

   2322
xx)1x(xy +=+= . 

This shows that when 0x >  and 0y > , the curve lies above the line 

xy =  (on which 22
xy = ).  Hence, the final sketch (Fig 18 (c)) shows 

the complete graph. 

 
             (a)        (b)               (c) 

Fig. 18 

*** 

 
If you have gone through Examples 1-13 carefully, you should be able to do 
the following exercise. 
 

E1) Trace the following curves by stating all the properties you use to trace:  

 i) 2
xy =    ii) 32

)2x(y −=  

 iii) x)x1(y
2

=+   iv) )x1(xy
222

−=  

 v) x/1
exy

−

=   vi) xsiny
3

=   

 vii) )x(lnxy =   viii) 3/1
x5xy −=  
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 ix) )xln(siny =   x) x5xy −=  

 xi) 
1x

x
y

2

−

=    xii) 
2

3

x

4x
y

+
=  

 

E2) Find the oblique asymptotes of the curve xtanxy
1−

−= and hence, 

trace the curve using this fact.  

E3) In the theory of relativity, the mass of a particle is 
22

0

c/v1

m
m

−

= , 

where 
0

m is the mass of the particle, m is the mass when the particle 

moves, with speed v relative to the observer, and c is the speed of light. 

Trace the curve for m as a function of v . 

  

 
In the following section, we will trace the curves which are in parametric form. 
  

16.3 TRACING A CURVE: PARAMETRIC 
EQUATION 

 
Sometimes a functional relationship may be defined with the help of a 
parameter.  In such cases, we are given a pair of equations which relate x  
and y  with the parameter. For example, imagine a particle that moves along a 

curve and the x  and y coordinates are defined in terms of time t as shown in 

Fig. 19.  

 

   Fig. 19 
 

In this case, we write )t(fx = and )t(gy = , where t is the third variable called 

parameter. The equations )t(fx = and )t(gy = are known as parametric 

equations. The parameter t  does not necessarily represent time. You may 

recall what you learnt in Appendix I of Block 3. 
 
Now, we shall see how we can trace a curve whose equation is in the 
parametric form. 
 
We shall illustrate the process with an example. 
 

Example 14: Trace the cycloid )tcos1(ay),tsint(ax −=+=  as t  varies 

from π−  to π . 
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Solution: Here tsina
dt

dy
),tcos1(a

dt

dx
=+= , so that )2/ttan(

dx

dy
= .  Since, 

0
dx

dy
>  for all x[,,]t ππ−∈  increases with t  from π− a  (at )t π−=  to 0  (at 

0t = ) to πa  (at π=t ). 

Also, 
dx

dy
 is negative when [0,]t π−∈  and positive when [,0]t π∈ .  Hence, 

y  decreases from a2  to 0  in ]0,[ π−  and increases from 0  to a2  in ],0[ π .  

Let us tabulate this data in Table 2. 
 

Table 2 
 

]0,[t π−∈  ],0[t π∈  

i) x  increases from a−  to 0  

ii) y  decreases from a2  to 0  

iii) Hence, the curve falls 

i) x  increases from 0  to a  

ii) y  increases from 0  to a2  

iii) Hence, the curve rises 
 

Also, at the terminal points 0,π−  and π  of the intervals ]0,[ π−  and ],0[ π , 

we summarize this in Table 3. 
 

Table 3 
 

t  )y,x(  

dx

dy
 

dy

dx
 

Tangent 

π−  )a2,a( π−  not defined 0  vertical 

0  )0,0(  0  not defined horizontal 

π  )a2,a( π  not defined 0  vertical 

 
On the basis of the data tabulated in Table 3, the graph is drawn in Fig 20. 

 

Fig. 20 

 

If t  is increased by x,2π  is increased by a2π  and y  does not change.  

Thus, the complete graph can be obtained in intervals 

],3,5[ π−π−K K]5,3[],3,[],,3[ πππππ−π−  by translation through a proper 

distance.  
*** 

The cycloid is known as the Helen of geometry because it was the cause of 
many disputes among mathematicians.  It has many interesting properties.  
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We shall describe just one of them here.  Consider this question: What shape 

should be given to a trough connecting two points A  and B , so that a ball 

rolls from A  to B  in the shortest possible time? 
 

Now, we know that the shortest distance between A  and B  would be along 
the line AB  (Fig. 21).  But since we are interested in the shortest time rather 
than distance, we must also consider the fact that the ball will roll quicker, if 

the trough is steeper at A . The Swiss mathematician Jakob and Johann 
Bernoulli proved by exact calculations that the trough should be made in the 
form of an arc of a cycloid.  Because of this, a cycloid is also called the curve 
of the quickest descent. 

 
Fig. 21 

 
The cycloid is used in clocks and in teeth for gear wheels.  It can be obtained 
as the locus of a fixed point on a circle as the circle rolls along a straight line. 
 
Now, let us trace another curve in parametric form.  
 
Example 15: The position of a particle at time t is given by the parametric 

equations t2tx
2

−= and 1ty += . Sketch and identify the path along which 

the particle moves. 

Solution: We have 2t2
dt

dx
−= and ,1

dt

dy
= so that 

2t2

1

dx

dy

−

= . Here, 

,0
dx

dy
> when 1t > and 0

dx

dy
< , when 1t < . That means y is increasing when 

1t > and y is decreasing when 1t < . At ,1t = the tangent of the curve is 

vertical. In Fig. 22 we plot the curve.  

 

 
Fig. 22 

 
We can also mark the points given in the Table 4. 
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Table 4 
 

t  x  y  

2−  8     1−  

1−  3  0  

0  0  1 

1 1−  2  
2  0  3  

3  3  4  

4  8  5  

 
A particle whose position is given by the parametric equations moves along 
the curve in the direction of the arrows as t increases. Notice that the 

consecutive points marked on the curve appear at equal time intervals but not 
at equal distances. That is because the particle slows down and then speeds 
up as t increases.  

 
It appears from Fig. 22 that the curve traced out by the particle may be a 
parabola. We can confirm this by eliminating the parameter t as follows:  

We obtain 1yt −= from the second equation and substitute into the first 

equation. This gives 3y4y)1y(t2tx
22

+−=−=−= and so the curve 

represented by the given parametric equations is the parabola 3y4yx
2

+−= . 

*** 
 

Example 16: What curve is represented by the following parametric 
equations? 

 tcosx = , tsiny = , where π≤≤ 2t0  

Solution: If we plot points, it appears that the curve is a circle. We can confirm 
this impression by eliminating t . Observe that  

 1tsintcosyx
2222

=+=+  

Thus, the point )y,x( moves on the unit circle 1yx
22

=+ . Notice that in this 

example the parameter t can be interpreted as the angle (in radians) shown in 

Fig. 23. As t increases from 0 to π2 , the point )tsin,t(cosP moves once 

around the circle in the counterclockwise direction starting from the point 

)0,1( . 

 

 

Fig. 23 

*** 



 

 

160 

Block 4                                                   Applications of Differential Calculus 

 

See if you can do this exercise now. 
 

 

E4) Trace the following curves:  

 i) 0a,t),tcos1(ay),tsint(ax >π≤≤π−+=+= . 

 ii) 0a,t0),t2cos1(t2cosay),t2cos1(t2sinax >π≤≤−=+= . 

 iii) 1t0,at2y,atx
2

≤≤==  . 

 iv) π≤≤== 2t0,t2cosy,t2sinx . 

 v) tsiny,tsinx
2

== . 
 

 

So far, we have discussed tracing of curves in cartesian and parametric forms. 
In the following section, we will discuss tracing of a curve in polar form.  
 

16.4 TRACING A CURVE: POLAR EQUATION 
 

In this section, we shall consider the problem of tracing those curves, whose 
equations are given in the polar form.  You may recall Unit 3 for polar 

coordinates. In such a coordinate system, we can associate each point P in 

the plane with a pair of polar coordinates ),r( θ , where r is the number of units 

between P and the pole and θ is an angle from the polar axis to the ray OP as 
shown in Fig. 24. If r is negative, then the point is located on the opposite side 
of the origin. Thus, r is a position on a rotated axis. 

