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BLOCK 3 SECOND AND HIGHER ORDER
ORDINARY DIFFERENTIAL
EQUATIONS

In Block 2, we discussed different methods of solving first order differential
equations. But there are several real life situations in which we need to solve
second and higher order differential equations. The simplest problem of the
motion of a particle along a straight line is governed by a differential equation
of the second order. Similarly, the motion of a pendulum, the forced vibrations
of a particle, the problems of mechanical oscillations and electric circuits are
all governed by differential equations of the second order. The isoperimetric
problem (i.e., the problem of determining curves of a given perimeter which,
under given conditions, enclose a maximum area) depends upon a differential
equation of the third order. Also, the trajectories lead to differential equations
of higher order depending upon the conditions imposed. In this block we will
discuss the methods of solving ordinary differential equations of second, third
and higher orders.

In the early years of the eighteenth century, a number of methods for solving
differential equations of second and third order were found. For example, in
1712 Count Jacopo Riccati, an Italian mathematician, obtained the method of
reduction of order for differential equations of the second order, viz.,

f(y, v, ¥")=0 to a first order differential equation by making use of the

relation y” = p%. In 1728, Leonhard Euler, Switzerland’s foremost scientist
v
and a mathematician, proposed and solved the problem of reducing a
particular class of equations of second order to the equations of first order.
Although John Bernoulli, a Swiss mathematician, claimed that, before the year
1700, he had studied the general equation of nth order, the systematic
treatment and various methods of solving general differential equation of any
order were given by Clairaut, the French mathematician, in 1734 and by Euler
in 1739. Now let us see how we have presented the material in this block.

This block consists of four units. In Unit 10, which is the first unit of this block,
we have classified general linear differential equations into those with constant
coefficients and those with variable coefficients and further classified these
equations into homogeneous and non-homogeneous equations. We have
stated the conditions for the existence and uniqueness of the solution of a
general non-homogeneous linear differential equation. Conditions for the
solutions of linear differential equation to be linearly dependent or independent
and elementary properties of these solutions are discussed. The methods of
solving homogeneous linear differential equations with constant coefficients
have also been discussed in this unit.

In Unit 11, we have discussed the method of undetermined coefficients for
finding a particular integral of non-homogeneous linear differential equation
with constant coefficients. We have identified the types of non-homogeneous
terms for which the method is applicable and illustrated the method for the
types identified.

In Unit 12, we have discussed the method of variations of parameters, which is
due to the French mathematician Joseph Louis Lagrange (1736-1813), for
finding the solutions of linear differential equations with constant as well as
variable coefficients. The French mathematician D’'Alembert’s, method of
reduction of order and the method of solving Euler's equations are also
discussed in this unit.



In Unit 13, we have developed the theory for finding particular integrals with
the help of operators. In particular, we have discussed the method of
differential operators for finding particular integrals of differential equations

with constant coefficients of the type f(D)= X, where D = di is a
63

ax

differential operator and, when X =¢“*, x", sin(ax+b), ¢“v(x) and

x"v(x), a, b, ® and m being constants. Applications of non-homogeneous

differential equations with constant coefficients in the study of vibrations in
mechanics and the theory of electric circuits are also discussed in this unit.
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10.1 INTRODUCTION

In Block 2 we defined the basic concepts related to ordinary differential
equations and discussed various methods of solving first order ordinary
differential equations. We also formulated and solved some of the physical
problems which were governed by the first order linear ordinary differential
equations. The methods developed there required mainly the skill in the
techniques of integration and equations could be solved in terms of familiar
elementary functions. However, this may not be the case always. As
mentioned in the introduction to this block, the differential equations governing
many physical or biological phenomenon may not necessarily be of the first
order, they may be higher order linear or non-linear equations, may have
constant or variable coefficients.

In this unit we shall classify in Sec. 10.2 the general linear nth order differential
equation into two broad categories:

i) homogeneous and non-homogeneous

i)  equation with constant coefficients and variable coefficients.

Here we shall mainly confine to the methods of finding the complete solution of
linear homogeneous differential equations with constant coefficients of
order two or more. Non-homogeneous equations will be considered in the
units to follow. It is usually much more difficult to solve equations if the
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coefficients are not constants but variables. We shall not be discussing the
methods of solving such equations in this course. However, for a general
linear differential equation with variable coefficients, we shall state in Sec. 10.3
the conditions under which a unique solution can be found. We shall also
discuss here some properties of solutions of linear differential equations and
define its general/complete solutions. The methods of finding complementary
function of a linear homogeneous differential equation with constant
coefficients are discussed in Sec. 10.4. At the end of the unit we have given in
an appendix, a brief review of some of the concepts from matrices and
determinants which you will find useful while going through the properties of
the solutions of linear differential equations in Sec. 10.3.

Objectives
After reading this unit, you should be able to:

¢ identify linear differential equations with constant, as well as with variable,
coefficients;

¢ identify homogeneous and non-homogeneous linear differential equations;

* describe the conditions under which a unique solution of a linear
differential equation exists;

e write the complete integral of a given differential equation when its various
independent integrals are known;

e classify solutions of non-homogeneous equations into complementary
function and particular integral; and

e obtain the general solution of a homogenous linear differential equation
with constant coefficients.

10.2 GENERAL LINEAR DIFFERENTIAL
EQUATION

Let us begin by considering the following equations
d*y _dy

and

What is the difference between the two equations?

You know that both the equations are second order linear equations with
constant coefficients. The only difference being the term x+ 2, on the right
hand side of the second equation, which is a function of x plus a constant
term. Such a term, called the non-homogeneous term, makes the equation
non-homogeneous. Now consider an equation of the form

£+2Ad—+"h_\ +x+1

dx dx

where the coefficients are functions of x. Note that it is second order non-
homogeneous linear differential equation with variable coefficients.
The most general form of linear differential equation is given by

n n 1
)

a(,(x): a ,,T - n.(x) Yra,(0 y=b(2). (1)
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The coefficients «a,, «,, ...,a, and b are continuous on an interval < x <.
If, a,(x)# 0, the differential equation is of nth order. Eqgn. (1) is a linear
differential equation of nth order with variable coefficients.

In case coefficients q,. q,, ..., a, are all constants i.e., they do not depend on

x, then Eqgn. (1) will be termed as a linear differential equation of nth order
with constant coefficients.

Further, when b(x)=0 ¥ x, Eqgn. (1) is classified as homogeneous linear
differential equation.

Butif b(x) #0 and is a constant or a function of x, then Eqgn. (1) is termed as
non-homogeneous linear differential equation. The term b(x) is the non-

homogeneous term of Egn. (1). In studying the non-homogeneous Eqgn. (1) it
is necessary to consider along with it the corresponding homogeneous
equation obtained from it by replacing b(x) by 0. Such an equation is called

the reduced equation associated with Eqn. (1).

For example, equation

3y ‘ i )
K "’—4d—f+d—}+6_v=0

dx’ dx®  dx

is a third order linear homogeneous differential equation with constant
coefficient.

_d'y dY s e :
Equation = } +4 y: 1’ +3y=x"+1 is a linear non-homogeneous equation of
X b o

fourth order with constant coefficients. The corresponding reduced equation is

. 13,
8 497 43y=yp.
dx dx

_ d’y  ,dy . :
Equation x’ d—g +x° ;_) +xy =2 is a second order non-homogeneous linear
X ax

differential equation with variable coefficients.

You must have noticed that the context in which the word homogeneous is
used here is totally different from the one used in Sec. 6.3, Unit 6 of Block-2.

You may now try the following exercise.

E1) Classify the following differential equations into homogeneous and non-
homogeneous equations and write the reduced equations corresponding
to the non-homogeneous equations:

i) Y +x"+xy +xy=Inx
i) Yy +2y =y =2y

i)y A=-x)y"+xy'=y+0-x)".

From your knowledge of linear algebra you might be familiar with the linear
dependence and independence of a set of functions on an interval. Before we
move further, let us recall these two concepts which are basic to the study of
linear differential equations.
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Linear Dependence and Independence of Functions

Let us consider three functions y, (x) = 2¢™, y,(x) =5¢* and y,(x)=¢™
over any interval 1. For these functions, we can always find constants

¢, C,, ¢y not all zero such that ¢,y (x) + ¢, y,(x)+¢,y;(x) =0; for instance,
we can have ¢, =-5, ¢, =2, ¢, =0. Such functions y,, y, and y, are said to
be linearly dependent on 1. Whereas, for functions ¢* and xe* over any
interval 1, ce* +c,xe’ =0, if and only if ¢, =0, ¢, =0. Such functions ¢* and
xe" are linearly independenton I.

Accordingly, we give the following two definitions.

Definition: A set of functions y,, y,. ..., y, is said to be linearly dependent on
an interval | if there exist real numbers c,. c,. ..., ¢, , not all zero, such that

y (x)=0.

nn

ey (XY +e,y, (x)+++¢
for every x in the interval.

Definition: A set of functions y,, y,. ..., y, is said to be linearly independent
on an interval 1, if it is not linearly dependent on the interval.

In other words, a set of functions is linearly independent on an interval if the
only real numbers for which

ey (x)+e,y,(x)+--+¢c,y,(x)=0

n<n

for every x in the interval, are ¢, =¢, =---=¢, =0.

Let us understand these definitions in the case of two functions y, and y,. If
the functions are linearly dependent on an interval, then there exists real
numbers ¢, and ¢, , not both zero, such that, for every x in the interval

oy (x)+e,y,(x)=0.

If ¢, #0, it follows that

y (@) =—=2 y,(x).
&
That is, if two functions are linearly dependent, then one is a constant
multiple of the other. Conversely, if y, (x) =¢,y,(x) for some constant c,,
then

(=D, (x)+¢,y,(x) =0

for every x on some interval. Hence if the functions are linearly dependent, at
least one of the constants (namely, ¢, =—1) is not zero. We thus conclude

that two functions are linearly independent on an interval 1 when neither
is a constant multiple of the other on the interval.

Functions y,(x)=sin 2x and y,(x)=sin xcosx are linearly dependent on the
interval |—oo, o[ since ¢, sin 2x+ ¢, sin xcos x =0 is satisfied for every real

x with ¢, :% and ¢, =—1. Also we can see that y,(x)=2y,(x).

Let us consider the following examples.
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Example 1: Determine whether the functions cos” x, sin” x, sec’ x and tan’ x
are linearly independent or linearly dependent on the interval |-m/2, m/2].

Solution: Let us consider ¢, cos” x+c, sin” x+¢,sec” x+c, tan’ x=0. Then
we can choose ¢, =1,¢, =1,¢,=-1 and ¢, =1 for which

2 422 2 2
¢, Cos8” x+c,sin” x+c;sec” x+c¢, tan” x=0

is satisfied for — /2 < x <m/2. Thus the given functions are linearly
dependent.

ek

Example 2: Show that the functions ¢* and ¢** are linearly independent on
any interval.

Solution: Let us assume that
ce’ +c,e” =0
for all x in an interval. Then we must show that ¢, =¢, =0.
Let x, and x, be two distinct points in the interval. We then obtain a
homogeneous system of equations
ce™ +c,e™ =0
c,e” +{'2eg“'I =0

The determinant of the coefficients is

i ~
il <4p

e 4 : : %y - - 7 . . .
.- y =e%e™ —eMe™ =e%e" (¢ —e™) #0 in the interval since
e e
X F X,

You know from your knowledge of linear algebra if the determinant of
coefficients # 0, the only solution of the homogeneous system in the interval is
the trivial solution i.e., we must have ¢, = ¢, =0 (ref. Appendix at the end of

the unit). Hence ¢* and ¢** are linearly independent on any interval.

*kk

In the consideration of linear dependence or linear independence, the interval
on which the functions are defined is important. We now illustrate it through
an example.

Example 3: Show that the functions y,(x)=x and y,(x)=l x| are
i) linearly independent on the interval ]—oo, oof .
i) linearly dependent on the interval ]0, oo|.

Solution: (i) It is clear from Fig. 1 that in the interval | —eo, o[ neither function
is a constant multiple of the other.
Thus in order to have ¢, y,(x)+c,y,(x)=0 thatis, ¢,x+c¢, | x|=0 forevery

real x, we must have ¢, =0 and ¢, =0.
i) For y,(x)=x and y,(x)=lx| in the interval ]0, oo
cx+e,lxI=0
= c¢x+c,x=0 since lxl=x for 0<x<eo

= (¢, +¢,)x=0

11
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12

) Y
+ A ,/\‘i-\
¥ Y

Fig. 1

which is satisfied for any non-zero choice of ¢, and ¢, for which ¢, =—c,.
Thus y,(x) and y,(x) are linearly dependent on the interval ] 0, o[ .

ke

You may now try the following exercise.

E2) Check whether the set {y,, y,} of functions over the given interval is
linearly dependent or independent.

i) y,=e¢" and y, =e " over —eo< x<oo
- . T
ii) y, =2cos3x and y, =3sin 3,\‘+5 over —co < x < oo,

i) y=e" and y,=xe" over —co<x<oo.

The procedure given above for examining the linear dependence or
independence of a set of functions appears to be a bit involved. We now give
a theorem which provides a sufficient condition for examining the linear
independence of a set of n functions on an interval.

Theorem 1: Suppose v, y,,..., ¥, are n functions on an interval I
possessing derivatives at least upto (n—1)th order. If the determinant

_\-‘Ir”_“ \.1‘!?—“ Y“J_“

/32 e In

is non-zero for even one point in the interval I, then the functions y,, ..., y
are linearly independenton 1.

n

Proof: For simplicity, we consider the case when n=2 and prove the
theorem by contradiction. Let us assume that W(y,, v,) (x,) # 0 for some x,

in the interval I and that y, and y, are linearly dependent on the interval.
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Now since y, and y, are linearly dependent, there exist constants ¢, and c¢,,
not both zero, for which

oy, (x)+e,y,(x)=0
for every x in 1. Evaluating the expression above and its derivative at x,, we
get the system of linear equations

o,y (%) +¢,y,(x,) =0 @)

€ }’;(xu )+e, ,‘f’; (x)=0
The linear dependence of y, and y, implies that the system (2) possesses a
non-trivial solution for ¢, and ¢,. Hence

(X)) v, (%)

N(x) ¥i(x)

W().p }’;} (',“U )=

for every x, in 1. But this is a contradiction to our assumption that

W(y, y,) (x,)#0. Hence we conclude that y, and y, are linearly
independent.

We have proved the result for n=2. The result for n functions y,, y,, ..., y,
can be poved on the similar lines but we shall not go into those details here.

As a consequence of this theorem we have the following result, which is the
contrapositive of Theorem 1.

Corollarly 1: If the functions y,, y,, ..., y, possess derivatives at least upto
(n—1)th order and are linearly dependent on an interval I, then

W, ¥y -ens 3,) () =0

forevery x in 1.

The determinant W(y,, y.,..., ¥,) in the above theorem is called the

Wronskian of the functions which is named after a Polish mathematician
Josef Maria Hoene Wronski (1778-1853).

The functions y,(x) =sin ’x and ¥,(x)=1-cos2x, for instance, are linearly
dependent on |—eo, oo[, since ¢, sin 2%+ ¢,(1=cos2x) =0 is satisfied for all
x if we choose ¢, =—2 and ¢, =1. By above result W (sin” x,1—cos2x) =0
for every real number, since

s x S =2sin” xsin 2x — 2sin xCos x + 28in X COS X COS 2x
2sin xcosx  2sin 2x

=sin 2x [2sin* x—1+cos 2x]

=sin 2x [2sin” x—14cos® x —sin’ x]

=sin 2x [sin’ x+cos’ x—1]

=0
Let us apply Theorem 1 to the two functions f(x)=e¢" and g(x)=e’
considered in Example 2. For any point x, we have the Wronskian of the two
functions as

X

Ay 21

3
: .o | =€ #0.
eu ze—u

W(f.g) (x,) =‘ ¢

13
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Thus by Theorem 1, functions e* and e** are linearly independent on every
interval.

In Example 3 we saw that y,(x)=x and y,(x)=|x| are linearly independent
on |—eo, oo [ . However, in this case, we cannot compute the Wronskian as
¥, is not differentiable at x=0.

Remember that in Theorem 1 the condition of the non-vanishing of the
Wronskian at a point in the interval provides only a sufficient condition. That
is, if W(y,, y,,.... ¥,)(x)=0 for every x in an interval, it does not necessarily
mean that the functions y,, v,..... y, are linarly dependent on the interval.
There may be functions linearly independent on some interval and yet have a
vanishing Wronskian at a point in the interval. Can you think of an example of
such a function? In the next exercise we are asking you to do that.

E3) Construct an example to show that a set of functions could be linearly
independent on some interval and yet have a vanishing Wronskian at a
point in the interval.

E4) In the following problems determine whether the given functions are
linearly independent or dependent on the interval indicated alongside.

) ) =x f(x)=x%, fi(x) =4x—3x%;]—o0, o [.
i) f(0)=5, f,(x)=cos’ x, fy(x)=sin’ x; ]—oo, oo .
i) fi0)=x" f(x0)=x710,0 .

v)  fi(x)=sinx, f,(x)=cosecx;]0,m[.

E5) i) Observe that for the functions f, and f, defined by f (x)=2 and
fr(x)=¢e"
L.£,(0)~2.£,(0)=0.

Does this imply that f, and f, are linearly dependent on any
interval containing x =07 Give reasons for your answer.

i)  The Wronskian of two functions at a point x is W(x) = x’sin x on
]—eo, oo[. Are the functions linearly independent or linearly
dependent? Why?

In the next section we shall study the conditions under which the solution of
linear differential Eqgn. (1) exists and is unique. We shall also disucss here the
elementary properties of the solutions of the equation.

10.3 SOLUTIONS OF LINEAR DIFFERENTIAL
EQUATIONS

You may recall that in Unit 6 of Block-2 we introduced you to the first order
initial value problem (IVP). In an IVP we look for the solution of a given
differential equation which satisfies certain conditions at a single value of the

independent variable. For the first order IVP j—} = f(x, y), y(x,) =y, Where
»
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X, is a number in some interval I and y, is an arbitrary real number, we look

for the solution of the equation on an interval I whose graph passes through Depending on the
(X, Vo) context, 1 could
or o2 represent
| a, bl, 10, oo [,
For a linear second order equation, solution to the initial value problem | =0, oo [ and SO ON.

u()c) +a (x)—+a (x) y=b(x)

Y=, ) =

can be interpreted geometrically as a function defined on I whose graph
passes through the point (x,, y,) such that the slope of the curve at the point

is the number y, .

Similarly, for an n” order IVP we are required to find the solution of Eqn. (1)
on some interval 1 satisfying, at some point x, € I, the conditions,

.\"(".{J) — yi}‘ A\"’(xu) = -vl‘ o= [” ! ("' ) = \!r— (3)

where y,, y,..... y,, are given real numbers. The values given in Egn. (3) are
the initial condltlons.

EB) Interpret geometrically the function defining the solution of an IVP,
y'=y=0, y(0)=2, y(0)=-1 on the interval |—oo, o .

You may note here that an equation of the form (1) may not always have a
solution. Moreover, even if its solution exists it may not be unique.

We shall now study the conditions under which the solution of Eqn. (1), if it
exists, shall be unigue.

10.3.1 Conditions for the Existence of a Unique Solution

Let us consider a theorem which gives the conditions whose fulfilment
guarantee the existence and uniqueness of the solution of Egn. (1).

Theorem 2: Consider the »n" order IVP

a,(x)y" +a,(x)y" " +---+a,_ I(r) +(f (x)y=b(x)

3 2 s S n-1 L
_“(-l(]}zyt)\ ‘ (-r;})__‘ﬂ""' H j(Y ) \,,|

where x, is any point in an interval I and y,, y,...., y,, are given real
numbers. If a,. a,, a,....,a, and b are continuous on the interval 1 with
a,(x)#0 for every x in the interval then the solution y(x) of the IVP exists on
the interval and is unique.

You may observe here that the theorem says three things.
1. The initial value problem has a solution; that is, a solution exists.

2.  The initial value problem has only one solution; that is, the solution is
unique.
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3. The solution is at least n -times differentiable function in the interval |
where the coefficients are continuous.

We shall not be proving this theorem here as it is beyond the scope of the
present course but illustrate it with the help of a few examples. However, if the
functions q,, a,, ..., a, are constants, we shall give the solutions of the

corresponding equations in Sec. 10.4 when b(x) =0 and in Units 11, 12 and
13 when b(x) #0.

Let us consider the following examples.

Example 4: Show that y(x) =3e”* +e¢ > —3x is a unique solution of the initial
value problem

y —4y=12x
y(0)=4, y'(0)=1.

on any interval containing zero.

Solution: We have y(x) =3e¢”* +¢>* —3x, therefore,
y' =6e* —2¢** -3 and y"=12¢** +4¢™*

Now y"—4y=12¢* +4e** —4(3e*™ +e™* —3x)
=12e* + 4™ —12¢* — 4™ +12x
=12x

Therefore, y(x)=3e™ +¢* —3x satisfy the given differential equation.

Also, y(0)=3e*"+¢*"-3.0=4

y'(0) = 6e*° =2 -3 =1

which shows that y(x) satisfy the given initial conditions also.

Thus, y(x) =3e™ + e —3x is a solution of the given initial value problem.
Moreover, the given differential equation is linear and all its coefficients are
constant functions and hence continuous on any interval containing x=0.
Also, a,(x) =1#0 on any interval containing x=0. We conclude from
Theorem 2 that the given function yis the unique solution of the given initial
value problem.

ddkdk

Remember that both the requirements in Theorem 2, that is, «,,i=0, 1,..., n
and b be continuous and a,(x) # 0, for every x in some interval say I, are
important. Specifically, if ¢,(x) =0 for some x in the interval, then the

solution of a linear initial value problem may not be unique or it may not even
exist.

We now illustrate this point through an example.

Example 5: Obtain the values of ¢ for which the function
y(x)=cx’*+x+3

is a solution of the initial value problem
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xty"—=2xy'+2y =6,
¥(0)=3, y(0)=1
on an interval ]—ee, o [. Does the problem have a unique solution?
Solution: Since vy =2cx+1 and y” =2c, it follows that
22y =2xy"+2y =x*(2¢) - 2xcx +1) + 2(cx* + x+3)
=2¢cx* —4cx* —2x+2cx* +2x+6
=5
Also, y(0)=c.(0)* +0+3=3

and y(0)=2c.0+1=1

Thus, y =cx” + x+3 for all real values of ¢ is a solution of the given

problem in the given interval which implies that the problem has infinite
number of solutions or we can say that the problem does not have a unique
solution. You may observe that the given equation is linear and all its
coefficients, being polynomials, are continuous everywhere but the coefficient

of v i.e., a,(x)=x" becomes zero at x=0.

* ek

You may now try the following exercises.

E7) Is the function y =%Sin 4x a unigue solution to the initial value
problem
y' +16y=0
y(0)=0, y(0)=17?

E8) Find the largest interval in which the solution of the following initial value
problem exists:
(x* =3x)y"+xy = (x+3)y=0

y)=2, y'(hH=1.

After discussing the conditions for the existence of a unique solution of general
n™ order non-homogeneous linear differential Eqn. (1), we shall now discuss
some properties of the solutions of both the non-homogeneous Egn. (1) and
its corresponding homogeneous equation.

10.3.2 Properties of the Solutions of Linear Differential
Equations

We shall first discuss the properties of the solutions of the homogeneous
equation. Consider the general n” order homogeneous linear differential
equation given by

n n=l_

a{,(r)d +a(r)d }+ +G,,.(\) +a(x)»— (4)
X x

17
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We shall be giving these properties in the form of elementary theorems, which

hold true for n” order Eqn. (4). However, for simplicity, we shall be proving
these properties for the case n =2 that s, for the second order homogeneous
linear equation.

We start by considering the following example.

Example 6: Show that if y, = x* and y, = x’In x are both solutions of the
equation x’y”—2xy"+4y=0 on the interval ] 0, o [, then for arbitrary
constants ¢, and ¢,, y=c,x* +c¢,x” Inx is also a solution of the equation on
the given interval.

Solution: If y=c,x’ +¢,x” Inx is a solution of the given equation then it must
satisfy the equation. Let us check if it is true.

, 1
We have: y =2¢x+2¢,x Inx + clxz —=2¢x+ 2¢,xIn x+c,x
X

¥y =2¢,+2¢,Inx+ 2(‘2){]— +c¢, =2¢,+2¢,Inx+3c,
X

Substituting the above values of y, y’, y” in the given equation, we get

.x3y” —2xy" +4y

= x3[ 2 ] —2x(2¢,x+2¢,x In x+¢,x) +4c,x” +4¢,x° Inx
%

= 2(:.2;(2 - 4C‘x2 — 4(?3,):2 Inx— 2::2):2 +4c|)c2 + 4(?3,\:2 Inx
=0

Thus, y=cx’ +¢,x* Inx satisfies the given equation and hence is a solution
of the equation on the given interval.

ki

The result shown in Example 6 holds true in general, for Egn. (4) and is stated
as follows:

Theorem 3: If y,, y,, ..., y, are the solutions of the differential Eqn. (4) on an
interval I, then the linear combination y =c¢,y, +¢,y, +---+c¢,y, is also a

n« n

solution of Eqn. (4) on I, where ¢,, i =1, 2, ..., n are arbitrary constants.

Proof: Let us prove the theorem when n =2 i.e., for the second order
equation

an(x)y”+aI(x))-"+ag(x)y = (5)
having y, and y, as its two solutions.
Since y, and y, be the two solutions of Egn. (5), we have

a,(X)y, +a,(x)y, +a,(x)y, =0 (6)
and

an(x)y:+a,(x)y; +a,(x)y, =0. (7)

We know that
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(C] Y tey,; )! = ('5'| Y )' + (Cg Y )’
=6y 6,
Similarly, (c,y, +¢,¥,)" =¢,y; +¢,Y; .
If we define y =c,y, +c¢,y,, then

a,(x)y"+a,(x)y +a,(x)y

=a,(x) [r:lyr+ &, y;] +a,(x)[c, xl’ +&, v, ]+ a,(x)[e,y, +¢,y,]

=c[a, (x)_\,-']”+ a, (x)yl’ +a,(x)y, 1+ cz[au(x)y; +a, (x)y; +a,(x)y,]
=¢,.0+¢,.0 [using Egns. (6) and (7)]
=0
Thatis, y also satisfies Egn. (5).
Hence if y, and y, are the solutions of Eqn. (5) then y =c¢,y, +¢,y, is also a
solution of Egn. (5)
-

Theorem 3 is known as the superposition principle. A special case of
Theorem 3 occurs if either ¢, or ¢, is zero. We give the result in the following
corollary.

Corollary 2: A constant multiple y = ¢,y,(x) of a solution y,(x) of Eqn. (4) on
an interval I is also its solution on I for various values of the constant c; .

The proof of Corollary 2 is very simple. We are leaving it for you to do it
yourself (see E9).) As an illustration, consider the function y = x*. ltis a
solution of the homogeneous linear equation

x*y"=3xy"+4y =0 on ]0, oo
Hence y = cx” should also be a solution of the given equation for various

values of ¢. You can check that y =3x%, y=ex?, y=0, ... are all solutions
of the equation on the given interval.

Let us consider another example to illustrate Theorem 3.

Example 7: Show that for the differential equation y”—6y"+11y" =6y =0,
Theorem 3 holds true for the functions y, =e*, y, =e* and y, =¢™ onthe
interval | —oe, oo [ .

Solution: You can easily check that functions e*, e** and ¢’ all satisfy the

given homogeneous equation on |-, = [. By Theorem 3, the function

v

y=ce' +c,e’ +c,e’™ should also satisfy the given equation for arbitrary

constants ¢, ¢, and c,.

Now y'=c,e* +2c,e™ +3c,e™
Yy =cet +4c,e™ +9c,e™
Yy =ce* +8c,e’ +27c,e™

Substituting the above values of y, y’, y” and y” in the given equation, we
get

19
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y'—6y"+11y" =6y
=ce" +8c,e™ +27¢c,e™ —6(c,e* +4c,e™ +9c,e™)
+11(ce" +2¢,e™ +3c,e™) = 6(cie” +c,e™ +cye’™)
=
Thus y=ce +c,e™ +cie’

v

is also a solution of the given equation on
]—oo, e [. Theorem 3 holds true for the functions in the given problem.

ko

Have you noticed that a homogeneous linear differential equation always
possesses the trivial solution y =0 ? If not, you can check it for Examples
6 and 7 above.

Theorem 3 and corollary 2 represent properties that non-linear differential
equations, in general, do not possess. This will become more clear to you
after you have done the following exercises.

E9) Prove Corollary 1 for Eqgn. (5).

E10) Verify that y =1/x is a solution of the non-linear differential equation

y”=2y" on the interval ] 0, = [, but the constant multiple y=c¢/x is
not a solution of the equation except when ¢ =0, and ¢ ==1.

E11) Verify that the functions y, =1 and y, =Inx are solutions of the non-
linear differential equation y”+(y")* =0 on the interval ] 0, o | .
Further, check whether ¢y, +¢,y, is a solution of the equation, for
arbitrary constants ¢, and ¢, or not.

As we mentioned earlier there are functions which are linearly independent on
an interval and yet have a vanishing Wronskian there (ref. E3)). We shall now
give you a theorem, which is a stronger version of Theorem 1 and which
asserts that this would not be the case if the functions involved, are the
solutions of some homogeneous linear equations.

You may observe that in Example 7 functions y, =e*, y, = e, V3 = e are
the solutions of linear homogeneous equation y”—6y"+11y"—6y=0 and are
linearly independent on |-, e[ . For any non-zero ¢,, ¢, and
¢, et + e’ + e =0 for —oo < x < oo only when ¢, =0,¢,=0 and ¢, =0.
Also, W(y,, y,, y;) # 0, since we have
et e e
W(y,, ¥,0 y3) =€ 2&*° 3™
e' 4e™ 9e™
=e"(18¢™ —12¢)
_ez..-(ged.r —38“)
+e (4e™ —2e™)
=6e" —6e° +2¢" =2 #0 for —o < x < oo,

The result above holds true in general. We shall now show that if the
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functions involved are the solutions of linear homogeneous equation then the
non-vanishing of the Wronskain of a set of such solutions/functions on an
interval I is both necessary and sufficient for linear independence of the
functions on 1.

Let us consider the following theorem.

Theorem 4: Let y,, y,..... y, be n solutions of the homogeneous linear n" -
order differential Egn. (4) on an interval 1. Then the set of solutions is linearly
independent on 1 if and only if

W5 Wgwens ¥y )20

for every x in the interval.

Proof: We prove Theorem 4 for the case n=2 by considering Eqgn. (5).
The first part of the proof, that s, if W(y,, y,) #0 forevery x in I, then y,

and y, are linearly independent, immediately follows from Theorem 1. Now
we need to show that if the two solutions y, and y, of Egn. (5) are linearly

independenton 1, then W(y,, y,) #0 forevery x in I. We will prove this by
contradiction.
Let y, and y, be linearly independent and there is some fixed x, in I for

which W(y,, y,) (x,)=0.
Since W(y,, y,) (x,) =0, the system of equations
¢y (X)) +¢,5,(x) =0 (8)

C y:f(xu) +c, y; (x,)=0

for ¢, and ¢, has a non-trivial solution (ref. Appnedix given at the end of the
unit). Using these values of ¢, and ¢, , let us define y(x)=c,y,(x)+c,y,(x).
Then y is also a solution of Egn. (5) and by Egn. (8) y also satisfies the initial
conditions

y(x,)=0, ¥'(x,)=0 (9)

But we also know that the identically zero function f(x)=0 Vx in I satisfies

both the differential equation and the initial conditions (9). Thus by the
uniqueness part of Theorem 2, f is the only solution, i.e., y=f.

In other words, for constants ¢, and ¢, , not both zero,

oy (x)+c¢,y,(x)=0
for every x in I. This contradicts the assumption that y, and y, are linearly
independent on the interval. This proves the second part of the theorem.

From the above discussion we conclude that when y, and y, are the two

solutions of Egn. (5) on an interval I, then either the Wronskian of y, and y,
is identically zero or is never zero on the interval.

The solutions y, and y, of Egn.(5), with a non-zero Wronskian, are said to

form a fundamental set of solutions of Eqgn. (5). More generally, we give the
following definition.

Definition: A set of n linearly independent solutions y,, y,, ..., y, of the -
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th

homogeneous, n" -order, linear differential Egn. (4) on an interval 1 is said to
be a fundamental set of solutions of the differential equation on 1.

In Example 7, functions y,, y, and y, form a fundamental set of solutions of

%t £0 for

the given equation on the interval |—oo, o[ since W(y,, v,, y;) =2e¢
—co< x <oo. Similarly, functions x* and x’Inx in Example 6 form a

fundamental set of solutions of the given equation as W(x*, xInx)=x" #0 in
10, e[ .

As yet another example, consider the equation
y'—4y=0, —co<x<o (10)

X

You can easily check that both y, (x) =e** and y,(x)=e"" are the solutions

of Egn. (10) on ]—oe, o[ and thus their linear combination
y = c]el‘ + Cze—z_r (1 1)

for arbitrary ¢, and ¢, is also a solution of Eqn. (10) on the interval.
Also since W(y,, y,) (x)=—4+#0, y, and y, for every value of x form a
fundamental set of solutions of Eqn. (10). Further, it can be checked that the
function y =4cosh2x+3e”" is another solution of Egn. (10) in the interval.
We have y’=8sinh 2x+6¢”*, y" =16cosh2x+12¢** and thus
y"—4y=16cosh 2x+12¢™ —4(4cosh2x+3e’*)=0. ltis interesting to note
here that the solution y =4 cosh 2x+3e”* of Eqn. (10) can be determined from
the solution (11) by considering suitable values of the constants ¢, and ¢, .
For ¢, =5 and ¢, =2, we can write Egn. (11) as

y =5 +2¢7*

=2 +2¢7** +3e*

2x ik -2x o
= 4[i] +3>
2

=4cosh2x +3e™".
This leads us to a property which relates any solution of Eqn. (4) to its
fundamental set of solutions.

Theorem 5: Let {y,, v,,..., y,} be a fundamental set of solutions of the n" -
order, homogeneous, linear differential Egn. (4) on an interval 1. Then, for
any solution Y (x) of Egn. (4) constants ¢, c,, ..., ¢, can be determined so
that

Y(x)=c,y,(x)+¢,y,(x)+-+c,y,(x)-

Proof: As usual, let us prove it for n=2. Consider Egn. (5) i.e.,
a,(x)y" + a,(x) y+a,(x)y=0

corresponding to the case n=2.

Let {y,, v,} form the fundamental set of solutions of the equation on the

interval 1.

Let Y(x) be any solution of the equation on the interval 1. Being a
fundamental set of solutions y, and y, are linearly independent and by
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Theorem 4, W(y,, y,) (x)#0 forevery x in 1. Let x;, be one such pointin
this interval for which W(y,, y,) (x,) #0 and that the values of Y (x,) and
Y'(x,) are given by

Yoy=k, Yap) =k
Now consider the system of non-homogeneous equations

¥, (%) +¢,y,(x) =k,

ey (%) +e,y,(x) =k,
Constants ¢, and ¢, can be uniquely determined provided the determinant of
the coefficient matrix is non zero (ref. Appendix at the end of the unit), that is,
n(x)  ¥y.(x)
yi(x)  ¥i(xp)
which is true as this determinant is the Wronskian W (y,, y,) (x,), which is
assumed to be non-zero. Thus if we define the function F(x) by

F(x)=cy,(x)+c,y,(x)
then we observe:

i) F(x) satisfies the differential equation since it is the superposition of
two known solutions y, and y,.

i) F(x) satisfies the initial conditions
Fxg)=c,y, (%) +¢,5,(x) =k,
F'(xu) =c, y]'(xﬂ) + c2_3=; (x))=k,.
i)  Y(x), as per our assumptions, also satisfy the same linear equation and
the same initial conditions.

Since the solution of linear initial value problem is unique (ref. Theorem 2), we
have Y(x) = F(x), or
Y (%)= ¢,3,(x)+¢,¥,(x)
which completes the proof.
- . —
We can thus conclude from Theorem 5 that any solution of Eqgn. (5) is
obtained from a linear combination of functions in the fundamental set of

solutions of the equation. Solution y=c¢,y, +¢,y, of second order Eqn. (5),

involving two arbitrary constants ¢, and ¢, , is called its general solution or

complete integral. In order to find the general solution, and therefore all
solutions, of the second order equation of the form (5), we need only to find
two solutions of the given equation whose Wronskian is non-zero.

We now give the following definition.

Definition: Let y,, y,, ..., y, form a fundamental set of solutions of the

homogeneous linear n" -order differential Eqgn. (4) on an interval 1. Then
y=y(0)+6,y,(x)+--+c,y,(x),

where ¢, i=1, 2, ..., n are arbitrary constants is defined to be the general

solution or the complete integral of the equation on I.

For instance, the second order equation y”—y 12y =0 possesses two

solutions
23
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y,=e¢* and y,=¢7" on ]—oo, o [

e4.l’ e—}_r

484.\' _ 36 -3x
for every value of x, y, and y, form a fundamental set of solutions on
]—oo, o= [ . The general solution of the differential equation on the interval is

Since W(e**, ¢*) = = (-3¢ —4e*)==Te* £0

4x =3x
y=c; € +C € .

Let us consider some more examples.

Example 8: Show that y,(x) =sin x, y,(x) =cosx, y,(x)=x, y,(x)=1 form
a fundamental set of solutions of the equation
YV +y"=0 for —e < x <00,
Also write the general solution of the equation.
Solution: Consider y,(x) = sin x, we have
¥/ (x) =cosx, y/(x)=-sinx, y/(x)=—cosx, ¥ (x)=sin x.
Substituting these values in the given equation, we get
y" +y"=sinx—sinx=0
thus y,(x) is a solution of the given equation.
Similarly, you can check that y, (x), y,(x) and y,(x) also satisfy the given

equation and hence are the solutions of it.

To check the linear independence of the solutions y, (x), y,(x), y,(x) and
v, (x) consider

sin x CosSx X

. cosx —sinx 1

W(sin x, cosx, x, 1) = 5

—s8inXx —COSX

o o O ==

—cosx sinx O
= sin x.0 —cos x.0 + x.0 = 1(=sin* x —cos” x)
=1#0 Vxe]—os, oo

Thus y,, »,, y, and y, form a fundamental set of solutions on ]—oo, o[ . The
general solution of the differential equation on the interval is
y=¢€; Bl X+ ; COSX+L: X404

*kk

v

Example 9: Show that y, = ¢’ and v, = e " form a fundamental set of

solutions, of the equation
¥ =9y =0 for —eo< x <00,
Further verify Theorem 5 for the solution y = 4sinh 3x —5e ™" of the given
equation.
Solution: We have y =3¢, y'=9¢"
y =9y, =9 —9¢* =0.
Thus y, is a solution of the given equation. Similarly,
¥, =9y, =9 —9¢7 =0.
24
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Ix e ~3x

€

3¢ —3e™
Therefore, for every value of x, y, and y, form a fundamental set of solutions
on ] oo, oo [. The general solution of the given equation on the interval is

Further, W(e™, e ") = =—620.

y=ce” +c,e”, ¢, and ¢, are constants.
Now consider y =4sinh 3x—5¢ . We have
y” =9y =36sinh 3x —45¢" —9(4sinh 3x —S5¢**) =0
Thus y also satisfy the given equation. Choosing ¢, =2 and ¢, =7 in the
general solution y = c,e’* +c,e™", we obtain
y=2e" —Te™

= 283.1 | 26—3.t _ Se—.‘.l‘
83.\' _9—3.\'
= 4(#} —5¢7" =4sinh 3x—5¢ 7

Thus, Theorem 5 holds true for the solution y =4sinh 3x—5¢** of the
equation.

