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BLOCK 4 APPLICATIONS OF DIFFERENTIAL
CALCULUS

In Block3, you have learnt some techniques of differentiation, and have differentiated a
wide variety of functions. In this block, we shall use the derivative to explore various
geometrical features of a curve, like maxima/minima, concavity/convexity, tangents,
normals, asymptotes and so on. For this we have to make use of not only the first
derivative, but also some higher order derivatives.

In Unit 12, we shall use the first derivative to find the limits involving an algebraic
combination of functions in an independent variable, in which evaluation of limit gives form

like %,S,OXOO,O“’, etc. Such a form is called indeterminate form.

oo

In the next three units, Unit 13, Unit 14 and Unit 15, we shall illustrate how we can find the
exact shape of a curve, when its equation is given to us. You will be surprised at the
amount of information which is revealed by the first and second derivatives. We shall use
this information to trace various standard curves in Unit 16. In Unit 16, we shall also tell
you how the properties of some remarkable curves are put to use. We shall also ask you
to trace some curves yourself. Do try and trace them by systematically following the
procedure which we have outlined in Unit 16. We are sure, that after reading this block
you will be aware of the presence of many of these curves in the objects around you, as
also in nature.

We have also made a video programme, “Curves”, which you can watch after going
through this block. This programme is available at your study center.

A word about some signs used in the unit! Throughout each unit, you will find theorems,
examples and exercises. To signify the end of the proof of a theorem, we use the sign .
To show the end of an example, we use ***. Further, equations that need to be referred to
are numbered sequentially within a unit, as are exercises and figures. E1, E2 etc. denote
the exercises and Fig. 1, Fig. 2, etc. denote the figures.



NOTATIONS AND SYMBOLS (used in Block 4)

See the list of notations and symbols in Block 1, Block 2 and Block 3.



UNIT 1 2

INDETERMINATE FORMS \

Structure Page No.
12.1  Introduction 5
Objectives
12.2 Indeterminate Forms 6
12.3 L’Hépital’s Rule for% Form 8
12.4 L’Hépital’s Rule for * Form 17
12.5 Other Indeterminate Forms 23
12.6 Summary 29
12.7 Solutions/Answers 29

12.1 INTRODUCTION

In Unit 7, we have discussed limit of a function. In this unit, we shall discuss a
general method for using derivatives to find limits. We shall begin with the
limits in which numerator and denominator both approach 0 as x — 0. Limits
which come in such forms are called indeterminate forms. We shall discuss
such forms in Sec.12.2. The arguments we used in Unit 7, that is cancelling
the common factor in numerator and denominator or sometimes using
geometrical approach do not work for such limits. So in Sec.12.3 and
Sec.12.4, we introduce a systematic method, known as L’'Hépital’s rule, for
evaluating indeterminate forms.

L’Hopital’s rule, is named after the French mathematician L'Hépital. In this
rule, we use the derivative for evaluating limit. This is in contrast with what we
have been doing so far, i.e., evaluating derivatives of functions by calculating
certain limits. We shall discuss other indeterminate forms in Sec. 12.5.

/i

Fig. 1: L’Hpital

In this unit, we will see that we are now able to find the limit of a wide variety of
indeterminate forms that we were unable to deal with earlier.

And now we shall list the objectives of this unit. After going through the unit,
please read this list again and make sure that you have achieved the
objectives.



Objectives

After reading this unit, you should be able to:

o identify the types of indeterminate forms;

. f
° evaluate lim x)
X—a g(x)

lim £ (x) = o0 = lim g(x)

when Mf(x) =0= Mg(x)or

e find lim[f(x) - g(x)] when lim f (x) = oo = lim g(x)
e  evaluate lim[f(x)"™ when lim f(x) =0 =lim g(x), or

lim f(x) =co and lim g(x) =0, or

X—a

lim f(x) =1 and ljmg(x)zoo,where ae R

e compute lim[f(x) g(x)] when limf(x)=0 and lim g(x) =eo

. obtain all the above limits when a iS oo or —co.

12.2 INDETERMINATE FORMS

In Unit 7, we considered many limit problems, but deliberately avoided the

0 oo , . .
forms —,—, o — oo, and a few others. In this section, we shall discuss these

forms.
. . f(x) ) ) . .
Consider, lim ( ),where lim f(x) — 0 and lim g(x) — 0. This is unlike the
X—a g X X—a X—a

problems, say of the form % all of which have the answer 0. The form %can
produce a variety of answers. Because of this unpredictability, the limit form
%is called indeterminate. In general, a limit form is indeterminate when

different problems with the same form can have different answers. You may
recall two special exceptions in the limits in Example 22 in Unit 7, where
lim sin X

x=0  x

=1 was shown using the squeezing theorem and some careful

1—cosx

manipulation of inequalities, and lim

1 = O then followed using the
X X

identity sin” x 4+ cos>x = 1. These limits are actually special cases of these
derivatives, as can be seen by

i(sinx) _h.msinx—sinO_h.msinx_1

dx =0 x—0 x=0 x=0 X

and

d cosx —cos0 1—cosx
—(cosx =lim =lim =0
dx( )x:0 x—0 x—=0 x—0 X




Unit 12 Indeterminate Forms

What makes these limits bothersome is the fact that the numerator and
denominator both approach 0 as x — 0. This means that the limit of the
numerator is making the quotient very small, whereas the limit of the
denominator is making the quotient very large. Such limits are called
indeterminate forms of type 0/0.

. . lim g(x) . 0
If lim g(x) =0 =lim h(x), then 2=*—— is an expression of the form —. In
x—a x—a hm h(x) 0
: g(x) . , : 0 3
this case, we say that m is an indeterminate form of the type 0 at x=a or
X

as x —a.

3

Some other examples of %form are lin})i =1(see Fig. 2 (a)), hmox— =0 (see
x—0 x x—0 x

2

Fig. 2(b)), lim X _11 =2 (see Fig. 2 (c)).
x=l X —
(a) (b) (c)

Fig. 2

There are other types of indeterminant forms also; for example, if the limit of
the numerator is = and is making the quotient very large and at the same
time the limit of the denominator is also o, which makes the quotient very

small. Such forms are indeterminate forms of type =,

(e o)

If lim g(x)=2c0=limh(x), then we say that hm%xi is an indeterminate
X—a X—a X—a X

form of the type Z atx=a.

o0
e* lime* <2 lim x>
For example, lim =222 =— and lim =2 =
x>=Inx limInx oo x——e| 7% lime™ oo
X—>o0 X—>—o00
. . . Invx . €
Other examples of indeterminate form of oo/ are lim ——,lim —-,
X—00 X X0 X
3
. X
lim —-, etc.
X—>00 ex

You may think of many other such forms, in which the final answer of limit
does not tend to a single value rather pulls the answer to two different and far
away values. Due to which the limit is said to be in indeterminate form.

Other types such as, 0°,0Xxo0,00°,17,and oo —co are also indeterminate forms.



Here we are giving various types of indeterminate forms in the following table:

Type of other Indeterminate forms Example
oo —oo form: Large value is subtracted from lim (sec X — tan x)
another large value x+’2‘
17 form: The behaviour of a large power of a ~ (sinx 1%’ 1)
number depends on whether the number is less hm( j ,hm[1+—j
x—0 X X—yo0 X
than 1 or more than 1.

0°form: The limit is pulled towards 0 by the | lim(e* —1)"**
base and towards 1 by the exponent. X0

oo’ form: The limit is pulled towards by the base | fim(e*)"*’
and towards 1 by the exponent 0. X0

We have said it before, and we repeat it once again that the methods
developed by us so far do not enable us to calculate the limits in many
situations mentioned above. In what follows we describe methods which
would enable us to deal with almost all these situations. But first, see if you
can do this exercise.

E1) Identify the types of indeterminate forms in the following cases:

2x

ne N

9
x>0 x "

sin 3x

ii) lim 5
x=0 X COS X

iii) lim[cosec x—lj

x—0 X

iv) lim[ sin X j

x=0{ 1—cosx

v)  limxIn|x]|.

x—0

In the following section, we will give a simple method for calculating the limits

of functions which are in the % form.

12.3 L’HOPITAL’S RULE FOR % FORM

Marquis de L'Hopital, a French mathematician, was a student of Johann

Bernoulli. He published the first textbook on calculus in 1696. This book was
. f

based on Bernoulli’s lectures, and contained a method for evaluating hm%
X—a g X




when the limit is an indeterminate form of the type % at x =a. Thisresultis

now universally known as L’Hépital’s rule, even though it was proved by
Bernoulli. Before we state the rule, let us consider an example.

X

Consider the limit lim ©

, this can be expressed as the ratio of two

x—0 SIn X
derivatives.
d
X X 0 7(6 ) 0
lim & _1—lim (e"—e)/(x-0)  dx w0 __ & 4
x=0 gin X x0 (sin X —sin 0)/(x —0) i(sin X) cos0
dx 0

This method can be stated more generally. Suppose that f and g are

differentiable functions at x = a and that lim fEX;
X—a g X

type 0/0, thatis, limf(x) =0and lim g(x) =0.

is an indeterminate form of

In particular, the differentiability of f and gat x =aimplies that f and gare
continuous at x =a, and hence f(a) =limf(x) =0and g(a) =lim g(x)=0.
Furthermore, since f and g are differentiable at x = a,
tim £ i FOO=E@) _ o i 8y 80— 8@) _
x—>ax_a X—a X—a x—>ax_a X—a X—a
If ¢’(a) # 0, then, the indeterminate form can be evaluated as the ratio of
derivative values, as given below

. f(x)—f(a)
hmf(X) :hmf(X)/(X_a) 4 x—a X—a :f/(a)
oag(x) oeg()/(x-a) o 8(0)—-g@)  gla)

X—a X —a

(1)

If f'(x)and g’(x) are continuous at x = a, the result in Eqgn. (1) is a special

case of L’Hopital’s rule, which converts an indeterminate form of type 0/0into
a new limit involving derivatives. Moreover, L'Hépital’s rule is also true for
limits at —ccand at + . We state the result in the following theorem without
proof.

Theorem 1 (L’Hépital’s rule for form 0/0): Suppose that f and g are
differentiable functions on an open interval containing x =a, except possibly
at x =a, and that limf(x) =0and Mg(x) =0.

If lim[f"(x)/g’(x)]has a finite limit, or if this limit is +coor —co, then
lim f(x) — lim f'(x)

x—a g(x) x—a g’(x) )
Moreover, this statement is also true in the case of a limit as
X—a,x—a",Xx =>—o0,0ras x — +oo.

Caution: You may note that when applying L'Hopital’s rule, we differentiate
the numerator and denominator separately, which is not the same as

f(x)
g(x)’

differentiating

Indeterminate Forms
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In the following examples we apply L’Hopital’s rule using the following three-
step process:

Step 1: Check that the limit of f(x)/g(x)is an indeterminate form of type % If
it is not, then L’Hépital’s rule cannot be used.
Step 2: Differentiate f and g separately.

Step 3: Find the limit of £'(x)/g’(x) . If this limit is finite, + o, or —co, then it is
equal to the limit of f(x)/g(x).

Here are examples which illustrate the utility of Theorem 1.

7 J—
Example 1: Evaluate hmx3—128

x=2 X7 — 8
Solution: Note that this is an indeterminate form because f(x)=x’ —128 and
g(x) = x” —8, both are differentiable around 2 and approach 0 as x — 2.
Therefore, we can apply L’Hépital’s rule. Applying L’Hbpital’s rule, we get

d -
— —128) 6
X -128 . g . 7x
hE% x> -8 :hig )ii :h33 2
X X el 3 8) X X
(
dx
zlim7x4
x—2 3
10 _112
3 3

Example 2: Find the following limits:

i liml—cosx

x—0 sin X

) . (x-m/2)’

i) fim ST
Xx—>n/2 COS X

Solution: i) Let f(x) =1-cosx, g(x)=sin x . Since,
liml—-cosx=1-cos0=0 and hm0 sin x =0, therefore, they both are 0 and

x—0

forms %form. Hence, we can apply L’Hopital’s rule and obtain

_ —(I—cosx) . .
limol ‘coslejmodxd :.00+smx:sm0:%:0.
x=0 - sin X 0 @ (sinx) x=0 oS X cos0
dx
ii) Since, lin}z(x —7/2)* =0and lin}zcosx =0, therefore, the limit is in
%form. We can apply L'Hépital’s rule. We get
d [X njz
J— 2 . ) J—
lim(x /2) :ljmdx 2) . 2(x ‘n/2):2(0):0.
x_% COSX N Hg —sin X -1

7, —(cosx
? dx( )

*k %
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. 1=
Example 3: Evaluate fim —— 95X
x-0  gsecx

Solution: You must always remember to check that you have an
indeterminate form before applying L'Hépital’s rule. The limit is

x=0  gecx hmosecx 1

Warning: If you blindly apply L’'Hépital’s rule in Example 3, you obtain the
WRONG answer:

. l—cosx . sin X
lim = lim
x=0 secx x=0 sec X tan X
. cosx 1
=lim =-=1

x-0gecx 1

This answer is WRONG. Why?

If we find liml_cﬂ,we do not get indeterminate form. Therefore,

x=0 - gec X
L’Hépital’s rule cannot be applied.

*k %

2 .
Example 4: Find hmM
x—0 SIn X
x”sin — x”sin — 0
Solution: To find lim———2% | we first note that ——2% is in the — form as
x=0  sin X sin X 0

x — 0. But L’Hépital’s rule is not applicable, because,

d 1
[ Zsmj —cosl+2xsinl
lim

lim dxd X/ =1 1 2 X does not exist.
dx
How can we be sure that this limit does not exist?
.1 1
2Xsin ——cos— 1 1
Note that if lim X X exists, then hm[szin——cos—} would exist
x—0 COS X x—0 X X
. 1 , L 1 ’
and consequently lim cos— would exist, which is not true. As x — 0,cos— £(0)
X— X X
oscillates between —1and 1, and does not tend to any limit.
x” sin —
However, we can still evaluate the limit of ——2 as x — 0.
S X
x? sin — 2 |
X X X | ) 1
We have - <|— =|— IxI. [Since, |hsin—|{<1h|— 0]
sin X sin x| sin x| h
X2 X
Since —— —1 as x — 0, it follows that lim —— =1lim x.lim —— =0 and
Sin X x—0 Sin X x—0 x—0 Sin X

2 .
. X“sinl/x
therefore, lim ———— =
x—0 SIn X

0.

*k %

. f(h)-1(0)
= lim ——
h—0 h
= lim hsin—
h—0 h

=0

11
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x—a g(x) B x—a g’(x)
applicable only to those quotients which are in indeterminate form of the type

The next example shows that L’Hépital’s rule (hm foo _ lim f (X)J is

% at the given point.

2

Example 5: Find lim ——.
x=0 SN~ X

2

Solution: Let f(x)=x* and g(x) =sin’ x. Itis clear that —— is in the %
sin > x

format x =0. Now,
lim f/(x) — lim — 2x
x=0 g°(x)  x-0 2sin X.COS X
1
 x—0 Sin X

COSX
X

1
lim Smx.limcosx

x=0 X x—0

=1

X2

=1.

, {7
You may note that here g’(0) =0, but lim ,EX;
Xx—a g X

Therefore, using Theorem 1, lim — >
x—0 SIn”~ X

exists.

*k %k

We, now, illustrate few examples, in which L’Hopital’s rule is applied for one-
sided limits.

. 1l—sinx
Example 6: Evaluate lim
x—>7T/27  COSX

. . 1—si
Solution: It is clear that lim SIh X
x—->n/2”  COSX
The functions 1—sin x and cosx are differentiable.

Therefore, we can apply L’Hopital’s rule here. Thus,

is in the 9 form.
0

. 1l-sinx . —CcosX cosT/2
Iim = lim - =— =
x->1/27 COSX x->1/2” —gin X sinT/2

*k %

Example 7: Find lim Inx .
X—)lJr X _\/;
Solution: Here f(x) =Inx,and g(x):x—\/;. Clearly, f(x) and g(x) are
. f:(x) tm 1/x
x—It g (X) x—1* 1_ 1

2Jx

=2.

differentiable and lim f(x) =0 = lim g(x). Also,
x—I* x—I1*



Unit 12 Indeterminate Forms

) In
Thus, L'Hépital’s rule gives us lim X

x—l1* X _\/;

*kk

=2.

tan X
-

Example 8: Evaluate lim

x=0" X

Solution: The numerator and denominator have a limit of 0, so the limit is an

indeterminate form of type % . Applying L’Hépital’s rule yields

2
. tanx . _sec’x
x=0" X x=0"  2x

—00

*k %

Now, let us discuss a few examples of the form % , in which x —> o o0r
x — —oo and L’Hépital’s rule is applied.
Example 9: Evaluate hmM

x— gin(1/Xx)

£(x)

Solution: Let f(x) = tan3 and g(x)zsinl. Then —= is in an
X X g(x)

indeterminate form of the type % as x = oo. Clearly, both f(x) and g(x)

_ 2 2
are differentiable for all x # 0, and lim( S 2) sec (3/x)
x—oe (—=1/x7)cos(l/x)

2
— lim 3sec”(3/x) -
x=  cos(l/x)

Thus, L’'Hépital’s rule for % form at o is applicable, and therefore,

lim tan(3/x) _3
x— gin(1/x)

*k %

Example 10: Evaluate lim xsinz.

X—>—00 X

£(x)

g(x)

1
Solution: Let f(x) = sm[ij g(x)=—. Then is 9 form at —eo, and
X X

-5 5
£(x) [xj Co{xj
Iim —%~=lim ——~~———%=5

o g/(x) o= —1/x7 -
Therefore,

> |

sin[ j ¢
lim = lim &:5.
xo—e  ]/X x—- g°(X)

*k %

Now try and evaluate the limits in the following exercise by applying
Theorem 1. 13
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E2) Find the following limits

i limx—‘smx i ) 2x -1
=0 gin X =l X7 —6x+5

i liml ‘coszx ) lim 2x°—-9x +4
x—0 SIn X x—1/2 COSTtX

v im % as0 vy limnd
X—0 Xn _an x—0 4X

vi)  lim APSInX vii)  lim-o—2
x—>1t/21_sm X x—0 X

. 2

ix) lim sin X — COS X X) limVX :—12 4.

x—n/4 X—TC/4 x—2 X -4
E3) Evaluate the following limits:

) lim X
x-I" x —1

i) lim X
x->1” 1 —cosx

E4) Evaluate the following limits:
X—4/3

i) im — ii) lim x tan"' (1/ x)
x—=sin(1/x) X300

iy fim S0 "1) v)  limx(e” ~1)
X——o o — X—o0

There are also situations where we need to apply L’'Hépital’s rule multiple
times. For an example, consider the functions f(x) =1-cosx and g(x) =x",

1—cosx

> . Here

which are differentiable on R. Let us try to evaluate lim

x—0 X
f'(x)

’

f’(x)=sin x, and g'(x) = 2x, and is again in an indeterminate form of

0 . : ,
the type 0 as x — 0. But let us now turn our attention to the functions f’(x)

and g’(x). We find that the functions f’(x) and g’(x) are also differentiable

UG —l. This means

functions, and f”(x) =cosx, g"(x)=2. Clearly, lim—— =
x—=0 g (X)

that we can apply L’Hopital’s rule to the quotient of £'(x) and g'(x) at x =0,
and get lim f,(x) =lim f”(x) :l.
x—=0 g (X) x—0 g (X) 2
i 1 _ . f
Now since lim ,(X) = —, applying L'Hopital’s rule to (x)
=0 gi(x) 2 g(x)
lim f(x) ~ lim f/(x) :l.
x—=0 g(x) x—0 g (X) 2

we get
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Thus, we can write,

liml—ccz)sx _1 sin X :hmcosx :l.

x—0 X x—0 2X x—0 2 2
We often come across similar situations where repeated use of L'Hépital’s rule
enables us to evaluate the required limits. We now state the general result in

the following theorem.

Theorem 2: Let f(x) and g(x) be two real-valued functions such that

(n)
lim f*(x)=0=1lim g®(x), 0<k<n-1, forsome ne N. If lim f(n)EX;
Xx—a X—a x—>ag X

exists (may be equal to o or —), then
)
lim f(x) ~lim f(n)(X) .
x—a g(x) xa g (X)
(Here, £ =f, g =g, and £ denotes the k-th order derivative of f for
1<k<n-1.)

Now we give some general observations in the form of remarks.

f(n)
Remark 1: Note that if for some n, hmTEX; does not exist, and
X—a g X
. f
ﬁmf“xx):ozhm,g®cm,03k3n—4,menmm—QQ-mmnmbe

Xx—a g(x)
evaluated using L’Hopital’s rule.

Remark 2: We can now state the general L’'Hopital’s rule for one sided limits.
Let f(x) and g(x) be two real-valued functions such that

lim £ (x) =0=1lim g™ (x), 0<k<n-1 forsome ne N.

x—a*

x—a* g(n)(x)

S (CS PR ¢y
x—=a® g(X)  x—a’ g(n) (x)

If we replace a* wherever it occurs by a~, we get the statement for the left
hand limit.

exists (may be equal to +o0 or —0), then

We now give examples to illustrate the above discussion.

5 J—
Example 11: Evaluate lim X oox+4

=17 —x* —x+1

Solution: If we take f(x)=x’ -5x+4 and g(x)=x’—x*—x+1, then
lim £(x) =0 =1lim g(x)

ﬁqfxxy:mgwx4—5)=o
lirr}g'(x) = lirr}(3x2 -2x-1)=0

” 3
lim f”(x) —lim 20x _
x—1 g (X) x—1 6X—2
Therefore, by Theorem 2, i.e., by repeated use of L’Hépital’s rule, we obtain,
5 4 3
lim ;( 25x+4 _ SZX 5 zlim20x _5
=l X7 —x"—=x+1 *=13x"=2x-1 x=16x-2

*k %

and 5

15
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3x _1
Example 12: Evaluate limﬁ.
x>0 ]—cosx

Solution: If f(x)=e™ —3x—1 and g(x)=1-cosx, then
f'(x) =3¢ -3 and g'(x) =sin x. Also,
limof(x) :limof'(x) =0, and

lim g(x) = lim g'(x) = 0.

” 3x 3x _ _1
Therefore, lim -2 = lim~¢— =9 , which shows that lim *——>* "1 _g_
=0 g7(X)  x=0Ccosx x>0 1—cosx
X —sin X

Example 13: Evaluate lim

x—0 X3

Solution: This is an indeterminate form of the type 0/0, and we find that
lim 27X i 1_3COS X after applying L’Hépital’s rule once.

x—0 X3 x—0 XZ

This is still the indeterminate form of the type 0/0, so L'Hbpital’s rule can be
applied once again and we obtain.
. 1—cosx _1 — (—sin Xx) =llim sin x =l(1)=é

x>0 3x2 X—0 6Xx 6 x>0 X 6

*kk

It may happen that even when L'Hépital’s rule applies to a limit, it is not the
best way to proceed, as illustrated by the following example.

Example 14: Evaluate lim d _C(;S X)sin 4x .
x—0 X~ COS X

Solution: This limit has the form 0/0, but direct application of L'Hépital’s rule
leads to a real mess (try it!). Instead, we compute the given limit by using the
product rule for limits first, followed by two simple applications of L’Hopital’s
rule. Specifically, using the product rule for limits (assuming the limits exist),
we have

fim (1—cosx)sin 4x :[lim l—cosx}[hm sin 4X}[hm 1 }

x—0 X3 COS X x—0 XZ x—0 X x=0 CcOS X
. sinx ||, 4cosx ||.. 1
=| lim lim Lim
x—=0 2x x—0 1 x>0 COS X

1
= [Ej Hd)=2

*k %

See if you can solve these exercises now.

E5) Evaluate the following limits:

. (tan”' x)’ . sin3x—3x
=0 In(1+x2) v R

)



. X—tan X . ) 1—sin x
ii) Im — vi) lim ——
x=0 X —sin X x-1/2] + coSs2X
. l—cosx? . o et—et-2x
III) Mﬁ V”) hm—
x=0 X“sin” X x>0 X —sIn X
2 2
. tan" x—X
iv)  lim

2 2
x>0 x“tan” X

E6) Find the value of k for which the following limits are finite and hence
evaluate the limit.

i lim sinh 2x +3k sin 2x

x—0 X

. et +ke™ —2x

i) lim
=0 ]1—cosx
x*sinl/x o
E7) Show that lim————=0. Also show that this limit cannot be
=0 Stanx

evaluated by using L'Hopital’s rule.

In this section, we have seen how to evaluate lim fEX;
X—a g X
f(x)

g(x)

by L’'Hépital’s rule

when is in the % form at x =a. Now we shall study the rule for

evaluating lim fe) when 1) is in the — format x =a.
x> g(X) g(x) oo

12.4 L’HOPITAL’S RULE FOR g FORM

X

Consider the limit of en as x —oo. As, you can see, this is of the form = n
X oo

. f . .
order to evaluate lim EX; when lim f (x) = o = lim g(x), we have results
X—a g X X—a X—a

similar to those proved in the last section. Here, we state these results without
proofs, and then illustrate them.

Theorem 3 (L’Hépital’s rule for form «/): Suppose that f and g are
differentiable functions on an open interval containing x = a, except possibly
at x =a, and that lim f(x) = feo and lim g(x) = feo.

If lim[f"(x)/g’(x)]has a finite limit, or if this limit is +coor —co, then
lim f(x) — lim f'(x)

x—a g(x) x—a g/(x)
Moreover, this statement is also true in the case of a limit as
X—a,x—a" ,Xx —>—oco,0ras x — +oo.

We had also seen, in Theorem 2, how repeated use of L’'Hépital’s rule
sometimes helps us in evaluating the required limit. We now state an

Indeterminate Forms
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analogous result for indeterminate forms of the type —.

oo

Theorem 4: Let f(x) and g(x) be two real-valued functions such that

) lm £ (x) = +eo = lim g (),

X—a

where 0<k <n-1, n is a natural number and a is any real number, o
or —e, and

r ()

i) If lim——— o

X—a g
(n)
fim £ — g 700
rg(x) g (%)
Here is another point that you should note.
£ (x)
g"(

exists, and may even be infinite, then,

£ (x)

i O

fails to tend to a

: is an indeterminate form for 0<k <n and
X g

. f
limit as x — a, then this does not mean that lim EX;

X—a g X
means that we cannot apply L’Hépital’s rule, and that we have to adopt a
different procedure to establish the existence or non-existence of the limit
under consideration.

does not exist. It only

We shall bring out this and various other points with the help of a number of
examples. Go through these carefully. They will help you to get a better
understanding of the concepts involved.

X

Example 15: Show that fim

X—>00 X

o,n2>1,

Solution: Let f(x)=¢", g(x) =x", n>1. Then

lim £(x) = oo = lim g(x).. If n =1, then hmf(x)—lime—:ooandtherefore,

X—>00 X g (x) X—>00

X

by L'Hopital’s rule lim >

X—e0 ¥

If n>1, thenitis clear that, im f®(x) =0 = hmg(k)(x) o<k<n and

X—00

f(x) . €

X—>00 g(n)(x) T X n!
X

Consequently, lim © e forall n>1.

x—o0 x B

*k %

Example 16: Find lim — In x n>0.

X—>o0 X

Solution: Let f(x)=Inx, g(x)=x",n>0
The function f(x) and g(x) satisfy the requirements of Theorem 3.

Therefore, lim — () = lim f/(x) = lim I/X_l _ fim .
X —00 g(x) X—yo00 g (X) X —00 an X—o0 an

=0.

*k %
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Example 17: Evaluate lim In tan2x .
x=0" In tan x

Solution: Let f(x) =In tan 2x, g(x)=Intanx . Then
f'(x) .. 4cosecdx 1

hmf(x)——oo—hmg(x) and lim = lim = lim =1.
x50 x-0" g’(x)  x>0" 2cosec2x  x-0° cos2X
Therefore, lim m =1.
x-=0" In tan X
. Intan2x .
Here, we cannot talk of hmor because tan2x and tan x are negative
x> anx

for x <0 and therefore, we cannot take their logarithms.

*k %

Example 18: Find the limit lim 0"

X—>00 X

, where n is an integer, n>0.

Solution: For n =0, the result is clear. For n =1, the result has been proved
in Example 16. Let f(x) =(Inx)" and g(x) = x. Then, the functions f(x)
and g(x) are differentiable for x >0, and lim f(x) = co = hm g(x)

X—00

’ n-1
Therefore, lim f(x) limf,(x):limM
omg(x) oeg(x) e X

limit exists. Considering the functions (In x)

, provided the right-hand side

n-1

and x instead of (Inx)" and

n—1 - n-2
.3 llm(lnx) n(lnx) :hmn(n 1) (Inx) ,
X—00 X x—>oo X X—>00 X
provided the right-hand side limit exists. Repeating the above process
n !

ntimes, we obtain lim (Inx) —lim X = 0.

X—00 X X—o

(Inx)™

Example 19: Evaluate lim ,m>0,n>0 and m is an integer.

X—00 X

Solution: Let f(x) =(Inx)"and g(x)=x". Then, f(x)andg(x) are
differentiable forx > 0, and lim f(x) = oo = hm g(x)

m m—1
Therefore, im (In ) =lim m(In Xn)
X—00 X X—>00 nx

exists. Considering the functions (Inx)™" and x" instead of (Inx)™ and

_ m—2
x " respectively, we obtain lim (In )i) — lim m(m 12 (1nn X)
X X X—o0 n°x
right-hand side limit exists. Thus, repeating the above process, we obtain,
!
Iim (In X) = hm—m 1

n m n

X—>00 X X—00 1) X

, provided the right hand side limit

provided the

=0.

*k %

Example 20: Let P(x)=a_x"+a__x"" +---+a, and

Indeterminate Forms
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Q(x)=b x"+b_ x""+---+b, be two polynomials with real coefficients,

a_#0,b, #0. Evaluate lim—)
== Q(X)

Solution: Let us take the case when m=n.
If 0<k <m, limP™(x) and lim Q™ (x) are infinite, and

. P™(x) _poa,m!oa
== QM (x) x>=b,m! b,
P(x) ~im £ (x) _a

Therefore, lim = o= by Theorem 4.
== Q(x)  xo=g(x) b,

Now, suppose m<n.
Again lim P%® (x), lim Q™ (x) are infinite for 0 <k <m, and

) P(m)(x) e m!a,_ 0
x—e0 ()M T o & U
Q) S r—1). . —m+ Dy

Px) . P™x) _

Thus, lim = =
=mQ() == Q™ (%)

Now, if m >n, it is obvious that
lim P (x), im Q™ (x) are infinite for 0<k <n, and

X—00

. P (x) . ;arr(r—l)...(r—n+1)xf‘“

xom QU (X)) xom n!b,

, a
= too , according as b—m>0 or <0.

n

P(n)
Thus, lim Px) _j (n)(x) =oo Or —eo, according as Zm 50 or <0.
== Q(x) == Q7 (x) b,

Therefore,

An if m=n

Px) _| >
im——=<3 0, if m<n
e Qx) . . By .
t oo, if m>n, according to b—‘“ 1S positive or negative

*k %

7x? +5x% +4x +
Example 21: Evaluate lim X 45X x+6 .
xoe 55X +6x+7

Solution: By applying L’Hépital’s rule repeatedly, we get

) 7x3+5x2+4x+6_ o 21x*+10x+4
xoe  5x* +6x+7 = 20x1+6
:h.m42x+102h.m 42 0.

e 60xE o= 120X

Alternatively, using algebra of limits, we can find the above limit in a very
simple way as follows:



UMM 2 oo e e
3 2 4 2+ 3
lim7x +45x +4X+6:Iim7+5/x+ /2x 6/3x ~0.as 1/x—0
x—e 5T 46X 47 xoe Sx4+6/x°4+7/X

when x — o .

*kk

In the next example, you will find a situation where L’Hopital’s rule is not
applicable.

2Xxsin X

Example 22: Evaluate lim >
xoe J4 X

Solution: Can we apply L’'Hépital’s rule to evaluate this limit?

No. L’Hbpital’s rule is not applicable because lim 2xsin x does not exist.

X—00

. 2xsinx
However, lim —=0
x—oe |4 x
2x sin X 2X ) 2X
because, —|< |, and lim >=0.
+x I+x x| 4 X

*%k %

We now give an example where L’Hbpital’s rule is applicable but it yields no
result. But such situations are very rare.

th— ¢
Example 23: Evaluate lim ——.
xse e’ te

Solution: Let us see what happens if L’Hépital’s rule is applied to evaluate its
limit as x — . We get

X -X X -
P N e
X —-X ~ X —-X
N Fe e —¢

X

The right hand side is again in the 4 form, but if we apply L'Hépital’s rule to

evaluate it, we get back to where we started. Thus, it is useless to apply
L’Hépital’s rule in this case. But we can still evaluate the limit as follows.

o et—e . 1-e™ . L
lim = lim —=1, because lime™ =0.
xoemel 4o xoe]4e x—eo

*k %

2 J—
Example 24: Evaluate lim w
xote X7 +5x =2
Solution: We could compute this limit by multiplying and dividing by (1/x?).
Instead, we note that this is of the form oo /o0 and apply L’Hopital’s rule:

2_ J—
lim2X 3X+1—1jm4x 3—1jm£:z

o 3x 245X =2 o 6X+5 o6 3

*k %

. X+sinXx
Example 25: Evaluate lim ———.
x—>+e X —COS X

Solution: The limit has the indeterminate form oo /oo . If you try to apply
L’Hépital’s rule, you find

Indeterminate Forms
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lim X + sin X - im 1+Cf)SX
x=te X —COSX  x~* ] +sin X
The limit on the right does not exist, because both sin x and cos x oscillate
between —1and 1 as x — +e. Recall that L'Hépital’s rule applies only if
i
xoc g (X)
expression does not exist or that we cannot find it. It simply means that we
cannot apply L’Hopital’s rule. To find this limit, factor out an x from the
numerator and denominator and proceed as follows:

=L oris £ . This does not mean that the limit of the original

) X[H_smxj 1+sin7x 140
li XHSINX X lim x _1+0_,

x—+e X — COS X me[l cosxj s, COSX -0

X X

*k %

After going through the above examples you should have no difficulty in
solving these exercises.

E8) Evaluate the following limits:

m m-1
amX +am_1X +---+a

i) lim O where a,eR Vi=0,1,...,m.
X—00 e®
. —tanx
ii)
x—(1/2) h’lcosx
. tan3x
iii) lim
X—7/2 tanx
6
) X" +Inx
iv)

x—= 2x %+ 5x* +1

oo 2x8+5x7+6xP +1

Y )
) x> 3x® +5x7 +5x +1
) + i .1
E9) Show that Jim 270X S X =1and that L’Hépital’s rule cannot be used to
x> X 4+ COSX
evaluate it.

E10) Evaluate the following limits and show that L’'Hépital’s rule is not
applicable in each case.

. . x> —sinx?

i) lim ———

X—00 X

”) lim X —COSX

X—>00 X

. Isinx|+Ilcosx]|
i) lim

X—>00 X

. . Xsin X +cosx
iv)  lim————

X—>00 X




Unit 12 Indeterminate Forms

In the following section, we shall discuss other indeterminate forms.

12.5 OTHER INDETERMINATE FORMS

So far we have discussed indeterminate forms of type %and =, However,

these are not the only possibilities. In general, the limit of an expression that

has one of the forms E—; f(x)-g(x),f(x)E™,f(x)—g(x),f(x)+g(x)is called
g(x

an indeterminate form if the limits of f(x) and g(x) individually exert conflicting

influences on the limit of the entire expression. For example, the limit

lim xIn x is an indeterminate form of type 0-c because the limit of the first

x—0*

factor is 0, the limit of the second factor is —oo, and these two limits exert
conflicting influences on the product. On the other hand, the limit

lim [\/;(1—)(2)] is not an indeterminate form because the first factor has a
X—>+oo0

limit of + o, the second factor has a limit of —, and these influences work
together to produce a limit of —oo for the product.

Caution: It is tempting to argue that an indeterminate form of type 0-c has
value 0 since “zero times anything is zero”. However, this is false, since 0-oois

not a product of numbers, but rather a statement about limits. For example,
the following limits are of the form 0-co:

nmx-lzl, 1jmx2-l_o lun\/_ q_

x—0" X x—0" X x—0"

Indeterminate forms of type 0-o0 can sometimes be evaluated by rewriting the
product as a ratio, and then applying L’'Hdpital’s rule for indeterminate forms of

type 9 or s
0 oo
You will understand this more clearly if you go though the following example.

x—l

Example 26: Evaluate hmtan[ 5 jlnx

Solution: Note that tann—lenx isa 0.ooformat x=1. Now, we write

tan[n—zxj Inx = —sm( mx/2) In x

cos(mx/2)
We know that hm[smn—j 1. So, let us try to find th
2 x=1 cos(Tx /2)
Now, L is 9 format x =1.
cos(mx/2)
Therefore, by L’Hopital’s rule
Inx —lim 1/x _g

=1 coS(TX /2)  x-l —sin(Mx/2). ®/2 =

Thus, nm[tanzjm _ i SCTX/2) Inx
x—l1 2 x—l COS(RX/Z)

23



24

TX . In x

Example 27: Find lim x’e™" where p, q are positive integers.