 
Fig. 24 

 
The following considerations can be useful in this connection. 

i) Symmetry: If the equation remains unchanged when θ  is replaced by 

θ− , then the curve is symmetric with respect to the initial line. 
If the equation does not change when r  is replaced by r− , then the 
curve is symmetric about the pole (or the origin). 

Finally, if the equation does not change when θ  is replaced by θ−π , 

then the curve is symmetric with respect to the line 2/π=θ . 

ii) Region: Find the limits within which r  must lie for the permissible values 

of θ .  If )ar(ar ><  for some 0a > , then the curve lies entirely within 

(outside) the circle ar = . If 
2

r  is negative for some values of θ , then 
the curve has no portion in the corresponding region. 

iii) Angle between the line joining a point of the curve to the origin and 
the tangent: At suitable points, this angle can be determined easily.  It 
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helps in knowing the shape of the curve at these points.  You may recall 

from Unit 14 that the angle φ  is given by the relation 
dr

d
rtan

θ
=φ . 

We shall illustrate the procedure through some examples of graphing 

equations of the form )(fr θ= in polar coordinates, where θ is assumed to be 

measured in radians.  Study them carefully, so that you can trace some curves 
on your own later. 
 

Example 17: Trace the cardioid )cos1(ar θ+= .   

Solution: We can make the following observations. 

i) Symmetry: Since, )cos(cos θ−=θ , therefore, the curve is symmetric 

with respect to the initial line. That means we need to trace the curve 
only above the initial line, rest half curve would be the reflection along 
the initial line.  

ii) Region: Since, 1cos1 ≤θ≤− , therefore, the curve lies inside the circle 

a2r = . 

iii) Tangents: θ−=

θ

sina
d

dr
.  Hence, 0

d

dr
<

θ

, when π<θ<0 .  Thus, r  

decreases as θ  increases in the interval [2/,0] π .  Similarly, r  

increases with θ  in [,2/] θπ .  Some corresponding values of r  and θ  

are given in Table 5. 
 

Table 5 
 

θ  0  2/π  π  

r  a2  a  0  

 
Combining the above facts, we can easily draw the graph above the 
initial line.  By reflecting this portion in the initial line we can completely 
draw the curve as shown in Fig 25 (a).  Notice the decreasing radii 

321
r,r,r,a2  etc. If we allow a to vary and keep is positive, then the size 

of cardioid varies. If a is negative, then the cardioid changes its 
direction. These cardioids are shown in Fig. 25 (b). 

 
(a)       (b) 

Fig. 25: (a) Curve )cos1(ar θ+= ; (b) Curve )cos1(ar θ+= for 1,5,2,1a −= . 

 

This curve is called a cardioid since it resembles a heart. 

*** 
 

You may note that the equations with any of the four forms θ±= sinbar  and 

θ±= cosbar in which 0a > and 0b > represent polar curves called limacons 
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(from the Latin word “limax” for  a snail-like creature that is commonly called a 
slug) as shown in Fig. 26 (a) to Fig. 26 (d). There are four possible shapes for 

a limacon in each of the four cases that are determined by the ratio b/a (Fig 

26(e) to Fig. 26 (h)). If ba = (the case )1b/a = , then the limacon is called a 

cardioid because of its heart-shaped appearance, as noted in Example 17. 
 

               
(a) θ+= cosbar        (b) θ−= cosbar               (c) θ−= sinbar  

               

(d)  θ+= sinbar   (e) 1
b

a
< (with inner loop)  (f) 1

b

a
= (Cardioid) 

                       

(g)  2
b

a
1 << (Dimpled)  (h) 2

b

a
> (Convex) 

Fig 26 
 

Example 18: Trace the equiangular spiral αθ

=
cot

aer .  
  
Solution: We proceed as follows.  

i) Region: When ar,0 ==θ . 

ii) Symmetry: There is no symmetry.  

iii) Tangents: α=

θ

cotr
d

dr
, which is positive, assuming 0cot >α .  Hence 

as θ  increases so does r .  α=
θ

tan
dr

d
r .  Thus, at every point, the angle 

between the line joining a point on the curve to the origin and the 
tangent is the same, namely α . Hence the name. 

 

Combining these facts, we get the shape of the curve as shown in       
Fig 27. 
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Fig. 27: Curve 
αθ

=
cot

ear . 

 

The equiangular (or logarithmic) spiral αθ

=
cot

aer  is known as the curve of 
pursuit.  Suppose four dogs start from the four corners of a square, each 
pursues the dog in front with the same uniform velocity (always following the 
dog in front), then each will describe an equiangular spiral.  Several shells and 
fossils have forms which are quite close to equiangular spirals (Fig 28).  Seeds 
in the sunflower or blades of pine cones are also arranged in this form. 
 

 
 

Fig. 28: Spiral. 
 

The first discussion of this spiral occur in letters written by Descartes to 
Mersenne in 1638. The name logarithmic spiral is due to Jacques Bernoulli. 
He was so fascinated by it that he willed that an equiangular spiral be carved 
on his tomb with the words ‘Though changed, I rise unchanged’ inscribed 
below it. 
 

The spiral θ= ar  is known as the Archimedean spiral.  Its study was, 
however, initiated by Conon.  Archimedes used this spiral to square the circle, 
that is, to find a square of area equal to that of a given circle.  This spiral is 
widely used as a cam to produce uniform linear motion.  It is also used as 
casings of centrifugal pumps to allow air which increases uniformly in volume 
with each degree of rotation of the fan blades to be conducted to the outlet 
without creating back-pressure. 
 

The spiral ar =θ , due to Varignon, is known as the reciprocal or hyperbolic 
(recall that axy =  is a hyperbola) spiral.  It is the path of a particle under a 

central force which varies as the cube of the distance. 

*** 
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Now let’s consider the next example. 
 

Example 19: Trace the curve 0a,3sinar >θ= . 
 

Solution:  

i) Symmetry: You may note that there is symmetry about the line 

2/π=θ as the equation is unchanged if θ  is replaced by θ−π . 
 

ii) Region: The curve lies inside the circle ar = , because 13sin ≤θ .  The 
origin lies on the curve and this is the only point where the initial line 
meets the curve. 

 

iii) Tangents: 3/n0r π=θ⇒= , where n  is any integer.  Hence the origin 

is a multiple point, the lines π
ππ

π
ππ

=θ 2,
3

5
,

3

4
,,

3

2
,

3
,0  etc. being 

tangents at the pole. 
 

iv) Monotonicity: θ=

θ

3cos3
d

dr
.  Hence r  increases in the intervals 






 ππ






 π

6
,

2
,

6
,0 , and 




 ππ

2

3
,

6

7
, and decreases in the intervals 






 ππ






 ππ

6

7
,

6

5
,

2
,

6
 and 




 ππ

3

5
,

2

3
. Notice that r  is negative when 






 ππ
∈θ

3

2
,

3
 or 




 π
π∈θ

3

4
,  or 





π

π
∈θ 2,

3

5
. Hence, the curve 

consists of three loops as shown in Fig 29.  The function is periodic and 
the curve retraces itself as θ  increases from π2  on. 

 
Fig. 29: Curve θ= 3sinar . 

*** 

In polar coordinates, equations of the form θ= nsinar  and ,ncosar θ= in 

which 0a > and n is a positive interger represent families of flower-shaped 
curves called roses (Fig. 30). The rose consists of n equally spaced petals of 

radius a if n is odd and n2 equally spaced petals of radius a if n is even. It can 
be shown that a rose with an even number of petals is traced out exactly once 

as θ varies over the interval π<θ≤ 20 and a rose with an odd number of 

petals is traced out exactly once as θ varies over the interval π<θ≤0 . A 
three-petal rose of radius a was graphed in Example 19. 
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(a) θ= nsinar . 

 

 
(b) θ= ncosar . 

Fig. 30: Rose Curves 

 
Now try to trace a few curves on your own. 
 