* okt

You may now try the following exercises.

E12) Show that y,(x)=x"? and y,(x)=x"' form a fundamental set of
solutions of the equation
2x2y"+3xy"—y=0, x>0.
Also write the general solution of the equation.

E13) Show that the functions y,(x)=e", y,(x)=¢’* and y,(x)=¢’ form a
fundamental set of solutions of the equation
y =6y "+11y' —=6y=0, —co<x <00,
Also write the general solution of the equation.

E14) Show that y = ¢, sin x + ¢, cos x is the general solution of y”+ y =0 on
any interval. Find a particular solution for which y(0)=2 and y'(0)=3.

So far we have discussed the properties pertaining to the solutions of
homogeneous linear equations. We now turn our attention to the non-
homogeneous linear equations of the form (1).

Consider a non-homogeneous equation

¥y =9y =3x (12)
The function y, (x)=—%—% satisfies the non-homogeneous Eqgn. (12)
: " 7.5 2
since we have y, = _.T’ 8 :—5 and
, 2 ¥ 2 U im B2 3
=9y =——=9 ———— |=——4+3x" +—=3x".
ARSI [ 3 27} 3 3

Thus y, is a solution of non-homogeneous Eqgn. (12).

Also from Example 9, we know that the general solution of the associated
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homogeneous equation y"—9y=0is y=ce’ +c,e”" for ¢, and ¢, being
arbitrary constants.

2

& —%_—% which is the sum of the

You can now check that y =c,e’" +c,e”

solution of the non-homogeneous equation and the solution of its
corresponding homogeneous equation is also a solution of Egn. (12). We
have

” . gy D Loxt 2
y" =9y =9¢,e** +9c,e™ —5—9 e+ ————

=3x7.

Thus y=c,e™ +c,e™ +y,(x) satisty Egn. (12).

This example leads us to the following theorem which defines the general
solution of n™ -order non-homogeneous linear Eqn. (1).

Theorem 6: If y (x) is any solution of the non-homogeneous linear

differential Eqn. (1) on aninterval I and if y,, v,, ..., v, be the linearly
independent solutions of the corresponding homogeneous linear differential
Eqgn. (4) on the interval, then

y=cy(0)+ey,(x)+-+c,y,(x)+y,(x)
is also a solution of the non-homogeneous Egn. (1) on the interval 1 for any
constants ¢,, ¢,, ..., ¢

7"

The proof of the theorem is simple and we are leaving it for you to do it
yourself.

E15) Prove Theorem 6 for the second order equation i.e., corresponding to
case n=2.

From the above discussion and referring to Example 9, we can now say that

o

. 2

3 20

is another solution of Egn. (12). Following the procedure shown in Example 9,
this solution can be obtained from the solution

y =4sinh 3x —5¢7" —

-k 2

s 2T
by suitably choosing the constants ¢, and ¢, . In this case ¢, =2 and

y=c¢e +c,e” +y,(x) where, y, (x)=

¢, =—7 serves our purpose.

We can thus consider the following analogue of Theorem 5 for non-
homogeneous differential equations.

Theorem 7: Let y, be a given solution of the non-homogeneous linear n" -

order differential Egn. (1) on aninterval I andlet y,, y,, ..., y, forma
fundamental set of solutions of the associated homogeneous Eqgn. (4) on the
interval. Then for any solution Y (x) of Egn. (1) on I, constants c¢,, ¢,, ..., ¢,

can be determined so that

Y=y, (0)+c,y,(x)+---+¢,y,(0)+y,(x).
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Proof: We prove the case when n=2. Suppose Y and y, are the solutions
of the second order non-homogeneous equation

a,(x) vy + a, (x)y" + a,(x)y =b(x) (13)

and y,, y, form a fundamental set of solutions of the homogeneous equation
corresponding to Eqn. (13). Let u(x) be a function such that
u(x)=Y(x)—y,(x). Then
a, (" +a,(xX)u"+ a, (x)u
=a, ()Y =y, 1+ a0 =y, 1+a,()Y - y,]
=a,(xX)Y" +a,(x)Y +a,(x)Y —[a, (x)y: +a, (x)y;, +a,(x)y,]
=b(x)—b(x)=0
Therefore u(x) is a solution of the homogeneous equation corresponding to
Eqn. (13). By Theorem 5, we can write
u(x)=c,y,(x)+c,y,(x) for constants ¢, and c,.
s Y(X) =y, (%) =6y, (X) +6,5,(x)
or, Y(x) =¢;y,(x)+ ¢, y,(x) + y,(x)
which completes the proof.
o . -

With this background, we can now have the following definition of the general
solution of non-homogeneous differential Eqn. (1).

Definition: Let y (x) be a given solution of the n" -order non-homogeneous

linear differential Eqn. (1) on an interval 1 and let
¥, =y (x)+6;y:(X)+---+c ¥, (X)
be the general solution of its associated homogeneous Eqn. (4). Then the

general solution of the non-homogeneous Eqn. (1) on the interval is defined
to be

y=gynlx) ey, (x)+~Fe.ylx)+ ¥, (x)

=y (x)+y,(x).

In the above definition the linear combination

.v[:(x) = ('.I .v] (";) i+ CZ }’2 ('x) 4 2SRk o Cﬂ yn (x)
involving n arbitrary constants is the general solution of Egn. (4) and is called
complementary function of Egn. (1). The solution y,(x) of Egn. (1) which is
free of arbitrary parameters is called a particular integral/solution of Eqn.
(1). Thus, the complete solution/general solution of the non-homogeneous
Eqn. (1) is given by

y =complementary function + any particular integral

For example, y, = x* — x is a particular solution of the differential equation
X2y +2xy' -8y =4x> +6x
since y, =3x" -1, y, =6x and
x*y, +2xy;, -8y, = x*(6x) + 2x(3x* —1) - 8(x* — x)
=4x’ +6x
Similarly, you can check that the function
=11 1

¥y =
2 2 -
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is a particular solution of the non-homogeneous differential equation

Y =6y +11y'—6y=3x, —0o<x<c0,
Further, from E13) you know that the general solution of the homogeneous
equation corresponding to the above equation in the interval | —oo, oof is

y, =ce’ +c,e’ +ce.
Hence the general solution of the given non-homogeneous equation in the
interval |—oo, oof is

Y=t Yy

5 11 1
=C|€ +C2€ +C3€ —]———X

After having gone through the above discussion a natural question which may
come to your mind is — How to find the complementary function and a
particular integral of Egn. (1)?

In the next section we give you the methods of finding the complementary
function y_(x) of the linear equation with constant coefficients and discuss

various methods of finding a particular solution in the units to follow.

10.4 HOMOGENEOUS LINEAR DIFFERENTIAL
EQUATIONS WITH CONSTANT
COEFFICIENTS

Since the complementary function refer to the solution of the homogeneous
equation, we begin the discussion by considering the second order linear
equation

ad;‘}‘+bﬁ+c}::0,—oo<x<°°, i
dx” dx

where the coefficients a, b and ¢ are real constants.

The method of solving Egn. (14) was given in the year 1739 by Leonhard
Euler (1707-1783) who was born in Basel, Switzerland and was one of the
most distinguished mathematicians of the eighteenth century.

Before taking up Eqgn. (14), let us look at a simple example. Consider the
equation

y =y=0 (15)

which is of the form (14) with a=1,b=0 and ¢=-1. In words, Egn. (15)
says that we look for a function y with the property that the second derivative
of the function is the same as the function itself i.e., y"=y. From your
knowledge of calculus you can think of at least one well known function with
this property, namely, y,(x) =e¢", the exponential function. Other function
coming to your mind would be y,(x)=e*. Further, you can say that the
multiples of these two solutions are also the solutions. For example, the
functions 4e¢* and 7e¢ ' also satisfy Eqn. (15). In the same way, functions
¢y, (x)=ce' and ¢,y,(x)=c,e " satisfy the differential Eqn. (15) for all
values of the constants ¢, and ¢,. Further, their linear combination i.e.,
y=c¢y (x)+¢,y,(x)=ce’ +c,e” is also the solution of Egn. (15).

Let us now come back to our general second order Eqn. (14) having arbitrary
(real) constant coefficients. Based on our experience with Eqn. (15) we
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mx

assume that y =¢™ is a solution of Eqgn. (14) for some number m . On
putting the values of y and its derivatives in Eqn. (14), we get

(am® +bm+c)e™ =0 (16)

mx

Since ¢™ # 0 for real values of x, Egn. (16) is satisfied if

am® +bm+c=0 (17)

Egn. (17) is called the auxiliary equation or characteristic equation
corresponding to differential Eqn. (14).

Let m, and m, be the two roots of the auxiliary Eqn. (17). Then the following
three possibilities arise:

1) Roots of the auxiliary equation may be real and distinct,

[I)  Roots of the auxiliary equation may be real, but some of the roots may
be repeated.

[ll)  The auxiliary equation may have complex roots.

We now proceed to find the solution of Egn. (17) for these three possibilities
one by one.

Case I: Auxiliary equation has real and distinct roots:

Let the roots m, and m, of the auxiliary Eqn. (14) be real and distinct.

mx

Since m, is a root of Eqn. (17), y, =e™" is a solution of Eqn. (14) on the

interval ] —oo, o [. Similarly, y, =e™" is a solution of Eqn. (14). Also, ¢™"

and ¢™* are linearly independent on the interval, since
myx max
mx T X e
W(e I.l 58’ B ) = mx My X
me"  nye

=(m,—m,) """ #0 for m, #m,

Thus the solutions y, and y, form a fundamental solution set of Eqn. (14) on
the interval ]—oo, o[ and its general solution can then be expressed as

mx .’M:?.\'

y=ce" +c,e,

where ¢, and ¢, are arbitrary constants.
For an n” order equation having n distinct and real roots My, My, ..., M
the general solution is given by

n

mx X

3 m,x
P=g @t R ootk g (18)

where ¢, c,, ..., ¢, are arbitrary constants.
We now illustrate this case for differential equations of various orders.

Example 10: Solve 2Q+5ﬁ—12y =0
dx” dx

Solution: The auxiliary equation for the given equation is

2m*> +5m—12=0

29
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= (2m-3)(m+4)=0

= m=3/2,-4

The roots are real and distinct.

Hence the complete solution of the given differential equation is
y=ceV"? +c,e™, where ¢, and ¢, are arbitrary constants.

Fkdk

Let us look at another example.

P

Example 11: Consider the equation ‘:; 1’ —a’y=0, where a is a non-zero

constant. Show that y = Acosh ax+ Bsinh ax is the complete solution of the
given equation.

Solution: The auxiliary equation corresponding to the given differential
equation is

m’—a*=0
= (m—a) (m+a)=0

= m=a,—d.
Roots being real and distinct, the general solution of the given equation is

ax

y=ce* +ce™
From the definition of hyperbolic functions, we know that

coshax = % (e" +e™) (19)

and sinh ax =]5 (e —e™) (20)

Adding relations (19) and (20), we get
e =cosh ax+ sinh ax
Subtracting relation (20) from (19), we get
e =coshax—sinh ax.
Using these expressions for ¢* and ¢, the general solution of given

differential equation can be written as
¥ = ¢,(cosh ax +sinh ax) + ¢, (cosh ax —sinh ax)

= y=(¢ +¢,) coshax+ (¢, —¢,) sinh ax
= y=Acoshax+ Bsinh ax,
where A =c¢, +¢, and B =c¢, —c, are two arbitrary constants.

Fdhdk

Let us now consider the initial value problems.

Example 12: Solve the equation

with the conditions that when r=0, x=0 and % =3,
dt

Solution: The auxiliary equation corresponding to the given equation is
30
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m’—4=0

= m=2,-2

Hence the general solution of the differential equation is
r=ee” +oe™.

We now apply the given conditions at 1 =0.

We have

dx = 2c,el' —2¢,e
dt :

Condition that x=0 when =0 gives
0=¢ +c,,

and the condition that %= 3 when =0 gives

3=2¢—2¢;
From the two equations for ¢, and ¢,, we conclude that

& s and ¢, :—3. Therefore,
4 © 4

ooy
-x=_(€._.r_e 2!’)

4
which can also be put in the form x= %sinh 2.

Fedk e

Example 13: Solve the equation

3 - ) )
4y 1397 136D _g
dx dx” dx

2

dy d™y

under the conditions thatat x=0, y=0, —=1 and
dx dx

2

=

Solution: The auxiliary equation corresponding to the given equation is

m’ +13m” +36m=0

= m(m+4) (m+9)=0

= m=0,-4,-9.

Hence the general solution of the differential equation is
y=c +c,e e

Now we find the values of ¢, ¢, and ¢, by applying conditions at x=0.

We have
? =—4c,e™" —9¢c,e™ and
X
2 1
83 AR B
dx” - ’

Condition that y =0 when x=0 gives
O=c¢ +c,+c,

ﬁ=1 at x=0 gives
dx

l1=-4¢, —9c,
d’y

—=-7 at x=0 gives
dx”

-7 =16¢, +8lc,
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Solving Egns. (21), (22) and (23) for ¢, ¢, and ¢,, we get
1

1
¢ =—,¢c,=—— and ¢; =——.
6 -~ 10 ’ 15
Thus the general solution of the given equation is
:l_L —4x _Le—‘h‘
6 10 15

Let us consider a fourth order equation.

Example 14: Solve the equation
2T 40 2y +35" Y _50% +24y=0.
dx dx’ dx’ dx

Solution: The auxiliary equation corresponding to the given equation is
' —10m’ +35m° =50m+24=0
= (m=1) (m*-9m’ +26m—-24)=0
= (m-=1) (m-=2) (m*-=Tm+12)=0
= (m-1)(m-2)(m-3) (m—4)=0
=5 m=12.84
Hence the general solution of the given equation is
y=ce' + Czez" + C_,,e""' + c‘,e‘“

You may now try the following exercises.

E16) Solve the following differential equations:

d) d\, dy

) +11=2-6y=0.
dx’ dx’ dx

.. d’y dy

ii)
dx’ dx

iy $Zy08 Y W 6y

dx dx’ dx

E17) Solve the following differential equations under the conditions given

alongside:

i) - :— £—3y=0;when x=0, y=4 and y'=0
dx” dx

i) dhf—4d—v—0 when x=0, y=0, y'=0 and y"=2.
dx dx

We now take up the case when the roots of the auxiliary Eqn. (17) are real but

repeated.

Case lI: Auxiliary Equation has real and repeated roots:

Let the roots m,, m, of the auxiliary Eqn. (17) be equal, i.e, m, =m,. This

case occurs when the discriminant 5> —4ac of the quadratic Eqn. (17) is zero
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and the two equal roots are m, =m, =—b/2a. Both these roots yield the

~hx/2a

same solution i.e., y,(x)=e =y,(x).

by /2a

The solution of Eqn. (17) in this case becomes y(x) =(c, +¢,)e . Since

the constants (¢, +¢,) can be replaced by a single constant, this solution

practically involves only one arbitrary constant. But we know that the general
or complete solution of the 2™ order linear differential equation must contain
two arbitrary constants. Hence the above solution having one arbitrary
constant is not the general solution. We thus need to find a second solution of
Egn. (14).

Let us take up an example to understand the method of finding a second
solution in the case of repeated roots.

Example 15: Solve the differential equation

B3 A g hy =,
dx” dx

Solution: The auxiliary equation of the given equation is

m’ +4m+4=0
= m=-2,-2
One solution of the given equation is y,(x) =e™*. To find its general solution
we need a second linearly independent solution that is not a multiple of y, .
The method of finding this second solution was given by D'Alembert (1717-
1783), a French physicist and mathematician, in the eighteenth century. You
already know from Corollary 2 that if y,(x) is a solution of Egn. (14) then so is
cy,(x) forany constant ¢ . The basic idea is to generalise this observation by
replacing ¢ by a function v(x) and then try to determine v(x) so that the
product v(x)y, (x) is a solution of Eqn. (14).
Let us substitute y = v(x)y, (x) = v(x)e™", in the given equation.
We know that y’ =v'(x)e > —2v(x)e ™ and
V' =v"(x)e? =4 (x)e " +4v(x)e .
Substituting for y, y” and y” in the given equation, we obtain

[V (x) = 4v'(x) +4v(x) + 4V (x) = 8v(x) +4v(x)]e > =0
which simplifies to
v (x)=0.
Therefore
Vix)=¢,
or, v(x)=cx+c,.
Thus, we get

y(x) =v(x)y, (x)= (,‘].re_z-" + Cze-l\' (24)

where ¢, and c¢, are arbitrary constants. The second term on the right hand
side of Eqn. (24) corresponds to the original solution y, (x) =e™", but the first

term arises from a second solution, namely, y,(x)=xe ™. You can easily
check that these two solutions are linearly independent as

-2x -2x

e Xe

. =e™ =2xe™ +2xe™ =™ #0.
—2e (I1-2x)e

Wy, y,)(x) =

33
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Therefore y,(x)=e™" and y,(x)=xe " form a fundamental set of solutions
of the given equation and its general solution is given by Eqgn. (24).

ko

The procedure used in Example 15 when extended to Eqgn. (14) yield two
solutions
y] (I) = e—b_ra’lu = eml.i

~bx/2a mx

and y,(x)=xe = Xe
Since W(y,, y,)(x)=e™“ #0, the solutions y, and y, are a fundamental
set of solutions of Eqn. (14). Thus in the case of equal roots the general
solution of Egn. (14) is given by

y={¢, + sz)e'f""””

X

=(c, +c,x)e
¢,, ¢, being constants.

In words, we say that in the case of repeated roots of Egn. (14), there is one
exponential solution corresponding to the repeated root, while a second
solution is obtained by multiplying the exponential solution by x. The method
given above for finding the second solution is known as the method of
reduction of order. This method is applicable to linear homogeneous
equations with variable coefficients as well. We shall be discussing the
method later in Unit 12.

For the n" order equation having n roots m,, m,, ..., m,, if a root m, is

repeated r times and the remaining (n—r) roots are distinct then the solution
corresponding to this r times repeated root will be of the form

Y ="' (A +Ax+AX" ++Ax") (25)
and the general solution will then be of the form

y=e€"(A+Ax+AX + -+ AXT)+A "+ + A ™ (26)
where A, A,, ..., A, are arbitrary constants.

We now illustrate the above discussion with the help of following examples.

4 3., - i
4 57 55 118 g
dx dx dx” dx

Solution: The auxiliary equation of the given differential equation is

Example 16: Solve

m'—m*—=9m* —11lm—-4=0
= (m+1)(m’-2m*-Tm-4)=0
= (m+1) (m+1) (m* =3m—-4)=0

= m=-1,-1,-14

Here the root —1 is repeated three times and the root 4 is distinct. Using
Eqn. (25), the solution corresponding to three times repeated root —1 can be
written as

Y=(A+Bx+Cx*) "
and the general solution from Eqgn. (26) will then be

y=(A+Bx+Cx*) ¢ +De**

where A, B, C and D are arbitrary constants.

Fk ok
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Example 17: Find the complete solution of the differential equation

4. 25,
4y g4 i 16y=0
dx dx

2

Solution: In this case the auxiliary equation is
m*—8m’ +16=0

= (m=-2)(m’+2m’>-4m-8)=0

= (m=2)(m-=2) (m*+4m+4)=0

= m=22-2,-2

Here the roots 2 and —2 are both repeated. The solution corresponding to
the repeated root 2 can be written as
Y, =(A+ Bx)e™
and that corresponding to the repeated root —2 can be written as
Y,=(C+Dx) ™.

The two together give the complete solution of the given differential equation
as

y=(A+ Bx) e** +(C+Dx) e**.
where A, B, C and D are arbitrary constants.

*kk

And now some exercises for you.

E18) Find the complete solution of the following equations:

45 &Y o 550,
dx’  dx” dx

4. Fs 25 y
T TS T O
dx dx dx” dx

i)

iy 42,47 & 5 g
d dx° dx
3 2}

vy X 3923 D -9
dx dx” dx

E19) Find the solution of the following equations subject to the conditions
mentioned alongside:

i) d_3'+4£—4y=0;when x=0, y=1and y' =-1
dx” dx
3 :
i) L2 3D _5y_0;when x=0, y=0, y'=9 and y" =0.
dx dx
4 3. 2
i 2232 Y58 Y LG when

d.l'4 dxj dx‘)‘
A= 0’ _v = 0! _V’ =49 _V’ — _65 _Vm = 14 .
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Now we shall discuss the case when the auxiliary Egn. (17) may have the
complex roots.

Case lll: Auxiliary Equation has complex roots:

Let the roots m,, m, of Eqn. (17) are complex. We know from the theory of

equations, that if all the coefficients of a polynomial equation are real, then its
complex roots occur in conjugate pairs. In Eqn. (17), the coefficients are
assumed to be real constants and hence the complex roots must occur in
conjugate pairs.

Let the complex roots of Eqn. (17) be m, =a+if and m, =a—if3, where a

and B are real and i* =—1. Formally, there is no difference between this
case and Case |, and hence the corresponding terms of solution are

(o+ip) x (a—if) x

y=ce +c,e
oo o, ipx —ipx
=e™ [ge™ e, e ] (27)

However, in practice we would prefer to work with real functions instead of
complex exponentials. To achieve this, we make use of the Euler’s formula,
namely,

€® =cosO+isin® and ¢ =cos®—isin0,

where 0 is any real number. Using these results, the right hand side of
expression (27), becomes

€™ [c,(cos fx +isin Bx) +c,(cos fx —isin fx)]
=e"[(¢, +¢,)cosPx+ (¢, —¢,) isin fx]
Since ¢, and ¢, are arbitrary constants, we may write
A=c +c, and B=i(c,—c¢,),

so that A and B are again arbitrary constants though not both real.
Expression (27) now takes the form

e™[AcosPx+ Bsin Bx] (28)

Further, if the complex root is repeated, then the complex conjugate root will
also be repeated and the corresponding terms in the solution can be written,
using the form (25), as

" e +e,x)+e" P (e +c,x)
Proceeding as above and writing
A=c¢ +cy, B=i(c,—¢;),C=c,+c¢,, D=i(c,—c,)
the solution can be expressed in the form
y=e"[(A+ Cx)cosPx+ (B+ Dx)sin Px] (29)

In the case of multiple repetition of the complex roots, the results are obtained
analogous to those in the case of multiple repetition of the real roots.

We now illustrate the case of the complex roots with the help of following
examples.

Example 18: For the differential equation
36
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4

7 3 —m*y =0, show that its solution can be expressed in the form
X

y = ¢, cosmx+c, sin mx+ ¢, coshmx+ ¢, sinh mx .

Solution: In this case since m is used as a constant in the given differential
equation, we can use some other letter A, say, in the auxiliary equation.

So, the auxiliary equation corresponding to the given equation is
A =m*)=0

= N-m>) XFP+m’)=0

= A=m,—m, tim

So the roots are a mix of real and imaginary roots. The solution corresponding
to the real roots +m and —m can be obtained as we have done in Example
11 and write it as

¢, cosh mx + ¢, sinh mx (30)

where ¢, and ¢, are arbitrary constants.
Solution corresponding to the imaginary roots +im and —im will be
Aeimr i Be—im\'
which can be written as
A(cosmx +isin mx)+ B(cos mx —isin mx)
=(A+B)cosmx+i (A— B)sin mx

= ¢, COS MX + ¢, Sin mx (31)

where ¢, =(A+ B) and ¢, =i(A—B) are constants.

Hence combining Eqgns. (30) and (31), the general solution of the given
differential equation is

Yy = ¢, cosmx +c, sin mx + ¢, coshmx + ¢, sinh mx

otk

Let us look at another example.

4 3 2y
X dx dx®  dx

Example 19: Solve

Solution: The auxiliary equation in this case is
m* —4m’ +8m> -8m+4=0

= (m’-2m+2)’=0

= [m—>1+)) [m—(1-)]" =0

= m=1+i 1+i,1-i,1-i.

Roots are complex and repeated in this case.
Hence the general solution can be written as

(I+i)x

y=(c,+xc,) e + (¢, +xc,) e

=e*[(c, +xc,) " +(c, +xc,) e ]
’ 37
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=e"'[(c, +xc,) (cosx +isin x)+ (c; + xc,) (cosx —isin x)]
=e*{[(¢, + ;) + x(c, +¢;)]eosx +i[(c, —¢;) +x(c, —¢,)]sin x}
=e"'[(A+ Bx)cosx+ (C + Dx)sin x]

where A=(c, +¢,;), B=(c,+c¢,), C=i(¢,—¢;) and D=i(c,—c,) are all
constants.

*hkdk

We now take up an example to obtain the differential equation whose solutions
are known.

Example 20: Determine a linear differential equation with constant coefficients
having the functions 4¢, 3¢™* as its solutions.

Solution: We know that if y, =4¢°" and y, =3¢~ are two solutions of a
linear differential equation then their linear combination
y=¢c,y, +c¢,y, =4c,e” +3c,e”™ (32)

where c,, ¢, are arbitrary constants, is also a solution of the equation. We

shall now eliminate ¢, and ¢, from Eqgn. (32) to obtain the required equation.
We have

y' =24c,e® —9c,e™" (33)

V' =144c.e® +27c,e™ (34)
From Egns. (32) and (34) we get

¥y =9(c,e™ +y). (35)
From Eqgns. (33) and (34) we get

e =2 :’;—"’ (36)

From Eqgns. (35) and (36) we thus obtain
y"=3y' =18y =0.

as the required differential equation.

ko

You may now try the following exercises.

E20) Find the general solution of the following equations:

_ d*y dy 2 . 2

i -—20—+(a" +p7) y=0.

) dx” dx ( B
d'y

ii  t+a'y=0
) dx’ ’

iy L2489 1 05y-0.

dx dx

E21) Find the corresponding differential equations if the roots of an auxiliary
equations are
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E22) Determine a linear differential equation with constant coefficients having

i) m =4, m,=m, ==5

ii) m.,=_7,m2=3+£, my =3—i

the given solutions
i) 10cos4x, —5sin 4x

i) 3. 05 ~e"

We now end this unit by giving a summary of what we have covered in it.

10.5 SUMMARY

In this unit, we have covered the following:

1=

The general linear differential equation with dependent variable y and
independent variable x is termed as

i) an equation with variable coefficients if not all the coefficients of y

and its derivatives are constant functions of x.

ii)  an equation with constant coefficients if the coefficients of y and
its derivatives are all constant functions.

i)  homogeneous equation if the term free from y and any of its
derivatives is absent.

iv)  non-homogeneous equation if there is a non-zero term free from
y and any of its derivatives.

The solution y(x) of an IVP

a,(x)y" +a,(x) y' P et a, (x)y +a,(x)y=b(x)

Y(X) = Yoo Y (X)) = Yo wees Y () = Y,
where x, is any point in an interval I and y,, y,,..., y,, are given real
numbers, exists and is unique on the interval I, if g, a,, ..., a, and b
are continuous on I with g,(x)#0 forevery x in I.

A set of functions y,, y,,....,y, defined on an interval I is linearly
dependent on 1 if for constant ¢, ¢,, ...,c, not all zero, we have for
every x in I,

ey ()t y,(x)+--+c,y,(x)=0.
A set of functions y,, y,, ..., y, defined on an interval 1 is linearly
independent on 1 if it is not linearly dependent on 1.

If y=y, is a solution of homogeneous linear differential equation on I,
sois y=cy, on I, for all real numbers c.

If y=y,, ..., y, are solutions of linear homogenous differential

<m

equationon I,sois y=c¢y +c,y,+--+c¢,y, on I, where

¢, ¢, ...,C, are arbitrary constants.

“m
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10.

10

th

The n solutions y,, y,,..., y, ofan n™ order linear homogeneous
equation on an interval I are linearly independent on I if and only if, the
Wronskian of the n functionsi.e., W(y,, v,, ..., y,) #0 for every x in
the interval.

A set of n linearly independent solutions of the homogeneous n™ order
linear differential equation on an interval 1 constitute a fundamental set
of solutions of the equation on 1.

If y,, ¥,,..., y, form a fundamental set of solutions of an n" order
homogeneous linear differential equation on an interval I, then

Y=y +ey,+-+cy

e .H

(where ¢, ¢, ...,c, being arbitrary constants)

is defined to be the general solution or the complete integral of the
given equationon I.

For a non-homogeneous equation

i) the complete integral of the corresponding homogeneous equation
is called its complementary function.

ii) a particular solution of the non-homogeneous equation involving
no arbitrary constant is called its particular integral.

i)  complementary function and particular integral together constitute
its general solution.

Solution y, of an n" order linear differential equation

du y du—l s d\-‘
d—‘n+a| 1—”_}|+"'+(J”_| Z-ﬁ-a“ y =0
X ax .
with constant coefficients «,, ..., a, ,, a, having n roots m,, m,,..., m

when

n?

i) roots are real and distinct, is

mx MaX m,Xx

yi=cje et ke

ii)  roots are real and repeated, say m, =m, =---=m_, is

myr ", ¢

y=(¢+cx+-+c,xe™ +c, "+t e

iy  roots are complex and one such pairis o i, is
y =e"(c, cosPx+c, sin Bx)
corresponding to that pair of roots.

10.6 SOLUTIONS/ANSWERS

E1)

E2)

i) Non-homogeneous, reduced equation is y”+xy"+x7y +x’y=0.
i)  Homogeneous.

i) Non-homogeneous, reduced equation is (I1—x)y"+xy'—y=0.

i) Independent, since for any non-zero ¢, and ¢,
ce’ +c,e” =0 forevery real x, only when ¢, =0 and ¢, =0.



Unit 10 Higher Order Linear Differential Equations

E3)

E4)

ES)

E6)

E7)

E8)

i) Dependent. We consider

2¢, cos3x+3c, sin {Bx + g]

=2c, cos3x+3c, cos3x

=(2¢, +3c¢,)cos3x

which is satisfied for any non-zero choice of ¢, and ¢, for which
¢, ==3/2c, .

i) Independent
Functions y,(x)=x" and y,(x) =x|x| are linearly independent on

—l<x<1. You can draw the graphs of the two functions and check it
x>, x>0

-

yourself. Also since y,(x)=x" and y,(x)=xlx|= :
-x-, x<0

W(y,(x), y,(x))=0 forall x in -I<x<]1.

i) Functions f,(x)=x, f,(x)=x" and f,(x)=4x-3x" are linearly
dependent on |—eo, [ since

gx+ (.‘:,xz +c(4x— 3x*)=0
when ¢, =—8, ¢, =6, ¢; =2.
i) Functions f,(x)=5, f,(x)=cos’x, f,(x)=sin’x are linearly
dependent on |—oo, o[ since
5¢,+c¢,cos’ x+¢;sin* x=0

when ¢, =1,¢,=¢;=-5

iy WX, .x3)=%x-’*’? #0 on 10, o[

iv)  W(sin x, cosec x) =—2cotx=0 only at x =g in the interval

10, = .

i) No; W(2, ¢*) =2¢" #0 on any interval.

ii) Independent; W is not always zero.

Function defined on the interval ]—oo, o[ whose graph passes through
the point (0, 2) having slope —1 at the point.

Function y = %Sin 4x is a solution of the given initial value problem.

From Theorem 1 it follows that on any interval containing x =0 the
solution is unique.

Comparing the given equation with Egn. (1), we obtain

ay,(x) = x*=3x=x(x-3).

Thus the only points of discontinuity of the coefficients of the equation
are x=0 and x=3.

The largest interval containing the initial point x =1, in which all the A1
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coefficients are continuous is 0 < x < 3. In the interval Theorem 2
guarantees the existence of the solution.

E9) a,(x)(cy,) +a,(x)(cy,) +a,(x)(cy,)
=c[a,(x) yr+ a,(x) yl' +a,(x)y,]
=c.0[since y, is a solution of Egn. (5)] on I
=0
Thus cy, is also a solution of Egn. (5) on 1.

**-,,l %)

E10) y=—, y=—, )y =
2
=

-
=

2 I : :
— =0. Thus y=— is a solution of the non-linear
X X X

differential equation.

Then y"-2y* =

Further, for y= #
X

y' =2y’ =2—f—2%=%c (1-=c*)#0 for c#0 and c# *1.
X ), 02 X

E11) ¢y, +c¢,y, (for arbitrary ¢, ) is not a solution of the given equation. It is
a solution for arbitrary ¢, and ¢, =0 or 1 only.

2 ’ ] 152 ” l =3/2
E12) y,(x)= e »(x)= Ex " y(x)= _ZX v

Substituting these values in the given equation, we have

2X2[_lx—3r3)+3x[lx—uz)_xlfz
4 2

(-3#3-1jr =0
2 2

Similarly, y,(x)=x", y,(x)=x2, y.(x)=2x", thus

2x7(2x ) 43x(—x7)—x"'=@4-3-Dhx"' =0

Thus y, and y, are the solutions of the given equation.
12 -

A * =3 =312
Now W(y,, y,)= lx—u: T =7I
2
Since W #0 for x>0, y, and y, form a fundamental set of solutions

there.

E13) Check that functions y,(x) =e", y,(x) =¢** and y,(x) =e¢"" satisfy the
third-order equation
Yy =6y "+11y'=6y=00n —o<x< o

Further W(e"*, ¢**, ¢’*) = 2¢* # 0 for every real value of x. Thus
¥, ¥, ¥; form a fundamental set of solutions on ]—oo, oof .
y=ce' +c,e” +ee’ is the general solution of the given equation.

E14) Verify that y, =sinx and y, =cosx are the solutions of the given
equation.
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sinx COSX o "
Also W(y,, y,)= =—sin” x—cos” x=-—1

cosx —sinx

Thus, y, and y, form a fundamental solution set of the given equation
on any interval 1. Thus y =c¢, sin x+c, cosx is the general solution of
the equation on 1.
To find the required particular solution, we solve

¢, sin0+c,cos0=2

¢, cos0—c,sin0=3
and obtain ¢, =2, ¢, =3. Thus y =3sinx+2cosx is the required
particular solution.

E15) Proof: Let y,(x) be a solution of the non-homogeneous Eqn. (13), i.e.,
ay(xX)y” +a,(x)y" +a,(x)y = b(x)
and y,(x) and y,(x) are the solutions of the corresponding
homogeneous equation on an interval 1. Then we have

ay(x)y, +a,(x)y, +a,(x)y, =b(x) (i)
4y (X)¥[+a, ()Y, +a,(x)y, =0 (i)
au(.r)_v; +a, (x)y; +a,(x)y, =0 (iii)

Let y=c¢,y,(x)+c,y,(x)+y,(x), where ¢, ¢, are constants. Then
ay (e y, +¢,y,+y, I+ a,(x)e,y, +c,y, + ¥, I'+a,lc,y, +¢,y, + v,
= [ao}';+ ay, +a,y 1+ ¢ lagy; + a4y, +a,y,1+ [auy: + aly;; +a,y,]
=¢,.0+¢,.0+b(x) [using Eqgns. (i), (ii) and (iii)]

=b(x)

Thus y=c,y,(x)+¢,y,(x)+y,(x) is also a solution of Egn. (13) on 1.

E16) i) The auxiliary equation is
m' —6m’>+11lm—-6=0
= (m-=-1)(m-2) (m-3)=0
= m=12 3;
The general solution is
y=ce +c,e +ee”

i)  The auxiliary equation is

O9m* +18m—-16=0

= 9m* —6m+24m—16=0
= (Bm+8) B3m—-2)=0
= m=-8/3,2/3

The general solution is

2 -8

—x

y=ce® +c,e’

o N i
i) y=ce”+c,e +ee™

E17) i) Roots are 3, -1

-X

e " i
y=ce +c,e, y =3ce —c,e

Using given conditions 43
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¢,+c,=4 and 3¢, —¢, =0
. ¢=1c,=3

y=e+3e™

ii) The roots of the auxiliary equation are
m=0,2 -2
y=c,+c,e” +eye”
Using given conditions
c,+e,+cy,=0

2x

2¢,—2¢, =0
4c, +4c, =2
1 1 I
O ==, Gy ==, = —
2 4 4

1
y=—(cosh2x—1
y 2( )

E18) i) The auxiliary equation is
m'—m>—8m+12=0
= (m+3)(m-2)"=0
= m=-322
Hence, y=(A+ Bx) ¢ +Ce™

i)  Roots of the auxiliary equation are m =-1,-1, 2, 2
y=(A+Bx) ¢ * +(C+ Dx) e*

i)  Roots of the auxiliary equation are m=1, -1, —1

y=(c +c,x) € +cze’

iv)  y=(A+Bx+cx’)e".

E19)i) y=(+x)e™
ii) Roots of the auxiliary equation are
m=-1,-1,2
y=(c, +xc,)e”" +ce™
Using conditions
c,+c; =0
—c,+c, +2¢,=9
¢, —2¢c,+4c, =0
. ==2,¢,=3,¢c;,=2
y=2e"*+Bx—-2)e™"
iii)  Roots of the auxiliary equation are
m=0,0,-1,-2
and y=c,+xc,+c,e " +ce e
using given conditions and solving for ¢, ¢,, ¢;, ¢,
y=2(x+e " —e™)

E20) i) The auxiliary equation is
44
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ii)

E21) i)

E22) i)
i)

m* =2om+ (o> +p*) =0

200+ /40 —4(a® + B
= m=a\/ 2( B)zaiiﬁ

Hence the general solution is
y =e™ [AcosPx + Bsin px]

The auxiliary equation is m* +a"* =0

Using De’Moivre’s theorem to find the roots, we get
m* =a*(=1)=a"(cosm+isin 7)
=a*(cos@p+)n+isin(2p+1)m), p=0, 1,2, ...

Hencem = “[COS%;DJH o (2;;—4— 1

-1

Hence the solutlon is

= e{“"m"'{c, COS[T x] + ¢, sin

y=e"* (Acos3x+ Bsin 3x).

The auxiliary equation having given roots is
(m—4) (m+5) (im+5)=0

= m +6m*=15m—-100=0

*. corresponding differential equation is
vy +6y"=15y"=100y =0

The auxiliary equation is

[m+ ](m 3—i)(m-3+0)=0

= [m+ ](m —6m+10)=0

= 2m’ =11m* +14m+10=0
. 2y"=11y"+14y"+10y =0 is the required equation.

