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BLOCK 4 FIRST ORDER PARTIAL
DIFFERENTIAL EQUATIONS

In Blocks 2 and 3, we confined our attention to the discussion of ODEs. These
are the equations involving one dependent and one independent variable. But
there exists physical situations for which the governing DE may be
simultaneous equation or total differential equation or PDE, involving more
than one independent variables or more than one dependent variables. For
instance, the diffusion/heat equation governing the flow of electricity in a long
insulated cable, wave equation dealing with high-frequency phenomena on a
cable etc. are PDEs.

Lagrange (1736-1813) an Italian mathematician, in 1769, provided the method
of finding the general solution of linear first order PDEs. He also classified the
integrals of first order PDEs, as complete integral, general integral and
singular integral. In the case of non-linear PDEs of first order, the complete
integral is partly due to Lagrange. Lagrange's results were later perfected by
a French mathematician Charpit in 1784.

In Blocks 2 and 3, you must have noticed that the integrals of ODEs are plane
curves but in the case of PDEs the solution may be space curves or surfaces.
In order to understand the methods of solving these equations and interpret
the solutions, the knowledge of space curves and surfaces is essential.
Accordingly, we have divided the material in this block into four units.

In Unit 14, which is the first unit of this block, we have started by discussing
briefly the two geometrical objects viz., curves and surfaces in space.
Parametric representation of some simple curves and surfaces in space,
envelopes of one and two parameter family of surfaces, characteristic curves
and characteristic points have been introduced in this unit. We have
presented in this unit the origin and formation of simultaneous differential
equations. The methods of solving simultaneous differential equations have
been discussed and illustrated with the help of examples. Some of the
applications of simultaneous DEs such as orthogonal trajectories of system of
curves on a given surface, particle motion in phase-space and electric circuits
are also discussed in this unit.

In Unit 15, we have defined first order total differential equations. We have
concentrated mainly on the total DEs in three variables. Given their
integrability condition and various methods of solving them, when integrable.

Unit 16 has been devoted to the study of linear first order PDEs. We have
begun the unit by giving the origin of first order PDEs. We have discussed
and illustrated various situations which give rise to first order PDEs. After
classifying the first order PDEs into linear, semi-linear, quasi-linear and non-
linear PDEs, we have discussed the various types of solutions/integrals of
PDEs of first order and given the relation between these different integrals.

Unit 17, which is the last unit of this block is devoted to the methods of finding
solutions of both linear and non-linear PDEs of the first order. Lagrange’s
method of solving linear PDEs of the first order is discussed and illustrated
through various examples. For solving non-linear PDEs of first order we have
discussed the Charpit's method. We have also defined here the compatible
systems of first order PDEs and obtained the conditions under which two
systems are compatible.
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14.1 INTRODUCTION

So far in Blocks 2 and 3 you have studied ordinary differential equations, that
is, equations involving one independent and one dependent variable. You
must have noticed that the solutions of ordinary differential equations are
plane curves (ref. Sec. 6.4 of Unit 6). You may recall that in Unit 6 we
introduced you to total differential equations i.e., equations of the form

Pdx+ Qdy + Rdz =0. These equations involve one independent and more
than one dependent variables. Other equations of similar type are
simultaneous differential equations. We shall study simultaneous differential
equations in this unit and total differential equations in Unit 15. Partial
differential equations of the type f(x, y, z, z,, z,) =0 which involve one

dependent and more than one independent variables will be discussed in Unit
16. You will see that the solutions of all these differential equations are space
curves and surfaces. For understanding the methods of solving such
equations and for interpretation of their solutions, knowledge of curves and
surfaces in three dimensional space is essential. Accordingly, we shall start
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the unit by discussing in Sec. 14.2 the two geometrical objects, viz., curves
and surfaces, in space. In Sec. 14.3 we shall take up the formation of
simultaneous differential equations and discuss the methods of solving these
equations in Sec. 14.4. Finally, in Sec. 14.5 we shall discuss a few interesting
applications of simultaneous differential equations in geometry and
mathematical physics.

Objectives
After studying this unit, you should be able to:

e identify the equations of space curves;

¢ identify the equation of a surface and relation between a surface, a curve
and a point;

e state the meaning of envelope of a one-parameter and two-parameter
family of surfaces, characteristic curve and characteristic point;

e describe the origin of simultaneous differential equations;

e state that the solution set of simultaneous differential equations is a two
parameter family of space curves;

e use various methods of solving simultaneous differential equations; and

¢ find the orthogonal trajectories of a system of curves on a given surface.

14.2 CURVES AND SURFACES IN SPACE

We shall discuss in this section briefly the two geometrical objects viz., curves
and surfaces.

Let us first consider curves in space.

Curves in Space

We start by considering some simple examples of space curves.

The simplest curve in space is a straight line. The equation of a straight line
passing through a given point P,(x,, y,. z,) and making angles «, 8, ¥ with
0X, OY,0Z axes respectively, is (see Fig. 1).

Pa(Xs.YoiZs)

Fig. 1: The Straight Line.
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X=X '—y, L% £
0= Y= Yo 2 O=g s=PP (1)

cos@ cosfl  cosy
i
where s = F,P is the distance F,P of P from fixed point £, measured along
the straight line.
Therefore,

X=Xx,+scos&

y=y,+Sscosffp, —o<s<oo. (2)
Z=2,+8COS8Y
are the coordinates of the point P(x, y, z) on the straight line (1) at a distance

s from B (x,, ¥, 2,). They are expressed in terms of a single parameter s .
By varying s, we obtain different points on the line. On differentiating Eqn.
(2), we obtain

dx dy dz

— =c0sQ, — =08 f, — =Co0s

ds ds A ds 4
or,

X dy dz
I . = ds 3)

cosax  cosff  cosy
Eqgns. (3) are simultaneous differential equations which define the straight line.
We shall discuss simultaneous differential equations in detail later in this unit.

We next consider another curve in space. Let the parametric equations of the

curve be
X=acosw,
y=asin@f,; —oo<f<oo, (4)
z=Wt

where a, @ and W are constants.

Then the point P(x, y, z) describes a space curve called the helix on the
surface x’ + y* =a”, (obtained by eliminating ¢ from

x=acosdat, y=asin at) of a circular cylinder of radius a (see Fig. 2).

The pitch of a helix is
the height of one
complete helix turn,
measured parallel to
the axis of the helix.

Fig. 2: The Helix.
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Let us call the point P as P, when =0, then the coordinates of the point F,
N

are (a,0,0). Then at any time ¢, we get the length of the arc s = F,P along
the curve as

P 2 2 -
jds:_[ [ﬁ) +[d—}] +(£] dt
x dt dt dt

P t
§= _[(azw3 sin @t +a’ @’ cos* ax +W*)"dt = I(aza)z +WH" 2 dt
0

5

or

:((12602 +W2)”2I
If the parameter 1 is interpreted as time, then in time t =27/« , the point P
describes a complete circle of radius a and also moves parallel to OZ a
distance 22W / @ , called the pitch of the helix. From Eqgn. (4) you can see
that the differential equations of the helix are the simultaneous differential

equations
h by &y,
-ay ax W

The examples considered above suggest that we may take the parametric
equations of a space curve as

x=9(1),
y=y(t),p t, <t <t,, (5)
z=0(1),
where ¢, i, @, are functions having continuous derivatives w.r.t. 1. We
eliminate ¢ from the first two to get
C :fi(x,»)=0
Similarly, from the last two equations, we get
C,: (3, 2)=0.
Hence, C, and C, are the equations of a cylinder which intersect in the space
curve given by Eqgn. (5).
For instance, if S is the sphere with equation x* + y* + z* =a’, then the
points of § in the plane z =k have
=i .ar2~l~_1y'2 =a’-k*

and lies on a circle of radius +/(a® —k°) if k <a. Corresponding to each point

of the sphere is one such circle with k varying between —a and +a (see
Fig. 3). The surface of the sphere can thus be considered as being generated
by such circles.

Fig. 3
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Thus a curve in space can be interpreted as intersection of a surface and
a plane.

We next consider surfaces in 3-dimensions.

Surfaces in Space

The simplest example of a 3-dimensional surface is the plane. The general
equation of a plane is

ax+by+cz+d=0

where a, b, ¢, d are given constants.

In above equation we can choose x, y arbitrarily; let us say that
X=U,y=v,—oco<i,v<oo

and then
z=—(au+bv+d)/c,c#0.

Thus, we have expressed the Cartesian coordinates of any point on the plane

in terms of two parameters, u and v.

Also you know that a sphere is the locus of a point P(x, y, z) whose distance

from the centre of the sphere, say 0(0,0, 0) is equal to the radius a. Thus,
(OPY =a’=>x*+y*+7°=d’ (6)

From your knowledge of Unit 1 you know the relationship between (x, y, z),

the cartesian coordinate of a point and its spherical polar coordinates
(r, 8, ). When r =a, then we can write

x=asin @cosg
y = asin @sin ¢ (7)

z=acosl

where 0<0<7, 0<¢9<27,0<a<oo.
Egn. (7) is the equation of the sphere in the parametric form.

Again in this case you may note that the cartesian coordinates of any point on
the surface which is sphere in this case are expressed in terms of two
parameters, @ and ¢. Eqn. (7) gives the relation connecting these

coordinates.
We have,

X+ vy + 27" =a’sin’ B(cos’ g +sin’ @) +a’ cos’ @
=a’(sin’* @ +cos’ 6)
=a’
Also, the first two equations in (7) when solved for parameter 8 and ¢ in
terms of x and y, yield

XY

@ =sin : )

2 (9 = Si'n : 3 2

a X+ y‘
The value of @ obtained above, when substituted in the third equation of (7)
gives

or,
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Thus, from the above two special cases, it is seen that the equation of a
surface is a relation connecting coordinates (x, y, z) of a point in 3-

dimensional space.
We, now, give the formal definition of a surface.

Definition: If the Cartesian coordinates (x, y, z) of a point in a 3-dimensional
space are connected by a single relation of the type

f(x, y,2)=0 (8)
then the collection of all such points is said to determine a surface.
Egn. (8) is the equation of a surface.
In some simple cases, that is, when Eqn. (8) is solvable for z , we can write it
as

z=F(x, y)
By looking at the examples considered above, we can say that the parametric
equations of a surface are of the form

x=0¢(u, v)
v=w(u,v) 9)
72=0(u, v)

where u and v are two parameters, u, <u<u, and v, Sv<v,.

Thus the expression (9) when substituted in Egn. (8) must reduce it to an
identity. Also we can solve the first two equations in expression (9) and get

u=F(x, y),v=F(xy)

and these, when substituted in the third equation of (9) will give us the
equation of the surface as
z=F(x, y).

In general, if a point P with coordinates (x, y, z) lies on a surface §,, then
the relation of the form f,(x, y,z) =0 exists. Further, if P also lies on a
surface §,, then we will have another relation of the same type, say

f>(x, ¥, z) =0. Therefore, the points common to S, and S, will satisfy a pair
of equations

filx, . 2)=0, f,(x, ¥, 2)=0 (10)

The two surfaces S, and §, intersect in a curve. The locus of a point whose
coordinates satisfy a pair of relations of the type (10) will thus be a curve in
space. Fig. 4 shows the intersection of two spheres of different radii which is a
circle.

s
1 s,

Fig. 4
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Thus a curve in space can also be interpreted as intersection of two
surfaces.

Remember that the parametric equations of a surface are not unique. As an
illustration, you may see that both the set of parametric equations

X=asinucosy, y=asinusinv, z=acosu
and
. .
l—v" 1—v" 2av

x=a ~CoSU, y=da >sinu, z= ~
1+v° 1+v 1+v

yield the spherical surface
ey +}»‘3 +z°=d’.

We now take up another example to illustrate this fact.

Example 1: Find the parametric equation of the surface

2 2 2
x* y° oz
P

a b ¢

=], —0<7<00,

Solution: We can rewrite the given equation of the surface in the form

2 2 2
Xy Z
~+-—== 1 +—2,
© b &

The intersection of this surface with the plane z =k, a constant, is the ellipse

2 2 2 2

: T B Sy Y
2+ L =1, with @’ =ay/l+=, b =b,/l+—
a- b~ c” c”

You can see here that if we take x=a’cos@ and y=»,"siné then

2 2 2 2 P e i
X ¥ a”“cos’® b“sin“ 0
—= = .
a’.. b’2 a’? b 2

Thus we can write the parametric equations of the given surface as

x=da'cos@, y=>b'sin@, z=k, where a'=a1|1+k—: and b’=b]’l +k—2 :
£- s

As the domain of z is —e < z <, on setting z = ¢sinh & , we get another set
of parametric equations as

x=uacoshacosé,

1.

y=bcoshasin @
z=csinha,
where 0<0<27, —o< <>,

Note that the surface given in Example 1 is called an elliptic hyperboloid of
one-sheet.

ek

You may now try the following exercise.

E1) i) Find the parametric equations of the surface
X+ y’ =2z, —0< <0

i)  Find the Cartesian equation of the surface
X=ucosv, y=usinv, Z=ucotv.
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So far, we have considered only a surface in space. We next take up family of
surfaces.

Family of Surfaces

A one-parameter family of surfaces in three-dimensional Euclidean space is
given by the equation

T v 66=0 (11)

where the function f has continuous first order partial derivatives w.r.t.
X, v, z€ D, a domain in space, and ¢ being a parameter. For different

values of ¢ we get different members of the family. For example, the tangent
planes to a surface along a curve in the surface form such a family.