 

E5) Trace the following curves in polar coordinates.  

 i) 1r =   

 ii) 
4

π
=θ  

 iii) θ=r        )0( ≥θ  

 
E6) Trace the following curves by stating all the properties you used: 

 i) 0a),cos1(ar >θ−= . 

 ii) θ+= cos42r . 

 iii) 0a,3cosar >θ= . 

 iv) 0a,2sinar >θ=  

 

 
Now, let us summarize what we have studied in this unit. 
 

16.5 SUMMARY 
 
In this unit, we have covered the following points. 
 

1. Tracing a curve )x(fy =  or 0)y,x(f =  means plotting the points which 

satisfy this relation. 
 
2. Criteria for symmetry and monotonicity, equations of tangents, 

asymptotes and points of inflection are used in curve tracing. 
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3. Curve tracing is illustrated by some examples when the equation of the 
curve is given in  

 i) Cartesian form 

 ii) Parametric form 

 iii) Polar form. 
 

16.7 SOLUTIONS/ANSWERS 
 
Dotted lines represents tangents or asymptotes throughout. 
 

E1)  i)  Domain: R  and the curve lies in first and second quadrant.  

  Point of intersection with axes: )0,0(  

  Symmetry: About −y axis 

   Asymptotes: None 

  Monotonicity: Increasing on [,0] ∞ and decreasing on [0,] ∞−  

  Relative extrema: Minimum at 0 and 0)0(f = . 

  The corresponding sketch of the curve is given in Fig. 31. 

 

Fig. 31 

 ii)   Region of existence: [,2[ ∞ and the curve lies in first and fourth 

quadrant.  

  Point of intersection with axes: )0,2(  

  Symmetry: About −x axis 
  Asympotes: None 

  Double Point: If we shift origin at )0,2( , then, )0,2( is double 

point and is cusp.  
  The corresponding curve is traced in Fig. 32. 

 

Fig. 32 
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 iii) Domain: R and the curve is in first and third quadrant as either 
y,x  are both positive or both negative. 

  Symmetry: About origin.  
  Asymptote: x -axis is an asymptote. 

  Monotonicity: Function rises in [1,1]−  and falls elsewhere. 

  Tangents: xy =  is the tangent at the origin  

  Concavity: 









−−











4

3
,3,

4

3
,3),0,0(  are points of inflection.  

  The graph is shown in Fig. 33. 

 

Fig. 33 

 iv) Region of existence: The curve
2

2

2

x1
x

y
−=   shows that the entire 

curve lies within the lines 1x ±= .   

  Point of intersection with axes: )0,1(),0,0( and )0,1(−  

  Symmetry: About −x axis, −y axis and origin. 

  Tangents: Tangents at the origin are xy ±= .  Tangents at 

1x ±=  are vertical.   

   Relative extrema: Maxima at ( )4/1,2/1± , and minima at 









−±

4

1
,

2

1
 

  Multiple point: ,x1xy
2

−±= y is defined if ,0x1
2

≥− or 

1x1 ≤≤− . If we equate lowest degree term to ,0 we get 

,xy
22

= which gives xy ±= . Therefore, the curve has two 

tangents at origin, namely, xy = and ,xy −= and the origin is a 

node. The curve is sketched in Fig. 34. 

 

Fig. 34 
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 v) Domain and Range: [,0][0,] ∞∪∞−  

  Symmetry: None 
  Point of intersection with axes: None 

  Concavity: Concave up on [,0] ∞ and concave down on [0,] ∞−  

  Relative extrema: Maxima on 1− and the relative maximum value 

is e)1(f −=− . 

  Monotonicity: Increasing on [1,] −∞− and on [,0] ∞ . 

   decreasing on [0,1]− . 

   Point of continuity: Origin is the point of discontinuity 
   The corresponding curve is given in Fig. 35. 

 

Fig. 35 

 vi) Domain: R  
  Symmetry: About the origin 

  Periodicity: Period π2  

  Point of intersection: Origin )0,n(),0,0( π n(  is integer) 

  Monotonicity: Increasing on [2/,0] π and 





π

π
2,

2

3
,decreasing 

on 




 ππ

2

3
,

2
 

  Relative extrema: Maximum at ( ) 12/f,2/ =ππ and minima at 

1
2

3
f,

2

3
−=







 ππ
. 

  Concavity: Concave upward on [,a][,a,0] π−π and concave 

downward on [a,a] −π where 3/2sina
1−

= . 

  Point of inflection: a,,0x −ππ= . 

  Curve is traced in Fig. 36. 

 

Fig. 36 
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 vii) Domain: [,0] ∞  

  Point of intersection with axes: )0,1(  

  Symmetry: None 
  Asymptote: None 

  Monotonicity: Increasing on 





∞,

e

1
and decreasing on 






e

1
,0 . 

  Relative extrema: Minima at 
e

1

e

1
f,

e

1
x −=








=  

  Concavity: Concave upward on [,0] ∞  

  The curve is drawn in Fig. 37. 

 

Fig. 37 

 viii) Domain: R  

  Point of intersection with axes: )0,33(),0,0( ±  

  Symmetry: About the origin 
  Asymptote: None 

  Monotonicity: Increasing on [,1][,1,] ∞−∞− and decreasing on 

[1,1]−  

  Relative extrema: Maximum at 1− and ,2)1(f =− Minimum at 

1and 2)1(f −=  

  Concavity: Concave upward on [,0] ∞ and concave downward on 

[0,] ∞−  

  Point of inflection: )0,0( is point of inflection. 

  The corresponding curve is traced in Fig. 38. 
 

 

Fig. 38 
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 ix) Domain: [)1n2(,n2]x π+π∈ ,where n is an interger. The value of 

y is always negative. Therefore, the curve lies in third and fourth 

quadrant.  

  Point of intersection with axes: 







π+

π
0,n2

2
. 

  Symmetry: None 

  Periodicity: Period π2   

  Asymptotes: Vertical asymptotes at π= nx  

  Monotonicity: Increasing on 





π+

π
π n2

2
,n2 and decreasing on 







π+π+

π
)1n2(,n2

2
. 

  Relative extrema: Maximum at π+
π

n2
2

and 0n2
2

f =







π+

π
. 

  The corresponding curve is traced in Fig. 39. 
 

 

Fig. 39 

 x) Domain: ]5,] ∞−  

  Point of intersection with axes: )0,5(),0,0(  

 

  Symmetry: None 
 
  Asymptote: None 

  Monotonicity: Increasing on 





∞−

3

10
, and decreasing on 





5,

3

10
. 

 

  Relative extrema: Maximum at 
3

10
and 5

9

10

3

10
f =








. 

 

  Concavity: Concave downward on [5,] ∞−  

 
  The corresponding curve is traced in Fig. 40. 
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Fig. 40 

 xi) Domain: [,1][1,] ∞∪∞−  

  Point of intersection with axes: )0,0(  

  Symmetry: None 

  Asymptotes: 1xy,1x +==  

  Monotonicity: Increasing on [0,] ∞− and [,2] ∞  

   Decresing on [1,0] and [2,1]  

  Relative extrema: Maximum at 0x = and 0)0(f = and minimum 

at 2x = and 4)2(f = . 

  Concavity: Concave upward on [,1] ∞ and concave downward on 

[1,] ∞− . 

  The corresponding curve is traced in Fig. 41. 
 

 
 

Fig. 41 

 xii) Domain: [,0][0,] ∞∪∞−    

  Point of intersection with axes: )0,)4((
3/1

−  

  Symmetry: None 

  Asymptotes: xy,0x ==  

  Monotonicity: Increasing on [0,] ∞− and [,2] ∞ and decreasing 

on [2,0] . 

  Relative extrema: Minimum at 2x =  and 3)2(f =  

  Concavity: Concave upward on [0,] ∞− and [,0] ∞ . 

  The corresponding curve is traced in Fig. 42. 
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Fig. 42 

E2) xtanxy
1−

−= oblique asymptotes are 
2

xy
π

±= , which are shown in 

Fig. 43. 

 
 

Fig. 43 

 

E3) Domain: [c,0[  

 Point of intersection with axes: )m,0(
0

. 