Y +16y=0.
y"=7y"=0.

‘Jt] for p=0,1, 2, 3.

45
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APPENDIX

We here give you a brief review of matrices and determinants which you might
have studied in your school mathematics.

Matrix

Consider the system of linear equations
3x+2y+z=17
x—=y+3z=3 (A1)
Sx+4y-2z=1
We can write the coefficients of x, y, z in the three equations of the system

(A1) above, in a table, as follows:
3 2 1

f =1 3 (A2)
5 4 -2

In Table (A2) the first, second and third row corresponds respectively, to the
coefficients of x, y and z in the first, second and third equation of the system

Emlle same manner, we can rewrite system (A1) as
3 2 1\|= 7
1 -1 3 ||y|=(3 (A3)
5 4 -2||z 1

The numbers or the variables in each of the square brackets ([ ]) represent a
matrix. Formally, we can have the following definition.

Definition: A matrix is a rectangular arrangement of numbers in the form of
horizontal and vertical lines.

The numbers/ variables occurring in a matrix are its elements. The elements
in one harizontal line of a matrix is called a row of the matrix whereas, the
elements in a vertical line is its column.

2
For examples, L } is a matrix with 2 rows and 3 columns and

2
1 4

6 —11| is a matrix with 3 rows and 2 columns.
0 1

Note that each row of a matrix has the same number of elements. Similarly
each column of a matrix has the same number of elements. We usually
denote matrices by capital letters. In general, the matrix with m rows and n
column is written as

ay, 4y ... 4,

a'-’l a'-‘" e a'-’n i=1.2 i
A = = [ar'j]‘ F=leEian

am 1 am 2 nin

Here a,, denotes the element in the 1° row and 1% column, a,, is the element
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in the 2" row and 1% column and in general a; denotes the element in the ith
th

row and jth column of the matrix A. We say that a; is the (i, j)" entry of
1 4 =2

A. Forexample (1,3)" entryof | 2 0 0 |is —2 and (3,2)" entry is
-1 -4 3

~4

Matrix A consisting of 3 rows and 2 columns is called 3x2 matrix or we say
that matrix A has order 3x2. We representitas A, , or A(3, 2) also. Matrix

(A2) is a matrix of order 3x3. Since (A2) has the same number of rows as
the number of columns, we call it a square matrix.

0 1 -1
1
For instance, [2], L} } and |0 2 2 | are the examples of square
0 0 1

matrices of order 1x1, 2x2 and 3x3, respectively. Associated with the
square matrices is a unique number called its determinant.

Determinants

We start with the definition of a determinant for a 1x1 matrix.

Definition: The detrminant of 1x1 matrix A =[a], denoted by | Al or det A, is
a.

For example if A=[2],then|Alis 2. If A=[-3] then | Al =-3.

We now consider the determinant of a 2x2 matrix.

apy, | . .
Definition: The determinant of the 2x2 matrix A:[a“ il*] is defined by
ay Ay
a, ap| .
=a,,d,, —a,,a, and is denoted by | Al or det A.
dy  dy

1 3
For example, if Az{o J then |Al =1x5-0x3=5.

Using the determinants of 2x2 matrices, we now define the determinant of a
3% 3 matrix.

Definition: The determinant of the 3x3 matrix
ay  dyy A
A=l|a, a, ayl|is

Gy dyp

Ay oy

iy Ay

a, dy

|Al = ay, = it

ay Ay

Ay gy ds, 3

=(=D"a, 1A, 1+=D)"a, | A, 1+(-1)"a, 1 A,
47
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where A, (j =1, 2, 3), is the matrix obtained from A after deleting the first

row and the j” column.

In determing | Al instead of expanding by the first row, as we have done

above, we could also expand by the second row, third row or by any of the
three columns. If we expand the above determinant by the second column,
we get

LAl=(=1)"2a, | A, 1 +(=1)*?a, | A, | +(=1)"a, | A, |.
All 6 ways (expending by any of the 3 rows or 3 columns) of obtaining | Al

would lead to the same result. We shall not be proving it here but we shall
illustrate it through the following example.

Example 1: Evalute the determinant of the matrix
2 47
A=|1 2 3].
1 & 3

Solution: Expanding by the first row, we get

2 47

2 3 I 2
1 2 3(=2 +4(-1) +7

3 3 1 5
1 5 3

=2(-9)-4(0)+7(3)=3
Alternatively, we expand the determinant by say, the second column. Then
we have

2 47

1 3 2 7 2 7
1 2 3|=4(-1) +2 +3(—1)

1 3 1. 3 1 3
1 5 3

=—4(0)+2(-1)-5(-1)=3
Thus, we get the same result in both the cases. Similarly, you can check that
if you expand by other rows and columns of A you will get the same result.

Fkdk

Determinants are sometimes useful in solving a linear system of n equations
in n unknowns. In 1750 the German mathematician Gabriel Cramer
published a rule, called Cramer’s rule, for solving a set of n linear equations in
n unknowns simultaneously.

Let us discuss this rule.

Cramer’s Rule

Consider the following linear system of n equations in n unknowns:
al I"rl + a]?‘xﬁ s & a]nxn = b]

Ay X, +ayX, +++-+a,,X, =b,

A% +d %, +ta, x =b

il nnn n

Let A be the matrix of coefficients of (A4) and let
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dy 4y a,
a a
21 2 2
detA= "
aul anl S amr
If
A
k™ column
ay Gy .. Gy | blay, ..oq,
;T - TR WO B - V| |- T— §
detA, =| . - | | e PlLik=l Doy B (A5)
aui ﬂnZ TEY ank—1 bu au.k+l Y a:m

is the same as det A except that its k" column has been replaced by the
column

Then (A4) has the unique solution
det A, det A, det A,
xF: ""2: ‘...,x“:
det A det A det A

provided det A #0. This method of solving system (A4) by determinants is
known as Cramer’s rule.

(A6)

Remember that Cramer’s rule can be applied only if

i) the number of equations in the linear system equals the number of
variables, and

i)  the determinant of the coefficient matrix is non-zero.
Let us solve the system of Egns. (A1) by Cramer’s rule

Example 2: Solve the system of equations
3x+2y+z=T7
x—=y+3z=3
Sx+4y-2z=1

by Cramer's rule.

Solution: For finding the solution we need to calculate the following four
detrminants

3 2 1 T 2 1
detA=|1 -1 3 [=13,detA =|3 -1 3 [=-39
5 4 -2 1 4 =2
3 7 1 3 2 7
detA,=|1 3 7 |=78,detA,=|1 -1 3|=52

3 1 =2 5 4 1

Hence (AB6) gives 49
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xzdetA, ~ 3 _‘_detAg _

— - y= TN
det A T detA det A

It b,=0,i=1, 2, ..., n, then the system of Eqns. (A4) is said to be

homogeneous. If at least one of the b, is non-zero, the system is non-
homogeneous.

You may please note that for the homogeneous system corresponding to
system A(4) if det A # 0, then the only solution of the homogeneous system

from (A6) is the trivial solution i.e., x, =0, x, =0, ..., x, =0. This is because
if b=0,i=1,2,...,n inA(5) then detA, =0 for k=1, 2, ..., n in A6).
If det A =0, then a homgeneous system of n linear equations in n

unknowns has infinitely many non-trivial solutions. These solutions can be
obtained by the method of elimination.

If det A =0, then a non-homogeneous system (A4) may either have
infinitely many solutions or no solution at all.

- X -
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11.1 INTRODUCTION

In Unit 10, you studied that in order to find the complete integral of a general
non-homogeneous linear differential equation, namely

n—1
s

d"y y dy
) +a, —+-+a, , —+a,y=b(x) (1)
»

Y n

ag,

where a,, a,, ..., a, are constants, it is necessary to find a general solution of

the corresponding homogeneous equation, that is, the complementary function
and then add to it any particular integral of Egn. (1). We also discussed there
the methods of finding the complementary functions of linear differential
equations with constant coefficients. But how do we find a particular integral
of the equations of the form y"+y"+ y=x"+1, y" -y =2cos x etc.? We shall
now be considering this problem in this unit.

Variety of methods exist for finding a particular integral of a non-homogeneous
equation of the form (1). The simplest of these methods is the method of
undetermined coefficients. Basically, this method consists in making a guess
to the form of a trial solution and then determining the coefficients involved in
the trial solution so that it actually satisfies the given equation. You may recall
that we had touched upon this method in Sec. 8.3 of Unit 8 for finding a
particular integral of non-homogeneous linear differential equations of the first

51
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order having constant coefficients. In this unitin Sec. 11.2 we shall discuss
the method in general, for finding a particular integral of second and higher
order linear non-homogeneous differential equations with constant coefficients
where the non-homogeneous term is a polynomial, an exponential function, a
sine/cosine function or a combination of these functions. In Sec. 11.3 we have
given some of the constraints of the method.

Objectives
After reading this unit, you should be able to:

¢ identify the types of non-homogeneous terms for which the method of
undetermined coefficients can be successfully applied;

¢ write the form of trial solutions when the non-homogeneous terms of the
given equations are polynomials, exponential functions or their
combinations and use the method to obtain their particular integral; and

e describe the constraints of this method.

11.2 TYPES OF NON-HOMOGENEOUS TERMS
FOR WHICH THE METHOD IS APPLICABLE

A function which is a
combination of a sine
function (or cosine
function) with an
exponential function
and/or a polynomial is a
sinusoidal function e.g.,

") & 2_.
X~ sin3x, xe " cos x etc.

The method of undetermined coefficients, as we have already mentioned in
Sec. 11.1, is a procedure for finding a particular integral y,(x) in the general

solution y(x)=y.(x)+y,(x) of equations of the form (1). The success of this

method is based on our ability to guess the probable form of a particular
integral.

Suppose that in Eqgn. (1), b(x) = x"(r >0, an integer) i.e., b(x) is a polynomial

in x of degree r. Then whatis % ? % =rx"", again a polynomial of degree
ax ax

r+l

(r—1). Similarly, Ib(.x) d):zj‘x’dx= 2
r+
That is, result of differentiating or integrating a polynomial is again a
polynomial. Same is true when b(x) =e™ , an exponential function or when
b(x) is a sine/cosine function like h(x)=sinmx or b(x) =cosmx, for m a

constant. We know that

i a polynomial in x of degree (r+1).

J“’md-" i : i(e"” )=me™, jcosnv: dx = lsin mx, Isin mx dx= _—]cos mx
m  dx m m
etc. Hence, if the non-homogeneous term b(x) in Egn. (1) is a polynomial, an
exponential function, or a sine or cosine function then we can choose a
particular integral to be a suitable combination of a polynomial, an exponential,
or a sinusoidal function with a number of undetermined constants. These
constants can then be determined so that the choosen trial solution satisfies
the given equation.

Thus the types of non-homogeneous terms for which the method of
undetermined coefficients is successfully applicable are

i) polynomials
i)  exponential functions
i)  sine or cosine functions

iv) a combination of the terms of types (i), (ii) and (iii) above.
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We shall now discuss each of these types one by one.

11.2.1 Non-homogeneous Term is a Polynomial

Let us start by considering the following differential equation and try to find its
particular integral

—L+Xpy=yt )

Here the non-homogeneous term i.e., x” is a polynomial of degree 2. As we
have already mentioned above that the differentiation or integration of a
polynomial is again a polynomial so we can think of taking a trial solution
y,(x) as a second order polynomial of the form:

y,(x)=Ax’+Bx+C, where A, B and C are the constants to be

determined.
Let us now check whether this choice of a trial solution help us to obtain a
particular integral of Eqn. (2). In order to determine the values of A, B and C

we substitute in Eqn. (2) the values of y,, ¥’ and y and obtain
2A+(2Ax+B)+(Ax* + Bx+C)=x".
Equating the coefficients of the like powers of x on both the sides of the
above equation we get
Coefficients of x*: A=1
Coefficients of x:2A+B=0
Coefficients of x":2A+B+C=0

Solving the above system for A, B and C, we get
A=1,B=-2,C=0

For these values of A, B and C the trial solution y,(x) take the form
y,(x)=x*—2x

and it can be easily checked that it also satisfies Eqgn. (2).

We have, y’ +y, +y, =2+(2x—2)+(x’ —2x) = x". Thus, our choice of

y,(x) leads us to a particular integral of Eqn. (2).

Let us now see how the method used in the example above can be
generalized to make an appropriate choice of a trial solution for any given
equation with the non-homogeneous term being a polynomial.

Consider Eqn. (1) and assume that the non-homogeneous term b(x) is a
polynomial of degree k and is given by
b(x)=b,x" +bx"" +---+b,_ x+b, =B, (x), say,
where by, b, ..., b, are known constants.
With the above form of b(x), Eqn. (1) reduces to

n )« dﬂ'—l }
g——+Fa —++a,y +a,y
d dx
- & k-1 .
=hx" +bx ++-+b_x+b, (3)

Now since the right hand side of Egn. (3) is a polynomial of degree &, we can

think of a particular integral in the form 53
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Y, (x)=Ax" + Ax T 4o+ A x+ A =P (%),

where A, A, ..., A, are constants to be determined.

In order to determine the constants A, A,, ..., A, , we substitute the values of
y, and its derivatives in Egn. (3) and compare the coefficients of the like

powers of x on both the sides of Eqn. (3). Comparing the coefficients of x5,
we get
a,A, = b,

If a, #0, then we get A = b—“ Similarly, the constants A, A,, ..., A, in
aH

y,(x) are determined by comparing the coefficients of x*"', x**, ...,x" on

both sides.

If a, =0, i.e., the coefficient of y in Egn. (3) is zero then obviously zero will

be the root of the corresponding auxiliary equation, i.e., the root of the
homogeneous differential equation corresponding to Egn. (3) and hence

y =constant, will be its solution. In that case A, =5 will be undetermined
a

and we will not be able to determine all the coefficients A, A, ..., A,.
Consider for example the equation

Y4y +y =x"+x (4)

Here there is no y term on the L.h.s. of Egn. (4), i.e., the coefficient of y is
zero. Zero is a root of the homogeneous equation corresponding to Eqn. (4).
Further, b(x) = x” + x is a polynomial of degree 2. Now, if we take a trial

solution as y,(x) = A,x* + Ax+ A, then substituting for y’, y” and y7 in Eqn.

Jp

(4) we get 24, +2A x+ A = x* +x. You may note here that comparing the

coefficients of various powers of x in this equation we get A, =% and A =-1.

We cannot obtain the value of the coefficient A,. However, if we consider a
trial solution of the form x(A x* + Ax+ A,) then you may check that we obtain

1

the values of the three coefficients as A, =%. A = ~5 and A, =-1. A

X —=xt-x.

particular integral of Eqn. (4) is then obtained as y (x) =

0 | —
| —

Coming back to Egn. (3) we can thus say that when «, =0, a trial solution of
the form xP,(x) of degree (k +1) is taken instead of k" degree polynomial

P (x). This trial solution, when substituted in Egn. (3), gives us a term on the
left hand side of Eqn. (3) which balances the term b x* on the right hand side

of Eqgn. (3), provided a,_, #0.

n=1
If a,=0 and a, , =0, then zero will be the repeated root of the homogeneous
differential equaton corresponding to Eqn. (3) and consequently, y =constant

and y = x will be its solutions. In that case, we take a trial solution of the form

x*P,(x) of degree (k +2) to balance against h,x", provided a, , #0.

n-2

i In general, let us assume that out of n coefficients
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By Gy Wiy s B .., a, in Egn. (3) the last r coefficients, i.e.,

relr

are zerobut a__ #0. The zero will then be r times

a an—l’ an—?" i an—(r—l} n-r

repeated root of the auxiliary equation corresponding to Egn. (3). In such a
case we multiply the polynomial P, (x) by x" and consider a trial solution

x"P,(x) of degree (k+7r).

We illustrate the method discussed above with the help of a few examples.

Example 1: Find a particular integral of the differential equation

4 2_. ]
d :\-_'_d 3+d_}+},=_‘-3+2x+1
dx dx® dx

using the method of undetermined coefficients.

Solution: The auxiliary equation corresponding to the given equation is
m'+m* +m+1=0.

Here zero is not a root of the auxiliary equation.
Also the non-homogenous term in the given differential equation, i.e.,

x’+2x+1 is a polynomial of degree 3. Hence an appropriate form of a trial
solution will be a polynomial of degree 3. We take it as

y,(x)= Ax’ +Bx*+Cx+D,

where A, B, C and D are the constants to be determined.
Substituting the values of y, and its derivatives in the given differential
equation, we get

(Ax’ + Bx* + Cx + D)+ (3Ax* +2Bx+C) + (6Ax+2B)+0

=x+2x+1 (5)
Equating the coefficients of the like powers of x on both the sides of Eqgn. (5),
we get

Coefficients of x': A=1
Coefficients of x° : B+3A=0
Coefficientsof x:C+2B+6A=2
Coefficientsof x" : D+ C+2B =1.

Solving the set of Egns. (6) for A, B, C and D, we get
A=1,B=-3,C=2,D=5
Hence a particular integral of the given equation is
y,(x)= X —3x" +2x+5.

* kA

Let us now look at examples in which zero is the root of auxiliary equations.

Example 2: Find a particular integral of the differential equation

Solution: The auxiliary equation for the given differential equation is

m(m+1)=0
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= m=0,-1
Thus, the complementary function can be expressed as

x

y.=¢ +c,e ', ¢ and ¢, being constants.

Since 0 is a root of the auxiliary equation, the constant ¢, is one of the

solutions of the corresponding homogeneous differential equation. Also, the
non-homogeneous term in this case is of degree 2. We take the form of a trial
solution as

y,(x) =x(Ax* +Bx+C)= Ax’ + Bx* +Cx.

Substituting the values of y, and its derivatives in the given differential
equation, we get

(3Ax* +2Bx+C)+(6Ax+2B) = x* + 2x
Equating the coefficients of the like powers of x on both the sides, we get

Coefficients of x*:3A=1
Coefficients of x:2B+6A=2

Coefficients of x*: C+2B=0

Solving the above set of linear equations for A, B and C, we get
A= % B=0,C=0
Hence a particular integral for the given differential equation is
poo.o. l A‘;
y,(x)= 5 X,

ddkdk

Example 3: Find a particular integral of the equation
d’y d 2y
dx’  dx’
Solution: The auxiliary equation for the given equation is
m*—m* =0
= m’(m-1)=0
= m=0,0,1

Hence zero is a double root of the auxiliary equation.
The complementary function can be expressed as

¥, =¢, +xc, +ce’,

=2x".

¢,, ¢, and ¢, being constants.

Since the non-homogeneous term is of degree 3 and 0 is a double root of the
equation, we take the form of a trial solution as

y,(x)= x*(Ax’ + Bx* +Cx+ D)= AxX’ + Bx* + Cx’ + Dx*
Substituting for y and its derivatives in the given equation, we get
(60Ax* +24Bx+6C)—(20Ax" +12Bx* +6Cx+2D)=2x"
Equating the coefficients of the like powers of x on both the sides, we get
Coefficients of x* : =204 =2
Coefficients of x*:60A—12B=0
Coefficients of x:24B—-6C =0
Coefficients of x":6C—-2D =0
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Solving the above set of linear equations for A, B, C and D, we get

A:_—], B:_—],C:—2,D:—6

10 2
Hence, a particular integral of the given differential equation is

5 4

Y, = P o B
10 2
5 4

=2 4+Z 125% +62°
10 2

*kk

Using the method discussed above you may now try to solve the following
exercises.

E1) Write a suitable form of a particular integral for the following differential

equations
i) d;y+ﬁ+y=x3+1
dx®  dx

dy i 3 _, )
d ::._d :_d :\_'_ﬁ:f
dx dx’  dx- dx

i)

E2) Determine the general solution of the following differential equations.

) G W oy
dx”® dx
3! ]

i) 224Dy
dx dx

We next take up the case when b(x) is an exponential function. In this case

also the logic used in making an appropriate choice of a trial solution is same
as that used in Sub-sec.11.2.1. Let us see how the method works.

11.2.2 Non-homogeneous term is an Exponential
Function

Let us start with a simple example and try to find a particular integral of the
equation

y-y=e (7)
As we mentioned earlier the differentiation or integration of an exponential

function is again exponential we can think of a trial solution of Eqn. (7) of the
form y (x) = Ae" and then try to determine the value of the coefficient A.

Substituting for y (x) and y’(x) in Eqn. (7) we obtain Ae' — Ae* =¢* which is
absurd. Thus the trial solution considered does not serve our purpose. You
may notice here that since 1 is a root of the homogeneous equation
corresponding to Eqn. (7), y(x)=¢" will be the solution of the homogeneous
equation. In order to find a particular integral of Egn. (7) we thus need to take
a trial solution of Eqn. (7) of the form y, (x) = Axe". Substituting for y, and y’
in Egn. (7) we obtain

Axe' +2Ae" — Axe' =¢"
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which yields A =— giving y,(x) = %e as a particular integral of Egn. (7).

o | —

The method above holds true, in general, for Eqn. (1) when b(x) is an
exponential function of the form ¢™* (o a constant) and Eqn. (1) is of the form

dy :
aﬂ d ;r +a| d ”_'l +'”+an—|_l+ar:‘v=eu.‘ (8)
X X

To solve Eqn. (8), the appropriate form of a trial solution can be taken as

¥, (x) = Ae™ (9)

provided, ¢** is not a solution of the homogeneous differential equation
corresponding to Egn. (8). Thatis, o is not a root of the corresponding
auxiliary equation.

If a is a root of the auxiliary equation corresponding to Egn. (8), then the

choice (9) would lead us to a relation of the form Ae™ .0 =¢™ from which the
value of A cannot be determined.

In that case, we take y,(x) = Axe™" as a trial solution which gives us a

relation for determining the value of A. Similarly, if o is r -times repeated
root of the auxiliary equation, then the suitable form of a trial solution for
determining a particular integral will be

y,(x) = Ax'e™
The value of A can then be determined by substituting for y, and its

derivatives in the given equation and then equating the coefficients of ¢** on
both the sides of the equation.

Let us take up a few examples to illustrate the method.

Example 4: Find the general solution of the differential equation
d_‘}? +3ﬁ+ 2y =3e".
dx” dx
Solution: The auxiliary equation is
m* +3m+2=0
= (m+1)(m+2)=0
= m=-=1-2

C.F.=ce ™ +ce™

Since e* is not a part of the complementary function, a trial solution for finding
a particular integral can be taken as

y,(x) = Ae", where A is a constant to be determined.
Substituting this value of y, in the given differential equation, we get
2Ae" +3Ae" + Ae' =3e*
= 6Ae" =3e¢"

= 6A=3 c:rA:l
2

Hence
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F’.I.=l e
2

. The general solution of the given differential equation is
y=C.F.+P.l

¥ 3%, 1
=ce " +c,e" e e’.

Fedk e

Example 5: Find the general solution of the differential equation
d2 / 1y Ty
'} —32+2y =3e*™
dx” dx
Solution: The auxiliary equation is
m’ =3m+2=0
= (m-1)(m-2)=0
= =12
C.F.=ce" +c,e™
Since 2 is a root of the auxiliary equation and the non-homogenous term e**
is a part of the complementary function, we take the form of a trial solution as
y,(x)=Axe™
Substituting the value of y,(x) and its derivatives in the given equation, we
get

4Ae™ +4Axe™ —3(Ae™ +2Axe™ ) +2Axe™ =3e™"

Equating the coefficients of ¢** on both the sides of the equation, we get
4A-3A=3=>A=3

Hence, P.l.=y, (x)= 3xe’.

.. The general solution of the given differential equation is
y=ce' +c,e’ +3xe’.

Fkk

Let us consider another example which illustrate the case of repeated roots of
an auxiliary equation.

i 3. ;
Example 6: Solve d :' -3 g : + 3d—}— y=12¢".
dx dx dx
Solution: The auxiliary equation is
(m-1"=0
= m=111

C.F.=(e+ex+ex") €

Since the non-homogeneous term of the given differential equation is ¢* which
is present in the complementary function and moreover 1 is 3-times repeated
root of the auxiliary equation, we take the form of a trial solution to be

y,(x)= Ax’e”.

You may check here that in the selection of a trial solution y, (x) above no

smaller power of x will give us a particular integral. Also, the form of a trial
solution is not similar to any term of the complementary function of the given
equation.

On substituting this value of y , in the given differential equation, we get -
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—Ax’e* +3A[x%e" +3x%e" | -3A[xe" +6x’¢" + 6xe"]

+A[xX’e" +9x%e" +18xe" +6e*]=12¢e"

Equating the coefficients of ¢* on both the sides, we get
6A=12, > A=2

Thus, P.l.=2x%"

.. The general solution of the given differential equation is
y= (('I + CyX + (.'341‘2 J e’ + 2.1'33"- :

ko

And now you can check your understanding of the method while doing the
following exercise.

E3) Find a particular integral of the following differential equations

d*y dy
0 Y 4 o
dx dx
3 : 2 : X
ii) Q+d—f+d—}+y=e‘-"

dx’  dx*  dx

You may also come across the situation when /(x) in Egn. (1) is a sum of two
or more functions. Suppose b(x)=b,(x)+b,(x). If y,(x), y, (x) and y, (x)
are respectively, the P.I's of Egn. (1) corresponding to the non-homogeneous
terms b(x). b,(x) and b,(x) then from the superposition principle we have
TR e This enables us to decompose the problem of solving linear
Eqgn. (1) into simpler problems as illustrated in the following examples.

Example 7: Find the general solution of the differential equation
AL Ry
dx® dx

Solution: The auxiliary equation is
m> —2m+1=0
= (m-1)*=0
= m=11.
C.F:=(¢, +x¢,) ¢
To find a particular solution we first consider the equation

£) oD y=¢ (10)

Since 1 is a repeated root of the auxiliary equation and e* is present in the
complementary solution we consider a trial solution

Yp, = Ax’e"
On substituting fory, and its derivatives in Eqn. (10), we find that
(2Ae" +4xAe" + x*Ae’)—2(2xAe" + x°Ae’) + Ax’e” ="
Comparing the coefficients of ¢* on both the sides, we have
2Ae" =¢"

= A=—
2
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X =
Vp = 5 e
Now consider the equation
d? y dy
——-2—+y=4 11
dx*  dx )

Since the non-homogeneous term is a constant, we try y, = A and find that

A =4 satisfies (11). Hence y, =4 and a particular solution of the given
equation is

-

e +4

X
H =YV } —
Yo =Yn + Vs,

The required general solution will then be

2

y=ige® +exe’ +4+? &%,

*kk

Let us now consider an example where the non-homogeneous term b(x) is a
sum of a polynomial term and an exponential term.

Example 8: Find the general solution of the differential equation
d '}! _3£+2)' = 2x2 +362\
dx”  dx

Solution: The auxiliary equation is
m> =3m+2=0
= (m-1)(m-2)=0
= m=1,2
+. C.F.=ce" +c,e™
To find a particular solution we first consider the equation
dY 3D 4 gy=2x (12)
dx’ dx
Here the non-homogeneous term, 2x°, is a polynomial of degree 2 hence, we
take a trial solution of the form
Yp = Ax* +Bx+C

Substituting for y, and its derivatives in Eqn. (12), we get

2(Ax* +Bx+C)-3(2Ax+B)+2A=2x"
Equating the coefficients of like powers of x on both the sides and solving, we
obtain

A=1,B=3 and C:%

Putting these values of A, B and C in y, , we get

2 A, !
¥, =% +3.3.+E

Now consider the equation
Y 3D 4 oy=3e> (13)
dx”  dx

In Example 5 we have already obtained a particular integral of Eqn. (13) as
¥,, =3xe*.
Hence, a particular solution of the given equation is
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Yi = Y5
2 ? 2x
=K +3.1:+E+3xe .
The general solution of the equation will then be

¥ o el ? i
y=c¢e* +c,e™ +x° +3x+5+ 3xe™ .

%% de

You may now try these exercises.

E4) Find the general solution of the following differential equations

d-’: —4ﬁ+4y =x"+e'
dx dx

=

ii) 2 d :' +8y= X+ e,
d 4

X

)

E5) Solve the following initial value problems:

) d2 J 5y ”

) SE-y=e" y0)=-1y(0)=I
dx*

i) d-'f —4ﬁ+4}=+e3" =0, y(0)=y(0)=0.
dx” dx

We now take up the case when the b(x) in Egn. (1) is either a sine or a cosine
function.

11.2.3 Non-homogeneous Term is a Sine or a Cosine
Function

After going through Sub-secs. 11.2.1 and 11.2.2 and attempting the exercises
given there you know how to handle H(x) when it is a polynomial, an

exponential function or a sum of both. We shall now discuss the case when
b(x) is a sine or a cosine function.

We know that the derivative of a sine or a cosine function sin Bx or cosPx is
again a sine or a cosine function or their linear combination. Therefore, if the
non-homogeneous term b(x) of differential Eqn. (1) is of the form

b(x) = o, sin Bx or, o, cosPx or, o, sin fx+ o, cosPx,
we take a trial solution in the form

y,(x) = AcosPx+ Bsin x (14)
provided, £if are not the roots of the auxiliary equation corresponding to the

given differential equation because if they are the roots, than the terms sin Bx
and cosPx will appear in the complenetary solution of the equation.

If £if are the roots, say, r-times repeated roots of the auxiliary equation,
then we take the form of a trial solution to be
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y,(x)=x" (AcosPx+ Bsin Bx) (15)

where, A and B are the constants to be determined. In order to obtain A

and B we proceed as we have been doing above and substitute the value of

y,(x) of the form (14) or (15), whichever is applicable, in Eqn. (1). Equating

the coefficients of sin Bx and cosPx on both the sides of the resulting

equation values of A and B in terms of known quantities are obtained.
Knowing the values of A and B, a particular integral of Egn. (1) is obtained
from relations (14) or (15).

We now illustrate the method with the help of a few examples.

Example 9: Find the general solution of the differential equation
4 ] 2 3
d : —2d—'3—+ y=sinx
dx dx”

Solution: The auxiliary equation is
(m*=2m* +1)=0
= (m-1)’=0
= m=11, -1, -1
C.F.=(¢,+c,x) e" +(c;+cx) e
Since * i is not a root of the auxiliary equation the term sin x, which is the

non-homogeneous term in this case, does not appear in the complementary
function. We can thus take a trial solution in the form

y,(x)=Asin x+ Bcos x.

Substituting this value of y, and its derivatives in the given differential
equation, we get

(Asin x + Bcos x) —2(—Asin x — Bcos x) + (Asin x + Bcos x) = sin x
= 4Asin x+4Bcosx=sin x
Equating the coefficients of sin x and cosx on both the sides, we get

4A=1=>A= &
4
and 4B=0=B=0
I e
Thus, y,(x)= Zsm X
And the complete solution of the given differential equation is
y=(¢+ec,x)e" +(c;+c,x) e + d sin x.

Fdkdk

Let us look at another example.

Example 10: Solve an initial value problem

d°y

2
X

+y=2cosx, y(0)=1, y(0)=0

Solution: The auxiliary equation is
m +1=0
= #imk i
= C.F.=c¢cosx+c,sinx
Now since *i is a root of the auxiliary equation cos x itself appears in the
complementary function. We take the form of a trial solution as 63
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¥ (0) =% (Asin x+ Bcos x)
Substituting the values of y, (x) and its derivatives in the given equation, we
get
2(Acosx— Bsin x)+ x(—Asin x —Bcos x)+ x(Asin x+ Bcosx) =2cosx
= 2Acosx—2Bsinx=2cosx
Comparing the coefficients of sin x and cosx on both the sides, we get
2A=2=A=1and B=0
Therefore,
y,(x)=xsinx
and the general solution of the given equation is
y(x) =¢, cosx+c,sin x+ xsin x.
We now use initial conditions to determine ¢, and ¢, .
y(0)=1 gives ¢, =1
and y(0)=0 gives ¢, =0
Thus, y(x) =cosx+xsin x.

Fdkdk

You may now try the following exercises.

E6) Solve the following differential equations:

& 2 4
R AL S
dx dx
3,
ii) g ’: —ﬂ=2005x
dx”  dx

E7) Solve the following initial value problems:

i S P diyssin g W=, ¥ ==
dx

2

ii) d-"}, + y=cos2x—sin 2x, y(0)= i Y(0)= L
dx” 20 >

In the examples considered so far, you must have noticed that the function
b(x) itself suggests the form of a particular solution y,(x). This suggests
that we can expand the list of functions b(x), to which the method of

undetermined coefficients can be applied, by including the product of these
functions as well. We now discuss such cases.

11.2.4 Non-homogeneous Term is a product of an
Exponential, a Polynomial and a Sinusoidal
Function

Let us first consider the following differential equation and try to solve it

d*y _dy e
= +6—+9y=—xe"

(16)

2

dx® dx
The auxiliary equation corresponding to Eqgn. (16) is

m* +6m+9=0=(m+3)".
64
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Thus —3 is a repeated root of the equation and the complementary function
for Eqn. (16) can be written as

C.F.=(¢,+xc,)e™, ¢, and ¢, being constants.
Let us look at the non-homogeneous term in Eqn. (16). Itis a product of x, a

polynomial of degree one, and an exponential term e**. Now since ¢** does
not appear in the complementary solution our understanding of the previous
methods suggests us to take a trial solution of the form:

¥, (x)=(A+xB)e* (17)

where A and B are the constants to be determined.
Let us now put the values of y ,(x) and its derivatives in Eqgn. (16) and try to

determine A and B. We have
Y, = 4Ae" + Be* +4Bxe™

¥, =16A ¢ +8B ¢ +16Bxe™
Substituting these values of y,, y’, and y’ in Eqn. (16), we get
49Ae* +14Be** +49xBe* =—x ™

Comparing the coefficients of ¢** and xe**

B:—L and A :i
49 343

Thus, from Eqn. (17), we get a particular solution of Egn. (16) as

in the above equation, we obtain

(=2 gt
gl 343 49
The general solution of Egn. (16) can then be written as

)-i.\'

E:
y=(c, +xc,)e " ——e** +

49 343

The above method can be generalised to find the solution of Eqgn. (1) when
b(x) is of the form

b(x)=e*" [bx* +bx"" +--+b_x+b,]=¢"" P ().

With this form of b(x), Eqgn. (1) reduces to

dn y dﬂ—' —\_, d‘,
a’fl ;F +a| n—1 +”-+a”_| _-+a"y
dx dx dx
:()-a'\.[bnxk +bi.’(k_l +"'+bk_]x+b;‘- ] (1 8)

and a trial solution can be taken in the form
y,(x)=e" [Ax" + Ax* ++ A x+ AL ] (19)

provided o is not a root of the auxiliary equation corresponding to Eqgn. (18).
If o is a root of the auxiliary equation, say, it is r -times repeated root of the
auxiliary equation then we modify the trial solution as

Y,(X) =x"e* [Ax" + Ax* ++ A_x+ A ] (20)

where A,, A, ..., A, are all constants to be determined.

Remember that in Eqn. (20) no smaller power of x will yield a particular
integral. Here r is the smallest positive integer for which every term in the
trial solution (20) will differ from every term occurring in the complementary
function corresponding to Eqgn. (18).

65
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In order to determine the constants A, A, ..., A, substitute y, (x) of the
form (19) or (20), as the case may be, in Egn. (18) and then compare the

2 ox

coefficients of e™*, xe™*, x“¢™, ... etc. on both the sides of the resulting

equation. For a better understanding of whatever we have discussed above,
let us consider the following examples.

d'y dy _
o —— =

Example 11: Solve
x”  dx

Solution: The auxiliary equation is
m -m=0
= mm*-1)=0
= m=0,-11
C.F.=¢ +ce* +ce’

X L

Here the non-homogeneous term is xe *. Also e * appears in the
complementary function. Further, (1) is a non-repeated root of the auxiliary
equation. Thus, we take the form of a trial solution as

y,(x)=[Ax+ B] xe ™ = Ax’e™ + Bxe™
Substituting this value of y, and its derivatives in the given differential
equation, we get
—A[-x’e" +2xe |+ A[-x’e¢ " +6xe™ =6 |- B(—xe ™ +e ) +
B(—xe " +3e")=xe™"
Further simplifying the above equation and comparing the coefficients of xe™

and ¢ ' on both the sides, we get

4A=l:>A=l
4

and —6A+28=0:>B=%

==X

1 I 3 _ e 2
Hence v (x)=—x"¢ " +—xe ' =—(x" +3x
v, (x) 2 4 e 4 ( )

And the general solution of the given differential equation is
¢ +3x).

y=¢ +ce +ee’ +

*kk

Let us consider another example.

Example 12: Solve the differential equation

¥ 2 ; _ ,
47,397 3B o222
dx dx” dx

Solution: The auxiliary equation is
m’ +3m* +3m+1=0
= (m+)(m* +2m+1)=0
= (m+1)’=0
= m=-1,-1,-1

- & GE.=[o+ 36, +xe)e .
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Here the root —1 is repeated 3 times and the term ¢ appears in the
complementary solution. Thus we take the form of a trial solution as

y,(x)= xX'e " (Ax* + Bx+C)=¢ " (Ax’ + Bx' + Cx?)

Substituting for y, and its derivatives in the given equation, we get
e (60Ax* +24Bx+6C)=2¢ " —x’e™"
Equating the coefficients of ¢ *x* : 60A=—1=> A=—1/60

Equating the coefficients of ¢ "'x:24B=0= B=0

Equating the coefficientsof e " :6C =2 = C :%

Substituting the values of A, B and C in y,(x), we get

X" 5
20—x7).
€0 ( )

y, (0=

The general solution of the given equation is

3 -
xe’

60

(20-x%).

F ek

y=(c, +xc, + x°¢c;)e™ +

You may now try the following exercise.

E8) Solve the following differential equations:

. d’y .
i) —+9y=xe"
dx”

i ) —4£+ 4y =4xe™
dx” dx

We now take up an example in which b(x) is a product of a polynomial, an
exponential and a sinusoidal function.

Example 13: Write down the form of a trial solution for the equation
2 ! 1
d j Zd—’\+ Sy=#e" sz
dx” dx
Solution: The auxiliary equation is
m* +2m+5=0
= m=-1%2i

= C.F.=e¢™(¢,cos2x+c,sin 2x)
The non-homogeneous term in this case is a product of x*, a polynomial of
degree two, an exponential function ¢ * and a sine function, sin x. The

product ¢ " sin x which appears in the non-homogenous term in not a part of
the complementary solution of the given equation. Thus, from our
understanding of the methods discussed in Sub-secs. 11.2.1-11.2.3, the
appropriate form of a trial solution is

y, =(A +Ax+ A,x*)e (B, sin x + B, cos x)
where A,, A, A,, B,, B, are the constants to be determined. Equivalently,
the trial solution y, can be written in the form

y,=(A+Bx+ Cx*)e *sin x+ (D + Ex+ Fx*)e ™ cosx
67
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for constants A, B, C, D, E and F . The constants can be determined
following the usual process of substituting for y, and its derivatives in the

given equation and then comparing the coefficients on both the sides of the
resulting equation.

ek

In general, suppose that the non-homogeneous term b(x) in Egn. (1) has one
of the following two forms:

b(x)=e™ B,(x) sin Bx or b(x) =e** B, (x) cospx, (21)
where B, (x), is a polynomial of degree k orless and o and [ are any real
numbers. A trial solution can then be taken in the form

Y, (%) = (Agx* + Ax* +--+ A) e cosPx+

(Byx* +Bx""'+.--+B,) " sinPx,
provided, ae£if is not a root of the auxiliary equation otherwise, the terms
e** cosPx or ¢ sin fx would already be present in the complementary

solution of the equation. Here A, A, ..., A,, B,, B,, ..., B, are constants to
be determined.