X—00

XP

Solution: We can write lim x’e™ =lim

X—>00 x—eo @

p o0
Now, % is in an indeterminate form of the type — to which L’Hépital’s rule is
e

oo

applicable. Thus, we get,

. xP p!

lim — =lim =0, so that im xPe™™ =0.
x>0 @ * X—>00 qpeqx X—>00
) T
Example 28: Evaluate lim [x —Ej tanx .
x—(m/2)”
Solution: This limit has the form 0 - «~, because
. T .
lim [x——ijand lim tanx =+oo
x—(1/2)" 2 x—(1/2)"
Write tanx = to obtain
cotx
T
T e 0
Iim [ x—— |tanx = Iim 2 Form —
x—(1/2)” 2 x=(n/2)” cot X 0

. 1
= lm ———
x=(1/2)” —cosec” X

= lim (-sin’x)=-1
x—(1/2)”

*k %

Now, we shall discuss another indeterminate form. A limit problem that leads
to one of the expressions; (+o0) — (400), (—00) — (—00), (+00) + (—00), (—00) + (400)
is called an indeterminate form of type co—co. Such limits are indeterminate
because the two terms exert conflicting influences on the expression: one
pushes it in the positive direction and the other pushes it in the negative
direction. However, limit problems that lead to one of the expressions;

(400) + (4+00), (400) —(—00), (—o0)+(—0o0), (—o0)—(+o0) are not indeterminate,
since, the two terms work together.

Indeterminate forms of type oo —co can sometimes be evaluated by combining
the terms and manipulating the result to produce an indeterminate form of type

0 o . . .
—or —, as you will see in the following examples.

oo



1
Example 29: Evaluate limit limo[cosec x——j.
X—> X

Solution: Clearly the function is of the type co—oo.

, 1 1 1 — si , L
We can write cosecx ——=————= X ?m X , so that the right hand side is
X S X X X S X

in the % form at x =0, to which L’'Hépital’s rule is applicable.

Thus, limo[cosec X —lj = limw

X x-0 X sin X
) 1- .
=lim— %% [ by L’Hépitals rule ]
x=081n X + X COS X
=lim— 0% [by L’Hépital's rule ]
x=0 2cOSX — X SIn X
lim sin x 0
x—=0 =—=0

- lim0(2cosx—xsin X) 2

*k %

Example 30: Find lim secx—;‘ .
x—(1/2)” (1— sin X)

1 1 1 l1—sinx —
Solution: Now, secx — = — St A

I-sinx cosx 1l—sinx cosx(l—sinXx)

and the right hand side is in the % form as x e[gj , to which L’'Hépital’s
rule is applicable. Thus,

lim [secx —

x—(w/2)”

x—(1/2)” COS X — SiN X COS X

| j: . 1—sin X —cos X
1—sin x

—COS X +sin X

= lim - , by L’'Hépital’s rule
x=(n/2)” —$in X —COS 2X
. ) ) 1
= lim (—cosx+sinx). lim -
x—(1/2)” x=(m/2)"\ —8in X —Ccos 2X

=] .c0=c.

*k %

Example 31: Evaluate hm[l— ln(l—;—x)]
x—=0| x X
—In(1+
Solution: We can write hm[l—&jx)} :ﬁm[_x (2 X)}
x=0 X X x—0 X

And L’Hépital’s rule can be applied to evaluate the limit on the right hand side.
Therefore,

1
h,m[x—ln(l+x)}:h,m I—1ix :hm{l/(l+x)2} 1

x—0 X 2 x—0 2X x—0 2 2 )

*k %
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Let us now discuss the limits of the form 1lim f (x)**’, which give rise to
indeterminate forms of type 0°,", and 1. For example, the limit

lim (1+ x)""* whose value we know to be e[Recall Unit 7] is an indeterminate
x—0"

form of type 17. It is indeterminate because the expressions 1+ x and

1/ x exert two conflicting influences; the first approaches 1, which drives the
expression toward 1, and the second approaches + oo, which drives the
expression toward +oo.

Indeterminate forms of types 0°,, and 17 can sometimes be evaluated by
first introducing a dependent variable y = f(x)** and then calculating the limit
of Inyby expressing it as limIn y =lim[In (f(x)5*)] =1lim [g(x)Inf(x)]. Once
the limit of Iny is known, the limit of y =f(x)* itself can generally be
obtained by a method that we shall illustrate in the next example.

1/(x-1)

Example 32: Evaluate lim x

x—1*

1/(x-1)

Solution: It is clear that x is in an indeterminate form of the type 1° as

x =1, Let y=x"*". Then, Iny = 1lnx
X —

Inx |, . 0 A D . , .
Now, " is in the d formas x — 17, and L’Hépital’s rule is applicable to it.

X —
Therefore, lim ﬁ = lim I/—X =1l

x=»1tx =1 x-1" ]
lim In
Hence, lim x"0 = lim ™ =e~+  =¢’ =1,
x—1" x—I1*

Example 33: Evaluate lim [lnlj :

x—0" X
: 1Y) .
Solution: Let y:[ln—j , sothat y is in the form «’ as x = 0".
X

X lim In
Then, ljm[lnlj = lim y = lim e™ =e~" (2

x—0" X x—0" x—0"

N
But, lim Iny = lim xln[ln—j = lim —— 2/

x—0" x—0" X x—0" 1 / X

Now T is in the — formas x — 0" . Therefore, L’'Hépital’s rule gives
X oo
x -l
)
lim Iny = lim 2/ X7 _g
x—0* x—0" —I/X

Substituting this in Eqgn. (2) we get

ljm[lnlj =e’=1.
x—0" X

*k %



Unit 12 Indeterminate Forms

Example 34: Find lim (cosx)“".

X—n/27

Solution: Let y =(cosx)*"*,0<x <m/2. Then,

Incosx . oA s
Iny=cosxIncosx = , and therefore by applying L’'Hépital’s rule we
secx
obtain
. . Incosx ) —tanx
lim Iny= lim = lim ——=0.
X—n/2” x—-n/2”  SeCX x->n/2” sec X tan X
Thus,
. . limilny 0
lim (cosx)™* =e»¥* =e¢ =1.
x—/2”

X —>+00 X

Example 35: Show that lim [l+lj =e.

Solution: Note that this limit is indeed of the indeterminate form 1. Let

L= lim[l+lj

X—>+oo X

Take the logarithm both the sides, we get

1nL=1n|:11m [l+lj :l
X —>+oo X

= lim ln[1+lj [In x is continuous]
X—>+oo X

= lim xln[1+lj [Property of logarithms]
X—>+00 X

lim l Form —
X
5w
2
= fim AT L/X - [L'Hopital's rule]
X
= lim % [Simplifying]
X—>+oo 1+7
X
1
1+0

Thus, nL=1and L=¢'=¢.

*k %

Example 36: Find lim x""*.
x—0"
Solution: This is a 0°indeterminate form. We begin by using properties of
logarithm.
Let L= lim x**

x—0*

27



InL=1In lim In x*"*

x—0*

= lim In x*"* [In is continuous]

x—0*

= lim (sin x) In x [Thisis O - e form.]

x—0*

~ Jim "X [This is = form.]
x=0" cosec X 00
) 1/x T
= lim [L’Hépital’s rule]
x=0" —Ccosec X cot X

= 2

. —Ssin“Xx
= lim
x=0" X COS X

:hm[sinxj[—sinxj
=07\ X COSX
=1 (0)=0

Thus, L=e"=1.

*k %

Example 37: Find lim x'"*.
Solution: This is a limit of the indeterminate form oo .
If L= lim x"*,then InL=1In lim x"* = lim llnx

X—>+o0 X—>+oo X—>too ¥

= lim X [This is *form]

X—too ¥

= lim /X [L’Hépital’s rule]

P |

=0
Thus, we have InL.=0. Hence, L=¢" =1.

*k %

Now, try the following exercise.

E11) Evaluate

i) ljmxsinl

X—>o0 X

ii) lim x1In x

x—0*

iii) lim (1—tan x)sec2x

x—n/4

E12) Evaluate the following limits

i) lim (secx —tanx)

x—n/2”

i lim[l— 1 j
x=07\ X sIn X

E13) Evaluate the following limits. In each case, you will have to first identify
the type of indeterminate form, and then decide upon the procedure.
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) lim (1+ x)"*

x—0*

i) lim (cosx)"*

x—0"

i) lim x*

x—0"

iv) lim (tanx)*"**

x—0"

V) lim (tanx)™*

x—(m/2)"

E14) Show that ljn(l)(l+x)l/x =e.

That brings us to the end of this unit. Let us summarise all that we have learnt

in it.

12.6 SUMMARY

In this unit we have, covered the following points:

1.  Alimit of the form lim (0 where lim f(x) and lim g(x) are either both

x—a g(x) x—a x—a

0 or both =, such limits are called %indeterminate forms and

= indeterminate forms respectively.

oo

2. The other indeterminate forms are 0,00 —o0, 0. o, etc.

3.  Arule to evaluate such indeterminate forms known as L’Hopital’s rule,
f(x)

which relates the evaluation to a computation of hm,—) if limit exists.

x-a g (X

4.  We described how to reduce indeterminate forms of the types

o0 —o0, 17,0~ and 0°, to the forms% or =

oo

12.9 SOLUTIONS/ANSWERS

i
818

oo

=
oo

Indeterminate Forms
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V) 0X —oo
E2) i) 1jmx—smx:h.ml—cosle—lzo.
x=0  gin X x>0 CcOS X 1
) x* =1
ii) >
=l X7 —6x+5
B x3+x2+x+1_i__1
x-1 X=5 -4
i) By L’Hopital’s rule
i 1—‘cos§x im 2sin xcoszx
x=0 QI X x=0 2XCOSX
Now, 1].stmxcosx :ljmsmxljm COSX _1

x>0 2xcosx®  x=0 X x50 cosx’
Therefore, the required limit is 1.

iv) 7/m
) (2
n
vi) 1
vii) -1
viii) In3/2
ix) 2
X) 1/8
E3) i) limInx=Inl=0and lim(x—-1)=0
x—l1t x—It
According to L'Hopital’s rule,
. Inx . 1/x
lim —— = lim —
x>t x =1 x=1" ]
.1
x-1" X
”) lim S X

x>1 | —COSX
Here sinx —» 0as x —» © but (1-cosx)does not approach 0 as
X—>T .

smx 0

o1 [—cosx  1—(=1)

—4
3
E4) i) The lim ——is in % form. Therefore, L’Hopital’s rule can be

e (1
S| —
(4
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Indeterminate Forms

E5)

;4 ~7/3
X—4/3 3 X
applied. lim — =lim
x—=gin(1/x) Hw( 1} (1}
—— |cos| —
X X
ﬂx—m
_ 3
x—=cos(1/x)
U
1
1
1
1
1
2

The given limit is of %form. Thus, we can apply L’'Hépital’s rule.

. 1-cosx* . (l1-cosx® x?

lim————=1Iim 3 : B

x=0 X“8s1In° X x—0 X SIn ~ X

. l—cosx® . 2xsinx® . 1{sinx?) 1

lim =X fig ZXSEX gy, 2 SRX

x—0 X x—0 4X x—>02 X 2
. l-cosx® . 1-cosx® . x? 1

. im————=1im . lim| —— |=—
x>0 X“sin - X x—0 X x=0{ s1n ~ X 2

A direct application of L'Hopital’s rule will also yield the result.

The given limit is of %form. Thus, we can apply L’'Hépital’s rule.

2 2 2 3 2
. tan" X —X . tan” X — x X
hm—2 > =lim 2 . >
x>0 X" tan” X x=0 X tan” x
. tan’x—x? .. 2tanxsec’x—2x
hm—4=11m 5
x—0 X x—0 4X
. sec'x+2sec’xtan’x—1 1
x—0 6X2 3
For,
4 4
. sec’x—1 . 3sec”xtanx
lim > =Ilim
x—0 6X x—0 12X
o1 . tanx 1
=lim —sec” x. lim =—,
x—>03 x—0 X 3
. 2sec’xtan’x 1
and hm—zz—
x—0 6X 3
_9
2
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E6)

E7)

ES)

: 1
Vi —
) 4
vii)y 2.
: . ... 8
i) k =-1, and the limit is 3
ii) k =-1, and the limit is 0.
) X sin —
lim x*sin1/x _1 X
x>0 Stanx x—>05tanx
X
. .1
lim x sin —
_ x—0 X
51jmtanx
x=0 X
:9, since sinl <1, and since lim tanx =1
5 X x=0 X
=0

L’Hépital’s rule cannot be applied aslim

1
2Xsin — —Ccos—
X X does not exist,

x—0 5sec’ x

) 1 1 )
because hmo[ZX sm——cos—j does not exist.
X—> X X

m
a,x" +---+a, .. mla

lim SRR AT AL
X —>00 e X—e @
By L’Hopital’s rule

. tan3x . 3sec’3x

lim = lim

x->n/2 tan X X—>n/2 SCCZX

which is again Z form. It can be handled more easily by

oo

converting it into % form.

. 3sec’3x . 3cos’x
lim ———= lim >
x->n/2 gec” X x>T/2 COS 3X

—6cosxsin x

x-1/2 — 6 cos3x sin 3x

sin 2x

Xx—>n/2 sin 6X

. 2cos2x 1

x-1/26c0s6x 3



Unit 12 Indeterminate Forms

E9)

E10)

E11)

. 1

iv —

) 2

V J—

) 3

1+sinx

lij+SinX=1jm X :1:1
x—e X 4+ COSX x—>°°1+COSX 1

X

. ) ) 1
Since, sin x and cosx are bounded functions, and —— 0 as X > .
X

You may note that the given limit is an = form. Therefore, L’Hopital’s

oo

rule can be applied. But, when we take derivatives after applying

A s 1+ -
L’ Hépital’s rule, we get ﬂ and that does not have a limit.
1—sin x
sin x>
x* —sin x* ==
i) lim—————= lim —2*—
X—>00 X X—>00 1

, : . 1
=1, since sin x” is bounded, and — — 0 as x — o
X

ii) 1. L’'Hépital’s rule cannot be applied by the argument similar to the

one in i).
. . . f(x) . ,
i) 0. L’Hépital’s rule is not applicable as ) is not in an
g(X
indeterminate formas x — .
iv) ljmsz+COS2X:O.
X2 X X
L’Hopital’s rule is not applicable since lim(xsin x +cosx) does not
exist.

i) Thisis 0-«Formis

Therefore, lim x sin 1_ lim S 1/x
X—00 X X—>00 l/x
- 1
=lim cos— =1
X—>00 X

ii) The factor x has a limit of 0 and the factor In x has a limit of —co,
so the stated problem is an indeterminate form of type 0-c. There

, , - . In
are two possible approaches: we can rewrite the limit as lim nx

x=0" 1/ X
X

or lim the first being an indeterminate form of type = and
x>0 1/In x oo

the second an indeterminate form of type 0/0. However, the first
33



form is the preferred initial choice because the derivative of 1/x is
less complicated than the derivative of 1/1In x . That choice yields

fim xIn x = lim 2% = Jim —7*_ = fim (—x) =0.

x—0" x=0t 1 /x  x=0t—1/ X2 x—0"

i) The stated problem is an indeterminate form of type 0-c0. We will
convert it to an indeterminate form of type 0/0:

. . l—tanx . l—tanx
lim (I-tanx)sec2x = lim ——— = lim
x—n/4 x-n/4]/sec2X  x-on/4 cOoS2X
B —sec’x -2
xon/4—28in2xX =2

E12) i) lim)(secx—tanx)

x—(n/2)
) 1 sin X
x-(r/2)\ COSX COSX
) 1—sin x
x—(r/2)\ cOSX

—_— —COSX
x—(n/2)\ —sin X

=0
The use of L’Hopital’s rule is justified because 1—sin x — 0 and
cosx —>0as x = (n/2)".

5

5

5

£ . . 1
ii) As it stands, this has the form oo —oo, because — — +eand
X

—— — 40 as x — 0 from the right. However, using a little algebra,
S X
we find

hm[l— 1 j:hm sin X — X

x>0\ X sin X x=0" X 8in X

This limit is now of the form 0/0, so the hypothesis of L’Hbpital’s
rule are satisfied. Thus,

. sinx—x . cosx —1
lim —— = lim ——
x=0" X SIn X x=0" SN X + X COS X

Again, the form % , therefore

limsm)'(_leim —Sll"lX
x=0" XsinX  x=0" cos X + X(—sin X) +cos X
U
2
E13)i) 17. If y=(1+x)"*, then In _nd+x) is in the 0 form
y y x 0
lim Iny = lim 2049 _ g 1y

34 x—=0" x—0" X x=0" 1+ X



lim (1+x)"* = lim y=¢' =e.

x—0* x—0

iy 17 0f y:cosx”xz,lnyzlnc—(;sx,which is in the% form as
X
x—0.
. 1jmlny:h.m1ncc;sx:h.m—tanx:_l
x—0 x—0 X x—0 2X 2

) L 1
. lim(cosx)"* =e™?=—.
x—0

Je

iii) 0°form, If y=x",then Iny=xInx, which is 0-—o form as

x—0".
lim Iny = lim x1n x = lim -2
x—0" x—0" x=0" /X
_ 1/x
x=0" —1/x7
=lim—-x=0.
x—0"
lim x* =e” =1.
x—0"

iv) 0% lim (tanx)™> =1.

x—0*

V) o |f y:(tanx)smzx,lny:Sinth’ltanX
) ) In tan x
Iim hy= lim ———
Xx—>T/2” x—1/2” cosec 2X
sec’ X
- tan X
x-1/2” 2 cosec 2X cot 2X
2
_ sin 2xX
wom/2 = 2€082X
sin > 2x
. —sin2x
= lim =0

B x-1/27 COS2X

lim (tanx)™** =e’ =1.

Xx—n/27

E14) We begin by introducing a dependent variable y = (1+x)"* and taking
the natural logarithm of both sides:
Iny=In(l+x)"* = Lin(1 4 x) = 2AFX)
X
Thus, ljll(l)ln y :ljn})wwhich is an indeterminate form of type %
X—> X—> X

Indeterminate Forms
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so L'Hopital's rule lim In y = lim In(l+x) _ lim ”(1; X) _1. Since we
X X—> X X—>

have shown that Iny — 1as x — 0, the continuity of the exponential

function implies that ¢"¥ — e¢'as x — 0, and this implies that y — eas

x — 0. Thus, ljn(l)(l+x)”" =e.
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13.1 INTRODUCTION

One of the principal goals of calculus is to investigate the behaviour of various
functions. As a part of the investigation, we will be laying the groundwork for
solving a large class of problems that involve finding the maximum or
minimum value of a function, if one exists. Such problems are called
optimisation problems. For instance, honeycombs have hexagonal cells
because this shape enables bees to store a fixed amount of honey by using
the minimum of wax for sealing, the drops of oil on the surface of water
coalesce so as to minimise the total surface tension, a drop of water is
spherical due to minimum surface tension.

In Secs. 13.2 and 13.3 we shall discuss an important technique involved in
solving the problem of maximising or minimising various functions. This
technique, as you will soon see, involves the use of derivatives. In Sec. 13.4,
we apply the derivatives to find if a function is increasing, or decreasing, or
neither in a given interval.

In Secs. 13.5 and 13.6, we will see other applications of derivatives using the
first derivative test and second derivative test respectively. In Sec. 13.7, we
shall discuss Rolle’s theorem and Lagrange’s mean value theorem, which
have a very important role in your study of calculus.
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Maxima and minima
are the respective
plurals of maximum
and minimum.

38

Now we shall list the objectives of this unit. After going through the unit, please
read this list again and make sure that you have achieved the objectives.
Objectives

After going through this unit, you should be able to:

e obtain the relative and absolute maximum and minimum values of some
functions, if they exist;

e apply maxima and minima in real life situations;
e state and apply Rolle’s theorem and Lagrange’s mean value theorem;

¢ find whether a function is monotonic or not using its derivatives.

13.2 RELATIVE EXTREMA

In this section, we will discuss methods for finding the high and the low points
on the graph of a function. If we imagine the graph of a function f to be a two-
dimensional mountain range with hills and valleys, then the tops of the hills are
called relative maxima, and the bottoms of the valleys are called relative
minima. Relative maxima and relative minima are the high and low points
respectively in their immediate vicinity as shown in Fig. 1. Maxima and minima
are collectively known as extrema, which is the plural of extremum.

Relative
Maximum
1/

Relative
Minimum

Fig. 1: Hills and Valleys.

The extrema of a continous function occur either at endpoints of the interval or
at points where the graph has a “peak” or a “valley” (point where the graph is
higher or lower than all nearby points). For example, the function f in Fig. 2 (a)
and Fig. 2 (b) has “peaks” at Q,R and S and “valleys” at Pand T. Such

peaks and valleys are what we call relative extrema.

\'% \'%
Q
R Q R S
J\ P T
P
X! o X X o X
% Y
(a) (b)

Fig. 2: Peaks and valleys shown in graphs of functions.
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So, let us formally define the terms we have been using in the following
definitions:

Definition: A function f is said to have a relative maximum at a point x, if
f(x,) = 1f(x)forall xin an open interval containing x,. Similarly, f is said to
have a relative minimum at xif f(x,) <f(x)for all xin an open interval

containing x, . Relative maximum and relative minimum are called relative
extremum.

Next, we will formulate a procedure for finding relative extrema. By looking at
Fig. 2 (a), we see that there are horizontal tangents at P,Qand R , which

means that the derivative of the function is zero at P,Q and R , while in Fig. 2

(b), the derivative does not exist at the point P . This suggests that the relative
extrema of f occur either where the derivative is zero or where the derivative
does not exist. The point at which =0 or f’does not exist, has a special
name, critical point, which we define in the following definition:

Definition: If f is defined at x,and either f’(x,) =0or f’(x,) does not exist,
then the number X, is called a critical number of f,and the point
P(x,,f(x,))on the graph of f is called a critical point.

You may note that if f(x,)is not defined, then x,cannot be a critical number.

Now, let us understand this in the following example.

Example 1: Find the critical points for the function f, defined by
f(x)=5x"-24x> - 21x +23.

Solution: Let f(x) =5x> —24x* — 21x + 23, then f'(x) =15x* —48x —21is
defined for all values of x.

Now, f'(x) = Ogives 15x* —48x—21=0

=35x-7)3x+1)=0

L 7 1 . "
On solving it, we get x :g,—g, which are the critical numbers.

Accordingly, f [Zj = _1003 and f[— lj = 733
5 25 3) 27

Therefore, the critical points are Zﬂ and —17—33 .
5 25 3 27

*k %

er

Example 2: Find the critical points of the function f defined by f(x) =

Solution: Note that f is defined for R exceptat x =5.

2x 2x 2x
Here, £/(x) = 23 =)¢ ° M _ e x _211) [Note that x # 5]
(x=5) (x=5)
The derivative is not defined at x =5and f is not defined at x =5 either, so
X =5is not a critical number.
e (2x—11)

5)%

When £’(x) = 0, it gives =0, which givesx = 1—21 which is the only
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critical number because e** > 0 and cannot be zero. Therefore, the critical

point is E,f 1 ,that is E,Ze“ .
2 2 2

*k %

Example 3: Find the critical numbers and the critical points for the function
f defined by f(x)=(x—2)> (x +1). Also, show these points on the graph of f .

Solution: Given function f is a polynomial function and we know that it is
continuous and its derivative exists for all x. Thus, we find the critical numbers
by using the equation f'(x) = 0. We obtain
f'x)=x-2) "D +2x-2)D)(x +1)
=(x-2)[(x-2)+2(x+1)]
=3x(x—2)
The critical numbers are x =0,2. To find the critical points, we need to find
the y-coordinate for each critical number.
f(0)=(0-2)’(0+1)=4
f(2)=(2-2)*Q+1)=0
Thus, the critical points are (0,4)and (2,0). The graph of
f(x) = (x —2)*(x +1) is shown in Fig. 3, in which P and Qare the critical
points.

/\Y
(0, 4) 7RQ
¢ : N >
X O 20 X
vY'

Fig. 3: Graph of f .

You may observe how the relative extrema occur at the critical points. You can
see in Fig. 3 that the relative extrema occur only at points on a graph where
there is a horizontal tangent line.

*k %

In the examples above, you have found the critical points. In the following
theorem, you will see how critical numbers are used to find relative extrema.

Theorem 1(Critical number theorem): If a continuous function f has a
relative extremum at a point x, in its domain, then x, must be a critical
number of f .

We are not giving the proof of the theorem here, but let us look at an
application.
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Now, Theorem 1 states that a relative extremum of a continuous function
f can occur only at a critical number, but it does not say that a relative
extremum must occur at each critical number.

For example, if f(x) =x>,then f'(x) =3x*and f’(0) =0, so 0is a critical
number. But there is no relative extremum at x, = 0 on the graph of f because
the graph is rising for x < 0and also for x >0, as shown in Fig. 4. Thus, the
graph of f(x) = x’has no relative extremum at x, = 0 even though f’(0) =0.

%
< >
X! 0] X

Y’

Fig. 4: Graph of y = X7,

Similarly, it is also quite possible for a continuous function gto have no
relative extremum at a point x,where g’(x,)does not exist. Fig. 5 shows the

graph of a function, for which tangent at the point P does not exist. Therefore,
although g’(—1) does not exist, no relative extremum occurs at x, =—1.

AY

X ¥

Y

Fig. 5

So, we can say that the critical number theorem is only a necessary condition.
Let us find relative extrema in the following example:

Example 4: Find the relative maxima or minima, if any, for the function
f defined by f(x) =[x —1|on the interval ]-2,2] .

41
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Solution: Fig. 6 shows the graph of f . If x >1,then f(x)=x—1and f'(x)=1.
However, if x <1, then f(x) =—(x—1)and f’(x) =—1. Therefore, neither
f’(x) =0nor f’(x)does not exist on ]—2,2[if x <1 and x >1. Now, we need
to check what happens at x =1.

lim fd+Ax-)—-f1-1)
Ax—0 AX

a0
Ax—0 AX

£(1) =

|
= lim
Ax—0 AX

XN
X ¥

Y
Fig. 6: Graph of f.

We consider the left hand limit and right hand limit:
A
lim M: lim Ax

Ax—=0" AX Ax=0" AX

=1
and
A —
lim M ~ lim Ax _
Ax—00 AX Ax=00 AX

-1

Since these limits are not equal, therefore, the derivative of f does not exist at
x =1. Since, f(1) is defined and f(1) <f(x)Vxe]-2,2[, therefore, 1 is the
only critical number, at which f has relative minima. Fig. 6 also verifies this.

*k %

Now, try to solve the following exercise:

E1) Find the relative maxima and minima for f , where f is defined as

follows:
i) f(x)=2forall xe R ii) f(x)=xforall xe R
iii) f(x)=xfor 0<x<4 iv) f(x):xzforallxeR

v)  f(x)=+vxforall xe[9,25]. vi)  f(x)=|x—3[on [4,4]

In/x

X

vii)  f(x)=

on [1,3] viii) f(x)=xe"on [0,2]
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iX)  f(x)=sin’x+cosx on }o,g[ X)) f()=|x|on [-11]

So far, we were concerned with the values of the function only in an open
interval around the extreme point. Thus, the concept of relative maxima-
minima is essentially a local phenomenon. What happens globally, or
elsewhere? Let us discuss that now in the following section:

13.3 ABSOLUTE EXTREMA

So far, we have discussed relative extrema. In Fig. 1, there exist the highest
peaks as well as deepest valley. If we talk about finding the maximum and
minimum values of a function, we find the highest point and the lowest point.
These highest and lowest values of the function are absolute maximum and
absolute minimum, respectively, and are given in the following definition:

Definition: If f is a function defined on an interval 1that contains the number
X, , then f(x,) is an absolute maximum of f on the interval Iif

f(x,) 2f(x)forall xin I. Similarly f(x,)is an absolute minimum of f on Iif
f(x,) <f(x)forall xin I.

Sometimes we drop the word ‘absolute’ and just use the terms maximum
and/or minimum. Together, the absolute maximum and minimum of f on the
interval Iare called the extreme values, or the absolute extrema, of f on I.
An absolute maximum or absolute minimum is sometimes called global
maximum or global minimum. A function does not necessarily have extreme
values on a given interval. For instance, the continuous function f(x) =x has

neither a maximum nor a minimum on the open interval ]—1,1[, as shown in
Fig. 7. This is because there exists no x,, for which either f(x,) = f(x)or
f(x,)<f(x)forall xe]-1L1[.

ANY
N I B
Y
Fig. 7: Graph of f(x) =xon |—-1,1[.
—x* for x 0
The function f defined by f(x) = xoorx , Which is discontinuous at
—25 for x=0
x =0, has a minimum in the closed interval [-5,5], but no maximum, as

shown in Fig. 8.
43
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AY
< o >
X' ¢ X
10, -25)
(-5, -25) (5, 25)
Y
Fig. 8

This graph also illustrates the fact that a function may assume an absolute
extremum at more than one point. In this case, the minimum occurs at the
points (=5,—25),(0,—25),and (5,—25). If a function f is continuous and the
interval 1is closed and bounded, it can be shown that both an absolute

maximum and an absolute minimum must occur. This result plays an
important role in finding maxima and minima and is called the extreme value

theorem, and is given as follows:

Theorem 2 (The extreme value theorem): A continuous function f has both
an absolute maximum and an absolute minimum on any closed interval [a,b].
We are not proving this theorem, but giving a geometrical interpretation, which
is shown in Fig. 9. If a continuous function f has no peaks it would be
increasing throughout or decreasing throughout its domain. In this case, the
maximum and minimum occur at the endpoints of [a,b]. If it does have peaks,

the maximum would correspond to the highest peak or to an endpoint.

ANY

>V

bY’
Fig. 9: Peaks and depths of a continuous function in a closed interval.

If fis not continuous in the closed interval or the interval is not closed, you
cannot conclude that f has both a largest and smallest value. Sometimes,
there are extreme values even when the conditions of the theorem are not
satisfied, but if the conditions hold, the extreme values exist.

You may note that the maximum of a function occurs at the highest point on its
graph and the minimum occurs at the lowest point. For example, consider the
function f whose graph is shown in Fig. 10.
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(Vertical
Tangent) 4

x

W EERER SR SRS SRR o

o)) PR

S
vl

NAY
Fig. 10: A continuous functionon [a,b].

The highest point on the graph occurs at the left endpoint that is at P, and the
lowest point at Q. Thus, the absolute maximum is f(a), and the absolute

minimum is f(x,) . Here, the existence of maxima and minima as required by

the extreme value theorem can be seen clearly , but there are times when it
seems that the extreme value theorem fails. Let us illustrate another instance,
where you will see that any of the conditions of the extreme value theorem is
not satisfied.

Example 5: Verify the extreme value theorem for the function f defined

BV ) 3x, if 0<x<2
YECI=Y 5 i n<x<4

Solution: From the graph of the function f shown in Fig. 11, you can see that
the function f has no maximum. It takes on all values less than, but arbitrarily
close to 6. However, it never reaches the value 6. This function does not
contradict the extreme value theorem because f is not continuous on [0,4].

AY

XN

LY’
Fig. 11: Graph of f .

*k %

Example 6: Verify the extreme value theorem for the function f, defined by
f(x)=x’on 0<x<5.
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Solution: The graph of f given in Fig. 12 shows that the values of the
function f become arbitrarily small as x approaches 0. f(x) never reaches
the value 0. So, f has no minimum. The function f is continuous on the
interval 10,5], but the extreme value theorem is not contradicted as the interval
is closed only at one end.

Y

vY
Fig. 12: Graph of x’on ]0,5].

*%k%

Now, we are giving a procedure to find the absolute extrema of a continuous
function f on [a, b]in the following steps:

e Find all the critical numbers of f on [a,b] using f'(x)=0or f’(x)does not
exist.

e Evaluate f at the critical numbers as well as at the end points of the
interval.

e (Of these values, the largest value of f is the absolute maximum of f on
[a,b], and the smallest value of f is the absolute minimum of f on [a,b].

Let us understand this with the help of the following examples.

Example 7: Find the absolute extrema of the function f defined by
f(x)=x"*—-8x*+50n [-3,3]. Show these values on the graph of f .

Solution: Here, fis a polynomial function, it is continuous on the closed
interval [-3,3]. Theorem 2 states that there must be an absolute maximum

and an absolute minimum on the given closed interval.
For this, we differentiate it and find the critical numbers.

f(x) = 4x’ —=8(2x) =4x(x* —4) =4x(x =2)(x +2)

Thus, the critical numbers are x =0,2and —2.

Now, let us find the values of the function at end points of the interval and at
the critical numbers. We get f(3) =14,f(-3)=14, f(0)=5, f(2)=-11, and
f(-2)=-11.

We can say that the absolute maximum of f occursat x =3 and x =-3. The
absolute maximum value of f is f(3) =f(-3) =14. The absolute minimum of

f occurs at x =2 and x =-2. Thus, the absolute minimum value of f is
f(2)=f(-2)=-11. The graph of fis shown in Fig. 13, which verifies that
there are four absolute extrema.
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pg\ %

VY’
Fig. 13: Graph of f .
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In the following example, we shall find the absolute extrema when the
derivative does not exist.

Example 8: Find the absolute extrema of the function f defined by
f(x) =2x*?(5-3x)on the interval [-1,1]. Show these values on the graph of
fil

Solution: To find the derivative, we rewrite the given function as

f(x) =10x*? —6x°", thenf'(x) = ? x % —10x*" = % x 32 -3x).
We find critical numbers by solving £'(x) =0. This gives x =2/3.

Here, f(0) exists, you may note that f’(0)does not exist. Thus, the critical
numbers are x =0and x =2/3.

Let us now find the values of the function at the endpoints and at the critical
numbers, we get f(=1)=16, f(1)=4, f(0)=0, f(2/3)=2"".3"=4.579.
It is clear that the absolute maximum of f occurs at x =—1and the maximum
value of fis f(—1)=16. The absolute minimum of f occurs at x =0 and the

minimum value of f is f(0)=0. The graph of f, shown in Fig. 14, verifies
these values.

& |

XA
XA

/Y’
Fig. 14: Graph of f .

*k %
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In the next example, we shall find the absolute extrema of a trigopnometric
function.

Example 9: Find the absolute extrema of the function f defined by
f(x)=—x—-2cosx —%(cos2 X + sin x) on the interval [0, ].
Solution: To find the critical numbers, we find f'(x).

£'(x) :—1+25inx+%(2cosxsinx—cosx)
=%(—2+4sinx+2cosxsinx—cosx)
=%[2(sin x)(cosx +2)—(cosx +2)]

:%[(cosx+ 2)(2sin x —1)]
Since, the factor (cosx +2)is never zero on [0, 7], therefore, f'(x) =0 when
2sin x —1=0, which gives x :gor %“in [0, 7].
Let us evaluate the function at the endpoints and the critical numbers. We get

£(0) :_—25, f(m) = —n+% =~—1.641, f(n/6)=-2.881and f[%nj =-—1.511.
The absolute maximum of fis at x = 5?Tcand the absolute minimum of fis at

X :g. The maximum and minimum values of f are —1.511and — 2.881,

respectively.
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Now, try the following exercises.

E2)  Find the critical numbers of the following:

)  f(x)=2vx (6-x)on R.

. .3 __1

ii) f(x)=x"on [ > ,1}

In~/x
X

iy f(x)= on [1,3]

iv)  f(x)=sin’x +cosx on [o,ﬂ

E3) Find the critical points, if they exist, for the functions given in E2).

E4) Find the absolute extrema of each of the functions f defined as follows:
i) f(x)=(x=-5)(x-3)Vxe[+44]

i) f(x)=x’+13x*+5x+7Vxe[-10,10]
i)  f(x)=sinx+3VxeR
iv)  f(x)=2|x|Vxe[-11]
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v)  f(x)=|x[+2Vxe[-2,2]

vi)  f(x)=|x|+[x—1Vxe[-55]

vii)  f(x) :x+le >0
X

In our next few examples, we shall apply some maximisation or minimisation
in real life situtaitons.