 Symmetry: None 
 Asymptotes: cv =  

 Monotonicity: Increasing on [c,0[  

 The corresponding curve is traced in Fig. 44. 

 

Fig. 44 
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E4) i) 

 

Fig. 45 

 ii)  

 

Fig. 46 

 iii)  

 

Fig. 47 

 iv) Again we have 1t2cost2sinyx
2222

=+=+  

So the parametric equations again represent the unit circle 

1yx
22

=+ . But as t increases from 0 to π2 , the point 
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)t2cos,t2(sin)y,x( = starts at )1,0( and moves twice around the 

circle in the anti clockwise direction as indicated in Fig. 48 
 

 
 

Fig. 48 

 v) You may observe that 22
x)t(siny == and so the point 

)y,x( moves on the parabola 2
xy = . But note also that, since 

,1tsin1 ≤≤− we have ,1x1 ≤≤−  so the parametric equations 

represent only the part of the parabola for which 1x1 ≤≤− . Since 

tsin is periodic, the point )tsin,t(sin)y,x(
2

= moves back and 

forth infinitely often along the parabola from )1,1(− to )1,1( . (See 

Fig 49). 

 

Fig. 49 

 

E5) i) For all values of θ , the point ),1( θ is 1 unit away from the pole. 

Thus, the graph is the circle of radius 1 centered at the pole (Fig. 
50 (a)) 

 ii) For all values of r , the point )4/,r( π lies on a line that makes an 

angle of 4/π with the polar axis (Fig. 50(b)). Positive values of 
r correspond to points on the line in the first quadrant and 
negative values of r to points on the line in the third quadrant. 
Thus, in the absence of any restriction on r , the graph is the 
entire line. Observe, however, that had we imposed the restriction 

,0r ≥ the graph would have been just the ray in the first quadrant.  
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 iii) Observe that as θ increases, so does r ; thus, the graph is a curve 

that spirals out from the pole as θ increases. A reasonably 
accurate sketch of the spiral can be obtained by plotting the 

intersections with the −x and axesy − for values of θ that are 

multiples of 2/π , keeping in mind that the value of r is always 

equal to the value of θ (Fig. 50(c)). 

 
 

(a)  1r =   (b) 4/π=θ  (c) θ=r  
 

Fig. 50 

 
E6) i)  

 
 

Fig. 51 

 ii)  

 

Fig. 52 
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 iii)  

 

 Fig. 53 

 iv)  

 
Fig. 54 
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MISCELLANEOUS EXAMPLES AND EXERCISES 
 
The examples and exercises given below cover the concepts and processes 
you have studied in this block. Doing them will give you a better understanding 
of the concepts concerned, as well as practice in solving such problems. 
 

Example 1: Find the intervals on which the following functions are increasing 
and the intervals on which they are decreasing.  

i) 5x6x)x(f
2

+−=  ii) 3
x)x(f =  

Solution: i) The graph of f in Fig. 1 suggests that f is decreasing for 

3x ≤ and increasing for 3x ≥ . To confirm this, we differentiate f to obtain 

)3x(26x2)x(f −=−=′ . 

It follows that 0)x(f <′ if 3x < , and 0)x(f >′ if 3x > . 

Since, f is continuous at 3x = , using the first derivative test, we can say that 

f is decreasing on [3,] ∞− and f is increasing on [,3] ∞+ . 

We can also conclude these from the graph of f  in Fig. 1. 

 

Fig. 1: Graph of 56xx
2

+− . 

ii) The graph of f in Fig. 2 suggests that f is increasing above the x -axis. 

To confirm this, we differentiate f and obtain 2
x3)x(f =′ . Thus, 

0)x(f >′ if 0x < and 0)x(f >′ if 0x > . 

Since, f is continuous at 0x = , therefore, using first derivative test f is 

increasing on [0,] ∞− and [,0] +∞ . 

Hence, f is increasing over the entire interval [,] +∞∞− , we also 

conclude the same from the graph in Fig. 2. 

 
Fig. 2: Graph of 

3
x . 

 

*** 
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Example 2: Use the graph of the function of defined as 

5xx
3

1
x

4

1
)x(f

234
+−−= given in Fig. 3 to mark the intervals on which f is 

increasing or decreasing. Also, verify it using derivatives.   

 

Fig. 3: Graph of 5xx

3

1
x

4

1 234
+−− . 

Solution: The graph suggests that f is decreasing if 1x −≤ , increasing if 

0x1 ≤≤− , decreasing if 2x0 ≤≤ , and increasing if 2x ≥ . 

On differentiating f we obtain  

 )2x()1x(x)2xx(xx2xx)x(f
223

−+=−−=−−=′  

The sign of f ′ is given in Table 1, which confirms the conclusion derives from 
the graph.  
 

Table 1 
 

Interval Sign of 2)(x1)(x(x) −+  Sign of 

(x)f ′  

Conclusion 

1x −<  )()()( −−−  −  f is decreasing on 

[1,] −∞−  

0x1 <<−  )()()( −+−  +  f is increasing on 

[0,1] −  

2x0 <<  )()()( −++  −  f is decreasing on 

[2,0]  

2x >  )()()( +++  +  f is increasing on 

[,2] ∞+  

*** 
Example 3: Find the intervals on which the following functions are concave 
upward and concave downward.  

i) 5x6x)x(f
2

+−=  ii) 3
x)x(f =  iii) 2xx

3

1
)x(f

23
+−=  

Solution: i) Calculating the first two derivatives we obtain x2)x(f =′ and 

2)x(f =′′ . Since, 0)x(f >′′  for all x , the function f is concave upward on 

[,] ∞+∞− . You can verify this from the graph given in Fig. 1.  

ii) Calculating the first two derivatives, we obtain 2
x3)x(f =′ and x6)x(f =′′ . 

Since, 0)x(f <′′ if 0x < and 0)x(f >′′ if 0x > , therefore, the function f is 
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concave downward on [0,] ∞− and concave upward on [,0] ∞+ as shown 

in Fig. 2.  

iii) Calculating the first two derivatives, we obtain x2x)x(f
2

−=′ and 

)1x(22x2)x(f −=−=′′ . Since, 0)x(f >′′ if 1x > and 0)x(f <′′ if 1x < , 

we conclude that f is concave upward on [,1] ∞+ and f is concave 

downward on [1,] ∞− . Fig. 4 shows the graph and verifies this.  

 

Fig. 4: Graph of 2xx

3

1 23
+− . 

*** 
 

Example 4: Consider the graph of the function f defined by 

5xx
3

1
x

4

1
)x(f

234
+−−= as shown in Fig. 3. Find the inflection points from 

the graph, and check your answer by finding the inflection points using 
derivatives.  

Solution: From the graph shown in Fig. 3, it is clear that the graph changes 

from concave upward to concave downward between 1− and 0 , say roughly at 

50.0x −= , and the graph changes from concave downward to concave upward 

somewhere between 1and 2 , say roughly at 25.1x = . To check this result with 

the exact inflection points, we obtain the second derivative of f . We get 

x2xx)x(f
23

−−=′ and 2x2x3)x(f
2

−−=′′ )]71(x3[)]71(x3[ −−+−= .  

We check sign of the second derivative at different intervals as given in Table 2.  

Thus, from the sign of f ′′ in Table 2, we can say that f has inflection points at 

the values 55.0
3

71
x −≈

−
= and 22.1

3

71
x ≈

+
= . The graph of f ′′ is shown 

in Fig. 5 verifies this.  
Table 2 

 

Interval Sign of f ′′  Result 

3

71
x

−
<  

+  f is concave upward 

3

71
x

3

71 +
<<

−
 

−  f is concave downward 

3

71
x

+
>  

+  f is concave upward 
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Fig. 5: Graph of f ′′ . 

*** 
 

Example 5: Find the inflection points of xsin)x(f = on the interval ]2,0[ π , 

and verify your results with the graph of the function. 
 

Solution: Calculating the first two derivatives of f , we obtain xcos)x(f =′ and 

xsin)x(f −=′′ . 