Let us consider a member of the family (11) for a prescribed value of ¢ and
also consider another member corresponding to the slightly different value
¢+ &c, having the equation

fx, y,z,¢+)=0 (12)

The two surfaces (11) and (12) will intersect in a curve represented by the
equations

fxy,2z,0)=0, f(x,y,z,c+)=0
This curve may also be considered to be the intersection of the surfaces with
equations

£ 3, 2,6)=0 and é{.f‘(.x, Yoz et&) - f(ry.2,0}=0  (13)

As the parameter difference dc tends to zero, the curve of intersection tends
to a limiting position given by the equations

Pl =0, i, 55 258) =0 (14)
¢

We call this limiting curve as the characteristic curve of the family and it lies
on the surface (11). As the parameter ¢ varies, the characteristic curve (14)
traces out a surface, whose equation is obtained by eliminating the parameter
¢ between the two Eqns. (14) in the form

g8(x, y,2)=0

We call this surface to be the envelope of the one-parameter family given
by Egn. (11).

We shall now show that the envelope of the family of spheres of unit radius
with centres on the z -axis is the cylinder.

Example 2: Find the envelope of the family of spheres x* + y* +(z—¢)* =1,
¢ being the parameter.

Solution: Let f=x"+y*+(z—¢)’=1=0

i %:—Z(z—c') =0=z=¢
Eliminating ¢ from f =0 and a—f =0, we get the envelope of the family of
spheres as [

X+ =1
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which is a cylinder with base in xy -plane, the centre (0, 0) and radius 1
(see Fig. 5).
The characteristic curve is given by

z=cand X’ +y* +(z—c)* =1.

[
\

/x2+y2+(z-c)2=1

Characteristic curve
z=c, X +y +(z-cf=1

Envelope ——
xz ¥ yZ s 1

yd

Fig. 5

deokk

You may now try this exercise.

E2) Find the envelope of the family of spheres
x2+y? +(z—c)? =c’sin? o, ¢ being the parameter..

Next, we consider a two parameter family of surfaces defined by the
equation

FeE %54, b)=0 (15)

where f is a function having continuous first order partial derivatives w.r.t.
x, v, ze D, adomain in the 3-dimensional space and a and b are

parameters. From Eqgn. (15) we can obtain a one-parameter family of surfaces
by taking b as some definite function of a, say

b=¢(a) (16)
We can then obtain the envelope of this one-parameter family by eliminating
a and b from Egns. (15) and (16) and the relation
ST db_y (17)

da db da

The characteristic curve of this one-parameter family is then given by the
Eqgns. (15) and (17) in which b= ¢(a).

13
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You may note here that for every choice of ¢(a), the characteristic curve of
the one-parameter family passes through the point defined by the equations

f(x,y,z.a,b)=0, f. =0, f,=0 (18)

This point is the characteristic point of the two-parameter family (18) on the
particular surface of the family. As we vary the parameters ¢ and b the
characteristic point generates a surface which we call the envelope of the
two-parameter family of surfaces (15). Its equation is obtained by eliminating
a and b from the three Eqgns. (18).

We now take up an example to illustrate the theory outlined above.
Example 3: Find the envelope of the two-parameter family of planes
z=ax+by+a’+b’.
Solution: Let f(x, y, z, a,b) = z—ax—by—a’ —b* =0 (19)
[,=0=>x+2a=0
i =0=>y+2b=0

Eliminating @ and b from f, =0, f, =0 and Eqgn. (19), we obtain the
envelope as

dz=—(x*+y?) (20)

which is a paraboloid of revolution. The characteristic point is
(—2a, —2b, —(a’ +b*)). Next, we take a” +b” =1. Substituting in Eqn. (19)
we obtain a one-parameter family of planes

z=axt yVl—a® +1 (21)
whose envelope is the right circular cone

(z-D*=x"+y? (22)
It is easy to verify that the characteristic point for a* +b* =1 is
(— 2a, izm, —I) and this point lies on both the surfaces (21) and (22).

Fkk

And now an exercise for you.

E3) Find the envelope of the two-parameter family of spheres
(x—a)’+(y=b)* +z° =1. Also obtain the equation of the characteristic

curve of the one-parameter family, (x—a)* +(y—a)*+z° =1.

With the above background of curves and surfaces in space we now move on
to the study of simultaneous differential equations. Earlier you saw that the
equation of a straight line in 3D-coordinate system can be represented as
Eqgn. (3) which are simultaneous differential equations. You can see that
ordinary differential equations of order two and above can be expressed as a
system of simultaneous differential equations. As a simple example consider
the following second order equation

d’x __dx

- +9=0
dt” dt
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or, g% ‘_?d—x—t) j[r x, d_x] say.
dt’ dt dt

The above equation can be expressed as a system of two first order
differential equations, viz.,

dx ‘ d_\,

— T ).. — 4
dt = dt /

or, ﬁ=d—"f=dt (23)
y f

where y is a function of ¢.

th

Similarly, an n™ order differential equation of the form

d"x dx a' l d™'x
no f X 5 n-1 (24)
dt dr dr dt
can be expressed as a system of n first-order differential equations, viz.,
dx dy, dy, ,
—:“—:\;’---_ = ‘-:J_,
a g dr
dy, .
Dt — £, 1, ; 25
df f( }] yn—l) ( )
or,
de_dy _dv_ by, 26)
Y Y> Vs f

Eqns. (23) and (26) are system of simultaneous differential equations of the
first order. These equations arise frequently in mathematical physics. For
instance, equations of the type (26) arise in the general theory of radioactive
transformations as discovered by Rutherford and Soddy (1930). In analytical
mechanics, the equations of motion of a dynamical system of n degree of
freedom are

dp; oH dgq, OJH

= —F=—i=12,...,n o7
dt dq, dr dp, )
where H(q,, 4, ..., q,, P\s P»s---» P,, 1) is the Hamiltonian function and
q,, p,(i=1,2,...,n) are 2n unknown functions. Eqns. (27) are a system of

2n first order equations, the solution of which provides a description of the
properties of the dynamical system at any time ¢.

In the succeeding units of this block, you will observe that quasi-linear and
non-linear partial differential equations, also give rise to simultaneous
differential equations. We shall now take up, in the next section, the formation
of simultaneous differential equations.

14.3 FORMATION OF SIMULATNEOUS
DIFFERENTIAL EQUATIONS

Let us consider two families of surfaces
u(x, y,z2)=¢, v(x,y,2)=¢, (28)

¢, and ¢, being the parameters.
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You know that these surfaces intersect in a two-parameter family of space
curves. Also, along any curve of the family, du =0 and dv =0.

Now,
du=0=>udx+udy+udz=0 (29)
dv=0=>vdx+vdy+vdz=0 (30)
Solving Egns. (29) and (30) for dx,dy and dz, we obtain

dx dy dz

Wy, —uy, uy. -—uy, uwv, -—uyv,
or,
dx _ dy B dz
P(x, y,z) 0O(x,y,2) R, y,2)

where P, O, R are known functions of x, y,z.

(31)

Eqgns. (31) are the simultaneous differential equations of the two-parameter
family of space curves in which two families of surface u(x, y, z) =¢, and

v(x, y, ) =c, intersect.

We now illustrate the formation of simultaneous differential equations with the
help of examples.

Example 4: Find the differential equations of the space curves in which the
two families of surfaces

u=x'+y'+z°=¢ and v=x+z=c, (32)
intersect.
Solution: Here the given families of surfaces are

u=x2+y2+zj =c¢,v=Xx+z=¢,

Along any curve of the family, we have du =0 and dv=0.

du=0=2xdx+2ydy+2zdz=0 (33)
and dv=0=>dx+dz=0 (34)
Solving Egns. (33) and (34), we get
de  dy  dz
2y=0 2z-2x 0-=2y
d_dy _do
z—x —y’

which are the required differential equations of the space curves.

Jodk ik

Let us look at another example.

Example 5: Find the differential equation of the space curves in which the
families of surfaces u=xy=¢, and v=x"—z*—2xyz”* =¢, intersect.

Solution: The given families of surfaces are
u=xy=c, and v=x'—z'-2xyz’ =¢,

du=0= vdx+dy=0
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dv=0=4x’dx -4z dz - 2yz’dx—2x7"dy — 4xyzdz =0

Solving the above two equations, we get
dx B dy B dz
~4x(z’ + Xxyz) B 42}'(2_2 + xy) = 21)-22 —4x* -f-2.1ryz3
dx B dy _dz
xz(2+xy) —y(+ay) xf
as the required differential equations of the space curves.

* ek

You may now try the following exercise.

E4) Find the differential equations of the space curves in which the following
two families of surfaces u =c¢, and v=c¢, intersect.

i) u=3x+4y+z, v=x+z.
i)  wu=x"+y?, v=3x+4z.

iy u=xy, v=z(x+y)+xt+ 7.

From the formation of simultaneous differential equations it is evident that the
solution set of simultaneous equations of the type (31) is a two-parameter
family of space curves obtained as an intersection of two one-parameter
families of surfaces. But then how to find this solution? In the next section,
we discuss the methods of finding the solution of the equations of form (31).

14.4 METHODS OF SOLUTION OF "%:"_y:i’é

As you have seen above, the curves of intersection of family of surfaces, given
by Eqgn. (28), namely,

u(lx, y, z)=c¢, and v(x, y,z)=c,
are defined by the system of simultaneous differential Egns. (31) i.e.,
de dy dz
P(x, y,z) Q(x, y,2) R(x, y, 2)

where

P(x,y,z)=uy,. —uv,0x,y,z)=uyv, —uy, and R(x,y,z)=uy, —uyv,

Thus, in order to find the solution of Egns. (31), we need to derive from it two
relations of the form (28) involving two arbitrary constants ¢, and ¢,. By

varying these constants, we can then arrive at a two-parameter family of
curves satisfying Egns. (31).

We shall now discuss the methods of finding the surfaces of the type (28)
starting with Eqns. (31) for which the functions P, O, R are known. We start
by considering some simple situations when the solution of Egns. (31) can be
obtained easily.

The simplest is the case when by equating two fractions out of three in Egns.
(31), it is possible to get an equation in only two variables. For example,
consider equations of the form 17
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xdx _dy dz

== (35)
yz xz y
By equating the first two fractions we get an equation in only two variables,
viz.,
'd d ! 2 2
= f =2 or, xdx=y"dy (36)
y X
Eqgn. (36) can be solved to obtain the equation
X —yi=g (37)

which gives one of the relations in the complete solution of Egns. (35). In the
same way, taking the first and the third fractions in Eqgns. (35), we get

XX =dz or xdx=1zdz

~

which an integration yields
¥ —zt =g, (38)

The two relations given by Eqns. (37) and (38) together constitute the
complete solution of Egns. (35).

Let us look at another example.

Example 6: Find the integral curves of the equations
de _dy _ dz

2 P
yo ox xy°z

Solution: Taking the first two fractions of the above equations, we get
xidx = y'dy

= x-y'=¢

Again, taking the second and the third fraction, we obtain

Thus, the required integral curves are given by the intersection of the family of
surfaces

. 1 3
X =y =¢

3
and y'+>=c,.
7
' Jodk ik

Sometimes you may come across the situation when, for given equations, it is
comparatively simple to derive one of the sets of surfaces of the solution, but
not so easy to derive the second set of surfaces. In such cases you may find
the second set of surfaces by using the first solution set of surfaces. To do
this, we express one variable in terms of the other two and possibly try to get
an equation in two variables which can then be solved to obtain the second set
of surfaces. Let us try to understand the method through an example.

Example 7: Solve the simultaneous equations
dx dy dz

(@ +m) -y +m) 2t
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Solution: Taking the first two fractions, we obtain
dx dy dx dy
—=——10r —+

— 0
X =y X y
Integrating the above equation, we get
xy = (39)

Using Eqgn. (39), the first and third fractions give
xdx = xz(z* + ¢,)dz

o, xdx—(Z*+ ¢,z2)dz=0

which on integration yields

4 4 2
or, Xx -2z —27 =c¢,

o, x*-z'-2xyz’=¢,(xc =xy) (40)
Eqns. (39) and (40) constitute the required complete solution.

*kk

In practice, it may not always be the situation as illustrated in Examples 6 and
7. We need to look for other methods of solving Eqns. (31). But before we
take up other methods of solving Egns. (31) you may try the following
exercise.

E5) Find the integral curves of the following system of equations.

] dx dy dz
y: oy z°

" dx dy dz

ii) —_—=—=—
xy y o zy—2x°
xd. _Q_ dz

) —

Yz x Yy

We now discuss the method of multipliers for solving Egns. (31).

14.4.1 Method of Multipliers

Let u(x, y, z)=¢, and v(x, y, z) = ¢, be the two one-parameter families of
surfaces for the system of Egns. (31), viz.,

de_dy _d:
P O R

Then along any curve of the family, we have
ou out out
—dx+—dy+—dz=
ox dy = 0z )

and
dv v ov
—dx+—dy+—dz=0.
% dy = 0dz ‘

Tofind u and v we try to determine functions (A, O,, R,) and (P,, O,, R,)

with the properties
du du du
P==—,0=—,R=—
ox dy az
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dv dv dv

P=—., 2 s R‘)=_
9 2 dy =~ 0z
such that
PP, +QQ,+RR, =0 (41)
PP,+Q0,+RR, =0 (42)

From componendo-dividendo rule in algebra, we know that
dx _dy dz Pdx+Qdy+Rdz _Pdx+Q,dy+R,dz

P Q R PP+QQ+RR  PP,+00,+RR, (48)
Thus, in view of Egns. (41) and (42), we get from Eqns. (43),

Pdx+Qdy+Rdz=0 (44)

Pdx+ Q,dy+R,dz =0 (45)

Now, if Egns. (44) and (45) are exact, then
du=Pdx+Qdy+Rdz=0
dv=Pdx+Q,dy+R,dz=0

On integrating these equations, we get the surfaces

u(x,y, z2)=¢
and
v(x, y, 2)=c¢,

The curves of intersection of these surfaces are the integral curves of the
system of Egns. (31).
For better understanding of the method the following examples are in order.

Example 8: Solve the equations
dx dy dz

mz—ny nx—Ilz ly—mx

where [, m and n are constants.