Example 10: A rectangular playground is to be fenced. What is the maximum
area for this playground if it is to be fitted into a right-triangular plot having
perpendicular sides 8m and 15m?

Solution: Fig. 15 shows a right triangular plot with perpendicular sides 8m and
15m. Let x and y denote the length and width of the inscribed rectangular

playground. The area of the rectangle is, A =xy.

// gm
7y

P| U \IQ
[€ 15 m 2

Fig. 15: Area of a rectangle.

The function A is of two variables and the method we discussed here deals
with the functions of one variable. Therefore, first we must express A as a
function of a single variable. To do this, we need to substitute either x in terms
of yor yinterms of x with the given conditions of the right-triangular plot.

Since, APQR is similar to ASTR, therefore, the corresponding sides of these

triangles are proportional. Thus, we have 8-y = % , Which gives
8x
=82
T

Therefore, area A can be rewritten as A(x) = x[S —%xj =8x —%xz

The domain of the function Ais 0 < x <15. The critical numbers for A are the
values of x such that A’(x) =0 (since A’(x) exists for all x). Since,

A(x)=8 —%x, therefore, the only critical number is x = 1—5 Now, let us

evaluate A(x) at the endpoints and the critical number, we get
A(15) =0, A(0)=0, A[gj =30

The area is maximum when x = %Sm,. This gives y =8 —Exl—5 =4m.

15 2
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Thus, the largest rectangular playground that can be built in the triangular plot

is a rectangle with dimensions %Sm and 4m along the sides 15m and

8m respectively. The maximum area of the rectangular playground is 30m”.

*kk

Example 11: An open-topped cuboidal box is to be made out of a square
sheet of tin, with each side a cm. For this, squares out of each corner of the
sheet are to be cut and then the edges of the sheet are bent upward to form
the sides of the box. What should be the height of the box, so that the volume
of the box is maximum?

Solution: Fig. 16 shows the square sheet and the corners cut from it. Let the
sides of the squares to be cut on corners be x cm. The box will be x cm deep,
(a—2x)cm long, and (a—2x)cm wide. The volume of the box

V(x)=x(a—2x)(a—2x)cm’ and this is the quantity to be maximized. To find

the domain, we note that the dimensions must all be non-negative; therefore,
x 20,a—2x 20 (or x <a/2). This implies that the domain of the function V

o]

__________

a-2x

——% a-2x

__________

Fig. 16: Square of side a .

To find the critical numbers (the derivative is defined everywhere in the
domain), we find values for which the derivative is 0.

Here, V/(x)=(a—2x)(a—2x—-4x)=0=x=a/2,a/6. Evaluating V(x) at
the critical numbers and the endpoints, we get

_2a’

27

V(0)=0,V(a/2)=0, V[%j

Thus, the volume of the box is maximum when x :% . Such a box has

dimensions %,%,%. Hence, the height of the box will be %cm, so that the

volume of the box is maximum.
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You will note in Example 11, that we did not have to test whether the critical
point was a maximum or a minimum, but knew that it was a maximum
because the continuous function V is non-negative on the interval [0,a/2]and

. . . . " a.
is zero at the endpoints. Since, there is only one critical number x =—in
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between, it must have the maximum. Similar reasoning can be used in many
examples.

In the following example, we will see how we can maximize the illumination by
adjusting the height of a lamp just above the center of a circular table.

Example 12: A lamp with adjustable height hangs directly above the center of
a circular table of radius 1m. The illumination Iat the edge of the table to be
directly proportional to the cosine of the angle 6 and inversely proportional to
the square of the distance d, where 8and d are as shown in Fig. 17. How

close to the table should the lamp be lowered to maximise the illumination at
the edge of the table?

Fig. 17
Solution: According to the question, illumination I cosBand I o« —-,s0
kcos© 'oc'is used as the
we have 1= —dz , Wwhere ks a (positive) constant of proportionality. Again sign of
here, lis a function of two variables 6 and d . We will substitute din terms of proportionality.

0. From Fig. 17, sinezlor d:#.
d sin ©

Hence, 1= kcose{ } =kcosOsin’ 0, where 6 may vary from 0to

(1/sin 0)°
7t/ 2 only. Hence, we need to find the absolute maximum of the function on

o

Let us now differentiate Iw.r.t. 0,
I'(0) = k[cos O (2sin OcosB) + sin* O(—sin 0)]
=k (2cos”Osin 6 —sin’ )
=ksin 6(2cos’ O —sin’ 0)
I'(8) = 0, when, either sin®=0o0r 2cos’0—sin’0=0. If sin 8 =0, that means
8 =0(since, sin0=0)and if 2cos’0—sin’0 =0, then tan’ 6 =2 and

0=tan""

2, ignoring other value as tan@is positive in [Og}
The critical numbers are 0 and tan™' /2 . Evaluating 1(6) at the endpoints, and

critical numbers we get 51
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1(0) =k(cos0)(sin* 0) =0,
T T . 2 E _ i} -
I[Ej = k[cosaj [sm 2) 0, I(tan™" /2) = 1(0.9553)

~k(c0s0.9553) (sin”0.9553)

~(0.3856k.
Also, from Fig. 17, height= ! .
tan O
Since, tan6 = \/Ewhen Iis maximum, therefore, the
1 1
height= =—=0.7075m.
9 tan © \/5

To maximise the illumination, the lamp should be placed about
0.7075 m above the center of the table.
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Now, try the following exercises.

E5) A manufacturer estimates that when x units of a particular item are
produced each month, the total cost (in thousand rupees) will

beC(x) = % x> +4x +200 and all the items can be sold at a price of

p(x) =49 —x rupee per item when 0 < x <49 . Determine the selling
price so that profit is maximum.

E6) Consider an asset whose market price after t years from now is given

by V(t)= 10000e"" . If the prevailing rate of interest is 8% per annum
compounded, when should the asset be sold?

E7) Let C(t)denote the concentration of a drug injected into the body
intramuscularly in the blood at time t. In a study, it was observed that
the concentration may be modelled by

k

C(t) =
constants that depend on the drug. At what time does the largest

concentration occur? What happens to the concentration as t — +oo ?

(e™ —e™);t>0where a,b(with b>a), and k are positive

So far, we have discussed the necessary condition for the existence of an
extreme point. We have also seen that the condition is not a sufficient one. In
the following section, we shall show how derivatives are used to find whether
the function is increasing or decreasing.

13.4 INCREASING AND DECREASING
FUNCTIONS

In this section, we shall see how information about the derivative f’can be
used to determine the shape of the graph of f. We begin by showing how the
sign of f”is related to whether the graph of f is rising or falling, that is, whether
f is increasing or decreasing which you have studied in Unit 6, but here the
difference is that we are making use of derivatives to identify whether a
function is monotonic or not.

Let us begin with an example. Consider a population of a certain species as a
function f of the time t (months) as shown in Fig. 18. From the graph shown in
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Fig. 18, we can say that the population is increasing between t=0and t =24.

If the graph represents a fuctions f, we shall say that f is increasing on the
interval [0, 24]. Similarly, we say that it is decreasing on the interval [24,36].

AY

Fig. 18

In Fig. 18, the curve between A and B has tangent lines with positive slopes
and so f’(t) > 0. But between B and C, the curve has tangent lines with

negative slopes and so f’(t) < 0. Thus, it appears that f increases when the

derivative of f that is f”is positive and decreases when f”is negative. We can
also say that the graph of a function f is rising when f”> 0[see Fig. 19 (a)]
and falling when f” < 0 [see Fig. 19 (b)].

Y Y

1 |1

X 0 X X o VX

Y’ LY’
(@) Rising Graph (b) Falling Graph
Fig. 19

This leads to the following theorem:

Theorem3: Let f be differentiable on the open interval Ja,b[. If f'(x) >0on
]a,b[, then fis increasing on ]a,b[. If f'(x) <Oon ]a,b[, then fis
decreasing on ]a,b[.

We now apply this theorem to find whether a function is increasing or
decreasing in the following examples:

Example 13: Determine where the function f defined by
f(x)=x"+3x*> —9x + 2is increasing and where it is decreasing. Also,
compare the graphs of f and f’.

Solution: Given that f(x) = x’ +3x* —9x + 2, we differentiate f w.r.t. xand
get

f'(x)=3x>+6x-9=3(x-1)(x +3)
To find whether f is increasing or decreasing, we have to find where
f’(x) > 0and where f’(x) < 0. This depends on the signs of the two factors of
f’, namely, (x—1)and (x +3) . We divide the real line into intervals whose
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endpoints are critical numbers —3and 1 as shown in Fig. 20 (a). Then, in
these intervals, we find the sign of f”and finally mark each interval as
increasing or decreasing according to whether the derivative is positive or
negative, respectively. This is shown in Fig. 20 (b). When x < -3, both the
factors in f”are negative, therefore, "> 0,and f is increasing. Similarly, when
—3< x <1,(x—1)is negative and (x + 3) is positive, therefore, ' < 0,and f is
decreasing. Also, when x > 1, both the factors (x —1)and (x + 3) are positive,
therefore, f is increasing.

AY AY
| . (=3, 29)
f>01 f<0| 1 >0
& : E N
X -3 o +1 X
Increasingi decrea singi Increasing )<( ;
Y vY
(a) (b)

Fig. 20

The graph of f and f”are shown in Fig. 21 (a) and Fig. 21(b) respectively.
From the graph, it is clear that when x <—3and when x >1, the graph of {’is
above the x —axis, and when —3 < x <1, the graph of f”is below the x -axis.

The critical numbers of f are where f’(x) =0that is, at x =-3and x =1, so
they are the x -intercepts of the graph of f”.

AY YN
X' X
X — o[/ X
(-1, -12)
NAE Y'\
(a) Graphof f (b) Graph of f’

Fig. 21
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Now, try the following exercises:

E8) Find where the function f defined by f(x)=3x*—4x> -12x*>+5is
increasing and where it is decreasing.

E9) Find the sub intervals on which f is increasing or decreasing.
i) f(x)=sin x +cosxon [0,27]

ii) f(x)=e™+e*on R

i) f(x)=x*—x-Inxon R*
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Going back to the extrema, you may recall that if f has a maximum or
minimum at any point, then the point must be a critical number of f . But not
every critical number gives rise to a maximum or minimum. So, is there a test
that will tell us whether or not f has a maximum or minimum at a critical
number? Let’s look into this in the following sections.

13.5 THE FIRST DERIVATIVE TEST

Every relative extremum is a critical point. However, as you saw in Sec.13.3,
not every critical point of a continuous function is necessarily a relative
extremum. Look at the graphs given in Fig. 22 (a), you can see that both the
graphs have a maxima at A and B respectively. Now consider the derivative
at these points after this. What do you notice? If the derivative is positive to the
immediate left of a critical number and negative to its immediate right, the
graph changes from increasing to decreasing and the critical point must be a
relative maximum, as shown in Fig. 22 (a). If the derivative is negative to the
immediate left of a critical number and positive to its immediate right, the
graph changes from decreasing to increasing and the critical point is a relative
minimum as shown in Fig. 22 (b) on the points C and D . However, if the sign
of the derivative is the same on both immediate sides of the critical number,
then it is neither a relative maximum nor a relative minimum as shown by
points Eand Fin Fig. 22 (c).

Y Y Y

A . E

>0/I\f'<0 f<0 >0 >0 & >0

: \/ i

1 ID f’<O:

: 'C '

o 3 SO } 5o 3

Y! Y’ Y
(a) (b) (c)

Fig. 22: Three patterns of behaviour of f near a critical point.

The following steps are done to apply the first derivative test to find relative
extrema:

1. First of all, find all the critical numbers of a continuous function f . That
is, find all the numbers x,such that f(x,) is defined and either

f’(x,)=0or f(x,) does not exist.
2.  Classify each critical point (x,,f(x,))as given in Table 1.

Table 1

Point Nature of the Observation
point
(x,.f(x,)) | Relative maximum | f’(x) > 0(graph rising) for all xin an
open interval ]a, x,[to the left of x,
and f’(x) < 0(graph falling) for all

xin an open interval ]x,,b[ to the

right of x,, .
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(x,.f(x,)) | Relative minimum | f’(x) < 0(graph falling) for all xin an
open interval ]a,x,[to the left of

X, , and f’(x) > 0(graph rising) for all
xin an open interval ]x,,b[to the
right of x,, .

(x,,f(x,)) | Notan extremum | If the derivative f'(x)has the same
sign for all xin open intervals
]a,x,[and ]x,,b[ on each side of

X -

Suppose we apply this first-derivative test to the polynomial
f(x)=x"-3x>-9x +2. We find that the critical numbers of f are —3and 1.
Also, fis increasing when x <—-3and x >1and decreasing when —3<x <1.
The first-derivative test tells us that there is a relative maximum at —3and a
relative minimum at 1. To understand this let us solve few more examples.

Example 14: Find all critical numbers of f(x)=x—2sin x for 0<x <27, and
determine whether each corresponds to a relative maximum, a relative
minimum, or neither. Sketch the graph of f .

Solution: Here, f(x) = x —2sin x, differentiating it w.r.t. x, we get

f’(x) =1-2cosx, which exists for all x,therefore, the critical number occurs

when f’(x) =0. This gives cosx =%. On solving, we find that the critical

numbers for f(x) on the interval [0, 27], these critical numbers are gand %n

Next, we examine the sign of £'(x), which is given in Table 2.

Table 2
Interval Sign of f(x) | Monotonicity of f
T —ive decreasing
O<x<—
3
T 5t | +ive increasing
5w —ive decreasing
—<X<21m

According to the first-derivative test, we can say that the sign of f”is changing

from —ive to +ive at x = E, therefore, there is a relative minimum at x = E.
3 3
. . ,. . . . 5w
Similarly, the sign of f"is changing from +ive to —ive at x = ?,therefore,

there is a relative maximum at x = %n The graph of fis shown in Fig. 23,

which also verifies this.
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N Y
f<0 :
E f'<0
i ’ > >
N o) T 51 2n X
K 3
A4 Y’

Fig. 23: Graph of f .
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Now try the following exercises:

E10) Find all possible relative extreme values of each of the following
functions by applying the first derivative test.

i) f(x)=x"—5x*+5x"—1 forall xe[0,3].

i) f(x)=2x*+8x’—4x>—24x+15 forall xe R
i) f(x)=(x—-1>(x+1) forall xe R.

iv)  f(x)=xv6—xon [0,6]

v)  f(x)=e*on [-L]].

E11) Find the local maximum and minimum values of the function f defined
as f(x)=x+2sinxon [0,27].

You may recall Unit 11, where in we discussed the second derivative. One of
the applications of the second derivative is to test for maximum and minimum
values. We discuss the second derivative test in the following section:

13.6 SECOND DERIVATIVE TEST

We now investigate another condition which, if satisfied, does away with the
need to examine the sign of f'(x) as in the first derivative test. This condition

is also only sufficient, but very useful.

The Second-Derivative Test for Relative Extrema

Let f be a function such that f’(xo) = (0 and the second derivative exists on an
open interval containing x,, .

If £”(x,) >0, there is a relative minimum at x =x,,.
If £”(x,) <0, there is a relative maximum at x =x, .
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Remark: You must have observed that this test says nothing about the case
when f”(x,) is zero. In this case, the function may have a maximum or a
minimum value or neither as shown in the following examples:

i) f(x):—x4,f0ra|| xeR.
Here £'(0)=0=1"(0), but the function has a maximum at 0. (see
Fig 24(a)).

ii) f(x)=x",forall xe R.
Here £'(0) =0=1"(0), but the function has a minimum at 0. (see Fig
24 (b)).

iy  f(x)=x’,forall xe R.

Here f’(0)=0=£"(0) and the function has neither a maximum nor a

minimum at 0 (see Fig 24(c)).
Thus, the first derivative test does have some merit.

AY AY AY
& o N & N pa O N
N o A
X X X X X X
Y’ Y LY’
(a) (b) (c)
Fig. 24

Let us apply second derivative test in the following examples:

Example 15: Find the extreme values of the function f defined by
f(x)=2x +§, for all x #0, using the first derivative and second derivative
X

tests. What do you conclude about ease of procedure here?
Solution: Here, f'(x) =2 —% , and therefore f'(x)=0= x =+3/2.
X

Using the first derivative test, we can say that the sign of f”is changing from

—ive to +ive at x = \E therefore, f has a minima and the minimum value is

2.6 Similarly, the sign of f”is changing from +ive to —ive at x = —\/g,

therefore, f has a maxima and the maximum value of fis — 2\/6.

Also, f”(x)=6x". This means f”(~/3/2)>0 and f"(—/3/2) <0. Thus,
using the second derivative test, we can say that f has a minimum at V372
and a maximum at —\/3/_2. The minimum value is f(\/3/_2) = 2\/8, and the
maximum value is f(—\/3/_2) = —2\/8.
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Sometimes, the second derivative test is inconclusive when f”(x,)=0. In

other words, at such a point there might be a maximum or minimum or neither.

The second derivative test also fails when f”(x,) does not exist. In such

cases, the first derivative test must be used. You can see in this example that
even when both tests apply, the first derivative test is the easier one to use.

*k %

Let us apply second derivative test in the following example:

Example 16: From each corner of a square paper of side 24 cm, suppose we
remove a square of side x cm and fold the edges upward to form an open
cuboid box. Find that value of x which will give us a box with maximum
capacity.

Solution: Clearly, 0 <x <12 for a box to be formed. Also, the box thus
formed has dimensions (24 —2x),(24—-2x) and x (see Fig 25).

(@) (b) (c)
Fig. 25

The volume f(x) is a function of x given by

f(x)=(24-2x)’x,0<x <12,

=4x’ -96x* +576x .

f'(x) =12x* —=192x + 576 = 12(x — 4) (x = 12)
Now, f'(x)=0=>x=12 or x=4.
Here, f"(x)=24x-192, f"(4)=96-192<0 and f"(12) =288-192>0.
Hence, x =4 is a maximum point of f. The maximum value f(4) of f (that
is, the maximum capacity of the box) is 1024 cm®.

Are you surprised that the box is not a cube for maximum capacity? But, had
it been a cube, four squares each of side 8cm (the removed portions) would

have been wasted, whereas now four squares each of side only 4 cm have

been thrown away. There had to be a compromise between the waste
material and making the box as near a cube as possible!

*k %

Here are some exercises for you to solve.

E12) Find the extremum points for each of the following functions. Using the
second derivative test, point out which of them are maximum, which are
minimum and which are neither. Also, find the extremum values of f .
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ii) f(x)=-x’, xeR.
iy f(x)=3x>+7x+1, xe R.

iv) f(x)=a,+ax’+a,x*+---+a x>, where xe R and each a, is
positive.

V) f(x)=x/(x*+1),0< x < oo,

E13) Show that wt/3 is a critical number of f, where
f(x)=sin x(I+cosx), xe R. Does f have a maximum or a minimum at

this point?

E14) Show that the rectangle of maximum area which can be inscribed in a
circle, is a square.

E15) Reena wants a name-plate with display area equal to 48cm’ bordered
by a white strip 2cm along top and bottom and 1cm along each of the
two remaining sides. What dimensions should the plate have so that the
total area of the plate is a minimum?

In the following section, we shall discuss Rolle’s theorem and Lagrange’s
mean value theorem.

13.7 MEAN VALUE THEOREMS

Let us begin with an example. For example, suppose the average speed of a
vehicle was 60 Kmph. Then the instantaneous speed cannot always have
been more than 60, for then the average would also be more than 60.
Similary, the instantaneous speed cannot always have been less than 60.
Hence, at least at one point of time the instantaneous speed must have been
60 as well. This is called a mean value result as it relates mean values to
actual values. In this section, we shall study the mean value theorems. These
theorems have proved to be very handy tools in proving other theorems not
only in calculus, but also in other branches of mathematics, such as Numerical
Analysis. Their importance lies in their wide applicability and tremendous
usefulness.

13.7.1 Rolle’s Theorem

We shall first consider Rolle’s Theorem, which is a special case of Lagrange’s
mean value theorem. We shall not attempt the proofs of these theorems here,
but you will agree that both are intuitively obvious. We shall discuss their
geometrical significance and illustrate their usefulness through some
examples.

Rolle’s Theorem was not actually proved by Rolle. He had only stated it as a
remark. In fact, Michel Rolle (1652-1719) was known to be a critic of the
newly found theory of Newton and Leibniz. It is ironical, then, that one of the
most important theorems of this theory is known after him. Now, let us see
what this theorem is.
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Fig. 26

In Fig. 26 (a) and Fig. 26 (b), we see the graphs of two continuous functions
defined on the closed interval [a, b]. Here, we observe few features common

to both of them as given in Table 3.

Table 3
S.No. Rough Statement Precise Statement
1. The curve is drawn without The function f is continuous on
breaks or gaps. [a, b].
2. There are no corners in the The function is differentiable in the
curve. open interval ]a, b[.
3. The two end points of the f(a)=1f(b)

curve lie on the same
horizontal line.

4. | The curve admits a horizontal | f’(c) =0 for some c in ]a, b[.
tangent (drawn as a dotted
line) at some point.

The line joining the two end points may be imagined to be pushed upward or
downward, keeping it always horizontal, and keeping the curve unmoved.

Then, there is a position, shown by the dotted line, where it touches the curve.

This makes us believe that the fourth property holds for all the functions
satisfying the first three properties. This is what Rolle’s Theorem asserts.

Theorem 4 (Rolle’s Theorem): Let f be a function continuous on the closed
interval [a, b] and differentiable in the open interval ]a,b[. Further, let

f(a)=f(b). Then, there is some ¢ in ]a,b[ such that f’(c)=0.

For example, if a train on a straight track is at the same location at both 1 PM
and 5 PM, then at some time between 1 PM and 5 PM it was not moving, that
is, to return to the same position, it would have needed to stop and reverse at
some point. Here, let the position of the train at time tbe f(t). If (1) =f(5),

then the train is at the same place at both t =1and t =5. Rolle’s theorem
states that the derivative should be zero somewhere between 1 and 5. Now,
we give an example to illustrate this theorem.
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Example 17: Consider f(x) =sin x on the interval [0, 27]. Check whether
Rolle’s theorem is verified.

Solution: The function f, given by f(x) = sin x is continuous on [0, 27t] and is
also differentiable on ]0,27[ . Thus, all assumptions of Rolle’s theorem are

satisfied here.
Now, f(0)=0=f(2m).

Therefore, according to Rolle’s theorem, there should exist ¢ in ]0, 27x[, such
that, f'(c)=0. Here, f'(x) =cosxand f’(c) =cosc.

Can we find an element ¢ such that cosc =07

Yes. In fact, there are two such points ¢ in 10, 2x[, namely ©t/2 and 3w/2.
NY

Fig. 27

At w/ 2, the function sin x attains its maximum value.
At 3mt/2, the function sin x attains its minimum value.
Both these belongs to the interval 10, 2x[. Fig. 27 also verifies this.

*k %

Rolle’s theorem asserts that there is at least one ¢ in ]a, b[ such that
f’(c) =0. Example 17 shows us that there may be more than one point in
]a, b[ at which f’(x)=0.

In Rolle’s theorem, a function f on [a, b] has to satisfy three conditions.

i) f is continuous on [a, b]

ii) f is differentiable on ]a, b[

i)  f(a)="f(b)

Now, we shall see through some more examples that each of these conditions
is essential. We cannot drop any one of them and still prove the theorem.

Example 18: Check whether the function f defined by

f(x) = x —[x] =fractional part of x, on [0, 1] verifies Rolle’s theorem.

x, if 0<x<1

0, if x=1

Here, £(0)=f(1)=0. f is differentiable in the open interval 10,1[ . Thus, two
of the three conditions of Rolle’s theorem are satisfied by f . The derivative of

Solution: The function f can be rewritten as f(x) :{
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f is 1 at every point of 10, 1[. There is no pointin ]0, 1[, where the

derivative is zero. What happens to Rolle’s Theorem in this example?
Obviously, its conclusion does not hold here. The graph of f is shown in Fig.
28.

ANY
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Fig. 28: Graph of f.

The reason is that f is not continuous on the closed interval [0, 1], since it
fails to be continuous at 1.

*k %

In the next example, we shall see that the assumption of differentiability in
]a, b[ cannot be omitted.

Example 19: Consider the function f defined by f(x)=Ix1 on [-1, 1], and
check whether Rolle’s theorem holds or not.

Solution: There is no ¢ in ]—1,1[ such that f'(c)=0. Actual computation
shows that

-1, if -1<x<0

=31, if O<x<l

doesnot exist at x =0
f is continuous on [—1, 1]. Also, f(-1) =f().
But f is not differentiable in ]—1, 1[ . Therefore, Rolle’s theorem does not
hold. Fig. 29 shows graph of f.

AY
p i i N
R, -1 (@) 1 )2
bY

Fig. 29: Graph of f .

*k %
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Our next example shows that the assumption f(a) = f(b) is essential in
Rolle’s Theorem.

Example 20: Check Rolle’s theorem for f(x) =x’ on [0, 1].

Solution: f is continuous on [0, 1], and is differentiable in ]0, 1]. But
f(0)=£().

In this case, f'(x) =3x>#0 forany x€]0, 1[. Thus, we see that the
conclusions of Rolle’s theorem may not hold when f(a) # f(b).

*kk

Lastly, we give an example where Rolle’s Theorem is applicable and yields a
unique c.

Example 21: Consider f(x)=x* on [~1, 1]. Verify Rolle’s theorem.

Solution: Let f(x)=x”on [-1,1], then f'(x)=2x.

Here all the three conditions of Rolle’s Theorem are satisfied. There is only
one ¢, namely ¢ =0, such that f’(c)=0. Fig. 30 shows the corresponding
graph.

NY

Y’
Fig. 30: Graph of f .

*k %

You will now be able to solve these exercises.

E16) Can Rolle’s theorem be applied to each of the following function? Find
‘c’in case it can be applied.

i) y =sin’x on interval [0, 7].
i) f(x)=x>+1on [-2, 2].
i)y  f(x)=x’+x on [0, 1].
iv) f(x)=sinx+cosx on [0, /2].
V) f(x)=sinx—cosx on [0, 27].
E17) Consider the function f given by f(x)=x*>—3x+2. Prove that

f(—1)=f(4). Find a point ¢ between —1 and 4, such that the derivative
of f vanishes at c. Is this point the midpoint of —1 and 47
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E18) Let f(x)=ax’+bx +c be the given function. If p and q are two real

Jp+
numbers such that f(p) =f(q), prove that f [%} =0.

E19) Consider the curve y =ax” +bx +c. Let x, be the unique real number
such that the tangent at (x,, y,) to this curve is horizontal. Prove that
the function y is one-one on the interval [x,, oo .

E20) Let I be an open interval of R. Let f :1 — R be a differentiable
function such that f does not vanish on I. Prove that f is one-one on
I.

Now, we shall discuss the mean value theorem. It was proved by Joseph
Louis Lagrange, a mathematician of the eighteenth century.

13.7.2 Lagrange’s Mean Value Theorem

We have already mentioned that Rolle’s theorem is a special case of the mean
value theorem. Let us recall the statement of Rolle’s theorem in the following
form:

Let f be a continuous function on the closed interval [a, b], and differentiable
in the open interval ]a, b[. The graph of f is a curve in the plane. If the
endpoints of this curve lie in the same horizontal line, (that is, f(a) =f(b)),

then, there is a point ¢ on the curve where the tangent to the curve is
horizontal (f'(c)=0).

The last sentence can be restated as follows.

Fig. 31: Lagrange

If the endpoints of this curve lie in the same horizontal line, then, there is a
point on the curve, where the tangent to the curve is parallel to the line joining
its endpoints.

The mean value theorem asserts the same conclusion, even without the
assumption of horizontality of the line joining the endpoints of the curve. Fig.
32 illustrate this difference. Here P and Q are the end points of the curve.
The line PQ is horizontal in Fig. 32 (a), but not in Fig. 32 (b). But in both the

cases the point R on the curve has the property that the tangent to the curve
at R is parallel to the line PQ. The number c is the x -coordinate of the point

R.
AY NY
R R
Q
& P : Q AN P :
X' o X X o c X
VY’ vY
(a) (b)
Fig 32

65



66

Fig. 32 (a) illustrates Rolle’s theorem, whereas Fig. 32 (b) illustrates
Lagrange’s mean value theorem.

The two end points of the curve are (a, f(a)) and (b, f(b)). The line joining
these two points has the slope [f(b)—f(a)]/(b—a). Any line parallel to this
line will also have the same slope. Therefore, the conclusion of the mean
[f(b)—f(a)]
(b—a)

value theorem is f'(c) = forsome a<c<b.

This is because, we already know that f’(c) is the slope of the tangent to the
curve at (c, f(c)). Now, we are ready to give the precise statement of the
theorem.

Theorem 5 (Lagrange’s Mean Value Theorem): Let f be a continuous
function on a closed interval [a, b]. Let f be differentiable in the open

interval ]a, b[. Then, there is a point ¢ in the open interval ]a, b[ such that
() = f(b)—f(a) _
b-—a

Rolle’s Theorem has three assumptions namely, a continuity assumption, a
differentiability assumption, and the assumption f(a) =f(b).

The mean value theorem has only two assumptions. These are the same as
the first two assumptions of Rolle’s Theorem.

Suppose in addition to the two assumptions of the mean value theorem,
f(a) =f(b) also holds. Then what does the mean value theorem yield? It

says that
f(b)—f(a)

f/ =
© b-a

forsome a<c<b. But f(b)—f(a)=0.
Therefore, we get f'(c) =0 for some a<c <b. This is the same as the

conclusion of Rolle’s theorem. This proves our contention that Rolle’s
theorem can be deduced from the mean value theorem.

But why the name mean value theorem? What is the mean value here?f(a)
is the initial value of f .f(b) is the final value of f . Therefore, f(b)—f(a) is

the total change in the value of f. This change has occurred when the x -
coordinate has changed from a to b. For a change of (b—a) in the domain,

there is a change of f(b)—f(a) in the value of f. Therefore, the mean value,
that is, the average value of the rate of change is [f(b)—f(a)]/(b—a). The

mean value theorem asserts that this average value of the rate of change of f
is assumed at some point ¢ by derivative f”.

We shall illustrate the same thing by means of an example. Consider a car

moving from time a to time b. Let f(t) be the position of the car at time t.

[f(b)—f(a)]
(b—a)

to mean value theorem, the speedometer of the car would have shown this

[f(b)—f(a)]
(b—a)

travelled 100 kms in two hours, then at some point of time, its speed would

Then, the average speed of the car is distance/time = . According

at some time between a and b. For instance, if the car has
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have been actually 50 kmph (which is its average speed over the span of two
hours).
Now, let us see how to verify the theorem in the following examples.

Example 22: Verify Lagrange’s mean value theorem for the function
f(x)=x*—2x on the interval [1, 2].

Solution: This is a polynomial function. Therefore, it is continuous on [, 2]

and differentiable in ]1, 2[ . Here, a=1, b=2,f(a)=1-2=-1,

f(by—f(a) O0-(=1 _
b—a  2-1

We want to check that f’(c) =1 for some ¢ suchthat 1<c<2.

Now f’(x)=2x—2. For what value of x will it be 1?

f(b)=2>-2x2=0, and 1

Now, 2x —2 =1, when, x =3/2, and %e]l, 2[. Thus, we see that

f(2)—f()
2-1
Now, consider the function f :[a, b] - R which satisfies the assumptions of
mean value theorem. Let p and q be any two points such that a<p<q<b.
[f(@=f®)1,
q-p)
answer this, consider the restriction of f to the interval [p,q]. It satisfies the
assumptions of the mean-value-theorem. Therefore, such a point ¢ exists.
This result can be geometrically interpreted as follows. (p, f(p)) and (q,f(q))
are two points on the curve y =f(x). The line joining them is called a chord of
f(q)-1(p)
q-p)
that the slope of this chord is the same as the slope of the tangent at the point
(c, f(c)). This means, that the tangent at (c, f(c)) is parallel to the chord

(see Fig. 33). Thus, for any chord of the curve, there is a point on the curve
where the tangent is parallel to the chord.

f'(3/2) =

s there some ¢ between p and q such that f(c) =

the curve and is the slope of this chord. What we have shown is

ANY

Fig. 33

*k %

Let us solve few examples:
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Example 23: i) Find the point ¢ in ]—m/4, n/4[ such that the tangent to
f(x)=cosx at (c, f(c)) is parallel to the chord joining (—t/4, f(—n/4)) and
(m/4, f(1t/4)).
i)  We shall further prove that for the same c, the tangent at (c, g(c)) to
the curve g(x) =cosx +x” +x is parallel to the chord joining
(—n/4, g(—n/4)) and (1t/4, g(nt/4)).

Solution: i) The slope of the chord joining (—rt/ 4, f(—nt/4)) and

(/4 £y s TR TR UN2-142
n/4—(—m/4) /2
Therefore, we seek ¢ that f'(c)=0. We have f'(x)=—sinx.
The only pointin ]—m/4, ©t/4[, where this vanishes isat ¢c=0.
The corresponding point on the curve is (0, f(0))=(0, 1).
i) g(—m/4)=(1/N2)+ (R /16)—(n/4)
g(n/4)=(1/~2)+ (x> /16) +(1/4).
The slope of the chord joining ((—mt/4), g(—nt/4)) and (n/4, g(w/4)) is
g(m/4)—g(-m/4) _ (m/4)+(m/4) _1
n/4—(—w/4) (m/4)+(m/4)
When ¢ =0, we want to prove that the tangent at (c, g(c)) to the curve
g(x) also has the same slope 1. In other words, we must prove that
g0 =1.
Now g’(x) =—sin x +2x +1
g(0)=—0+0+1=1.
This proves that, for both the functions f(x) and g(x) over |—mn/4, n/4[, it
is the same point ¢ where the conclusion of the mean value theorem holds.

*k %

Example 24: For the curve y =1In x, find a point on the curve where the
tangent is parallel to the chord joining the points (1, 0) and (e, 1).
Solution: Since, In1=0 and Ine =1, therefore these two points (1, 0) and
(e, 1) lie on the curve y =Inx . Consider this function on the closed interval
[1, e] (see Fig 34). ltis continuous there. It is also differentiable on |1, e[ .
Therefore, by the mean value theorem, there is a point ¢ between 1 and e
such that the tangent at (c, In ¢) is parallel to the chord joining (1, 0) and
(e, 1). We have to find this point. Now y"=1/x. lts value at ¢ is 1/c

Y

>S/\

Fig. 34
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The required point is given by
1_Ine-Inl1_1-0_ 1
c e—1 e—-1 e-1
c=e—1

The required point on the curve is (e—1, In (e—1)).

*kk

Remark: Let f :[a, b] > R satisfy the assumptions of the mean value
theorem. Then 0, 0<0<1, such that f(b)=f(a)+(b—a)f’'(a+08(b—a)).
This is because any point ¢ between a and b is of the form a+6(b—a) for
some 0<BO<1. Notethat a=a+0(b—a) and b=a+1(b—a).

Just as in the case of Rolle’s theorem, there may be more than one points at
which the tangents may be parallel to the chord joining the end points of a
curve represented by a function which is continuous at every point in the
closed interval and is differentiable at every point in the open interval (see Fig

35).
ANY
¢ >
X' o X
vY
Fig. 35

Both Rolles’ theorem and Lagrange’s mean value theorem are existence
theorems. They tell us that there exists at least one point where the tangent is
parallel to the chord joining the end points. But they do not tell us how many
such points are there, nor how to find these points.

For example, consider the function f(x)=x>—sin x on [0, 57]. It satisfies the
conditions of the mean value theorem. So, there is at least one value ¢ at
which 3c? —cosc =25n”. The mean value theorem assures us that the

equation 3x”> —cosx = 257* has at least one solution, c. But it does not
enable us to find the value or values of c¢. You can study methods of solving
such equations in the course on numerical analysis.

Now, try the following exercises:

E21) Verify the mean value theorem for f(x) = x”+1 on the following
intervals

) -1, 1] i) [-1, 2]
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E22) Verify the mean value theorem on the interval [0, 2] for the following
functions.

i) f(x) =sin 7x ii) f(x)=2x>+3

E23) i) Let f(x)=x’ on [0, 1]. Find a point ¢ in ]0,1[ as in the mean
value theorem.

ii) Let f(x)=x’ on [~1, 0]. Find a point ¢ in ]—1, 0[ as in the mean
value theorem.

i)  Let f(x)=x’ on [, 1]. Show that there are two points ¢ in
, f()—f(-1
1= 1,1[ such that £'(c) =~ =TCD
1-(-1)
E24) Let f be a function on [a, b] satisfying the assumptions of the mean
value theorem. Let ¢ be a point guaranteed by the mean value
theorem. Prove that if g,(x)=f(x)+1 and g,(x)=f(x)+x forall x in

[a, b], then the same point ¢ satisfies M
—a

g,(b)—g,(a)
b—a

=g’(c) and

=g’ (c) also.