Thus, 0)x(f <′′ if ,x0 π<< and 0)x(f >′′ if π<<π 2x , which implies that the 

graph is concave downward on π<< x0 and concave upward on π<<π 2x . 

Thus, there is an inflection point at 14.3x ≈π= as shown in Fig. 6. 
 

 

Fig. 6 

 

*** 
 

Example 6: Use the graph of )x(fy ′= given in the Fig. 7 to fill the boxes with 

>=< or,, . Give reasons for your answer.  

 

i) )1(f)0(f  ii) )2(f)1(f  iii) 0)0(f ′  

iv) 0)1(f ′  v) 0)0(f ′′  vi) 0)2(f ′′   
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Fig. 7 

Solution: i) Since, 0f >′ on ],1,0[ therefore, f is increasing on ]1,0[ and 

)1(f)0(f < . 

ii) Since 0f <′ on ],2,1[ therefore, f is decreasing on ]2,1[ and )2(f)1(f > . 

iii) 0)0(f >′  

iv) ,0)1(f =′ the graph of f ′ intersects the x -axis at 1x = . 

v) 0)0(f =′′  

vi) 0)2(f =′′ . 

*** 
 

Example 7: Show that x
3

1
1x1

3
+<+ if 0x > .  

Solution: Let 3
x1

3

x
1)x(f +−+= .  

Then, 








+

−=

+

−=+−=′

−

3/23/2

3

2

)x1(

1
1

3

1

)x1(3

1

3

1
)x1(

3

1

3

1
)x(f . 

Here, 0)x(f >′ , when 0x > , therefore, f is an increasing function on [,0] ∞ . 

Hence, [,0]x)x(f)0(f ∞∈∀< . 

Which gives 3
x1

3

x
10 +−+<  ]0)0(f[ =Q  

Thus, 
3

x
1x1

3
+<+   

*** 

 

Example 8: Find the relative maxima and minima of 24
x2x)x(f −= . Mark 

these on the graph of f .  

Solution: We have )1x()1x(x4x4x4)x(f
3

+−=−=′ , and 4x12)x(f
2

−=′′ . 

On solving ,0)x(f =′ we get critical points, which are 1x,0x == and 1x −= . 

Using second derivative test, we get 

04)0(f <−=′′ , thus maxima at 0x = . 

08)1(f >=′′ , thus minima at 1x = . 

08)1(f >=−′′ , thus minima at 1x −= . 
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So, there is a relative maximum at 0x = and relative minima at 1x = and at 

1x −=  as shown in Fig. 8. 

 

Fig. 8 

*** 
 

Example 9: Trace the curve 
1x

8xx
y

23

−

−−
=  by showing all the properties you 

use to trace. 
Solution:  

i) Symmetry: There is no symmetry about x -axis, y -axis or about origin.  

ii) Point of intersection with axes: Setting 0y = , gives the equation 

08xx
23

=−− . The LHS of this equation changes its sign in the interval 

]3,2[ , therefore, the graph of y intersects x -axis between 2 and 3. Also, 

the curve passes through the point )8,0( .  

iii) Asymptotes: Here 
1x

8xx
lim

23

1x −

−−

→

tends to ,∞ therefore 1x = is a vertical 

asymptote. There are no horizontal asymptotes. 

iv) Relative maxima or minima: We get 
dx

dy
  






−

−=

1x

8
x

dx

d 2
     

             
2

)1x(

8
x2

−

+=   

 and 
32

2

)1x(

16
2

dx

yd

−

−=  

 Here, 0y =′ when 
2

)1x(

8
x2

−

−=  or when )4xx2x(2
23

++−  

0)4x3x()1x(2
2

=+−+= . The only real solution to this equation is 

1x −= . Therefore, there is a relative minimum at 1x −= , and the 
minimum value of y is 5. 

v) Increasing or decreasing function: Here, 0y <′ , when 1x −< , 

therefore, f is decreasing, and 0y >′ , when ∞<<− x1 , thus, f is 

increasing on [,1] ∞− except at 1x = . 
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vi) Concavity: Here, 0y =′′ , when 
3

)1x(

16
2

−

= or when 8)1x(
3

=− . Then, 

21x =− , so, 3x = .Thus, there is an inflection point at 3x = . The 

coordinates of the inflection point are )5,3( . 

Combining all the properties, we discussed from (i) to (vi), we can trace 

the curve )x(fy = . Fig. 9 shows the curve.  

 

 

Fig. 9 

*** 
 

Example 10: The position function of a moving particle is given by 

3t60t21t2)t(s
23

++−= . Find the velocity and acceleration of the particle and 

also, determine the interval in which velocity and acceleration are increasing 
or decreasing.  

Solution: The velocity and acceleration at time t are 

)5t()2t(660t42t6
dt

ds
)t(s)t(v

2
−−=+−==′= and









−=−==′=

2

7
t1242t12

dt

sd
)t(v)t(a

2

2

. 

At each instant we can determine the direction of the motion from the sign of 

)t(v and whether the particle is speeding up or slowing down from the signs of 

)t(v and )t(a together (Fig. 10 (a) and (b)).  

 
Table 3 

 

Time Velocity )t(v  Acceleration )t(a  Interpretation 

2t0 ≤<  s/m60)0(v =  2
s/m42)0(a −=  Since, the acceleration 

is negative, the speed 
of the particle is 
decreasing.  

 s/m0)2(v =  2
s/m18)2(a −=  The particle continuous 

moving with decreasing 
speed. 
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Time Velocity )t(v  Acceleration )t(a  Interpretation 

2

7
t2 ≤≤  

s/m0)2(v =  

s/m
2

27

2

7
v −=








 

( )
2

s/m182a −=  

2
s/m0

2

7
a =








 

The particle begins to 
slow down. 

5t
2

7
≤≤  s/m

2

27

2

7
v

−
=







 

s/m0)5(v =  

2
s/m0

2

7
a =








 

2
s/m18)5(a =  

The particle continues 
moving until time 5t = , 

when it stops at  5t = , 

,m28)5(s = it reverses 

direction again, and 
begins to speed up with 

acceleration 18)5(a = . 

The particle then 
continues moving right 
thereafter with 
increasing speed. 

 

 

(a)    Graph of v(t)    (b)   Graph of a(t)  

Fig. 10 

 
The motion of the particle is described schematically by the curved line in    
Fig. 11. 

 

Fig. 11 

*** 
 

Example 11: Find all absolute extrema of the function 4x3x)x(f
23

+−= on the 

interval ]2,1]− . 
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Solution: Here, 4x3x)x(f
23

+−= . On differentiating, we get 

x6x3)x(f
2

−=′ and 6x6)x(f −=′′ . 

0)x(f =′ gives 0x6x3
2

=− , which implies 2,0x = . 

Since, 6)0(f −=′′ , therefore, f has a relative maxima at 0x = . The maximum 

value is 4)0(f = .  

Since, 06)2(f >=′′ , therefore, f has a relative minima at 2x = . The 

minimum value is 0)2(f = .  

Since, f has only one relative maximum value and one relative minimum value 

on [2,1] − , therefore, the relative extrema would be absolute extrema. Thus, 

f has an absolute maximum at ,0x = and the absolute minimum at 2x = . You 

can see the graph of f in Fig. 12. 
 

 

   Fig. 12 

*** 
 
Example 12: Find the radius and height of the right circular cylinder of the 
largest volume that can be inscribed in a right circular cone with radius 12 cm 
and height 20 cm. 
 
Solution: Let r be the radius (in cm) of the cylinder, h be the height (in cm) of 

the cylinder and V be the volume (in cubic cm) of the cylinder  as shown in 
Fig. 13 (a).  