Solution: Here P=mz—ny, Q=nx—1Iz, R=Ily—mx
If we take P =1, Q,=m, R, =n
and B,=x,0,=y,R,=z2
then

PP, +QQ, + RR, =1(mz —ny)+ m(nx —z) + n(ly —mx)

=[mz—In y+mnx—miz+In y—mnx=0

and

PP, + 00, + RR, = x(imz —ny) + y(nx —Ilz) + z(ly — mx)

=mxz—nxy+nxy—Ilyz+lyz—mxz =0

For the given system, we have

dx dy  dz _ ldx+mdy+ndz xdx+ ydy+ zdz

mz—ny Cnx—lz ly —mx 0 0
Also,
ldx+m dy+n dz=d(Ix+my+nz)=du (say)
20 and,
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2 2 2

X y Z
xdx+ ydy+zdz =d | —+2—+-—|=dv (sa
vy [2 5 2} v (say)

Therefore the integral curves are given by the intersection of family of surfaces
Ix+my+nz=c,

and X’+y’+z°=c,.

with ¢, ¢, being arbitrary constants.

dodke ke

Example 9: Find the integral curves of the equations
dx _ dy _dz

Y+ +ar x(x+y)-oz  z(x+y)

Solution: Here, we have
P=y(x+y)+oz, OQ=x(x+y)—az, R=z(x+Y)

If we take
F=x,0 =-y,R =-«&
and
c+
P =1,0,=1,R, =222
then

PP+ 00, +RR =x[y(x+y)+az]— y[x(x+ y)—az] - afz(x + y)]
=xy(x+y)+oaxz—xy(x+y)+ayz—oxz—oyz =0
and

PP, +QQ, + RR, = y(x+ y)+ oz + x(x + y)—az—(”

-”] [2(x+ )]
Z

=y(x+ y)+x(x+y)—(x+y) (x+y)=0
Also, for the given system of equations, we have

dx+dy—[x+ dez

dx _ dy _dz xdx—ydy—odz Z
yx+y)+oz x(x+y)—oz z(x+y) 0 0
(46)
Thus,
xdx—ydy—ode=0=d | 2~ — gz | =0
2 2
and
dx+dy— ['H- VJ dz=0
dx+y) dz ~0
x+y z
e |: (x+ y) }
Therefore, the mtegral curves are given by the intersection of family of
surfaces
X —y' =20 =c
and (47)

In

X+
y ‘:cg

*dkd

21
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In the above Examples, you must have realised that determining solution by
this method requires a good deal of intuition in determining the forms of the
functions (£, Q,,R)) and (P,, Q,, R,). In actual practice, sometimes it is
much simpler to write given equations in a form which suggests its solution.
For example, in Example 9 if we add the numerators and denominators of the
first two fractions, we obtain

dx+dy  dz
(x+y) z(x+y)’
which can be written in the form

d(x+y) ﬁ
(x+y) z
and its general solution is
+ v
In 7 =constant. (48)

Similarly, we have
xdx—ydy  dz
a(x+y)z z(x+y)

= xdx—ydy—odz=0

1.5 1.3
= d|—x"——y —az |=0
(2 2’ J
and, hence, we get the solution
x* — y* =20z = constant (49)

Eqns. (48) and (49) together give us the solution (47).
Let us take up another example.

d«  dy  dz
3x+y—z x+y—-z 2(x-y)

Example 10: Solve

Solution: For the given system of equations, we have each ratio
B dx—3dy—dz _dx=3dy—dz
3x+y—z-3(x+y—2)—-2(z—y) 0
Hence,
dx—3dy—dz =
= d(x-3y-2)=0
Integrating, we get one integral surface as
u=x-3y-z=g¢. (50)

From Egn. (50), we have
r=x—3y—n

To find the second integral surface we substitute this value of z in the first two
ratios of the given equations and obtain
dx dy

Ix+y—(x=3y=qc,) - x+y—(x—3y—e)

dx dy

= (51)
2x+4y+¢, 4y+c
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Eqn. (51) is an ordinary differential equation in x and y and you can solve it
by the methods you have learnt in Block 2.
If we write 4y +c¢, =t, then Eqgn. (51) reduces to

g 5_) (52)
dr 2t 4
Eqn. (52) is a linear equation with I.LF= e = %
t
The solution of Egn. (52) is
. |
2= —\/; + constant
Jroo2
2x—1
«/; =constant
x=¥¥g i
————=constant=c, [substituting r =4y +¢,and ¢, =x-3y—z] (53)
AJxX+y—2z

The integral curves of the given equation are thus obtained as intersection of
surfaces (50) and (53).

* ek

In the above examples, you must have observed that for solving Egns. (31),
we tried to find a set of functions (B, Q,, R,) and (P, O,, R,) satisfying

relations (41) and (42) and transform expressions (44) and (45) as exact
differentials. Sometimes it is not possible to do so. In such cases, try to find

functions (£, Q,, R,)) and (P,, O,. R,) such that either the expressions
Pdx+Qdy+Rdz | Pdx+Qydy+Rydz
FE 4+ Q0 + KK, PE 00+ KK,

(54)

are exact differentials, as we have done above, or these fractions when taken
with two of the fractions of Egns. (31) yield exact differentials, as we have
illustrated in the following example.

Example 11: Find the integral curves of the following system of equations
dx _dy _ dz
-1 3y44z 2Ly+5¥

Solution: Each of the fractions of the given system of equations is equal to

dy—dz dy +2dz
and

¥ T(y+22) (55}
Thus, we have
¢h1k=c@+2&
y—z T(y+22)
Integrating, we get one family of surfaces as
y=z2=6(y+29)" (56)

To find the second family of surfaces we take the first fraction in the given
equations with the first fraction in relation (55) i.e.,

dr_dy=dz
-1 y-z
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Integrating, we get
y—z=ce (57)

The intersection of the two families of surfaces (56) and (57) gives the integral
curves of the given system of equations.

*kk

You may now try to solve the following exercise.

E6) Find the integral curves of the following system of equations
dx dy dz

3 = / 3 = 34 "
yix=2x" 2y'=x'y 9z(x’—y")

i)

= xdx dy dz
ii) 2 5= = ;
g=2Ye—y yhZ Y%
dx dy  dz

ii)

cos(x+y) sin(x+y) z

dy_dy _ de
1 2 Sz+tan(y—2x)

iv)

There may be a situation where one variable is absent from one of the
equations of the set of Egns. (31). In such cases, we can derive the integral
curves by a simpler method. In the next sub-section, we shall take up this
method.

14.4.2 One Variable Absent

We illustrate the method through an example.

Consider a system of simultaneous differential equations
de_dy _ s

r=——— (58)
xy yo o xyz—2x°

You may notice that variable z is absent in the first two fractions of the system
and we can write the equation
dv_dy
Xy _)-‘2
: ¢
in the form —‘\:j(x, y)=ylx.
dx
We can easily integrate the above equation and obtain the first solution as
x=u ¥ (59)

Considering the last two fractions in Egns. (58) and substituting for x from
Eqgn. (59), we have

dy  dz
:}: 2 ,\,’_}-’Z - 212
dvy dz
or, T T TR
yooayz-2qy
or, c¢dy= e
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which can be integrated easily to obtain the second solution of Egns. (58).
Integrating the above equation, we get

¢y=Inl(z-2¢)l+c,

Z__
y
or, x=Inl(yz—=2x)I-Inlyl+c, (60)

Hence, the complete solution of Egns. (58) is constituted by Eqns. (59) and
(60). The integral curves of Eqns. (58) are the intersection of surfaces

x/y=c,and x—In(yz—-2x)+Iny=c,.
In general, suppose that the variable x does not occur in functions Q and R
of the system of Egns. (31). Then the equations to be solved are

dx  dy dz
P(x,y,z) QO@(z) R( 2
From the last two fractions, in the above set, we obtain

dy Q(y,z) .,
e e L T ;" 2
& ROy D f(y, 2) (62)

o, x=In +¢; [rx=¢Yl]

(61)

Eqn. (62) is a first order equation in y, z and has a solution of the form

¢(y, z,¢,)=0, (63)
where ¢, is an arbitrary constant.
On solving the relation (63) for z and substituting in the first two fractions of
Eqns. (61), we obtain

dy _ Q(y. 2)

= = "[, ."C
& Py o

Above equation is again a first order equation in x, y and its solution is of the
form

W(I‘) y: C; L] (,‘2) — 0

where ¢, is another arbitrary constant.

Thus, the integral curves of the set of Eqns. (61) are the intersection of the
surfaces

¢y, z,¢,)=0 and ¥ (x, ¥, ¢, ¢;) =0.
We illustrate this method with the help of an example.

Example 12: Find the integral curves of the equations
dx ﬁ _dz
x+z ¥y gF yz

Solution: From the last two ratios of the given set of equations, we have
dz z

dy vy
It is a linear equation and its solution is
Z_yﬁz(’]y (64)

Substituting for z from Egn. (64) in the first ratio of the given equations and
taking the first two ratios, we get
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dx x
—=—+y+g¢
d}.‘ }r

Itis ageiin a linear equation in x and y and its solution is
x=c¢ ylnl yl+y? +c,y
Substituting the value of ¢, from Eqgn. (64) in the above equation, we obtain
x=(z=y) Inlyl+y* +c,y (65)
The integral curves of the given equations are given by Eqns. (64) and (65).

%% de

And now a few exercises for you.

E7) Find the integral curves of the following simultaneous equations

) Ead dz
1 —=2 3x’sin(y+2x)
dx dy dz
”) vl B 2 2 2
y? x* xy'Z
i
. :‘.“' +z° y Z
e
dx dy dz

cos(x+y) sin(x+y) " +l

E8) Solve the following system of equations
) adx bdy  cdz

(b-c)yz (c—a)zx (a—b)xy
.. dx dy dz
i) == 5
x2=-y yz—-x 1l-z

dx B dy _ dz
xz()r_,%_z\%) yz(z}_x:‘i) Zl(xj_}__ﬁ) '

iii)

In Sec. 14.4 we have discussed various methods of solving the system of
simultaneous differential equations. As already mentioned in Secs. 14.1 and
14.2 simultaneous equations arise frequently in geometry and mathematical
physics. In the next section we shall take up some applications of
simultaneous differential equations.

14.5 APPLICATIONS

Geometrically when all the curves of one family of curves G(x, y, ¢,)=0

intersect orthogonally all the curves of another family H(x, y, ¢,) =0, then we
say that the families are orthogonal trajectories of each other. In other
words, an orthogonal trajectory is any one curve that intersects every curve of
another family at right angles.

The problem of finding the orthogonal trajectories of a system of curves on a
given surface provides an interesting application of simultaneous differential
equations. In the next sub-section we shall discuss this problem.
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14.5.1 Orthogonal Trajectories of a System of Curves on
a given Surface

Z

You know that the intersection of a surface by a plane is a curve. When we
take the intersection of the cone

¥+y’=7tan’a

by the system of parallel planes

Z=C
where c is a parameter, we obtain a system of circles (see Fig. 6).
Geometrically, we can say that, in this case the orthogonal trajectories are the
generators of the cone shown dotted in Fig. 6. We shall show this in i
Example 13. T

You may recall that in Unit 6, Sec. 6.4, we discussed the problem of finding
the orthogonal trajectories of a system of plane curves. In three dimensions
the corresponding problem is, given a one-parameter family of surfaces

F(x,y, 2)=¢, (66) y

and a system of curves on it, to find another system of curves each of which
lies on the surface (66) and cuts every curve of the given system at right

angles. X
Fig. 6
Let the given system of curves be the intersection of a one-parameter family of
surfaces
Glx; ¥ 2)=¢, (67)

with the surface (66).

Now we want to find another system of curves on the surfaces (66) which
intersect orthogonally the given system of curves.

If (dx, dy, dz) define the tangential direction of the given system of curves
through a point say, 7'(x, y, z) on the surface (66), then we have

oF oF oF

—dx+—dy +—dz—0 68

ox Ay 0z (68)
and a—Gd +a—Gd +aGd =0 (69)

ady 0z
On solving Eqns. (68) and (69), for dx, dy, dz, we get
(dx' dy' dz')
dx _ dy B dz
F\'GZ = F:'G\ FZG.\' - 'F.'\'G.'.'. F"G_\' - F\'G.\'
) dz

or i = 24 =— (70)

P O R

.~/ (dxdydz)

with P=FG. -FG,,Q0=FG,-FG_,R=FG,-FG, (71)

Eqns. (70) are the simultaneous differential equations of the given system of
curves on the surface (66).
Similarly on the curves of the orthogonal system through the point 7'(x, vy, z)

on the surface (66) (see Fig. 7), we can write

a—Fd +a—Fa' +a—F£ (72)
ox dy oz 27
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where (dx’, dy’, dz) define the tangential direction of the orthogonal system
at T'(x, y, z) on the surface (66).
Also because of the orthogonality condition, we have from Egn. (70)

Pdx'+Qdy’ + Rdz =0 (73)
On solving Eqns. (72) and (73) for dx’, dy’ and dz", we get the system of
equations
LD (74)
P QO R
where
, oF oF
P=R—-0—
dy ¢ dz
’ oF oF
=P——-R——¢ 75
Q aaz aa'r ( )
, K F
R=Q—-P—
0 ox dy

The solution of the Egns. (75) with the relation (66) gives the required system
of orthogonal trajectories.

We illustrate the method through the following examples.

Example 13: Find the orthogonal trajectories on the cone x”* + y* =z tan” &
of its intersections, with the family of planes parallel to z =c.

Solution: We are given
F(x,y, 2)=x"+y" -z’ tan* @ =0

and G(x, y,2)=2z-¢c=0

Now F,=2x, F,=2y, F,=2ztan’ &,
G, =0,G,=0,G_=1

Therefore, from relations (71), we have
P=FG,-FG, =2y
Q=FG —-FG. =-2x
R=FG,-FG,=0

Also from relat-ions '{75), we have
P RF, - QF, =—4xz tan” o
Q' =PF.—RF, =—4yztan’ a
R'=QF —F,G,=-4x" -4y’

Hence, the orthogdnal trajectories are given by

dx dy dz

—4xztan’ N —4yztan’ - —4(x* +y%)

From the first two fractions, we obtain

dx dy .
—=—=lxl=¢ |yl ¢ is a parameter.
x Yy
Also, we have
xdx + ydy dz

—dztan’ a(x’ +y7) T =40 + y?)