E25) At what point is the tangent to the curve y =x" parallel to the chord
from

i) (0,0) to (2,2")7
ii) (0,0) to 1, 1)?

That brings us to the end of this unit. Let us summarise all that we have done
in it.

13.6 SUMMARY

In this unit, we have discussed the following points:

1. Afunction f is said to have a maximum/ minimum value at a point x,, of
its domain if f(x) <f(x,)/f(x)>f(x,)for all xin the domain. Maximum
and minimum values are known as the extreme values of the function.

2.  If the derivative of a function f at x,, does not exist or is zero, then
X, may not be an extreme point.

3.  Critical points for a function are those where either the derivative does
not exist or else has the value zero. A critical point may fail to be an
extreme point.

4. A sufficient condition for a function f to have an extreme value at
X =X, is that f is continuous at x, and the derivative " changes sign

in passing through x,,. If the change is from positive to negative, x,is a
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maximum point. In the other event, x,is a minimum point. This test is
known as the first derivative test.

5. Second derivative test, another sufficient condition for the existence of
extreme points asserts that if f'(x,) =0 then f”(x,) >0 implies f has a

minimum at x =x, and f”(x,) <0 guarantees a maximum value at x, .

6. In Rolle’s theorem, if a function f is continuous on [a, b], differentiable
on ]a,b[and f(a) =f(b),then there is some cin ]a,b[ such that
f’(c)=0.

7. In Lagrange’s mean value theorem, if a function f is continuous on
[a, b], and differentiable on ]a,bl[, then, there is a point cin the open

f(b)—f(a)

interval ]a,b[such that f'(c) =
(b—a)

13.7 SOLUTIONS/ANSWERS

E1) i) All points of R are maxima as well as minima.
i) nomaxima or minimaon R.
i) no maxima or minima on ]0,4[
iv)  0e R has a minimum. No maxima.
V) x =9 has a minimum, x = 25has a maximum.
vi)  x =3has a minimum and x =—4 has a maximum.
vi)  x =1has a minimum and x =e has a maximum.

viii)  x =1has a maximum and x =0 has a minimum.
. T .
iX) x= 3 has maximum.

X) x =0is a minimum. x =1land x = —1 are maxima.

E2) i)  f(x)=2vx(6-x)

1
2.-
£(x) = T2(6 —x)+2Jx (1)
X
1 6 6-3x
= (6-x)-2x == -3 x =212
N e s

f’(x) =0, gives x =2 and f’(x)does not exist, gives x =0.
Thus, x =0,2 are the critical numbers.

ii) f’(x) =3x>, here x =0is the only critical number.
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E3)

E4)

i)

2x?
f’(x)=0= x =eand f’(x)does not exist = x =0
The critical number is e, as 0¢ [1,3].

f'(x)=0
=sinx=0o0r cosx=1/2
= x =0,71/3 are the critical numbers.

(0,0),(2, 8\/5) are the critical points.

x = (0 is critical number but no critical point as there is no relative
extremaat x =0.

1. » .
[e,—j is the only critical point
2e

(0,1) and [g%) are the critical points.

f'(x)=(x—-3)+(x-5)=2x-8

f'(x)=0=>x=4

.. x =4 is a critical number.

Now, f(—4)=63,f(4)=-1. Thus, f has absolute maxima at

x = —4 and absolute minima at x =4. The maximum and
minimum values are 63 and —1respectively.

f'(x)=3x>+26x+5=0= x = %(—13i V154) =-0.197,-8.47
f(=10) = 257

£(10) = 2357

£(-0.197) = 6.512

f(—8.47) = 289.636
Thus, maxima is at x =10and minima is at x =-0.197.

Absolute minima is at x = nmt, n € Z and absolute maxima is at

x:(2n+1)g,ne Z.

Absolute maxima is at x =1,—1and absolute minima is at x =0.
Absolute maxima is at x = —2,2 and absolute minima is at x =0.

All points x for which 0 < x <1 are critical points because the
function is defined as

1-2x, if -5<x<0
f(x)=49 1 if 0<x<1
2x—-1 if 1<x<5
f'(x)=0if 0<x <1 and f is not derivative at x=0 andat x =1.
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E5)

E6)

E7)

Absolute maxima is at x = —5 and absolute minimaisat 0 <x <1.

vii)  Absolute minima is at x = 1and absolute maxima cannot be found
as the interval is not closed.

The marginal cost is C'(x) = ix +4.

The revenue is R(x) =xp(x) =x(49—-x) =49x - x?
The marginal revenue is R'(x) =49 — 2x .
The profit is maximised when R’(x) =C'(x).

Thus, we get 49—2x:ix+4 and x =20

Hence, the price that corresponds to the maximum profit is
p(20) =49-20=3%29

The present value of the asset in tyears is given by the function
P(t)=V(t)e™™, where ris the annual interest rate and t s the time in

years. Thus, P(t)=10000e"" e %" =10000¢ /%"
Differentiating P(t) w.r.t. t, we obtain

P'(t) = 10000 V00 [1. - 0.08}

2Vt

P’(t) =0 when Fl —0.08=0o0r t = 39.06years. Thus, the asset should

2t

be held for 39 years and then sold.

To locate the extrema, we solve C'(t) =0.
k

A _i - —at —bt
C(t)_dt[b—a(e y )}

- b_lja[(_a)e—al i (_b)e—bl] — bi(be—bl 1 ae—al )

We see that C'(t) =0when be™ =ae™

which gives b_ eMe™ =" pt—at= lnE and t = ! lnE
a a b—a a
Therefore, the largest concentration would occur when
t= b I lnE;b > a. Let us now find the concentration as t — +co.
—a a
: : k —at —bt
lim C(t) = lim ——[e™ —e ]
t—>+oo0 to+o h—g
]
b—a| tote e t—+e0 ©
k
= 0-0
b—a [ ]
=0

This shows that the longer the drug is in the blood, the closer the
concentration is to 0. The graph of Cis shown in Fig. 36.

Intuitively, we would expect the concentration function to begin at 0,
increase to a maximum, and then gradually drop off to 0in a finite
amount of time. Fig. 36 indicates that C(t) does not have these

characteristics, because it does not quite get back to 0 in finite time. 73



Fig. 36: Graph of C(t).

E8) f(x)=3x"-4x’-12x*+5
f'(x) =12x> —12x* — 24x
=12x(x +1)(x—2)
We divide the real line into intervals whose endpoints are the critical
numbers —1,0and 2 as given in the Table 4.

Table 4
Interval 12x | x+1 | x-2 | f(x) | Monotonicity of f
X <-—1 —ive | —ive | —ive | —ive decreasing on
]_ oo,_l[
—1<x<0 | —ive | +ive | —ive | +ive increasing on
]_ 1,0[
O<x<2 | +ive | +ive | —ive | —ive decreasing on
10,2]
X >2 +ive | +ive | +ive | +ive increasing on
12,00[
A~
fi<0 1f'>0 |
1 f’<0:f’>0

XV

WY’
Fig. 37

The graph of fis shown in Fig. 37, which verifies the monotonicity of
f given in the last column of Table 4.

E9) i) Increasing on 0,E and S—R,Zn
4 4
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. }n SR[
Decreasingon |—,—| .
4 4

i)  Increasing on }—%ln 2,00[
_ 1
Decreasing on }— oo,—gln 2[

i) Increasing on ]1,00[
Decreasing on ]0,1[.

E10) i) Maximum at x =1, minimum at x =3, and the maximum and
minimum values are 0 and —28 respectively. x =0 is not an
extremum because there is a neighbourhood of 0 in which f’(x)

has the same sign on either side of 0.

i)  Minimaisat x=1, x=-3.
Maxima is at x = -1
Extreme values are —3and 29.

iv)  Minimais at x =1and maxima is at x =—1/3, extreme values are
0 and 32/27.

v)  Maxima at x =4, and the maximum value is 42

vi)  Maxima at x =0, and the maximum value is 1.

E11) f(x)=x+2sinx
f’(x)=1+2cosx

f’(x) =0gives cosx =_71. The solution of this equation are %and

0
B
Table 5
Interval f(x) Monotonicity of f
2 +ive increasing
O<x<—
3
2 4T —ive decreasing
4 +ive increasing
EY <x<2m

From Table 5, it is clear that f’(x) changes sign from positive to negative

at % the first derivative test tells us that there is a local maximum at
%, and the maximum value is f[z—;j :2_3n+ \/g =3.83.

Similarly, f’(x)changes sign from negative to positive at 4—; therefore

f has a local minima and the minimum value is
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E12) i) Atx =0, minima, extreme value =0
i)  There are no extreme points.

i) Minimum at x =—7/6 and the minimum value is —37/12.

iv)  f'(x)=xg(x) where g(x) is polynomial in x* with all co-efficients
positive. Hence, g(x) >0 for all x #0. Therefore, the only
extreme pointof f is x=0. Clearly, f(0)=a, and
f(x)>a,, x#0. Hence, x =0 is minima and the minimum value
is a, .

V) g(x) :L =X +l. Extreme points of g are x =%1. Minima at
f(x) X

x =1land maxima at x =—1. Hence, the extreme value of f are
+1/2.
E13) f'(x)=cosx(l+cosx)+sin x(—sin x)
=cosx+cos2x =0
f'(x)=0=2cos’x+cosx—1=0
= (cosx+1)(2cosx—-1)=0

=cosx=-1,—
T, .
=X :5 is a critical number
. o
f has maxima at x =—.

E14) If a and b are the sides of the inscribed rectangle.
a’+b*=d*=>b=+d*-a’
Area =A=ab=a+d’—a’
A'=0if a=d/y2
A”<0 for a=d/+/2=>a=d/~2 is max.
a=d/\2=b=d/+2 = the rectangle is a square.

E15) Suppose the display area is a rectangle with dimensions a cm and b
cm. Then the dimensions of the name plate are (a+2) cmand (b+4)
cm.
ab=48=b=48/a.

A=(@+2)(b+4)=(a+2) (48/a+4)
dA 96 96

B4 2 0=a2=L=24=2a=26
da a’ 4

:>b:4\/€
2
i?:g>0 for a:2\/6:> This is a minimum.
a a

76 Dimensions of the plate: 2(1+ \/g),4(1+ \/g) .




Unit 13

) ) Yes. y'=2sinxcosx =sin2x =0 if x=m/2¢€ [0, @]

E17)

i)  Yes. f'(x)=2x=0if x=0e[-2, 2]

i)  No. f'(x)=3x>+1#0 for xe[0, 1]. Rolle’s theorem does not
hold as f(0) #f(1).

iv)  Yes. f'(x)=cosx—sinx=0 if x=n/4€[0, ©/2].

v)  Yes. f'(x)=cosx+sinx=0 if x:% or ?E [0, 2m]

f(x)=x>—3x+2, fis continuous on [—1,4] and is differentiable on
f(-)=6=1f(4).

f’(c)=2c—-3=0gives c :%e]—1,4[

Rolle’s theorem is verified.

E18) ap’ +bp+c=aq’+bq+c=>ap’ +bp—aq>—bq=0

=a(p’-q>)+b(p—q)=0
=a(p+q)+b=0 (since, p#q)
f’(x)=2ax +b

f’[&ij:a(pm)w - 0.

E19) Suppose f(x) is not one-one on [x,, o[

= p.qe[x,, [, suchthat p#q and f(p)=1(q)
f’[%j:o by E18).

P4 _ 4, as x, is the unique point with £'(x,) =0

Therefore either p< x, or q<x,, since p and q both cannot be equal
to x,. This is a contradiction as we have taken p, q € [x,, oo[.

E20) Suppose p,qel s.t. p#q and f(p)=1(q)

If p<q we have [p,q] < I, f is differentiable on [p, q] and f(p)=1(q).
Thus, f satisfies the conditions of Rolle’s theorem on [p, q]
= f’(x,)=0 for some x,€[p,qlcI.

But, this is a contradiction.
Therefore, f is one-one.

E21) ) D =2=f) === =0
f'(x)=2x=0if x=0
: _ o) = D= =D
s 30e[-1,1] s.t. £7(0) D)
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E23)

E24)

E25)

i)

f'(c)=

g (b)-g (@) _f(b)-f(a)

You may like to try it yourself.
f(0)=0=1(2)

f'(x)=mcosmx = f'(1/2)=0.
[~ _,

f(0)=3,f2)=11=

f(x)=4x=1'(1)=4
£(2)—£(0)

31€][0, 2] s.t. ') =
[0.2] st £(h=—"—

F-fO) _,
1-0
f'(x)=3x>=1=x=1//3€]0, 1]

c=1/3

f(-)=-1,1f0)=0=

f(0O)=0,fH=1=

FO-fCD _,
0—(=1)
f'(x)=3x>=1=x=-1/3¢e[-1, 0]
c:—l/\/g.
f(H)-f(-1) _1
1-(=1)
c =1/\/§, —1/\/5 are two points in [—1, 1]
f(H)-f(-1)

such that f(c) =
1—(=1)

£(b)~f(a) _
—a

1

g,(b)—g,(@) _f(b)—f(a)

o A LR AC)

+1=f'(c)+1=¢’(¢c).
b-a b—a © &:()

y'=nx"". Slope of the chord from (0, 0) to (2, 2") is

YZ - YI — 211—1
X, =X
n-1 2
1 — —
nx"'=2"=x""= = X=—5
n n

. 2 2"
POInt' (nll(n—l) ’ nn/(n—l) )

Slope of the chord from (0,0) to (1,1) is 1
1

1

n n-1

X" =l =x""=1/n=>x=

1 1
Point: , .
[nll(n—l) I,1n/(n—1) j
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14.6 Summary 108
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14.1 INTRODUCTION

In the last unit, we discussed some geometrical features of functions, like
maxima, minima, monotonicity, etc. We continue this discussion in this unit to
find what the second derivative f” says about f in Sec.14.2. We started our
study of Calculus by stating two problems. One of them was the problem of
finding a tangent to a curve at a given point. In Unit 9, we have seen that the
solution of this problem was instrumental in the development of differential
calculus. Now having studied various techniques of differentiation, we shall
once again take up this problem. We shall study the tangents to a curve and
normals in Sec.14.3.

If two curves intersect at any point, then the tangents to both the curves at that
point form an angle. This angle is the angle of intersection of the two curves,
which we shall discuss in Sec.14.4. What happens if the curve passes through
a point twice or more? Such points, where the curve shows different behaviour
are not ordinary points, they are called singular points, which we shall study in
Sec.14.5. You will see that all these will prove very useful when we tackle
curve tracing in Unit 16.

Now, we shall list the objectives of this unit. After going through the unit,
please read this list again and make sure that you have achieved the
objectives.
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Objectives

After going through this unit, you should be able to:

e determine whether a curve is concave, or convex, or neither in a given
interval;

¢ find the points of inflection and the curvature of a curve;

e obtain the equations of the tangent and the normal to the curve at a given
point;

e calculate the angle of intersection of two curves at a given point of
intersection;

e define, and identify, a singular point.

Recall the increasing and decreasing functions in Unit 13. There, you got an
idea whether a certain graph is increasing, or decreasing on the basis of a
visual of the graph. Sometimes, rising or falling of a graph does not give the
complete picture of the graph, it gives only a partial picture of the graph. To
get a more clear picture of the graph, we shall discuss concavity and convexity
of a curve using the second derivative in the following section.

14.2 CONCAVITY

In this section, we shall use the second derivative to get a better picture of the
graph of a function f . Let us begin with an example. Consider the function

f defined by f(x)=x>+6.We getf'(x) =2x and f”(x) =2. Observe that
f’'(=1)=-2and f”(-1)=2. Here, f” > 0forall xaround —1. Since,
f’(=1)=-2 <0, therefore, we can say that f is decreasing at —1at the rate of
—2. Atthe right of x =—1, since, f”(-1) is positive, therefore, f'(x)is larger
than f’(=1). Thatis, f'(x)is less negative than f’(-1). If we further move to
the right, £'(x)is still less negative. If we continue, then there would be some
slope f’(x), which may become positive. In Fig. 1, the arrow starting from —1
shows that the slope of f’(x)is decreasing.

Y

Fig. 1: Graph Bending Upwards.

We can say that when £”(a) >0, the graph of f near the point a, is bending
upward, whether f’(a) <0Oor f’(a) > 0. On the other hand, when f”(a) <0, the
graph of f near the point a is bending downward, whether f’(a) < 0or

f”(a) > 0. The “bending” behaviour of a graph is called its concavity. This
leads to the following definition.

Definition: When the chord lies above the graph in an interval I, the graph is
concave upward and when it lies below the graph in an interval I, the graph is
concave downward.

Fig. 2 (a) and Fig. 2(b) shows this respectively.
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(a) Concave upward (b) Concave downward
Fig. 2

We can also say that, if f is twice differentiable on an interval Iand f’is
increasing on that interval, the graph of f is concave upward on I. If f’is
decreasing on I, the graph of f is concave downward on I.

We know that the slope of the tangent line is computed through derivative.
Therefore, from the discussion above, we conclude that the graph of a function
f is concave upward if f’is strictly increasing and the graph of a function f is
concave downward if f”is strictly decreasing. This can further be said that if
f’is increasing, then (f")" > 0 (recall from Unit 13), which means that the graph
of fis concave upward where the second derivative f” satisfies f” > 0.
Similarly, the graph is concave downward where f” < 0. We can use this
observation to test concavity of a graph of a function, which is as follows.

Concavity Test:

i) If £”(x)>Ofor all xon I,then the graph of f is concave upward on 1.

ii) If £”(x)<Ofor all xon 1,then the graph of fis concave downward on 1.

You may note that a function can be concave upward and increasing or
concave upward and decreasing or concave downward and increasing or
concave downward and decreasing or concave upward/downward but neither

increasing nor decreasing, like y = x*. This means that concavity and
monotonicity are independent.

Some books use the term ‘convex downward’ for concave upward and
‘convex upward’ for concave downward. Sometimes, we drop upward and
downward and simply write concave (for concave downward or convex
upward) and convex (for concave upward or convex downward).

We also say that a function f is concave at a point, if it is concave in a small
open interval around that point. Similarly, a function f is convex at a point, if it
is convex in a small open interval around that point.

Remark: i) Only concave and convex functions have the property that each of
their tangents intersects their graph exactly once in the interval of concavity.

ii) If fis concave on I, then —fis convex on I. Similarly, if f is convex on I,
then —fis concave on 1.

Let us investigate concavity in the following examples:

Example 1: Find the concavity of the graph of the function f defined by
f(x)=3x’+2x+5. Also, draw its rough sketch.

Curvature
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Solution: We have f(x)=3x"+2x+5, and we get f'(x) =9x* +2and
f7(x)=18x..
Here, ”(x) <0, when x <0, and f”(x) >0, when x>0.

So, the graph of f is concave downward when x < 0and the graph of fis
concave upward when x >0 as shown in Fig. 3 (a). The graph of f is shown in
Fig. 3 (b).

AY ANY

2N RY, /

¢ > ¢
X o X V X
vY' vY
(a) (b)

Fig. 3

*k %

Example 2: Sketch the graph of the function f defined by
f(x)=x"+3x>-9x —13. State, where it is concave upward or concave
downward along with monotonicity.

Solution: To find the concavity of f, we determine f”and f”.
f'(x)=3x*+6x-9=3(x+3)(x-1)

f(x)=6x+6=6(x+1)

£”(x) > 0,when x >—land f”(x) <0, when x <—1. Thus, the graph of fis

concave upward when x >—1land is concave downward when x < —1. For the
rough sketch of f,let us see where f is increasing or decreasing. For this, we

solve f'(x)=0

3x*+6x-9=0

3x+3)(x—-1)=0

x=-30r x =1

When x <=3, > 0,therefore, f is increasing. When —3<x <1,f" <0,
therefore, f is decreasing. When x >1,f” > 0, therefore, f is increasing. We
can now plot the points (=3,14)and (1,—18), including short arcs at each point

to indicate the concavity of the graph as shown in Fig. 4(a). Then, by
calculating and plotting a few more points, we can make a graph, as shown in
Fig. 4 (b).

AY Y

: X /\: o / X
X -1 0 X X' ! X

1 u (_1 1_2)| 1

! Concave ! .

} ' TA,-18)

downward
Concave
Y’ Y'  upward
(@) (b)

Fig. 4: Graph of f .

*kk



Unit 14 Curvature

Example 3: From the graph given in Fig. 5, find the intervals in which f is
concave upward and concave downward.

Y

e e .

!
1
1
1
1
1
1
1
1
1

e

Okk==s=== =
Ol s = o it o iy o e

Fig. 5

Solution: Fig. 5 shows that the function f is concave upward on the intervals
]b,c[,]d,e[ and ]e,f [ and concave downward on the intervals

la,b[,]c,d[and ]f,g[.

*k %

Example 4: Suppose that water is poured in the vase as shown in Fig. 6, at a
constant rate, measured in volume per unit time. The height of water at time
tis f(t). Comment on the concavity of the graph of depth of water in the
vase.

Solution: At the bottom of the vase, the water level would rise slowly,
because, the base of the vase is wide and, so it would take a lot of water to
make the height increase. However, as the vase narrows, the rate at which the
water is rising, increases. This means that initially f”is increasing at an
increasing rate and the graph is concave upward. The rate of increase in the
water level is at a maximum when the water reaches the middle of the vase,
where the diameter is smallest. After that, the rate at which f”increases starts
to decrease again, and so the graph is concave downward. The graph of the
height of water in the vase f against the time tis shown in Fig. 7.

Y

Point where

the diameter of

the vase is

smallest Concave
X/ downward

Concave

1
upward :
I
1

LY’
Fig. 7: Graph of f .

*k %

Try the following exercises.

E1)  Sketch a possible graph of the function f that satisfies the following
conditions: 83
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)  f'(x)>00n ]—o,2[and f'(x)<0on ]2,00].
i) f’(x)>00n ]—oo,—3[and ]3,[and f"(x)<0on ]-3,3].
i)  lim f(x)=-4and ﬁngof(x)zl

X——o00

E2)  Find the intervals in which the curve y = x* —4x”is concave or convex.

So far, we were concerned only with the manner of bending of a graph. Now,
let us discuss about that transition point which changes the graph from
concave upward to concave downward. Look at the graph of the function in
Example 2. The concavity of f changes from downward to upward at the point
(—1,—2). The point across which the direction of concavity changes is called a
point of inflection or an inflection point. Fig. 8 shows the transition from
concave upward to concave downward at the points P and R, and the
transition from concave downward to concave upward at Q. The points

P,Qand R are points of inflection as the sign of f” changes.

. f'(x)<0 ., f'(x)<0
(x)>0 Concave (x)>0 Concave
Concave downward Concave downward

upward upward

1
f'(x)=0 f'(x)=0 f"(x)does not
exist

Fig. 8: Point of inflection.

In Fig. 8, as we move from left to right, we see that the concavity changes at
P,Q and R and either the value of £”(x,)at Pand Qmust be 0 or f”(x) must

not exist at R . This leads to the following definition.

Definition: A function f has a point of inflection at a point x,, if the concavity
changes at x,.

Therefore, we can say that for a curve to locate a point of inflection at x,,, the
necessary condition is either £”(x,) =0or f”(x,)does not exist. You may note
that an inflection point must be on the graph, meaning f(x,) must be defined if
there is an inflection point at x = x,,. You may also note that, this condition is
only necessary. If f”(x,) =0or f”(x,) does not exist, then, there may or may
not be a point of inflection at x,. There must be a change in the direction of
concavity on either side of x,for (x,,f(x,))to be a point of inflection.

Now, let us understand this through the following examples.

Example 5: Find the point of inflection of the function f defined by f(x) = x*,
if it exists.



.................................................................................................................................................................................................................................... Curvature
Solution: We have f'(x) =4x>and f”(x) =12x>. Also, £”(0)=0. Here,

f does not have a point of inflection at x = 0 even though £”(0) =0 (See Fig.

9). This happens because f”(x) =12x> > 0Ofor all x # 0, and accordingly, it

does not change sign in passing through 0. Thus, f”(x,) =0 is not sufficient

for f to have a point of inflection at x =x,.

NY

Y’
Fig. 9: Graph of y = x*.

*k %

Example 6: Find the values of x for which the graph of the function f defined
by f(x)=1/x,xe R\{0}is concave upward and concave downward. Also,
find the points of inflection, if any.

Solution: We shall find if the graph (See Fig. 10) has any point of inflection.
Here, f'(x)=—1/x*,and f"(x)=2/x".
Clearly, i) £"(x) > 0if x >0

i) £7(x)<0if x<0

It follows from (i) that the graph of f is concave upward in ]0,eo[. From (ii) we
deduce that the graph is concave downward in ]—oo,0[. From the fact that

f” exists for all x in the domain of f and not at x =0, we conclude that the
graph has no point of inflection.
NY

LY’
. 1
Fig. 10: Graph of y =—.
X
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Example 7: Find the point(s) of inflection for f(x)=x>"", forall xe Rand

ne N. 85
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Solution: We have f'(x) =(2n+1)x*"and f"(x) = (2n+1).2n.x>""
Here, f’(x)=0=x=0. Also, when x <0,f”(x) < 0and when
x >0,f"(x) > 0. Therefore, the sign of f” changes and direction of concavity

changes accordingly, that is, f” changes sign (from negative to positive) while
passing through the origin. Thus, the origin is a point of inflection on the graph

of f(x)=x"".

*k %

Example 8: Determine the point(s) of inflection for the function f given by
f(x) = 2x’ —15x’and sketch the graph.

Solution: The function f is given by f(x) = 2x” —15x’and its first and second

derivatives are f'(x) =10x* —45x*and f”(x) =40x’> —90x , respectively. We
set the second derivative equal to 0 and solve for x.

40x> —90x =0

40x [xz —gj =0
4
3

3
x=00or x=4+—0r x =——
2 2

Next, we check the sign of f”(x) over the intervals bounded by these three x -
values, the change in sign of f”is given in Table 2.

Table 2
Interval | Signof f” | Concavity of f
_ Concave downward
X<—=
3 + Concave upward
-=<x<0
2
3 - Concave downward
O<x<—
2
3 + Concave upward
X > E

The graph of f changes from concave downward to concave upward at

3
X = 5 concave upward to concave downward at x =0 and concave

downward to concave upward at x = % . Therefore,

—é,f[—éj ,(0,£(0))and é,f 3 are points of inflection.
2 2 272

Since, f —é :ﬂ,f(O):Oand f é :—ﬂ,therefore, the points
2 16 2 16

3 567

p[—— —j,O(0,0) and Q[3 367

2" 16 2716
points are shown in Fig. 11.

jare the points of inflection and these
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1
1
1
1
1
1
|
( 3 , 567)I
2 16 J,
Concave Concave ! Concave
upward downward : upward

Concave
downward

Y'

Fig. 11: Graph of y = 2x° —15x°.

*%k %

Example 9: Determine the concavity and point(s) of inflection for the function
f given by f(x)=(2x-5)"* +1.

Solution: Derivaties of f are

£'(x) :1(2)4—5)‘2’3~2=g(2x—5)‘2’3
3 3
2 __4 _g\-5/3 __8 _g\-5/3
f'(x)=——02x-=-5)""-2=——(2x-95)
9 9
5% . 5
When x <§’f (x)>0, so, fis concave upward on _00’5 . When

X > %,f”(x) < 0,so, f is concave downward on Eoo [ . To find the point of

inflection, we find where f”(x) =0and where f”(x) does not exist. Since,
f”(x) is never 0, we only need to find where f”(x) does not exist. Thus, the

possible inflection point is (%,f[%j}that is [%1} . The graph is shown in

Fig. 12.
¥

X
O
P
N

<N

1
Fig. 12: Graph of y = (2x —5)% +1.

*k %

Curvature
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Example 10: An efficiency study of the morning shift at a factory indicates that
the number of units produced by an average worker in t hours after 8:00 am is

given by Q(t) =—t’ +9t> +12t. At what time in the morning is the worker
performing most efficiently?

Solution: We assume that the morning shift runs from 8:00 am until noon and
that worker’s efficiency is maximized when the rate of production

Q’(t) =-3t> +18t +12 is as large as possible for 0 <t < 4. The second
derivative of Qis Q”(t) =—6t +18, which is zero, when t = 3. This is the point
of inflection, we can say that the rate of production Q(t)is greatest and the

worker is performing most efficiently, when t =3, that is, at 11:00 am. The
graphs of the production function Q, its derivative and the rate of production

function are shown in Fig. 13. Notice that the production curve is steepest and
the rate of production is greatest when t = 3.

AQ(t)

N
7

o

Co\)________
I

t

Fig. 13: Graph of a production function curve showing the point of inflection.

*kk

Try the following exercise.

E3) Determine the concavity, convexity and points of inflection of the
following functions.

) fx)=x",VxeR

i) f(x)=x"’,vxeR

i)y f(x)=x*-2x"-12x* +1,Vxe R
iv) f(x)=(x—-2)/(x-3),Vxe R—-{3}
v) f(x)=Inx,x>0

vi) f(x) =cosx,0<x <27

Let us now discuss the measure of the bending of a graph at a point, which is
known as the curvature at that point. For this, we draw a circle that closely
fits nearby points on a local section of a curve, as given in Fig. 14.



Unit 14 Curvature

XA
XV

vY
Fig. 14

We say that the curve and the circle osculate, as both the curves (the circle
and the curve) have the same tangent at the point where they meet.

The radius of curvature of the curve at a particular point is defined as the
radius of the approximating circle. The radius changes as we move along the
curve. How do we find this changing radius of curvature?

We measure the curvature at (c, f(c)) by the ratio.

£(c)
k( ): 243/2
T E )

The radius of curvature at (c,f(c)) is denoted by p(c) and is defined by
1
c)=——,Iif k(c) #0.
p(c) o) (©)

Let us find the radius of curvature in the following examples.

Example 11: Find the radius of curvature for the cubicy = 2x* —x +3 at
x=1.

Solution: Here, f(x)=2x" —x + 3. First, let's draw the graph of the function
f as given in Fig. 15.

AY
—71(1,4)
1
1
1
1
1
1
¢ 1 >
X' O X
Y’
Fig. 15
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To find the radius of curvature, we need derivatives. Thus, f'(x) =6x” -1,
and f'(1) =5. Also, (f(1))* =25. Here, f"(x)=12x and f"(1)=12.

Now, we are ready to substitute these values in the formula to get the radius at
any point c. We get

(@) _a+25)°"

: ~11.05
£7(c) 12

p(©)

To show what we have done, let’s look at the graph of the curve with the
approximating circle overlaid. The circle is a good approximation for the curve
at (1,4)as shown in Fig. 16.

<\

Y’
Fig. 16

Now try the following exercises.

E4) Find the radius of curvature of the function f , defined by,
f(x)=1.5x>-2.5x +2at (2,3).

E5) Find the curvature at an arbitrary point of the graph of the function
i) f(x)=x-5,xeR.
ii) f(x)=x"+9,xeR

i)  f(x)=sinx, xeR

iv)  f(x)=4(1-x%), -1<x<1

So far, we discussed the applications of the second derivative. We go back to
the first derivative now and discuss tangents and normals in the following
section.

14.3 EQUATIONS OF TANGENTS AND NORMALS

In Unit 9, we have seen how a derivative can be defined precisely with the help
of the slope of the tangent at any point to a curve. We have noted that the
slope of a tangent to the curve y =f(x) at (x,, y,) is given by f'(x,),
whenever it exists. In fact, we had also obtained the equations of the tangents
of some simple curves. Once, we know how to find the equation of a tangent, it
is easy to find the equation of a normal using slope of the tangent. A normal to
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acurve, y=1(x) at (x,, y,) is a line which passes through (x,, y,) and is
perpendicular to the tangent at that point. This means that the slope of this

normal will be —%, if £(x,)#0. You may recall Unit 3, where we
X0

discussed that a line L, is perpendicular to a line L, iff mm, =-1, where
m, and m, are the slopes of L, and L,, respectively.

Now, what happens when f’(x,) =07 The derivative f’(x,)=0 implies that
the slope of the tangent at (x,, y,) is zero, that is, this tangent is parallel to

the x -axis. In this case, the normal (which is perpendicular to the tangent)
would be parallel to the y -axis. The equation of this normal, would then be

X =X,-.

Now, let us look at various curves and try to obtain the equations of their
tangents and normals using derivatives.

Example 12: Find the equation of the tangent and normal to the
curvey = 2Jax, a#0.

Solution: Consider the curve given in Fig. 17. Here, ﬂ -2 :E. Thus,
dx X y
? exists and is non-zero for all y #0. Now, y will be zero, only if, x is zero.
X

Thus, we can find the equations of tangent and normal to this curve at any
point, except the origin (0, 0). The slope of the tangent at any point (x,, y,)

will be 2a/y,. The slope of the normal at (x,,y,) will, therefore, be —y, /2a.

, . 2
Thus, the equation of the tangent at (x,, y,) IS y—Y, :_a(X_XO)

Recall Unit 3, where we
Yo

5 learnt that the equation
=YY, Y, = 2ax —2ax, of a line passing through

the point (x,, y,) and
having a slope m is

Y=Yy =mX—X,).

= yy,=2ax+y, —2ax,
= yy,=2a(x+x,) [since, y; =4ax,]
— Yo

The equation of the normal at (x,, y,) IS y—y, = (x —x,), which is

2ay =2ay, +X,y, — Xy, after simplification, as shown in Fig. 17.

AY « .
\$ Q0
I\ &a(\ge
yo _____
1
1
1
1
1
1
X (@) XO §<
Y’

Fig. 17: Tangent and Normal of y = 2+/ax .
* k% 91
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Example 13: The position of a moving car at time tis given by
f(t)=t>-2t> +5.

i) Suppose the car is moving around a corner and is driven over something
slippery on the road (like oil, ice, water or loose gravel) and also suppose
that the car starts to skid (see Fig. 18). What would be the equation of the
path is which car skids at t =2.

ii) If the car is moving fast around a circular track, the force that the traveller
feels pushing outwards is normal to the curve of the road. The force that
is making the traveller go around that corner is actually directed towards
the center of the circle, that is, normal to the circle. Hence, find the
equation of the normal.

i)  Draw the graph of the tangent and normal to the road at t =2.

Fig. 18: A skidding car at the corner.
Solution: At t =2,f(2) =5. The car will start to skid and continue in a direction

along the tangent. Here, f'(t) =3t> —4t.

The slope of the tangent to the road at the point where the car starts to skid is
m, =f'(2)=4.

Equation of the tangentis y—5=4(t-2), thatis, 4t—y—-3=0.

The slope of the normal is m, = . —l.
m, 4
1

Equation of the normalis y -5 = _Z(t -2)

Thatis, t+4y—22=0.
Fig. 19 shows the graph of the tangent and normal to the curve at t =2.

YA

WV

Fig. 19



Example 14: Find the points on the graph of f(x) =—x’ +6x”at which the
tangent line is horizontal.

Solution: We use the derivative to find the slope of a tangent line, and a
horizontal tangent line has slope 0. Therefore, we need to find all x for which
f’(x) =0. Setting £'(x) =0

(;ix[—x3+6x2]=0

—3x*+12x =0

x=0o0r x=4.

To find the points, we need to find y -coordinate also, which is f(0) =0and
f(4)=32. Thus, the points, at which tangents are horizontal, are (0,0)and
(4,32). These points are origin O and P, as shown in Fig. 20.

ANY
slope =0
(4, 32)
P
X 009N \ X
slope =0
yY'

Fig. 20: Graph of f with horizontal tangents.

*kk

Now, let us find the tangents and normal of the curves in the following
examples where the equation of the curve is given in the parametric form. In
Block 3, we have already discussed parametric equation.

Example 15: Find the equations of the tangent and the normal at the point
0=m/4 to the curve given by x =acos’ 0, y=asin’ 0.

Solution: The rough sketch of the curve is given in Fig. 21. Let us find the

derivative of y with respect to x, so that we get the slope of the tangent line.
dy _dy/d® _ 3asin’6cos6
dx dx/d® —3acos’Osin6

=—tan 0

AY

.

»* normal
> N
X o X
7
tangent *s
N

LY’
Fig. 21: Graph of parametric curve.
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The slope of the tangentat 6 =7t/4 is —tan(n/4) =—1. The slope of the

1
normal at this point, thus, comes out to be 1. Now, if 6=m/4, cos6 =— and

V2
sin6—L
7
a a
Thus, x=—— and y=——.
NN
a a
The equation of the tangentat | —, —— | is
| ° [2\/5 2\5}
_L__l[x_Lj
Yoz 22

a or \/E(x+y):a

V2

The equation of the normal at [

Thatis, x+y=

a a ).
ﬁﬁj °
y—izl[x—ijor y=X.