The volume of the inscribed cylinder is hrV
2

π= . 
Since, the volume has two variables, we can eliminate one of the variables 

using relationship between r and h . For this, we use similar triangles (Fig. 13 
(b)),  

We obtain 
OA

BO

CD

BC
=   

12

20

r

h20
=

−
or r

3

5
20h −=  

 

Putting h in terms of r in the formula of V , we get 

322
r

3

5
r20r

3

5
20rV π−π=








−π=  

which expresses V in terms of r alone. Because r represents a radius, it 
cannot be negative, and because the radius of the inscribed cylinder cannot 

exceed the radius of the cone, the variable r must satisfy 12r0 ≤≤ . 
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On differentiating V with respect to ,r we get )r8(r5r5r40
dr

dV 2
−π=π−π= and 

r1040
dr

Vd
2

2

π−π= . 

Setting, 0dr/dV = gives 0)r8(r5 =−π , so, 0r = and 8r = are critical 

numbers. Since, these lie on the interval ]12,0[ , the maximum must occur at 

one of the values 12r,8r,0r === . 

0)V(
0rat

=
=

 

3

1280
)V(

8rat

π
=

=
 

0)V(
12rat

=
=

 

Here, the maximum volume 3
cm

3

1280
V

π
= occurs when the inscribed cylinder 

has radius 8 cm. When cm
3

20
h,cm8r == . Thus, the inscribed cylinder of the 

largest volume has radius 8 cm and height cm
3

20
. 

 

 
 

(a)     (b) 

Fig. 13 

*** 
 
Example 13: A pharmaceutical firm sells liquid form of penincillin in units at a 
price of `100 per unit. The total production cost (in `) for x units is 

2
x004.0x20000,100)x(C ++= and the production capacity of the firm is at 

most 20,000 units in a specified time. Find the number of sells a liquid form of 
penicillin at units of penicillin, manufactured and sold in that time to maximise 
the profit? 
 

Solution: The total revenue for selling x units is ,x100)x(R = the profit 

)x(P on x units will be )x(C)x(R)x(P −=  
22

x004.0000,100x80)x004.0x20000,100(x100 −−=++−=  

On differentiating, )x(P with respect to x , we get, x008.080
dx

dP
−= . 

Setting, 0
dx

dP
= gives ,0x008.080 =− which gives 000,10x = . 
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Since, the capacity is at most 20,000 units, the critical number lies in the 

interval ]000,20,0[ . Hence, the maximum profit must occur at one of the 

values ,000,10x,0x == or 000,20x =  

Now, the value of )x(P at each critical number is  

000,100)0(P −=  

300000)000,10(P =  

000,100)000,20(P −=  

Thus, the firm must manufacture 10,000 units to maximise the profit.  

*** 
 

Example 14: Trace the curve 2/x
2

ey
−

= by stating all the properties you use to 

trace. 
 
Solution: i) Symmetry: Since, the power of x is even, therefore, the curve is 
symmetrical about the y -axis. 

 

ii) Points of intersection with axes: Setting 0y = , we get 0e
2/x

2

=
− , 

which has no solution, because all powers of e have positive values. 

Thus, there are no x -intercepts. Now, setting 0x = gives 1y = . 

Therefore, the curve passes through the point )1,0( . 

iii) Asymptotes: There are no vertical asymptotes, since 2/x
2

e
− is defined 

and continuous on [,] +∞∞− .  

 Also, 0elimelim
2/x

x

2/x

x

22

==
−

+∞→

−

−∞→

 

Thus, the curve 2/x
2

ey
−

= has horizontal asymptote, which is 0y = . 

 
iv) Increasing and decreasing function: On differentiating, we get  

2/x

2

2/x
22

xe
2

x

dx

d
e

dx

dy
−−

−=







−=  

Here, ,0y >′ when ,0x < thus, y is increasing on [0,] ∞− , and 

,0y <′ when ,0x > thus, y is decreasing on [,0] ∞ . 

v) Relative extrema: Since, 0e
2/x

2

>
− for all ,x the sign of 

2/x
2

xedx/dy
−

−= is the same as the sign of x− . 

Therefore, y has a relative minimum 1e
0

= at 0x = . 

vi) Concavity: Here, [ ] ]x[
dx

d
ee

dx

d
x

dx

yd 2/22
x2/x

2

2

−+−=
−−

 

                2/x22/x2/x2
222

e)1x(eex
−−−

−=−=  

 Since, 0e
2/x

2

>
− for all ,x the sign of 2/x222

2

e)1x(dx/yd
−

−= is the same 

as the sign of )1x(
2

− , and the sign of )1x(
2

− would change at 

1x = and at 1x −= . Thus, the inflection points occur at 1x −= and at 

1x = . These inflection points are )607.0,1()e,1(
2/1

−≈−
− and 

)607.0,1()e,1(
2/1

≈
− . 

 We combine all these points, and trace the curve as shown in Fig. 14. 
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Fig. 14: Curve 
/2x

2

ey
−

= . 

*** 
 
Example 15: Find the type of the indeterminate forms in the following limits. 
Also, find the limit.  

i)  
3x

9x
lim

2

3x −

−

→

 ii) 
xcos

xsin1
lim

2/x

−

π→

 

iii) 
3

x

x x

1e
lim

−

∞→

 iv) 
)x/1sin(

x
lim

3/4

x

−

+∞→

 

Solution: i) The numerator and denominator are 0 as 3x → . Therefore, the 

limit is an indeterminate form of type 0/0 . Applying L’Hôpital’s rule, we get 

 6
1

x2
lim

]3x[
dx

d

]9x[
dx

d

lim
3x

9x
lim

3x

2

3x

2

3x
==

−

−

=

−

−

→→→

 

 Alternatively, you may find this limit by factoring  

 6)3x(lim
3x

)3x()3x(
lim

3x

9x
lim

3x3x

2

3x
=+=

−

+−
=

−

−

→→→

. 

ii) The numerator and denominator are ∞ as ,
2

x
π

→ therefore, the limit is an 

indeterminate form of type 0/0 . Applying L’Hôpital’s rule, we get 

 0
1

0

xsin

xcos
lim

]x[
dx

d

]xsin1[
dx

d

lim
xcos

xsin1
lim

2
x3

2
x

2
x

=

−

=

−

−
=

−

=
−

π
→

π
→

π
→

 

iii) The numerator and denominator are 0 as ,x ∞→  therefore, the limit is an 

indeterminate form of type 
∞

∞
. Applying L’Hôpital’s rule repeatedly, we get 

 ∞====

−

=
−

∞→∞→∞→∞→∞→ 6

e
lim

x6

e
lim

x3

e
lim

]x[
dx

d

]1e[
dx

d

lim
x

1e
lim

x

x

x

x
2

x

x
3

x

x
3

x

x

. 

iv) The numerator and denominator are 0 as ∞→x , so the limit is an 

indeterminate form of type 0/0 . Applying L’Hôpital’s rule, we get 



 

 

189

Block 4                                               Miscellaneous Examples and Exercises 

 0
1

0

)x/1cos(

x
3

4

lim
)x/1cos()x/1(

x
3

4

lim
)x/1sin(

x
lim

3/1

x
2

3/7

x

3/4

x
===

−

−

=

−

+∞→

−

+∞→

−

+∞→

. 

*** 
 

Example 16: Show that e)x1(lim
x/1

0x

=+
→

. 

Solution: Let x/1
)x1(y += and taking the natural logarithm of both the sides. 

x

)x1ln(
)x1ln(

x

1
)x1ln(yln

x/1 +
=+=+=  

Thus, 
x

)x1ln(
limylnlim

0x0x

+
=

→→

, which is an indeterminate form of type 0/0 . 

Using L’Hôpital’s rule, we get 1
1

)x1/(1
lim

x

)x1ln(
limylnlim

0x0x0x
=

+
=

+
=

→→→

 

Since, we have 1yln → as 0x → , the continuity of the exponential function 

implies that 1yln
ee → as 0x → , and this implies that ey → as 0x → . Thus, 

e)x1(lim
x/1

0x

=+
→

. 

*** 
 
Now you may try the following exercises. 
 

E1) Find the inflection points, if any, for the curve 4
xy = . 

 

E2) Use the graph of )x(fy = given in Fig. 15 to find the following:  

i) The intervals on which f is increasing.  

ii) The intervals on which f is decreasing. 

iii) The intervals on which f is concave upward.  

iv) The intervals on which f is concave downward.  

v) The values of x at which f has an inflection point.  