=  xdx+ ydy=ztan’ & dz
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Integrating, we obtain
¥ +y' - tan*a=c,
where ¢, is a parameter.
Hence the orthogonal trajectories are the generators of the cone formed by the

intersection of its surface with the planes x =¢,y passing through the z -axis
(see Fig. 6).

ddkdk

Let us consider another example.

Example 14: Find the orthogonal trajectories on the sphere x” + y* +z° =1 of
its intersections with the family of planes z=k, —1<k <1.

Solution: Here

Hence
F,=2x, F =2y, F, =2z
G, =0,G,=0,G,=1
Thus the system of equations defining the given integral curves are
dx dy dz
P Q0 R
where

P=F,G,~FG,=2y
Q=FG,~-FG,=-2x
R = Fl'GI\' - F\'G.Y = 0
The orthogonal trajectories are given by the system of equations
dx dy dz
P) Q! RI
where
P'=RF,—QF. =4xz,
Q'=PF,—RF, =4yz,
R'=QF, —PF, = —4(x* +y?).

dx _dy _ dz
4xz 4yz -4 +y)’
Eqns. (76) have the solutions

lyl=¢/1xl, and X+y'+z=c,

where ¢,, ¢, are the parameters.
Hence the orthogonal trajectories are the curves of intersection of the planes
| yl=¢, x| with the surfaces x* + y* +z° =c,.

Fedkk

You may now try the following exercises.

E9) Find the orthogonal trajectories on the hyperboloid x* + y* —z” =1 of
the conics in which it is cut by the family of planes x+y=c.
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E10) Find the orthogonal trajectories on the conicoid (x+ y)z =1 of the
conics in which it is cut by the system of planes x—y+ z=k where k is
a parameter.

We now take up an application from particle dynamics in phase-plane. Here
the phase-plane is the xy-plane in which the particle is moving. The problem

consists of finding a curve in the xy-plane which passes through a given
point, say (x,, y,), along which a particle is moving in simple harmonic
motion.

14.5.2 Particle Motion in Phase-Plane

You know (ref. Sec. 13.6, Unit 13) that the equation governing the simple
harmonic motion of a particle is

d*x 5 dx
i +wx=0, x(0) = x,, a'_r(O) =Y, (77)
dx
Let —=y 78
dr - (78)
From Eqgns. (77) and (78), we get
dy 2
—=—wx
dt
or,
dx dy
—=—=dt, y(x) =Y, (79)
y —wx

The time variable does not appear explicitly in the system of Egns. (79).
These equations are called autonomous.

Eqgns. (79) are the simultaneous differential equations defining the particle
motion in phase-plane.
Integrating Egns. (79), we get

wxl+y7 =wix) + . (80)
The integral curve (trajectory) is shown in Fig. 8.
y
N
. &Oﬁl Pu(xasy::)
,Q(&\eo
0 "
Fig. 8
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The arrows on the trajectory tells about the evolution of the dynamical system
with time.

You may now try the following exercise.

E11) Determine the system of simultaneous differential equations governing
the equilibrium of a heavy string hanging from two points of support,
where H is the horizontal tension at the lowest point L of the string, T
is the tensiog_i\n the string at the point P and W is the weight borne by
the portion LP of the string.

We now take up another application of simultaneous equations in which the
problem of an electric circuit is reduced to a system of simultaneous
differential equations.

14.5.3 Electric Circuits

You may recall that in Sec. 13.6 of Unit 13, Block 3, we obtained the
differential equation of an electric circuit containing an inductance L, a
resistance R, a conductor of capacitance C and an electromagnetic force
E(t) in the form

L8 v mie L=wp (81)
dt 4
where i is the current and ¢ is the charge (ref. Eqn. (127), Unit 13).

Also, we know that the current i is just the instantaneous rate of change in
charge ¢ and we have

. dg
i=— 82
% (82)
From Eqgns. (81) and (82), we obtain
PSR |
. E({)—iR——=
& Cag¥
dt L dt
= d -4 =% (83)
; q I
E(t)—IR=—=
[ (1) CJ
7

Eqns. (83) are the system of simultaneous differential equations defining the
vibrations in an electric circuit. The solution of Eqgn. (83) yields the charge and
the current at any time ¢.

Let us consider the following example.

Example 15: An electric circuit consists of an inductance of 0.1 henry, a
resistance of 20 ohms and a condenser of capacitance 25 microfarads. Find
the system of equations governing the charge and the current at time .

Solution: Here L=0.1, R=20, C =25 microfarads=25x107° farads,
E(t)=0.

. Simultaneous Eqgns. (83) governing the vibrations in the electric circuit in
this case reduce to
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di _dqg di
(Eu)—Rf—ﬁJ £ 1
-
L
di _dq _dt

—200i —400,000¢ i 1
where ¢ is the charge and i is the current at time 7.

Fkdk

You may now try the following exercise.

E12) In Example 15 above, what will be the form of the governing equation if
there is a variable electromagnetic force of 100cos 200t volts.

We now conclude this unit by giving a summary of what we have covered in it.

14.6 SUMMARY

In this unit, we have covered the following:

1. )

Vi)

vii)

viii)

The parametric equation of a space curve f(x,y, z)=0 are
x=@(t), y=w(t), z=0(), t, St<t,

provided f(@(t), w(t), 8(t))=0,fort, <t<t,.

The equation of a surfaceis f(x,y, z)=0 or z=F(x, y).

The equation f(x, y,z, ¢) =0 represents one-parameter family of

surfaces with ¢ as a parameter.

The envelope of one-parameter family of surfaces is a surface

obtained by eliminating ¢ between f(x, y, z,¢)=0 and gi=0.
C

The characteristic curve is the intersection of surfaces given by

f(x, y, z,¢)=0 and %:0,

C

The equation f(x, v, z, a, b) =0 represents two-parameter family
of surfaces, with a and b as two parameters. If b= ¢(a), then
characteristic curve for the surface f(x, y, z,a, b) =0 is the
intersection of the surface given by f(x, v, z, a, ¢(a)) =0 and

of of db

da 0b da

The equation f(x, v, z, a, b) =0, ai =0 and 8__f=0 represent a
da ob

point known as characteristic point for two parameter family of
surfaces.

The envelope of two-parameter family of surfaces is generated by
its characteristic point and is obtained by eliminating « and b from

the equations f(x, y, z,a, b) =0, B_f =0, B_f =0.
da ob
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2.  The simultaneous differential equations represent
i) a space curve as the intersection of two surfaces
i)  the equations of motions of a dynamical system
i) the equations governing the theory of radioactive transformations..

3.  The system of simultaneous differential equations
dv_dy _de
P QO R
can be solved by the following methods:

i) Method of multipliers: In this method we find multipliers
B, Q. R, and P,, O,, R, (constants or functions of x, y, z) such
that dx _ dy _ ﬁ: Bdx+Qdy+ R dz _ Pydx+Q,dy + R,dz '
P Q R PP+QQ+RR  PP,+Q0Q,+RR,

with
PP, +QQ, +RR, =0

PP,+QQ,+RR, =0

Also Pdx+Qdy+Rdz=0 and P,dx+Q,dy+R,dz =0 are either
exact differentials or reducible to exact differentials and their
integration yields the family of surfaces, whose intersection is the
integral curves of the given equations.

i)  One variable absent: In this case we find one solution surface
and use it to find the second solution surface from the given
system.

4.  As an application of simultaneous differential equations, we find that

i) Orthogonal trajectories of space curves obtained as the
intersection of surfaces F(x, y, z)=C, and G(x, y, z)=C, are
the solutions of the following system of simultaneous differential

equations.
dx
E (PG, =P )y=8HG. = Fi,)
_ dy
 F.(F,G,-FG,-F(FG,~-FG,)
dz

" F(FG,-FG,)~F(FG,~FG,)

ii) Particle motion in phase-space is governed by the system of

equations.
dx _ dy
_— _)’1 — (I'I, y(x[} ) = }"[]
y =wkux

i)  The vibration in an electric circuit can be represented by the
system of equations

. i 1
E@)=iR-2L
[() i CJ

L
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14.7 SOLUTIONS/ANSWERS

E1) i) The given equation of the surface is
X +y' =2z —0<z, <o
The intersection of this surface with plane z =k is the circle
x*+y* =2k . This equation is satisfied if we take
x=+/2k cos, yE 2k sin 6. Hence the parametric equations of

the given surface are x =+/2k cos@, y=+/2ksin 8, z=k.
As the domain of z is —eo < z <o, we set

z=sinh &
and then parametric equations reduce to
x= \/mcosﬁ, Y= msin 1)
where 0< @ <27, —co< A< oo.

i)  Given equation of the surface is

X
— =COSsvVv
X=UCOoSvy u

i y :
y=usmyv = —=S8myv
u

zZ=ucoty and z =ucoty
2
X y 2 s 2
S —+=—=cos v+sin v=1
u" u
2
. 5 2 2 2 2
e, X’ +y =u’= =& v
cotv

= x4y’ =z"tan’ v, which is the required Cartesian equation
of the surface.

E2) We obtain the envelope by eliminating the parameter ¢ between the
equations

f=x"+y +(z—¢) =c’sin“a=0
and

o

dc

On eliminating ¢, we find that the envelope is a cone

=-2(z-¢)—-2csina@=0=z=c cos’ &

2 2 2 2
X +y =z tan"
and the characteristic curve is given by
2 2 2 - 2 2
X"+ Yy =c sIn”&Ccos &
2
Z=CCOS &

which is a circle of radius ¢sin @ cosa in the plane z=c cos’ &.

E3) The equation of two-parameter family of sphere is

34 f=x=a)y+(y=b)y"+z"-1=0
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Here f,=0=-2(x—a)=0=(x—a)=0
[, =0=2-2(y-b)=0=>(y-b)=0
Eliminating a and b between f =0, f, =0 and f, =0, the envelope of
the given family of sphere is
z2=1=0
= z=land z=-1
Now one-parameter family is
g=(x—a)Y+(-a)X+z"-1=0
The characteristic curve is given by
g=0 and B_g =0
oa
= (x—a)+(y+a)Y+z"-1=0 and 2(x—a)+2(y—a)=0
= (x—a)’+(y-a)+z°-1=0and (x+y)=2a

< . Y %)
Hence characteristic curve is (eliminating a from g =0 and %8 0)

a
2
(x—H}'J +[y_.).+_y
2 7.

1 > | 2, .2
= —(x=-y)y+—(y—=x)"+z2"=-1=0
4( ; 4(_ Z

-

J+22—1:0

= (x-y)=201-2)

E4) i) The given families of surfaces are
u=3x+4y+z-¢,=0 and v=x+z-¢,=0

Along any curve of the families
du=0and dv=0
Now du=0= 3dx+4dy+dz=0

and dv=0=>dx+dz=0
Solving for dx, dy, dz , we get

dx dy _dz

4 1-3 —4
dx dy dz
2 -l =2

which are the required simultaneous differential equations of the
space curves.

i)  The given families of surfaces are
u=x’+y>—c and v=3x+4z-c,=0
du=0=2xdx+2y dy=0
dv=0=3dx+4dz=0

Solving for dx, dy, dz , we get

& _dy _ _dz
8y —8x -6y
dx dy  dz

4y —4x -3y

which are the required simultaneous differential equations of the
space curves.
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i) du=ydx+xdy=0
dv=(z+2x)dx+(3+2y)dy+(x+ y)dz=0
Solving for dx, dy, dz, we get
dx dy dz
x(x+y) —y@+y) (y=x)(z+2y+2x)

E5) i) The given equations are

dx dy dz
¥ oy oz
Taking the second and the third fractions, we get
dy dz
vy oz
T

7
s

From the first two fractions we obtain
Ix dy
=D ordx=ydy
y y

= 2x-y’=g¢,
The integral curves are given by the intersection of families of
surfaces

y=zc, and 2x—y’ =c,.

i)  Taking the first two fractions of the given system, we get

d 3
o T Y=g, OF =1y (84)
X oy
Taking the second and third fractions, we obtain
dy dz

V¥ ary-aay O 0P T (T
which on integration yields,

¢,y—In i(z—ZCf)I =c,or x—Inl(z —2x* /1 yH)I =c, (85)
Required integral curves are given by the intersection of families of
surfaces (84) and (85).

z—2c}

iii)  The required integral curves are the intersection of the families of
surfaces

3 3 2 2
X —y =¢ and x" -z  =c,.