22 22
By now, you are quite familiar with the fact that £’(x) or dy/dx may not exist
at some points. At such points either the tangent does not exist, or else, is
parallel to the y -axis, that is vertical. To examine the existence of vertical

. d
tangents at (x,, y,), we examine (d_xj A [—Xj =0, then, we
dy (X0,Y0) dy (Xg,Yo)
conclude that there is a vertical tangent at (x,, y,). In such cases, the

equation of the tangent can be written as x =x,.

The normal corresponding to a vertical tangent will be horizontal or parallel to
the x -axis. This means, we can write its equation as y =y,, as its passes

through x =x,,.

If you consider the curve taken in Example 15, you will find that dy does not

dx

exist when 6=m/2. Letus examine 03 at this point 03 =—cot0=0 if

dy dy
0 =m/2. This means, that the curve has a vertical tangent and, consequently,
a horizontal normal at this point. Now, when 6=7n/2, x=0 and y=a.

Thus, the equation of the tangent at (0, a) is x =0 and that of the normal is
y=a.

Let us now look at another example.

Example 16: A flight of a paper aeroplane, follows the trajectory
x=t—3sintand y=4-3cost,(t=0).

but crashes into a wall at timet =10.

i) At what time was the aeroplane flying horizontally?

i) At what time was it flying vertically?



Solution:
dy/dt=0

dy _

........................................................................................................................................................................................................... Curvature

i) The aeroplane was flying horizontally at those times when
and dx/dt # 0. From the given trajectory, we have

3sin tand d—X:1—3cost
dt

Setting dy/dt =0yields the equation 3sin t =0, or, more simply, sint=0.
This equation has four solutions in the time interval 0 <t <10 and are
t=0,t=m, t=2%, t=37.

dx

Now, — =—-1—-3cost

dt

dt ).,
5.~

dt ),

dt t=27

£ -

dt t=371

Since, dx/dt =1-3cost # Ofor these values of t, the aeroplane was flying
horizontally attimes t =0, t=t=3.14, t =27 = 6.28,and t =31 = 9.42 which

is consiste

nt with Fig. 22.
AY
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Fig. 22

The aeroplane was flying vertically at those times when dx/dt =0and

dy/dt #0. Setting dx/dt =0, we get 1-3cost=0 or costz%

This equation has three solutions in the time interval 0 <t <10, these

are t

:cos’%, t:2n—cos’1§, t:2n+cos’ll.

Since dy/dt =3sin tis not zero at these points, it follows that the
aeroplane was flying vertically at times

t=cos_1%z 123, t=2n-123=5.05, t=2n+1.23=7.51

Now, let us

*k %

find the tangent line of the curve in polar form. To find a method for

obtaining slopes of tangent lines to polar curves of the form r =f(0) in which

ris a differentiable function of 6. We express x and y parametrically in terms
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of the parameter 6 by substituting f(0) for rin the equations x =rcos6 and
y =rsin 0. This yields

x=1(0)cosO, y=f(0)sinO
Now, differentiating x and y with respect to 6, we obtain

dx

—:—f(e)sin6+f'(6)cosez—rsin6+£cos6
do do

ﬂ:f(e)cos6+f'(6)sin6:rcose+£sin6
do do

Thus, if dx/dBand dy/d6are continuous and if dx/d0 # 0, then yis a
differentiable function of x, and the derivative dy/dx with 6 in place of
t yields

0 +si 6g
dy _dy/de _ rcos 0+ sin W

dx dx/de

—rsin 0+ cos 6E
de
Now, let us find the slope of tangent of polar curve in the following example:

Example 17: Find the slope of the tangent line to the circle r =4 cos0 at the
point where 6 =m/4.

Solution: Here, r =4cos0, we obtain
dy _4cos’0—4sin’6 _ 4cos26

. - =—cot26
dx —8sin Ocos O —4sin20
Thus, at the point where 6 = 1t/ 4 the slope of the tangent line is
m:g =—cotX=0
dX g4 2

which implies that the circle has a horizontal tangent line at the point where
0 =m/4 (Fig. 23).

An/2
S ---- tangent
/4
VI 4 > 0
v 3n/2
Fig. 23

*k %

The following example illustrates the method of finding the equations of
tangents and normals when the equation of the curve is given in the implicit
form.

Example 18: Find the equations of the tangent and the normal to the curve
defined by x° +y® —6xy =0 ata point P(x,, y,) on it.
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Solution: Fig. 24 shows the rough sketch of the curve x* +y’ —6xy =0. To

find the equations of tangent and normal, we first find the slope of the tangent
using derivative.

AY

P
©)
<\

Y’

Fig. 24: Graph of x” +y’ —6xy =0.

In Unit 10, we have seen how to calculate the derivative when the relation
between x and y is expressed implicitly. We shall follow the same procedure

again. Differentiating the given equation throughout with respect to x, we get

2
3x’ +3y2ﬂ—6y—6xﬂ=o, which gives dy _ ZZ X
dx dx dx y —97x
2
Thus, the slope at the point (x,, y,) is M
Yo —2X,

Hence, the equation of the tangent at (x,, y,) is

_ 2y, — Xg
Y=Y —M(X_Xo)
On simplifying and using the relation x; +y; = 6x,y,, the equation of tangent
reduces to
(2, = X)X + (2%, = y5)y +2X,Y, =0

Now, the normal at (x,, y,) is a line passing through (x,, y,) and having

—_— 2 —_—
sIope(yo—zio). Hence, the equation of the normal at (x,, y,) is
2y, =X,
2
Yo —2X,
—Vo=—T—— (X—=X,).
Y=Yo 2y0—x§( o)

On simplifying, we get
(yg —2X)Xx+Q2y, - Xﬁ)y +(Xo = ¥o) (2X, + XY, +2y,) =0.

Example 19: Find the equations of those tangents to the curve y = x’ , which
are parallel to the line 12x —y—-3=0.

Solution: We first observe that the slope of the line 12x —y—-3=0 is

12 [Recall Unit 3, and compare the equation of line with slope intercept form,
y=mx +c]. Thus, the slope of any line parallel to this line should also be 12.

Now, the slope of the tangent to the curve y = x’ at any point (x, y) is
f(x) =3x". 97
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If we equate f’(x) to 12, we will get those points on the curve where the
tangent is parallel to 12x —y—-3=0.

Thus, 3x* =12, or x> =4, thatis, x =+2.

If x=2,y=x"=8 and when x=-2, y=x"=-8.

Thus, the points are (2,8) and (-2, —8) . The equations of the tangents at
these points are y—8=12(x—-2) and y+8=12(x +2), respectively.

If you have followed these examples, you should have no problem is solving
the following exercises.

E6) Find the equations of the tangent and the normal to each of the following
at the specified point.

i) y=x"+2x+1 at (1,4)
ii) X =a cos t,y =bsin t atthe point givenby t=m/4
iy  x*+y>=25at (-3, 4).

E7) Find the points on the graph of f(x) =—-x> +6x”at which the tangent
line has slope 9.

E8) Find the equations of the tangent and the normal to each of the following
curves at the point ‘t ’:

i) x =at’, y=2at.
ii) x=a(t+sint), y=a(l—cost).
E9) Find the equation of the tangent to each of the following curves at the
point (X,, ¥,) -
i) X*+y*+4x+6y—-1=0
ii) Xy =a

E10) Prove that the line 2x +3y =1 touches the curve 3y =e™* at a point
whose x -coordinate is zero.

2 2
E11) Prove that the equation of the normal to the hyperbola X—z —% =1 ata
a

point (av/2, b) is ax +by2y = (a> +b> W2
E12) Without eliminating the parameter t, find dy/dxand d’y/dx’at the
points (1,1)and (1,—1) on the semicubical parabola x =t*and y=t>.

E13) A bee follows the trajectory x =t—2sint, y=2-2cost,where t>0.
It lands on a wall at time t =10.

i) At what time was the bee flying horizontally?
ii) At what time was the bee flying vertically?

E14) Find the points on the cardioid r =1- cos 6 at which there is a
horizonatal tangent line, or a vertical tangent line.
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E15) Are there any points on the following curves where the tangent is parallel
to either axis? If yes, find all such points.

i) y=x’—x"—2x.
ii) y=sinx.
2

E16) Find the equation of the tangent to the curve y = XT and is parallel to

3x—-y+2=0.

We have seen that the slope of the tangent at a point is its derivative at that
point. We can use slopes of two curves at a point to find the angle of
intersection between these two curves at that point.

In the following section, we will find the angle of intersection of two curves.

14.4 ANGLE OF INTERSECTION OF TWO CURVES

The concept of a tangent to a curve has proved very useful in describing
various geometrical features of the curve. In this section, we shall look at one
such features.

When two curves intersect at a point, their angle of intersection at that point
can be defined with the help of their tangents there. In fact, we say that if two
curves intersect at a point P, the angle of intersection of these two curves at
P is an angle between the tangents to these curves at P, such that
0<06<m/2 (see Fig. 25).

AY
f(x)
2 o) Y e
yY'
Fig. 25

We now prove a theorem which gives us the angle of intersection at a point
when the equations of the two curves are known.

Theorem 1: If two curves y =f(x) and y =g(x) intersect at a point
P(x,, y,), then the angle 0 of intersection of these curves at P(x,, y,) is
given by

f,(xl) _g,(xl)
1+17(x)g(x,)

tan© =

99
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Proof: From Fig. 25, tan 6 = tan(y — 0)
_ tany—tan¢
1+ tanytan

— f,(xl) _g,(xl)
1+ (x)g'(x,)

Fig. 25 shows thaty — ¢ is an acute angle. But if the curves f and g were as
in Fig. 26, then angle 8 =7n—(y—¢), since, we take the acute angle as the
angle of intersection.

<V

Fig. 26

In this case, tan 6 = tan[w — (Y — P)] = —tan(y — D).

But we are not in a position to decide whether we should take tan6 as
tan(y — ®) or —tan(y —P), unless we have drawn the curves. Since, it

would be tedious to first draw the curves and then decide, therefore, we think
of an alternate scheme. We observe that since 0 lies between 0 and
1t/ 2, therefore, tan 6 is non-negative. Thus, we take tan® tol tan(y —P) 1.

f/(Xl) - g/(Xl)
1+f’(x1)g'(x1)

Hence, tan0 = . [ |

Having proved this theorem, we can easily deduce the following corollaries.

Corollary 1: Two curves y =f(x) and y =g(x) touch each other (x,, y,),
that is, have common tangent at (x,, y,), iff =0, that s, iff f'(x,) =g'(x,).

Corollary 2: Two curves cut each other at right angles, or orthogonally, at
(x,, y,) iff £'(x)g'(x,)=-1.

If your go through the following examples carefully, you will have no difficulty
in solving the exercises later.

Example 20: Find the angle of intersection of the parabola y* = 2x and the
circle x> +y* =8.

Solution: First, we find the points of intersection of these curves, if there are
any. The coordinates of these points will satisfy both the equation to the



parabola and the equation to the circle. So substituting y*> = 2x in
x*+y>=8,weget x> +2x=8,0r x=—4 or 2.

It is clear from y*> = 2x that the abscissa x(=y”/2) of any common point
must be non-negative. So, we reject the value x =—4. When x =2, y=12.
Hence, the common points are P(2, 2) and Q(2, —2). Since, both the curves

are symmetric about the x -axis (see Fig. 27) and since, P and Q are
reflections of each other w.r.t. the x -axis, then it is sufficient to find the angle

at one point, say P because the angle at Q is equal to the angle at P.
Differentiating the two equations w.r.t x, we get

2yﬂ:2 and 2x+2yd—y=0
dx dx

ﬂ
<\

Y’
Fig. 27

Hence, the values of £'(x) and g'(x), that is, the slopes of the tangents to the
two curves at (x, y) are 1/y and —x/y. Thus, the slopes of the tangents at
(2, 2) to the two curves are 1/2 and —1 respectively. Hence, if 0 is the
required angle, then

1/2—(=1)
1+1/2(=1)

Hence, 6 =tan™'3=71.56".

*k %

Example 21: Find the angle between cubic polynomial
y =—x’ +6x” —14x +14 and quadratic polynomialy = —x* + 6x —6.

Solution: To find the point where the curves intersect, we should solve their
equations simultaneously. Therefore, —x* +6x* —14x +14=—-x>+6x—6 or

x’ —7x*+20x —20=0. You may recall what you learnt in Unit 5, to find the
root of the cubic equation. The only real root of this cubicis x =2.

Then, we calculate the slopes of the tangents drown to the given cubic and the
quadratic polynomial by evaluating their derivatives at x = 2. Thus, taking

f(x)=—x’+6x>—14x +14, we get f'(x) = —3x> +12x — 14, then f'(2) =2
and g(x)=—x>+6x—6,weget g’, then g'(2)=2.

Curvature
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Finally, we put the slopes of tangents into the formula to find the angle between
given curves, as shown in Fig. 28.

:|g(x0)—f(x0)|:| -2-2 | _
1+ g2(x)f (x| [14+2-(-2)|

tan© i
3

then, 6 =tan™' [gj,which is approximately 53° 7.

NY

N

NAE
Fig. 28

*k %k

Example 22: At which point of the cubic polynomial y = x’ —3x* +2x —2is its
tangent perpendicular to the line y =x.
Solution: Since, the slopes of perpendicular lines are the negative reciprocals

of each other, therefore, the slope of the tangent to the cubic has to be
f’(x) = —1which is to be perpendicular to the given line whose slope is 1.

Therefore, f'(x) =3x* —6x+2,and f'(x) =—1, thus, 3x*> —6x +2 =—1, which
gives x =1, the abscissa of the tangency point. Then, we put x =1into the
given cubic to calculate its ordinate, y =x’ —=3x +2x -2, y(1) =-2, so the
tangency point is (1,-2), as shown in Fig. 29.

Y

You can try these exercises now.

E17) Find the angle of intersection of the parabola y> =4x and x> =4y.
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E18) Show that the ellipse x* +4y> =8 and the hyperbola x* —2y =4 cut
each other orthogonally (at right angles) at four points.

E19) Show that the curves xy =a’ and x” +y” =2a touch each other
(have a common tangent) at two points.

You may recall Unit 3, where we discussed polar coordinates. Suppose we are

given an initial line OX in a plane (see Fig. 30(a)). Then a point P can be
located if we know

i) r, its distance from O, and
ii) 0, the angle made by OP with OX.

ANY ANY
P P
r r E
:y
4 e N 4 e E N
$ o 2 %o x w3
VY’ VY’
(a) (b)

Fig. 30: Polar Coordinates.

r and 0 are called the polar coordinates of P . From Fig. 30 (b), it is clear
that if x and y are the cartesian coordinates of P, then x =rcos6 and

y=rsin@. This also gives r’ =x*+y” and tan®=y/x . The equation of a
curve is sometimes expressed in polar coordinates by an equation r =£(0).

For example, the equation of a circle with centre O and radius r isr =a..
Now, let us turn once again to the problem of finding the angle of intersection
of two curves. The model that we have been following till now, cannot be used
if the equation of the curve is given in the polar form. In this case, we follow a
somewhat indirect method.

ANY
T
r+8r,0+30)
( (Q): 0 R
:(X,
P(r,0)
00 \
ya e N
X' 0 X
Y’
Fig. 31

Take a look at Fig. 31. It shows that a curve whose equation is given in the
polar formas r=f(0). P(r, 0) and Q(r+dr, 0+96) are two points on this
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Remember the sine rule for
a AABC?
sin A B sin B B sin C

A B C

sin A —sin B

.[A-B A+B
=2sin cos

. (06
sin| —
. 2
Recall ahm =1

0—0 00

2
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curve. PT is the tangent at P and OPR is the line through the origin and the
point P . We shall now try to find 6, the angle between PT and OR .

We note here, that the tangent PT is the limiting position of the secant PQ. If
we denote the angle between PQ and OR by a then, we can similarly say
that ¢ is the limit of @ as Q — P along the curve.

Now, from AOPQ we have

0Q _ sin ZOPQ
OP sin ZOQP
r+or sin(m—o)
or, =
r sin( o — 00)
or, 1+§:—sm(n—oc)
r sin(o—90)
or, O SMOZSINA=00) o Gin(m—a) = sin o)
r sin( o — 00)
[ 86). [Sej
2cos| o0 —— |sin| —
or lﬁz 2 2
"1 80 sin( ot — 0).50
[ 86} . [Sej
2cos| o0 —— | sin| —
i 2 ) 2
sin( o — 50) [
2
As Q—>P,a— 0,30 —0 and ér — 0. Hence,as Q — P, we get
lg:—Cf)sq)zcotq)
r do sin¢

So that tan¢=r- a6
dr

This formula helps us to find the angle between OP and the tangent at the
point P on the curve defined by the equation r =1£(0) .

We shall use this result to find the angle between two curves C, and C,
which intersect at P (say). If the angles between OP and the tangents to C,
and C, at P are ¢, and ¢,, respectively, then, the angle of intersection of C,
and C, willbe 10, -0, | (see Fig. 32).

AY
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< I >
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Y’
Fig. 32
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This can be easily calculated as we know tan ¢, and tan¢, .

tan¢, —tano,

Thus, tanl ¢, —¢, | =
¢ -0 I+tan ¢, tan ¢,

Further, if the curves intersect orthogonally, tan ¢,.tan¢, =—1. The following
examples will help clarify this discussion.

Example 23: Find the angle of intersection of the curves r =asin 26 and
r=acos20 atthe point P(a/\/z, /8).

Solution: The coordinates of P satisfy both the equations r =asin 26 and
r=acos20.

If ¢, is the angle between OP and the tangent to r =asin 20, then

d0 asin20 asin20 1 1
tanQ, =r— = = = —tan20=—
dr dr/d® 2acos20 2 2

Similarly, if ¢, is the angle between OP and the tangent to r =acos20, then
1 1

tano, :r@ =——cot20=——
dr 2 2

Thus, tanlé, -6 |:|tanq)1—tanq)2 |_[1/2+1/2|_4
U T i tang, tang,| | 1-1/4 | 3

Thus, ¢, — ¢, =tan"'(4/3) = 53.13°, which is the required angle.

*k %

Now try to do a few exercises on your own.

E20) Find the angle between the line joining a point P(r, ) on the curve to
the origin and the tangent for each of the following curves

)  r’=a’cos20 i) 1/r=1+ecosO
i) r" =a"cosm iv) r™ =a™(cosmO — sin m0)
E21) Check whether the following two curves intersect orthogonally.

) r=ae® and re’ =b

ii) r=a(l+sinB) and r=a(l—sin9).

In the following section, we shall discuss the special points which show
behaviour different from ordinary points. Such points are called singular points.

14.5 SINGULAR POINTS

An equation of the type y =f(x) determines a unique value of y for a given
value of x. This means, every straight line parallel to the y -axis meets the
curve y =f(x) in a unique point. However, the equation of a curve is often
given as f(x, y)=0. If f(x, y) is not a linear expression in y, then it may
not be possible to write f(x, y) =0 in the form y =F(x) uniquely. For
example, if f(x, y)=y>—x, then f(x, y)=0 gives y> =x’.

This gives us two relations y =+x"? and y =—x* of type y =F(x). 105
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The curve has 2 branches, as you can see from Fig 33.

N
Y A
< >
X' o X
B
VY’

Fig 33: Graph of y2 =x’.

The origin is common to the two branches of the curve. We can say that two
branches of the curve y* = x’ pass through points A and B and meet at the
origin. We have a generic name, ‘singular point’, for points like O. Also,

o dy 3x> : :
y> =x gives d—y :zi, which is indeterminate at (0,0). We call such points

X y

also singular points. We cannot make a general statement about the
behaviour of curves at singular points, we analyse these case by case. A
precise definition is as follows.

Definition: If k branches of a curve pass through a point P on the curve
f(x, y)=0 and k >1, then P is said to be a singular point or a multiple

point of order k.

Fig. 34 shows the graph of the function with multiple points.

AY AY
N 7 N 7
N e X X X
Y’ Y’
(a) (b)

Fig. 34: Double and Multiple point.

Multiple point of order two is known as double point. Thus, the point Oin Fig.
34 (a) is a double point. Obviously, a curve will have more than one tangent at
a double point (one corresponding to each branch). Depending upon whether
tangents at double points are distinct, coincident or imaginary, we shall give
special names to such points such as node, cusp and conjugate as given in
the following definition:

Definition: A double point is known as
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i) a node if the two tangents at that point are real and distinct,

i)  acusp if the two tangents are real and coincident,

i)  a conjugate (or isolated) point if the two tangents are imaginary.

In Fig 35, we show example of each. In Fig. 35 (a), for the curve f(x, y)=0,
the origin is a node. In Fig. 35 (b), for the curve g(x, y) =0, the points

P, P,, P, and P, are cusps, while the point Q on the curve h(x, y)=0 is a
conjugate point in Fig. 35 (c). Thus, a conjugate point is an isolated point.

Y Y Y

P

1

P,
X' %7\ % % Fr X © X X o a X
P3
\& Y’ 4
(a) Node (b) Cusp (c) Isolated Point
Fig. 35

Example 24: Determine whether the graph of the given functions has a
vertical tangent or a cusp at the origin.

i) y3 =)(2(x+3)3

iy y =x(x+1)’

Solution: i) We have y’ =x*(x+3)’or y=x""(x+3)
2/3

y= x>? 4+3x

’ 5 2/3 —1/3
=—x"""+2x

N g
:%(5X2/3+6X_1/3)

= % x " (5x +6)

when x =07,y — —o,and as x — 0%, y’ — +oo.. In this case, where
y’ approaches + oo from one side of a point and — oo from other side of the

point, the curve is said to have a cusp at that point. Hence, there is a cusp at
the origin as shown in Fig. 36.
NY

LY’

Fig. 36 107
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As x 07,y > oand x 0",y = . Since y' — = as x — 0 from both the
sides. This means that a vertical tangent occurs at origin as shown in Fig. 37.

ANY
< >
X 0 X
Y’
Fig. 37

*kk

Now, try the following exercises.

E22) Check whether the following curves has a vertical tangent or a cusp at
the origin.

7/5 3/5
—X

i) y=5x
i)y =x*(2x+1)°

Now, let us summarize what we have studied in this unit.

14.6 SUMMARY

In this unit, we have covered the following points.

1. If f”(x)>0on some interval then fis convex on it. If f”(x) <0, then fis
concave on it.

2. If f7(x,) =0or does not exist and f” changes sign in passing through
X, , then f has a point of inflection at x = x,,. This means that the
tangent at (x,,f(x,))crosses the graph of f at this point.

3.  The radius of curvature at point c on the function f is

’ 2N\3/2
p(c) :(1+(ff,,—8|) and curvature k(c) :ﬁ.

108
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The equation of the tangent at (x,, y,) to the curve y =f(x) is
Y=Y, =f(xe) (x—%,).

The curve has a vertical tangent at (x,,, y,) if % =0 at this point.
y

The angle 6 of intersection of two curves y =f(x)andy = g(x) is the
acute angle between the tangents at that point to the curves. It is given
f'(x)-g'(x)

by the relation tan6 =| ———=,—
I+ (x)g (x)

y=1(x) and y =g(x) cuteach other orthogonally at (x,, y,) if
f'(x,)g'(x,)=-1.

The angle ¢ between the tangent and the radius vector of the curve

r=1(0) atthe point 0 is given by tan¢ = r?.
r

If k branches of a curve pass through a point P on the curve
f(x, y)=0 and k >1, then P is said to be a singular point or a multiple

point of order k. Singular points of order two are known as double
points. A double point is known as a node, a cusp or a conjugate
(isolated) point according as the two tangents at that point are real and
distinct, real but coincident, or imaginary.

14.7 SOLUTIONS/ANSWERS

E1)

E2)

From condition (i), it is clear that f is increasing on ]—oo,2[ and
decreasing on ]2,o0[ . From (ii), it can be said that f is concave upward
on ]—o,—3[and ]3,co[ and f is concave downward on ]—3,3].

lim f(x)=—4says that f approaches —4 as x approaches —c and

X—>—00

lim f (x) =1says that f approaches 1 as x approaches oo.
The graph sketch of f will look like this (Fig. 38).

X/
: Concave | Concave
1 1
Concave downward upward
upward
""" y=—1 T4
Y!
Fig. 38

f(x)=x"*-4x>, we get

109



f'(x) =4x> —12x

£7(x) =12x* = 24x = 12x(x - 2)

Thus, f”(x) >0when x>2and x <0. Also, f”(x) <Owhen 0 <x < 2.
Hence, the curve is concave upward on ]—oo,0[ and ]2,co[ and the
curve is concave downward on ]0,2[ . The possible graph is shown in

Fig. 39.
ANY

N

XN
+
N
®)

XV

Concave

Concave

upward
Concave
downward

E3) i) Concave upward in ]0, o[ ; concave downward in |—-co, O[ ; point
of inflection (0, 0)

ii) Concave upward in ]—oo, O[ ; concave downward in ]0, oo[ ; point
of inflection: (0, 0)

i)  Concave upward in ] —oco, —1[U]2, o[ ; concave downward in
1—1, 2[ ; Points of inflection are (-1, —8), (2,—47)

iv)  Concave upward if x >3; concave downward if x < 3; no point of
inflection

v)  Concave downward for all x > 0; no point of inflection

vi)  Concave upward in [rt/2, 3n/2[ ; concave downward in
10, ®/2[U]3w/2, 2xt[ ; point of inflection are (w/2, 0) and
(3m/2,0).

E4) We see that this parabola passes through each of the 3 points A,B and

C as shown in Fig. 40.
Y

C(2,3)
B(0.833, 0.958)

X' o X

(0, 2)A

110 Fig. 40
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L L O . LA £LL: L
. . . dy dy
Using the given function, we get —=3x-2.5. At x =2, —=3.5
dx dx

2
Now, ¥ at x = 2is 3.

X

24372
The radius of curvature at (2,3) is % =16.08. The
corresponding circle is shown in Fig. 41.
ANY
X 0 X
Y!
Fig. 41
E5) i) 0
. 2
”) 2,\3/2
(1+4x7)
—sin X
”I) 2 3/2
(I+cos” x)
iv) -1
E6) i) [d_yj =4,
dx )

Equation of the tangent at (1, 4) is (y—4) =4(x—1), which is
4x—-y=0
Slope of the normal at (1, 4) =—1/4

Equation of the normal at (1, 4) is (y—4)=(-1/4) (x—1), which

is x+4y=17.
i)  Slope of the tangent at t:%is -b/a
Slope of the normal at t:g isal/b
a b
Att=n/4, x=—7,y=—=.
NERR
b -b a
Equation of the tangent: [ ——j :_[X__j
Y V2 a 2

b a a
Equation of the normal: y——==—| x——|.
V2 b[ ﬁj

i) Slope of the tangent =3/4
Slope of the normal =—4/3

111



Equation of the tangent: y—4=(3/4) (x+3)
Equation of the normal: y—4=(-4/3) (x+3).

E7) f'(x)=-3x>+12x
f'(x)=9= -3x*+12x=9
—3x*+12x-9=0
x> —4x+3=0
x=1lor x=3.
f(1)=5and f(3) =27
Thus, the points at which slope of the tangent is 9 are (1,5) and (3, 27).

E8) i)  Equation of the tangent: ty = x +at’
Equation of the normal:y + tx = at(2 + t*)

i)  Equation of the tangent: (1+cost)y =sin t(x —at) which is
sin(t/2)x —cos(t/2)y =atsin(t/?2)
Equation of the normal:
sin(t/2)y+cos(t/2)x =2asin(t/2)+ atcos(t/2)

. _ X, +2 3
E9) i) Y=Y = (y0+3J(X Xg) -
i) Y=Y =Y /Xp) (x—X;).

= _2_ When x —coordinate is zero, (0, 1/3) is a
x=0

E10) 3y _ero W
dx

point on this curve. The tangent at (0, 1/3) is given by y —% = —%x or,

2x+3y=1.
2 2
By XY o W _bv2
a b dx (av/2,b) a
a
= Slope of the normal =———=
b2
= Equation of the normal is y—b= —a (x —a\/E)

b2

E12) Since, K orand Y= 3t*, therefore
dt dt

2
dy _dy/d 3 30 o
dx dx/dt 2t 2

d
— (372t
dt( )

Also d—zyzd—}/— dy'/dt =

_3/2 3
dx* dx dx/dt dx/dt 2t 4t

Since the point (1,1) on the curve corresponds to t =1in the parametric
equations, therefore we get

2
ﬂ :gand d_}27 2
dx|_ 2 dx 4
112

t=1
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Similarly, the point (1,—1) corresponds to t = —1in the parametric
equations, we get

2
by __3 and d—};
dx|_, 2 dx

3

4

t=—1

The graph shown in Fig. 42 also verifies the values we obtained for the
first and second derivatives. Since at (1,1) on the upper branch of the
graph, the tangent line has positive slope and the curve is concave up,
and at (1,—1) on the lower branch, the tangent line has negative slope

and the curve is concave down.

Finally, we observe observe that we were able to find dy/dx and

d’*y/dx* forboth t=1and t =—1, even though the points (1,1) and
(1,—1) lie on different branches.

ANY
X' S X
Y’
Fig. 42
. 2sint
E13) d_x: 1—2costand ﬂ: 2sin t, therefore, ﬂ :ﬁ.
dt dt dx 1-2cost

E14) The curve will have a horizontal tangent line when dy/d0 =0and

dx/de = 0. Similarly, the curve has a vertical tangent line when
dy/d0#0and dx/d6 =0, and a singular point when dy/df =0and

dx/d6 =0. We can find these derivatives. However, an alternative
approach is to go back to basic principles and express the cardioid
parametrically by substituting r =1—cos0in the conversion
formulasx =rcos® and y=rsin 0. We get x =(1-cos0)cos6,
y=(1—cos0)sin OBwhere 0<0<27.
Differentiating these equations with respect to 6 and then simplifying, we
dx . dy

et —=sin0(2cos@—-1)and —=(1—-cos0) (1+2cos0).
get o ( ) 0 ( ) ( )
Thus, dx/d0=0if sin®=0or cosezé, and dy/do=0if cosez—%.

Hence, the solutions of dx/d6 =0on the interval 0 <0< 2w are

%:O: 0=0, g T, %n 27 and the solutions of dy/d6=0on the

interval 0 <0< 2mare Q:O: 0=0, E ﬂ 2T.
do 3 3
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Thus, the curve has horizontal tangent lines at 6 =2n/3and
0 =4m/3,vertical tangent lines at 6 =n/3, &, and 57t/3.

(1£+/7)
=

E15) i) Tangents are parallel to the x -axis at x =

N . . T
i)  Tangents are parallel to the x -axis at all points where x =nn +§

for some integer n. There is no tangent parallel to the y -axis.

E1g) WX _X
dx 4 2

Since, %z3:>x:6when Xx=6,y=9.

The equation of the tangent is y—9 =3(x—6)

3x—-4=9.

E17) y’=4x=>x=y /4= x> =y*/16 =4y at the point of intersection.
= y*—64y=0
= y(y’—64)=0

= y(y—4) (y2 +4y+16)=0

=y =0, 4 (other roots are complex)
=x=0o0r4.

Slope of the tangent to y*> =4x at (4, 4)=1/2

Slope of the tangent to x> =4y at (4, 4)=2

— angle of intersection = tan"'(3/4)

The tangent at (0, 0) to y* =4x is vertical, and the tangent at (0, 0) to
x* =4y is horizontal.

Hence the angle of intersection of the curves at (0, 0) is ©/2.

E18) The four points are (4/\/5, ++/2/3), (—4/\/5, ++/2/3).

dy for x> +4y° =8 is —x/4y
dx
L dy 1
.. d 74 B 2 -

Xt V2
dy for x> —2y* =4 is x/2y
dx
dy _2
dXx:4/\/§,y:\/%

.. They cut orthogonally.
E19) The points are (a,a)and (—a,—a)

E20) i) 2r =—2a’sin 29?
r
e -r
dr a’sin20
4 de 4
= angle =tan rd— =tan (—cot20)
T
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:(m1+n,g+2e

i tan_1(1+ecos6J

esin 0
T
iii) (2n+1)5+m9,neZ

iv) mo-_.
4

E21) i) r:acezlzaee.ﬁjﬁzie
dr dr ae

do r
=tand), =r—=—-+=1
o dr ae®
ree:b:r:be’ejlz—be’eﬁ
dr
:@— —1 = tand —r@— LI
dr  be™® : dr be™®

= tan¢, tand, =—1=> the curves cut orthogonally.

i)  The curves cut orthogonally.

E22) i) y =7x —gx

As x 07,y > wandas x — 0",y — oo, therefore, the curve
has vertical tangent at origin.

AY
< >
X O X

Y

Fig. 43

7 2

i) y=2x5+x° 115
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As x 07,y — —,and as x — 0%, y" — +oo, therefore, origin is a

cusp.
Y

X / 9 X

Y!
Fig. 44
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ASYMPTOTES \

Structure Page No.

15.1  Introduction 117
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15.2 Asymptotes Parallel to the Axes 117

15.3 Slant/Oblique Asymptotes 128

15.4  Summary 133

15.5 Solutions/Answers 133

15.1 INTRODUCTION

In the previous two units, we discussed the applications of first and second
derivatives to visualise the graph of the function. In this unit, we shall discuss
lines that approach a given curve as close as possible. Such lines are called
asymptotes. You will see in Sec. 15.2 and Sec. 15.3 that there are three
kinds of asymptotes: horizontal, vertical and slant/oblique asymptotes. You will
see how all these will prove very useful when you learn curve tracing in the
next unit.

Now we shall list the objectives of this unit. After going through the unit, please
read this list again and make sure that you have achieved the objectives.
Objectives

After going through this unit, you should be able to:

¢ find the asymptotes parallel to axes;

e define oblique asymptotes and obtain their equations.

We shall now study a feature of curves which will prove very useful in tracing

curves as you will see in the next unit. This involves taking limits as x — teo
or y — teo. In the following section, we will discuss asymptotes parallel to

axes.

15.2 ASYMPTOTES PARALLEL TO AXES

Consider a rectangular hyperbola xy =c,c >0, shown in Fig. 1. The equation
xy =c implies y =c/x and this implies thatas x — o or —eo, y > 0. Now

117
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l'yl is the distance of a point P(x, y) on the hyperbola from the x -axis. So,
we can say, that as x — o« or —oo, the distance of a point, P(x, y) on the

hyperbola from the x -axis approaches zero. In other words, this means that
the x —axis is a line which seems to merge with the hyperbola. Such lines are
called asymptotes. We give the definition of asymptote below.

Definition: A straight line is said to be an asymptote to a curve, if as a point P
moves to infinity along the curve, the perpendicular distance of P from the
straight line tends to zero.

/\Y
P(x.y)
r lyl 1 5
X: O X
VY’

Fig. 1: Graph of xy =c.

Writing xy =c¢ as x =c/y, and repeating the arguments exactly as above, we
can see that the y -axis is also an asymptote of the hyperbola. Let us discuss
following example.

Example 1: Prove that the x -axis is an asymptote of the curve y = 1 .
+ X

Solution: From the equation of the curve, we see that y -0 as x - or
—oo. Again, this means that the distance of the point P(x, y) on the curve

from the x-axis tends to zero as x — o or —oo. This proves that the x -axis
is an asymptote of the curve. Fig. 2 also shows this.

I AY
1
1
1
1
1
1
1
1
:
< ! >
X | O X
1
1
1
1
1
1
:
1
1 \/Y'

1
Fig. 2: Graph of y = 0 .
1+x

*k %



The asymptotes which are parallel to axes are either vertical or horizontal. We
shall begin our discussion with vertical asymptotes. For this, let us look at
some situations in the graphs of the functions given in Fig. 3.

Y

E
o1 x1"

1
L x—11x>1"

Y

z

X'\O b k% e C oror X\O?(_FX
Y' Y! Y’ E
@ fx)=—— ®) fx)=— (¢ f(x)= @f(x)=—
S x-1 (x—1) (x—=1)° (x —1)°

Fig. 3

In Fig. 3 (a), the function f increases indefinitely as x approaches 1 from the
right and decreases indefinitely as x approaches 1 from the left.

Therefore, lim =+ocoand lim I

x=1" x —1 x=1" x —1
Similarly, in Fig. 3 (b), the function f decreases indefinitely as x approaches 1
from the right and increases indefinitely as x approaches 1 from the left.
Therefore, lim _—1 =—oco and lim |

x-l" x —1 x=1" x —1
Similarly, in Fig. 3 (c), the function f increases indefintely as x approaches 1
from both the left and right.