 

Fig. 15 

 

E3) Show that xtanx < if 2/x0 π<< . 
 
E4) Find the intervals on which f is increasing, the intervals on which f is 

decreasing, the open intervals on which f is concave upward, the open 
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intervals on which f is concave downward, and the x -coordinates of all 
inflection points for the functions defined as follows: 

i) 3
)2x()x(f +=  iii) 3

2x)x(f +=  

ii) 
2x

x
)x(f

2

2

+

=  iv) )4x(x)x(f
3/1

+=  

 

E5) Prove that  a general cubic polynomial dcxbxax)x(f
23

+++=  

)0a( ≠ has exactly one inflection point.  

 
E6) Find the relative extrema of the functions defined as follows using both 

the first and second derivative tests.  

i) 2
xx41)x(f −−=  

ii) x12x9x2)x(f
23

+−=  

iii) π<<= 2x0,xsin)x(f
2  

iv) 4x)x(f
2

−=   

 
E7) Trace the following curves by stating all the properties you use to trace. 

 i)  3/2
)4x(y −=  

 ii)  3/43/1
x3x6y += . 

 

E8) Let qpxx)x(f
2

++= . Find the values of p and q such that 3)1(f = is 

an extreme value of f on ]2,0[ . Is this value a maximum or minimum? 

 

E9) Find the absolute maximum and minimum values of f , if any, on the 
stated interval.  

i) )1x()x(f
2

−= on [,] +∞∞−   

ii) )x20(x)x(f
3/2

−= on ]20,1[−  

iii) xtanxsec2)x(f −= on ]4/,0[ π  

iv) )xsin(cos)x(f = on ]2,0[ π  

 
E10) Suppose that the equations of motion of a paper aeroplane during the 

first 12 seconds of flight are tcos22y,tsin2tx −=−= , 12t0 ≤≤ . 

 What are the highest and lowest points in the trajectory, and when is the 
aeroplane at those points? 

 

E11) A closed cylindrical can is to be made to hold 1 litre )cm1000(
3 of liquid. 

What should be the height and radius of the can to minimize the amount 
of material needed to manufacture the can? 

 

E12) Find a point on the curve 2
xy = that is closest to the point )0,18( . 

 
E13) A firm determines that x units of its product can be sold daily at p rupees 

per unit, where p1000x −= . The cost of producing x units per day is 

x203000)x(C += . 
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i) Find the revenue function )x(R . 

ii) Find the profit function )x(P . 

iii) Assuming that the production capacity is at most 500 units per day, 
determine how many units the company must produce and sell each 
day to maximise the profit.  

iv) Find the maximum profit.  

v) What price per unit must be charged to obtain the maximum profit? 
 

E14) Find the point on the curve ,)x1(y
12 −

+= at which the tangent line has 

the greatest slope?  
 

E15) Trace the curve 
x

)x(ln
y = by stating all the properties you use to trace 

it.  
 

E16) Trace the curve 
kt

Ae1

L
y

−

+

= , where y is the population at time 

)0t(t ≥ and k,A and L are positive constants.  

 
E17) Suppose that a hollow tube rotates with a constant angular velocity of ω  

rad/s about a horizontal axis at one end of the tube, as shown in the Fig. 
16. Assume that an object is free to slide without friction in the tube while 
the tube is rotating. Let r be the distance from the object to the pivot 

point at time 0t ≥ , and assume that the object is at rest and 0r = when 

0t = . If the tube is horizontal at time 0t = and rotating, then 

)]tsin()t[sinh(
2

g
r

2
ω−ω

ω

= during the period that the object is in the 

tube. Assume that t is in seconds and r is in meters, and use 
2

s/m8.9g = and s/rad2=ω .  

i) Trace the curve )t(fr = for 1t0 ≤≤ . 

ii) If the length of the tube is m1 , then find the limit taken by the object 

to reach the end of the tube? 

 
 

Fig. 16 

 
E18) Trace the following curves given in polar coorindates:  

i) 
4

3π
−=θ  iii) θ= 2sinr

2  
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ii) θ=− cos22r  iv) θ= 4r  
 
E19) Find the slope of the tangent line to the following polar curves for the 

given value of θ . 

 i) 3/;cos2r π=θθ=  

 ii) 2;
1

r =θ

θ

=  

 

E20) Show that the curve with parametric equations ,t4tx
3

−=  
2

ty = intersects itself at the point )4,0( , and find equations for the two 

tangent lines to the curve at the point of intersection.  
 

SOLUTIONS/ANSWERS  
 

E1) Calculating the first two derivatives of f we obtain 23
x12)x(f,x4)x(f =′′=′ . 

Here, 0)x(f >′′ for 0x < and for ,0x > which implies that f is concave 

upward for 0x < and for 0x > . In fact, f is concave upward on [,] +∞∞− . 

Thus, there are no inflection points, and in particular, there is no inflection 

point at 0x = , even though 0)0(f =′′ . (See Fig. 17) 

 

Fig. 17 

 

E2) i) The function f is increasing on ]f,d[ . 

 ii) The function f is decreasing on ]d,a[ and ]g,f[ . 

 iii) The function f is concave upward on the intervals [b,a] and [e,c] . 

 iv) The function f is concave downward on [c,b] and [g,e] . 

 v) The points of inflection are at cx,bx == and dx = . 

 

E3) Let xxtan)x(f −=  

      1xsec)x(f
2

−=′  

    ,0)x(f ≥′ as 1xsec
2

≥ on 
2

x0
π

<< . 

 Therefore, f is increasing on 
2

x0
π

<< . 

 Hence, )x(f)0(f <  



 

 

193

Block 4                                               Miscellaneous Examples and Exercises 

 Here, 0)0(f = . Thus, xxtan0 −< which gives, xtanx < . 

 

E4)  i) Increasing on [,] +∞∞− . 

  Not decreasing anywhere on R . 

  Concave upward on [,2] +∞− . 

  Concave downward on [2,] −∞− . 

  Point of inflection is at 2x −= . 

 ii) Increasing on [,0[ ∞+ . 

  Decreasing on ]0,] ∞−  

  Concave upward on 







−

3

2
,

3

2
 

  Concave downward on 







−∞−

3

2
, and on 








+∞,

3

2
. 

  Points of inflection are 









+

3

1
,

3

2
and 










−

3

1
,

3

2
 

 iii) Increasing on [,] ∞+∞− . 

  Not Decreasing on R . 

  Concave upward on [2,] −∞− . 

  Concave downward on [,2] +∞− . 

  Point of inflection at 2x −= . 

 iv) Increasing on [,1[ +∞−  

  Decreasing on ]1,] −∞−  

  Concave upward on [0,] ∞− and [,2] +∞ . 

  Concave downward on [2,0] . 

  Points of inflection are )0,0( and ))2(6,2(
3/1 . 

 

E5) dcxbxax)x(f
23

+++=  

 cbx2ax3)x(f
2

++=′  

 b2ax6)x(f +=′′  

 
a6

b2
x0)x(f −=⇒=′′ . 

 Thus, f has exactly one inflection point.  
 

E6) i) Relative maximum at 2x −= and 5)2(f =− . 

 ii) Relative maximum of 5 at 1x = and relative minimum of 4 at 2x = . 

 iii) Relative minimum of 0 at π=x and relative minima of 1 at 

2

3
,

2
x

ππ
= . 

 iv) Relative maximum of 4 at 0x = and relative minima of 0 at 

2x = and 2− . 
 