E6) i) The given equations are
dx dy dz
yx=2x* 2y*=x'y 9z(x’-y%)

Here P=y'x—2x*, 0=2y'-x’y, R=9z(x’ —y°)

I 1 I
If we take b =—, O, =—, R, =—, then
X y 3z

-
PP +QQ, +RR, =%(y"x—2x4)+%(2}’4 -x'y) +3LZ(X“ -y)=0

Thus for the given system of equaﬁons, we have
dx dy dz _dx/x+dyly+dz/(3z)

yx=2x* 2y*=x’y 9z(:*-y%) 0

36 From the last fraction, we get
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b dy bz
x y 3z

= a’[lnlxl+ln IyI+§InIzI]=O

IIH

Integrating, we get Inlx |1 yllzI""=constant

1/3
= lxLlyllzlI™=¢

From 1st and 2nd fraction, we get

Q2y* -x’y)dx—(y’x-2x*) dy=0

Dividing, by x’y’, we get

z—fdx—i,dx—%d}%z—fdy =0
X y* X v
= —[—z—fdﬁd—f]—(df —2—fdyJ=0
x X .“}“ —\

2

= a[Ze%)-0
X y

Integrating, we get

y X
‘_’+ —5 = (_‘2
xT oy

Thus the integral curves are given by the intersection of families of
surfaces

¥ - &

Ixl.Iyl.1zI"=¢, and =+—

X y

= ('2

The given equations are
x dx dy dz

= —] - —— 86
2%~y Ytz -z a
From 2" and 3" fractions, we get
& _y+z
dz y-z
It is a homogeneous equation in y and z. To solve it, we put
vy = vz and obtain the solution as
22 (=v? +2v+1) =constant
= —y’+2yz+2° =c¢, say (substituting v=y/z) (87)
cdx + ydy + zdz
Also, each fraction in Eqns. (86) = o
sxde+ydy+zdz=0
=5. dx? +y2+z2)=0
Integrating, we get
¥ 4+y +77 =c, (88)
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ii)

From Egns. (87) and (88) the integral curves are given by the
intersection of families of surfaces

22 +2yz—y =¢ and X’ +y +z7 =¢,.
The given equations are
dx dy dz

= - == (89)
cos(x+y) sin(x+y) z

d(x+y)
cos(x+ y)+sin(x+ y)

Each fraction in Egns. (89)=

Thus, $= d(x+”?’)
z cos(x+y)+sin(x+y)

dz dU
= —=———— where U=x+y
z cosU +sinU
Integrating, we get
1

Inlzl=|———dU +constant
sinU +cosU

=LJ.COS£?C(U +§] dU + constant

2
L In tan[£ -+ E]
J2 g8 2

(;z x+y)
cot| —+
8 2

Again taking first two fractions in Egns. (89), we have

+constant

=% lzl'ﬁ

=¢, (substituting U =x+y) (90)

£=[an(x+y) (91)
dx

On putting x+y =V, Egn. (91) reduces to

dVv

—_—=dx
l+tanV

Integrating this equation, we get

x+constant=% [V+InlcosV +sinV 1]

=%[_(y+x)+1nlcos(y +x)+sin( y+x)| |

= 2x+constant=(y+x)+Inlcos(y+ x)+sin( y+x)I

= c¢,=e"" lcos(y+x)+sin(y+x)l (92)
Hence integral curves are the intersection of families of surfaces
(90) and (92).
The given equations are
dx _dy dz
1 2 5z+tan(y—2x)

(93)

From 1% and 2™ fractions, we get one family of surfaces as
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y—2x=c
From 1! and 3" fractions of Eqns. (93), and using relation (94), we
get the second family of surfaces as
5z+tan(y—2x) =c,e’
The integral curves are the intersection of families of surfaces (94)
and (95).
E7) i) y+2x=c¢ and
z—x°sin( y+2x) = G,
ii) x’ -y =
and y'+ L .
iy |2 |=c and ¥ +y2+22=c,
Z
Hint: Here —fx _= dy _dz_ xdx+ydy+zde
Yyt oy oz 0
X
iv) e’ {cos(x+y)+sin(x+y)}=c,
3 +y
and (z° +1)""" cot (£+X—)J =c,
8 2 :
Hint: Proceed as in EB) iii).
E8) i) The given equations are

adx bdy  cdz
(b-c)yz (c—a)zx (a-b)xy
Hiore i —c ;B c—a o, R a—>b
a b e

Let B, =ax, Q,=by,R, =cz, then
PP, +QQ,+RR, =0
Also if we take
B, =a%x, 0,=b*y, R, =c’z
then PP,+Q0,+RR, =0
Thus each fraction in the given equation is equal to
ax dx+by dy+cz dz it a’x dx+b’y dy+c’z dz
0 0

Using these fractions with any one of the fractions of the given
equation, we get the two families of surface as

ax’ +by* +cz" = ¢
and
a’x? +b3}-‘2 +c*7% = T

The given equations yield
dx dy dz dx+dy  dx—dy

-y yz—x B 1-z* B (x+y) (z=1) (x=y)(z+1)
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From which we get the two families of surfaces as

(x+y)(z+])=¢
and
(x=y)(z—D=c¢,

iii)  Each fraction in the given equations is equal to

dx dy dz

PR dx+ ydy + zd

Xy T g Xdxtydy +zde
0 0

Thus, the required families of surfaces are

x2+)’2+z2=c‘,
and

] [ G |

—+—+—=c,.

X ¥y z

E9) Here F=x’+y'-z"-1=0
and G=x+y—-c=0
Hence
F, =2x, F, =2y, F,=-2z
and
G.=1,G,=1,G,.=0
Thus system of equations defining the given integral curves are

dx B dy _ dz
FE,~Fe,) (FL~EQ) (EG~FG)
dx dy dz
= —_— —
2z =2z 2x%=2y
g g X=Yy
di:ﬁ:ﬁ where P=z, @=—-z, R=x—-Yy
P Q
The orthogonal trajections are given by the system of equations
dx _dy _dz
P! Qf RI
where

P’'=RF,-QF, =2[y(x- y)-2°]
'= PF,—RF,=-2 [x(x—y)+ z°]
R =QF - PF =-2z(x+y)

dx dy dz

Va2 —a-N+ 2] —2x+)

_ xdx+ ydy — zdz _ dx—dy
0 x* —y?

The 4" fraction yields

- xdx+ ydy—zdz =0
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E10)

E11)

Integrating, we get
4y -7i=¢

The 3™ and 5" fractions yield
d(x—y) _ dz

-3 -~z

Integrating, we get
lx—ypl.lzl =¢,

Hence the orthogonal trajectories are given by the intersection of the
surfaces

+y’—z2=¢ =1and|lx-yl.lzl=c,
where ¢, and ¢, are the parameters.
Here F=(x+y)z—-1=0
G=x—y+z—-k=0

The system of equations defining the given integral curves are

de  dy  dz
z+x+y x+y—-z -2z
P QO R

where P=z+x+y,Q=x+y—-z, R=-2z
The orthogonal trajectories are given by the equations

dx _dy dz
P) - Q!ﬁ' RI
where
P==22"-(x+y-2)(x+y), Q' =(x+y) (x+y+2)+2z>, R =-27°
dx dy
—

—22 —(x+y—2)(x+y) (x+y) (x+y+2)+27°

_dz _d(x+y)
—27° 2z(x+y)

From 3" and 4" fractions, we get on integration (x+ y)z=1.
; I . ; ; .
Using x+y=— in 1% and 3“ fractions, and integrating we get
Z
x+e,=z+ L = i
T 2z 62
The orthogonal trajectories are the curves

x+c¢ = z+%—%, (x+ y)z=1.
< <

Let the two points of support of a stringbe A and B (see Fig. 9).

The portion LP of the string is in equilibrium under the action of
tensions T at P, H at L and weight W . Let the are[P=5s.

If ¥ is the inclination of tangent at P to the horizontal, then we have

Tcosy=H (96)

Fig. 9

L
OI_V ~
=
w
-

v |
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E12)

and Tsiny =W (97)
If w be the weight of the string per unit length, then W = ws and hence
from Eqns. (96) and (97), we get

tany = % =2 (say) (98)

g
C
where c=H /w.
If we take axes of x and y as horizontal and vertical axes respectively,
then

dy s .

d_} =tany = = (using Egn. (98))

: "

X

Differentiating with respect to x, we get

Py ld 1 ,[®) -

dx* ¢ dx ¢ dx
Lot P =y, (100)
dx
then Egn. (99) becomes
&L (101)
dx ¢

From Egns. (100) and (101), the required simultaneous equations
governing the equilibrium of the string, under given conditions, are

cdv =£X=dL

Vi+v? v

Here L=0.1, R=20, c=25%10"° and E(t) =100cos 200t .
Thus equations governing the electric circuit are

o + 200i +400,000¢g =100 cos 200t
dt (102)
dg .
and —=i
dt
Egns. (102) yield the required system of simultaneous equations
governing the motion of electric circuit as
di dyg

—=dt

100cos 2007 —(200i +400,000q) i

_x_
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15.1 INTRODUCTION

In Block 2, Unit 6, we introduced the concepts of total differentials and total
differential equations. These equations contain more than one dependent and
one independent variable. In this unit we shall discuss such equations in
detail. General form of total differential equation of first order in n variables is
given by

Filx xenx ddey + Folx,x,, o, x dde, +-+ F (0 6.0 )dx, =0 (1)

where the F's(i=1, 2, ..., n) are continuous functions of some or all of the n
independent variables x, x,, ..., a

The first important contribution to the solution of Egn. (1) also called Pfaffian
differential equation was made in 1814 in a memoir by the German
mathematician Johann Friedrich Pfaff (1765-1825). He was described as one
of Germany’s most eminent mathematician during the 19" century. He
studied integral calculus and is noted for his work on Pfaffian differential
equations of the first order. It was later in 1909, the Greek mathematician
Caratheodory who used these equations in the mathematical formulation of
various principles in physics, for instance, in the formulation of first and second
laws of thermodynamics. Legendre’s transformation (a special type of
transformation for changing a variable, say x, to another variable X )is

generated by a total differential equation in two variable, x and X . However,

43
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we shall not be discussing these applications in this unit as they require the
understanding of various concepts which are beyond the scope of this course.

We shall in this unit concentrate mainly on total differential equations in three
variables, which can, under certain conditions, represent a one-parameter
family of surfaces. We shall start by considering the formation of total
differential equations in Sec. 15.2 and determine the conditions of their
integrability in Sec. 15.3. In Sec. 15.4 we shall discuss various methods of
solving total differential equations.

Objectives
After studying this unit, you should be able to:
¢ identify a total differential equation;

¢ show that a one-parameter family of surfaces in 3-dimensions leads to a
total differential equation in three variables;

¢ show that a total differential equation in three variables can be integrated
to obtain a one-parameter family of surfaces in 3-dimensions if and only fif,
certain integrability condition is satisfied; and

e use various methods of solving a total differential equation in three
variables.

15.2 FORMATION OF TOTAL DIFFERENTIAL
EQUATIONS

We start by considering a simple equation
xy+ gt =i (2)

in three variables x, y, z with ¢ as a parameter.

You know that Eqgn. (2) represents one-parameter family of surfaces.
The total derivative of Eqn. (2) gives

d(xy+z")=0
= ydx+xdy+2zdz=0 (3)

which is of the form (1) and is a total differential equation. Thus the total
differential Eqn. (3) corresponds to the one-parameter family of surfaces given

by Eqgn. (2).

In general, consider the equation of a one-parameter family of surfaces in
3-dimensional space given by

f(x y,2)=¢, (4)
where c¢ is the defining parameter of the surface. Differentiating Eqn. (4), we
obtain

of . o , of

—dx+—dy+—dz=0 5

ox dy = 0z ()

If f.. f,, f. have a common factor say u(x, y, z), then we may write

f.=uP, f,=HO, f.= R,

where P, Q and R are functions of (x, v, z).

Eqgn. (5) then reduces to
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Pdx+ Qdy+ Rdz=0 (6)

which is total differential equation in three variables. Thus, a one-
parameter family of surfaces in 3-dimensions leads to a total differential
equation in three variables. We can then integrate Eqn. (6), after multiplying it
by the function u(x, y, z) to obtain the family of surfaces (4).

We illustrate the method discussed above through the following examples.

Example 1: Find the total differential equation corresponding to the family of
surfaces.

xy=c(a—1z),
where ¢ is a parameter.

Solution: The given family of surfaces is a one-parameter family of surfaces
and can be expressed as

Xy
a—2z

=

The total derivative of the above relation gives

d( i J:o
[

(a—2)d(xy)—xyd(a—2) _ 0
: =
(a—2)

= (a—2z)[xdy+ydx]+xydz=0

which is the required differential equation corresponding to the given family of
surfaces.

ik

Example 2: Find the total differential equation corresponding to the family of
surfaces

x*+ yz + 77 =xc
with ¢ as a parameter.

Solution: The given equation can be written as
X’ + y: +7
—_—C

X

The total derivative of the above equation gives

d(x'+_v +z']:0

X

- 222

+ 2)@‘({}: yidx . 2xzdz ; 2’dx -0

X X

= dx

= x’dx+2xydy — y*dx+2xzdz — x*dx =0
=% G y‘2 —2)dx + 2xydy +2xzdz =0

as the required total differential equation.

ke
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You may now try the following exercise.

E1) Determine the total differential equation for the following family of
surfaces, ¢ being the defining parameter in each case.

i) Xz+x'y=c
i)y X+ y+(z+e)=d’

iy o+’ -2yz=c

As you have seen above, starting with the relation (4) the Eqgn. (6) can be
formed. But does the converse also holds true? Thatis, does an equation of
the form (6) always lead to the relation of the form (4)? This may not
necessarily be possible always as the existence of the relation (4) implies that
the three functions P, Q and R are proportional to the differential coefficient
of one common function and this requirement may not be satisfied, in general,
forany P,Q and R.

In the next section we shall seek the conditions on P, QO and R under which

an equation of the form (6) always lead to the relation of the form (4). In other
words, we shall obtain the conditions under which Egn. (6) is integrable.

15.3 INTEGRABILITY OF TOTAL DIFFERENTIAL

EQUATIONS
Let us consider the following differential equations
32 (y+2)dx+ (27 +x)dy + (2yz+x")dz =0 (7)
(3xz +2y)dx + xdy + x*dz =0 (8)
ydx+(z—y)dy+ xdz=0 (9)

They are all being of the form of Eqgn. (1) are total differential equations.

Eqgn. (7) is an exact differential of the function
flx, y,2)= x"_v + X074 zz}-' =c

where c is an arbitrary constant.

You can easily check that

dx’y+x'z+2°y]=0
= 3x’ydx+ xX’dy +3x zdx + x’dz + 7°dy + 2zydz = 0
= 3“:2(}' + Z’.)dl' + ().'3 - Zz)d): + (_‘-3 = 2:},)42 =0

which is our Eqn. (7). Such an equation is called an exact equation. Thus
Eqgn. (7) is an exact equation.
Eqgn. (8) is not an exact differential, but the use of x as an integrating factor
yields

(Bx’z+2xy)dx + x*dy + x’dz =0
which is the exact differential of the function

f(x, y.2) =x’z+x%y =¢, ¢ being a constant.