In such cases, i.e., when (o £ i) is a root, say, it is r-times repeated root of
the auxiliary equation then a trial solution is modified by multiplying it by x".

We illustrate the case with the help of the following examples.
Example 14: Write the appropriate form of a trial solution for the differential

d'y d’y  ,d’y -
equaton } +2 ‘: +2 ,‘ =3e" +2xe " +e "sinx.
dx dx dx”

Solution: The auxiliary equation is
m* +2m’ +2m’ =0
= m'(m*+2m+2)=0
= m=0,0,-1x1
C.F.=¢,+c,x+e " (c;sin x+¢,cosx)
Here the non-homogeneous term is 3¢* +2xe * +¢ " sin x
Since the term e " sin x also appear in C.F., the appropriate form of the trial
solution is
y,=Ae" +(Bx+C) e +xe" (Dcosx+ Esin x)
where A, B, C, D and E are the constants to be determined.

dedkd

Example 15: Write the appropriate form of a trial solution for the differential
equation
4 2.,
d } +2d : +y=xsinx
dx dx®
Solution: The auxiliary equation is
m*+2m* +1=0
= (m +1)°=0
= m==xTixi

s C.F.=(¢ +xc¢,)cosx+(cy +xc,)sin x
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Here £ i is a double root of the equation and the non-homogeneous term

xsin x is also a part of the complementary solution. The appropriate form of a
trial solution will then be

y, = x’[(Ax+ B)cos x +(Cx + D)sin x]

where A, B, C and D are the constants to be determined.

F ke

And now some exercises for you.

E9) Write the form of a trial solution for each of the following differential

equations:
i) d-:}} +2£+3y= xcos3x—sin 3x
dx” dx
i LB ey e aaaty
dx” dx
i) 225 46y = xe* cos2x
p* dx
iv) g 3 +y= x*sin x
dx”
2 } ! Ty
V) i ,\ —4£‘—+5\-’=xe"' sin x
dx” dx

E10) Find the general solution of the following differential equations:

3y, ,
i d : _4d_}=x+3cosx+e'2"'
dx dx
4., - 198 sy § R
i d 4\ _d Y _d J B T S —
dx"  dx’  dx”  dx
oo Ay dy s
iii) —+—=x"+cosx
dx”  dx

After going through the methods discussed in Sub-secs.11.2.1-11.2.4 and
attempting the exercises given at the end of each sub-section you must have
observed some of the advantages of using the method. You must have felt at
times, the complexities involved in the application of the method. Let us now
summarise the observations and the constraints of this method.

11.3 OBSERVATIONS AND CONSTRAINTS OF
THE METHOD

1. Method is straight forward in application. Once a trial solution is
assumed, the method merely involves the differentiation of algebraic
functions and solving of simultaneous equations to obtain the values of
undetermined coefficients involved in the trial solution.

2.  ltcan be used by any learner who is not familiar with more elegant

techniques of finding the solutions of the differential equations such as -
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variation of parameters and inverse differential operators which involve
integrations. We shall be discussing these techniques in the subsequent
units.

3.  Success of this method depends to a certain extent on the ability to
guess an appropriate form of a trial solution. As illustrated through an
example in the case of Eqn. (7), if the form of a trial solution assumed is
not proper, the method fails to yield the solution.

4. If the non-homogeneous term is complicated and the trial solution
involves a large number of terms as is the case with Examples 14 and
15, then determination of coefficients in the trial solution becomes
laborious.

5.  This method is not a general method of finding a particular solution of
differential equations. It is applicable to linear non-homogeneous
equations with constant coefficients with non-homogeneous terms
restricted to certain particular forms. More general methods of finding a
particular solution will be discussed in the units to follow.

We now end this unit by giving a summary of what we have coverd in it.

11.4 SUMMARY

In this unit, we have coverd the following:

1. Method of undertermined coefficients is applicable if
i) the equation is a linear equation with constant coefficients.

i)  the non-homogeneous term is either a polynomial, an exponential
function, a sinusoidal function or a sum/product of these functions.

2. The results giving the form of a trial solution y ,(x) for different non-

homogeneous term b(x) for the cases where the corresponding

auxiliary equation has r-times repeated root are summarised in the
following table.

Non-homogeneous term, b(x) Trial solution, y, (x)

p,(x)=bx* +bx"" 4. +b_ x+b, X (Ax" +Ax" ++ A)

e x"(Ae™)

sin Bx x"(Asin Bx + BcosPx)

{cos Bx

e™ P,(x) x'e" (Axt 4+ A)

P (x){sin Bx x"[(Anlx"' +--4+ A ) e™ sin Px
cosPx +(B,x" +---+ B,)e" cos Px]

3. Observations and constraints of the method.

6.5 SOLUTIONS/ANSWERS

E1) i) The auxiliary equation is m* +m+1=0
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—“1+1-4 143
= m=———=——%[—
2 2 2
Here zero is not a root of the auxiliary equation. Also non-
homogeneous term for the given equation is x* +1, a polynomial
of degree 2. Hence a suitable form of a P.1. is
y,(x)=Ax"+Bx+C, where A, B, C are the constants to be
determined.
i)  The auxiliary equation is
m(m® —m’® -m+1)=0
Since zero is a non-repeated root of the auxiliary equation and the
non-homogeneous term in the given equation is x”, the suitable
form of P.l.is y,(x) = x(Ax* + Bx+C), A, B, C are the constants
to be determined.
E2) i) The auxiliary equation is

m’ +3m+2=0
=>m=-1,-2

Hence C.F.=c,e™" +c,e™

The form of a trial solution considered is

y,(x)= Ax* +Bx+C.

Substituting for y,(x) and its derivatives in the given equation, we
get

2(Ax® + Bx+C)+3(2Ax+B)+2A = 4x’

Equating the coefficients of like powers of x on both the sides and
solving for A, B and C, we obtain

A=2,B=-6 and C=7
Hence, y,(x)=2x"—6x+7 and the general solution is
y=ce +e,e +T—6x+2x".

The given equation is
d’y  dy
‘; +42 =
dx dx
The auxiliary equation is
m +4m=0=>m=0, +2i
Hence C.F.=c, +¢,cos2x+c,sin 2x

Since zero is a solution of the auxiliary equation and the non-
homogeneous term in this case is x, which is of degree 1, the
appropriate form of a trial solution is

¥ (x) = x(Ax+ B) = Ax* + Bx.

X

Substituting this value of y, and its derivatives in the given

differential equation and comparing the coefficients of like powers
of x, we get

A= L] and B=0
8
Hence P.I. :%.xz and the general solution is

; 1,
y=¢ +¢,c082x+c,sin 2x+§x .
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E3) i) C.F.=c, +c,e™ +ce™

Form of a trial solution is y, (x) = Axe ™

By substituting this value of y, in the given equation, we get

2x

A=l. Hence, P.I is lxe"
8 8

i) GC.F.=ce™ +c,cosx+c,sinx

x

Since the non-homogeneous term of the given equation is ¢~
which is present in C.F. and —1 is a non-repeated root of the
auxiliary equation, a suitable form of the trial solution is

y,(x)=Axe™.
_— . . . . 1
Substituting this value of y, in the given equation, we get A = 5"

—X

Hence P.I.= %xe

E4) i) Auxiliary equation is

m* —4m+4=0

= m=2.2

s C.F.=(c, +xc,)e™

First consider the equation
d-';. —4ﬁ+4'\; =%
dx dx
Take a trial solution of the form
¥ = Ax*+Bx+C

Substituting for y, and its derivatives in the above equation and
solving for A, B, C , we obtain

A :l. B:l, & .=
4 2 8
x* x. 73
Yo =
4 2 8
For the equation
Q— dy +4y=¢"
dx” dx
consider y, = Ae" andobtain A=1y, =e’
o o E 8 .
b —_VPI +_V',,_, —T+§+§+e 2

The general solution of the given equation is

y=(c, +xc,)e”* + é(sz +4x+3)+e”.

: 3 :
i) y=c,cos2x+c,sin 2x——x+—x" +—e*
- 16 8 16
Hint: Take trial solutions in the form

Y, = A+ Ax+A,x% + A

3 e 2x
Y, =Be:

7 E5) i) The auxiliary equation is
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E6)

m’—1=0

= m=1, -1

- C.F.=ce" +c,e™

Take a trial solution of the form
yp — Aez.\-

and obtain A=

W | =

I
v, =;ez.

The general solution of the given equation is
y=ce' +c,e” + % e
Using given initial conditions

y0)=-1=¢, +c, +%:—]

Y(0)=1=¢, —c, +%:1.

Solving for ¢, and ¢, , we get
. __l + __S
(.,—7,‘12—?
e’ Se’ e
2 6 3

2x

y=_

C.F.=(c, +xc,)e*

Take y, = Ax’e”" and obtain A= .

General solution is

4

;. B e
y=(c, +xc,)e’™ —?ez"

Using given initial conditions obtain

¢, =c,=0

_xleh

2

C.F.=(c, +¢,x) +(c,cos2x + ¢, sin 2x)

Since term sin 2x appears in C.F. and it is the non-homogeneous
term of the given equation, the trial solution may be taken as

y,(x) = x(Asin 2x + Bcos2x)
Substituting this value of y, in the given equation, we get

A=0 and B=i.
16
1
. Pl.=—xcos2x.
16

Hence the solution of the given equation is

. |
¥y =l¢;+ e x}+(c; co8 2%+ 80 2x) + Excos 2% ;
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i) y=¢;+c,e" +c,e”™ —sinx

E7) i) C.F.=c cos2x+c,sin2x.
Form of a trial solution is
y, =Acosx+ Bsin x

Substituting for y, in the given equation and simplifying

1 .
Vp= gsm X

; Lo ,
y=i¢,cos2x+c,sin 2x+ Esm x is the general solution.

Using initial conditions, we get
-2

6=2,¢,=—
2
y=2c082x——sin 2x+—sin x
3 3

ii) C.F.=¢,cosx+c,sin x
Form of a trial solution is
y, =Acos2x+ Bsin 2x

Substituting for y, in the given equation and simplifying

l%(sin 2x—C0s2%)

General solution is

: 1 .
y=¢,cosx+c,sin x+ = (sin 2x—cos2x)

Using I.Cs, we get

=1 ~7
G =—) C;=—
60 15
§ = _—lcosx—zsin x+l(sin 2x—cos2x)
60 6 3

E8) i) C.F.=c,cos3x +c,sin 3x
The appropriate form of a trial solution is
y,(x)= e**(A+ Bx+Cx?)
On substituting this value of y , in the given equation and

comparing the coefficients of x’¢**,x ¢ and ¢ on both the
sides of the resulting equation, we get
1 -1 1

A=——, B=—and C=—.
162 27 18
\ ,,[ 11 1 z]
Hence y (x)=¢"| ———x+—2x
! 162 27 18
.. The solution of the given equation is
; - 1 1 5
y=¢ cos3x+c,sin3x+e”| ———x+—x" |.
162 27 18

i)y C.F.=(c,+cx)e™

Here the non-homogenenous term is 4xe’*. Also ¢** appears in
the C.F. Further 2 is repeated root of the auxiliary equation. Thus

74 appropriate form of a trial solution is
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E9) i)

4

}",,(-’C) = xhe:".(AX'l' B) = (Ax"' + sz) el.l‘ )
Substituting this value of y, in the given equation and equating

the coefficients of xe’* and e™* on both the sides of the resulting

; 2 2 g
equation, we get A=— and B=0. Hence P.I.= §x3e" and the
general solution is

-2 .
y=(c, +c,x)e" +=x’e™.

¥, =(A; + Ax) cos3x+ (B, + B,x) sin 3x

y, = xl(A; + Ax) e" cos2x+(B; + B x)e " sin 2x]

y, =€'[(A, + B)cos2x + (Cx + D)sin 2x]

¥, =x[(4 +Ax+ A,x") cosx+ (B, + B,x + B,x")sin x]

y, = xe”*[(A + Bx)cos x + (C + Dx)sin x]

C.F.=c, +c,e” +ce™

Here e ** is present in the non-homogeneous term as well as in
the C.F. Also zero is a root of auxiliary equation. Hence a suitable
form of a trial solution is

y,(x) = x(Ax+ B) +(Ccos x + Dsin x) + Exe™

Substituting this value of y, and its derivatives in the given
equation and equating the coefficients of x, constant term,
cosx, sin x and ¢ ** on both the sides of the resulting equation,

we get

A=—L B—0,c=0 p=-2 E=1
8 5 8

2x

Hence y (x)= —lxg —Esin x+lxe'
; 8 5 8

.. The general solution of the given equation is

2x =2x ] 2 3 . ] -2x
y =(.’1 +C2€ +C3€ —gx ——8In ).'-f-g).'é’ 5

C.F.=c¢x+(c,+cx)e" +c e
Appropriate form of a trial solution is
y,(x) = x(Ax* + Bx + C) + (Dxsin x + Excos x + F sin x + G cos x)

Substituting this value of y, and its derivatives in the given

equation and equating the coefficients of x”, x, constant term,
xsin x, xcosx, sin xand cosx on both the sides of a resulting
equation, we have

1

A:l. B=1,C=8, D=0, E:—l,F:l,G:——
3 2 2

e (X)=){lx2+x+8]+[—lxcosx)+[sin ,r—lcos,rJ
L 3 2 5

The general solution of the given equation is -
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ii)

) 3 1 .
y=c¢x+(c, +cx)e* +c,e™ +x[§x2 +x+8J
I ; I
——XCOSX+8in X ——COSX.
2 2

C.F.=c,+c,cosx +c,sinx

Since zero is a root of A.E. and also since cosx appears in C.F.,
therefore a suitable form of a trial solution is

y,(x) = x(Ax’ + Bx’ + Cx+ D) + x(E cos x + F sin x)
Substituting this value of y  and its derivatives in the given

equation and comparing the coefficients of x*, x*, x, constant
term, sin x and cosx in the resulting equation, we get

A:l, B=0,C=-3, D=0, Ez—l. F=0
4 2

Hence y,(x)= x[le - 3.r] + x[— ]—cos x]
4 2
1

=—x*-3x° —lxcosx
2
.. The general solution of the given equation is

. [ , 1
y=¢,+¢,Co8x+¢, sin x+Z,\' —3.):'—53:005,\’.

_x_
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12.1 INTRODUCTION

In Unit 11, we discussed the method of undetermined coefficients for
determining a particular solution of the non-homogeneous differential
equations with constant coefficients when the non-homogeneous term is of a
particular form (viz., a polynomial, an exponential, a sinusoidal function or a
sum or a product of these functions).

In this unit we familiarise you with a method of determining a particular
solution that can be applied even when the coefficients of the differential
equation are functions of the independent variable and the non-homogeneous
term may not be restricted to the particular forms mentioned above. Such an
approach as discussed in Sec. 12.2 is due to the French mathematician
Joseph Louis Lagrange (1736-1813) and is termed as variation of
parameters. Even though the approach is quite general but is limited in its
scope in the sense that it can be utilised in situations where the fundamental
solution set for the reduced equation is known. Also, it can be used for first
and higher order equations alike though its appreciation can be well
understood for the later set of equations. The method requires for its
applicability the complete knowledge of the fundamental solution set of the
reduced equation and for equations with variable coefficients the
determination of this set may be extremely difficult. In the case of linear
differential equations with variable coefficients, at times, it may not be possible
to find all linearly independent solutions of the reduced equation but at least
one or more may be obtainable. For such situations Jean le Rond d’Alembert
(1717-1783), a French mathematician and a physicist, developed a method
that is often called the method of reduction of order. When one or more

D’Alembert (1717-1783)
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solutions of the reduced equation are known then IXAlembert’'s method can be
used to derive an equation of order lower than that of a given equation and
obtain the rest of the solutions of a reduced equation as well as a particular
integral of the non-homogeneous equation. We shall be discussing the
method of reduction of order in Sec. 12.3 of the unit.

However, there exist linear differential equations with variable coefficients of
second and higher order for which we may not be able to guess any integral of
its complementary function. But, among such eguations is a class of equation
known as Cauchy-Euler equation or more commonly as Euler’'s equation,
where, by certain transformation of the independent variable, it is possible o
find all the integrals of its complementary function. In Sec. 12.4, we shall be
discussing the methods of solving Euler's equation and those equations which
are reducible to Euler's form. Leonhard Euler (1707-1783) born in Basel,
Switzerland, was a physicist, astronomer, linguist, physiologist and primarily, a
mathematician. He made contributions to algebra, trigonometry, analytic
geometry, calculus, differential equations, complex variables, number theory
and topology.

Objectives

After reading this unit, you should be able to:

s use the methed of variation of parameters to find a particular integral of the
non-homegeneous linear differential equations with constant or variable
coefficients;

e use the method of reduction of order to find the complete integral of linear
non-homaogeneous equation of second order when one integral of the
corresponding homogeneous equation is known; and

¢ sclve Euler's equation.

12.2 VARIATION OF PARAMETERS

Before we discuss the method of variation of parameters in general, we
illustrate it through the following example.
Example 1: Find a particular solution of the differential equation

¥ +4y=3cosec2x, O0<x<®/2. (1)

Solution: You may observe here that the problem does not fall within the
scope of the method of undetermined coeflicients since the non-homogeneous

term b{x)= =3cosec2x involves a quotient rather than a sum or a

8in 2x
product of sin x or cosx. Thus, we need to use a different methed for solving
the equation. The homogeneous equation corresponding to Eqgn. (1) is

VHdy=0 2)

The general solution of Eqn. (2) or the complementary function of differential
Eqgn. {1) is given by

y.{x)=c cos2x+c,sin2x (3)

where ¢, and ¢, are constants.

For finding a particular integral of Egn. (1} the basic idea in the method of
variation of parameters, as the name suggests, is to vary the constants ¢, and
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¢, in Eqgn. (3) and replace them by functions «,(x) and u,(x), respectively.
These functions are then determined so that the function

¥, (x) =u,(x)cos2x +u,(x)sin 2x (4)

is a solution of the non-homogeneous Eqgn. (1).

In order to determine «, and u, we need to substitute for y, from Eqn. (4) in
Eqgn. (1). We know that the substitution of y, and its derivatives from Eqgn. (4)
in Egn. (1) will give us a single equation involving some combination of «, and
u, and their first two derivatives. Since there is only one equation and the two
unknown functions «, and u,, we may expect a few possible choices of «,

and u, that would serve our purpose. In other words, we may impose the
second condition of our own choice and obtain two equations for the two
unknowns u, and u,. We shall now show that following Lagrange’s approach

the second condition on u, and u, may be chosen so that the computations

are simplified. Let us see how it is done.
Differentiating Egn. (4), we obtain

y; = —2u,(x)sin 2x + 2u, (x) cos 2x + u; (x) cos 2x + u, (x) sin 2x (5)
Keeping in mind the possibility of choosing the second condition on u, and u,,
let us choose the last two terms of Eqgn. (5) to be zero, that is,

u; (x)cos2x+u,(x)sin 2x=0 (6)
Then from Eqgn. (5), we get the simplified expression for )F as

¥, ==2u, sin 2x+ 2u, cos 2x (7)
Differentiating Egn. (7) once again, we obtain

Y, ==4u, cos2x—4u, sin 2x—2u; sin 2x+ 2u; cos 2x (8)
Substituting for y’, and }: in Egn. (1) from Eqgns. (7) and (8), respectively, we

obtain
—2u; sin 2x + 2u’, cos 2x = 3cosec 2x (9)

We can now sum up by saying that we want to choose «, and u, satisfying
Eqgns. (6) and (9). Eqgns. (6) and (9) form a pair of linear algebraic equations
for the two unknown quantities «,(x) and w;(x). Solving these equations, we
obtain

’ _3 ’ 3
i, (x) =— and u,(x)=—cot2x 10
1 (%) > »(x) > (10)
Integrating u/(x) and u(x), we obtain
-3 3 .
”1(-7"):7}( and uz(x)zzlnlsm 2x|

Substituting the above values of «, and u, in Eqn. (4), we obtain a particular
integral of Egn. (1) as

y,(x)= Txcos 2x+ %]n I'sin 2x | sin 2x (11)

Then from Eqgns (3) and (11), we get the general solution of Egn. (1) as o
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y = yt‘ = 4 ?
; 3 3 ; :
=¢, cos2x+c, sin 2x — 2 Xcos2x+ s In Isin 2x1 sin 2x

dddk

Let us now see how the method above works in general.

Consider the non-homogeneous second order linear equation
Y +a,(x)y +a,(x)y =b(x) (12)

where we have taken the coefficient of y” to be 1 and assumed that «,, ,
and b are defined and continuous on some interval 1. Let {y,(x), y,(x)} be
a fundamental solution set for the corresponding homogeneous equation
y+a,(x)y +a,(x)y=0. (13)
Then we know that the general solution of Eqgn. (13) is given by
Y (1) =,y () +6,3,(x), (14)

where ¢, and ¢, are constants. As we have mentioned in Example 1, the idea
associated with the method of variation of parameters is to replace the
constants ¢, and ¢, in Eqn. (14) by functions «,(x) and u«,(x) and then

determine u,(x) and u,(x) so that y (x) given by the equation

Y, (X) = 14, (x) 3, (X) + 45 (%) y, (x) (15)

satisfies Eqn. (12).

That is, we seek a particular integral of Eqn. (12) of the form (15) where «,
and u, are unknown functions to be determined. Since we have introduced
two unknowns, we need two equations involving these functions for their
determination. Thus, we impose two conditions on the functions «, and u, in

order that relation (15) is a solution of Eqn. (12). We call these conditions the
auxiliary conditions. These conditions are imposed so that the calculations
are simplified. Let us see how this is done.

If y,(x) given by Eqn. (15) is a solution of Eqn. (12), then it must satisfy it.
We compute y:,(x) and _v; (x) from Egn. (15), and obtain

y, = (uy, +uyy,) +(u, y; +u,y;) (16)

To simplify the computation and to avoid second order derivatives for the
unknowns u,, u, in the expression for y”, let us choose the first auxiliary

Xpo
condition as

uy, +uyy, =0 (17)
Eqgn. (16) then reduces to

y;} =u,y, +u,y, (18)
and we have:

y; =y +u Y+ i, v, (19)

Substituting in Eqgn. (12), the expressions for y . ;P and \,: as given by Egns.
(15), (18) and (19), respectively, we get
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b(x)= (u,’y: +u,yr+u;_}=‘; +u:}';) +a,(u, y; +u2__v;)+ a,(u,y, +u,y,)
= (u;y,’ +u;y;)+u|(yr+ a, y,’ +a2_)-'l)+u2(y;+a|y; +a,y,) (20)

Since y, and y, are the solutions of the homogeneous Eqgn. (13), we have
,Vf'+ aty: +a,y, =0
and
y,+ay, +a,y, =0.
Thus, Egn. (20) becomes
wy, +u,y, =b(x) (21)
which is the second auxiliary condition.

Now if we can find «, and u, satisfying the two auxiliary conditions given by

Eqgns. (17) and (21), viz.,
i + 7l =0 (22)
Vil + Yo, = b(x)

then y,(x) given by Eqn. (15) will be a particular solution of Eqn. (12). In

order to determine u,, u, we first solve the linear system of Eqns. (22) for u,
and u,, using Cramer’s rule (ref. appendix Unit 10). Algebraic manipulations
yield

—-b(x) y,(x) ., b(x) y,(x)

()= —St FA (e YA IINTE (23)
‘ W,y o W)
where
y / ’ ’
Wy, »)=|" l: }f =NV =WV
Yi ¥,

is the Wronskian of y and y,.

Note that the division by W in Egn. (23) is permissible since y, and y, form a
fundamental set of solutions and therefore their Wronskian is non-zeroon 1.
On integrating u;(x) and u;(x) given by Eqgns. (23), we obtain

b(x) y,(x) , b » () .
X 24
Y= '[ Wy, ¥,) i E)= J.W()’., Y, ) B4
Hence
v, ()= y,x) j—b(") Y29 ek y,(0) [ 20 3 4 (25)

Wy, ¥,) Wy, y,)

is a particular integral of Egn. (12).

We now sum up the various steps involved in determining a particular solution
of Egn. (12).

Step I: Given Eqn. (12), find a fundamental solution set {y,(x), y,(x)} for the
corresponding homogeneous Eqgn. (13).

Step Il: Assume a particular integral of Egn. (12) in the form

Y, (X) =u, (%) y,(x) + u,y(x) y,(x)
and determine u,(x) and u,(x) by using the formula (24) directly or by first
solving the system of Eqgns. (22) for «;(x) and u;(x) and then integrating.
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Step llI: Substitute «,(x) and u,(x) into the expression for y,(x) in
Eqgn. (15) to obtain a particular integral.

We now illustrate these steps with the help of the following examples.

Example 2: Determine the general solution of the differential equation

d 2 + y =sec x, 0<,ac<E

dx” 2
Solution: Step I: The auxiliary equation corresponding to the given equation
is

m’+1=0

= m==%i

and the two solutions of the reduced equation are
¥ (x)=cosx

and
y,(x)=sin x

Hence the complementary function is given by
y.(X)=¢ cosx+c,sinx.

Step II: To find a particular integral, we write

¥, (%) =u;(x)cos x +u,(x)sin x (26)
dy )
—L =[—u,(x)sin x+u,(x)cos x]+ % cosx+ dlisin X
dx dx dx

Let us take the first auxiliary condition as

ﬂ<:os.af+%!~;in x=0 (27)

dx dx
so that

dy, .

—L = —u, (x)sin x +u, (x)cos x

dx
Differentiating the above equation once again, we get

d’y

I = —u, (x)cos x —u, (x)sin x —sin x% +Cosx i (28)
o dx dx

Since y,(x) must satisfy the given equation, we substitute in the given
equation the expressions for y, and y: from Eqgns. (26) and (28),
respectively, and obtain the second auxiliary condition as

—sin xﬂJrC()sxﬂ:secx (29)

dx dx
: du, du,
On solving Egns. (27) and (29) for — and , we get
dx dx

du, du,

— =—tanx, =1,

dx dx

which on integration yields
u,(x)=In (cosx) and u,(x)=x.

Step llI: Substituting the values of «,(x) and u,(x) in Eqgn. (26) we obtain a
particular integral of the given equation in the form

y,(x)=cosx In (cosx)+ xsin x
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and the general solution is

y=¢,c08x+¢,sin x+xsin x+cosxIn (cosx).

F ke

Note that in Eqn. (12) we have taken the coefficient of y” to be 1. If the given
equation is of the form «, (x)y"+ a,(x)__v'-i- a,(x)y=b(x), where a,(x)#1

then before applying the method, particularly, if you are using the formula (24),
the equation must be put in the form y”+ p(x)y"+¢(x)y = b(x) ; otherwise,

the non-homogeneous term b(x) will not be correctly identified. Let us
consider the following example to understand the point made above.

Example 3: Find the general solution of the differential equation
5 d.zy 1 d}' .
1—x° —— —=f(x) x#=xl
( )dx2 © dr f(x)
Solution: Step I: To make the coefficient of y" =1, we rewrite the given
equation in the form

d’y 1 dy  f(x)

> TN g o (30)
dx* x(1-x7) dx (1-x°)
The homogeneous equation corrsesponding to this equation is
- 31)
dx  x(1-x°) dx
dy . .
To solve Eqgn. (31) we put d_ = p and obtain the equation
X
w8 ; p=
dx  x(1-x7)
1 d.
o, —dp= 7)61 (32)
P x(1—x7)
Now Eqn. (32) is in variable separable form and can be expressed as
d—p=[1+ i {| dx
P X l—-x
Integrating the above equation, we get
In p=In .r—%ln (1-x)+1In ¢, ¢, is a constant.
Cx
= hp=h——
p (1 <o ":2 )1 12
&%
= p=
/1 -
- B GF (33)
dx  \1-x2

Integrating Egn. (33), once again, we get the solution of Egn. (31) i.e., the C.F.
of Eqgn. (30) in the form

y.(x)=—c, V1—=x" +c, (34)

where ¢, and ¢, are arbitrary constants.

83



Block 3 Second and Higher Order Ordinary Differential Equations

Step lI: For the given differential Egn. (30), assume a particular integral in the
form

y,(x)=u,(x) V1 ~x% +u,(x) (35)

d.}’p ,f— du, du;,
dx ,f $s dx dx

We choose the first auxiliary condition as

I W ) (36)
dx dx
Then
dy, —x
= u
dc -z
dzyﬂ -1 X’ x  du,
and —~= u, — s =
dx” \/]_'\_z -2 \/]_4,‘-2 dx
dz}’,, 1 _x du
== 2 =_ ) w >
dx 1—x? dx

Substituting, from above, the expressions for y;, and y; in Egn. (30), we get

=] g X du, 1 X . |= f(x)
(-2 1= dx -\ J1—x ) 1-2°
i %: £ 37)

which is our second auxiliary condition.

Solving Eqgns. (36) and (37) for ,(x) and u;(x) and integrating, we get
f(x) f®

xvl=x? X

Step lll: The expressions for «,(x) and u,(x) when substituted in Eqn. (35)
gives a particular integral of the given equation in the form

¥, (X =41 j 'fl(x) - dx+_|"f (rx) dx
A1 -3 _

Hence the general solution of the given differential equation is
y=y.(0)+y,(x)

=i+l [~ it [L 2 g,
c ke X Ixﬁ x j . X

u,(x)= —I dx and u,(x) =I

You may now try the following exercises.

E1) Determine a particular integral, using the method of variation of
parameters, for the following differential equations:

. » —n
|) y + y =Cosec x, O<x< 5
84
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i) y' =2y +y=xe" Inx, x>0

i)  y"+y=tanx, 0<x< g
E2) Find the general solution of the following differential equations, given

that the functions y,(x) and y,(x) for x>0 are linearly independent
solutions of the corresponding homogeneous equations

i) Xy =2xy'+2y=x+1; y,(x)=1x, v, (x)= x’

T 7 ] ” 4 pd - I
i) Xy +xy—y=xe"; y(x)=x, y,(x)=—
X

i) 0 =+ Y+y=x" y()=e", y,(x)=x+1

We now state the result obtained above as a theorem.

Theorem 1: If the functions «,, a,, a, and b of variable x are continuous on

some interval 1, and if the functions y, and y, are linearly independent
solutions of the homogeneous equation associated with the differential
equation

d°y
a, (.!c)d—'2 +a,(x)

@ +a,(x)y=b(x) (38)
dx

then a particular integral of Eqgn. (38) is given by

¥,(x) b(x) ¥, (x)b(x)

Y, (x)==y,(x) dx+ y,(x) (39)
’ ’ Ia@(x) Wy, ¥,) Iag(x)W(_vl, ¥,)

and the general solution is then

y :{‘Iy[('x)“l-czyz(x)+yp(""_) (40)

where W(y,, y,) is the Wronskian of y,(x) and y,(x).
— . =

Remark: In using the method of variation of parameters for finding a particular
integral of a given equation, it is advisable to choose a particular integral
¥, (xX) =u;(x) y,(x)+u,(x) y,(x), and then proceed to find u,(x) and u,(x) as

we have done in Examples 1 to 3 above. It is usually avoided to memorise
formulas given by Eqns. (24) and (39). Since the procedure is highly involved
and complex and moreover, it may not always be easy or even possible to
evaluate the integrals involved, these formulas turn out to be useful. In such
cases, these formulas provide a starting point for the numerical evaluation of

y,(x).

The method of variation of parameters which we have discussed for non-
homogeneous second order Egn. (12) can be easily generalised to nth order
non-homogeneous equation

n_. n-1 4
a2 w0, (%) “'—’,‘ +oota,(x)y = b(x)
dx dx

where q,, a,, ..., a,, b are continuous in some interval 1. The learners
interested in the details of the method for a higher order equation may refer to 85
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the Appendix at the end of the unit. We shall not be giving the details at this
stage but, however, illustrate it through examples.

Example 4: Using the method of variation of parameters find the general
solution of the differential equation
3, 2,
4 _64Y 11D _gy=e>,
dx dx” dx

Solution: Step I: The auxiliary equation corresponding to the given equation
is

m' —6m’ +11m—6=0
= (m—=1)(m*-5m+6)=0
= (m-=-1)(m-2)(m-3)=0
Thus the linearly independent solutions are
() =e, y(x)y=€, yi(@)=e*,
and the complementary function is given by
y.(x) =ce' +c,e” +c,e (41)
Step II: To find a particular integral, we write

¥y, (x) =u,()e" +u,(x)e” +uy(x)e™ (42)

y

- x 2 3. x 2x 3x
—d" =(ue* +uye™ +use™ )+ (ue' +2ue” +3ue’™)

X

Let the first auxiliary condition be
ue' +uje™ +ue’™ =0 (43)
Thus
y, = e +2u,e™ + 3ue’
and
y, = (uje" + 2use™ +3use™) + (e +4u,e”” +ue™)
Let us choose the second auxiliary condition as
ue* +2ule™ +3ue’ =0 (44)

Then
Yo = ue' +4ue’ +9ue™

Yo = (ue* +4use +uie™) + (e +8uye™ +2Tuse™)

Substituting the values of y,, v, ¥, and y’ from above in the given
equation, we get

ue* +due™ +9ule™ )+ (we' +8u,e* +27ue™
I 2 3 1 2 3
—6(u,e” +4u,e” +9u,e™) +11(we" + 2ue” +3ue’™)

X 2x C © i TR, |
—6(ue" +u,e +uet) =e
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= ue' +duse™ +ue™ = e, (45)

which is our third auxiliary condition
Thus, we get the following system of equations for determining «;, «, and u;

- 2x 3x
ue' +ue” +ue =0
X 2x 3x
ue' +2use” +3uze™ =0 (46)

ue' +dule’ +9uie™ = e
Solving Eqns. (46) for u[, u, and u, we get

’ ] X ’, ’ 1
u=—e',u,=—1and u; =—e
2 TS

=X

Integrating, we get

7 —le"' i, =—x and u —_—Ie
| Sty S =
Step lll: We get from Eqn. (42) a particular integral of the given equation in the
form

bt

l 2x 2x 2x
y,(x) =gl T St SN
and the general solution is then given by
y=y.(x)+y,(x)
=ce’ + e’ +cye’t — xe

*kk

Example 5: Using the method of variation of parameters solve the differential
equation

y”' —y=x

given that the functions sin x, cos x, sinh x, cosh x form a fundamental set of
solutions of the homogeneous equation.

Solution: Step I: The complementary solution is
y.(x)=c¢ sin x+c, cos x+ ¢, sinh x+ ¢, cosh x (47)
Step lI: Consider a particular integral of the form
Y, (x) = u, (x)sin x + u, (x) oS x + u; (x) sinh x + u, (x) cosh x (48)
y:,(x) = (i, oS X — it, Sin x + u cosh x +u, sinh x)

+ (u; sin x + 1, cosx +u;sinh x + u, cosh x)
The first auxiliary condition is

u, $in x + 1, cos x+u; sinh x+u, coshx =0 (49)
Thus y’, =u, cos x —u, sin x +u, cosh x+u, sinh x
and y: = (—u, Sin x —ut, COS X + i, sinh x +u, cosh x)
+ (u; cos x —u, sin x+u; cosh x +u; sinh x)
Let the second auxiliary condition is

i, cos x — i, sin x + i, cosh x + 1, sinh x =0 (50) .
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Then y;' = (—u, cos x+ u, sin x + u, cosh x +u, sinh x)
+ (—u]' sin x — u; cosx+ u; sinh x+ u cosh x)
Let the third auxiliary condition is

—u/ sin x —u}, cos x + u; sinh x+u/, coshx=0 (51)

and y) =-u, cos X +u, sin x +u, cosh x +u, sinh x

yj,v =u, Sin X + u, cos x +u, sinh x +u, cosh x
—u; cOS X+ u, sin x + u; cosh x + u sinh x
Substituting the values of y!" and y, in the given equation, we get
U, Sin X +u, oS x + u, sinh x + u, cosh x —u;, cos x+ u;, sin x
+ 1), cosh x +u, sinh x —u, sin x —u, cos x —u, sinh x —u, cosh x = x
= —u, cosx+u, sin x+ u; cosh x + i, sinh x = x (52)

which is our fourth auxiliary condition
Thus, we get the system of equations

u; sin x + u;, cos x +u; sinh x +u; coshx =0

u; cos x— i, sin x + iy cosh x+u; sinh x =0 -
—u; Sin X — 1, cos x +uy sinh x +u; coshx =0 (53)
— U, COS X+ it Sin x+u; cosh x+ u; sinh x = x

Solving Eqgns. (53) for u;, u,, u; and u;, we get
’ - ’, X . » X » e T
W, =——COSX, U, =—sin x, u; =—coshx, u, =——sinh x
2 2 2 2

Integrating, we get

- . 1 .
u, = 5 (xsin x—coSx), u, = 5 (—xcos x+sin x)

U, = %(x sinh x —cosh x), u, = %(—.x cosh x + sinh x)

Step lll: We get a particular integral from Egn. (48) of the form
y,(x)=—x

and the general solution of the given equation is
y=¢,sinx+c,cosx+c,sinh x+c¢,coshx—x.

*kk

You may now try the following exercise.

E3) Using the method of variation of parameters, find the general solution of
the following differential equations:

i) y -y =x*

i) V' =2y =y +2y=¢"

i) X'y +x’y =2xy"+2y=2x", x>0;given V=X 0y, = x* and
Yy = L are the solutions of the corresponding homogeneous

X
equation.

You must have noticed that the method of variation of parameters has an
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advantage over the method of undetermined coefficients in the sense that it
always yields a particular integral y ,, provided all the solutions of the

corresponding homogeneous equation are known. Moreover, its application is
not restricted to equations with constant coefficient having particular forms of
the non-homogeneous term. In the next section we shall discuss a technique
which is very similar to the method of variation of parameters and is called the
method of reduction of order. As we mentioned in the introduction, for
equations with variable coefficients, determination of a fundamental solution
set of a reduced equation corresponding to a given equation may be extremely
difficult. For such equations the method of reduction of order has an
advantage over the method of variation of parameters particularly, for
equations of second order where knowing just one linearly independent
solution of the reduced equation, second linearly independent solution as well
as the general solution of the given equation can be obtained by this method.