E7) i) The properties to trace the curve are as follows:  

  i) Symmetry: There are no symmetries about the coordinate 

axes or the origin. However, the graph of 3/2
)4x(y −= is 

symmetric about the line 4x = , since, it is a translation (four 
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units to the right) of the graph of 3/2
xy = , which is symmetric 

about the y -axis. 

  ii) Point of intersection with axes: )0,4( and )52.2,0(  

  iii) Asymptotes: None, since 3/2
)4x()x(f −= is continuous 

everywhere and also, +∞=−
+∞→

3/2

x

)4x(lim and 

+∞=−
−∞→

3/2

x

)4x(lim . 

  iv) Relative extrema: The derivatives are 

3/1

3/1

)4x(3

2
)4x(

3

2
)x(f

dx

dy

−

=−=′=
−

 

  
3/4

3/4

2

2

)4x(9

2
)4x(

9

2
)x(f

dx

yd

−

−=−−=′′=
−

 

 There is a critical number at ,4x = since f  is not differentiable 

there; and by the first derivative test there is a relative minimum 

at that critical number, since 0)x(f <′ if 4x < and 0)x(f >′ if 

4x > .  

  v) Concavity: Since 0)x(f <′′ if ,4x ≠ the graph is concave down 

for 4x < and for 4x > . 

  vi) Vertical tangent lines: Since 3/2
)4x()x(f −= is continuous at 

4x = and  

  +∞=

−

=′
++

→→
3/1

4x4x )4x(3

2
lim)x(flim  

   −∞=

−

=′
−−

→→
3/1

4x4x )4x(3

2
lim)x(flim , therefore is a vertical tangent 

line and cusp at 4x = .  
 

Combining all the properties, we can trace the curve as shown 
in Fig. 18. 

 

Fig. 18 

 ii)  The properties used to trace the given curve are as follows: 

  i) Symmetry: There are no symmetry about the coordinate axes 
or the origin.  
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  ii) Points of intersection with axes: )0,0( and )0,2(− . 

  iii) Asymptotes: None, since 3/43/1
x3x6)x(f += is continuous 

everywhere, also, since  

   +∞=+=+
+∞→+∞→

)x2(x3lim)x3x6(lim
3/1

x

3/43/1

x

 

   +∞=+=+
−∞→−∞→

)x2(x3lim)x3x6(lim
3/1

x

3/43/1

x

 

  iv) Relative extrema: The derivatives are 

3/2

3/23/13/2

x

)1x2(2
)x21(x2x4x2)x(f

dx

dy +
=+=+=′=

−−  

 and 

  
3/5

3/53/23/5

2

2

x3

)1x(4
)x1(x

3

4
x

3

4
x

3

4
)x(f

dx

yd −
=+−=+−=′′=

−−−

. 

 The critical number is 
2

1
x −= . The sign of dx/dy  changes at 

2

1
x

−
= from negative to positive, therefore,from the first 

derivative test, there is a relative minimum at 
2

1
x −= .  

 v) Increasing and decreasing: The function f is decreasing 

when 5.0x −< and increasing when 5.0x −> . 

 vi) Tangents: There is a point of vertical tangency at 0x = , since  

   +∞=
+

=′
++

→→
3/2

0x0x x

)1x2(2
lim)x(flim  

   +∞=
+

=′
−−

→→
3/2

0x0x x

)1x2(2
lim)x(flim  

  vii) Concavity: Here ,0
dx

yd
2

2

> when ,0x < therefore, the curve is 

concave upward and ,0
dx

yd
2

2

< when ,1x0 << therefore, the 

curve is concave downward, and the curve is again concave 

upward for 1x > . There are inflection points at )0,0( and )9,1( . 

 Combining all the properties, we trace the curve as shown in 
Fig. 19. 

 

    Fig. 19 
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E8) 2qpqp13)1(f =+⇒++==  

 2/px0px2)x(f −=⇒=+=′  

 Since, 1x = is an extreme value, therefore, 2p −= , which gives 4q = . 

 Now, 2)x(f =′′ and 02)1(f >=′′ , therefore, this extreme value is 

minimum value.  
 

E9) i) Minimum value 1−  at 0x =  

  No maximum.  

 ii) Maximum value 48 at 8x =  

  Minimum value 0 at 20,0x = . 

iii) Maximum value 2 at 0x =  

 Minimum value 3 at 
6

x
π

= . 

iv) Maximum value 841.0 at π= 2,0x . 

 Minimum value 841.0− at π=x . 
 

E10) Maximum 4y = at ππ= 3,t . 

 Minimum 0y = at π= 2,0t . 

 

E11) The surface area of the can rh2r2S
2

π+π= , where r and h are the 

radius and height of the can, respectively. Also, 32
cm1000hr =π . 

 Thus, 
r

2000
r2S

2
+π= , which gives 

2
r

2000
r4

dr

dS
−π=  

 
3/1

)2(

10
r0

dr

dS

π

=⇒= cm. 

 Now, ,0
dr

Sd

r

4000
4

dr

Sd

3/1
)2(

10
rat

2

2

32

2

>







+π=

π

=

and therefore minimum.  

 Hence, the height 
3/1

)2(

20
h

π

= cm.  

 

E12) Let the point be )y,x( . The distance between )y,x( and )0,18( is 

22
)0y()18x(D −+−= . Since, the point )y,x( lies on 2

xy = , 

therefore, 
42

x)18x(D +−= .  

 Suppose, 
2

DL =  

  42
x)18x(L +−=  

  3

+−= x4)18x(2
dx

dL
 

 The critical number is 2x = .  

  
2

2

2

x122
dx

Ld
+=  

  050
dx

Ld

2xat

2

2

>=








=

.  

 Thus, the distance is minimum, when 2x = . Thus, the point is )4,2( . 

 

E13) i) The revenue function )x1000(xxp)x(R −==  
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 ii) The profit function 3000xx980)x(C)x(R)x(P
2

−−=−=  

 iii) It is given that 500x ≤ . Here, x2980)x(P −=′  

  0)x(P =′ gives 490x = .  

  02)x(P <−=′′ , thus, maxima. 

  Therefore, the company must produce and sell 490 units to 
maximise the profit.   

 iv) )490(P =`237100 

 v) =−= 4901000p `510 

 

E14) The required point is 







−

4

3
,

3

1
. 

 
E15) i) Symmetry: None 

 ii) Points of intersection with axes: )0,1(  

 iii) Asymptotes: Since, +∞=
+

→ x

1
lim

0x

and −∞=
+

→

xlnlim
0x

it follows that 

values of )x(ln
x

1

x

xln
y == will decrease without bound as 

+

→ 0x , 

so, −∞=
+

→ x

xln
lim

0x

and the graph has a vertical asymptote 0x = . 

   You may note that 0
x

)x(ln
> for 1x > . The limit 0

x

xln
lim

x

=
+∞→

. Thus, 

x/)x(ln is asymptotic to 0y = as +∞→x . 

 iv) Increasing and decreasing function: The derivatives are  

22
x

xln1

x

)1()x(ln)x/1(x

dx

dy −
=

−
= and 

344

2

2

2

x

3xln2

x

x3xlnx2

x

)x2()xln1()x/1(x

dx

yd −
=

−
=

−−−
= . 

  Since, 0x
2

> for all 0x > , the sign of 
2

x

xln1

dx

dy −
= is the same as 

the sign of xln1− . But xln is an increasing function with 1eln = , 

so, xln1− is positive for ex <  and negative for ex > .  

 v) Relative extrema: There is a relative maximum 

37.0e/1
e

)e(ln
≈= at ex = . 

 vi) Concavity: Since, 0x
3

> for all 0x > , the sign of 
32

2

x

3xln2

dx

yd −
= is 

the same as the sign of 3xln2 − . Now, 03xln2 =− when 

,
2

3
xln = or 2/3

ex = . Again, since, xln is an increasing function, 

3xln2 − is negative for 2/3
ex < and positive for 2/3

ex > . 

Thus, an inflection point occurs at )33.0,48.4(e
2

3
,e

2/32/3
≈







 −

. 

   Fig. 20 shows the curve. 
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Fig. 20 

 

E16) You may like to trace the curve by assuming values of A,L and k . 

 
E17) You may like to trace the curve yourself. 
 
E18) Fig. 21(a), 21 (b), 21 (c) and 21 (d) shows the graphs of the polar curves 

of (i), (ii), (iii) and (iv) respectively. 
 

 
 

Fig. 21 
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E19) i) 
3

1
 

 ii) 
12tan2

22tan

+

−
  

 

E20) 4
2

x
y +±= . 

   