Eqgn. (7) and (8) are called integrable equations.
Further, you can see that Eqn. (9) is not integrable as no function
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fx,y,2)=c

can be found for it whose exact differential leads to Eqn. (9)

We shall now state a theorem which gives the condition for the integrability of

Eqgn. (6).

Theorem 1: A necessary and sufficient condition that the total differential
equation

Pdx+Qdy+ Rdz=0
is integrable is that

00 OR), [0k _3P), 0P 30
p[az ayJ+Q(ax az]-l-R[ay a,xj 0 (10)

We shall not be proving the theorem here as it is beyond the scope of the
present course. However, we shall illustrate it through examples.
You can see that in the case of Eqgn. (8)
P=3xz+2y,0=x and R=x
LOP_, 9P L 90 100 R _, OR_,
dy Jz ox 0z ox av
and l.h.s. of Eqn. (10) becomes
Bxz+2y) (0-0)+ x(2x—3x)+x*(2-1)
=0—x"+x*=0=r.h.s. of Eqn. (10)
Eqn. (8) is thus integrable.
Similarly, you can check that for Egn. (9), I.h.s. of Eqn. (10) reduces to
y(1—-0)+(z—p») (1l -0)+x(1-0)
=y+z—-y+x=z+x#0
Eqn. (10) is not satisfied and hence Eqgn. (9) is not integrable.

You may note that the condition (10) can be easily remembered because
P, O, R, x, y, z appear in it in a cyclic order. Another way to remember it is

that condition (10) can be obtained by expanding the determinant given below
in terms of the elements of its first row.

P 0O R
P O R|=0
9 9 9
ox dy Oz

Further, the conditions for the equation Pdx+ Qdy + Rdz =0 to be exact are

9P _30 30 _OR R 0P
I I 11
B B R B & (1)

When conditions (11) are satisfied the condition (10) for integrability, namely,

90 OR) (OR 0P} .[JP 90
(Bz a_;JJ’Q(ax az]”e[a) ax] 0

is also satisfied, for each term in brackets vanishes identically. Thus an exact
differential equation is always integrable.
In the case of Egn. (7) you will find that

P=3x*(y+2), aP—3 1 aaP = 3x?
_\ Z

0 2 20
— =3x =%
ox % 47

Q:z2 Fx,
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. OR , OR
R=2yz+x, —=3x", —
’ ox dy

and condtions (11) are salisfied.v. Eqgn. (7) is an exact equation.

=27z

Remember that a total differential equation may be integrable but may not
necessarily be exact as is the case with Eqn. (8). Eqgn. (8) when multiplied
with x satisfies condition (10) but it does not satisfy condition (11).

When the given total differential equation is exact, then the equation can be
integrated after regrouping its terms so that each new term is an exact
differential.

We illustrate it through an example.

Example 3: Verify that the following differential equation is exact and find its
solution
(yz+2x)dx+ (zx+2y)dy + (xy+2z2)dz =0.

Solution: For the given equation
P=(yz+2x),0=(zx+2y), R=(xy+22)

oP 00
Now, — = 7 = =%
ow 5 Z 3
20 _B_R
dz T dy
B_R_\!_BP
ox 9z

Thus conditions (11) are satisfied. The given equation is exact.
Further, re-writing the given equation, we get

(yzdx + zxdy + xydz) + 2xdx+ 2ydy + 2zdz) =0

or, d(xyz)+d(x*+y*+z°)=0
Integrating the above equation, we get
xXyz + X+ yz 2 =

as the required solution.

Before we take up various methods of solving equations of the form (6), you
may try the following exercises to check your understanding of what we have
discussed above.

E2) Verify that the following total differential equations are integrable but not
exact

) (v* +2* = x")dx — 2xydy — 2xzdz =0
ii) )-’de —zdy + ydz =0
i) (2x°y +Ddx+x*dy + x* tanzdz =0.

E3) Verify that the following total differential equations are exact and find
their solutions
i) (x—=y)dx—xdy+zdz =0
i) (yv=2)(y+z—-2x)dx+(z—x) (z+x—2y)dy
+(x-y)(x+y-22)dz=0
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i)  Bx’y'—e'z)dx+ (2x’y+sin 2)dy + (ycosz —e")dx =0

We now discuss various methods of finding solutions of total differential
equations.

15.4 METHODS OF INTEGRATION

Consider the total differential Eqn. (6), namely,

Pdx+Qdy+Rdz=0
We now discuss the various methods of solving it when it is integrable i.e.,
when the integrability condition (10) is satisfied by it.

15.4.1 By Inspection

Sometimes rearranging the terms of the given equation and/or dividing the
terms by a suitable function of x, y, z, we may get an equation whose terms

can be combined to get exact differentials. These terms can then be
integrated to obtain the desired solution as illustrated through the following
examples:

Example 4: Verify that the given equation
yzdx+zx dy+xy dz=0

is integrable, and find its integral surfaces.

Solution: Here P=yz, Q=zx,R=xy.

P _ P _ 9Q_ 90_ 9R__OR_

Ly o y, = 4 Xo — =Y. 7T/—=X
dy dz = oOx 0z dx  dy
Applying condition (10) of integrability, we get
Lhs.=yz(x—x)+zx(y—y)+x3(z—2) =0=r.h.s.

and hence the given equation is integrable.
By looking at the form of the equation we can immediately write it as
d (xyz)=0
so that the required solution of the given equation is xyz =c, where ¢ is a
constant.

*kk

Let us consider another example.

Example 5: Verify that the equation
(x*z—=y*) dx+3xy’dy + x’dz =

is integrable, and find its integral surfaces.

Solution: Here P=x’z—-y*,0=3xy*, R=x".

Applying condition (10), we get

Lh.s.=(x*z—=¥%) (0-0)+3xy*(3x* = x*) + x*(-3y> =3y?)
=0+6x"y* —6x°y’

=0=rh:8
Thus, the given equation is integrable and may be re-written as 49
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x* (zdx + xdz) — y'dx +3xy’dy =0

= (zdx+ xdz)— », dx+ id}s =0
X X

= d(x2)+d {y—} -0

X

Thus, the integral surfaces of the given equation are

).'Z-f—(LJ:(‘,
%

where ¢ is a constant.

Note that for a given problem unless mentioned, you need not verify the
integrability condition and directly proceed to find its solution.

Example 6: Find the integral surfaces of the following total differential
equation
z(1—z2%)dx + zdy—(x+y +xy2)dz =0.

Solution: The given equation can be written as
z(dx+dy) — 22 (zdx + xdz) — (x + y)dz =0
or, zd(_.x+y‘)—zzd(,a:z)—(x+_}-')dz =0

Dividing the above equation by z*, we obtain
z2d(x+y)—(x+y)dz d(xz)=0

2
<

or, d['ﬁ_ y]—d(xz)=0

7
£s

Integrating, we get the required integral surfaces as

x+y
—XZ=¢C

Z
where ¢ is a constant.

Fkdk

You may now try the following exercises.

E4) Verify that the following equations are integrable and find their integral
surfaces.

) yzdx+ zx dy— y’dz =0
ii) (}'2 + Zz) dx+xydy+xzdz=0

ii) (y+2)dx+dy+dz=0.

E5) Find f(z) such that [(y* + z° —x*)/2x]dx — ydy + f(z)dz =0, x>0, is
integrable. Hence solve it.

You may recall that in Unit 7 of Block 2, we discussed differential equations in
two variables for which variables were separable. In the next sub-section, we
take up total differential equations in three variables for which variables are
separable.
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15.4.2 Variables Separable

Let us look at Example 4 once again. The given differential equation to be
solved is

yzdx+zx dy+xy dz=0

If we divide the equation by xyz, we obtain

£+ﬂ+£=0 (12)
x ¥y z

You may notice that Egn. (12) is in variable separable form as each of the
terms is a function of one variable only. Eqn. (12) can be easily integrated to
obtain the required solution as

Inlxl+Inlyl+nlzl=Inc

or, |lxyzl=c,where c is a positive constant.

Similarly, in certain cases, it is possible to write Eqn. (6) in the form
P(x)dx+Q(y)dy + R(z)dz =0 (13)

where variables are separable and we can obtain the integral surfaces by
integrating Egn. (13) as

[ P(x) dx+ [0(y) dy+[R(z) dz=c,
where ¢ is an arbitrary constant.
We consider some more examples to illustrate the method above.

Example 7: Solve the differential equation
a’y’ 2’ dx+b*z’ x*dy + ¢*x*y*dz =0.

Solution: On dividing both the sides of this equation by x°y*z°, we have

o] ¥ 5

a” b &
—2dx + —2(3‘}" + —2dZ =0,
x y Z

which is in variable separable form and its integral is given by

2 2 2
a b c
I—zdx+ J‘—jdy +I sdz=0
X y Z
az b? C?.
= —+—+—=k,
X Yy Z

where k is a constant.

*kk

Example 8: Solve the differential equation
2yz dx—2xz dy—xyz(z—1)dz =0.

Solution: Dividing the given equation by xyz, we get
de—gdy —(z—=Ddz=0.
X y

Integrating, we obtain the required solution as

2
21n|x|—21n|yl—[%—z}zc

)

=ce

3

or,

= |'a-<
(]

51
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where ¢ and ¢, are arbitrary constants.

ki

And now a few exercise for you.

E6) Solve the differential equation

yzInzdx—zxInzdy+xydz=0,2>0

E7) Express the differential equation
f(z) (ydx+xdy)+ [ (z) xy dz=0

where f'(z) = ;i , in the variable separable form and hence find its

g
£

integral surfaces.

Sometimes it may happen that in a given total differential equation of the form
(6) not all the variables are separable but only one variable is separable. We
now take up such differential equations.

15.4.3 One Variable Separable

Let us start by considering the following example:

Example 9: Find the integral surfaces of the equation
(2% = y?) dx—2xydy + e *dz=0.
Solution: You may note that the given equation is separable in z.
Consider the first two terms of the equation viz.,
(= y: Ydx —2xydy .
Here P=x>—y* and Q=-2xy.
These terms are exact differential if P and Q satisfy the exactness condition
for Pdx+ Qdy =0 to be exact, i.e.,

0. oF =0 (ref. Sec. 7.4, Unit 7)

dx dy

00 JP 0 o .
Here ———=—(-2xy)——(x"—y")=-2y+2y=0
Are o xy) a}__(r y)==2y+2y

Hence the condition is satisfied. The first two terms are exact differential and
can be written as

x%dx + (—=y*dx —2xy dy)

3
or, d[%}rd(—,\‘yz) :
Combining this with the third term of the given equation, we get
3
d [%Jm (—xy*)+d (- ) =0

Integrating the above equation the required integral surfaces are obtained as
3

X 2 =y
—=xy —€ “=c,
3
where c is an arbitrary constant.

drdkk
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In general, let us consider Eqn. (6) and assume that the variable z is
separable. Then it can be written in the form

P(x, y)dx+Q(x, y)dy+ R(z) dz =0 (14)
The condition (10) of inegrability of Eqgn. (6) in this case reduces to

P(x, y)[0=0]+Q(x, y)[0-0]+ R(z) a—P—a—Q =0

dy ox
Q0 OoP
, R@E)——-—[=0
or (z){ ™ a}l
Now, since R(z) #0, then B_Q_B_P =10 (15)
ox dy

Did you notice here that Eqn. (15) gives the condition for an equation
Pdx+ Qdy =0 to be an exact equation? We can therefore remark that the

expression Pdx+ Qdy is an exact differential, say du, and Eqgn. (14) thus

reduces to
du+ R(z) dz=

Integrating the above equation, we get
u +IR(2_) dz=c¢
which is the required solution.

Let us take up another example to illustrate the method above.
Example 10: Solve the following differential equation

Q2x’y+Ddx+ x*dy+x"tanz dz =0.

Solution: Dividing the given equation throughout by x*, we obtain

2x° v+ 1)dx
X’

+x’dy+tanz dz =0 (16)

Eqgn. (16) is separable in z.

Here P—zr }+l ,0=x"
.1‘

Also, — oP 2“‘; =2x and a_szx.
a}’ x° ox
Thus P and Q satisfy the condition B_Q_B_P_
dox dy

Hence the expression Pdx+ Qdy is an exact differential. We can write
Pdx+ Qdy in Egn. (16) as

(2xy + szdx +x'dy =d(x*y)+ d[— iJ
X X

The given equation can then be written as
1
d[_xzy - —] +tanz dz=0
X
Integrating we obtain

1
¥’y——+Inlseczl=c
X

as the required solution where ¢ is a constant.

Fedede
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You may, now, try the following exercise.

E8) Verify that the following differential equations are integrable and solve
them:

i) .)c(y2 —a*)dx + y(x2 —z:)dj;-'—z(}'2 —-a’)dz=0
ii) 2yz dx—2xz dy — (x> —y*) (z=1)dz =0

You may recall that in Sec. 7.3 of Unit 7, Block 2, we defined homogeneous
functions of two variables and discussed the methods of solving homogeneous
differential equations in two variables. We now extend the definition of
homogeneous functions to three variables and also discuss the method of
solving homogeneous differential equations in three variables.