12.3 REDUCTION OF ORDER

The method of reduction of order, as the name suggests, reduces the order of
the given homogenenous/non-homogeneous equation with variable
coefficients by one if one non-trivial solution of the corresponding
homogeneous equation is known. For instance, in the case of a second order
non-homogeneous differential equation of the form (12), viz,

y'+a,(x)y +a,(x)y =b(x)

if one non-trivial solution y =y, (x) say, of its corresponding homogeneous
equation is known then method of reduction of order reduces the given
equation to a first order equation. In general, if k linearly independent
solutions of a homogeneous linear equation corresponding to an nth order
non-homogeneous equation are known, where k < n, then the technique of
reduction of order can be used to obtain a linear equation of order (n—k).
However, if n> 3, the reduced equation is itself at least of second order, and
solving it may not be simpler than solving the original equation. But the
technique is particularly interesting when n =2, i.e., for the second order
equation since the resulting first order equation can always be solved by the
methods we have learnt in Block-2. Here we shall be restricting our
discussion to the second order linear non-homogeneous equations. In the
case of second order linear non-homogeneous equation we shall show that
knowing one solution of the corresponding homogeneous equation how the
method of reduction of order yields both a particular solution and a second
linearly independent solution of the given equation.

We first illustrate the method through a simple example.

Consider the differential equation
X’y =2y=0,x>0 (54)

It may be easily verified that y, = x” satisfies Eqn. (54). We proceed as we do
in the case of method of variations of parameters and try to determine a
solution of Eqn. (54) of the form y =v(x)x*. We have

y =2xv+xH

vy =2v+4x00 +xH
and thus

2y =2y=x' @ +x")=0 (55)

Since x# 0, we obtain from Eqn.(55) 29
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o +4" =0 (56)
Now let w=1v", then Eqn. (56) reduces to a first order linear equation

aw' +4w=0
which can be easily integrated to obtain

WSRO A S

Thus, we get
C, &
Vi +c,
) —Cl ] b
Y= =———4Csx (57)
3 x -

where ¢, and c¢, are arbitrary constants.

, . I
If we choose ¢, =0 and ¢, =3, we obtain the second solution y, =—. Also
X

; , | : ;
since W[x‘, —] =-3#0 Vx>0, the solutions y, and y, are linearly
X

. I
independent for 0< x<e. Thus y, =x” and y, =— form a fundamental set
%

of solutions of Eqgn. (54) for 0 < x < ee.

You may notice here that the expression for y given by Eqn. (57) is actually
the general solution of the given equation.

Let us now consider the general second order non-homogeneous Eqgn. (12)

d’y

2

+a,(x) ﬁ +a,(x) y=b(x)
dx

where a,, a, and b are continuous on some interval 1 and see how the
method above, works for it.
Suppose that y =y, (x) is a non-trivial solution of the corresponding
homogeneous equation
d’y dy
Y g (x)dl+ ay(x) y=0 (58)
3§ X

X

Then y=cy,(x) is also a solution of Eqn. (58) for some constant ¢. To obtain
the second solution of Eqgn. (58) replace the constant ¢ by an unknown
function v(x) and take a trial solution in the form

y=v(x) y,(x).
Now,
y' = v'_v] + vy,’
y =y + 2v’y|’ + vy,

Substituting from above the expressions for y, y" and y” in the given non-
homogeneous equation, we get

(V”yJ Bl 2v'y,’ + v_\-',”) +a, (v’yl “+ vy,’) +a,vy, = b(x)
=% v”}-', +v'(2 1,,' +a,y,)+v( yr+ a,yl’ +a,y,)=b(x) (59)

Since y, is a solution of Eqgn. (58), the last term on the L.h.s. of Eqgn. (59) is
zero. Therefore Eqgn. (59) reduces to
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v”y, + 1!'(2}‘,' +a,y,) =b(x). (60)

Let v'=j—‘= p(x), so that Eqn. (60) becomes
X

d_p+ 2y +a,y, i b(x) .

61
= . .\’1 (61)
Eqn. (61) is a first order linear differential equation with integrating factor
."+ 1. %
I.F.:exp{ jz)—}d}
Y
Now Im dx=2Iny, +Ia,(x) dx
Y
LF.= 2% = y2h(x), where h(x)=el“©*
Thus the solution of Eqn. (61) can be written as
yfh(x) p(x)=c, +J‘b(.r) yh(x) dx.
dv 1
=p(x)=————|c, + | b(x) v, h(x) dx|.
= y,‘h(x)[] [5C0) yhx) d]
Integrating the above equation once again, we obtain
1
vix)=c,+c¢ |— dx+ b(x) v h(x) dx|d
W=etef s j 200 o aa
Thus the general solution of the given equation can be expressed as
=v(x X)=cy(x)+cyx
Y =v(X)y,(x) = 6,3, (1) + ¢,y )j h(x)
) dx]dx . ©2)

~[ay(xyax

Note that the function y, (x) j% =y, {x) j € __dx, which is the second
yih(x Yy

term on the r.h.s. of Eqn. (62), is the 2™ linearly independent solution of Eqn.
(58) and the last term on the r.h.s. is a particular integral of the given non-
homogeneous equation.
Thus Eqgn. (62) can be written as
y=en(x)+6y,(x)+y,(x)
where
Iu, (x)ex

Y, () =y, (r)f =y (x)Ide (63)

is the second tinearly independent solution of Egn. (568) and

(Ib(x)l W )dr (64)

is a particular integral of Eqgn. (12).

—ju, (x)dx

Y, (X)) =, (x)j ‘ 5

We now take up examples to illustrate the method discussed above.
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Example 6: Find the general solution of the differential equation
2y —xy'+y=x"% 0<x<ow
given that y, = x is a solution of the corresponding homogeneous equation.

Solution: The given equation is
Xy —xy+y=x"? (65)
Let us take y=xv(x) as a trial solution for Egn. (65), so that
y=v+x)
y=2v'+x"
Substituting for y, ¥y and y” from above in Eqn. (65), we obtain
X+ 0" = x(v+x0) + v = x'?
= XV +xV=x"

= Gl g (66)
X

Eqn. (66) is a linear differential equation in v". Its integrating factor is

1
j Td'l Inx

I.F.=e =e =X
Therefore, Egn. (66) yields

’ -512
Vx= Ix..x' Cdx+c,

’ -1 -3/2
= VvV=¢x —2x

Integrating once again, we have

v=¢ Inx+ 4x7'?

Thus,

+C;

2
y=xv=c¢xInx+c,x+4x"

is the general solution of Eqn. (65). Here the term x In x is the second linearly

1/2

independent solution of Egn. (65) and 4x"° is its particular integral.

Let us now see how formulas (63) and (64) can be used directly to obtain the
second linearly independent solution y, (x) and a particular solution y,(x),

respectively, of the given non-homogeneous Eqgn. (65).
Consider Eqn. (65), namely,

.X‘Zy’—x_,v’+ y= x|n1 0< x<oo.
It can be written in the form

v y _3/2
_}”— = +——2= X #

X X

Comparing the above equation with Eqgn. (58), we find

ﬂ1(.r)=_l and a,(x)= 11
X X

From formula (63), we have
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I r
e—Iu,i x)elx e!:d\
Y, (X) =y, (X)Iy—zdx = Xj?dx
1
x .
= xIr—dx =xInx [given y (x)=x]

From formula (64), we have

—-I-ul (x)dx
[

yﬂ(.r):_v,(x)J. 2 Ub(x)y,eju'mdtdx]dx

= x_“ %U P x.%dx}dx

= x.[l (25 "4yl = 4xM%,
X
Example 7: Find the general solution of the differential equation
.1L‘2y’°'+xy'+[)c3 —in =0, 0O<x<e

given that the function y,(x) = i is a solution of the equation.

Jx

Solution: The equation can be rewritten as

o b 1
¥ 4=yl =0.
) & [ 4x2]}

X
From formula (63), we get
dx
i sin xj‘ & i

)

sin x )
= _[c.'osec‘x dx
Jx
sin x COS X
- (—cotx)=———=
Vx Jx
Hence, the general solution of the given equation is
b=¢ sin X, cosXx
Yy=q G .
NER

Fdkdk

Remember that while using the formulas (63) or (64) for finding the second
solution or a particular integral, the equation must be put in the form (58) as
we have done in Examples 6 and 7 above.

And now some exercises for you.

E4) Solve the following differential equations:
i) X2y =2xy"+2y=4x%, x>0; y(x)=x

1/2

. Y. 4 ’ - " i
ii) Xy +5xy =5Sy=x"", x>0; y(x)=x

E5) A solution of the differential equation
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2 7
-2 D _oy=0, 0<lxl<]
dx* dx
. I—x° . g
is y, = . Use the method of reduction of order to find its general
X
solution.

E6) Solve the equation

2

x(xcosx—2sin x)j Y +(x* 4 2)sin x?— 2(xsinx+cosx) y=0,x>0,
X X

given that y = x” is a solution of the equation.

So far you have seen that the method of variation of parameters can be used
only for those non-homogeneous linear differential equations with variable
coefficients for which we know all the linearly independent solutions of the
corresponding homogeneous equation. For second order linear non-
homogeneous equations with variable coefficients, the method of reduction of
order is helpful for finding the complete solution even if one solution of the
corresponding homogeneous equation is known. As we mentioned in the
introduction to this unit, there exists a class of linear differential equation with
variable coefficients known as Cauchy-Euler equation or Euler’s equation
for which it is possible to find all the linearly independent integrals of the
complementary function. The equation is first reduced to an equation with
constant coefficients through a transformation of the independent variable and
then its solutions are obtained. In the next section we discuss the method of
solving Euler’s Equation.

12.4 EULER’S EQUATION

Consider the following differential equations

PR e 0 W S (67)
dx” dx
3 2 .
x-‘d—{+x?d—%’+4xd—-‘+2y=e-‘ (68)
dx dx” dx
.rd_‘? +2x &y +2y=¢" (69)
ax
3 ? y
@x-1y2 g +@x-D2 2y =sin x (70)
dx dx

Out of the four equations above, Eqgns. (67) and (68) are such that the power
of x in the coefficients are equal to the orders of the derivatives
associated with them. These type of equations are known as Euler’s
Equation or equidimensional equation. Eqgn. (70) is not of Euler’s form but
can be reduced to Euler’s form by the substitution X =2x-1. We shall also
consider such equations later in this section. Egn. (69) as you can see is
neither Euler's equation nor can it be reduced to Euler’s form.

The general form of Euler's equation of nth order is

"o n=] n=2
n=1 y n=2 y

agx" ——+a;x ——+d,x —
dx dx dx"*

+...+(‘["_]x§+a"}’ =f(x), (71)
dx



Unit 12 Differential Equations with Variable Coefficients

where q,, a,, a,, ..., a, are constants and right hand side is a constant or a
function of x alone.

Let us start by considering the Euler’'s Egn. (67), namely,

4x* 4y +8x§+ y=0

~
=

dx dx
Now we have to reduce this equation to an equation with constant coefficients.
We transform the independent variable x to another variable z in Eqn. (67)

by means of the transformation x=¢°. We write

ﬁ=ﬁ@=e—:ﬂ [smced—x=e:J (72)
dx dz dx dz 2
and
—d-%’ -y i(e_‘_ ﬁ) = —e_‘_' ﬁ ﬁ.’.e_: d-'}‘ .ﬂ
dx” dx dz dx dz dz” dx
Lody 5 a’zy
s R >
dz dz
g2 2 (73)
dz= dz
Substituting from Egns. (72) and (73) in Egn. (67), we obtain
4e* e —d-:v—ﬂ +8e:e""ﬁ+_v:0
dz®= dz dz
2 1
BEPLE FPL. I, (74)
dz* Z

Eqn. (74) is an equation with constant coefficient having z as the independent
variable and can be solved by the known methods. Its auxiliary equation is

4m’ +4m+1=0
= 2m+1)’=0
11

= m=——, —5
The general solution of Eqn. (74) can be written as
y=(c, + Z(‘z).{’_:” (75)

Substituting x =¢ or z=In x in Egn. (75), the general solution of Eqn. (67) is

obtained as
y=(c,+c,Inx)x™"?

To see how the method works, in general, we consider the second order

Euler's equation

2

d’y dy
i % —f+a]x—}+azy = f(x). (76)
dx” dx
s d’y .
You may note here that the coefficient of = ‘3? is zero at x=0. Hence we
e

confine our attention to finding the general solution on the interval ]0, o .
Consider the substitution

z=Inx or x=e" 05
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With this substitution, we have

oA (..ﬁ_ ‘]

a’x—dz.dx_x dz \ dx ;

xﬁ:d—‘ (77)
dx dz
Also d-g’zi(l d"J _Ld_) 1 : dz
dx dx \ x dz xt dz x d7’ dx
1 dzy_ﬁ
2\ d?  dz
#43_ 4y & (78)

dx* d7*  dz

Thus, substituting from Eqgns. (77) and (78), Eqn. (76) is transformed to the
eqguation

“rj(dw dy]+ 4 j; +a,y=f(e")

dz>  dz
or, A, jf+A ?}+A y=0(z) (79)

where A, =a,, A, =a,—a,, A, =a, and Q(z) = f(e").

Eqgn. (79) is an equation with constant coefficients and its complementary
function can be determined by the methods discussed in Unit 5. For obtaining
its particular integral either the method of undetermined coefficients subject to

the form of f(e*), or the method of variation of parameters can be utilised. If
the solution of Egn. (79) is

y=g(2),
then the solution of Eqgn. (76) will be
y=g(Inx)

We take up some examples to illustrate the method.

21
‘d} D =lnx, 0<x<eo,

I dx
Solution: Given equation is an Euler’'s equation of order 2. To solve it, let
x=e*orz=lhx
Then we know that

dy _dy
Tdx  dz’

and i d‘;:’ =d‘y dv

dx*  d7’ d?

d.x dx
B y 1
Y oW yyey (80)

dz” Z
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The auxiliary equation of Eqn. (80) is

m* =2m+1=0
= m=]1

s 'CF. = (g +¢z) €°

To find a P.I. of Egn. (80), let us assume that

y, =u(z) e +u,(z) ze* (81)
&y, e i S
=ue” tu,ze  +ue +u,(ze" +e)
dz
As the first auxiliary condition, assume that
ue +u,ze” =0 (82)
so that
dy, ; :
E=ue’ +u,(z+1) ¢ (83)

Differentiating Eqn. (83) once again, we have

d’ ; ; :
}i” =ue’ +u,(z+1) e +ue” +ue’ (z+1)+u,e’ (84)
72

If y,(z) is a solution of Egn. (80), it must satisfy it. Hence substituting the
expressions for y . y! and y:: from Egns. (81), (83) and (84), respectively, in
Egn. (80), we obtain the second auxiliary condition as

we' +uy(z+1) e =z (85)
Solving Eqgns. (82) and (85) for «, and u;, we get

#om L
e =z and e'u, =—z"

= u/=-z"¢7 and u), =ze”
Integrating the above equation, we get

", =—I z'e " dz
=—|:z3%+2f X dz]

=+z7%e7 -2 [z£+j e dz]
-1

=z2¢ " +2z¢ % +2e"

and u, =Ize_: dz=—ze™" +I e di=—ze " —e”

Substituting the values of u,(z) and u,(z) in Egn. (81), a particular integral of
Eqgn. (80) can be expressed in the form

=(z° +2z+2)—z(z+1)

=7*+224+2-7" -2

=z+2 97
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and the general solution of Eqn. (80) is
y={e +e;z)e" + 742
Replacing z by In x, the general solution of the given equation is

y=(¢,+¢c,Inx) x+Inx+2

3 2 ) ?
Example 9: Solve x’ it 2 g 2 —6xd—}+18y=0,0<x<oo.
dx dx~ dx
Solution: Let x=¢" or z=Inx

Then, we have

2B e S iy (86)
dx xdz dx x"\dzZ dz
d’y _z2fd’y dy) 1(d’yd: d’yde
d X\ di? dz) X*\d7? dx d7* dx
3? 2? )
¥ (i Yo & (87)
x'\dz dz dz

Substituting from Eqgns. (86) and (87) in the given equation, we get
A 2., 4 2., ) 3
47 8 Vo 89,0 oD cray—g
dz’ dz dz dz° dz dz
3. 25 ;
4 483 39 18y=0
dz’ dz” dz
The auxiliary equation corresponding to the above equation is
m® —4m* —=3m+18=0

= (m+2) (m’ —6m+9)=0

= (m+2)(m-3)"=0
= m=-2,3,3
& B Cle_z: g (o +c3z)93:
Substituting z=1Inx and ¢° =x in the above equation the general solution of
the given equation is
y=cx7 +(c, +¢; Inx)x’

We now take up an example where the auxiliary equation has complex roots.

Example 10: Solve x*y"+xy'+4y=0,0< x<oo.

Solution: Letting x=¢" or z =1In x and substituting the values of the

derivatives from Eqgn. (86), the given equation reduces to
2

1Y 1 4y=0

2

<
The auxiliary equation corresponding to the above equation is

m:+4=0

= m=%2j

Hence the general solution of the given equation is
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y=c,c082z+c¢,8In2z

or, y=c¢cos(2lnx)+c,sin(2Inx).

*kk

We now take up an example of an initial value problem where initial conditions
are prescribed for negative values of x and we are required to find the

general solution in the interval ]—eo, 0[ . In such cases, we first transform the
given equation and the initial conditions to the interval 0, e[ by using the

substitution 1 =—x and then obtain the general solution by using the method
discussed above. Let us see how this is done.

Example 11: Solve the given differential equation
4x*y"+y=0, —oo<x<0;
y=D=2, y(-1)=4.
dy _dy di dy

Solution: Let r =—x, then = = '.'£=—]
dr dt dx dt dx

d*y d (—dy] —d*y dt d*y
and = = — — 3 —_—= =
dx”  dx\ dt dt dx dt”
with above substitutions the given equation reduces to

452 ,d*y 4 ( dy _ d_v]
dr dx dt
To solve the above equation we use the substitution 1 =e* or z=Int and
obtain the equation
2 Y
4d_ o 4& y = 0
dz’ dz 2
The auxiliary equation is

4m* —4m+1=0
= (2m-1)(2m-1)=0

= m= l
h
y=e* (( +zc,)
=1"* (¢, +¢,Int)
Now y()=2=¢, =2
and y(I)=—4=¢,=-5
Thus y=t"*(2-5In1)
=(-x)"*[2-5In (-x)]
is the required general solution.

-,,MI'—‘

Fdkk

You may now try the following exercises.

E7) Solve the following differential equations

,d’y dv

1)
dx* dA

x?'d-z)+5x d ?+7xé+8\,—0 O<x<oo.
dx dx” dx 00
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E8)

E9)

Solve the following differential equations on the interval ]0, oo

R

dx” dx x

i) x’d-y+x£—»—r
dx

d"'y 4d3y S dy 2y

i)y ——-———+>—-—==1

d* xd* X dx X

&8 +rd—R—n “R=10
dr

satisfying R(b) =0, where b is a constant, is given by

i) R=C[[Ej —[;] } forn=1,2,3,..., C aconstant;
r 7

i) R=C ln[b] for n=0, C a constant.

Show that a solution of the Euler’s equation r°

E10) Solve the given differential equations subject to the indicated initial

conditions
i) Y +x’+y=0, y) =1, Y1) =2, 0<x<oo.
i) X’y —=dxy’+6y=0, y(-2)=8, y'(-2)=0, —0< x<0.

Earlier we mentioned that Eqn. (70) is not Euler’s equation, but can be

reduced to Euler’s form by the substitution X =2x—1. We now consider such
equations which are reducible to Euler’s form.

Equations Reducible to Euler’'s Form

(ar+b)" Y+ (ax+b)"a

Consider Eqn. (70), namely,

2x y=sinx
Let X =2x—1, then we have
d dy dX dy d’v d*y Y/ & d’y
DD 2@ 87 420 gngllagl ) (88)

dx dX dx dX ' dx’ dx > dx®  dx’

Substituting from Eqgn. (88) in Egn. (70), it reduces to

s d’y dy [ + l] (89)
dx’ dX 2

Which is in the Euler’s form.

In the same way for the general nth order equation

gn =l ?
? +---+(ax+b)a,,_|%+au)’=-f('r) ! (90)

A=

where a, b, a,, a,, ..., a, are all constants, consider the substitution

X =ax+b.
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With this substitution
b dydX_ dy &y _.dy Ay ady

= =da grinirins = ;
dx dX dx dX dx’ dx? dx" dx"
and Eqgn. (90) reduces to the equation
i 20, n=1 3
a'X" &3 +a"'X"a, et GXa, = +a,y=g(X) (91)
dX” d n=. dX

where g is the transformed form of the function f.

Both the Eqgns. (89) and (91), in the Euler's form, can now be solved by
reducing them to equations with constant coefficients by the method discussed
above. However, substitution ax+5=e¢" reduce Eqgn. (90) directly to an
equation with constant coefficients. Similarly, substitution 2x—1=¢" can be
used in Egn. (70) to reduce it to an equation with constant coefficients.

We illustrate the method above with the help of the following example.

Example 12: Solve
3 dzv
3x+2) —
( ) e

+3(3x+2)%—36y=3x2 +4x+1,0< x < oo,

Solution: The given equation is an equation reducible to Euler’s equation.
We can, however, reduce it to an equation with constant coefficients by a
single substitution.

3x+2=e"or z=In(3x+2)

PR 3 S T T L [-.-ﬁ— ) ]
dx dz dx  3x+2" dz dx dz dx 3x+2
2 2
— d°y d [ 3 d)} 3 ch_‘_ 3 d% dz
dx 3x+2 dz| (Bx+2)* dx 3x+2 dz*® dx

B 3" d’y _dy
(Bx+2)* | d7? dz

Substituting fo dy

dx dx”
o|2Y B |, 33D 36,112
dz® dz dz 3
d’y 1
= ——4y=— 92
R (e* -1 (92)

The auxiliary equation is
m —4=0=>m=12

Hence C.F.=y, =ce* +c,e™
To find a particular integral, we write

¥, (2)=u,(2) e +u,(z) e™ (93)

r.2z r- =2z 2z -2z
=ue” +ue " +2u e —u,e )

101
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As the first auxiliary condition, let

e +ule™ =0 94
1 2
so that
dy e %
4 =2ue” —ue ) (95)

b
“

Differentiating Egn. (95) once again, we get

dgy_ﬂ - r.2z r =2z 2z -2z

5 =2ue” —use ) +4ue” +4u,e (96)
Since y,(z) must satisfy Eqn. (92), we combine Egns. (93), (95) and (96),
and obtain the second auxiliary condition as

2(:;]’62: —ue )= 1 (e* —1)

’ = ’, _2: I 2:
= wue” —uje =§ (e —1) (97)
Solving Eqgns. (94) and (97) for u, and u;,, we get

’ l = ] I 4= ¥ o
Uy=—»(N1—-e“)and u, =— (" —e"
' ]08( ) ‘10 ( )
Integrating u, and u;, we get

1 e 1 [e* e*
=—| g4—=7| and u, (g) =~——| ———
(@) =108 [Z 2 J “2(2) 108[ 4 2 ]

On substituting the values of u,(z) and u,(z) in relation (93), a particular
solution of Egn. (92) is obtained in the form

| R I I
S—g™ | go—|t—
108 [ 4] 108

.. The general solution of Egn. (92) is

y=ce* +c,e™ +L e* [z —lj+L
) 108 4) 108

and the required solution of the given equation is

y=eGr+ 2P +— 2 (3x+2)2[ln (3x+2)—l]+L.
(Gx+2)° 108 4] 108

dedkd

You may now try the following exercise.

E11) Solve the following differential equations in the interval ]0, oo

102
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2.

. »d
i) (x+a) I

‘2)—4(x+a)£+6_\-’ =X
# dx

242

i) (I+x) —+0+ x)—+y 4cos[In (x+1)]

We now end this unit by giving a summary of what we have covered in it.

12.5 SUMMARY

In this unit we have studied the details concerning the following results:

1. Let y, and y, be the linearly independent solutions of the reduced

equation corrsesponding to a non-homogeneous second order linear
differential equation of the Form (12) with constant or variable

coefficients. Then a particular integral y,(x) of the equation is obtained
by substituting y,(x) = y,u,(x)+ y,u,(x) in the given equation and
determining u,(x) and u,(x) by using the formulas

' W()], Y3) x (}l, ¥,)
where W(y,, y,) = y 1: =y,y, — ¥,y is the Wronskian of y,(x) and
Sl 22

y,(x).

2. If y=y,(x) is one solution of the reduced equation, then on substituting

y=y,(x) v(x) the second solution of the reduced equation and a

particular integral of the corresponding non-homogeneous equation can
be determined.

3. Differential equation with variable coefficient of the form
du ,, ; du | - d" y
x _:+ + a,x + +a,
dx’ dx dx
a,, a,, ..., a, are constants and in which the powers of x in the

coefficients are equal to the order of the derivatives associated with
them, is known as Euler’s equation. This equation can be reduced to an

equation with constant coefficients by using the substitution x =¢* and
then it can be solved by the known methods.

12.6 SOLUTIONS/ANSWERS

dy
2y a,y= f(x)where
dx

E1) i) Complementary function of the given equation is given by
y.(x)=c, cosx+c,sinx
Let y,(x)=u,(x)cosx+u,(x)sin x

Then the two auxiliary conditions are
du, du, |
—cosx+—=sinx=0

dx dx

. du, du,
and —sin x——+COSX—==CO0Sec X
dx dx
103
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d
Solving the above system for 4 and sty , we get
dx dx
LW Y T
dx dx

Integrating u, and u,, we get
u,(x)=—x and u,(x)=Insin x

Hence y,(x)=—xcosx+In(sin x).sin x
and the required general solution is
¥ =¢,C0o8Xx+c,sin x—xcosx+sin x In(sin x).

ii) The given equation is
y'=2y'+y=xe'In x, x>0
Complementary function is
y, =(c, +c,x)e’
Assume
¥, (%) = [u, (%) + 1, (x).x] e’
Then the auxiliary conditions are
du, du.,

+x—L=

dx dx

ol W
dx dx

=xnix

du i,
Solving the above system for % and d!i we get
X ax

ﬂ=—x2 In x and %=xln %
dx dx
Integrating u, and u;, we get
3 3
u, =—szln xdr=-"-In x+Ix—ldx
3 3 2

3

=—£ln x+lx3,
3 9
i, =Ix]11 X dx=%]n x—J%; dx
=X mx-Z
2 4
1 X

3 3 3
Hence y (x)=e" X gt imat
! 3 9 2 4

x XS 5 3
=e¢' | —In x——x7 |.
{ 6 36 ]

i)  Complementary function is
y.(x)=c,cosx+c,sin x
Assume y , (x) =u,(x)cosx+u,(x)sin x
The two auxiliary conditions are

du, du, .
—Lcosx+—=sinx=0
dx dx

104
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du, . du,
and ———sin x+—=cosx=tanx
dx dx

Solving, we get

du, du, .
——=cosx—secx and —==sin x
dx dx

Integrating «;, and u;, we get
u, =sin x—In (secx+tanx) and u, =—cosx.

Thus y,(x)=—cosx In (secx+tanx).

E2) i) Complementary function is
y.(x)=¢cx+ (,‘3.}(2
Assume that a particular integral is y , (x) = xu, (x) + x’u, (x) .
The two auxiliary conditions are
xu]’ + xzu; =0

and u; + 2xu, = 'H;]
X
Solving the above system for «; and u,, we get
, I 1 1

1
1 3 and H; =— + =
X X X X

u =——-—

Thus, u, =—In x+i and u, :—l—%
X x 2%

Thus, y (x) = %— x~=xln x
Therefore, the general solution is

>,
y=cx+c,x” +E—x— In x.

. c N
i)  y=cx+-—t+e"——e".
X X

i)  The given equation can be rewritten as
o (x+D) L,y
y ¥
X X
Complementary solution is

y (x)=ce" +c,(x+1)
Assume a particular integral as y , (x) =ue" +u,(x+1).
The two auxiliary conditions are

eu; +(x+u, =0

e'u, +u, =x
Solving the above system for «, and u}, we get

u, =(x+De™, u; =-1
Thus u, =—e " (x+2), u, =—x

Y, (x)=—(x+2)—x(x+1)= —(x*+2x+2)

.. The general solution is

y=ce' +c,(x+1)—(x* +2x+2). -
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3
X

E3) i) y=c¢ +ce +ce —2x—?.

) L 1,
i) y=ce +ce” +ee” +§e“'.

i)  Rewrite the given equation as

”

y”.&.i_%}r’-'-
X X X

T y=2x,x>0

. C
y (X)=cx+e,x" +=
X

5 1
Let y, (%) =xu, + X", +—u,
X
The three auxiliary conditions are

1
xu, +x7uy +—ul =0
X

1
4 ’ ’
u, +2xu, ——uy; =0

’ [ ’
Uy, +—u; =0
P
Solving the above system for u;, u; and u;, we get
r 2 ’ » .1'4
Uy =—X", Uy =—X, Uy =—
3

Integrating, we get

- XX

Uy =ty =T Uy =g
— "_4 -r4 x-]-
AR

and the required general solution is
4

5. B . X
y=exe x4 ———.
x 13
E4) i) The given equation is
X’y =2xy"+2y=4x"
Here one of the solutions of the corresponding homogeneous
equation is y,(x)=x.
- Assume y =vx.
Substituting for y, y” and y” in the given equation, we get
2V +0")=2x(v+ xv") + 2vx = 4x°
= xV'=4x
= ¥= i x>0
X
Integrating, we get

vV'=4In x+c¢,
Integrating again, we get
v=¢,x+c, +J4 Inx dx

=cx+c, +4xn .r—4fxl_ dx
106 X
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=cx+c, +4xInx—4x

Thus, y=vx=c,x+ clxz +4x* In x—4x?

E5) The given equationis x*(1-x*)y"—x’y'=2y=0
=%

Since one of the solutions of this equation is y, = , assume that

J1—x°

X
Substituting for y, y" and y” in the given equation, we get

X

y=v

1-'”—iv'=0
x(1—=x7)

It is a linear homogeneous equation in v and x and its I.F is

I.F.:—J‘in dx

x(1—x7)
Now —fi -=—j dx——j 2 de
1-x%) 1- x 1+x
[using partial fractions]
3 3
==2Inx+=In(1-x)+=In(1+x
> (I-x) 3 (1+x)
(l_xZ)S!E
=ln————
x2
__243/2
I.F.z(l#
2
28302
and v'.u:q
5
¢, x°

= 1”=7§w
(I=x7)""

Integrating the above equation once again, we get

X X
v=clj—2 dx
1-x" 1-x?

Substitute v/1—x* =sin0

v=—c,[cot> 0 db

=—c,[-cot0-08]+c,

X — 5
=c, +c][7+sm o I
- x*

Note that the in the above problem you can obtain the second linearly
independent solution directly by using formula (63) and solving

Hence y=v
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—j ay () dx 2 2 v 2 2
e 1—x X | 1-x X

=y (x ——dx = —e’ " dx= —dx
=@ ) V" = Il—x‘ V" x J.(i_—x"-)”

E6) The given equation is
. d¥y . dy .
x(xcosx—2sin x) 2 +(x"+2)sin x——2(xsin x+cosx)y =0

Since y, = x” is a solution of the given equation, assume that y = vx”
Substituting for y, y* and y” in the given equation, we have

2 v -
, X sinx+4xcosx—6sinx ,
v o+ v =0

x% cosx—2xsin x
It is a linear homogenous equation and its |.F is
{.\‘J sin x+4.xeos x—6sin x)/(+7 cos x—2xsin 1) dx
E=d

x”sin x +4xcos x—6sin x
Now, f - . dx
X cosx—2xsin x

(—x*sin x—2sinx  4(xcosx—2sin x)
— I — = + = dx
x“cosx—2xsinx  x(xcosx—2sin x)

=—In(x* cosx —2xsin x) +41n x

x-l
=In|— _
(x“cosx—2xsin x)

4
X
|.F.=— -
(x"cosx—2xsin x)
x-#

Thus, v'— — =,
x“cosx—2xsin x

, x* cosx—2xsin x
= R =

X
cosx 2 .
= s—e— I X
X %

sin x
=¢ d 5
X

sin x
= v=c2+(_‘,[ ,J

X

Therefore, y=c,x* +c¢,sinx

E7) i) Substituting x=¢° or z =1n x the given equation reduces to

2 ) )
4y 2 & +3 b
dz- dz dz
Auxiliary equation corresponding to above equation is
m* +2m+3=0
= m=-1%2i
The general solution is
y=e"[¢ cos(ﬁz) ¢ et sin(\/iz)]

=3[, cos(\Eln X)+&, sin(v/2 In x)]

+3y=0

- i)  Substituting x=¢" or z=1In x, the given equation reduces to
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E8)

3 8. .
Y 1297 4P 1gy=0
dz dz” dz

Auxiliary equation is
m+2m’> +4m+8=0
= (m+2) (m>*+4)=0

= m=-2,2i,-2i
The general solution is

y :('—.', + ¢, cos(21n x) + ¢, sin(21In x)
x=

Let x=¢". Substituting for its derivatives the given equation

becomes
2. .
B BOL A (98)
dz” dz
AE.is m*+2m=0=>m=0, -2
C.F.is y=¢,+c,e™
To find particular integral of Egn. (98), let us assume that
¥, (D) =u (D) +u,(z) e (99)
d}]p ’ F " S I
= T i Y ) T
dz
As first auxiliary condition, assume that
u, +use =0, (100)
So that
dy :
P =y e (101)
dz )
d’y
T}; ==2u5e ™ +4u,e" (102)

Since y,(z) must satisfy Eqn. (98), hence substituting y,. y/, and
;:’ from relations (99), (101) and (102) in Egn. (98), we get

- 2!!;.‘3_2: +4u:e'2: +2[—2uze'2:] = B

” [
S8 e 103
2 > (103)

Solving Eqgns. (100) and (103) for u, and u,, we get
1

, . F [
uy=—e " and u, =——e’
2 2

Hence, on substituting the values of «,(z) and u,(z) in Egn. (99)
a particular integral of Egn. (98) can be written in the form

_ k . 3 . =
y ()=——e " ——e ‘' =—e"
¥,(2) 5 5

The general solution of Eqn. (98) assumes the following form
y=c e, —e

Thus, the general solution for the given equation becomes

e 1
y:(']+7——.
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i)

ii)

Ax+£+ ,,] x" oy if m# 1l
y= x m =1
Api B BB s e ey
X 2

The given equation can be written as

Fi 2 3
% E '}—4;{2 = ; +5J:‘d—y—2y=.!c3
dx dx dx

which is an Euler's equation and its general solution is

3
2 512 2112 V2112 X
y=¢x +x (cz.r"r_ +e,x VA )—?.

E9) Substituting r=¢" or z=Inr, the given equation reduces to

d*R
dz*

-n*R=0

The auxiliary equation is

)
m*—-n’=0

= m==n
The general solution is

or

R=ge™ her™

n

R=cr" +c,r°

Given that R(b) =0
. e +e;b™ =0, for n=1, 2, ...

=

LN
_—Gb

¢ = -
b

_ {_[ﬁ) +[I_’J ],where C=olh™
b r .

For n =0, auxiliary equation reduces to

m =0=>m=0,0

The general solution is

or

R=c¢ +¢,z2

R=c,+c,Inr

R(bh)=0=c¢,+c,Inb=0
=c¢, =—c,Inb

© R=c,[-Inb+Inr]=c,In(r/b).

E10) i)
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Substitution x=¢", z=1Inx reduces the given equation to
d’y
dz’

The auxiliary equation is m” +1=0=>m==i

». The general solution is y =¢, cos(In x)+¢, sin (In x)
y)=1=>c;=1 @hd 3 V=2=¢;=2

+z=0
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E11) i)

Thus the general solution is
y=cos(Inx)+2sin (In x).

Substituting 1 =—x, the given equation reduces to

sd®
4 =0, y(2)=8,y(2)=0
dr’
Substituting  =¢°, z=In¢ in the above equation, we obtain
4 5% Gyl
dz’ dz

The auxiliary equation is m”> =5m+6=0=>m=2,3

<. The general solution is y =c,e* +c,e™ =¢t* +c,t°
y(2)=8=4c, +8c, =8

and y'(2)=0=4c, +12¢, =0

Solving the above system for ¢, and c,, we get ¢, =6 and

e ==L,

Thus y=6x"+2x" is the required general solution.

The given equation is

I‘!
x+a)’ y=x 104
o7 L2 -raed] o
To solve it, assume that x+a=e¢" or z=In(x+a)
dy 1 dy
dx x+a dz
2. . 2 .2 v
anddfz— 13::1’_3+ 12d3)= ljdz)_d_)
dx® (x+a) dz (x+a) dzz (x+a) \dz= dz
With this substitution, the given equation is reduced to
4% dv 4d—\+6y =e‘—a
dz* dz dz
= (42 _sd —e —a (105)
dz* dz
The general solution of Eqn. (105) can be expressed as
y= clezz +c,e +le: 2
. 2 6

and the general solution of Eqn (104) is

Y= c](x+a) +c,(x+a) +— (,x+a)—%

y=acos{In(1+x)}+bsin{In(1+ x)}+2In(1+ x)sin{In(1+ x)}
_x_

11
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APPENDIX

Let us consider the linear differential equation in the form

dn ‘, dn !
aU(x) =+ (X)— o ;

where au(-"') #0 and ag, a,, ..., a, and b are continuous in some interval I.

+ +a,(x)y=>b(x), (A1)

We shall assume that the solution of the homogenous differential equation
corresponding to A(1) is

v (x)=c,y,(x)+c,y,(x)++++c,y,(x)

= Z (,“. _V,- (X) z
i=1
(A2)
where y,'s are linearly independent solutions of the homogeneous differential
equation and c,’s are constants.
Let us assume that a particular integral of Eqn. (A1) has the form

¥, (0= (0 3,00 (A3)

This relation contains n unknown functions u,, u,, ..., u,. The condition that
relation (A3) satisfies Eqn. (A1) is the only necessary condition which must be
satisfied and this leaves considerable freedom in the choice of «,'s . In fact,
we can impose (n—1) conditions, which along with the given differential
equation, gives us n conditions to determine n unknown functions

Uy, Uyy ooy U

Differentiating relation (AS) we obtain

d 2 du, ; (Ad)

=1 i=]

We choose our first auxniary condition as the vanishing of the second term on
the right hand side of Eqn. (A4), i.e

du,
— y,=0 A5
Z; 2 = (A5)
dx
n dl
—z u; i (AB)
= dx
Differentiatlng Eqgn. (AB), we get
N d’ } du; dy,
= i Jossind Mpucic A B A7
Z: Z: dx dx (A7)
As a second auxiliary condition, we choose
du; dy, _ (A8)
= dx dx
d’y : d Y,
so that —- = A9
dx? zl dx (A9)

We continue this process of differentiation y , (n—1) times and obtain (n—1)
auxiliary conditions. Then (n—1)th auxiliary condition is
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du, d"?y,
—Lo—3t=0 (A10)
=1 ax dax

drf—] \_‘ n d”_ly-
and L= —L Al
dxn 1 ; ul dxn—l ( )

Differentiating Egn. (A11) one again, we get

du v n d " du- Cfﬂ'—l y
= H— et Al12
dx" z Z dx dx"! (A12)

i=l i=l

Substituting in Eqgn. (A1) the values of y, and its derivatives from equations
like (A3), (AB), (A9), (A11) and (A12) etc., we get

i e, L B Lteeta,
= i 0 d.x“ d nl }’
rr—l 5. d.u
+a0(,\)z v 24 i) (A13)

Since the y,'s are the solutlons of the homogeneous equation corresponding
to Egn. (A1), the first expression on the left hand side of Egn. (A13) must
vanish and then Eqn. (A13) reduces to
d™'y. du
a,(x ! =b(x), Al4
{,()Ed,,]dx (x) (A14)
which is our nth auxiliary condition.