. . ) 1
Therefore, lim ! > = lim ; > = lim > =4,
x—1 (X — 1) x—1* (X . 1) x>~ (X — 1)

Also in Fig. 3 (d), the function f decreases indefinitely as x approaches 1 from
both the left and right.

Therefore, lim = > =lim — > =lim -1 > =—00
ol(x=1D? = (x=1? =1 (x=1)
We can say that if f(x) — +e0as x —170oras x — 17, then the graph of
f rises without bound and comes closer to the vertical line x =1o0n any side. If
f(x) > —~as x —»17oras x — 17, then the graph of f falls without bound

and comes closer to the vertical line x =10n any side of x =1. In all these
cases, the distance between any point P(x, y) on the curve and the straight

line x =1 tends to zero. Thus, we call the line x =1 vertical asymptote or
asymptote parallel to y —axis. This leads to the following definition.

= —00,

= 400

Definition: A line x =a is called a vertical asymptote to the curve of the
function fif f(x) = +ec0or f(x) = —cas x approaches a from either side.
In vertical asymptotes, we have used limits to describe the behaviour of
f(x)as x approaches a.

Let us find vertical asymptotes in the following examples:

Example 2: Determine the vertical asymptotes of the function f given by
2
x -4

fx)=——m—.
(x) xP+x—12
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(x+2)(x—2)

(x+4)(x=3)

You may note that as x gets closer to 3 from the left, the value of the function
gets smaller and smaller negatively, approaching —c. And as x gets closer to
3 from the right, the value of the function f gets larger and larger positively
approaching + . Thus, lim f(x) =—cand 111131 f(x)=oco.

x—3"

Solution: We can rewrite f(x) as f(x) =

For this function, the line x =3is a vertical asymptote. Similarly, x =—4is
another vertical asymptote as shown in Fig. 4.

! Y -

L !

1 I ml

! 1 1l !

> >

! 1

i 3 ;
< i S >
p.& : -2 o 2 : X

i \/Y/ i

Fig. 4: Vertical asymptotes.
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In case of rational functions, it may not always be true that a factor in

2_ J—
x"—-1 (x+D(x Ddoes

denominator is an asymptote. For example, f(x) =

x—1  (x=1)
not have a vertical asymptote at x =1, even though x =1 makes the
(x> =1)

denominator 0. This is because when we simplify ,ithas (x—1)as a

common factor of the numerator and the denominator. Few possible ways in
which a vertical asymptote can occur are given in Fig. 5.

Y Y Y

\ N

1 '
1 ! :

1 ! 1

1 ! 1

! |

g e x o x e X X !
| | |

1 1 !

1 ' !

| | |

©
x
x

~

(a) lim f(x)=+eo (b) lim f(x)=+ec  (c) lim f(x)=—co (d) lim f(x)=—c0

ra

Fig. 5: Vertical Asymptotes.

Example 3: Find the vertical asymptotes of y =cotx.

Solution: The contagent function is a periodic function with period 7.

However, from the identity y =cotx = cosx
sin x

, you can see that the cotangent



function has vertical asymptotes when sin x is zero, which occurs at x =nm,
where nis an integer. The graph of the cotangent function is shown in Fig. 6.

! YA
1
1
1
4]
[
J- 1
1 X

0
T
21

X
X

O
e e eletatetete

XV

X' - 2n

VY’

Fig. 6: Graph of cotx.
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Example 4: Find the vertical asymptotes of y =secx.

Solution: The secant function is a periodic function with period 2x. This
function has vertical asymptotes when cosx is 0, which occurs at

2n+1 . ' . .
X= M,where nis an integer. The graph of secant function is shown in

Fig. 7.

XV

®)

\/Y/
Fig. 7: Graph of secx.
Example 5: Find the vertical asymptotes of y =In(x* —3x—4).

Solution: y =In(x* —3x — 4) has vertical asymptotes, when x> —-3x —4=0.
Thus, x =4 and x =—1lare the vertical asymptotes of y =In(x> —3x —4). The
graph of y =In(x* —3x —4) is shown in Fig. 8.
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LAY
T <
1] 1
x| =i
X' N X
TN A '

Fig. 8: Graph of y =In (x* —3x —4).

*k %

Now, try the following exercises:

E1) Determine the vertical asymptotes of the following

. _ 1 . X

i) f(x) _—x(xz B iv) f(x)= — P
" _ _ X
i) f(x)= 149 V) f(x)—2cot3
02X . (1
i) f(x)= E_16 vi) f(x) —ln[xj

2
X" —=2x

3

E2) Is x =0is an asymptote of f(x) =

? Justify your answer.

Similarly, we define horizontal asymptotes. For this, going back to Fig. 1, we

can see that as x increases without bound, the value of f(x) =Sis positive,
X

but gets closer and closer to 0, and as x decreases without bound, the value

of f(x) =Sis negative, and gets closer and closer to 0 . We write these limits
X

as lim S =0and lim < =0,¢>0.

X—too ¥ X——00 ¥

However, sometimes we will not be concerned with the behaviour of f(x) near
a specific x —value, but rather with how f(x) behaves as x increases without

bound or decreases without bound. This is sometimes called the end
behaviour of the function because it describes how the function behaves for
the values of xthat are farther from the origin.

In general, we can say that if f(x) — Las x — o, then the graph of

y =f(x)gets closer and closer to the line y =L as shown in Fig. 9 (a). We can
also say that if f(x) — Las x — —oo, then the graph of y =f(x)gets closer
and closer to the line y =L as shown in Fig. 9 (b). In either case, we call the



line y =L a horizontal asymptote or asymptote parallel to x —axis. This

leads to the following definition.
Definition: A line y =L is called a horizontal asymptote to the curve of the

function fif f(x) >Las x > +e0ras x — —oo.

AY ~NY
I S G o Py --L
//_ \\
X' / ) M X' o) \ M
VY’ VY’
(a) (b)
Fig. 9

Let us find the horizontal asymptotes in the following examples.

Example 6: Determine the horizontal asymptotes of the function f given by

£(x) = 2x+5 .
X
Solution: To find the horizontal asymptotes, we find
lim f (x) = lim 2
X—>00 X—yo0 X
= ljm[z + ij
X—>00 X

=
Thus, the horizontal asymptote is the line y=2.

*k %

In Fig. 10 (a) and Fig. 10 (b), we see two ways in which a horizontal asymptote

can occur.
AY A~NY
B~
/—
% / > ===l ___] L.
X' / o X
X' o X
vY’ vY’
(@) Ilmf(x)=L (b) Ilim f(x)=L

Fig. 10 123
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Example 7: Find the horizontal asymptotes of y = o

Solution: To find the horizontal asymptote, let us find the limits at infinity.

> +1
limS+2 ~ lim 9%
X—too | — 2% NS | _1
2X
0-1
and
1ij+2 :5+0:5

o= =25 10

Hence, its horizontal asymptotes are y =—1and y =5, which are shown in Fig.

11.
ANY
________________________ YIS .
. N S e N X
vY’
Fig. 11: Graph of y = 1f§: .

*k %

Example 8: Find the horizontal asymptote(s) of y =xe".

Solution: Let us find limits at infinity.

limxe® = lim X [i formj

X—>00 X—>—o0 e_x o

= lim L_x (Applying L'Héptial’s rule)
e

X—>—00 —

- —=0.

— O

Thus, y = 0is the horizontal asymptote of y =xe”, which is shown in Fig. 12.
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< >
X 0] X
yY'

Fig. 12: Graph of y =xe".
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Now, try the following exercises.

E3) Determine the horizontal asymptote of each of the following.

i f(x):% v)  f(x)=(1.001)"
X —Xx"+5
4 3
i) f(><)=2"3;3X vi) f(x)=e*cosx
X+ X
i) £(x) =—— i) F)=x+L
) B X
WAf (e vill) £(x) = S02X
X X

E4) Determine a rational function f,which has a horizontal asymptote at
y =0, and vertical asymptotes at x =-2and x =3,and f(1) =1.

Now, we will see the procedure to compute asymptotes parallel to axes of a
polynomial function. Here we shall derive tests to decide whether a given
curve has asymptotes parallel to the x and y axes. For this, we shall

consider a curve given by f(x, y) =0, where f(x, y) is a polynomial in x and
y.

Theorem 1: A straight line y =c is an asymptote of a curve f(x, y) =0 iff
y —c is a factor of the co-efficient of the highest power of x in f(x, y).

This theorem can also be interpreted as follows.

Asymptotes parallel to the x -axis are obtained by equating to zero the real
linear factors of the co-efficient of the highest power of x in the equation of the
curve.

We can also state another theorem, similar to Theorem 1, giving a test to
decide whether a given curve has an asymptote parallel to the y -axis or not.
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Theorem 2: A straight line x =cis an asymptote parallel to the y -axis iff
x —cis a factor of the co-efficient of the highest power of y in f(x,y).

Now, let us see some examples to find asymptotes parallel to axes.

Example 9: Find the asymptotes parallel to either axis for the curve

1
y=X+—.

X
Solution: Writing the given equation in the form f(x, y) =0, we get
x*—xy+1=0. You can see the graph of this curve in Fig. 13. In
f(x,y) =0, the highest power of x is 2 and the co-efficient of x* is 1. It has
no factors of the form y—c. Hence, there are no asymptotes parallel to the
x -axis. The highest power of yin f(x,y)=0is 1 and the co-efficient of y

when equated to zero gives x =0. Hence, there is one asymptote parallel to
the y -axis and moreover, it is the y -axis itself.

YA
o
[l
>
X' 0 X
vY'
Fig. 13

*k %

Example 10: Find the asymptotes parallel to axes of the curve

y (x*—a’)=x.

Solution: The given equation can be re-written as y*(x* —a’*)—x=0.
Asymptotes Parallel to x —axis: Equating the coefficient of x* (highest
power of x) to zero, we get y> = 0. Which gives y =0as an asymptote.
Asymptotes Parallel to y —axis: Equating the coefficient of y* (highest
power of y) equal to zero, we get x> —a’=0= x =*ai.e, x=a, x=—aare
the asymptotes parallel to y —axis.

The required asymptotes are x =ta,y =0.

*k %

Example 11: Find the asymptotes parallel to the co-ordinate axes of the curve
2 2
a~ b

22 o

2 2

Xy

Solution: The given equation can be re-written as a’y” —b’x”> —x’y> =0.



Asymptotes Parallel to x —axis: Equating the coefficient of x* (highest
power of x) to zero, we get y> +b”> =0 = y = *+ib, which gives two
imaginary asymptotes.

Asymptotes Parallel to y —axis: Equating the coefficient of y* (highest
power of y) to zero, we get x> —a’ =0 = x =ta. Thus, x =+a, X =—a are
the asymptotes parallel to y —axis.

*kk

2x +1

Example 12: Find the asymptotes of the curve f given by y =

Solution: We find the horizontal or vertical asymptotes by limits. Here,
y=2 +l and y = 2as x = oo0r —o. Therefore, y =2 is an asymptote
X

parallel to x —axis. Also, as x — 0,y — oo, therefore, x =0is the vertical
asymptote as shown in Fig. 14.

Y A
o
I
x
_______________________ y _= 2
(4\ >
X S e
vY'
Fig. 14

See if you can do this exercise on your own.

E5) For each of the following curves, find asymptotes parallel to either axis, if
there are any.

i) X’y=2+y ii) xy® =16x> +20y>
iii) (X+y) =x>+4. iv) X’y =9(x* +y?).
v 1 Vi _3-10x

Y x> +1 Y x> +10

So far, we were finding the asymptotes which were parallel to axes. In the

following section, we will find asymptotes which are not parallel to axes. These
are called oblique or slant asymptotes.
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15.3 SLANT/OBLIQUE ASYMPTOTES

You may be wondering whether an asymptote must always be parallel to a

coordinate axis. No, there are many curves having asymptotes which are
2

neither vertical nor horizontal. For example, consider f(x) = X . The graph
of fis shown in Fig. 15.
AY I
| ’
I 759
| /’
|
1 /fo\\)e\o\e
L7
R
) Rt S
X 270 X
// I
7 |
|
:
|
Y
2
. |
Fig. 15: Graph of X ]
Xx—2
We can write f(x) =(x+2)+ . We see thatas x — oo, -0,

(x— Xx—2
therefore, when x gets very large, y gets closer and closer to x + 2. Thus, the
line y =x +2is called the slant asymptote or oblique asymptote.

Definition: A line y =mx + c(m # 0) is an oblique asymptote or slant
asymptote to the graph of the function f if lim [f(x)—(mx +c¢)]=0or

ljrzlw[f(x) —(mx +¢)]=0.

For example, if we say that the lines y=x—-1land y= —% +1 are asymptotes

to any curve, that means

< >
k4 Y
' Ol. N
X > .y X
', \\
’ Y
~
Y
VY’

Fig. 16: Slant asymptotes.



that, as x — oo, the graph of f approaches the line y=x-1,s0 y=x-1lis an
oblique asymptote to the graph of f at o .Similarly, as x — —oe, the graph of

f approaches the line y = —%H , S0 y= —%H is an oblique asymptote to

the graph of f at —co, as shown in Fig. 16.

Going back to the definition of the oblique asymptotes, we can say that in the
first case, the line y = mx + cis an oblique asymptote of f(x) when xtends to

oo, and in the second case the line y = mx +cis an oblique asymptote of
f(x)when xtends to —co. The oblique asymptote, for the function f(x) will be
given by the equation y = mx +c. The value of mis computed first and is
given by the following limit:

Suppose y =mx +cis a slant asymptote to f at £ oo, then
ljril[f(x)—(mx+c)] =0.

On dividing th_is equation both the sides by x, we get
lim f(x)_mx+c}:0

X—>oo X X

lim M—m—£}=0

X—>too X X

nm_@—m}:o [ ljm£=0}

X—>too X

1<% - T

Xt x

We can solve mseparately for two cases as x — «and as x — —o. If this
limit does not exist or is equal to zero, then, there is no oblique asymptote in
that direction.

Having m, then the value of ccan be computed by ¢ = lirP [f(x)—mx]. If this

limit does not exist, then there is no oblique asymptote in that direction, even if
a limit defining m exists.

Let us find slant asymptotes in the following examples:

3

x>-1

Example 13: Find the slant asymptotes of y =

Solution: We shall find mand c.

3
m:h'mlzliml( X j

x—te X Xx—te X X2—1
1

= —:1
X —toeo 1
X2
3

c:hm(y—mx):h'm( > —(l)xj

X —>teo Xx—too| X ° —

= lim 2X =0
x—>ioox _1
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Therefore, the slant asymptote is y =x.

*k %

2 2
Example 14: Find the slant asymptotes of X—2 —% =1.
a

2 2
Solution: y2 :bz(x_z_ J :b_Z(XZ _az)
a a

m= limlz hml[iE xz—az}

x>t ¥ X—Feo ¥

a

X\

Fig. 17: Slant asymptotes in a Hyperbola.

*k %

Example 15: Find the slant asymptote to the curve y =+v/x* +9x .

2
Solution: Slope m = lim VX7 HOX

X—>too X
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X414+ — X,/ 14+—
=lim ——* and lim X

1/1+— and lim — 1+—
=land -1

Now, let us find c for both the values of m. Where m =1, we get:

l\/x +9x —XJ

~ im x? +9x — x>
ot Jx? 40X 4+ X
) 9x
= lim —
ot Jx? 409X 4+ X
) 9x
:hnjl—
){ 1+9+1j
I
T2 1
X
_9
2
Similarly, when m =-1, we get c= lim [\/x +9x+x]

X—>too

Hence, the slant asymptote to f are y=x +% and y =-x —%.

*k %k

Example 16: Show that f(x) =x+ Jx does not have a slant asymptote at o

Solution: We shall do a proof by contradiction. Suppose f has a slant
asymptote y =mx +c. Then we must have

m= hmf(x) lim X+\/_ hm(l+ij:10rdoesnotexist.
X —>too X x—>+oo X —teo \/;

S0, y=x+c.
And then, we get
= lim (f(x)~x)= 11111(X+ X —x )= lim /X = oo or does not exist.

Which is a contradiction (since ¢ must be finite).
Hence, f cannot have a slant asymptote at

*k %

Let us find the slant asymptote to a curve, where the equation of the curve is
of the form f(x,y)=0.

Example 17: Find the oblique asymptotes for curve x° —y’ =3xy.

Solution: Suppose that the given curve has an oblique asymptote y =mx +c.

The equation of the curve can be written as
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x’ =y’ =3xy=0.

Dividing throughout by x* we get

X X X
3
Thus, lim {1—y—3—3—y.1}:0
Xt XT X X
y’ y 1
— 1—1in{—3 —3lim [—jmn(—j:o
X—>too X X —o0 X ) x—| X

y’ 1
= 1- hm(— =0, [Sinoe, lim—:O}

X—oo xX
3
- I—Pim(l} =0
X —too X

= m’=1=>m=1, as the other roots of m’ —1=0 are complex numbers.

Rewriting the equation of the curve as (x —y)(x” + Xy +y*) =3xy, we have

¢ = lim (y=mx) = lim (y = x) = hm{i}

xored X7 Xy + y2
. =)
gl xy ¥’
Xy g Xy
-1
= ,[since,limizlimZ :i:1]
I+1+1 x>ty x| X m
=-1

Hence, the required asymptote is y=x—1.

* k%

If a rational function P((X)) is such that the degree of the numerator exceeds
X
, P(x)
the degree of the denominator by one, then the graph of may have an
oblique asymptote.
To find the asymptote we write POO =(ax +b) +% , Where, degree of
X
R(x) <degree of Q(x).
. R
Now, ljm{P(X) —(ax+b)} =0 (since Tim X o
»> Q(x) = Q(x)
. R
and ljm{P(X) —(ax+b)}:0 [since hmﬂ:O]
»>= Q(x) = Q(x)

P
We can say that the graph of Q((X)) approaches the line y =ax +bas
X

X = oc00r X — —oo. This line y = ax + b is oblique asymptote.

Now, in the next example we shall find the oblique asymptote of a rational
function.



Solution: We can write y =2x +

Here

-3x+4

2
X

lim_3xz+4:0and lim —3x2+4

X—>00 X X —>—00 X

=0

Thus, the line y =2x is an oblique asymptote.

*kk

Try to solve these exercises now.

E6)

E7)

Find oblique asymptotes to each of the following curves.
i) x’ +y’ =3ax’ ii) x'—yt+xy=0

B 25  +x? +11x +5
x> +5

iy iv) y=2x—-x"+2.
The cost-function to produce x units of a product is given by

C(x) =3x>+80. Find the oblique asymptote for the average cost and
interpret its significance.

Now, let us summarize what we have studied in this unit.

15.4 SUMMARY

In this unit, we have covered the following points.

1.

A straight line is said to be an asymptote to an infinite branch of a curve,

if, as a point P on the curve moves to infinity along the curve, the
perpendicular distance of P from the straight line tends to zero.

Asymptotes parallel to the coordinate axes are obtained by equating to
zero the real linear factors in the co-efficients of the highest power of x
and the highest power of y in the equation of the curve.

Aline y =mx + c(m # 0) is an oblique asymptote or slant asymptote to
the graph of the function f if lim [f(x)—(mx +c)]=0or

f(x)

ljr?[f(x)—(mx+c)]:0. The values of mand care m = lim —= and

x>t

c= lir;rlw[f(x) —mx].

15.5 SOLUTIONS/ANSWERS

E1)

i) The vertical asymptotes are x =0,x =1and x =—1

ii) No vertical asymptotes.

i) The vertical asymptotes are x =4and x =—4.
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E2)

E3)

E4)

E5)

iv)  The vertical asymptote is x =-2.
v)  The vertical asymptotes are x =3n T, where ne Z.
vi)  The vertical asymptote is x =0.

The line x =0is not a vertical asymptote because ljmof(x) =2.

Since, limf(x)=0and h1£1 f(x) =0, therefore, the line y =0, is

a horizontal asymptote.
ii) No horizontal asymptotes.
i) The horizontal asymptote is y =0.

iv)  The horizontal asymptote isy =0

V) lim(1.001)* =ecand lim (1.001)™ =0. Thus, y =0is horizontal

X—>00 X—>—o0

asymptote.

vi)  lime™* cos(x)=0. Thus, y =0is horizontal asymptote.

X—>00

vii)  No horizontal asymptote.
viii)  The horizontal asymptote isy =0

One of the possible function is f(x) :X—_7.
x+2)(x-3)
i) X’y=2+y e x’y-y-2=0

Highest power of x is 2, and the coefficient of x* is y. Hence
y =0 is an asymptote.

Highest power of y is 1, and the coefficient of y is
x*—1=(x-1) (x+1).

Hence, x =—1 and x =1 are two asymptotes parallel to y —axis.

ii) No asymptote parallel to the x -axis.
x =20 is an asymptote parallel to y —axis.

i) No asymptote parallel to the y -axis.
y =0 is an asymptote.

iv)  y=13 are asymptotes parallel to x —axis.



E7)

x = X3 are asymptotes parallel to y —axis.

V) y =0 is an asymptote.
vi)  y=0 is an asymptote.

i) x’ +y’ =3ax®

= 1+(y/x)’=3a/x

’ 3

= 1+1j1n[1j — lim 22
x—eo| X X—eo X

= 1+m’=0=>m’=-1=>m=-1.

¢ =lim(y —mx) = lim(y + x)

3ax’? . 3a
= 2 7 = lim 2
xoe X1 =Xy +y”  xoxl-y/xX+(y/x)
1+1+1

Hence, the equation of the asymptote is y+x=a
ii) m=1, c=0, Equation: y =x
m=-1, c=0, Equation: y+x=0.
iy  y=2x+1.
iv) ygg[f(x% (mx +1)]is not zero as 2*is unbounded. Therefore,

considering lim [f (x) - (mx +c¢)]

= lim [2x 2" +2— (mx +¢)|

X—y—o00

= lim [2-m)x —2* + 2~ ¢)

This limit is 0, only if m=2and ¢ =2. Thus, the equation of the
oblique asymptote is y =2x+2.

The average-cost function A(x) = )
X
2
A =280 5, 80
X X
Here, lim@:Oand lim @:O.
X—oo X X——o0 x

Thus, y =3xis an oblique asymptote, as shown in Fig. 18.
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UNIT 1 6

CURVE TRACING \

Structure Page No.
16.1  Introduction 137
Objectives
16.2 Tracing a Curve: Cartesian Equation 138
16.3 Tracing a Curve: Parametric Equation 156
16.4 Tracing a Curve: Polar Equation 160
16.5 Summary 165
16.6  Solutions/Answers 166

16.1 INTRODUCTION

A picture is worth a thousand words. A curve which is the visual image of a
function gives us a lot of information. Of course, we can also obtain this
information by analysing the equation which defines the functional relation.
But studying the associated curve is often easier and quicker. In addition to
this, a curve which represents a relation between two quantities also helps us
to easily find the value of one quantity corresponding to a specific value of the
other. In Sec. 16.2, we shall try to understand what is meant by the picture or
the graph of a function like y=f(x) and the curve with more than one

branches at any point, expressed in the form f(x,y)=0 and how to sketch

them. In Sec. 16.3 and Sec. 16.4, we shall discuss the tracing of a curve in
parametric and polar form, respectively. We shall be using many results from
the earlier units here. With this unit we come to the end of Block 4, in which
we have studied various geometrical features of functional relations with the
help of differential calculus.

Now we shall list the objectives of this unit. After going through the unit, please
read this list again and make sure that you have achieved the objectives.
Objectives

After studying this unit, you should be able to:

e list the properties which can be used for tracing a curve;

e trace some curves whose equations are given in cartesian, parametric or
polar form.
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16.2 TRACING A CURVE: CARTESIAN EQUATION

You may recall from Unit 2, that by the graph of a function f : D — R, we mean
the set of points {(x, f(x)):xe D}. Graphing a function means showing the

points of the corresponding set in a plane. Thus, essentially curve tracing
means plotting the points which satisfy a given relation. However, there are
some difficulties involved in this. Let’s see what these are and how to overcome
them.

It is often not possible to plot all the points on a curve. The standard technique
is to plot some suitable points and to get a general idea of the shape of the
curve by considering tangents, asymptotes, singular points, extreme points,
inflection points, concavity, monotonicity, periodicity etc. Then, we draw a free
hand curve as nearly satisfying the various properties as is possible.

The curve or graph that we draw has a limitation. If the range of values of
either (or both) variables is not finite, then it is not possible to draw the
complete graph. In such cases, the graph is not only approximate, but is also
incomplete. For example, consider the simplest curve, a straight line. Suppose
we want to draw the graph of f : R — R such that f(x) =1. We know that this

is a line parallel to the x -axis. But it is not possible to draw a complete graph
as this line extends infinitely on both sides. We indicate this by arrows at both
ends as in Fig 1.

NY
>
y
< >
X O X
vY’
Fig. 1

Now, we shall take up the problem of graphing a function by hand, when the
equation is given in the cartesian form.

Let us list some properties which, when taken, will simplify our job of tracing
this curve. We have discussed all these properties. Now, we shall summarize
these one by one.

i) Simplify: If possible, simplify the function y =f(x), you wish to sketch.
e . x> +x-2 L
For example, if fis defined by f(x) :(—D,x #1, you must write it

X f—

as f(x) =x+2,x #1before beginning the procedure listed here.

ii) Domain and Range: In case of y =f(x), we find the domain and range
and mark the regions accordingly.
iii) Periodicity: Recall Unit 6, wherein we discussed periodic function.

Periodicity is the tendency of a function to repeat itself in a regular
pattern at a fixed interval. For example, all trigonometric functions have



periodicity. If f(x+p)=1f(x)forall xin D,where pis a positive constant,
then, fis called a periodic function and smallest pis called the period of

the function. While tracing a curve, if we know that the function is
periodic and the period is p, we can keep on translating to sketch the

entire curve [Recall from Unit 3 for translation].

Symmetry: The next step is to find out if the curve is symmetrical about
any line, or about the origin. A curve is symmetrical about a line if, when
we fold the curve on the line, the two positions of the curve exactly
coincide. A curve is symmetrical about the origin if we get the same
curve after rotating it through 180°. We have already discussed
symmetry of curves in Unit 6. Fig. 2, shows you some examples of
symmetric curves.

Y

VARV i

Y! Y’

Symmetric about the x -axis. (b) Symmetric about the origin.

YI

(c) Symmetric about the liney =x.
Fig. 2

Here, we give you some hints which will help you to determine the symmetry
of a curve.

a) Symmetry about y -axis: The graph of a function y = f(x) is said
to be symmetric about y -axis, if f is an even function, that is, the
equation of the curve is unchanged when x is replaced by —x . For

,etc. This means that our work is

example, y =cosx, y=x",y :| X
cut in half. If we know what the curve looks like for x >0, then we
only need to reflect about the y —axis to obtain the complete
curve.

b) Symmetry about origin: Recall Unit 6, wherein we learnt that odd

functions are symmetric about origin. If f(x)=—-f(—x), then the
139



curve is symmetrical about the origin. In such cases, it is enough
to draw the part of the graph above the x -axis and rotate it

through 180° to get the complete graph. Some such functions are:
y:x3, y =sin X,y = X, etc.

c) Symmetry about the line y =x: If the equation of the curve does
not change when we interchange x and y, then the curve is
symmetric about the line y=x.

v) Points of intersection with axes: The next step is to determine the
points where the curve intersects the axes. If we put y=0 in y=1(x),
and solve the resulting equation for x , we get the points of intersection
with the x -axis. Similarly, putting x =0 and solving the resulting
equation for y, we can find the points of intersection with the y -axis.

For example, in the curve y =3x*—x’, if y=0,we get x =0,3and if
x =0,we get y =0. Thus, the curve intersects axes at (0,0) and (3,0).
You can omit this step, if the equation is difficult to solve.

vi) Points of discontinuity: Try to locate the points where the function is
discontinuous.

vii) Intervals of increasing and decreasing functions: For this, calculate
?. This will help you in locating the portions where the curve is rising
X

[ﬂ > Oj or falling [ﬂ < Oj . You may recall Unit 13.
dx dx

viii) Concavity and point(s) of inflection: Recall from Unit 14, and
2

calculate second derivative of w.r.t.x . From % you can find
X

dy
dx?

concavity. The curve is concave upward where >(0and concave

&y
dx?
concavity changes. These will give you a good idea about the shape of

the curve.

downward where < 0. Inflection point occurs where the direction of

ix) Relative extrema: Recall from Unit 13, we use the second-derivative
test to find the relative maxima or minima. We substitute the first-order

critical numbers x,in the following test:

2
o |f % >0, then relative minimum at x, .
X" ) e,
d’y
o |f el <0,then relative maximum at x,.
X" ) e
2
o |f % =0, then the test fails.
X" ) e

We can also use first derivative test.

x) Tangents and normals: Compute the equations of the vertical tangents
and corresponding normals. You may recall Unit 14.
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xi) Asymptotes: The next step is to find the asymptote(s), if there are any.
We can find asymptotes parallel to axes and oblique as discussed in
Unit 15. They indicate the trend of the branches of the curve extending
to infinity.

xii) Singular point: Another important step is to determine the singular
points. The shape of the curve at these points is, generally, more
complex, as more than one branch of the curve passes through them.
[Recall from Unit 14].

xiii) Plot points: Plot points where f has a relative maxima, minima or
point(s) of inflection, x -intercepts, y -intercepts, etc.

xiv) Sketch the curve: Now, try to draw tangents to the curve at some of
these plotted points. Now join the plotted points by a smooth curve
(except at points of discontinuity). The tangents will guide you in this, as
they give you the direction of the curve. Sketch the asymptotes by dash
lines. Finally, draw the curve using the information in items i) to xiii).

We shall now illustrate this procedure through a number of examples. You will
notice that it may not be necessary to take all the steps mentioned above, in
each case. We begin by tracing some functions which were introduced in

Unit 2 and Unit 6.

Example 1: Sketch the graph of the function y=1x1.

Solution: Let us begin using steps of curve tracing. We can rewrite y as

] ox, x>0
- -x, x<0

i) Domain and Range: The domain of this function is R and the range is
non-negative reals. Therefore, y can take only positive values. Thus, the

graph lies above the x -axis.

i)  Symmetry: Since, | x|=|]-x

,therefore, the function y=1x1is
symmetric about the y -axis.

iii) Points of Intersection with axes: If x =0,then, y =0, therefore, the
curve meets the axes only at the origin. On the right of the y -axis,
x>0, and, so, | x| =x. Thus, the graph reduces to that of y =x and

you know that this a straight line equally inclined to the axes (Fig. 3(a)
below).Taking its reflection in the y -axis, we get the complete graph as

shown in Fig 3(b).

NY NY
X' S X X = X
VY’ VY’
(a) Graph on the right of the y-axis.  (b) Complete graph.
Fig 3

*k %
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Example 2: Sketch the greatest integer function y =[x].

Solution: Let us see which properties of curve tracing will be used to trace
greatest integer function.

i) Domain and Range: The domain of the function is R and the range is
set of all integers. The curve lies in the first and third quadrant, because
either x >0and y=>0or x<0and y<0.

ii) Symmetry: If we replace x by —x, we get different value of y.
Therefore, [x]is not symmetrical about y -axis. Also, y =[x]is not an

odd function, thus, not symmetrical about origin.
iii) Points of intersection with axes: When x =0,y =0, thus, the curve

passes through the origin. Also, when y =0,0 < x <1therefore, the
graph lies on x -axis.
iv) Points of Discontinuity: y =[x]is discontinuous at every integer point.

Hence, there is a break in the graph at every integer point n. In every
interval [n, n+1[ its value is constant, and is equal to n.

v)  Relative extrema: No maximum or minimum.
vi) Asymptotes: There are no asymptotes.

vii) Concavity: The graph is neither concave upward nor concave
downward.
Hence, the graph is as shown in Fig 4. Note that a hollow circle around
a point indicates that the point is not included in the graph.

/\Y
:
1
' 1
< s >
X! 0 X
*—0
1
—
:
VY’

Fig 4: Graph of y =[x].

*k %

Example 3: Sketch the graph of y =x".
Solution: Let us check for the properties for the curve y =x’.

i) Domain and Range: The domain and range of the functionis R. When
x>0,y >0and whenx <0,y <0. Thus, there is no portion of the graph
in the second and fourth quadrants.

ii) Symmetry: The function is an odd function. This means that the curve is
symmetric about the origin. Thus, it is sufficient to draw the graph above
the x -axis and join it to the portion obtained by rotating it through 180°.

iii) Points of intersection with axes: If x =0,then, y =0. Therefore, the
curve meets the axes only at the origin.

iv) Tangents at origin: We have ? =3x7, which is 0 at the origin. Thus,
X

the tangent at origin is the x -axis.
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vi)

vii)

viii)

Example 4: Sketch the graph of y = 1

Monotonicity: We find, ? =3x?, which is always non-negative. This
X

means that as x increases, so does y. Thus, the graph keeps on
rising.

2

Relative extrema: Here, ?:O at (0, 0) and % =6x is 0 at (0, 0).
X X
Since the second derivative test is not helpful to find extrema, let us look
at the sign of ﬂon each side.
dx
dy ) >0, for x>0
— = 33X =
dx >0, for x<0
Since, the sign of ﬂdoes not change, therefore, there are no extreme
X
points.
2
Concavity and Point of Inflection: Here, d—Z = ( at the origin. Also,
dx
d’y d’y ,
e <0Owhen x <0and e >(0when x > 0. Therefore, the curve is

concave upward when x > 0 and concave downward when x < 0. Since
the concavity is changing at origin, therefore, the point of inflection is
0, 0).

Asymptotes: The graph has no asymptotes parallel to the axes.

Further liml =1lim x? and this does not exist. This means that the

X—0o0 X X—>o0

curve does not have any oblique asymptote.

Singular Points: The curve has no singular points.
The graph is shown in Fig 5.

/\Y
¢ >
X' o X
VvY'

Fig 5: Graph of y = X,

*kk

7 -
X

Solution: Let us list the properties to trace the curve.
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vi)

vii)

viii)

Domain and Range: The domain of the function is R—{0}and the
range of the function is non-negative reals. The y -coordinates of any

point on the curve cannot be negative. So, the curve must be above the
X -axis.

Symmetric: Here, f(x) =f(—x), thus the curve is symmetric about the
y -axis. Hence, we shall draw the graph to the right of the y -axis first.

Points of intersection on axes: The curve does not intersect at the
axes at all.
. 2 : ,
Monotonicity: We have dy =—— and d—Z :%. Since dy <0 for all
dx X dx X dx
x > 0, therefore, the function is decreasing in ]0, o[ , that is, the graph
keeps on falling as x increases. Also, since ? >(0forall x<0,
X

therefore, the function is increasing in |—o0,0[ .

Discontinuity: The graph of yis continuous in the domain of the
function.

Relative extrema: Further, since, ? is non-zero for all xin the
X

domain, thus, there is no extreme point.

d2y

Concavity and point of inflection: Since, ol is positive in the
X

domain, therefore, the function is concave upward everywhere in the
domain. Since, the concavity does not change, therefore, there is no
point of inflection.

. .1 . :
Asymptotes: Since hmo—2 = oo, therefore, x = 0is the vertical
X—> X

asymptote. Also, lim f (x) = 0,thus, y = 0is the horizontal asymptote.

The curve is shown in Fig 6.

XA
< Vv

vY'

Fig 6: Graph of y = 1%,

*kk



Example 5: Sketch the graph of y :l

X

Solution:

i)

i)

Doman and Range: The domain of the function is R—{0} and the range
is R. Here, we can see that either x and y both will be positive or both

will be negative. This means that the curve lies in the first and the third
quadrants.

. 1 . . .
Symmetric: Here, f(x) =—, and f is not an even function, therefore, it
X

is not symmetric about y -axis. Further, it is symmetric about the origin
and hence, it is sufficient to trace it in the first quadrant and rotate this
through 180" to get the portion of the curve in the third quadrant.
. . . dy -1 .
Interval of increasing or decreasing: Here, d_ =—, which means
X X
that y <O for all values of xin the domain. Hence, as x increases, y

decreases.
Asymptotes: Since, lim f(x) = 0, therefore, y =0is the horizontal

asymptote. Also, limof (x) = oo, therefore, x = 0Qis the vertical asymptote.

Relative extrema: We haveﬂ = _—21 # 0 forany xin the domain. That

dx x
is, there are no extrema.

Considering all these points we can trace the curve in the first quadrant (see
Fig 7(a)). Fig 7(b) gives the complete curve.