Definition: A real-valued function P(x, y, z) of three variables x, y, z is

called a homogeneous function of degree n, where n is a real number, if
we have

P(x, y,2)=x"fi(y/x, 2/ x)=X"f,(u, v)
where u=y/x and v=z/x.
Equivalently, we can have
P(x, x,z,)—»"f( ]
or, P(x,y, 4-)—7”)(1[ J
For example, the function
3 2
flx, y,2)=x"+y +3xz° =‘x3f{l+(lJ +3[1] }=X" '
X X
3
X X <
o, f(x,y,2)=x"+y +3xz°=y )‘H ] +l+3[—}[
y y

e sonamer{ (o oo )
< Z Z i L

is @ homogeneous function in (x, y, z) of degree 3.
A total differential equation of the form (6), namely,
P(x, y, 2)dx+Q(x, y, 2)dy+ R(x, y, 2)dz=0

in which P(x,y, z), Q(x, y, z) and R(x, y, z) are homogeneous functions of
the same degree, is called the homogeneous total differential equation.

et | N

‘<:|-=-'

E

I ]5-
I |\-:

For instance, consider the total differential equation
(Y +yz+2)dx+ (22 +xz+xX)dy+ (X +xy+y*)dz =0 (17)

Here, P = 1,’2 +yz+ Z=x*@+w+v?)
=2 +xz+x° ="V +v+1)
R=x’+xy+y =x(l+u+u’)
where u=y/x and v=1z/x.
Thus P, Q, R are all homogeneous functions of degree 2 and Eqn. (17) is a
homogeneous equation.
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In the next sub-section, we take up the method of solving such homogeneous
equations.

15.4.4 Homogeneous Total Differential Equations

Let us start by considering a simple example.

Example 11: Solve the following differential equation
Ay+2ydx —(x+ 2)dy+ 2y —x+2)dz=0 (18)

Solution: In Egn. {18), we have, P=y+z=x(u+v), Q=—(x+z2)=—x(1+v)
and R=2y—-x+z)=x2u—-1+v),where u=yv/x.v=z/x. P,Q and R
are all homogeneous functions of degree cne and hence Eqn. (18) is a
homogeneous equation.
You may recall here the method you learnt in Sec.7.3 of Unit 7 for solving
homogeneous differential equations in two variables. Extending the methed to
differential equations in three variables, let us make use of the substitution
y=uxu and z =xv (19)
Putting the values from Egn. (19} in Egn. (18), we get
2(xu + xvide — (x+ xvy (xdu +udxdy+ Cxu— x + xv){xdv+vdx) =0
of, (u+vi(l+vidy—x{l+vidu+ x2u—1+vidv=0
Dividing the above equation throughout by x(i +v)(v + 1), we get
ﬁ_ l du + (2u—1+v)
X u+v (e +v)(1+v)
You may note here that in Eqn. (20) one variable i.e., x is separable.
Using the method discussed in Sub-sec. (15.4.3) we find the expression
-1 (2 —1+v)
du +
Htv (u+v) (1+v)
to be an exact differential.
By combining and re-arranging the terms of expresion (21), we can write Eqgn.
{20) in the following form
dx 1 2dv 1

dv=10 (20)

dv (21)

—_—— du + - dv=1_0
X u+v I+v u+v
. ﬁ_(a'u+a'v)+ 2 =0
X u+v I+

Integrating the above equation, we get
mlxl-Inl{g+v)I+2ZInl{l+vi=nlcl

x(1+v)
u+v

4

substituting the values of «# and v from Eqgn. {19} in the above equation, we
get the desired solution as

(x+z2) =cl(y+2)I.

* ko

The method illustrated above can be used in general for the total differential
Egn. {6) in which the functiocns P, Q@ and R are homogeneous in x, v, z of
the same degree, say n.
In order to find the solution, we use the substitution
y=axand z=vx (22)
in Egn. {6). On cancelling cut factor x" throughout, the equation reduces to
Plu, vidy+ QQu, v) (w de+ x du}+ Rlu,v) (v dx+ x dv)=0

= [Plu, v)+uQ(u, vy+vR(u, v)) dx + xQ(u, vidu + xR(i, vy dv =10 5
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= ﬁ + A(u, v) du+ B(u,v) dv=0, (23)
X
where A(u,v)= o, v) , (24)
P(u, v)+uQ(u, v)+vR(u, v)
and B(u, v) = 15 7) . (25)
P(u, v)+uQ(u, v)+vR(u, v)
Note that Eqgn. (23) is of the same type as Eqgn. (14), i.e., one variable
separable. Condition (15), in this case, reduces to
JdA OB
i 26
dv  du {£5)

Once the condition (26) is satisfied, we can obtain the solution of Egn. (23) in
the form

fu,v)+hnlxl=¢ (27)
where ¢ is an arbitrary constant.

We can then use Egn. (22) and replace u, v by their values in terms of x, y
and z to obtain the solution of Egn. (6) in the form

fy/x,z/x)+Inlxl=c.
Note that in Eqn. (22) we have used the transformation y =ux and z=vx

and obtained the equation with variable x as separable. Instead, we could
also use other transformations like x=uz and y=vz or, x=uy and z=vy

and accordingly obtain the equations separable in variables z and y,
respectively.
For instance, in Example 11, if we use the substitution
x=uz and y=vz
then Egn. (18) reduces to the following form

z[2(v+ Ddu— (u+Ddvl+(u+1) (v+1)dz =0

d - -
u_ dv 4 E -0,
u+l v+1 z
The above equation is with variable z separable and it can be integrated to

obtain the desired solution.

or,

We now illustrate this method with the help of a few examples.

Example 12: Verify that the integrability condition for the equation
y(y+2)dx+z(z+x)dy+ y(y—x)dz=0
is satisfied and find its integral surfaces.

Solution: Here P= y(y+2z2),0=2z(z+x) and R=y(y—x),since P, O, R
are homogeneous functions of x, y, z of degree 2 therefore the given

equation is homogeneous. Further, for the case under consideration, the
integrability condition (10), yields

Lhs.=(y* +y2) 2z +x-2y+x)+ (2> + ) (—y—y)+ (¥’ — y0) 2y +z—2)

=2y’ +y2)(x+z—y)=2y(xz+2")+2y(y* —xy)=0=r.h.s.

Hence the integrability condition is satisfied.
Putting y=xu and z = x v, the given equation reduces to

xu(xu+ xv)dx + xv(xv + x) (xdu + udx) + xu(xu—x) (xdv+vdx) =0,
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= xXu(v+1) w+v)dx+xvv+1) du+xu(w—-1) dv=0,

dx v u—1
—+

=3 du +
x  ulu+v) v+1) (u+v)

]

dx du dv du+dyv
hio i B S - =

X u v+l u+v

= 0.

Integrating, we get
Inlxl+nlul+nl(v+)|I=Inl(u+v)l=Inlcl, say

xu(v+1)
u+v

Substituting back the values of u and v interms of x, y and z, we get the
required integral surfaces in the form
ly(x+2)I=cl(y+2)I.

*kk

Remark: By looking at the forms of A(u, v) and B(u, v) in Egns. (24) and
(25) respectively, one can remark that in Eqn. (6) if the condition of
integrability is satisfied and P, Q, R are homogeneous function of x, y, z of

the same degree and also xP + yQ + zR does not vanish identically then

——— is the integrating factor of the given equation.
xP+yQ+zR

Let us take up an example to examine the above claim.

Example 13: Verify that the equation
(x +xy+ y2) dx—x(x+z) dy+ x’dz =0. (28)
is integrable and determine its solution.

Solution: Here P = x> +xy+ yz, Q =—x(x+z), R=x".

The given equation is homogeneous. You may also check that the given
equation is integrable (see E9)).

Further, xP+ yQ+ Rz = .vc().‘2 +xy+yz)—xy(x+2) +x%z

=x*(x+2)
#0
1
Hence —— is an I.F. for the given equation.
x(x+2)
Multiplying the given equation by L.F =—; , we obtain
x(x+2)
x“f(x+z)ydx_ .x:(x+z) s dz=0,
x(x+27) x(x+2) x(x+2)

combining various terms in the equation above, we get
1 dy |

di+2ax-L 4+ 1 gr=o0,
X+ x? X x+z
’ d(x+z)+i[_;vJ=0l
x+2z dx X

57
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which is an exact differential.
Integrating, we get the required solution as

In I(x+z)|—'—y=c‘,
=
where c is an arbitrary constant.

Fk &

You may now try the following exercises.

E9) Verify that Egn. (28) is integrable.

E10) Verify that the following equations are integrable and determine their
solutions.

) 32 = y)dx+ 2 () = )y + xy* (2 — xy)de =0
i) %+ y2)dx+ (22 + 2x)dy + (y* —xy)dz =0
i) (V+2)dx+xydy+xzdz=0

iv)  yz(y+z2)dx+ xz(x+ z)dy + xy(x+ y)dz =0

We now conclude this unit by giving a summary of what we have covered in it.

15.5 SUMMARY

In this unit, we have covered the following:

1. Anequation of the form
Z F. (x5 X35 .00 X,) d%;=0
i=1

where F (i=1, 2,..., n) are continuous functions of some or all of the n
independent variables x,, x,, ..., x, is called a total differential equation.

2.  One-parameter family of surfaces in 3-dimensional space gives rise to a
total differential equation in three variables of the form

Pdx+ Qdy+ Rdz=0.

3. Total differential equation P dx+ Q dy+ R dz =0 is integrable, if and
only if

90 _R), (R 2P|, (3P _0)_
P(az_ By}-‘-Q[ax azJ+R(a}’ ax]_o

If integrable, then its integral curve is a one-parameter family of surfaces
in 3-dimensional space.

4.  Total differential Egn. (6), viz.,
Pdx+Qdy+Rdz=0
can be solved if

i) it is exact and then solution is evident after, at most, regrouping of
terms by inspection.

ii) itis integrable and can be written in variable separable form
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X(x)dx+Y(y)dy+Z(z)dz =
Its integral then yields the solution by variable separable method.
i) itis integrable and can be expressed in the form
P(x, y)dx+Q(x, y)dy + R(z)dz=0
with one variable separable with the expression
P(x, y)dx+Q(x, y) dy
as exact function say, du of x and y. The solution can then be
written as
u(x, y)+ jR(z)dz =constant.
iv) itis homogeneous and integrable by separating one variable, say

z, using the transformation x =uz, y =vz. The equation can then
be integrated by the method given in 4. iii) above.
. : 1 ,
Further, in case, if (xP+ yQ+zR)#0,then ———— isan
xP+ yQ+zR
integrating factor of homogeneous integrable equation of the form

(6).

15.6 SOLUTIONS/ANSWERS

E1)

)

i)

The given family of surfaces is
Xz+x° yv=c

It is a one-parameter family of surfaces.
The total derivative of the above relation gives

d(x’z+x’y)=0
= xdz+3x"dx.z+x’dy+2xdx.y=0
= (Bx’z+2xy) dx+x’dy+x’dz=0
= (3xz+2y)dx+ xdy+ x’dz =0 (dividing by x,as x#0)
which is the required total differential equation.

The given family of surfaces can be written as
(z+c)Y =a’—-x"—y’

Taking total derivative of the above equation, we get

a’{\/a’2 —x—y? )— dz=0

= (2xdx—2ydy)—dz=0

= xdx+ydy++a*—x'—y® dz=0

which is the required total differential equation.

(yz+2x)dx+(xz—2z)dy +(xy—2y)dz=0.

Here P=y*+ 7" —x°,0=—2xy, R=-2xz 5
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The integrability condition (10) assume the following form
Lh.s.=(y*+ 2> —=x*)(0-0) = 2xy(—22—22) - 2xz(2y + 2y)

=8xyz—8xyz =0 =r.h.s.

which indicates that condition (10) is satisfied.
IR oP oP 00
AISO, — =27 #2z=—  and —=2y#F—2y=—2"
n A I ™

.. Given equation is not exact.

||) P=)-‘2,Q=—Z,R=}’

0 oR

Integrability condition (10) is satisfied. But BQ ¢a— and
< B

a—P # a—Q . The given equation is not exact.

dy ox

i) P=2xy+1,0=x" R=xtanz

Integrability condition (10) is satisfied. But g—R # B_P and
X 4

B_P z a—Q . The given equation is not exact.

dy ox

E3) i) P=3-3,0=-%,R=1%.
Here a—Q=a—R=O, 8_R=3_P=0 an a—JD:EJ—Q=—I
dz dy dx 0z dy Ox

. The given equation is exact.
Also, (x— y)dx—xdy+zdz =0

= xdx—(ydx+ xdy)+ zdz =0

= x —2x}-'+z2 =g
which is the required solution.

i) Here P=(y—-2)(y+z—2x),0=(z—x)(z+x-2y),
R=(x-y) (x+y—2z2)
The given equation is exact since

30 R R P P 30
I By e 2 gy o S S
A T A T T L T e

We can re-write the equation in the form
(y2dx+2xydy) — (zdx + 2zxdz) + (z°dy + 2yzdz) — (x*dy + 2xydy)

+ (x°dz + 2xzdx) — (y dz + 2yzdy)=0
= d(y’x)—d(Zx)+d(2’y)~d(¥*y)+d(x’2)~d(y*2) =0
Integrating, we get the required solution as

yz.r— 2'x+ zz_v —xzy +x'z— yzz =

iy Here P=(3x"y’—¢"2), 0 =(2x’y +sinz), R=(ycosz —e*)
Since %—f=g—f=cosz,3—f=2—§=—e‘ and 2—'::%—?:&2)'
60
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E4)

ES)

the given equation is exact.
Re-arranging the terms of the given equation it can be written as

Bx’y*dx +2x’ ydy) — (e* zdx + dz) + (sin zdy + ycos zdz) =0
= d(x'y’)-d(e*z)+d(ysinz)=0

Integrating, the required solution is

Xy’ —e‘z+ysinz=c.

i) Integrable; L i zl=c
}.!

Hint: Dividing by y’z, the given equation can be written as

&g By

2

y ¥ z

- d(iJ-d(m|z|)=0.
y

i) Integrable; | x1.4/y> +2> =¢

Hint: Given equation can be written as

ﬁ+)rdy+zdz=

0
X yz+z)'
Btk
o | lelp BERE) gy
yrg

iy Integrable; x+Inly+zl=c¢
Hint: Given equation can be written as
dy+dz _

y+z

dx+ 0.