Writing the various conditions imposed on ;s , we get the following set of
simultaneous linear differential equations in u,s :

y u,’ + yzug +oeet y”u" =0

dy, dy, dy.

—Lu o+ 2y, 4t —y, =0

dx dx dx
dn—.?."._‘ d”_é; . v... . (A15)
70’ ”:,)1 M-; + d—”_]zu; +---4 T[:,”H; = 0

I X s, 2y
du—l y d"_l y du—l y I

: "'_Il “1’ + ”_lz u; +e = u; = b(x)

dx dx dx a,(x)

Since the y,'s are known functions of x, we can solve the set of
simultaneous Eqgns. (A15) for the u,'s by using the Cramer’s rule

Cramer’s rule gives

u, :%, k=12,....n

where W is the wronskian of y,, y,,..., which is non-vanishing since y,'s

are linearly independent. W, is the determmant obtained by replacing the k"

column of the wronskian by the column
0

0

b(x)

a,(x)
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For details of the Cramer’s rule, ref. appendix of Unit 10.

Thus we are lead to n first order linear differential equations in the «,'s , which

can always be expressed as simple integrals capable of numerical integration
even when they cannot be integrated explicitly.

- X -
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13.7 Solutions/Answers 164

13.1 INTRODUCTION

In Unit 10, we saw that the general solution of a non-homogeneous linear
differential equation consists of two parts, namely, the complementary function
and a particular integral. In Unit 11, we developed the method of
undetermined coefficients for finding a particular integral of non-homogeneous
linear differential equations with constant coefficients for certain particular
forms of the non-homogeneous terms. We dealt with the method of variation
of parameters in Unit 12. This method provides a particular integral of non-
homogeneous linear differential equations with constant as well as variable
coefficients provided, all the linearly independent solutions of the
corresponding homogeneous equation are known. In the case of non-
homogeneous equations with constant coefficients, the constraints on the use
of both these methods namely, the method of undetermined coefficients and
the method of variation of parameters can be overcome to a large extent when
we use the method of differential operators. The notion of differential
operator can be traced back to Barnabé Brisson (1777-1820), a French
mathematician and civil engineer and its use was carried out by another
French mathematician Louis Cauchy (1789-1857), a reputed pioneer of
analysis.

Differential operators are a generalization of the operation of differentiation.
The most commonly used differential operator is the action of taking the
derivative itself. Common notation used for the differential operator is

An operator is a function
that takes a function as
an argument instead of
numbers i.e., a function
defined with domain as
set of functions.
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D= gi Thus, if v is an n” order differentiable function, then
ax

D”}: —3 y, D}' = }_", DZ}. - }.‘”’ o D”y - y{u! (1)

and D"D" = D™", for positive integers m and n ..

In this unit we shall make use of the method of differential operator to find a
particular integral of a non-homogeneous linear differential equation with
constant coefficient. The determination of a particular integral of a non-
homogeneous equation depends upon the properties of the operators inverse

to D, thatis, D™'. The problem of inverse operator has been the subject of
investigation and was studied by Rehuel Lobatto (1797-1866), a Dutch
mathematician and George Boole (1815-1864) an English mathematician,
philosopher and logician.

In this unit we are mainly concerned with the polynomial differential operators
with constant coefficients. In Sec.13.2 we shall start by defining a polynomial
differential operator of order n and give the fundamental laws of operation for
the polynomial operators. We have also defined the inverse differential
operators and given some general properties of the polynomial operators and
the inverse operators in this section. In Sec.13.3 we shall discuss some
general methods of finding a particular integral of non-homogeneous
differential equtions with constant coefficients using differential operators. In
certain cases, depending on the form of the non-homogeneous terms in the
differential equations, there are methods available which are shorter than the
general methods. We shall be discussing these shorter methods in Sec.13.4.
Finally, in Sec.13.5 we shall discuss the applications of non-homogeneous
differential equations with constant coefficients in the study of vibrations in
mechanics and the theory of electric circuits.

Objectives

After going through this unit you should be able to:

¢ define a differential operator and inverse differential operator;
¢ state properties of differential operators and inverse operators;

e obtain a particular integral of a given non-homogeneous differential
equation using the method of differential operators;

e use shorter operator methods of finding a particular integral when non-
homogeneous term is of the form exp(ax), sin(ax+b) or cos(ax+5b),

polynomial V(x) in x, exp(ax).V(x);and

¢ derive differential equations for some physical problems and obtain their
solutions.

13.2 DIFFERENTIAL OPERATORS

Consider a linear non-homogeneous differential equation of order n with
constant coefficients, viz.,

(n-2)

A Y+a,y" P +ta,y=b(x),a,#0 (2)

a,y

{n—

+a,y
Using Eqgn. (1), Eqn. (2) can be written as
(a,D"y+ a,D”_'y + azD”_zy +--4a,y) =b(x)

T o, (a,D"+aD"" +--+a,)y=>5b(x).
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If we write

L(D)=a,D" + aiD”_' et a"_y!.')2 +a,D+a, a,#0 (3)

=1

then L(D) is a polynomial differential operator of order n. Eqn. (2) can
than be written in the form

L(D)y = b(x) (4)

and is read as “ L(D) operating on y equals b(x)". It may be noted that
L(D) has meaning only when applied to some function.

Let us consider two polynomial differential operators L, and L, with constant
co-efficients where
L=D+2 and L,=3D-1

Then, L (L,(y))=(D+2) [3ﬂ— }‘]
dx

dx®  dx dx
=@3D*+5D -2)y (5)

Similarly L,(L,(y))=(3D—1) [?4— 2 yJ
X

2 ) ]
=39 ,6D & _,,
dx” dx dx
=BD* +5D - 2)y (6)

From Egns. (5) and (6), we get
L (L,(y))= L, (L (y)) 7)

We can thus say that the product L, L, of two polynomial differential operators
L, and L, is defined as that operator which produces the same result as is
obtained by using the operators L, followed by the operator L, .

The product of two polynomial differential operators always exists and is again
a polynomial differential operator. Moreover, if L, and L, are polynomial
differential operators with constant coefficients then L L, =L,L,, butitis
usually not true for polynomial differential operators with variables
coefficients. Forinstance, if L, =xD+2 and L, =D -1, then it can be

checked that L,L, = xD* + (3—x) D—2, whereas L,L,=xD*+(2-x) D-2.
This is because L, is an operator with variable coefficients whose product is

dependent on the order of the factors. In this unit we shall mainly be dealing
with polynomial differential operators with constant coefficients.

Further, in addition to L, and L, above, if we have L, = D+1, then,

L L,[Ly(y)]=(3D*+5D-2) (ﬁ+ \)
dx

7 +3j_‘: +5j'3?+5?—2%—2y
X X X" X X

_‘
=3d v
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3 2 )
0 g8V gl oy (8)

=3
dx’® dx*® dx

2 1 1
and L [L,L,(y)]=(D+2) {3‘; s +2j—~”—y} (- L,L,=3D*+2D-1)
o X

3 2 , 2 ,
i e 1 O BB
dx dx” dx dx dx

34 25
4,89 38 _,, (9)
dx dx dx

From Egns. (8) and (9) we conclude that
L L,(Ly(y)]=LI[L,Ly(y)]. (10)

=3

=3

Also the sum of any two polynomial differential operators is obtained by
adding their corresponding coefficients. For instance, if I, =3D° =D+ x—2

and L, =x’D+4D+7 then

L+L,=3D"+(x"+3)D+x+5=L, + 1, (11)

Similarly, if L, =2D*+2xD+2, then
(L+L,)+L,=[3D° +(x* +3)D+x+5]+2D" + xD +2
=3D* +x+(x*D+3D+7+2D* +xD)
=3D*>+x—-D-2+(x*D+3D+7+2D*+xD+D+2)
=3D*—x—D-2+[(x* +x+4)D+2D*+9]
=L +(L,+L,)

ie., (L,+L,)+L, =L +(L,+L,) (12)

Let us now consider an operator L =3D*—2xD and functions Y =x"+4
and y, =2x+x’.
For constants ¢, and ¢, , we then have
L(c,y, +c,y,) = (3D* —2xD) [e, (x? +4)+c, Qx+x)]
=S 3)!)2[{:l (x> +4)+ c,(2x+ x)]- 2xDlc, (x*+4) +e,(2x+ )]
= (6¢, -i-I&c:_,):)—(4)&'2(?1 +4xc, +6x362)
=c?,(6—4x3)+::'2(18x—4x—6x3) (13)
and ¢,L(y,)+¢,L(y,)=c¢,3D* —2xD) (x> +4)+¢,(3D* —2xD) 2x+x")
=c,(6—4x%)+c,(18x—4x—6x7) (14)
From Eqgns. (13) and (14), we conclude that
L(c\y, +¢,y,)=¢,L(y,) +¢,L(y,) (19)

In words, we say from Eqn. (15) that the polynomial differential operators

are linear operators. That s, if L is any polynomial differential operator, ¢,

and ¢, are constants and y, and y, are any functions of x each possessing
the derivatives of the required order, then
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L(e,y, +¢,y,) =¢,L(y,) +c,L(y,) .
You may check here that in general, equality (10) holds true for every
polynomial differential operators of the type L,, L, and L, having constant
coefficients. Whereas equalities (11), (12) and (15) are valid in general, for
every polynomial differential operators of the type L,, L,, L,, which may have

constant or variable coefficients.
Summing up the discussion above, we can say that the polynomial differential
operators satisfy the following fundamental laws of operation.

Fundamental Laws of Operation

If L,, L, and L, be any three polynomial differential operators, then
i) L +L, =L, + L, (addition is commutative)
i) (L +L)+L =L +(L, +L;) (addition is associative)

i) L, (L,+Ly)=L,L,+L L, (multiplication is distributive with
respect to addition)
If L, and L, are operators with constant coefficients, then we also
have

iv)  LL,=L,L (multiplication is commutative)

v)  (LL,)L,=L(L,L,) (multiplication is associative)

Note that under the operation of addition and multiplication the polynomial
differential operators with constant coefficients behave like algebraic
polynomials. We can, therefore, use the tools of elementary algebra while
dealing with these operators. In particular, multiplication may be used to factor
operators with constant coefficients. For instance, we can write
D*-3D*+4=(D+1) (D’ -4D+4)=(D+1) (D-2)" and

D’ +2D*-D-2=(D-1) (D*+3D+2)=(D-1) (D+]) (D+2).

You may now try this exercise.

E1) Factor each of the following operators:
) 2D*+3D-2
iy D’-2D*-5D+6
iy 2D*+12D° +18D*+4D-8.
iv) D'=11D-20

Operations i) — v) above are very useful for obtaining certain properties of the
polynomial differential operators and the inverse differential operators, which
in turn are useful in finding the solutions of non-homogeneous linear
differential equations. Before discussing the properties of the polynomial
differential operators let us define inverse differential operators.

Consider Eqn. (4), namely,
L(D)y =b(x)
where L(D) is a polynomial differential operator of order n with constant

coefficients only. In order to find a particular solution of Egn. (4), we write it as 119
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1
= mb(.\f) (16)

so, that

and then try to define an inverse operator of L(D), written as

the function y in relation (16) have a meaning and satisfy Eqn. (4). In other
words, what all we require is that

1
L(D).——b(x)=b(x 17
( )L(D) (x)=b(x) (17)

In particular, if we have L(D)= D then Eqn. (4) reduces to Dy = b(x)

= y=D"b(x)

and b(x)= DD 'b(x)

sothat DD™' =1.

Thus, D' represents such an operation on any quantity that if the operation

D is subsequently performed, the quantity is left unaltered. Thus, D' is an
operator inverse to D . Moreover, we know that differentiation and

integration are inverse operations. Therefore, D' is an operation of simple
indefinite integration. Similarly, D" is the operation of p -times integration.

You may note here that these inverse operations yield a particular integral but
not the complete integral, and therefore we can omit the arbitrary constant
which arises in integration.

g
From relations (16) and (17) we can thus say that D) b(x) is that
function of x which when operated upon by L(D) gives b(x).

For example, %(6x+6x2) = x°, because (D?+2D)x® = 6x+6x°.
D +2D

Thus the inverse differential operator of L(D), written as L™ (D) or L(]D) .

is an operator which, when operating on b(x), yields a particular integral y
of L(D)y=b(x), i.e.,

I
— 1 2
> =) h(x) (18)

We know that the general solution of Eqn. (4) is y =y, +y,. With the above
form of y,, it reduces to

y=y + b(x) (19)

" L(D)

If g(D) and h(D) are two polynomial differential operators with constant

coefficients then the sum and difference of the inverse operators is defined
as

20w | " 0 P ) ? 20
[g(m h(m} = " iy =0

When we apply two or more inverse operators in succession to a function (an
operand), then the operator immediately next to the operand in the left is
applied first, then the next and so on. Thus,
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1 1 1 1
e b(x)=—— | —— b(x) |. 21
D) WD) " =70 L:(D) (x)} @)

We now give some general properties of the linear polynomial differential
operators and the inverse differential operators in the form of theorems.

Let us start by considering a differential equation
Y =5y +6y=¢"

or, (D*-5D+6)y=¢"
It can be checked that y, = xe™ and y, =(x—1)e** are two particular

integrals of the equation. We have
[D? =5D +6] (xe™*) =9xe™ +6e™ —53xe’™ +¢**)+6xe™ = ¢ and

[D? =5D+6] (x—1)e’ =9xe™ —3¢™ —53xe™ —2¢*) +6xe™ — 6™ =¢™*.
Thus both y, and y, satisfy the given equation. Further, it can checked that

¥

A%

the difference of two particular solutions y, — y, = xe™ —(x—De™ =¢™ is a
solution of the corresponding homogenous equation i.e., (D* 5D —6)y =0.
Obviously, we can see that (D* —5D —6)e™ =9¢™ —15¢™ +6¢™ =0, i.e.,

y, — ¥, =" satisfies the corresponding homogeneous equation.
We now give this result in general in the form of the following theorem.

Theorem 1: If y, and y, are two particular integrals of the equation
L(D) y=b(x), then their difference is a solution of the corresponding
homogeneous equation.

Proof: Since y, and y, are particular integrals of L(D) y =b(x), we have
L(D) y, =b(x) and L(D) y, =b(x)
Now, L(D) is a linear polynomial differential operator, therefore
L(D) (y, = y,)=L(D)y, — L(D)y,,
=b(x)—b(x)
=0
— . T

In equations of the form (4) we can use any particular integral of the given
equation to obtain the general solution of the equation.

Let us now consider a differential equation of the form.

2

Y _a+py D sap y=x (22)
dx” dx
or, [D'—(a+B)D+afly=X,
where &, S are constants.
Its particular integral is obtained as
1

= X
D —(a+ p)D+af
We can equivalently write it as
: X
(D-a) (D-p)

(23)
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Applying the operator (D — &) (D — ) to Eqn. (23) and using the fundamental

laws of operations for the polynomial differential operators with constant
coefficients, we have
1
(D-a) (D-p) X
(D-a) (D- )
1 1
(D-a) (D-p)

=(D-p) [D—aL] ﬁx

=(D-p) (D-a)

D-«o
1
=D-f)——X=X
0-p 5=
From this reduction you might have observed that we can as well write a
particular integral (23) as
|

X
(D-p) (D-a)
Therefore, we can say that the inverse differential operators with constant
coefficients are commutative. This property of inverse differential operators
hold true in general also. We shall give this property in the form of the
Theorem 2. However, we shall not be proving the theorem here.

(24)

Theorem 2: If g(D) and h(D) are two polynomial differential operators with
constant coefficients then
1 1 1 1 1

¢(D) k(D) g(D) h(D) h(D) g(D)
— . i

Let us now suppose that we are dealing with two differential equations, namely

8 s ar, (DA (25)
dx”
dl'V 2

and ——y=5x or, (D" —1)y=5x (26)
dx”

Let y,, and y,, be particular integrals of Eqgns. (25) and (26), respectively.

Since (D* 1) (-2) =2, therefore y,, = ﬁz =-2.
Also (D* —1) (-5x) =5x, thus Yop = ﬁi\‘ =-—5x.

Now if we add the non-homogeneous terms of Egns. (25) and (26) and
consider an equation

d’y

2

—y=2+5x (27)

Then, (D*—1) (-2—5x) =2+5x
s~ Pl.ofEqgn. (27)is y,=-2-5x=y,,+,,-
Thus we see that if y,, and y,, are particular integrals of Egns. (25) and (26),

respectively, then P.1. of Eqn. (27) is y,, + y,,. This is known as
superposition of solutions.

We now give the result above in the form of the following theorem.
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Theorem3: If y,, v,,..., y,, are particular solutions of the respective
equations L(D)y =b,(x),L(D)y=b,(x), ..., L(D)y=b, (x), then

m

y=y+y,+---+y, is aparticular solution of
L(D)y=b(x)+b,(x)+---+b, (x).

m

Proof: We know that a derivative of a sum is the sum of their derivatives.
Therefore, it follows that

L(D)[y, +y,+---+y,]=L(D)y, + L(D)y, +---+ L(D)y (28)

m

We are given that y,, y,, ..., y,, are particular solutions of the equations
L(D)y =b,(x),L(D)y=b,x, ..., L(D)y =b, (x), respectively.

Hence under this hypothesis, the right-hand side of Eqgn. (28) equals

b (x)+b,(x)+---+b, (x), which proves the required result.

m

E2) Using Theorem 3, find a particular integral of the equation
Fis 2, ;
d—":— < '}+4d—)—v =e'+2.

dx dx” dx

We now consider another property of the polynomial differential operators.

Let us consider

(D*+3D+4)e™y (29)
It can be equivalently written as

D[De“ y]+3D [e“ y]+4e“y

= D[e“ Dy+ae” yl+3[e" Dy+ae“y]l+4e“y

=e“D’y+ae” Dy +ae” Dy+a’e”y+3e“ Dy +3ae“y+4e“y

=e“[D*y+2aDy+a’y+3Dy+3ay +4y]

=e“[(D*y+2aDy+a’y)+(3Dy+3ay) +4y]

=e”[(D+a)’ +3(D+a)+4] y (30)
Thus, if L(D)=D?+3D+4, then from Egns. (29) and (30), we have

L(D)e"'y=e“L(D+a) y

This is know as the shift formula for the polynomial differential operator L(D) .

Relation (30) shows us how to shift an exponential factor from the right to the
left of a polynomial differential operator. The formula is very useful in finding
the solutions of differential equations. We shall be illustrating it in Sec. 13.3.

However, in the next theorem we shall prove this formula in general.

Theorem 4: Suppose L(D) is a polynomial differential operator of order n. If
the first n derivatives of y w.r.t. x exist and are finite and a is any constant,
then

L(D)[e“y]=e“L(D+a)y (31)

Proof: We have
D(ea.ry) - eu_rDy +ae”“')-‘ - ea_a'(D +G) y
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Suppose that for some positive integer k , we have
D*(e“y)=e“(D+a)'y (32)
Differentiating both sides of Eqn. (32) w.r. to x, we get
D"(e"y) = Dle" (D+a)"y]
=e¢“D(D+a) y+ae” (D+a)y
=e¢“[(D+a). (D+a)*y]
=e™(D+a)*y

Thus, if relation (32) is true for k , it is also true for k+1. We have already
verified it for k =1. Hence by induction, we conclude that relation (32) is true
for every positive integer k.

Since L(D) is a polynomial in D, using the superposition Theorem 3, and
relation (32), result (31) is proved.
Thus, in general, we have

L(D) (e“y)=e" L(D+a) y

— . —

So far, we have given in Theorems 1-4 certain properties of the polynomial
differential operators and the inverse differential operators. So far, we have
not discussed the methods of finding a particular integral using the differential

operators. In the next section we shall give the general method of finding a
particular integral of the given differential equation.

13.3 GENERAL METHOD OF FINDING A
PARTICULAR INTEGRAL

We start by considering the following example.

Example 1: Solve the differential equation
Y +2y =y =2y =e™ (33)
Solution: In the operator notation, Egn. (33) can be written as
(D*+2D*-D-2)y=¢*
or, (D-1)(D+1)(D+2)y=¢e"" (34)
Let u=(D+1)(D+2)y (35)

Eqn. (34) then reduces to (D —1)u = ¢**, which is a linear equation. lIts
solution is

u=e’* +ce', ¢, aconstant. (36)
Putting from Eqgn. (36) in Eqn. (35), we get

(D+1) (D+2)y=e"" +ce" (37)
Let (D+2)y=v (38)
then Eqn. (37) becomes (D +1)v =e** +¢,e*, which is linear equation with I.F.

Iﬁ’.\' . : ]
¢’ and its solution is
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ve' = J‘(ez"' +ce)e'dx+c,
_ e N ce
3 2

)
)_.l

3
Putting from Eqgn. (39) in Eqn. (38), we obtain

4
D+2)y=
( )y 3

+c,

¢ .
= v=—-+—"e" "+, (39)

ge’
+——"tC,€e
2

which is again a linear differential equation with the solution as

I 2x

& . .
y=—eX + Lot vee t voe (40)
p 6 2 3

12
where ¢, ¢, and ¢, are arbitrary constants.

X

You may note that in Eqn. (40), (¢,/6)e" +c,e” +c,e™" is the complementary

function of Eqn. (33) and (1/12)e™ is a particular integral (free from arbitrary
constants).

* ki

Let us now see how the method used in Example 1 can be generalised for

finding a particular integral of an n” order equation.
Let us consider Eqn. (2), which when written in terms of differential operator
D reduces to

a,D"y+a, D"’ y+ aZD""2 y+-+a,y =b(x) (41)

or, L(D)y =b(x),
where L(D)=a,D" +a,D"" +---+a,.

If m,, m,,...,m, arethe n distinct roots of the auxiliary equation
corresponding to differential Eqn. (41), then we can write it in the form

L(D)y=(D—-m) (D-m,)...(D—m,) y=>b(x) (42)

Putting (D-m,) (D—m,) ... (D—m,) =n,
Eqn. (42) reduces to

(D—-m,) n, =b(x) (43)

Eqn. (43) is a linear differential equation of the first order and we can write its

solution in the form
1

B (D—m,)

Since we are looking for a particular integral of Egn. (41), we may simplify the

expression (44) by putting ¢, =0. Next, we put

T, b(x)=e™ Ie"""‘b(x)dx +c,e™ 44)

D-my)) (D—-my),....,(D—m )y=n, (45)
so that,
(D —m, )])2 =1 = ﬁb(l) = ™" je—f”p\. !‘J(x) i (46)

Solving linear differential Eqn. (46), we get

|
m—(D—mz)(D—m])

b(x) =" [l (j eh(x) dx)dx  (47)
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Continuing this process n-times, we get

I i o
v x) = b x) = eﬂi“.l' e M=, ) X e(m,,__‘s_ m, 1 )X
Yp (%) (D-m,)...(D-m,) (D—m,) ) I (-[

[ AJemm ([ e b dx) dx...dx) dx (48)
Relation (48) yields a particular integral of Eqgn. (41).

We now illustrate the theory above, through the following examples.

Example 2: Find a particular integral of the differential equation
(D*-5D+6) y=e¢" (49)
] v
_!— e
D"-5D+6
_ 1 o
(D-3) (D-2)
] ] 3x
e

Solution: Here P.I. = y =

Hence, y, = xe’* is a particular integral of Eqn. (49).

dedkk

Let us consider the case of repeated roots.

Example 3: Find a particular integral of the differential equation
Vi4+d4y +4y=—x"e", x> 0. (50)

Solution: Writing Egn. (50) in the operator form, we get
(D*+4D+4) y=—x" e
. A particular Integral of Egn. (50) is

vy = l (_r—.’. e—l.r)
P D*+4D+4

I -4 =dx

—_— %
(D+2)”

1 1 S
—_— X =
D+2 D+2

1 ) —~ ] v
=-— 2 I,r 2 ¥ e dx
D+2
I -1 .-2x
2 AT
D+2
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-2x -1 =-2x 2x
=@ ‘Ix e et dx

=e¢ ™ Inlxl

Fedkdk

Sometimes the actual integrations of the form as involved in Egn. (48) turn out
to be extremely tedious. In such situations we use a method in which the
repeated integration can be avoided. In this method the polynomial differential

operator is resolved into partial fractions.

For instance, in Example 2, we can obtain a particular integral y, of Eqn. (49)
by writing it in the form

] 3x

Y = e
- (D=3)(D=-2)

B [ L J"h
D-3 D-2
] 3x 1 3x
= e — e
D-3 D-2
and then applying the method above to solve each term of Egn. (51).

(51)

Similarly, if the n factors of an n” order polynomial differential operator L(D)
are distinct (corresponding to the distinct roots of the auxiliary equation), then
we can write a particular integral in the form
I a, o, a

b(x)= L —2 4o b —2 | b(x) (52)
L(D) D-m,  D-—m, D—-m,
where ¢, «,. ..., &, are constants and for a particular problem we can obtain
these constants by simple algebraic manipulations.

}JP =

On applying the method above to solve each term of Egn. (52), a particular
integral can be obtained in the form

)’,, — atemit Ie—nq_rb(x) dx_i_agem}\' J'e—ml.l‘ b().') d.l‘l‘

+a em".l' Ie_”'u't b(x) dx (53)

n

In case a root m, of the auxiliary equation corresponding to the differential
Eqn. (52) is repeated r-times, then the corresponding partial fractions of

L will be of the form
L(D

r r+l ‘e n

et oo
D-m, (D-m,)" (D-m))" (D-m,,,) (D-m,)

a a, a o a
2 —+

and a particular integral of Egn. (52) will then be given by
R 2 it j‘e""""b(.x) dx+ae™ j (_[ e " b(x) dx) dx+--

Jp

+ a:,e’”’"'_f (I . j(je'”’"‘ b(x) dx) & dx) dx+---

ot a, e J’ e b(x) dx (54)

To have a better understanding of what we have discussed above, let us
consider a few examples.
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Example 4: Find a particular integral of the differential equation

(D>-5D+6) y=Inx, x>0. (55)

Solution: We have
1 ]

D*—5D+6 (D-3)(D-2)
L P
D-3 D-2
Hence a particular integral of Eqn. (55) is

1 ( 1 L ]
}r’:_}—lnl-z T A e ]nx
" D*=5D+6 D-3 D-2

1 1
= II'I xX—
D-3 D-2
=™ Ie_s" (In x) d.r—ez"'je_z'"(ln x) dx

Since the integrals on the r.h.s. of the above equation cannot be evaluated in
terms of the elementary functions we have left the solution in terms of these
integrals only.

In x

dede ke

We now consider the case of repeated roots.

Example 5: Find a particular integral of the following differential equation

(D=1’ (D+1)* y=¢'
Solution: A particular integral is

-\" 'l = ‘71 2 e.‘l

P (D-1)*(D+1)*

[ = 1 1 1 .

+ —~+ + ~|e

D-1 (D-1) D+1 (D+1)

|

N e N e

|

1y ! o' + L #4 1 _¢*
D—1 (D-1)" D+1 (D+1)"

:— e Ie"'e"a’.r +e' I (I e ‘e’ dx] dx

+e Ie" e’ dx+e"‘I(I e’ e’ dx) dx]

We now take up an example in which the non-homogeneous term of the given
equation is a trigonometric function.

2

Example 6: Solve (; Y +y=sec’x.
2

Solution: The given differential equation can be written as
(D*+1) y=sec’ x

The auxiliary equation is
m>+1=0

— 4
128 = e
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s C.F.=y =ccosx+c,sinx

|
ec’ x

PIL=3. = sec’ x=————s
" D +1 (D+i) (D-i)

l|: 1 | ] ;
=— — SEC X
2i | D-i D+i

e sec’ x dx—e™ J- e sec’ x dx]

Il
S
L
T—

2 2
COoS X Cos™ x

ix

L rCOSX—ISIN X . rCcosx+isinx
[e"‘ j— dx—e™ I— dx.]
[ I(secx —isecx tanx) dx—e™ j (sec x +isecx tan x) dx]
= [(e“ —e™ )_[sec xdx—i(e" +e™) J- tan x sec x dx]

=? [ (2isin x) In | (sec x+ tanx) | —(2i cosx). sec x]
i

=sin x Inl(secx+tanx)|—1
. The general solution of the given differential equation is
Yy=y.+y,=¢cosx+c,sinx+sinx In | (secx+tanx)|—1.

*dkk

You may now try the following exercise.

[

ix

—ix

P

=cosx+isinx

=COS X —isinx

E3) Find a particular integral of the following differential equations.
i) (D* +n’) y=sec nx
i) (D*-3D+2)y=sinxe"
iy  (D*+2D+1) y=2e™"
iv) (D°=D’-8D+12) y=X(x)

The general method of computing a particular integral as discussed in Sec.
13.3 requires a lot of calculations. In certain cases, a P.l. can be obtained by
the methods which are shorter than the general methods. We shall discuss
such methods in the next section.

13.4 SHORT METHODS OF FINDING A
PARTICULAR INTEGRAL

Consider the general nth order linear differential equation of the form (41)
namely,

L(D)y=(a,D"+aD"" +---+a,_D+a,) y=b(x)

n—1

where the coefficients 4, a,, ..., a, are constants and a, # 0. For certain

particular forms of the non-homogeneous term b(x) in the equation above,
there do exist shorter methods of finding particular integrals.

Let us take up these methods for these various particular forms of h(x) one by
one.
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l. b(x)=e¢™, @ constant
We know that
De™ =a ™
DEe():l' — D(a em') — a? erz"
Dn ar an emf

L(D) ¢ =(a,D" +a,D"" +---+a, D+a,) e“

n-1

= n n=1 ax
=@,a" +aa +:---+a,_ax+a,e

= (&)™ (56)

Further, if L(a) #0, i.e., & is not a root of polynomial L(D), then

e
(D)[L(a’) } L(a')[() ]

_%) L(a) e™ (using Eqn. (56))

:E’

That is, L(l ) e™ is a particular integral of L(D) y=¢*, whenever L(a)#0.
o

Thus | 1 e 0 ey 57

== E
L(D) La)’

Now suppose that L(a) =0. Then L(D) contains the factor (D —-a).
Suppose that the factor occurs p times in L(D), thatis, let

L(D)=(D-a)" ¢(D), p(cx)#0, p =1, (58)

where ¢(D) is a polynomial in D of order (n—p).
I = 1

Now, e” =
L(D) (D-a)" ¢(D)

e” (using Eqn. (58))

I T
T (- Lﬁ(n)" }
1 e™
= ) ing Egn.
D-a) L”(Cf) ]] (using Eqn. (57))
_ 1 1
) (D-a)”

I o

S—
M)  p!

|
where D—a)"em has been evaluated by the general method.

[e“.1]

ax

Also consider, L(D) { i .x—t}(a—a)f’ #(D) [ i .x—p}

#a) p #a) p!

—4D) 4 D-a) | &= i}
o ){( o b(a') P!}
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ea\

da)

— (D)1 .1}
p ){M

1
=— #(D) &®
T A

=ﬁ #(a) e™ (using Eqgn. (56)

:eﬂ:\'

=¢(D) { D”[A—:]} (using Theorem 4)
P

-

Hence 1 g2 is a particular integral of L(D)y =¢“", where
da) p!

L(D)=(D—-a)" ¢(D) and ¢(ax) #0.
That is,

1 ae XTE* (59)
= ,0(a)#0
D=2 ZD)°. i B

We now illustrate the method above with the help of the following examples.

Example 7: Solve (D —4D +3) y=¢"".
Solution: AE. is
m’—4m+3=0
= (m-=3)(m-1)=0
= m=13
. C.F.=ce" +c,e’, ¢, and ¢, are arbitrary constants.
P.I= N S
(D-1)(D-3)
B 1
2-1) (2-3)
=—¢
. The complete solution of the given differential equation is

¢** (here 2 is not a root of A.E.)

e”* (using relation (57))

7

y=ce' +c,e’t —e*

dkdk

Let us consider another example.

d’y

Example 8: Solve Y= 3+e™ +5¢™ (60)
-

Solution: In the operator form, Egn. (60) reduces to
(D*+1) y=3+¢ " +5¢*
Its A.E. is
m' +1=0
= (m+1) (m*-m+1)=0
143

= m=-l,
2

131



Block 3

Second and Higher Order Ordinary Differential Equations

132

Hence C.F.=ce™ + ¢ {cz cos(%] +c,8in [%H

where ¢,, ¢, and c, are arbitrary constants.
1

Pl=— [3+e™ +5¢™]
D" +1
— - [380,!' +g—.\’+5€3.¥]
D= #]
=3 ql e™ + 31 & " +5 31 e
D #1 D71 D +1
1 Ox I I —% 2x y
=3 o= i — e’ +5———e" [a=-1isarootof the AE]
0+1 (D+1) D°"—=D+1 2" +1
1 1 R
=3+ — e+ =e”
D+1 (-1 —=(D+1 9
- 3+%e""i—r‘+ge“ (using relation (59) with p=1, a=-1, ¢(D)=1)
=3+l€ *x+=e™

Hence thé complete solution of Egn. (60) is

y=ce™ +e'? | ¢, cos X\/§ +c, sin .r\/g L34 e’ x +§e2|\.'
‘ . ' 2 3.9

dekk

You may now check your understanding of the method above, while doing the
following exercise.

E4) Solve the following differential equations.
I) (JD2 —-2D+1) }':36“‘“’3”
i) (D =1) y=(e* +1)?

i)y (D°+5D*+7D-3) y=e¢"coshx

iv) (D’—6D>+11D—6) y=¢>'

We now consider the case when b(x) is a sine or a cosine function.

. b(x)=cos(ax+b) or sin (ax+b)

Successive differentiation of cos(ax+b) gives
Dcos(ax+b)=—asin(ax+b)

D? cos(ax +b) =—a’ cos(ax+b)

D*cos(ax +b) =a’ sin(ax +b)

D* cos(ax+b) = (D?)* cos(ax+b) = a* cos(ax+b) = (—=a*)* cos(ax+b)
Therefore, in general

(D*)" cos(ax+b) = (—a*)" cos(ax +b)
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Thus, if @(D?) is a polynomial function of D*, then
#(D?)cos(ax+b) = ¢(—a’)cos(ax+b) (61)
Similarly, ¢(D?)sin(ax+b) = ¢(—a”)sin(ax+b)}

Now the following two possibilities arise.

Case l:9(—a’) 20

. ,. | cos(ax+b) 1 5

In th D~ - = — (D" s(ax+b

n this case ¢( ){ oa’) } ¢(—rz‘)¢( ) [cos(ax+b)]
S —@(—a’)cos(ax+b) (using Eqn. (61))

P(—a”)

=cos(ax+Db)

_ 5. | sin(ax +b) .

Similarly, ¢(D°) | —————— | =sin(ax+b)

[ P(—a”) }
Hence,
: —cos(ax+b) isaP.l. of @(D°) y=cos(ax+Db)
P(—a”)
and

;,sin(axHJ) is a P.l. of ¢(D2)y =sin(ax+b)
P(—a”)

whenever ¢(-a’) #0.

That is, we have the following results

¢(Dz)cos(ax +b)= ¢(_a2)cos(ax +b), ¢(-a*) %0
(62)
¢(D2 ) sin(ax +b) = ﬁsin(ax +b), ¢(—a £ 0
—a

Case ll: ¢g(-a’)=0
Let @(D*)= (D’ +a”)"w(D"), where y(—-a’) #0.
1

—cos(ax+b) =— = —cos(ax+b),
D7) (D" +a”)"'y(D")

=—— ! - —cos(ax+b)
(D’ +a*)" w(-a*)

1 1
.',(/(—az) (D* +a?*)?

cos(ax+b),

where ﬁCOS(G‘X-Fb) can then be evaluated by the general method.
2 147

1

1 P ;
y/(—az)'(Dz Y sin(ax+ b),

Similarly, sin(ax+b) =

)

1 . .
where ————sin(ax+b) is evaluated by the general method.
(D" +a™)'

We now consider a few examples, to illustrate the method above.
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Example 9: Find a particular integral of the differential equation
(D* +10D* +9) y =cos(2x+3).

Solution: A particular integral is given by
1

Yr T (D +10D° +9)
- |
" DD’ +10D> +9
1
T (=22) (22)+10(=2%)+9
B 1
T (=4)(=4) +10(=4) +9

cos(2x+3)

cos(2x + 3)

cos(2x+3)

cos(2x+ 3)

=——cos(2x+3)
16—-40+9

1
=——cos(2x+3).
5 (2x+3)

dekk

Let us look at another example.

Example 10: Find a particular integral of the differential equation
(D*—1) y=sinx.

Solution: A particular integral of the given equation is

1 ;
y, =——F——Sinx

“r(D-1)
1 .

=— o SIn x

(D* =1) (D* +1)

= ! —sinx (- D*+1=0 forD* =-1%)

(=12=1) (D*+])
b
2 D%
|

2| (D+i) (D—1i)

sin x

= _4% [e"""[e_"'" sin x dx — e_""!e""' sin x dx]

=—l_ e""J‘e“"" £ 8 —.e - dx—e"""je"" g & __e _|dx
4 2i 2i

:é [eﬁ" I(l —e " )dx - e_""'j(em —1) dx]
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- [x(e"“' +e ™)+ %(3_” —e" )}

l

oo | —

[2xcos x —sin x|

oo | —

kK

We can alternatively deal with sine and cosine functions in Il above by
considering L(D)y = e"“*” = cos(ax +b) + isin(ax+b) and then considering
the real part or the imaginary part on the r.h.s., as the case may be.

By superposition Theorem 3, we then have

COS(ax S b) = Re 1 ei{ﬂ:"—'bl
L(D)

L(D)
sin(ax +b) =Im L P s (€2)
L(D) L(D)
In particular, suppose we want to solve
] ;
V=—"——>sinax
D" +a”
Then let us consider
| .
U — ei’(u
DY a®
— ] fax
(D+ai) (D—ai)
] ] 1 iax
=— — e
2ai | D—ai D+ai
E l - eiﬂ.\’ ) )
=— -¢"" ——— | (here D—ai =0 for D=ai)
2ai | D—ai 2ai
= L er’u,\ je—r‘u,rer'a.rdx - € -‘
2ai 2ai
I ", e fax
=—|xe ——
2ai 2ai
ix : 5 1 i
= (cosax+isin ax)+——=(cosax +isin ax)
—2a 4a”
Now, V = Im U = _X°08¢x | S m (64)
2a da”
SHIBAY, - GOl = Rely = S9N EE | Cosdx (65)
D™ +a 2a 4a

Remark: You must have felt that by using the above alternative approach, the

term

D2]+ I sin x in Example 10, could have been evaluated very easily thus

avoiding long manipulations. Here we would like to remark that choosing an
appropriate method for the evaluation of a particular integral for a given
equation is a skill, which comes through practice only.