4

NY

ANY

Y’

(@)

XV

©)
=<V

VY’
(b)

(a) Graph of xy =1 in the first Quadrant. (b) Complete graph.

Fig. 7

*kk

The curve traced in Example 5 is a hyperbola. If we cut a double cone by a
plane as in Fig 8(a), we get a parabola. It is a section of a cone. For this
reason, it is also called a conic section. Fig. 8(b) and Fig. 8(c) show a circle
and an ellipse respectively. The curve in Fig 8(d) is called a hyperbola and
that in Fig 8(e) is the pair of straight lines.
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Block 4

Applications of Differential Calculus
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(a) (b) (c) (d) (e)

Fig 8: Conic Sections [(a) Parabola, (b) Circle, (c) Ellipse (d) Hyperbola (e) Pair of
straight lines.]

The earliest mention of these curves is found in the works of a Greek
Mathematician Menaechmas (fourth century B.C.). Later Apollonius (third
century B.C.) studied them extensively and gave them their current names.

In the seventeenth century, Rene Descartes discovered that the conic sections
can be characterised as curves which are governed by a second degree
equation in two variables. Blaise Pascal (1623-1662) presented them as
projections of a circle. (Why don’t you try this experiment? Throw the light of
a torch on a wall at different angles and watch the different conic sections on
the wall). Galileo (1564-1642) showed that the path of a projectile thrown
obliquely (Fig 9) is a parabola.

Fig 9: Projectile path

Paraboloid curves are also used in arches and suspension bridges (Fig 10).
Paraboloid surfaces are used in telescopes, search lights, solar heaters and
radar receivers.

Fig 10

In the seventeenth century, Johannes Kepler discovered that planets move in
elliptical orbits around the sun. Halley’s comet is also known to move along a
very elongated ellipse. A comet or meteorite coming into the solar system



from a great distance moves in a hyperbolic path. Hyperbolas are also used in
sound ranging and navigation systems.
Let’s look at the next example now.

Example 6: Sketch the graph of y=x’ +x”.

Solution:
i) Domain and Range: The domain and range of the function are R.
ii) Symmetry: The function is neither even nor odd, thus, not symmetric
about y -axis and origin.
iii) Points of intersection: If x =0,then y=0,and if y=0,x =0,-1. Thus,
the curve meets the axes at (0, 0) and (-1,0).
iv) Tangents: We have? =3x* +2x. The x-axis is the tangent at the
X
. dy . dy
originas — =0, at x=0. Since, — =1 when x =—1, therefore, the
dx dx
tangent at (—1, 0) makes an angle of 45° with the x -axis (Fig 11(a)).
. dy , -2
V) Relative extrema: Further, d_ =0gives x=0and x = T Now,
X
d’y . dy .
— =6x+2.Since,—5 >0 at (0,0), therefore, the point (0,0) has a
dx dx
. - (-2 4 . !
relative minimum. The point 307 has a relative maximum as
d’y -2 h = . .
F<O at x :T' Thus, in Fig 11(b), O is a valley and P is a peak.
X
. ) \ i d’y 1 .
vi) Point of inflection: Here, 5 =0 atx= 3 and changes sign from
X
. " -1 2.
negative to positive as x passes through —1/3. Hence, ¥, is a
. . . . d’y 1 .
point of inflection. Since, e <0on |- oo,—g , therefore, the curve is
X
. d’y 1
concave downward. Also, since e >0on 3 therefore, the
X
curve is concave upward in this interval.
vii) Interval of increasing or decreasing function: If —% <x<0,then
?< 0. Thus, the graph rises in ]—o, —2/3[ and ]0, o[, but falls in
X
1-2/3,0[.
viii) Asymptotes: As x tends to infinity, so does y. As x — —oo, so does

y . There is neither horizontal nor vertical asymptote.For oblique
asymptote, lim [(x’ +x*)—(mx +c)]does not exist, therefore, no oblique

asymptote.

Hence, the graph is as shown in Fig 11(c).
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Example 7: Sketch the curve y =

(a) (b) (c)
Fig. 11

*kk

3x?

x>—1

Solution:

vi)

vii)

Domain and Range: The domain is R —{-1,1}.

Symmetry: Since the powers of x are even, therefore, the curve is
symmetric about the y -axis.

Point of intersection with the axes: The curve passes through origin.

. - 3
Asymptotes: Since, lim — 1 = lim 1 =3
X—keo ¥ ° — X—>too

2
X

Therefore, the line y =3 is the horizontal asymptote.
3x* . 3x? — S5k

= o0 = —o0
’ 2

Also, lim ——— =0,

e | x—>1~ XZ -1 il

= oo and

lim 3x? L

x—-1" X2 —1 |
Therefore, the lines x =1and x = —1are vertical asymptotes. We can
draw these asymptotes as shown in Fig.12 (a).

5x(x*—1)—3x*-2x . —6x
S N CSE S

y'>0when x <0and y < 0Owhen x >0, therefore, f is increasing on

]—oo,—1[and ]—1,0[ and decreasing on ]0,1[ and ]1,oo[ .

Monotonicity: Here, y' = . Since,

Relative Extrema: Wheny’ =0,x =0. Since, y’changes from positive
to negative at 0,therefore, there is a local maximum by the first
derivative test.

—6(x* —1)° +6x-2(x* —1)2x _ 6(1+3x%)
(x> =1)* (x> -1y’
Since, 6(1+3x*) > 0for all x,we have y">0 < x> -1>0 < |x|>1and

Concavity: We havef”(x) =

y" <0 & |x|<1. Thus, the curve is concave upward on the intervals



]—oo,—1[ and ]1, e[ and concave downward on ]—1,1[. Since, 1 and

—lare not in the domain of f, therefore, there is no point of inflection.
Using the information in i) to vii), we sketch the curve in Fig. 12(b).

1 /\Y 1 1 AYI

1 1 1 1

1 1 1 1

‘_|| —1 1 1

I I 1 ]

=1 1 1 1
Y3 _ sl b ... -———-__ P

1 1 1 1

1 1 1 1
7 1 1 \ , 1 |01 «
X' 1 @ : X X -1 1\ ! X

1 1 1 1

1 1 1 1

| | | |

1 1 1 1

1 [} 1 1

I | I |

1 1 1 1

Loy v byt

(a) (b)
Fig. 12
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In the next example, we will trace a curve with exponential function.

Example 8: Trace the curve y = xe™.

Solution:

i) Domain and Range: The domain is R.

ii)  Points of intersection with the axes: The curve passes through origin.

iii) Symmetry: There is no symmetry.

iv) Asymptotes: Because both x and e* become large as x — oo, we have
lim xe* =co. As x — —oo,however, e* — (0 and so, we have an
indeterminate product that requires the use of L’'Hopital’s Rule:

lim xe* = lim —~ = lim —— = lim (~¢*)=0
X—>—00 X—>—o0 c X—>—00 — c X—>—o0
Thus, the x —axis is a horizontal asymptote.

v)  Monotonicity: We havey’ =xe* +¢e* = (x +1)e*. Since, e*is always
positive, therefore, y'>0when x+1>0,and y’<0when x+1<0. So,
yis increasing on ]—1,oo[ and decreasing on |—oco,—1[.

vi) Relative Extrema: Since [j—yj =0and ?changes from negative to

X )y X
positive at x = —1, therefore, (=1,—e™")a local minimum.
vii) Concavity: We have y” = (x+1)e* +e* =(x+2)e". Since, y” > 0if

x >-2and y”<0if x <-2, therefore, the curve is concave upward on
]—2,o[ and concave downward on |—oo,—2[ . The inflection point is

1-2,-2e7[.
We use this information to trace the curve in Fig. 13.
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AY
¢ >
X' X
VY’
Fig. 13
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In the following example, we will trace a curve with trigonometric functions.

COSX

Example 9: Trace the curve y = —.
2 +sin x
Solution:

i) Domain and Range: The domain is R.

ii)  Points of intersection with the axes: The curve passes through
[Oéj and [@0} where nis an interger.

iii) Symmetry and Periodicity: The curve is not symmetric about any of
the axes. We have, f(x+2m) =f(x)for all xand so f is periodic and

has period 27w. Thus, we need to consider only 0 < x <2mand then
extend the curve by translation.

iv) Asymptotes: There is no asymptote.

dy (2+sinx)(—sin x)—cosx(cosx)

v)  Monotonicity: We have — —
dx (2+sin x)
_ 2sin X +1
(2 +sin x)*
Thus, ﬂ>0when 25inx+1<0<:>sinx<—l<:> 7—Tt<x<£. So,
dx 2 6 6

f is increasing on }%%{ and decreasing on }0%[ and

}ﬁ,m[.
6

vi) Relative Extrema: From the first derivative test, we see that the local

. . . .1
minimum value is — and the local maximum value is —.

N N

vii) Concavity: If we differentiate f(x) again and simplify, we get



d’y _ 2cosx(l-sinx)
dx? (2 +sin x)’

Since, (2+sin x)® > 0and 1—sin x > 0 for all x,also we know that
dzy
F

> (0when cosx <0, that is, g< X< %n therefore, the curve is concave
X

upward on }337713[ and concave downward on }Og [ and }%,Zn[ . The

inflection points are Eo [ and }%RO[ .

We draw the graph of the function only to 0 < x <2wis shown in Fig. 14 (a).
Then, we extend it, using periodicity, to the complete graph in Fig. 14 (b).

/\Y /\Y

172

K
:
)

XN
O
A
é
a
N
a
X<V
XA
O
A

2 2
VY’ Y
(a) (b)

Fig. 14
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So far, all our curves were graphs of functions. We shall now trace some
curves which are not the graphs of functions, but have more than one branch.
These curves are of the form f(x,y)=0.

Example 10: Trace the semi cubical parabola y* = x’.
Solution:

i) Regions where the curve lies: We note that x’ is always non-negative
for points on the curve. This means that x is always non-negative and
no portion of the curve lies on the left of the y -axis.

ii) Symmetry: There is symmetry about the x -axis (even powers of y).

iii) Point of intersection with axes: The curve meets the axes only at the
origin.
. . 3/2 o dy 3
iv) Double point: Here, y =£x""". The derlvatlved— =+—x"'". Here,
X
y’ — 0as x — 0" and does not exist as x — 0. There are two real and

equal tangents at origin, therefore, origin is a cusp.

v) Increasing and decreasing behaviour: In the first quadrant y
increases with x and y — o as x —oo.

vi) Asymptotes: There are no asymptotes.
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We first draw the curve in the first quadrant as shown in Fig. 15 (a), and then
take its reflection in the x -axis and we get the complete graph as shown in

Fig. 15 (b).
AY AY
X © X X © X
vY' vY'
(a) (b)
Fig 15
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Example 11: Trace the curve y* =(x—2) (x=3) (x —4).

Solution:
i) Region where curve lies: We can see that (x —2) (x —3)(x —4) is non-

negative. If x <2, we get a negative value for y*> which is impossible.
So, no portion of the curve lies to the left of the line x =2 . For the same
reason, no portion of the curve lies between the lines x =3 and x =4.
Therefore, the curve lies between the lines x =2and x =3 and right to
the line x =4.

ii) Symmetry: Since, y occurs with even powers alone, therefore, the

curve is symmetrical about the x -axis. Thus, we draw the curve above
x —axis, and then get a reflection below the x -axis to complete the
graph.

iii) Point of intersection with axes: The curve meets the axes at points
(2,0),(3,0)and (4,0).

1
iv) Tangents and normals: Here, ? = 2—[(x -2)(x-3)+(x-2)(x—4)
X y
+(x—=3)(x—4)]. Thus, the curve has vertical tangent at (2,0),(3,0)and
(4,0) . Combining these facts, the shape of the curve near
A(2,0),B(3,0), C(4,0)must be as shown in Fig 16 (a).

v) Interval of increasing or decreasing: Let us take y >0 (i.e., consider
point of the curve above the x -axis). Then,

2 J—
dy_ X ZI8x#20  qpigiszeroat x=3%1/4/3. If
dx  2(x-2) (x=3)(x—4)
a=3+1/+/3 and B:3—1/\/§ then o lies between 3 and 4, and can
therefore be ignored. Also, 3x’ —18x+26=3(x—-P) (x—a) and

2<PB<3<a<4. For xe ]2, 3[, x—o remains negative. Hence, for
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vi)

2<x<B, j—y >0 since, (x —a) and (x —f) are both negative.
X

Similarly, for B < x <3, ? <0. Hence, the graph rises in ]2, B[ and

X
fallsin 1B, 3[. Thus, the shape of the curve is oval above the x -axis,
and by symmetry about the x -axis, we can complete the graph between
x =2 and x =3 asin Fig 16. (b).

Concavity: Now let us consider the portion of the graph to the right of

x =4 . Shifting the origin to (4, 0), the equation of the curve becomes
yr=x(x+1) (x+2)=x>+3x> +2x.

As x increases, sodoes y. As x — o, so does y (considering points
above the x -axis). When x is very small, x* and 3x* are negligible as
compared to 2x , so that near the (new) origin, the curve is
approximately of the shape of y* =2x. The large values of x, 3x* and

2x are negligible as compared to x°, so that the curve shapes like
y> =x’ for large x. Thus, at some point the curve changes its

convexity.
This conclusion could also be drawn by showing the existence of a point
of inflection.

vii) Asymptotes: There are no asymptotes.

viii) Multiple point: There is no multiple point.

Considering the reflection along the x -axis, we have the complete graph as
shown in Fig 16(c).

Y 1 1 1 NY 1 1 1 NY
CLH Ny o o
w, w, oo, wy,oow, ooy
X, X, X, x| x| X,
T T
) N ™~ AN
X ANJB \¢ % xOf aA\l/B \¢ x xof U X
/YI 1 1 1 \/YI 1 1 1 /Y/
(a) (b) (c)
Fig. 16
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Example 12: Trace the curve (x> —1) (y>*—4)=4.

Solution:

i)

Region, where the curve lies: Here, y2 = 24 1+4, therefore,

X" —

4
x¢]-L1[. Similarly, x*> =— 4+1, therefore, ye]-2,2[.
y f—

Symmetry: There is symmetry about both axes. We can therefore,
sketch the graph in the first quadrant only and then take its reflection in
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vi)

vii)

the y -axis to get the graph above the x -axis. The reflection of this
graph in the x -axis will give the complete graph.

Point of intersection with axes: Notice that the origin is a point on the
curve. The curve does not meet the axes at any other points.

Tangent at origin: The curve has tangents at origin and these are given
by 4x*> +y> =0. These being imaginary, the origin is an isolated point
on the graph.

Asymptotes: Equating to zero the coefficients of the highest powers of x
and y,weget y=12 and x =%1 as asymptotes of the curve. Thus,

the portion of the curve in the first quadrant approaches the lines x =1
and y =2 in the region far away from the origin. As x — o, y - 2 and

asy —>oo, x —>1.
Increasing and decreasing: In the first quadrant, as x increases, so

does x* —1, and since x*—1=

> , therefore, y decreases as x

(y' -4
increases.

Relative extrema: There are no extreme points.

There are no singular points or points of inflection. Hence, the graph is as
shown in Fig 17.
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Fig 17
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Example 13: Trace the curve y* = (x—1) (x —2)°.

Solution:

i)

Symmetry: Since, the power of yis even, therefore, there is symmetry
about the x -axis.

Region: No portion of the curve lies to the left of x =1, asy”cannot be
negative.

Points of intersection with axes: Points of intersection with the axes
are (1, 0) and (2, 0).



Tangent: The tangent at (1, 0) is vertical. Shifting the origin to (2, 0),
the curve transforms into y* = x*(x +1). The tangents at the new origin
are given by y> =x”. This means that the point (2,0)is a node, and the
tangents at (2,0) are equally inclined to the axes.

Let us try to build up the graph above the x -axis between x =1 and
x = 2. Differentiating the equation of the curve with respect to x, we get

2yy = (x—2)" +2(x—1) (x—=2) =(x —2)(3x —4)
, (x=2) (3x—-4)
y =
2y
when 1<x <2, (x=2)<0. If y is positive, then y’ >0 provided

or,

3x—4<0. Thus, y'>0 when xe}l,g[ and y’ <0 when

X€E E 2[ . The tangent is parallel to the x -axis when 3x —4 =0, that

is, when x =4/3 (see Fig 18 (a)). Hence, for 1< x <2, the curve
shapes as in Fig 18 (b).

Intervals for increasing and decreasing: As x — oo, y — oo, in the
first quadrant. Note that when (2, 0) is taken as the origin, the equation
of the curve reduces to
y2 =x’(x+1)=x>+x>.
This shows that when x >0 and y >0, the curve lies above the line
y =x (on which y* =x?). Hence, the final sketch (Fig 18 (c)) shows
the complete graph.
AY ANY ANY
~! ! ! \ ’
n' n' ! \ 1
x| B 1 \ /7
& m > ( r\l AN & >
X ! % XX N7\ X X X
1 1 | B \
VY’ VY’ (24
(a) (b) (c)
Fig. 18

*k %

If you have gone through Examples 1-13 carefully, you should be able to do
the following exercise.

E1)

Trace the following curves by stating all the properties you use to trace:

) y=x i) y'=(x-2)’
i) yl+x*)=x iv) y:=x*(1-x%)
v)  y=xe'* vi) y =sin’ x

vii)  y=x(Inx) vii)  y=x-5x"
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iX) y=In(sin x) X) y=Xx4/5-Xx
. x’ ) X’ +4
xi) y= Xii) y=—>5
x—1 X

E2) Find the oblique asymptotes of the curve y = x —tan™' x and hence,

trace the curve using this fact.
E3) In the theory of relativity, the mass of a particle is m= %
1-v/c

where m,is the mass of the particle, mis the mass when the particle

moves, with speed v relative to the observer, and cis the speed of light.
Trace the curve for mas a function of v.

In the following section, we will trace the curves which are in parametric form.

16.3 TRACING A CURVE: PARAMETRIC
EQUATION

Sometimes a functional relationship may be defined with the help of a
parameter. In such cases, we are given a pair of equations which relate x
and y with the parameter. For example, imagine a particle that moves along a
curve and the x and y coordinates are defined in terms of time t as shown in

Fig. 19.
/\Y

XA
©)
< V¥

Fig. 19

In this case, we write x =f(t) and y =g(t), where tis the third variable called

parameter. The equations x =f(t)and y = g(t) are known as parametric
equations. The parameter t does not necessarily represent time. You may
recall what you learnt in Appendix | of Block 3.

Now, we shall see how we can trace a curve whose equation is in the
parametric form.

We shall illustrate the process with an example.

Example 14: Trace the cycloid x =a(t+sint), y=a(l—cost) as t varies
from —m to .



Solution: Here d—x =a(l+cost), ﬂ =asint, so that ﬂ =tan(t/2). Since,
dt dt dx
?>O forall te ]—m, [, x increases with t from —an (at t=—mx) to 0 (at
X

t=0)to ar (at t =m).
Also, ? is negative when te ]—m, O[ and positive when te]0, [. Hence,
X

y decreases from 2a to 0 in [—&, O] and increases from 0 to 2a in [0, «t].
Let us tabulate this data in Table 2.

Table 2
te [-m, O] te [0, m]
i) x increases from —a to 0 i) x increases from 0 to a
ii) y decreases from 2a to 0 ii) y increases from 0 to 2a
i) Hence, the curve falls i) Hence, the curve rises

Also, at the terminal points — 7, 0 and 7 of the intervals [—=, 0] and [0, ],
we summarize this in Table 3.

Table 3
t (X, y) dy dx Tangent
dx dy
o’ (—am, 2a) not defined 0 vertical
0 (0, 0) 0 not defined horizontal
T (am, 2a) not defined 0 vertical

On the basis of the data tabulated in Table 3, the graph is drawn in Fig 20.

NY
2afF - -----
| |
| |
1 |
1 1
1 1
1 1
¢ ' ' >
X! —an an X
VY’
Fig. 20

If t isincreased by 2w, x is increased by 2ma and y does not change.
Thus, the complete graph can be obtained in intervals

...[-5m, =3mn], [3r, —x], [®, 3«], [3®, 5S7]... by translation through a proper
distance.

The cycloid is known as the Helen of geometry because it was the cause of

many disputes among mathematicians. It has many interesting properties.
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We shall describe just one of them here. Consider this question: What shape
should be given to a trough connecting two points A and B, so that a ball
rolls from A to B in the shortest possible time?

Now, we know that the shortest distance between A and B would be along
the line AB (Fig. 21). But since we are interested in the shortest time rather
than distance, we must also consider the fact that the ball will roll quicker, if
the trough is steeper at A . The Swiss mathematician Jakob and Johann
Bernoulli proved by exact calculations that the trough should be made in the
form of an arc of a cycloid. Because of this, a cycloid is also called the curve
of the quickest descent.

Fig. 21

The cycloid is used in clocks and in teeth for gear wheels. It can be obtained
as the locus of a fixed point on a circle as the circle rolls along a straight line.

Now, let us trace another curve in parametric form.

Example 15: The position of a particle at time tis given by the parametric
equationsx =t —2tand y =t +1. Sketch and identify the path along which
the particle moves.

dy dy

Solution: We have d—x =2t—2and —=1,so that — = L Here,
dt dt dx 2t-2

? >0, when t >1and ? <0, when t<1. That means yis increasing when
X X
t >1and yis decreasing when t < 1. At t =1,the tangent of the curve is

vertical. In Fig. 22 we plot the curve.

1
1
;
I t=4
1
1
1
1
1

—_
Il
=

WV

Fig. 22

We can also mark the points given in the Table 4.



L
Table 4

t X y

-2 8 -1

-1 3 0
0 0 1
1 -1 2
2 0 3
3 3 4
4 8 5

A particle whose position is given by the parametric equations moves along
the curve in the direction of the arrows as t increases. Notice that the
consecutive points marked on the curve appear at equal time intervals but not
at equal distances. That is because the particle slows down and then speeds
up as tincreases.

It appears from Fig. 22 that the curve traced out by the particle may be a
parabola. We can confirm this by eliminating the parameter t as follows:

We obtain t =y —1from the second equation and substitute into the first
equation. This gives x =t>—2t=(y—1) =y’ —4y+3and so the curve
represented by the given parametric equations is the parabola x =y* —4y+3.

*k %

Example 16: What curve is represented by the following parametric
equations?
X =cost,y=sint, where 0<t<2x

Solution: If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating t. Observe that

x*+y’> =cos’t+sin’t=1
Thus, the point (x,y) moves on the unit circle x* +y> =1. Notice that in this
example the parameter t can be interpreted as the angle (in radians) shown in
Fig. 23. As tincreases from 0 to 27, the point P (cost,sin t) moves once

around the circle in the counterclockwise direction starting from the point
1,0).

/\Y
t=n/2
P(cost, sint)
)Zr t=x o t=0 ;(
t=2mx
=3n
=3
VY’
Fig. 23
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See if you can do this exercise now.

E4) Trace the following curves:
i) x=a(t+sint), y=a(l+cost),—-nt<t<ma>0.

ii) x =asin 2t(14+cos2t), y=acos2t(l1-cos2t), 0<t<ma>0.
iii) x=at2,y=2at,03t31.
iv) x=sin2t,y =cos2t,0<t<2m.

V)  x=sint, y=sin’t.

So far, we have discussed tracing of curves in cartesian and parametric forms.
In the following section, we will discuss tracing of a curve in polar form.

16.4 TRACING A CURVE: POLAR EQUATION

In this section, we shall consider the problem of tracing those curves, whose
equations are given in the polar form. You may recall Unit 3 for polar
coordinates. In such a coordinate system, we can associate each point Pin
the plane with a pair of polar coordinates (r,0), where ris the number of units
between P and the pole and 0is an angle from the polar axis to the ray OP as

shown in Fig. 24. If ris negative, then the point is located on the opposite side
of the origin. Thus, ris a position on a rotated axis.

P(r, 0)

AN

O(Pole) Polar éxis

Fig. 24

The following considerations can be useful in this connection.

i) Symmetry: If the equation remains unchanged when 6 is replaced by
—0, then the curve is symmetric with respect to the initial line.
If the equation does not change when r is replaced by —r, then the
curve is symmetric about the pole (or the origin).
Finally, if the equation does not change when 0 is replaced by -0,
then the curve is symmetric with respect to the line 6 =m/2.

ii)  Region: Find the limits within which r must lie for the permissible values
of 0. If r<a(r>a) forsome a >0, then the curve lies entirely within

(outside) the circle r =a . If r* is negative for some values of 6, then
the curve has no portion in the corresponding region.

iii) Angle between the line joining a point of the curve to the origin and
the tangent: At suitable points, this angle can be determined easily. It
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helps in knowing the shape of the curve at these points. You may recall

from Unit 14 that the angle ¢ is given by the relation tan ¢ = r?.

r

We shall illustrate the procedure through some examples of graphing
equations of the form r=1f(0)in polar coordinates, where 6is assumed to be

measured in radians. Study them carefully, so that you can trace some curves
on your own later.

Example 17: Trace the cardioid r=a(l+cos0).

Solution: We can make the following observations.

i)

i)

Symmetry: Since, cos0 = cos(—0), therefore, the curve is symmetric

with respect to the initial line. That means we need to trace the curve
only above the initial line, rest half curve would be the reflection along
the initial line.

Region: Since, —1<cos0 <1, therefore, the curve lies inside the circle
r=2a.

Tangents: %:—asine. Hence, %<0, when 0<0<m. Thus, r

decreases as 0 increases in the interval 10, ©/2[. Similarly, r
increases with 0 in ]t/2, [. Some corresponding values of r and 6
are given in Table 5.

Table 5

0 0 /2 T
r 2a a 0

Combining the above facts, we can easily draw the graph above the
initial line. By reflecting this portion in the initial line we can completely
draw the curve as shown in Fig 25 (a). Notice the decreasing radii

2a, 1, 1,, 1, etc. If we allow a to vary and keep is positive, then the size
of cardioid varies. If a is negative, then the cardioid changes its
direction. These cardioids are shown in Fig. 25 (b).

(@) (b)

Fig. 25: (a) Curve r =a(1+co0s0); (b) Curve r =a(l+cos0)for a=1,2,5,—1.

This curve is called a cardioid since it resembles a heart.

*k %

You may note that the equations with any of the four forms r =a*bsin0 and
r=axbcosBin which a>0and b > Orepresent polar curves called limacons
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(from the Latin word “limax” for a snail-like creature that is commonly called a
slug) as shown in Fig. 26 (a) to Fig. 26 (d). There are four possible shapes for
a limacon in each of the four cases that are determined by the ratio a/b (Fig
26(e) to Fig. 26 (h)). If a =b(the case a/b =1), then the limacon is called a

cardioid because of its heart-shaped appearance, as noted in Example 17.

O U C

(@) r=a+bcosO (b) r=a—bcosO (c)r=a—bsin0O

(D0

(d) r=a+bsin0 ©) % < 1(with inner loop)  (f) % — 1 (Cardioid)
(9) 1< % < 2 (Dimpled) (h) % > 2 (Convex)

Fig 26

Bcot o

Example 18: Trace the equiangular spiral r =ae

Solution: We proceed as follows.
i) Region: When 6=0,r=a.

ii) Symmetry: There is no symmetry.

iii) Tangents: a_ rcota, which is positive, assuming cota > 0. Hence

, do .
as 0 increases so does r. rd— =tano. Thus, at every point, the angle
r

between the line joining a point on the curve to the origin and the
tangent is the same, namely a. Hence the name.

Combining these facts, we get the shape of the curve as shown in

162 Fig 27.
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Fig. 27: Curve r=ae .

Bcot o

The equiangular (or logarithmic) spiral r=ae is known as the curve of
pursuit. Suppose four dogs start from the four corners of a square, each
pursues the dog in front with the same uniform velocity (always following the
dog in front), then each will describe an equiangular spiral. Several shells and
fossils have forms which are quite close to equiangular spirals (Fig 28). Seeds
in the sunflower or blades of pine cones are also arranged in this form.

Fig. 28: Spiral.

The first discussion of this spiral occur in letters written by Descartes to
Mersenne in 1638. The name logarithmic spiral is due to Jacques Bernoulli.
He was so fascinated by it that he willed that an equiangular spiral be carved
on his tomb with the words ‘Though changed, | rise unchanged’ inscribed
below it.

The spiral r =a0 is known as the Archimedean spiral. Its study was,
however, initiated by Conon. Archimedes used this spiral to square the circle,
that is, to find a square of area equal to that of a given circle. This spiral is
widely used as a cam to produce uniform linear motion. It is also used as
casings of centrifugal pumps to allow air which increases uniformly in volume
with each degree of rotation of the fan blades to be conducted to the outlet
without creating back-pressure.

The spiral r6 =a, due to Varignon, is known as the reciprocal or hyperbolic
(recall that xy = a is a hyperbola) spiral. It is the path of a particle under a
central force which varies as the cube of the distance.

*k %
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Now let’s consider the next example.

Example 19: Trace the curve r=asin 30, a > 0.
Solution:

i) Symmetry: You may note that there is symmetry about the line
0 =1t/2 as the equation is unchanged if 0 is replaced by t—6.

ii)  Region: The curve lies inside the circle r =a, because sin30<1. The
origin lies on the curve and this is the only point where the initial line
meets the curve.

iii) Tangents: r=0= 0=nn/3, where n is any integer. Hence the origin
is a multiple point, the lines 6 =0, g % T, 4—; %n 27 etc. being

tangents at the pole.

. Lo d . . .
iv) Monotonicity: d_(r923COS3e' Hence r increases in the intervals

}O, T [}g E[ , and }7—675 3775[ and decreases in the intervals

6 6
E, i , 5—75 L’ and 3—75 o . Notice that r is negative when
6 2 6 6 2 3
GG}E, E[ or Ge}n, ﬂ or e 5—75 21 . Hence, the curve
33 3 3

consists of three loops as shown in Fig 29. The function is periodic and
the curve retraces itself as 0 increases from 2w on.

0=mn/2
N

w

3n
2
Fig. 29: Curve r =asin30.

*kk

In polar coordinates, equations of the form r =asinn® and r=acosn6,in

which a > 0and nis a positive interger represent families of flower-shaped
curves called roses (Fig. 30). The rose consists of n equally spaced petals of
radius a if nis odd and 2nequally spaced petals of radius a if nis even. It can
be shown that a rose with an even number of petals is traced out exactly once
as 0 varies over the interval 0 <0 <2mand a rose with an odd number of
petals is traced out exactly once as 6 varies over the interval 0<06<m. A
three-petal rose of radius a was graphed in Example 19.



n=3 n=4 n=5

(@) r=asinn®.

n=2 n=3 n=4 n=5

(b) r=acosn®.

Fig. 30: Rose Curves

Now try to trace a few curves on your own.

E5) Trace the following curves in polar coordinates.
i) r=1
T
iy 6=—
) 4
i) r=0 (6=0)
E6) Trace the following curves by stating all the properties you used:
i) r=a(l—-cos0),a>0.
ii) r=2+4cosH.
i) r=acos36,a>0.

iv) r=asin20,a>0

Now, let us summarize what we have studied in this unit.

16.5 SUMMARY

In this unit, we have covered the following points.

1. Tracing a curve y =f(x) or f(x, y) =0 means plotting the points which
satisfy this relation.

2.  Criteria for symmetry and monotonicity, equations of tangents,
asymptotes and points of inflection are used in curve tracing.
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3.  Curve tracing is illustrated by some examples when the equation of the

curve is given in
i) Cartesian form
ii) Parametric form

i) Polar form.

16.7 SOLUTIONS/ANSWERS

Dotted lines represents tangents or asymptotes throughout.

E1) i) Domain: R and the curve lies in first and second quadrant.
Point of intersection with axes: (0,0)
Symmetry: About y —axis
Asymptotes: None
Monotonicity: Increasing on ]0,oo[ and decreasing on ]—o0,0[
Relative extrema: Minimum at 0 and f(0) =0.

The corresponding sketch of the curve is given in Fig. 31.
Y

Y!
Fig. 31

i)  Region of existence: [2,o0[ and the curve lies in first and fourth
quadrant.
Point of intersection with axes: (2,0)
Symmetry: About x —axis
Asympotes: None
Double Point: If we shift origin at (2,0), then, (2,0)is double

point and is cusp.
The corresponding curve is traced in Fig. 32.

/\Y
< >
X o 2 X
vY'
Fig. 32



Domain: R and the curve is in first and third quadrant as either
X, y are both positive or both negative.

Symmetry: About origin.

Asymptote: x -axis is an asymptote.

Monotonicity: Function rises in |—1, 1[ and falls elsewhere.
Tangents: y = x is the tangent at the origin

Concavity: (0, 0), (\/5 @j (— \/5 —g} are points of inflection.

The graph is shown in Fig. 33.

\%
7/
Vi //
s/
7 J3
/// (\/E’T)
o
X 7 X
(—3, ‘@)
,l
b 4
4
Y/
Fig. 33

2

Region of existence: The curvey—2 =1-x" shows that the entire
X

curve lies within the lines x = £1.

Point of intersection with axes: (0,0),(1,0)and (-1,0)
Symmetry: About x —axis, y —axis and origin.

Tangents: Tangents at the origin are y =tx. Tangents at
x =*1 are vertical.

Relative extrema: Maxima at (J_rl/\/z, 1/4), and minima at

1 1
o —
( V2 4j
Multiple point: y =+x~/1-x7, yis defined if 1—x* >0, or
—1<x <1. If we equate lowest degree term to 0, we get
y*> = x?,which gives y = +x . Therefore, the curve has two

tangents at origin, namely, y =x and y =—x, and the origin is a
node. The curve is sketched in Fig. 34.
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vi)

Domain and Range: | —oo,0[ U ]0,00[
Symmetry: None
Point of intersection with axes: None
Concavity: Concave up on ]0,e<[ and concave down on |—oo,0[
Relative extrema: Maxima on —1and the relative maximum value
is f(-1)=—e.
Monotonicity: Increasing on |—oo,—1[ and on ]0,0o[ .
decreasing on |—-1,0[.
Point of continuity: Origin is the point of discontinuity
The corresponding curve is given in Fig. 35.

Y
-1
X' ! o X
I -1-€
YI
Fig. 35
Domain: R

Symmetry: About the origin
Periodicity: Period 21
Point of intersection: Origin (0,0),(n7,0) (n is integer)

Monotonicity: Increasing on 10,7t/ 2[ and }37“,21{ ,decreasing

T 3n|
on |=,—
}2 2]
Relative extrema: Maximum at ©t/2,f(n/2)=1and minima at
i3],
2 2

Concavity: Concave upward on ]0,a[,]t—a,r[ and concave

downward on Ja,t—a[where a =sin " +/2/3.
Point of inflection: x =0,t,t—a.
Curve is traced in Fig. 36.




viii)

Domain: ]0,co[
Point of intersection with axes: (1,0)

Symmetry: None
Asymptote: None

1 1
Monotonicity: Increasing on }—,oo[ and decreasing on }O,—[.
e e

Relative extrema: Minima at x = lf[lj = !
e \e e

Concavity: Concave upward on 0,

The curve is drawn in Fig. 37.
/\Y

X W1 §
1
-1lel >

Fig. 37

Domain: R

Point of intersection with axes: (0, O),(J_r3\/§, 0)

Symmetry: About the origin
Asymptote: None
Monotonicity: Increasing on |—oo,—1[,]1,oo[ and decreasing on

I-LI1[

Relative extrema: Maximum at —1and f(—1) = 2, Minimum at
land f(1)=-2

Concavity: Concave upward on ]0,o<[ and concave downward on
]—0,0[

Point of inflection: (0,0) is point of inflection.

The corresponding curve is traced in Fig. 38.

/\Y
(=2.15, 4.30)
14
1
1
X' . |o
) 233 -1 11, 33 X
I
4}
(2.15, -4.30)
vY'
Fig. 38
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Domain: x € |2nm,(2n +1)t[ ,where nis an interger. The value of
y is always negative. Therefore, the curve lies in third and fourth
quadrant.

Point of intersection with axes: [g+ 2nT, Oj.

Symmetry: None
Periodicity: Period 21

Asymptotes: Vertical asymptotes at x =n=

Monotonicity: Increasing on }2nn,§+ 2n n[ and decreasing on
T
}5+2nn,(2n+1)n[ .

Relative extrema: Maximum at §+ 2nwand f[g+ 2n nj =0.

The corresponding curve is traced in Fig. 39.

Y

-7 (@) 2m 3n

A

X

Fig. 39

Domain: |—o0,5]
Point of intersection with axes: (0,0),(5,0)

Symmetry: None

Asymptote: None

1
Monotonicity: Increasing on }— m§[ and decreasing on }?05 [

Relative extrema: Maximum at %and f[%j = %\/g

Concavity: Concave downward on ]—oo,5][

The corresponding curve is traced in Fig. 40.
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Fig. 40

xi) Domain: |—oo,1[ U ] 1,00
Point of intersection with axes: (0,0)
Symmetry: None
Asymptotes: x =L, y=x+1
Monotonicity: Increasing on |—oo,0[and ]2, o[
Decresing on 10,1[and ]1,2[
Relative extrema: Maximum at x =0and f(0) =0and minimum
at x=2and f(2)=4.
Concavity: Concave upward on ]1,oo[ and concave downward on
J—=oo,11.
The corresponding curve is traced in Fig. 41.

N
‘_l s
Iy /,
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// | .
¢ b >
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5 1
1
1
1
1
Y
Fig. 41

xii)  Domain: |—oo,0[ U ]0,00[
Point of intersection with axes: (—(4)"°,0)
Symmetry: None
Asymptotes: x =0,y=x
Monotonicity: Increasing on |—o,0[ and ]2, [ and decreasing
on ]0,2[.
Relative extrema: Minimum at x =2 and f(2)=3
Concavity: Concave upward on |—o0,0[ and ]0,oo[ .

The corresponding curve is traced in Fig. 42.
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Fig. 42

E2) y=x-tan ' xoblique asymptotes are y = xig, which are shown in

Fig. 43.

Fig. 43

E3) Domain: [0,c[
Point of intersection with axes: (0,m,) .

Symmetry: None

Asymptotes: v=c

Monotonicity: Increasing on [0,c[

The corresponding curve is traced in Fig. 44.
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Unit 16

E4) i)
i)
i
iv)

AY
1 1
1 1
1 1
1 1
1 1
1 |
X \—ma o] na, X
1 1
vY'
Fig. 45
AY
X' o X
VY’
Fig. 46
< >
X' X

Y'N

y

Fig. 47

Again we have x> +y* =sin’ 2t +cos’ 2t =1
So the parametric equations again represent the unit circle
x*+y> =1.Butas tincreases from 0 to 27, the point
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(x,y) = (sin 2t,cos2t) starts at (0,1) and moves twice around the
circle in the anti clockwise direction as indicated in Fig. 48

Y

Fig. 48

You may observe that y = (sin t)* = x> and so the point

(x,y)moves on the parabola y = x*. But note also that, since
—1<sint <1,we have —1<x <1, so the parametric equations
represent only the part of the parabola for which —1<x <1. Since
sin tis periodic, the point (x,y) = (sin t,sin* t) moves back and
forth infinitely often along the parabola from (—1,1)to (1,1) . (See
Fig 49).

ANY

P/ N
< Vv

vY'
Fig. 49

For all values of 6, the point (1,8)is 1 unit away from the pole.

Thus, the graph is the circle of radius 1 centered at the pole (Fig.
50 (a))

For all values of r, the point (r,7t/4)lies on a line that makes an

angle of /4 with the polar axis (Fig. 50(b)). Positive values of
rcorrespond to points on the line in the first quadrant and
negative values of rto points on the line in the third quadrant.
Thus, in the absence of any restriction on r, the graph is the
entire line. Observe, however, that had we imposed the restriction
r = 0,the graph would have been just the ray in the first quadrant.



i)  Observe that as Oincreases, so does r; thus, the graph is a curve
that spirals out from the pole as 0 increases. A reasonably
accurate sketch of the spiral can be obtained by plotting the
intersections with the x —and y —axesfor values of 6that are
multiples of ®/2, keeping in mind that the value of ris always
equal to the value of 6 (Fig. 50(c)).

N /2 n/2

_ Tonr
S5n/2
/4 ﬂ /2
;r 0 = 0 3n n\_/ 2mn [4n
3n/2
Tr/2
d 2n/2 2n/2 |,
(a) r=1 (b) 0=m/4 (c) r=0
Fig. 50
E6) i)
' N
) &) ?
i N\’
Fig. 51
ii)

N
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iii)
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Fig. 53
iv)
N
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Fig. 54



MISCELLANEOUS EXAMPLES AND EXERCISES

The examples and exercises given below cover the concepts and processes
you have studied in this block. Doing them will give you a better understanding
of the concepts concerned, as well as practice in solving such problems.

Example 1: Find the intervals on which the following functions are increasing
and the intervals on which they are decreasing.

) f(x)=x"—-6x+5 iy f(x)=x’

Solution: i) The graph of f in Fig. 1 suggests that f is decreasing for

x < 3and increasing for x > 3. To confirm this, we differentiate f to obtain
f'(x)=2x—-6=2(x-3).

It follows that f’(x) < 0if x <3, and f'(x) >0if x >3.

Since, fis continuous at x =3, using the first derivative test, we can say that
f is decreasing on ]—co,3[ and f is increasing on ]3,+ oo .

We can also conclude these from the graph of f in Fig. 1.
ANY

X! 0 1\?5 X

Y

>0
fis increasing

f'<0
fis decreasing

Fig. 1: Graph of X’ —6x+5.

i) The graph of fin Fig. 2 suggests that f is increasing above the x -axis.
To confirm this, we differentiate f and obtain f’(x) =3x*. Thus,
f’(x)>0if x<0and f'(x) >0if x>0.
Since, fis continuous at x =0, therefore, using first derivative test f is
increasing on |—oo,0[ and ]0,4co| .
Hence, f is increasing over the entire interval |—oo,+oo[ , we also
conclude the same from the graph in Fig. 2.

%

Y'

Fig. 2: Graph of X,
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Example 2: Use the graph of the function of defined as
f(x) :ix4 —%x3 —x* +5given in Fig. 3 to mark the intervals on which f is

increasing or decreasing. Also, verify it using derivatives.

XA
b\ 2

VY’

3 2
—-x"+5.

Fig. 3: Graph of ! x' - ! X
4 3
Solution: The graph suggests that f is decreasing if x <—1, increasing if
—1<x <0, decreasing if 0<x <2, and increasing if x = 2.
On differentiating f we obtain
f'(x)=x"—x*-2x=x(x* —x-2)=x(x+ 1) (x-2)

The sign of f”is given in Table 1, which confirms the conclusion derives from
the graph.

Table 1
Interval Sign of (x)(x+1)(x—2) | Sign of | Conclusion
f(x)
x<-1 =) — f is decreasing on
] —o,— 1[
—1<x<0 | )H) () + f is increasing on
]_ 1’0[
O<x<2 +H)H) () - f is decreasing on
10,2(
X>2 HHH) + f is increasing on
12,+ o]

*k %

Example 3: Find the intervals on which the following functions are concave
upward and concave downward.

) f(x)=x*-6x+5 i) fx)=x> i) f(x):§x3—x2+2

Solution: i) Calculating the first two derivatives we obtain f’(x) = 2x and
f”(x) =2. Since, f”(x) >0 for all x, the function f is concave upward on
]—o0,+ o[ . You can verify this from the graph given in Fig. 1.

i) Calculating the first two derivatives, we obtain f'(x) =3x*and f”(x) = 6x.
Since, f”(x) < 0if x <0and f”(x) > 0if x >0, therefore, the function fis
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concave downward on |—oo,0[ and concave upward on ]0,+ oo[ as shown
in Fig. 2.

iiy Calculating the first two derivatives, we obtain f’(x) = x*> —2x and
f’(x)=2x-2=2(x-1). Since, f’(x) >0if x >1and f’(x) <0if x <1,
we conclude that f is concave upward on |l,+co[ and f is concave

downward on ]—oo,1[ . Fig. 4 shows the graph and verifies this.
AY

Concave

downward /

XA
xXJ

Y’

1
Fig. 4: Graph of —x’—x*+2.
3

*k %

Example 4: Consider the graph of the function f defined by
f(x) =ix4 —§x3 —x* +5 as shown in Fig. 3. Find the inflection points from

the graph, and check your answer by finding the inflection points using
derivatives.

Solution: From the graph shown in Fig. 3, it is clear that the graph changes
from concave upward to concave downward between —land 0, say roughly at
x =—0.50, and the graph changes from concave downward to concave upward
somewhere between 1and 2, say roughly at x =1.25. To check this result with
the exact inflection points, we obtain the second derivative of f. We get

£(x) = x> —x2 —2xand £"(x) =3x2 = 2x -2 =[3x — (1 +JI[B3x = 1 =7)].

We check sign of the second derivative at different intervals as given in Table 2.
Thus, from the sign of f”in Table 2, we can say that f has inflection points at

—J7 _1+\/7

the values x :1T ~—0.55and x = ;- 1.22. The graph of £”is shown

in Fig. 5 verifies this.

Table 2
Interval Sign of f” | Result
1-7 + f is concave upward
X <
3
1-7 1+47 | - f is concave downward
3 <x<
1++/7 + f is concave upward
>
3
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Fig. 5: Graph of f” .

*k %

Example 5: Find the inflection points of f(x) = sin x on the interval [0, 2],
and verify your results with the graph of the function.

Solution: Calculating the first two derivatives of f , we obtain f’(x) =cosx and
f’(x)=—sinx.
Thus, f”(x) <0if 0< x <, and f”(x) > 0if © < x <27, which implies that the

graph is concave downward on 0 < x < tand concave upward on T< X < 2T.
Thus, there is an inflection point at x = t = 3.14 as shown in Fig. 6.

ANY

XA
Lo
o)
a
N
-
1
1
1
w
ﬁ o
S~
(
N
3
s/

Fig. 6

*k %

Example 6: Use the graph of y = f’(x) given in the Fig. 7 to fill the boxes with
<,=,0r>. Give reasons for your answer.

) fO [ Jtm it [f@ iy £ ]o
iv) £(1) D 0 v f”(O)D 0 viy £7(2) D 0

180



Block 4 Miscellaneous Examples and Exercises

x<J$

NAS

Fig. 7

Solution: i) Since, f’>0on [0,1], therefore, f is increasing on [0,1]and
f(0)<f(l).

i) Since f’<0on [1,2], therefore, fis decreasing on [1,2]andf(1) > f(2).
i) £°(0)>0

iv) f’(1) = 0,the graph of fintersects the x -axisat x =1.

v) £7(0)=0

vi) £7(2)=0.

*kk

Example 7: Show that 3/1+x <1+%xif x>0.
Solution: Let f(x) = 1+§—i/1+x .

, 11 1 1 1 1
Then, f'X)=———(1+x)} =————M =—| | — |.
=373007 =373 07 3{ (1+x)2’3}

Here, f’(x) >0, when x >0, therefore, f is an increasing function on 10, o] .

Hence, £(0) <f(x)Vx€]0,00].
Which gives 0< 1+§—3\/1+x [-f(0)=0]

Thus, Y1+ x <1+§

*k %

Example 8: Find the relative maxima and minima of f(x)=x*-2x". Mark
these on the graph of f.

Solution: We have f'(x) =4x’ —4x =4x(x—=1)(x+1), and f"(x) =12x>—4.
On solving f’(x) =0, we get critical points, which are x =0,x =land x =—1.

Using second derivative test, we get
£7(0)=—4 <0, thus maxima at x =0.
f7(1) =8 >0, thus minima at x =1.
f’(=1) =8> 0, thus minima at x =—1.

181



So, there is a relative maximum at x = 0 and relative minima at x =1and at
x =—1 as shown in Fig. 8.

xX¥

3

Example 9: Trace the curve y = X—Xlg by showing all the properties you
X —

use to trace.

Solution:

i) Symmetry: There is no symmetry about x -axis, y -axis or about origin.

ii) Point of intersection with axes: Setting y =0, gives the equation
x’—x*>—8=0. The LHS of this equation changes its sign in the interval
[2,3], therefore, the graph of y intersects x -axis between 2 and 3. Also,
the curve passes through the point (0,8).

2

3
. -x =8 . :
iii) Asymptotes: Here hrr%Ltends to oo, therefore x =1is a vertical
X—> X —

asymptote. There are no horizontal asymptotes.

iv) Relative maxima or minima: We get dy = d [xz —i}

dx d_x x—1
=2x+ >
(x=1)
2
and d }2] =2- 16 3
dx (x—-1)
Here, y'=0when 2x :—(Ll)2 or when 2(x’* —=2x*+x+4)
X_

=2(x+1)(x* =3x+4)=0. The only real solution to this equation is
x = —1. Therefore, there is a relative minimum at x = -1, and the
minimum value of yis 5.

v) Increasing or decreasing function: Here, y’ <0, when x <-1,
therefore, f is decreasing, and y’>0, when —1< x <oo, thus, fis
increasing on ]—1,co[ exceptat x =1.
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vi) Concavity: Here, y" =0, when 2= or when (x—1)> =8. Then,

(x=1)’

x—1=2, s0, x =3.Thus, there is an inflection point at x =3. The
coordinates of the inflection point are (3,5).

Combining all the properties, we discussed from (i) to (vi), we can trace
the curvey =f(x). Fig. 9 shows the curve.

—
1
x

(0, 8)
(-1, 9)

273

><\/

Y

Fig. 9

*k %

Example 10: The position function of a moving particle is given by

s(t) = 2t> =21t + 60t + 3 . Find the velocity and acceleration of the particle and
also, determine the interval in which velocity and acceleration are increasing
or decreasing.

Solution: The velocity and acceleration at time t are

v(t)=s'(t) = % =6t —42t+60=6(t—2)(t—5)and

, d’s 7
a(t)y=v'(t)= e 12t -42 = 12[t 2j .
At each instant we can determine the direction of the motion from the sign of
v(t) and whether the particle is speeding up or slowing down from the signs of
v(t) and a(t)together (Fig. 10 (a) and (b)).

Table 3
Time Velocity v(t) Acceleration a(t) | Interpretation
0<t<2 | v(0)=60m/s a(0) =—42m/s? Since, the acceleration
is negative, the speed
of the particle is
decreasing.
v(2)=0m/s a(2)=-18m/s? The particle continuous
moving with decreasing
speed.
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a[zj =0m/s?
2

Time Velocity v(t) Acceleration a(t) | Interpretation
7 | v(2)=0m/s a(2)=-18m/s> The particle begins to
25t5§ @) slow down.

7 7\ =27 7 The particle continues
EStSS [Ej:_m/s a[5j=0m/s2 moving until time t =35,
whenitstopsat t=35,
v(5)=0m/s a(5)=18m/s s_(S):_ZSm,lt_reverses
direction again, and
begins to speed up with
acceleration a(5) =18.
The particle then
continues moving right
thereafter with
increasing speed.
ANV AV
(0, 6)1 /
* 6} (7/2,0) >t
< : > -20t
© é\./5 t
712, -27/2 -
i 4040, -42)
WV
A\
(@) Graph of v(t) (b) Graph of a(t)
Fig. 10
The motion of the particle is described schematically by the curved line in
Fig. 11.
5<
t=7/2
e
t=0 !
g B 28 55 s
Fig. 11

*kk

Example 11: Find all absolute extrema of the function f(x) = x* —3x* +4on the

interval 1-1,2].
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Solution: Here, f(x) = x’ —3x* + 4. On differentiating, we get
f'(x)=3x>-6xand f"(x)=6x—6.

f’(x) = 0gives3x* —6x =0, which implies x =0,2.

Since, £7(0) =6, therefore, f has a relative maxima at x =0. The maximum
value is f(0)=4.

Since, f”(2) =6 >0, therefore, f has a relative minima at x =2 . The
minimum value is £(2)=0.

Since, f has only one relative maximum value and one relative minimum value
on ]—1,2[, therefore, the relative extrema would be absolute extrema. Thus,

f has an absolute maximum at x =0, and the absolute minimum at x =2 . You
can see the graph of fin Fig. 12.

ANY
(0. 4)
< O >
X' -1,0 © (2,0) X
vy’
Fig. 12

*k %

Example 12: Find the radius and height of the right circular cylinder of the
largest volume that can be inscribed in a right circular cone with radius 12 cm
and height 20 cm.

Solution: Let rbe the radius (in cm) of the cylinder, h be the height (in cm) of
the cylinder and V be the volume (in cubic cm) of the cylinder as shown in
Fig. 13 (a).

The volume of the inscribed cylinder is V =7tr’h.

Since, the volume has two variables, we can eliminate one of the variables
using relationship between rand h. For this, we use similar triangles (Fig. 13

(0)),

We obtain B—C:E
CD OA
20=h 20 h—00-2,
r 2 3

Putting hin terms of rin the formula of V, we get
V= nrz[ZO —%rj =207’ —%nﬁ

which expresses V in terms of ralone. Because rrepresents a radius, it
cannot be negative, and because the radius of the inscribed cylinder cannot
exceed the radius of the cone, the variable rmust satisfy 0 <r<12.
185
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On differentiating V with respect to r,we get(:l—V = 40mr — Smr’® = 5mr(8 —r) and
r

2
dv =40t —10mr .

=

dr
Setting, dV/dr =0gives 5nr(8—1) =0, so, r =0and r =8 are critical

numbers. Since, these lie on the interval [0,12], the maximum must occur at
one of thevalues r=0, r=8, r=12.

(V)alr:O = O
12807

(V)alr:8 = 3

(V)alr:IZ = O

12807

Here, the maximum volume V = cm’ occurs when the inscribed cylinder
. 20 L :
has radius 8 cm. When r =8cm,h = ?cm. Thus, the inscribed cylinder of the

largest volume has radius 8 cm and height ?Cm.

N NN B
o
&
N
20 cm Jd B
20 e T
h
4
V4 A
@] 12
(a) (b)
Fig. 13

*k %

Example 13: A pharmaceutical firm sells liquid form of penincillin in units at a
price of 100 per unit. The total production cost (in %) for x units is

C(x) =100,000 +20x + 0.004x*and the production capacity of the firm is at

most 20,000 units in a specified time. Find the number of sells a liquid form of
penicillin at units of penicillin, manufactured and sold in that time to maximise
the profit?

Solution: The total revenue for selling x units is R(x) =100x, the profit
P(x) on x units will be P(x) =R(x)-C(x)
=100x — (100,000 +20x +0.004x*) = 80x — 100,000 —0.004x *

On differentiating, P(x) with respect to x , we get, j—P =80-0.008x .
X

Setting, j—P = 0gives 80 —0.008x =0, which gives x =10,000.
X
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Since, the capacity is at most 20,000 units, the critical number lies in the
interval [0,20,000]. Hence, the maximum profit must occur at one of the

values x =0,x =10,000,or x =20,000

Now, the value of P(x) at each critical number is

P(0) =-100,000

P(10,000) = 300000

P(20,000) = —-100,000

Thus, the firm must manufacture 10,000 units to maximise the profit.

*kk

Example 14: Trace the curve y =e ™ "> by stating all the properties you use to
trace.

Solution: i) Symmetry: Since, the power of x is even, therefore, the curve is
symmetrical about the y -axis.

i)  Points of intersection with axes: Setting y =0, we get e * /> =0,
which has no solution, because all powers of e have positive values.
Thus, there are no x -intercepts. Now, setting x =0gives y =1.

Therefore, the curve passes through the point(0,1) .

iii) Asymptotes: There are no vertical asymptotes, since e ™ "%is defined
and continuous on | —oo,+oo] .

Also, lime™?*=lime™'*=0
X—>—00 X—>+o0

Thus, the curve y = e '*has horizontal asymptote, whichis y =0.

iv) Increasing and decreasing function: On differentiating, we get
ﬂ :e—xz/zi _X_2 > _Xe—xz/z
dx dx 2
Here, y' > 0,when x < 0,thus, yis increasing on |—o,0[, and
y’ < 0,when x > 0,thus, yis decreasing on ]0,co] .

v) Relative extrema: Since, e * /> > Ofor all x, the sign of

dy/dx = —xe ™ '*is the same as the sign of —x .
Therefore, y has a relative minimum e’=1lat x=0.

. . dzy d —x2/2 _x2/2 d
Vi Concavity: Here, —-=—x—1e™ " |4+ —[—x
) y dx? dx[ ] dx[ ]
— Xze—xz/z _e—xz/z — (X2 _De—xz/z

~12 5 0for all x,the sign of d%y/dx? = (x> —1)e™'?is the same

Since, e
as the sign of (x> —1), and the sign of (x* —1) would change at

x =land at x =—1. Thus, the inflection points occur at x =—1and at
x =1. These inflection points are (-=1,e™"?) = (=1,0.607) and

(1e™"?) = (1,0.607).

We combine all these points, and trace the curve as shown in Fig. 14.
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@, 1)

< >
X' o X

Ny’

Fig. 14: Curve y = e,

*k %

Example 15: Find the type of the indeterminate forms in the following limits.
Also, find the limit.

2 _ .
i limx 9 i lim 1—sin x
x—3 X_3 X—n/2 COS X
X -4/3
i) lim = 31 iv)  lim ————
= X x—+sin(1/x)

Solution: i) The numerator and denominator are 0 as x — 3. Therefore, the
limit is an indeterminate form of type 0/0. Applying L'Hépital’s rule, we get

d ,
2 —[x"=9]

X — 2X
im =2 o fm 9 2
x—3 X—3 x—3 d x—3 1

—[x=3]
dx

Alternatively, you may find this limit by factoring
2 [—
limx 9=Iim(x 3)(x+3)

x—3 X_3 x—3 X_3

:ljn%(x+3):6.

y . T N
i) The numerator and denominator are «as x —>E, therefore, the limit is an

indeterminate form of type 0/0. Applying L’'Hopital’s rule, we get

d )
1 —sin x o Asinx] —cosx 0
lim =1jmdX =lim — =—=0
T COSX oEood wr—sinx -1
2 2 —[x7] 2
dx

i) The numerator and denominator are 0 as x — oo, therefore, the limit is an

indeterminate form of type =, Applying L’Hépital’s rule repeatedly, we get

e -1 ;[ex ~1 e e* e
lim —— = lim uS =1 = =lim— = oo
X=X x—oo d 3 x—ee 3x x> GX  xoe
—[x7]
dx

iv) The numerator and denominator are 0 as x — oo, so the limit is an
indeterminate form of type 0/0. Applying L'Hopital’s rule, we get
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b
L
>

|
w |

b
(98]
(@)

oo sin(1/x) x> (—=1/x%)cos(1/x) x>=cos(1/x) 1

*k %

Example 16: Show that limo(1+x)”x =e.

1/x

Solution: Lety = (1+x) " and taking the natural logarithm of both the sides.

h’ly — 11’1(1+X)1/x :lh'l(l-i-x) _ In(1+x)
X X
Thus, lim In y =lim In(1+x) , Which is an indeterminate form of type 0/0.
X X X
Using L'Hopital’s rule, we get limIn y =1im In(1+x) _ lim 1/(11+ X4
X X X X!

Since, we have Iny — 1as x — 0, the continuity of the exponential function
implies that ™ — e'as x — 0, and this implies that y = eas x — 0. Thus,
lim(1+x)"* =e.

x—0

*k %

Now you may try the following exercises.
E1) Find the inflection points, if any, for the curve y=x"*.

E2) Use the graph of y =f(x)given in Fig. 15 to find the following:

i)  The intervals on which f is increasing.

i) The intervals on which f is decreasing.

iii) The intervals on which f is concave upward.
iv) The intervals on which f is concave downward.

v) The values of x at which f has an inflection point.
ANY

Y

[ o EEp—— 4

<\

——m----do

Fig. 15
E3) Showthat x <tanxif 0<x<m/2.

E4) Find the intervals on which f is increasing, the intervals on which f is
decreasing, the open intervals on which f is concave upward, the open
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intervals on which f is concave downward, and the x -coordinates of all
inflection points for the functions defined as follows:

) f(x)=(x+2)° i) f(x)=¥x+2
i) f(x)=— iv)  f(x)=x"}(x+4)

x> +2

E5) Prove that a general cubic polynomial f(x)=ax’+bx*+cx+d
(a # 0) has exactly one inflection point.

E6) Find the relative extrema of the functions defined as follows using both
the first and second derivative tests.
) f(x)=1-4x-x’
i) f(x)=2x"—-9x>+12x

iy f(x)=sin’x, 0<x <27

v) f(x)=[x"-4

E7) Trace the following curves by stating all the properties you use to trace.
i) y=(x—-4)""

1/3 4/3

i) y=6x"+3x"".

E8) Let f(x)=x"+px+q. Find the values of pand qsuch that f(1) = 3is
an extreme value of f on [0, 2]. Is this value a maximum or minimum?

E9) Find the absolute maximum and minimum values of f, if any, on the
stated interval.
) f(x)=(x*—=1)on ]—oo,+oo[
i) f(x)=x**0-x)on [~1,20]
i) f(x)=2secx—tanxon [0,7t/4]
iv) f(x)=sin(cos x)on [0, 27]

E10) Suppose that the equations of motion of a paper aeroplane during the
first 12 seconds of flight are x =t—2sint,y =2—-2cost, 0<t<12.

What are the highest and lowest points in the trajectory, and when is the
aeroplane at those points?

E11) A closed cylindrical can is to be made to hold 1 litre (1000cm®) of liquid.

What should be the height and radius of the can to minimize the amount
of material needed to manufacture the can?

E12) Find a point on the curve y = x*that is closest to the point (18,0).

E13) A firm determines that x units of its product can be sold daily at p rupees
per unit, where x =1000—p . The cost of producing x units per day is
C(x) =3000+20x .
190
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i)  Find the revenue function R(x).
ii)  Find the profit function P(x).

i) Assuming that the production capacity is at most 500 units per day,
determine how many units the company must produce and sell each
day to maximise the profit.

iv) Find the maximum profit.
v)  What price per unit must be charged to obtain the maximum profit?

E14) Find the point on the curve y = (1+x”)', at which the tangent line has
the greatest slope?

1 ,
E15) Trace the curve y = (nx) by stating all the properties you use to trace
X

it.

E16) Trace the curve y = IAL““ where y is the population at time
+ Ae

t(t=0)and A,kand L are positive constants.

E17) Suppose that a hollow tube rotates with a constant angular velocity of ®
rad/s about a horizontal axis at one end of the tube, as shown in the Fig.
16. Assume that an object is free to slide without friction in the tube while
the tube is rotating. Let rbe the distance from the object to the pivot
point at time t > 0, and assume that the object is at rest and r = 0 when
t =0. If the tube is horizontal at time t = 0and rotating, then

2g > [sinh( ®t) — sin(wt)]during the period that the object is in the
(0]

tube. Assume that tis in seconds and ris in meters, and use
g=98m/s*and w=2rad/s.

r=

i) Trace the curve r=f(t)for 0<t<1.

ii) If the length of the tube is 1m, then find the limit taken by the object
to reach the end of the tube?

3~
AR
] SS

(0]

Fig. 16

E18) Trace the following curves given in polar coorindates:

i) e:—%c i) 1> =sin20
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E19) Find the slope of the tangent line to the following polar curves for the
given value of 0.

i) r=2cos0; 6=m/3

i)y r=—; 0=2

1
0
E20) Show that the curve with parametric equations x = t* —4t,

y = t”intersects itself at the point (0,4), and find equations for the two
tangent lines to the curve at the point of intersection.

SOLUTIONS/ANSWERS

E1) Calculating the first two derivatives of f we obtain f'(x) =4x’,f"(x) =12x>.
Here, f”(x) > 0for x < 0and for x >0, which implies that f is concave
upward for x < 0and for x > 0. In fact, f is concave upward on |—oco,4oo] .

Thus, there are no inflection points, and in particular, there is no inflection
point at x =0, even though £”(0)=0. (See Fig. 17)

ANY
y =x*
< >
X o X
vy’
Fig. 17

E2) i) The function fis increasing on [d,f].
i) The function f is decreasing on [a,d]and [f, g].
i) The function f is concave upward on the intervals ]a,b[and ]c,e[.
iv) The function f is concave downward on ]b,c[and ]e,g[.
v) The points of inflection are at x =b,x =cand x=d.
E3) Let f(x)=tanx —x
f'(x) =sec’ x —1

f'(x) >0, as sec’ x > 1on O<x<§.

. . T
Therefore, fis increasingon 0 < x < 2

Hence, f(0) < f(x)
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E5)

E6)

E7)

Here,f(0) =0. Thus, 0 < tan x — x which gives, x <tanx.

)

i)

Increasing on ] —oo,+oo].

Not decreasing anywhere on R.
Concave upward on |—2,4oo].
Concave downward on |—oo,—2[.
Point of inflection is at x =-2.

Increasing on [O +oo[
Decreasing on |

Concaveupwardon} \/7\/7{

Concave downward on }— “"\E { and on Ng;m { .
Points of inflection are +\/§l and —\/2,—
33 33

Increasing on ] —oo, 4 oo .

Not Decreasingon R.

Concave upward on |—oo,—2[ .
Concave downward on |—2,+oo] .
Point of inflection at x =-2.

Increasing on [—1,+oo[

Decreasing on | —oo,—1]

Concave upward on |—o,0[ and ]2,4co[ .
Concave downward on ]0,2[ .

Points of inflection are (0,0) and (2,6(2)"°).

f(x)=ax’+bx*+cx+d
f'(x) =3ax” +2bx +¢
f”(x) = 6ax + 2b

2b

f'x)=0=>x=-".

6a

Thus, f has exactly one inflection point.

i)
i)
i)

Relative maximum at x =-2and f(-2)=5.

Relative maximum of 5 at x =1and relative minimum of 4at x =2.

Relative minimum of 0 at x = wand relative minima of 1 at

_T3n
272

Relative maximum of 4 at x = 0 and relative minima of 0 at

x=2and —-2.

The properties to trace the curve are as follows:

i) Symmetry: There are no symmetries about the coordinate

axes or the origin. However, the graph of y=(x—4)
symmetric about the line x =4, since, itis a translatlon (four

2/3
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units to the right) of the graph of y = x*’*, which is symmetric
about the y -axis.

i) Point of intersection with axes: (4,0)and (0,2.52)

iy Asymptotes: None, since f(x) = (x —4)*’is continuous

2/3

everywhere and also, lim (x —4)”"” =4 and

X—>+Hoo

lim (x —4)*"% = 4oo .

X—y—00

iv) Relative extrema: The derivatives are

dy ’ 2 173 2

—— =f'x)==(x—-4 =

dx x) 3( ) 3(x—4)"?

dzy » 2 —4/3 2
QY x)= S Ay S
g L=y 9(x -4y

There is a critical number at x =4, since f is not differentiable

there; and by the first derivative test there is a relative minimum
at that critical number, since f'(x) < 0if x <4and f'(x) > 0if

Xx>4.

v) Concavity: Since £”(x) < 0if x # 4,the graph is concave down
for x <4andfor x > 4.

vi) Vertical tangent lines: Since f(x) = (x —4)**is continuous at

x =4and
lim f(x) = ﬁm%zﬁo
x—4* x—4* 3(X o 4)
g P . ”} . ;
lim f'(x) = lim —3 = —oo, therefore is a vertical tangent
x—4" x—4" 3()( = 4)

line and cusp at x =4.
Combining all the properties, we can trace the curve as shown

in Fig. 18.
ANY

\ 0,257

N

x
O
»
&
X

wY'!
Fig. 18
i)  The properties used to trace the given curve are as follows:

i) Symmetry: There are no symmetry about the coordinate axes
or the origin.
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vi)

vii)

Points of intersection with axes: (0,0)and (-2,0).

Asymptotes: None, since f(x)=6x""+3x*"is continuous
everywhere, also, since
lim (6x"° +3x*?) = lim 3x"?(2+ x) = +oo

X—>400 X—>+o0
lim (6x" +3x*?) = lim 3x"*(2+x) = 40
X—>—00 X——o00

Relative extrema: The derivatives are

? =f'(x) = 2x " +4x"? = 2x 231+ 2x) = @

X X

and

dz i 4 4 4 4 X—l)
e O = e =

The critical number is x = —%. The sign of dy/dx changes at
X = _?1 from negative to positive, therefore,from the first

o . . . 1
derivative test, there is a relative minimum at x = _5'

Increasing and decreasing: The function f is decreasing
when x < —0.5and increasing when x >—0.5 .

Tangents: There is a point of vertical tangency at x =0, since
22x+1)

Mf,(X): limT—+oo
x—0" x-0" X
D S . 22x+1)
e e T
d’y
Concavity: Here —3->0,when x <0, therefore, the curve is
X
2
concave upward and d }2] <0,when 0<x <1,therefore, the
X

curve is concave downward, and the curve is again concave
upward for x > 1. There are inflection points at (0,0) and (1,9) .

Combining all the properties, we trace the curve as shown in

Fig. 19.

NY

10+ (1,9)

5.1
X iy 1 ) 1 > 4

-5+
vy’

Fig. 19 195



E8) f()=3=1+p+q=p+q=2
f'(x)=2x+p=0=>x=-p/2
Since, x =1is an extreme value, therefore, p=-2, which gives q=4.
Now, f”(x)=2and f”(1) =2 > 0, therefore, this extreme value is
minimum value.

E9) i) Minimumvalue -1 at x=0
No maximum.

i) Maximum value 48 at x =8

Minimum value 0 atx =0,20.

i) Maximum value 2 at x =0

Minimum value \/gat X :g.

iv) Maximum value 0.841at x =0,27.
Minimum value —0.841at x=T.

E10) Maximum y =4at t=m,3%.
Minimum y =0at t=0,2m.

E11) The surface area of the can S = 2mr® + 2nrh , where rand h are the
radius and height of the can, respectively. Also, mtr*h =1000cm’.

Thus, S =2nr? +w , which gives > 4mr — 2090
r dr r

ds 10

—=0=r= —mcm.

dr (2m)

2 2
Now, d—§ =47n+ 40?0 and d—§ > 0, therefore minimum.
dr r dr e 10
oen'?
2
Hence, the height h = —01/3 cm.
(2m)

E12) Let the point be (x,y). The distance between (x,y)and (18,0)is
D= \/(x ~18)*> + (y—0)* . Since, the point (x,y)lieson y=x?,

therefore, D =+/(x —18)% +x* .

Suppose, L=D"
L=(x-18)*+x*

d—L =2(x—18) +4x’
dx

The critical numberis x =2.
d’L

2:

2+12x°

dx

2
(d I;J =50>0.
dX at x=2

Thus, the distance is minimum, when x =2 . Thus, the pointis (2,4).

196 E13) i) The revenue function R(x) = xp = x(1000 — x)
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The profit function P(x) = R(x) — C(x) = 980x — x> — 3000
It is given that x <500 . Here, P’(x) =980 —2x

P’(x) =0gives x =490.

P’(x) =2 <0, thus, maxima.

Therefore, the company must produce and sell 490 units to
maximise the profit.

P(490) =%237100
p =1000-490 =510

E14) The required point is (— ! 3}.

E15) i)
i)

i)

vi)

s
Symmetry: None
Points of intersection with axes: (1,0)

1 . .
Asymptotes: Since, lim — =+ooand limInx = —coit follows that

x—=0" X x—0"

| 1 . +
values of y _nx =—(Inx) will decrease without bound as x -0,
X X

.1 ,
SO0, lim X = —co and the graph has a vertical asymptote x =0.

x—=0" X
(n%) - ofor x >1. The limit lim ** = 0. Thus,
X X—too Y

(Inx)/x is asymptoticto y=0as x — +oo.

You may note that

Increasing and decreasing function: The derivatives are
dy _x(/x)—(nx)(1) 1-Inx

and
dx x* x*
d’y x*(-1/x)-(1-Inx)(2x) _2xlnx—3x 2lnx-3
dx® x* x* x>
Since, x> > 0for all x >0, the sign of ? = 1_11; % is the same as
X X

the sign of 1-In x . But In xis an increasing function with Ine =1,
so, 1-In x is positive for x < e and negative for x >e.

Relative extrema: There is a relative maximum

Me) _1/e=037at x =e.
e
2 —_—
Concavity: Since, x> > 0for all x >0, the sign of d Z = 21nx3 & is
X X

the same as the sign of 2Inx—3. Now, 2In x —3=0when

Inx = % or x =¢’'%. Again, since, Inx is an increasing function,
2Inx —3is negative for x < e*'*and positive for x >e’'>.

Thus, an inflection point occurs at [em,%e’mj ~ (4.48,0.33).

Fig. 20 shows the curve.
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04+

024
¢ —
X! Of 5 10 15 20 X

—02+

—0.4+

\/Y'

Fig. 20

E16) You may like to trace the curve by assuming values of L, A and k.

E17) You may like to trace the curve yourself.

E18) Fig. 21(a), 21 (b), 21 (c) and 21 (d) shows the graphs of the polar curves
of (i), (ii), (iii) and (iv) respectively.

N

®)
v
N
\Z

™
|/

v v

(a) (b)

N N
1

~
N2
N
\\\
_J_J
N2
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Block 4 Miscellaneous Examples and Exercises

tan2 -2
2tan2 +1

E20) y:i%+4.
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