You may now try this exercise.

Symbols Re and Im
are read as ‘real part
of’ and ‘imaginary part
of’, respectively.
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E5) Solve the following differential equations for integers m and n:

i) (D* +2n°D* +n*) y=cos mx, m#n

ii) (D* +m?) (D* +n%) y =CoS {(m.+n.)%}cos{(m—n)%}, m#£n.

In many problems involving the sine or the cosine functions, you may find that
the polynomial L(D) is an odd order function. Consider for instance, the
differential equation

(D?+2D*-5D-10)y =2sin x (66)
A particular integral of Eqn. (66) is then obtained as follows

|
i =1 - si
V» D 2D* 5010

I ~ si
(D+2)(D*-5)

nx

n x (67)

Here L(D)= (D’ -5) (D +2)=g(D) h(D) say, where
g(D)=(D*-5) is an even order and h(D)= (D +2) is an odd order
polynomial function.
In order to make A(D) an even order polynomial, we multiply and divide
Eqgn. (67) by (D-2).
Eqn. (67) can than be solved by writing it in the form
(D-2)

y =72 sin x

B UADE=4) (D =85)

= ,2(9_2), sinx=3(D—2)sinx
(=% (=17=5) 30

| !
=—(cosx—2sin x
IS( )

Thus, in situations when
L(D)=g(D) h(D), where g(D) is an even order polynomial factor

and h(D) is an odd order polynomial factor, we can write

1 siicamapy= HE-D)
) g(D)h(D) h(=D)

sin(ax+b) (68)

and, . cos(ax+b)= A(-D)
D)

= cos(ax+b) (69)
g(D) h(D) h(-D)

and obtain P.I. of Egns. (68) or (69) as in Case Il above.

Let us consider another example to illustrate the method above.

Example 11: Solve (D' +D*—=D—1)y =cos2x. (70)
Solution: The A.E. corresponding to Eqgn. (70) is
m'+m>-m—-1=0
= m(m+1)—(m+1)=0
= M -1)(m+D)=0
= m=1,-1-1.
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C.F.=y =ce"+(c,+c;x) e

Pl=y == ] cOS 2x
" D'+D " —-D-1

= ] = cos2x

(D+1) (D" -1)
(D-1)

= = 2x
(D-1) (D+1)(D"-1)

= (?_ ), cos2x
(D”=1)

25 25
Hence the complete solution of Egn. (70) is given by
2sin 2x  cos2x

y=y,+y,=ce* +(c,+cx) ¢ — -
' ) 25 25

*kk

You may now try the following exercise.

E6) Solve the following differential equations:
i) (D*+D+1) y=sin2x

ii) (D? +2ncosaD +n*) y=acosnx

We now discuss the case when the non-homogeneous term b(x) is a
polynomial in x.

lll. b(x)=Ax", n integer,A constant

We start by considering a simple situation when the polynomial operator
L(DYy=D—-a,a#0.
Then L(D)y = b(x) becomes

(D—a)y = Ax"

A particular integral of Egn. (71) is obtained as

ylr} =
D—a a

n _ -1 o 2 .
Ax I[I_QJ (Axn)=_][1+2+D_2+...+D_N+..,J (A).’”)
a a a a a

Since D""'x" =0, differentiating x”, n-times in Egn. (72), we obtain

Al , mx™ n!
Y, =—|x + +o+—| a#0.
a a a

We illustrate the above situation through an example.

(71)

(72)
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Example 12: Solve the differential equation

(D> =4)y=x’ (73)
Solution: The auxiliary equation is

m* —4=0
= m=32

Thus, C.F.= y. =¢e™ +e,¢™
Also, a particular integral is
1 2

y =——X
P DP-4

|
=—_1{1_D_]
4 X

-1 D> D* 5
=—|l+—F—+- | x
4 4 47

_1 2 ]
m=——t X
i)

Therefore, the general solution of Egn. (73) is

2 e 1 1
y=y, +y,=ce” +c,e™” ——(xz +—J.
4

2

dekk

The method above can be generalised when

L(D)y=(a,D"+aD"" +---+a, D+a,)y=Ax",a,#0. (74)
A particular integral is then given by
A n
}." =—3X
< p L(D)
-1
=i{1+£0+---+ﬁ9"] X" a, #0
a” a, {1"
A n n I
=—(1+bD+b,D" +---+b D")x (75)

n

b,, b,, ..., b, being constant. Here (1+bh,D+---+b D") is the binomial

upto n” term.

expansion of
L(D

Let us consider some more examples to illustrate the method above.

Example 13: Find a particular integral of the differential equation
Y+ +y=xt+2x+1.
Solution: Here P.I.=,%1 (x* +2x+1)
1+ D+ D
=[1+(D*+ D) (x* +2x+1)
=(1-D*-D*+D* +2D% +++-) (x* +2x+1)
=(x* +2x+1)—12x" — 24x + 24
=x*=12x*-22x+25

Hodkek
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We now illustrate a situation where certain manipulations with L(D) simplify

the binomial expansion of

L(D)’

Example 14: Find a particular integral of the differential equation
Y4y +y +y=x+2x+1
L S(xt +2x+1)
1+D+D"+ D
_ (1-D)
" (1-D) 1+ D+ D? + D)
1

=—— la- D) (x* +2x+1)]

Solution: Here P.l.=

(x*+2x+1)

=- _104 [¢ + 20 +1-4x* = 2]

=(1-D*)" (x* —4x* +2x-1)
=(1-D*+D%+--2) (x* —4x* +2x-1)
=(x*—4x* +2x-1)+24

=x'—4x’ +2x+23

Fedkdk

When in Eqgn. (74) a, =0 then L(D)=a,D" +a,D"" +---+a, D canbe
written in the form

L(D)=D(a,D"" +a,D"* +---+a, ) where a, , #0.
If both a, =0 and a, , =0 then D’ is afactor of L(D) and L(D) can be
written as

L(D)=D*(a,D"*+a,D"" +---+a,_,).

In general, if D" is a factor of L(D), then L(D)y = Ax" has the form

n—I|

L(D)y=D"(a,D"" +-++a,,D+a,)y=Ax",a, #0 (76)
and we have
y = _ l Ax" (77)
" D@D+ +a, D+ay)

The above situation is illustrated in the following example.

Example 15: Solve (D +3D° +2D) y=x".
Solution: A.E. is

m' +3m* +2m=0
= mm+2) (m+1)=0
= m=0,-1,-2
CF.=y =c¢+ce*+ce™
1 . 1 2

Pl=y =— - X" = - X
" D’+3D*+2D D(D*+3D+2)
ok 1 o
2D |1 3pylp
2 2
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L [P P
2D 2 4
=L X ——2x+12

2D

3 vl

23 "2 2

1.3 35.7
=—X ——XxX +—X

6 4

Hence the complete solution is

-3 =) I 2
y=y.+y,=c¢tce tee "+ E(ZJ{3 =Qx*+21x).

*dkk

And now an exercise for you.

E7) Solve the following differential equations:
) (D'-2D'+D?) y=x
iy (D*-3D*-6D+8) y=x
iy (D*+D-2) y=2(1+x—-x%)

iv) (D'+2D*-3D?%) y=x"+3e™ +4sinx

We now take up the case which is a combination of I-lll above. The non-
homogeneous term of the differential equation being the product of an
exponential function and a function of x. The function of x could be a

ax 2

polynomial or a sine/cosine function. For example, terms of the type ¢“ x” or
e™ cosx or e“ sin x or their linear combinations.

IV. b(x)=e*V(x), o constant
Consider an equation of the form

L(D) y=e" V(x) (78)

where « is a constant and V is a function of x and
let us find its particular integral
..\',p =Lem V(x) .
L(D)
By the shift formula for the polynomial differential operator (Theorem 4), we
know that

L(D) e® V(x)=e“L(D+a) V(x) (79)
Now put
L(D+a)V =V, (80)
thenV=—-_" Vv (81)
L(D+ )

Since V is a function of x, V, will also be a function of x.
On substituting from Egns. (80) and (81) in Eqn. (79), we get

I | _
L(D)e®™ —— V. =¢®V 2
(D)e LD+a) ' alk. (82)
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Operating on both sides of Eqn. (82) with ﬁ we get

1 1
axV — p X V 83
L(D]e s L(D +a) (%) b9

where V, is any function of x. Thus using relation (83) the problem of finding

a particular integral of Eqn. (78) is now reduced to a problem which can be
solved by the methods discussed in I-lll above. We illustrate the method
through the following examples.

Example 16: Find a particular integral of the differential equation
(D? +1) y=xe™.

!

Solution: P.l.= —; xe™
D™ +1
=e” ————— x (using relation (83
{D£2y -+ (using e
=ez"']—x
D?+4D+5
=
=e2"l[]+iD+lD2J x
5 5 5
=e2"'l(l—iD—lDz+ED3+-—-jx
5 5 5 25
2x 1( 4J
=@ = X
5 5
ez_.-
= Sx—4
75 ( )

dkk

Let us look at another example.

2

d’y . ,
Example 17: Solve aix:/ +2y= x2e™ +e" cos2x

Solution: A.E. is

m +2=0
= m=%i\2
. C.F.=y =ccosv2 x+c,sinv2 x
] . !
Pl.o=y =-— xe™ +e“cos2x
8 D%*#¢2 ( )
l Z 3x l T
=— x‘e 5 e cos2x
D +2 D +2
= ————x'+e' ——————cos2x
(D+3)"+2 (D+1)"+2

3x 1 x

T —_— x+e 3
D +6D+11 D*+2D+3

=e3"'i l—£D+--- x+e"'a; cos 2x
11 11 -2*°+2D+3

cos 2x
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_e_a_‘i(_ 6]+e_,. (2D +1)

- cos2x
11 11 (2D-1) 2D+1)

cos2x

1 o .
=—e¢ ' (1lx—=6)+e' (2D +1).—
21 ( ) ( )4D

=L 1x—6)+e-"(2D+1)%coszx
21 4(-2%) -1
=$e°"(lh 6)+—[2(—2%m x) + cos 2x)]

1

l2l
Hence the complete solution is

y'=¢,¢os 2x+ ¢, sin V2x+ l;—leh(] LG} 1]7

*kk

—e(11x —6)+(ism 2x—L0092x]
17 17

e"(4sin 2x —cos 2x)

We now take up an example where b(x) is a product of an exponential, a
polynomial and a sine function.

Example 18: Find a particular integral of differential equation
(D*=2D+1) y=xe"sinx.

Solution: P.l. is

1
=——————xe'sinx

D’ —2D+l

Im{————

_e.rer.r
D*—2D+1 }

Im

{I+r}t
D —2D+1" }

I

=]

(I+i)x

Imge

(14i)x ]
{e (D+I+:) 3 @D+ }

D> +2iD—-1 }

=Im {—e""*[1 - (D? +2iD)] ™" x}

= lm{—e“*”‘(i +2iD+D* +---) x}
=Im {—e"*(x+2i)}
=Im{—e’(cosx+isin x) (x+ 2iD) }

=—e"(2cos x + xsin x)

dedkdk

You may now try the following exercises.

E8) Solve the following differential equations:
i) (D> +3D+2) y=¢*sinx
i) (D*=2D+1) y=x"e™"

i) (D’—=2D*-=19D+20) y=xe' +2¢ *sinx
142
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iv) (D*=3D*+3D-1) y=xe*+e*

E9) Solve the following differential equations:
)  (D*-1) y=x"cosx
i)y (D*—4D+4)y=8x"e"" sin 2x
i) (D*=1) y=xsinx+(1+x?) e

iv)  (D*—=1) y=x"sinx

Note that the methods of polynomial differential operators for finding a
particular solution are applicable only to differential equations with constant
coefficients. They do not work for equations with variable coefficients. Quite
often operators with variable coefficients are not factorisable. Even if so,
factors do not commute as you have already seen in Sec. 13.2. However,
operator methods can be applied to certain particular types of differential
equations with variable coefficients namely, Euler’s equation and equations
reducible to Euler’'s form which you have already studied in Unit 12. This is
because such equations can be reduced to equations with constant
coefficients by using certain transformation of the independent variables and
hence can be dealt by the polynomial differential operator methods. We shall
now take up these equations.

Euler’s Equations

th

Consider the n" order Euler's equation, namely,

d” = du—] 5 d
> +a,x"" 2 +---+ﬂ”_,xd—y+a" y=b(x), x>0 (84)
x

n
agXx

n n-1

where a,, a,, a,, ..., a, are real constants and a, #0.
In the operator notation Eqn. (84) can be written as

{QU.-\'“D” y + ff!I”_ID”_l y S ﬂ’,,_1 i Dy + ﬂ” v) = b()‘) (85)
On substituting x =¢* or z=In x, we can reduce Egn. (85) to the form

[a,D'(D’=1)...(D'=n=1)+a,D'(D’~1)...(D'—n—2)+---

3 aH_,D'+ a”] y= b(e.:)
or [AuD’n + AzD’H Feeet ’d‘u—lDt‘F A”] y =b(e") (86)
, d
where D'=— and A, A, ..., A, are constants.

<

Eqn. (86) is a linear differential equation with constant coefficients and can be
treated by the differential operator methods. If its solutionis y = g(z), then

the solution of Egn. (86) is y= g(Inx).
Let us consider the following example to illustrate the method above.

2 ¥ )
Example 19: Solve x’ _ :’ —.xdl+_;! =2In x, x>0. (87)

dx dx
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Solution: Putting z = In x, and denoting diz by D", Eqgn. (87) can be written
as ‘
[D'(D"-1)-D'+1] y=2z
= (D?-2D+1) y=2z
AE.is
m*—2m+1=0
= m=11
. C.F.=(¢ +0c,2)e
.IZ%Z:
1 -2D'+ D~
=2[1-2D"+D"”]";
=2[1+2D"+] z
=2(z+2)=2z+4
. The complete solution is
y=(c, +c,z) e +2z+4

=(¢,+c,Inx) x+2Inx+4

dokk

You may now try the following exercise.

E10) Solve the following differential equations:

i) (x*D* -3xD+4) y=2x%, x>0

ii) (x’D* +3xD+1) y= —, x>1
(1-x)°
i) (D-*—ipz +5? -%J y=1,x>0
X X X

iv) (x’D*—=xD+4) y=cos (Inx)+xsin (Inx), x>0

There are some differential equations that are easily reducible to the Euler’s
form and hence to the equations with constant coefficients. We shall now take
up such equations.

Equations reducible to the Euler’s Form.

Consider an equation of the form

" n-l| "
(ax+b)" aa +a,(ax+b)"" d—_‘?+ ota,  (ax+ b)ﬂ +a,y=f(x), x>0,
dx" dx" dx

(88)

where a and b are positive real constants and the coefficients «a,, a,, ..., a
are constants.

n

We can transform equations of the form (88) to Euler's equation when the
independent variable x is changed to z by means of the substitution
z=ax+b. Eqn. (88), under this substitution, reduces to
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s

dxn a d..r”_l an—-] dZ, an - an

n n=1 =
o4y 4 d™y a4 By a1 f(z.—

(89)

Eqn. (89) can then be reduced to an equation with constant coefficients by the

substitution t =1In z.

In practice, instead of making two substitutions, we make only one

substitution, viz., ¢' =ax+b , and then from Eqgn. (88) we can directly derive

an equation with constant coefficients.
We now illustrate through an example how this is achieved.

Example 20: Solve
d 2y

X

Bx+2)?

+3(3x+ 2)?—3@ =3x" +4x+1, x>0.
X

Solution: Putting 3x+ 2 = ¢ and denoting di =D’, we have
Z

dy_dydi_ 3

= Dy
dx dz dx 3x+2
d*_}r= —3.320,}.4_ 3 (D'%y) 3
dx* (3x+2) 3x+2 3x+2
= (D?-D) y
(Bx+2)"

Substituting from Eqgns. (91) and (92) into Eqn. (90), we get

1
27
You may note here that the r.h.s. of Egn. (90) can be written as

%[(3x +2)% ~1].

[D'(D'-1)+ D" —4] y=—(* 1)

Iérom Egn. (93), we get
| _
D?-4) y=—(e* ~1
( )y 2?( )

A.E.is
m’—4=0
= m=32

C.F.=ce* +c,e™

| 1
o e B

1 1 2z 1 0z
T 2 € T €
27 | D?-4" ~D?-4

Pl= (e —1)

= 1 I 92:— 1 e!L
27| (D'+2)(D'-2)  D” -4

:L e2:£+l
27 4 4

.. The complete solution of Egn. (90) is

(90)
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e, e, 1| € 1
y=ce tecze +— |2 L)
277 4 4

=c,Bx+27 +—2 —+ l
(3x+2)° 108

*kk

[Bx+2)> In(3x+2)+1]

And now an exercise for you.

E11) Solve the following differential equations:

5

F 3 d-}’ d}’ l

1 2x=1* 22 e @x-1)2 2y =0, x>=

) 2x=1) e (2x de y X g

i et S L sl P s yedess i d 0, x50
dx” dx

In the next section we discuss a few applications of non-homogeneous
differential equations in physical models.

13.5 APPLICATIONS IN PHYSICAL MODELS

Newton's second law
states that when a
body is subjected to
one or more external
forces, the time rate
of change of the
body’'s momentum is
equal to the vector
sum of the external
forces acting on it.
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In this section, we discuss some physical models where the governing
differential equations can be approximated to second order non-homogeneous
linear differential equations.

Generally, vibrations occur whenever a physical system in stable equilibrium is
disturbed, for then it is subjected to forces in order to restore its equilibrium.
We shall see how situations of this kind can lead to differential equations and
how the study of these equations can be used to draw inference about the
physical situations.

We first consider different aspects of mechanical vibrations.

13.5.1 Mechanical Vibrations

Each day we encounter many types of mechanical vibrations. The bouncing
motion of an automobile due to the bumps and cracks in the pavement, the
vibrations of a bridge caused by traffic and wind are some common examples.
To study mechanical vibrations, we shall start with the simple mechanical
system consisting of a coil spring suspended from a rigid support with a mass,
m attached to the end of the spring.

To analyse this spring-mass system, you need to recall two laws of physics:
Hooke’s law and Newton'’s second law of motion. Robert Hooke (1635-1703),
an English physicist, published Hooke’s law in 1658. The law states that the
spring exerts a restoring force opposite to the direction of elongation of the
spring with a magnitude directly proportional to the amount of elongation. That
is, the spring exerts a restoring force ' whose magnitude is ks, where s is

the amount of elongation and k(> 0) is the spring constant.

For example, if a 20 kg. weight stretches a spring %m , then Hooke's law

gives
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20=I1Fl=ks= k[%) (in the kg/m. system)

Hence, the spring constant is k =40 kg / m.

Newton'’s second law enables us to formulate the equations of motion for a
moving body. When the mass remains constant, this law can be expressed as

m d“.:: =ma=F (r, x, ﬁ} (94)
dr” dt

&—r —

!
I

7 7 //v
SN X
_____ 77 7 -
7
N
(a) (b) (c)
Fig. 1

A first step in the analysis of the spring-mass system is to choose a coordinate
axis to represent the motion of the mass. Let the spring have length L when
hanging from its support (see Fig. 1(a)). Letthe mass m when attached to it
elongate the spring, and when it comes to rest (equilibrium) the spring has
been stretched by a length, say, 1 unit (Fig. 1(b)). Therefore, let's choose a
vertical coordinate axis passing through the spring, with the origin at the
equilibrium position of the mass. Let x denote the displacement of the mass
from its equilibrium position and is positive when the mass is below its
equilibrium position, as shown in Fig. 1(c).

We now consider the various forces acting on the mass m.

Gravity: The force of gravity F| is a downward force with magnitude mg,

where g is the acceleration due to gravity. Hence g=32 risec’

,
g =98m/sec” or

E =mg. 5
s 980cm / sec’

Restoring Force: The spring exerts a restoring force F, whose magnitude is

proportional to the elongation of the spring. From Fig. 1(c), you can see that
the spring is stretched x+1 units beyond its natural length. Hence the
magnitude of F, is k(x+1), where k is the spring constant. Since the spring
pulls upward (in the negative x direction), we have

F, ==k(x+1).
Note that k has the units of force/length.

When x=0, thatis, when the system is at equilibrium, the force of gravity
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and the force due to the spring balance each other. Thus, mg =k1 and F,
can be expressed as

F, =—kx—mg .

Damping Force: There is a damping or frictional force F; acting on the mass.

For example, this force may be air resistance or friction due to a shock
absorber. In either case we assume that the damping force is proportional to
the magnitude of the velocity of the mass, but opposite in direction. That is,

F,= —{.'ﬁ, c>0
’ dt

where ¢ is the damping constant given in units of mass/time.

External Forces: Any external force acting on the mass (for example, a
magnetic force or the forces exerted on a car by bumps in the pavement) will
be denoted by F, = f(t). Let us assume that these forces depend only on
time and not on the location of the mass or its velocity.

Then the total force F acting on the mass m is the sum of the four forces
F,, F,, F; and F, above. Thatis,

dx dx
Flt, x, —|=mg—kx—mg—c —+ (¢t 95
[ er g §—¢c— f(@) (95)

Applying Newton’s second law to the system, we obtain the equation of motion
of the mass as

-
L

md : =mg—kr—mg—c£+f(r)
t dt

B o e (96)
23 dt

= m

When ¢ =0, we say that the system is undamped; otherwise it is damped.
When f (1) =0 we call the motion to be free, otherwise the motion is forced.

Note that Eqn. (96) can be solved by the methods you have studied so far.
Let us solve this equation for the following cases:

() Undamped free vibrations
Let us begin with the simple system in which ¢ =0 and f(r) =0. In this case,
Eqn. (96) reduces to

2

m 2% =0 (97)
dr’

On solving Egn. (97), we get
x=Acos@yt + Bsin o , (98)
where @, =k/m.

Here @, is called the angular frequency of the vibration. For a particular

problem, the constants A and B are determined by the prescribed initial
conditions.

Let A=Rcosd and B = Rsin d, that is,
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Rcos (@t — ) = Rcos @t cos 0 + Rsin @t sin 0

= Acos @yt + Bsin ),

where R and J are constants.
Then we can write Egn. (98) in a more convenient form as

x(1) = Rcos (@t —0) (99)

2? il B
where R=+ A"+ B~ and tanézz.

Because of the periodic character of the cosine function. Eqn. (99) represents
a periodic motion, or a simple harmonic motion of period T where,

2 m i
T=—=222‘[—] . (100)
o, \k

That means that the graph of x(r) repeats every 2 units.
(f]

Since | cos (@,t — )l <1, hence x always lies between the lines x=+R. The
maximum displacement occurs at the times @, —0=0,+tx,+ 2z, .... Here

the constant R is the maximum displacement of the mass from equilibrium
and is called the amplitude of the motion. The constant ¢ is called the
phase angle and it measures the displacement (in time) of the wave from its
normal position corresponding to d =0. In this case, the periodic motion does
not tend to zero as the time increases. A sketch of the motion, represented by
Eqgn. (99) is shown in Fig. 2.

-8/ W, /

-R

Fig. 2: Simple Harmonic Motion

Let us consider the following example.

Example 21: Interpret and solve the initial value problem in terms of a spring-
mass system

4 X L 16x=0, (101)
dr’

with x(0) =10, ﬁ =)
dt

=0

Solution: The problem is equivalent to pulling a mass on a spring down 10
units below the equilibrium position. This position is considered as the initial
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position, t =0. At this position, the system is at rest and then mass is
released to cause motion in the spring (see Fig. 3).
The solution of Eqn. (101) is
=
x(1) =c, cos4t +c, sin 4t (102)
In order to determine ¢, and ¢, in Egn. (102), we apply initial conditions.
Now, x(0)=10
= ¢.1+¢,.0=10
_1}% = ¢ =10
x=0- 1-% ————— = From Eqn. (102), we have
Y- £=—4c| sin 41 + 4c¢, cos 4t
Fig. 3 af -
9- Applying 2™ initial condition, we have
& = 0=4c,.1
dt |,_, )
s bel = ¢,=0
A ;ausilibﬁu?nw Thus, Egn. (102) of motion reduces to
position x(t) =10cos4t

Je—m/2—1

x=10 cos 4t
mass above
equilibrium position

Fig. 4
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The solution clearly shows that once the system is set in motion, it stays in
motion, with the mass bouncing back and forth 10 units on either side of the

equilibrium position x=0. The period of motion is % =% (see Fig. 4).

Fdek

And now an exercise for you.

E12) A mass weighing 19.6 kg. stretches a spring %m . At r=0, the mass is

released from a point %m , below the equilibrium position with an

upward velocity 4/3m/sec. Determine the function x(¢) that describes
the subsequent free motion.

In the undamped free case we considered vibrations in an ideal settings, that
is, when no external or frictional forces were assumed to be present. In most
applications, however, there is at least some type of frictional or damping force
that plays a significant role. This force may be due to a component in the
system, such as a shock absorber in a car, or due to the medium that
surrounds the system, such as air or some liquid.

We now study the effect of a damping force on free vibrations.

(ii) Damped Free Vibrations
If we include the effect of damping and assume that f () =0, then Eqn. (96)
governing the motion of the mass reduces to

m—,+('d—_+kr=0 (103)

The roots of the corresponding auxiliary equation are
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— _3_ ” 2 .
o = cEAlc 4*’{"”:_L_i [(, _E) (104)

-
2m 2m dm= m

Since ¢, k, m are positive, therefore (¢* —4km) is always less than ¢”.
Hence if ¢* —4km >0, then the values of r, and r, given by Eqn. (104) are

negative. Further, if (¢* —4km) <0, then the values of 1, and r, are complex,
but real part is negative. Hence we can write the solutions of Egn. (104) as

follows:
¢? —4km >0, x=Ae" +Be™ , r,, 1, <0 (105)
c?—4km=0, x=(A+Bt) e " (108)
¢’ —4km<0, x=e"“"*"" [Acos ut + Bsin ut] (107)

where p=4/(4km—c*)/2m >0

You may note here that in all the three cases, whatever may be the initial
conditions and the values of A and B, x — 0 as t —» . In other words we

can say that the motion dies out with increasing time, which is in contrast with
the solutions of Eqgn. (97).

Thus, without damping, the motion always continues and with damping
the motion must tend to zero with increasing time.

We call the first case, i.e., when ¢* —4km >0, as over damped (see Fig. 5)
and the second case ¢’ —4km =0 as critically damped (Fig. 6).

X X
M

Fig. 5: Over damped motion Fig. 6: Critically damped motion

In the third case, i.e., ¢’ —4km <0 , the system is said to be under damped
since the damping coefficient is small compared to the spring constant. In this
case we can write Eqn. (107) in the form,

x=R ™" cos (ut—-9), (108)

where R=+A’+B* and tanéz%.
In Egn. (108), the exponential factor R »“/*"" is the damping factor and
cos (ut—0) accounts for the oscillatory motion. Since the cosine factor

varies between —1 and 1, with period 27/ u , the displacement x(¢) lies
151
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Quasi-frequency is the
frequency with which the
mass oscillates back and
forth its equilibrium
position.

Quasi-period is the time
between successive
maxima or successive
minima of the position of
mass.

between the curves x =+Re “"’*"; hence it resembles a cosine wave whose
amplitude decreases as r increases. The graph of a typical solution x(¢) is
shown in Fig. (7). Although the motion is not periodic, the parameter u
determines the frequency with which the mass oscillates back and forth and is
mmr

__nE
Namk —¢?
the quasi-period. We call the system as under damped because there is not
enough damping present (c is too small) to prevent the system from

oscillating.

called the quasi-frequency. The quantity p=27/u= is called

X
N Re-(¢2mt
RIN
N quasi period
S
S
- —
\_/ —_——
-— - "
-
-

Fig. 7: Under Damped Vibration
We illustrate the above theory with the help of the following examples.

Example 22: A 9.8kg. weight stretched a spring 2.45m. Assume that the
damping constant ¢ for the system is 4 kg/m . Determine the equation of

motion if weight is released from the equilibrium position with an upward
velocity of 3 m/sec.

Solution: From Hooke’s Law, we have
98=k(245) =>k=4kg/m.

From m=w/g, we have

9.8
m=—m=1kg.
98 °
Thus, the differential equation governing the motion can be expressed as
L T (109)
dt” dt
5 - dx
The initial conditions are x(0)=0, — | =-3 (110)
=0
A.E. of Egn. (109) is
m* +4m+4=0
= m=-2,-2
Here, the system is critically damped and
x(t)=(c, +c,t)e™ (111)

Using conditions (110), we get ¢, =0 and ¢, =-3
Thus, Egn. (111) of motion assumes the following form
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x()=-3te™ (112)
Clearly x'(1)=-3e ' (1-2t) and x'(t)=0 when r:%.

The corresponding extreme displacement is

{l) = —3(—1—]{' =—0.552m..
2 2

This means that the weight reaches a maximum heights of 0.552m above the
equilibrium position. The graph of the motion is shown in Fig. 8.

Hdkk

Example 23: The motion of a certain spring-mass system is governed by the
differential equation

d*x 1 dx
—j+_ ity
dt~ 8 dt

If x(0)=2 and x’(0)=0, determine the position of the mass at any time. Also
find the quasi-frequency, the quasi-period and the time at which the mass first
passes through its equilibrium position.
Solution: A.E. of Egn. (113) is

8m* +m+8=0

= m= —iif 238 :
16 16
Hence, the system is under damped and

J255 V255 rJ
16

{+ Bsin
16

+x=10. (113)

x(r)=e‘”"’{Acos (114)

Using initial conditions
, #
x(0)=2=>A=2and x(0)=0=>B=——.
\255
Thus, Eqgn. (114) of motion assumes the following form

V255 2 J255 r}

x(r)=e"’”"[2cos t+

16 J255 16

(115)

Letting 2= Rcosd and =Rsin 0 in Eqgn. (115) it can be written as

2
255
=

x(t)y=e"""° Rcos[ (116)

4 32 1
where R= |44+ — = =~2.004 and d =tan'| —— [~ 0.663.
255 /255 (\KZSSJ

3 =~ ().998 and quasi-period

The quasi-frequency is y =

_2m _2x22/7 _ 44x16

U i 74255

The time at which the mass passes through its equilibrium position is obtained
when

=~ 06.298 sec.
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cos{ ;225 t—5JzO

4255

or, = t—0=02n+1) % n=0,1,2,.... Thus the first time at which the
mass passes through the equilibrium position is obtained as
16 (&
[=———|—+0d |=1.637 sec.
\/255 [2 J
To graph x(t) given by Eqn. (116), the intercepts ¢,, ¢, ..., f,, ... are obtained
as
16 T
t, =— (2n+1)—+5], n=0,1,2,....
\/255 ( 2

=t/16

Also we have | x(¢)| < Re since

[\/7'5 ,_5]

16

Ll

=1/16

Thus the graph of Egn. (116) touches the graphs of = Re at values

t, sty ..oy ty 5 ... fOr which

cos 255:—5 =¥,
16
That is, — ?55 t—0 must be an even multiple of &
or, '255r—5:2n7r
16
16(2n7+J)
or, t=———-=
A/255
The graph of solution x(¢) is shown in Fig. 9.
N
2__
1+ e =
|t5 |t? |tﬁ 1‘9' A WK‘:S;_)t
t T t?l t& T tgl t, y——y__y'
14 — ..--"""’-——
b r\_ 116
24 Re
Fig. 9

- You may now try the following exercise.
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E13) In each of the following problems determine @,, R and ¢ so as to write
the given expression in the form x(t) = Rcos(@,t — )

i) x(t)=3cos2t+4sin 2t

ii) x(t)=—cost++/3sint

i)  x(t)=—2cosxt—3sinxt.

E14) A 49kg. weight is attached to a 1m. long spring. At equilibrium the
spring measures 1.98 m. [f the weight is pushed up and released from
rest at a point 2m. above the equilibrium position, find the displacement
x(t), if it is further known that the surrounding medium offers a
resistance equal to the instantaneous velocity.

We now consider the vibrations of a spring mass system when an external
force is applied. Of particular interest is the response of the system to a
periodic forcing term.

(iii) Forced Vibrations

Let us consider the case in which a force F = F cos@1t is applied to a
spring-mass system. In this case the equation of motion (96) takes the form

d’x  dx
—+c—+kx=F,cosmt, (117)

dt” dt

m
where F, @ are non-negative constants.

When there is no damping effect, Eqn. (117) reduces to

S

m%ZE + k= F, cos ot (118)
d’x  k F, coswi

or, et
dt~ m m

In the absence of damping force, the two types of phenomena occur in nature.
We call them beats and resonance, which we shall study now.
Roots of the auxiliary equation, corresponding to Egn. (118), are

n, =t Nk/m
Let vk/m = @,;
The C.F.=Acos @yt + Bsin @t
| F,
and Plzﬁ L coswt.
D" +@; m
For determining a particular integral, two cases arise, namely,
w, # @ and @, =@
When @, # @,
F,
Pl=——2"—coswrt
m(@, — ")
and when @, =@
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Pl=Re——Fo o
(D+iwmy) (D—iw,) m
- ei 1 1 o0

m 2iw, D—ia,

F _
—Ret L
m 2i@,

Fy

= t sin @,t
2maw,

In case @, # @, we can write the solution of Eqn. (118) as

. F,
x=Acos@yt + Bsin @t + ———— cos @t (119)
m(@; — ")

and for @ = @, , solution of Egn. (118) is

FO
2maw,

x=Acos@,t+ Bsin o, + 1sin @yt (120)

The constants A and B in Egns. (119) and (120) are determined by the initial
conditions.
If in Egn. (119) we assume that the mass is initially at rest then

x(0)=0 and (d—”) =0 (121)
dt =0

and with these conditions, we get

A =—# and B=0
m(@; —@")

With these values of A and B, solution (119) takes the form

x= f—” (cosax —cosm,t) (122)
m(@, — ")
> x=— 2t g [“’”_a’]rsin[a’””’Jr (123)
m(w, —@") 2 2

Eqgn. (123) can be written in the form
25, . (w,—w) | . (o,+ o)t
= - —SIn sin
m(w, —@") 2 2

. . (@, +a)t .
If | @, —wl! is small then @, + w>1®, —w|, and consequently smy is

. (@, —a)t i g
a rapidly oscillating function compared to sin % Thus motion is a

P
rapid oscillation with frequency (%72&') and amplitude

2F, . (@, — @)
————sin :
m(a@, —@") 2

This type of motion, possessing a periodic variation of amplitude, exhibits what
we call a beat. The phenomenon of beats, as given by Eqgn. (123), is shown in
Fig. 10.
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Fig. 10: The phenomenon of beats

Consider Eqn. (120), for @, = @, that is, when the frequency of the forcing
motion is the same as the natural frequency of the system. You may note that
as t — oo, the term ¢sin @,¢ increase without bound and the motion becomes
unbounded regardless of the values of A and B (see Fig. 11). In this case
we say that the external force is in resonance with the vibrating mass. The

displacement here becomes so large that the elastic limit of the spring is
exceeded. This leads to a fracture or to a permanent distortion in the spring.

X

M F
- 0 -
X t sinmt

%: /// 2ma, R

)\
-

-

-~

-
Pl -
St

~
M
Xs S

~
2’7)\{ ~

@

/
/

Fig. 11: The phenomenon of resonance

Resonance can create serious difficulties in the design of structures, where it
can produce instabilities leading to the failure of the structure. For example,
soldiers usually do not march in step when crossing a bridge in order to
eliminate the periodic force of their marching that could resonate a natural
frequency of the bridge. On the other hand the phenomenon of resonance is
not always destructive. It is the resonance of an electric circuit that enables a
radio to be tuned to a specific station.

You may now try the following exercises:

E15) Solve the initial value problem

v

dx

2

+@’x=F,sin yt, F, =constant; (¢ # 7),
157
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dx
Iu (0) = 0, z

=0.

1=0

E16) Consider the forced vibration of an undamped mechanical spring-weight
system, where the external force is F, sin ¥ newtons. Show that if

o # @, (= Nk/m ] then the solution is given by

. F :
x(t) = Acos @yt + Bsin @t + —>— sin w1 .
k—mao"

In designing seismic instruments to detect periodic forces in a narrow
frequency range, there is a damping effect when forced vibrations take place.
In this case we call the vibrations as damped force vibrations and the motion
of the system is governed by Eqgn. (117).

We now take up an example to illustrate the situation above.

Example 24: Interpret and solve the initial value problem

13 102 vopesauilr,
5 dit- dt
=t | i,

2 dt |,

Solution: We can interpret the problem to represent a vibrational system

5 % 1 ;
consisting of a mass (m =§kg.) attached to a spring (k =2kg/m.). The

mass is released from rest Em' below the equilibrium position. The motion is

damped (c =1.2) and is being driven by an external force 5cos4t , beginning
at t=0.

As the problem is given, external force f(1) =Scos4r will always act on the

system and the system represents damped forced vibrations.
The given differential equation can be written as

4°x 6% +10x=25cosds (124)
dir O dr

2

A.E. corresponding to Eqn. (124) is
m* +6m+10=0
= m=-3%i
. C.F.=x.(t)=¢™(c,cost +c,sint)
1

P.l=—————25cos4t¢
D +6D+10
= 5 23 cos4r=2 l cos4t
—-(4")+6D+10 6 D-1
:ERE 1 i
6 D -1
6 4 —
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=2 Re(4i+1) (cos4t +isin 47)
6Xx(—17)
—-25
= —2005 4t +£sin 4t .
102 51
Hence the solution of Eqn. (124) is
x(t)=e " (c cost+c,sint)— 2(:034{ + @sin 4t (125)
- 102 51
Constants ¢, and ¢, can be determined using initial conditions.
I 38
x(0O)=—=c¢ =—
D=y =45
and X(0)=0=¢, = _5—8]6
Substituting the values of ¢, and ¢, in Egn. (125), we obtain the equation of
motion as
x(H)=e™ (ﬁcos t— ﬁsin I] - gccu;ﬁl.f + @sin 4t .
51 51 102 51

dedek

And now an exercise for you.

E17) In the case of underdamped vibrations, show that the general solution of
the differential equation
d‘:r +2A% 4 x = F, sin yt
dt” dt

is x(1) = Ae™¥ sin (sz—/lzr+¢)+ - ;F”q — sin (y1+6)
J@ - py 42y

where A = c.-f +r:32 and the phase angles ¢ and @ are respectively,

C

&
defined by sin @ =—-,cos@=—=.
y sin @ " ¢ 4

and sin 8 = = _)2/1}, =, cosf = = a)"—}/‘ —.
V@ =) +42 7 V@ = 7) +42 Y
If g(y)= Fy then show that g(y) is maximum at

\/(co2 — Y +42% 97

We now consider the application of the second order non-homogeneous linear
differential equations to an elementary electric circuit consisting of an
electromotive force (e.g. a battery or a generator), resistor, inductor and a
capacitor in series. We call these circuits, RLC Series Circuits.

13.5.2 Electric Circuits

Consider RLC circuit as shown in Fig. 12.

Physcial principles governing RLC series circuits are
i) conservation of charge and 159
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conservation of energy.

Resistance (R)

Electromotive E)

Force Inductance (L)

| |
L

Capacitance (C)

Fig. 12: RLC Series Circuit

These conservation laws were formulated for electric circuits by Gustav
Kirchhoff (1824-1887), a German scientist in 1859 and we call them
Kirchhoff’s laws. These laws state

i)

i)

The current 1 passing through each of the elements (resistor, inductor,
capacitor or electromotive force) in the series circuit must be the same.

The algebraic sum of the instantaneous changes in potential (voltage
drops) around a closed circuit must be zero.

Let i(t) denote current in an RLC series circuit. In order to apply Kirchhoff's

laws, we need to know the voltage drop across each element of the circuit.
We now state these voltage formulas

According to Ohm’s law given by Georg Simon Ohm (1787-1854), a
German physicist, the voltage drop E, across a resistor is proportional
to the current i passing through the resistor. That is,

E,=Ri
The proportionality constant R is called the resistance.

Faraday’s law, named after an English physicist Michael Faraday,
states that the voltage drop E, across an inductor is proportional to the
instantaneous rate of change of the current i, that is,

E, =,‘Ld—'I
: dt

The proportionality constant L is called the inductance.

The voltage drop E_ across a capacitor is proportional to the electric
charge ¢ on the capacitor, that is

1
EC =Eq

The proportionality constant 1/C is called the elastance and C the
capacitance. An electromotive force is assumed to add voltage or
potential energy to the circuit. If we let E(t) denote the voltage supplied
to the circuit at time ¢, then Kirchhoff's second law gives

E,+E,+E,=E() (126)

Substituting the expression for E,, E, and E. in Eqn. (126), we get
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di 1
L—+Ri+—qg=E( 127
& Pk (1) (127)

Now current is just the instantaneous rate of change in charge; that is,

i= % Therefore, we can express Eqgn. (127) in terms of the charge ¢
t

as
d’q _dg 1
L—=+R—"+—q=E(1) 128
dt” dt C * =y
The initial conditions are g(t,) = q,, ¢'(t,) =i(t,) =i,. Thus we must
know the charge on the capacitor and the current in the circuit at some
initial time ¢, .

If E(r)=0, we say that the electric vibrations are free.
Since the A.E. of Eqn. (128) is

Lm? +RH?+L=O,
(&

there will be three forms of the solution, when R # 0, depending upon

the value of the discriminant R’ —%. We say that the circuit is

Overdamped if R® — % 503

Al

Critically damped if R* — E 0

and Underdamped if R’ —4—;‘ <0

In each of these three cases, the general solution of Eqn. (128) contains
the factor e ®’** and so ¢(t) =0 as r — oo.

In the underdamped case when ¢(0) = g,,, the charge on the capacitor
will oscillate as it decays. In other words, the capacitor is charging and
discharging as t — . When E(1)=0 and R =0, we say that the
circuit is undamped and the electric vibrations do not approach zero as t

increase without bounds; the response of the circuit is simple harmonic.

Let us consider the following example to understand the theory above.

Example 25: Find the charge ¢(7) on the capacitor in an RLC series circuit
when L=0.25Henrys, R =10 ohms, C =0.001 farad, E(t) =0, q(0) =g,
coulombs and i(0)=0.

Solution: Since C =0.001, thus %= 1000 and Egn. (128) becomes

iq”-i- 10" +1000g =0
= ¢ +40g"+4000g =0
AE.is

m* +40m +4000=0

= m=-20%i60
Thus the circuit is underdamped and
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—20¢

q.(t)=e """ (¢, cos60r +c, sin 60r)
Applying the initial conditions, we have
q(0)=¢q, =1(c, +0.c,) = ¢, = ¢,
i(0)=0=4'(0)=0
= 0=-20¢""(c,cos60t +c,sin 601) | _,
+e7" (=60c, sin 60t +60c, cos 60¢) |
= 0=-20q, +60c,

¢
5 gl

=0

Thus, the solution is given by

q.=q, e [cos 601 + % sin 60r]
In the case when R # 0 we call the complementary function ¢, (t) of Eqgn.
(128) a transient solution. If E(r) is periodic or constant, then a particular
solution ¢, (1) of Eqn. (128) is a steady-state solution.

You may now try the following exercise where the voltage supplied E(r) is a
periodic function.

E18) Find the steady-state solution and the steady-state current in an RLC
series circuit when the impressed voltage is E(t) = E, sin ¥t .

(Hint: Steady-state current is given by i (1) =¢/ (1) .)

We now end this unit by giving a summary of what we have covered in it.

13.6 SUMMARY

In this unit we have covered the following:

th

1. The symbol D is used for i and an n" degree polynomial L(D) in

dx
D is called the polynomial differential operator.

1
2. TD)b(.r) is that function of x which when operated upon by L(D)

gives b(x) and is a particular integral of L(D) y =b(x). Here

called the inverse operator of L(D).

3. [If y,y,,...,y, are the solutions of equations
L(D)y=b,(x), L(D)y=b,(x), ..., L(D)y =b, (x) respectively, then

m

y=y+y,+--+y, isasolution of L(D)y=>5b,(x)+---+b_(x).

4. L(D) [e“y]l=e“ L(D+a) y.
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10.

11

12:

13.

14.

15.

16.

1
(D=m,) (D—m,)...(D—m,) 7

"X (m,_y—m, Jx {m,_—m, )X (my—ms ) x
= & [ e (fe 2 IU" |

([ b dx)...dx) dx

|

=0l

b(x)=e" I e " b(x)dx.

e e 370 )
L(D) L(a)

It L(D)=(D-a)"§(D). d(a) #0, p=1
1 1 |

LD ~(D-a)yeDd)  p! o

.x,f e(ﬂ'

ox

[7hY

, d(a) 0.

cos(ax+b) = cos(ax+b), if p(-a*)#0.

2

D?) —a

- sin(ax+b), if o(—=a’)#0.

sin (ax+b) =

3
<

¢(D2)cos(cf.r+b) = D’ -:az)” W(Dz)cos(ax-i-b), if pX(=a*)=0
for k=1,2,..., p—1 but w(-a’) #0.

1 sin(ax + b) = l ! sin(ax+b) , if ¢ (-=a*)=0
#(D?) (D* +a*)" y(D*) ‘

for k=1,2,..., p—1 but w(-a’) #0.

1 . : 1
ﬂ.lv i — ax v 5 .
L(D)e () =e L(D+a) W

Euler’s equation (x"D" + alx""D""' +--+a, xD+a,) y=5b(x), x>0,

n—1

where a,, a,, ..., a, are real constants can be reduced to an equation
with constant coefficients with the help of the substitution x=e".

Differential equation
[(ax+b)"D" +a,(ax+b)""'D"" +---+a, xD+a,)y=>b(x), x>0, where
a, b are positive real constants and coefficients a,, a,, ..., a, are

constants can be reduced to Euler’'s equation by using the substitution
ax+ b = z and then to an equation with constant coefficient by means of
a substitution 7 =In z. Also, it can be reduced directly to an equation

with constant coefficients by means of the transformation ax+b=¢".

The application of second order non-homogeneous linear differential
equations have been studied for
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Mechanical Vibrations: Here a mass m is attached to a spring
which stretches to a position where the restoring force of the
spring is balanced by the weight mg. Any subsequent motion is
above or below this equilibrium position. The equation of motion
of the system is

2

md—;-i- (.‘£+ kx= f(t), (see Eqgn. (96)),

dt dt

where ¢ is the damping constant, k is spring constant and f(7) is
the external force acting on the system.
When ¢ =0, the system is undamped, otherwise it is damped.
Moreover, when f(t) =0, the motion is free, otherwise the motion
is forced. When ¢ =0, f(¢) =0, the mass exhibits simple
harmonic motion. When ¢ #0, f(t)=0, then if

a) ¢’ —4km<0, motion is called under damped.
b)  ¢®—4km=0, motion is called critically damped.

c) ¢> —4km >0, motion is called overdamped.

In the absence of a damping force, periodic force can cause the
amplitudes of vibration to become very large. In this case we say
that the system is in a state of resonance. Further, if the motion
possesses a periodic variation of amplitude, it is called beat.

Electric Circuits: When a series circuit containing an inductor,
resistor and capacitor is driven by an electromagnetic force, the
resulting differential equation for the charge is given by

d’ dg 1

€9, RY +— 4=E() (see Eqn. (128)).

dt” dt C
Analysis of such circuits is the same as outlined for mechanical
vibrations and have been illustrated by examples.

13.7 SOLUTIONS/ANSWERS

E1)

E2)

164

(D+2) 2D-1)
(D-1) (D+2) (D-3)
(D+2)*(2D-1)
(D—-4) (D* +4D+5)

The given equation can be written as

(D* =3D*>+4D-1)y=e" +2.

Since (D —3D* +4D—-1)(e*) =¢"

&Pl yy=

1
3 2 €
D” -3D" +4D -1

r X

=€

Also since (D* —3D? +4D 1) (-2) =2

2l

|
V, = 2 =—2
D3—3D2+4D—1( )

1 —_— ¥ — ‘-_
\'p_..\"!—f_yl_e 2‘
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E3) i) Pl=

= 5 SeCnx .
D" +n

1 1 1 ]
=— + sec nx

2ni - D+in D-—in

:_. -eui.\'J‘e—;'u_\' sec nx dx_e—;'u.\'-[e;'u.\' Sec nx d\']

=— :e”i"f (1—itannx) dx— e""""'J. (1+itannx) dx]

[ ol i ——
—| ™| x——In(sec nx] —e ™| x+—In(sec nx
2ni n e

. 1
=— {x sin nx ——cosnx In (sec nx)
n n

ii) P.|.=(#— l ]e_"'sinx
D-2 D-1

e ' sinx—

e 'sinx

2x

B N A
=e” je e smxdx—e"je Ye ' sin x dx

—x

= —()1—0(3sin x+cosx)+ ée"‘ (2sin x +cosx).

=

et
=——(sin x+cos x).
T ( )
2 w5y
iy  =e”
) 9

iv) P = k
(D—2)* (D +3)

X(x)

{— S B }X(x)
25(D-2) 5(D-2)" 25(D+3)

- % [ e X (x) dx+5¢™ | (j e X (x) dx) dx

Y Iej"'X(x) de

E4) I) y= (Ci + sz)e-l' +% et:"!z}.r

i)  The auxiliary equation is
m’—=1=0
= m=1,-1

v

y, =ce’ +c,e”

P.l= LR |
Dg_]( )
1 s .
=— e +1+2e
D“—l( )
1 2% ]' 2x 2 x
="t ——e ¢
D™ -1 D —1 (D+1)(D-1)
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X —x I 2x X
y=ce' +c,e +§e' +xe' =1
i)  Given equation can be written as
. e +e™ |
(D* -=5D*+7D—-3) y=¢* [%] (cosh x=(e +e” )]
_l(e.’r.r +e.\')
2

= (D-D}(D-3)y= %(e-‘-" +e%)

Roots of the auxiliary equation is
m=1,1,3

y. =(¢;+xc)e" + c3e3"'

1 1 3 1 x
Pl=— - e’ + = e
2{(D—I)“(D—3) (D-1*(D~3) }

1o, I
=~ O e — =€
A Py 2AD-1)

o | =

11 5 1,5,
=—|—% & ——x €
.

2
: c o X Ay Xy
y=(c, +¢,x) e* +c,e™ +§€3" —gg"

¥

iv)  y=ce' +c,e’ e’ —xe

: : 1
E5) ) y = (¢, +c,x)cosnx +(c; +c,x) sin nx+ﬁcosmx
n-—m

i)  The roots of the auxiliary equation are
*+mi, tni
s C.F.=y_=(c, cosmx+c, sin mx)+ (c, cosnx +c, sin nx)

1 X X
Pl=y =—: o cosy(m+n)—rcosq(m—n)—
Yo (D* +m*) (D* +n?) {( )2} {( )2}

=— 21 T i(cos.rmc+cosmnf)
(D"+m°)Y(D"+n") 2

|
|:since cos Acos B = Ecos(A + B)+cos(A— B)J

1 1 1 1 1

i p— = 5 cosmx +— — 5 Cosnx
2ln - —=m~ D" +m m —-n" D +n”

B 1 XSin mx + COS/MX XSINAX COSHX
2(n* —=m*)| 2m 4m’ 2n 4n’
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Sy =y, +y, = (¢ cosmx+c, sinmx)+ (¢, cosnx + ¢, sin nx)

4 X sinmx  Sin nx | COSMX COSnx
3 3 = B )
4n"—m-)\ m n 8(n> —m?) ?

m n-
E6) I] C.F.= e'””"" C, COS{? x} +c, sin [? ,\’]:|

P.l.

=—————sin2x
D +D+1

=+sin 2%
=2 D+

D+3 :
sin 2x
(D-3)(D+3)

= D2+3 sin 2.x
9

= —]% (2cos2x+3sin 2x)

.. The complete solution is

y = TV [c‘ cos[ﬁ r]+c sin[ﬁxﬂ
S 1 2 L Pt ¥ 2

——CO0S 2x —isin 2%
13

i)  Roots of the auxiliary equation are given by

_ —2ncosat Van? cos® a— an®
| 2
=-ncosa t nycos’ a—1

=-ncosa tnisin &
~oy, =e "¢ cos(nsin ) x+ ¢, sin(nsin &)x]

1
z — A COSnX
D" +2ncoseD +n-

a
= : —COSHX
—-n-+2ncosax D+n”

P.l= Y, =

a sin nx

a 2ncosax n

sy =e "¢, cos(nsin @)x + ¢, sin(nsin @)x]

a .
+———sinnx.
2n-cosax

3
. v ;X
E7) i) y=¢ ¥ ex+(c;+ex) e +x +€

. s X —2x A X 3
ii) Y=C" Hes™ HGET f—t—

32
iy C.F.=ce" +c,e™

Pl=———m— 1 21+ x—x%)
“+D-2
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5 =1
={1—2—D—} (1+x—x%)

2 2

=—[[+§+%+%+01‘der of (D3)+--} (1+x—x%)

i == -
=—l+x-x")+ ; (1-2x) 4( 2)
:x2

. The complete solution is
y=ce' +ce +x°

iv) ¥y, =c, +c;x+ce”
o 1
Yr = DY (D’ +2D-3)
1 [ 1 5 3

~| — x 5 e +— sin x
D | D°+2D-3 D +2D-3 D +2D-3

(x> +3e™ +4sin x)

1| 1. ep+D»T' , 3, 2

=—2 —_— 1—— X 4+—e + Sin x
D’ 3 3 s° "D-2

=L2 _1[14.294.193}3 +§ez"' —z(cosx+25in x)
p*| 3\ 3 9 5 5

; 2 4 .
——Xx——+—e"" ——cosx——sinx
5 5

_x4 2 3 7 2 3 25 2 4 .
= ——X ——X +—€e" F+—=cosx+—Smnx
36 27 27 20 5

y=y.+y, is the required solution.

E8) i) y=ce ' +ce +#e“(l Isin x—7cos x)

N I 3
ii vy=(c,+c;x) e’ +—e | x* =2x+—
st eades (2 -aned)

iy C.F.=ce'+c,e™ +ce™
Pl.=— = ! (xe* +2¢** sin x)
D" -2D"—-19D+20
X 1 l-
(D+1) =2(D+1)> =19(D+1)+20

—~€

—4x l

= 3 sin x
(D—-4)y -=2(D-4)"—-19(D—-4)+20

+2e

e — I?_ x+2e ™ — : 5 S
D"+ D" -20D D" —14D" +45D

1 p+D* " " I .
=—¢ 1— x+2e sin x
20D 20 —D+14+45D

n x
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=—L.e"'L I+£+0rder (D) | x
20 D 20
=5 7-22D
+e sin x
(7-22D) (7+22D)

=——e"'L ):+L +e_4"'(7—22D);Sin X
20 49 + 484

533
. The complete solution is

x 2
: ; w Efx %
y=c¢e' +c,e’ e ——| —+—
20

T 2 ~4x
e | ] (7sin x—22cos x)
20

20\ 2
e—4.1'
+——(7sin x—22cos x)
533

JRIN
iv =(¢, +ext+ex’) et +etl —+—
) y=(g+extex) {24 6}

B T yosdees® s e =2 |es
= T 2 2

i)  Roots of the auxiliary equation are
m=2,2

CE= ((-] + xc, )el.r
P.l= Ilng%nguﬂnx
(D-2)*
(2+20)x 1 2
(D+2+2i+2)°
L 2

=Im8&e

— Im 881’21-'2“.(

1—x
D’ —4+4iD
i 2 =]
:Imge(zemi[l_(‘hD:D ):| .

(2428)x 2
= Im>= i e [ 2>
4 4
(2e2ix | 2 .3
=Im—2e X +2xi——
2
2x 2 . 3 -
= Im—2e [x +2xi— E] (cos2x+isin 2x)

= —2e""”[x2 sin 2x+2xcos2x— %Sin 2x]

sy =(c, +c,x) e™ +e* (3sin 2x —4xcos 2x —2x” sin 2x)

iy  y=ce +ce” —%(costr xsin x) +éxe"’ (9 —3x+2x%)

. - i . cosx(x* 5
iv) y=ce" +ce’ +csco8x+c,sinx+ o= 5
4 (3 2
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E10)i)  y=(c¢,+c,Inx)x* +(In x)*x°
T il B
x x l—x
i)  The given equation can be written as
(F’D? -4x*D* +5xD-2) y=x"

Let z =In x and denoting di by D’, the given equation
reduces to
[D'(D'-1) (D'=2)—-4D" (D’-1)+5D"-2] y=¢*
= (D?-1D" +11D'-2) y=¢*
C.F.=ce* +e(s:z::(02€(@rz)z +c‘e{'_’ﬁ—”2}:)

By o2 2172 2172
=X +x (czx‘f_ +03xr )

P.l.=— 1, e’
(D' =2)(D"=5D+1)
— 1 €3:.
(3=2) (9—-15%1)

3
1 5 e

5 5
Hence the general solution is

3
2142 = X
V2112 e ijz)__

2 5/2
Yo X e, =

iv)  The given equation is
(x*D?* —xD +4)y =cos(In x) +sin(In x)

Let z=Inx and denoting di by D", the given equation reduces to

[D(D'=1)—D"+4] y=cosz+e sin z
= (D”?-2D"+4) y=cosz+e sinz
A.E.is

m* -2m+4=0=>m=

+./4—
AT

C.F.=e*(¢;cos 3z + ¢, sin \/gz) =2x[¢, cos(\/g In .r)+ ¢, sin («/5 In x)l

P.I.=%COSZ+%€:SHIZ
D*-2D +4 D*==2D +4
=;,cosz+e"‘ — : - sin z
20X +4 (D + 1D =20 +1)+4

=3+ 2D')%cosz+e:%sin z
9—-4D"" D+

=(3+2D) : cos z+ et sin z
9+4 143
=(3+2D’)°‘;2Z+ﬁsmz
3 . | I
=—C0SZ——SNZ+—e"sSIn 2
13 13 2

3 2 . 1 .
= —cos(In x) ——sin(In x) +—xsin(In
3 (In x) T (In x) 5% (In x)
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E11) i)

Hence the general solution is

y=cx cos(\/i Inx)+c,x sin{«/gln x)+ %cos(ln x)— % sin(In x)

X
+—sin(In x
2 (In x)

The given equation is
2x=1)’D*+(2x-1)D-2y=0

Let (2x—1)=¢" and denoting di =D’, we have
2

b2 g
dx 2x-1
2 -y
dx>  (2x-1)"
Substituting them in the given equation, we have
[4(D?-DY+2D"-2] y=0
= (@4D?-2D"-2)y=0
= (D'-D'-1)y=0
AE.is
2m* —m—1=0

o lEVIHE 143 1

4 4 2

.. The general solution is

y = Cie: +C2€_{”2}:
= y=¢2x—-1)+c,2x— g

The given equation is
[A+x%) D* +(1+x) D+1] y=4cos (In(1+ x))

Let 1+ x=¢® and denoting di by D", we have

“

ﬂ - L D’y
dx 1+x
2 7
4y 1 b1y y
dx®  (I+x)°

Then the given equation reduces to
[D'(D'=1)+D"+1] y=4cosz

A.E.is
m>+1=0
= m=1=i

C.F.=¢ cosz+c,sin z=¢ cos(In (1+x)) +¢, sin(In(1+x))
P'|'=4+COSZ = Esinz+—COSZ
D~ +1 2 4

=2In(1+ x)sin(In(1+ x)) + cos(In(1 + x))
Hence the required solution is

y = ¢, cos(In(1+ x)) + ¢, sin(In(1 + x)) + 2 In(1 + x) sin(In(1+ x)) .

E12) We know that mg =w

w_19.6
m=—= =

—— = 2kg.
g 98 8
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From Hook'’s law,

19.6 = k[l]
2

= k=392kg/m.
Hence the differential equation governing the motion is

38X . 395y
dt”
= 24X .196x=0
dr?

= x(t)=c,cos~/19.61 + ¢, sin 4/19.6¢
The initial displacement and initial velocity are given by

x(0) =§m.; ﬁ =—i ml/sec.

1=0
The negative sign in the second condition is a consequence of the fact
that the mass is given an initial velocity in the upward direction.
Applying the above initial conditions, we have

x(0) :%:c,.] +¢,.0

and — =—
4 1=0

= —¢,¥19.65in+/19.61 +¢,+/19.6 cos+/19.6¢

= 4196 :—%
-
C=

- 3419.6

Thus the function that describes the motion is

2
V19.6

E13) i) x(t) =3cos2t+4sin 2t
Let 3=Rcosd and 4= Rsin o
then x(7) = Rcos(2t — )

R=+16+9 =5, c?:tan_'(%], @=2.

i) Let—1=Rcosd, V3 =Rsind
R=2 tand=—3
z_om

0= —-—=
3 3

x(t)= 2003[1‘ — 2?”] :

=0

x(r):%(cos 19.61 — sin l9.6rJ.

i) x(1)=+13cos(zt—0)
d=m+tan"'(3/2).

E14) After the weight is attached, the elongation of the spring is
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E15)

E16)

E17)

1.98—-1=.98m
From the Hooke’s law, it follows that
49=k(98) = k=5

|

Also, m = e =— kg
98 2
So the differential equation governing the motion is
1 d’x dx
2 dt dt
2% 2% 4 10x=0
dt dt

x(t)=e""(¢, cos3t +c, sin 31)

The constants ¢, and ¢, are determined by using the conditions.

x(0) =-2, i =0

=0
Now, x(0)=-2 = ¢ =-2

=0
Thus, the displacement x(¢) at any time r is given by

x(H)=e" [— 2cos 3t —%sin BIJ

In this case, x_ (1) = ¢, cos @1 + ¢, sin @t

and x,(1)= ,F“ ~sin ¥t
P
Initial conditions yield
c =0 and Cy :¢Sin yit
o -7
Thus, the required solution is

F
x(t) = ——2—— [~ysin @1 + wsin yt], with ¥ # & .
(@’ —y°)

We have
2

dx .
mF+kx= F, sin wt
t

- C.F.=Acosqyt—1Bsinayt, @, =JE

m
1 F, .
—— —sin @t

D +w; m
For @+ o,

and P.l.=

F
m(@;, — @)

Fy ;
=—————Sin Wt
k—ma-

F, o
g(y)= : — is maximum
V(@ =) +42y
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it f(y)=(@"—y")+42%* is minimum
Now, f'(»)=0
= y=0or y=vJ@’ =21

Using maximum and minimum principles you can check that f(y) is

minimum for y =@ - 24" .

E18) The steady state solution ¢,(7) is a particular solution of the differential
equation
d’q dg 1 ;
—~+R—+—.g=E,sin ¥t
dr’ g gy

The particular solution, using method of undetermined coefficient is
q,(t) = Asin ¥ + Bcos

L

v
with A = Z/ ]
}/[Lzyz——a-?ﬂ?z}
c cy
with B = 57 E“*f
[L?yz——+ . 2JHR’!} &%)
g cY

. _dq :
and i, = d: =y [Acosyt—Bsin yt].

il

e



MISCELLANEOUS EXERCISES

1. State whether the following statements are true or false. Justify you
answer with the help of a short proof or a counter example.

i) Equation yy”+(y")* =0 cannot be solved by reducing it to a first

order differential equation.
d’y

i) Equation — +ﬁ+(sin vy—=2)=0 in ]0, z[ is a linear
dx”  dx

differential equation.

iy ~ The solution y=cx®+x+3 of the LV.P., x*y" —2xy'+2y =6,
v(0)=3, ¥'(0) =1 is a unique solution of this problem on the
interval ]—oo, oo .

iv) A particular integral of the differential equation (D> —a®)y=a" is
{(Ina)* —-a*}"a".

v)  The solution of the differential equation (D> +4D+4)y=0
satisfyingat x=0, y=1 and y'=-1,is (1—x)e *.

2.  Determine whether the given functions are linearly dependent or
independent on the indicated interval.

) i) =x f(x)=x-1, f,(x)=x+3; ]-oo, o]
i) D) =1+x f,(x)=x, fi(x) =x%; =00, oo
i) fi)=e f()=e, fi(x) =€ ]-oo, o]
iv)  fi(x)=tanx, f,(x)=cotx; ]0, 7/2[

V) Six)=x, f,(x)=xInx, fi(x)= x*1Inx; 10, oo

3.  Show that the given functions form a fundamental set of solutions of the
differential equation on the indicated interval. Also write the general
solution of the equations.

i) y =2y +5y=0; ¢* cos2x, e sin 2x, ] — oo, oo
i)  x*y —6x"+12y=0; x*, x*, 10, o[
iii) x"y”+6x2y" +4xy'—4y=0; x, X2, x % Inx, 0O, oo

4.  Consider the differential equation x°y”—4xy’+6y =0

i) Verify that y,(x)=x" and y,(x)=1xI’ are linearly independent
solutions of the differential equation on ]—ee, oo

i) Show that W(y,, y,) =0 for every real number

i)  Does the result of part ii) violate Theorem 4 of Unit 10?

iv)  Verify that ¥, = x* and ¥, = x” are also linearly independent
solutions of the differential equation on the interval ] —eoo, oof .

v)  Find a solution of the equation satisfying y(0) =0, ¥ (0)=0.

vi) By the superposition principle both linear combinations

y=¢y +c,y, and y=¢Y, +c,Y,, ¢, ¢, constants,

are solutions of the differential equation. Is one, both, or neither
the general solution of the differential equation on |—co, co[ ?

5.  Write the form of a trial solution for the following differential equations.
i) vy =y =4e" +3e™
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10.

yhi 7

i) YV +2y"+2y" =3¢ +2xe* +eFsinx
i)  y"—4y =x+3cosx+e ™
iv) ¥ —y=e"(2+3xcos2x)

Solve the following differential equations using the method of variation of
parameters.

i) 2y —4x*y’ +4x*y=e*, x>0
.. » 2
||) y = y =z -

l+¢e

iy Y +2y+y=xle
iv) ¥ +y=4xsinx

V) Yy +2y'+y=e"Inx

Solve the following differential equations by the method of reduction of
order
i) y”+ y=cosecx

i)  Y-y=e

i)  x*y' —4xy’+6y=0
iv)  y"=3(tanx)y’ =0
V) y" =3y +2y="5¢*"

Solve the following differential equations

i) Y42y =y +xy=x" +1

i) +()-2y() =0

i)  y'—2y'+y=xe'sinx

iv)  (1+x7)y"+1+x)y" +y=4cos{ln(1+x)}, 1+x>0
V) Xy =2xy'—4y=x"+2Inx, x>0

vi) " +y'=0.

A mass (in kgs), acted on by a constant force p newtons, moves a
distance x meters in r seconds and acquires a velocity v meters per
my’ _ gtzp

2gp 2m

second. Show that x= , Where g is the acceleration due to

gravity.

A steel bal weighing 39.2 kg is suspended from a spring, due to which
the spring is stretched 2 m from its natural length. The ball is started in
motion with no initial velocity by displacing it through 0.5 m above the
equilibrium position. Assuming no air resistance, find an expression for
the position of the ball at any time .

The differential equation satisfied by a beam uniformly loaded (W

kg/meter), with one end fixed and the second end subjected to a tensile
2 b

force P, is given by EIC; ;‘ = Py —%sz , where E is the modulus of
x

elasticity and I is the moment of inertia. Show that the elastic curve for

the beam with conditions y =0 and % =0 at x=0 is given by
e
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2
y= Wﬂ, (1=coshnx)+ W , where n” = (i) ;
Pn” 2P El

12. An electric circuit consists of an inductor of 1 Henry, a resistor of 12
ohms, a capacitor of 0.01 farad, and a generator having voltage given by
E(t)=24sin 107 . Find the charge ¢ and the current i attime ¢, if

g=0andi=0atr=0.
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SOLUTIONS/ANSWERS TO MISCELLANEOUS
EXERCISES

ii)

False, Equation can be reduced to first order differential equation
’ . d 2 . .
by putting y = p. Equation becomes ypd—p+ p- =0, which is
y
first order DE and can be solved by variable seperable.

False, it is non-linear due to the presence of the term sin y .

2

. . dy ,
False, since xz, the coefficient of ;_; vanishes at x =0 on the
ax

interval ] —oo, oof.

True, as @' can be written as ¢"* =™ and
;e-"]“” — 1 xlna
D’ -a’ (Ina)* —a’

False, it is y= (1 4 '1.)6—2,\' )

dependent

independent
independent, W(e*, e ¥, ¢**)==30e™ 0 on ]—oo, oo
independent

independent

The functions satisfy the differential equation and are linearly
independent on the interval since

W (e cos2x, e sin 2x) =2¢** #0
The general solution is
y=c,e’ cos2x+c,e” sin 2x

The function satisfy the differential equation and are linearly
independent on the interval since

W(x?, x")=x° 20, y=cx’ +c,x°.
The functions satisfy the differential equation and are linearly

independent on the interval since

W(x, x2, x7Inx)=9x° 20; y=¢x+c,x” +c,x " Inx.

The graphs of the two functions show that y, and y, are not
multiples of one another. Also for x>0, y, =x’, y, = x" satisfy

the give DE and for x<0, y, =x’ and y, =—x" satisfy the given
DE.

For x20, W(y,. ;) =3x" ~3x° =0
for x<0, W(y,, y,)=-3x"+3x" =0
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ii)

ii)

thus W(y,, ¥,) =0 for every real value of x.
No, a,(x)=x"is zero at x=0.

Y, and Y, both satisfy the given DE, also since

W(x*, x*)==x", Y, and Y, are linearly independent solutions on
the interval.

¥ =2, Y, =a%ory, =lxP

Neither, for the general solution «,(x) #0 for every x in the
interval. The linear combination y =¢,Y, +¢,Y, would be a general
solution of the equation on the interval, say, 10, oo .

y, = Ae* +(B+Cx)e™

Y, = Ae* +(Bx+C)e " + xe *(Dcosx+ Esin x)

y, = x(Ax+A)+ Bcosx+ Csin x+ Exe™

y, = Axe" + Be' cos2x+Ce" sin 2x + Exe" cos2x + Fxe" sin 2x

The given equation can be written as
V' =4y +4y=e""/x’
y, =ce’ +c,xe’*

y, =Vie** +V,xe**

V= [ e [ 2 i
X

2 4x
X €

2x -2x

e e
v, =_[ G

X €

(:Lt=j%;fh‘=—l

X

2% Ty 2 T
y=ce +exe” —e nx—e”

y, =Ae" + Be™
y, =Vi(x)e" +V,(x)e™

V=[5 e de= = e +In(l+e™)

dx
e.l‘ (1 +€\)

X
e =
V,(x) = [——dx=In(1+¢")
i l+e
Y=+,
%, B
y=ce +cxe  +
12

Y =¢,co8x+c,sinx—x’ cosx+ xsin x

y=(c,+c,x)e" + l,\rze""'(Zln x=d)
-+ 179
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ii)

Associated homogeneous equation is
Y'+y=0
y, =sin x is a solution of this equation
Take y=V(x)sin x
The given differential equation reduces to
V7sin x+ 2V cosx — V sin x +V sin x = cosec x
= V’sin x+ 2V cosx = cosec x
= V42V cotx=cosec’ x
Put w=V’
w +2wcotx =cosec’ x (linear equation)

I 2cot xedx j 2 cot xdx 3
we = Ie cosec” xdx+c,
v 3 i
wsin” x = x+c,
V' = xcosec’ x+ ¢, cosec’ x

=

—

= V =—cotx+Inlsin x|+¢,(—cotx)+c,

= Yy =—XCOSX—¢,COSX+c,sinx+sinxInlsinx|

y, = ¢'is a solution of the given equation

Take y =Ve", given equation reduces to
Vi+2v =1
= w+2w=1 (Putting w=V")

” wej'zd.r _ J.E'[M‘-dx-i—cl

oy
2x e
= we = 5 +¢

: 1 B
= Vi=—+tce™
2

X G .8
= V="—-Ze™+g,
2 2 }
X B .
= ——e " +c,e
2

y=c, (P +x2)+ sz2

Cy
y=¢+ ?*[tan xsecx+Inlsecx+tanxl]

) 8
y=ie + czeg" + 583"

Dividing the given equation by x, we get
Oy +2x°y -y +y=x+x"

which is of the Euler’s form

Putting x = ¢, this equation reduces to

[DID-1)(D=2)+2D(D-1)-D+1]y=¢° +e‘~'[D=

= (D-1)’(D+D)y=e" +e*
The auxiliary equation is (m—1°(m+1)=0=>m=1,1, -1

d

-

“

i



Block 3 Soltuions/Answers to Miscellaneous Exercises

w C.F.=(¢,+c2)e" +ce”
=(¢,+c,Inx)x+ {73.,\‘.‘_|
1

= (¢ e
(D=1 (D+1)
1 1 v 1L T .
~h— e
Ty (D 1)° 4 D+1
2 2 5= E 2 -1
e I(l)— +3c =2(lnx) X In x
2D 4 4 4 4
y=C.F+P.I

i) ' +()-2y() =0
dy :>d y dp dy }d_p

Put =—=
dx F dx’ d‘v dx Idy
)-p@+pz—2}-;0""=0:>d—‘p+£=2p2
dy dy 'y
F'ut—=1»|;:>—Ld—p_ﬂ
p p-dy dy
Thene 22 gl ng s B2 5
p-dy py dy 'y
L
= we ' =e (2)dy+c1z—:—2j—+c,

= W=_2_Vln y+(_-]y:>dﬁ:—2yh'l}’+()1y
y

=% .r=—2_[yln ydy+clfy dy

iy ¥y =2y +y=xesinx
C.Fi=ce’ +xcye’

1 ; :
P.l.= xe'sinx=¢' ————xsinx

(D-1)° (D+1-1)°

R
=e'—5xsinx
D_

v

1 . . .
=g 5(—xcosx + sin x) = (—xsin x — XCoS X —cosx)e"

y=C.F.+P.l.

iv)  Putting In(1+ x) = z in the given equation, we get
)2 d’y a’z__v B dy

a".vc2 T d? dz
The given equation reduces to

dz
) +y=4cosz
dz’ 181

dy
1+ ;—— 1+
: X)dx dz (1




Block 3 Second and Higher Order Ordinary Differential Equations

y.=€,€08Z+¢,8in z

y, =4 cosz =2zsinz

D1
y = ¢,cos(In(1+ x)) + ¢, sin(/(1+ x))+ 2In(1+ x)sin(In(1 + x))

v) xy'-2xy'—4y=x"+2Inx, x>0
Putting x = ¢, equation reduced to
(D*=3D—4)y=¢" +2z

P.| =§—ltn x—lxz
2 6
B ¥ 1
v x4 D g
dx dx
put & = p, then ¢y Equation reduces to ¥ 4 p=0
dx dx”  dx dx
dp 1
= —+—p=0
dx xp
dy —In x (I
= p=——=¢
P A 1 p

9.  Equation of motion using Newton’s second law is

4

md ‘,xng where at 1 =0, x:O,d—x:(}
dt” dt

Initial position of m is taken as origin.
Integrating the equation of motion

= I+c
dt  m
d %
at = % —)‘ = 0 =i 0
dt
dx _pg
dt  m
Again integrating, we obtain
2
P
xX= il —+c,
m 2
FE
att=0, .’C=0:>(‘] =0, therefore x:&
2m

in terms of v :%, equation of motion can be written as
t

mvﬁ=pg atr=0,v=0
dx

Integrating, we get mv’ =2pgx+c,
1=0,v=0=¢,=0

‘= my’ B pat’
T 2pg 2m



Block 3 Soltuions/Answers to Miscellaneous Exercises
10. The equation of motion is
d’x adx k  F@)
== — g ——
dt mdt m m
where m is the mass, k is the spring constant, F(¢) is the external
force and a is damping constant.

F(t)=0, since there is no external force.
No resistance from air = a =0
Figs me= T 3220y
g 98
and w=392=2k=k=19.6
Thus the equation of motion reduces to

Q+49A—0
dt’
=% x(r):a,cosa/4.9r+czsin\l Ot
Juc((})_—l:w——laldﬁ =0=¢,=0
2 2 dt|,_,
x x(r):—%cos\14.9r
2?
11, 23 _Fopsnpaaiiae gte
dx- EI El

|
P.I.=;[_W x |= "Y I—D, x= "Y x3+i,
D =#%* V2EI 2n°El n 2n°El n

W s 2 , P
= X i = —
2n°El n El

, e dy
Using the condition dl =0 at x=0,weget ¢, =c,
X

y=ce" +ce™ +

_W )
Using x=0, y=0,weget ¢,=¢c,=——, P=n"EI
2 ' 9t Ga=a=00p

_W nx —nx |44 2 2
(™ +e™)+—|x" +—
2:1 P 2P n

o

Wx 5 P
coshnx)+——,n" =—
2F EI

12. The governing equation is

1‘“’ 1294, 1, 24610
dr’ dt 01
2

or  99.19% 1004 =24sin10¢
dt’ dt

C.F.=¢™(c, cos8t +c, sin 8t)

Pl=24— sin10 7
D> +12D+100

=24 : sin IOr:24Lsin10r
—100+12+100 12D

1
=——cos10z
S5 183



g=e""(c,cos8t+c,sin8)— %cos 10t

Using initial conditions ¢, -1 and ¢, -3
5 20

—f
g = €—(400581 + 3sin 8{)—1003101
20 5

Current { = @ = __—Se_f" sin 87+ 2sin 107 .

df
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