Multiplying throughout by 2x, the given equation reduces to

(y* + 2% = x)dx = 2xydy + 2xf (2)dz =0 (29)
Here P=y>+7°—x*, Q =-2xy, R=2xf(2). (30)
If Eqn. (29) is integrable then it must satisfy the integrability condition
00 OR oR JP oP 0dQ
Pl =-—|+0| ———|+R ——=|=0 31
[ % ayJ Q[ TR J ( T ) &)

Substituting in Egn. (31) from Egn. (30), we get
(2 +27=x) (0-0)=2xy(2f (2) —22) +2xf (2) 2y +2y) =0
= —4xy(f(z)—-2)+8xy f(2)=0
= fla)=-z2
Putting the above value of f(z) in Egn. (29), we get
(32 + 22 =x%)dx—2x ydy—2xzdz =0

or, *+7*+x")dx—2x’dx~2xy dy—2xzdz=0
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E6)

E7)

ES8)

o, (V+z*+x)dx—2x(xdx+ydy+zdz)=0

dx _2xdx+2ydy+2zdz
X xz+y2-1-z2

or,

Integrating the above equation we get the required solution as
Inlxl+nlcl=Inl(x"+y* +2z7)l

or, | xcl=(x*+ }’2 + 7).

The given equation is
ycInzdx—zxInzdy+xydz=0,z>0

Dividing throughout by xyzIn z, we get
dx dy dz

+

=0
x y zlnz

It is in variable separable form. Integrating, we have
Inlxl=Inlyl+In(lnz)=Inc
[ x|
In|—.Inz |=ln¢
[yl
= clyl=lxllnz.
The given equation is
f(2) (ydx+xdy)+ f'(z) xydz=0
ydx + xdy " f (Z.)d _

Xy f(2)
ﬁ41-ﬂ+ F@ dz=0
x y [

It is in variable separable form. Integrating, we get
Inlxl+mnlyl+nl f(z)l=Inc

= lxlIyl.lf(2)l=c.
i) The given equation is
x(y* —at)dx+ y(x* =z")dy —z(y* —a)dz =0
Dividing throughout by (y* —a®) (x* —z%), we get

xdx — zdz 4 vdy

=0 (32)

2 2 2
X'==g ¥y —aq

Thus given equation is separable in y.
It is, therefore, integrable if

oP _OR
dz Ox
=
where P=———, R=——
SR o =g
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Here or - é;_R and the given equation is integrable.
Z X
Eqgn. (82) can be written as
1,6 108 =)
2 x-z7 2 y -a'
Integrating, we get

0

] 2 l 3 ] 2 2
—]nlxz—z'l+5]nly2—a' I:Elnc:ﬂx'—z?I.Iy‘—azlzc

where ¢ is an arbitrary constant.

X—V
—|—z+Inlzl=¢

i)  Integrable; In

xX+y
Hint: Given equation can be written as
2ydx—2xdy z-1

2 2
X =y zZ

dz=0.

E9) Integrable.

E10) i) The given equation is
y22 (6% = yz)dx + 2x*(y* — 2x)dy + xy*(2° = xy)dz =0
Check that it satisfies the integrability condition (10).

The given equation is a homogeneous total differential equation.
Substituting x=uz and y =vz, itis reduced to

vk =v)du+u’ (v —u)dv=0

Dividing the above equation by u’v*, we get

[l— l,]dm[l— "‘i]m:o
v oou Vo

(ﬁ—idv]mx;—izdu:o

v 1"2 u

=% d[£+v+l]=0

v u

Integrating, we get

1
2 4y +—=constant
v u
= Xyt ) ¢, (substituting for u and v in terms of x, y,z)
y x z
where ¢ is an arbitrary constant.

lx+zllyl —e
ly+zlI a
Hint: Substituting x =uz, y =vz and simplifying, we get

ii) Integrable;

v +v)du + (u+ Ddv i dz
(u+1) (v +v) Z
du dv dz
+ R

2
u+l v+v z

or, =0
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ii)

iv)

Integrable; | x 11 y*> +z* "*=¢
Hint: Substituting y = xu, z = xv and simplifying, we get
2dx  udu+vdy
+ =0

2 2
X u +v

Integrable; | xyzl=cl(x+y+2)I

- X -
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16.1 INTRODUCTION

In Units 14 and 15 we have presented the necessary tools required for the
study of partial differential equations (PDEs). Many problems in geometry,
physics and other areas of science and engineering, when formulated
mathematically give rise to PDEs. Such equations arise when the number of
independent variables in the problem under discussion is two or more. Any
dependent variable is then likely to be a function of more than one variable
and possesses not the ordinary derivatives with respect to a single variables,
but partial derivatives with respect to several variables. For instant, if uis a

function of (x, y, 1), then
u,+u =u (1)

is a partial differential equation. Other well known examples of PDEs in two
dimensions are

U, +u, =0 (Laplace equation) (2)
1

Uy Tl = zu, (Heat equation) (3)

Wy + Uy, = c’u, (Wave equation) (4)

In general, a PDE may be written in the form
FlE 5 oy B Wy Mgy Ry gy o) 20 (5)

65



Block 4

First Order Partial Differential Equations

66

which involves several independent variables x, vy, ..., an unknown function
u of these variables, and partial derivatives u_, u ,...u ,u, ... of the

function. Egn. (5) is defined in a suitable domain D of the n-dimensional
space R" in n independent variables x, y, .... Asinthe case of ordinary
differential equations, the order of a PDE is the order of the highest order
partial derivative occurring in the equation. Thus, Egn. (1) is a PDE of first
order whereas, Eqns. (2)-(4) are second order PDEs. In this unit we shall
concentrate on the first order partial differential equations. In Sec. 16.2, we
shall begin with the origin of partial differential equations, restricting ourselves
to one dependent variable z and two independent variables (x and y).

Unlike ordinary differential equations, where equations are either linear or non-
linear (refer Unit 6 of Block 2), partial differential equations have further
classification of linear equations. In Sec. 16.3 we have taken up this
classification for first order partial differential equations. Also, the classification
of integrals/solutions of partial differential equations of first order, as made by
Lagrange (1736-1813), an Italian mathematician, in 1769 has been discussed
in Sec. 16.4 of the unit.

Objectives
After studying this unit, you should be able to:
e describe the origin of the first order partial differential equations;

¢ identify linear, semi-linear, quasi-linear and non-linear PDEs of the first
order; and

e distinguish the integrals of first order PDEs into the complete integral, the
general integral, the singular integral and the special integral.

16.2 ORIGIN OF THE FIRST ORDER PARTIAL
DIFFERENTIAL EQUATIONS

First order partial differential equations can arise in geometry in a variety of
ways. We begin by examining the interesting question of how they arise. We
consider the various situations one by one.

Let us start by taking a simple example. Consider an equation of a family of
spheres with centres lying along the z -axis.

X +y +(z=c)=r (6)

and try to eliminate the arbitrary constant ¢ from it. On differentiating Eqgn. (6)
with respect to x and y, we get

o

A‘+(z—c')ai:0 and 'v+(z—c)%=0.
ox

dy
Eliminating ¢ from the above equations, we obtain
dz 0Oz
y——x—=0 7
e 0 (7)
which is a first order partial differential equation. Eqn. (7) is of first order as it

involves only the first order partial derivatives % and %

by y
Thus, a family of spheres given by Eqn. (6) satisfies the first order partial
differential Egn. (7). This holds, in general, for all surfaces of revolution with
the z -axis as the axis of symmetry.
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Surfaces of revolution

Let us consider the equation
z=fr), r=(x*+y»)"? (8)

Where f is an arbitrary function on some domain D having continuous

partial derivatives. Eqgn. (8) represents surfaces of revolution with z -axis as
the axis of revolution; for example, sphere, cone, etc.

On differentiating Egn. (8), with respectto x and y respectively, we obtain

az_ _‘;.ar %_ _.r.g
g—P—f (f)ax and ay—@'—f (f)ay
where
o X %
a‘z\'_,‘,‘x2+}:3 _P
and
ar_y
dy r
X Vs
= p:? f(r) and q:'?j (r) 9)

Eliminating the function f(r) from Egns. (9), we get

w—xq=0, (10)
dz 0z
or, y——x—=0
Tdx 0y

which is a partial differential equation of the first order.

Note that throughout the discussion of partial differential equations with z as
dependent variable and x and y as independent variables, we shall be

denoting the partial derivatives of z with respectto x and y by p and ¢,
respectively.

We next consider the two parameter family of surfaces.
Two-parameter family of surfaces
Let us take up an example of two parameter family of spheres.

Example 1: Obtain the PDE corresponding to the equation
(x—a)’ Jr(jy'—b)2 +z2=1.
Solution: The given equation can be written as

P =1-(x—a)’ = (y—b)’ (11)
Differentiating Eqgn. (11) partially w.r.t. x and y, we get
22%=—2(x—a) (12)
ox
and
0z
27-==-2(y—b) (13)
dy

From Egns. (12) and (13), we obtain -
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(x—a) :—zg—i and (_}-‘—b)=—zg—i.

Substituting these values of (x—a) and (y—»b) in Egn. (11), we get

- Zax dy

or, z'(l+p*+q°)=1

which is again a first order PDE.
Thus, the two parameter family of spheres satisfies the first order partial
differential equation.

Fdkdk

The result holds true, in general, for any two parameter family of surfaces
z=F(x, y,a,b) (14)

where a and b are two parameters. If we differentiate Egn. (14) with respect
to x and y, respectively, we get

p=F (x, y,a,b) (15)
and
q="F,(x, y,a,b) (16)

If we take Egns. (14) and (15), we can solve them for @ and b provided,

a b
Fra F\'h

Any two of the three Egns. (14), (15) and (16) can be solved to find a and b
in terms of x, y, p. g, provided, the following holds:

=FF, ~FEF. #0.

a® xb b" xa

i) F F,—FF_#0 (if Egns. (14) and (15) are chosen)

b7

ii) F . F,—F,F  #0 (if Egns. (15) and (16) are chosen) (17)

xa® yb xb* ya

i) FF,—FF,_+#0 (if Egns. (14) and (16) are chosen)

a® yb b* ya

Thus, to solve for a and b, we require either (17i) or (17ii) or (17iii).

Substituting the values of a and b so obtained from any two equations of (17)
into the third equation, we will get a relation of the form

fx, ¥, 2, p,q) (18)

which is a general partial differential equation of the first order in two
independent variables x and y .

Let us consider the following examples.

Example 2: Obtain the PDE corresponding to the equation
Z*(I+a’)=8(x+ay+b)’.
Solution: The given two-parameter family of surface is
Z’(1+a’) =8(x+ay+b)’ (19)

Differentiating Egn. (19) w.r.t. x and y, respectively, we obtain

p(+a’)=12(x+ay +b)* (20)
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and zg(1+a’)=12a(x+ay+b)’ (21)

In order to obtain the PDE we have to eliminate a and b from Egns. (20) and
(21). Taking the cubes of Eqgns. (20) and (21) and adding, we get

20+ (PP +¢°) =12 (x+ay +b)’ (1 +a)

- %z*(lﬂf)-" (using Eqn. (19))

= (p"-f—q")=2'?z, (22)
which is the required PDE.

ddkdk

Example 3: Obtain the PDE corresponding to the equation

2z=(ax+y)’ +b (23)
Solution: Differentiating Eqn. (23) partially w.r.t. x, we get
2% =2(ax+ y)a
ox
or,
l—Z=.fzx+_",-',.f.':t{) (24)
a ox

Differentiating Egn. (23) partially w.r.t. y, we get

-

—=ax+y (25)
dy
From Eqgns. (24) and (25), we can write
% =a o
ox Oy

Substituting in the above equation value of a from Eqn. (25), we get

o _1 (o

ox x\dy ~)ady

ox |\ dy Y dy
or px+qy=qz

which is the required first order PDE.

Fedkde

Sometimes instead of eliminating arbitrary constants or parameters we need
to eliminate an arbitrary function from the given equation in order to obtain a
PDE corresponding to it. We are illustrating this situation in our next example.

Example 4: Obtain a PDE corresponding to the equation
z=xy+f(x*+y7) (26)

where f is an arbitrary function.
Solution: Differentiating Egn. (26) w.r.t. x, we get

k =y+ _)‘”'(I2 + }’2).2.1'
dx
= 1{E-r]2rete @7
x \odx

Again differentiating Eqn. (26) w.r.t. y, we get 69
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aw—,\r+f Vi +y )2\»‘
dy
[a( } ) 2 :
= —|——x|=2 f(x"+y) (28)
dy

From Egns. (27) and (28), we obtain

l[a_z_ ,J:L 9z _ .
xiae ° dy

or, -y =xqg-x

which is the required PDE of the first order.

ek dk

We shall now take up an example to illustrate that if the given equation
involves more number of arbitrary constants than the number of independent
variables, then the above procedure of elimination would yield partial
differential equations of higher order than the first.

Example 5: Find a PDE corresponding to the equation

where a, b and ¢ are arbitrary constants.
Solution: Differentiating Egn. (29) w.r.t. x and y, we get

2—f+£a—z—0 or c’x+a’ zi=0 (30)
a dx ox
2y 24, az 0z
and —+— or c’y+b’z—=0 31
gt gy MA I R o
once again differentiating Eqgn. (30) w.r.t. x and Egn. (31) w.r.t. y, we obtain
g +7 az : 2 822
“+a | —| +a’z =0 32
¢ +a [ a.rJ 1 3 (32)
aZ 4 822
and ¢’ +b’ +b°z —=0 33
{3})1 dy’ o)
From Egn. (30), we have
o —a’z oz
X Oox
Putting this value of ¢* in Egn. (32) and simplifying, we get
d°z (az] oz
W=t — | =2 —=0 34
ox” dx ox (34)
Similarly putting the value of ¢* from Eqgn. (31) in Egn. (33), we get
d’z dz| oz
zv—+ = =0 35
) (8»] "y o

Thus, Eqns. (34) and (35) give the required PDEs. Note that both the PDEs
are of order two.

dedkd

We now move on to the next situation

Surfaces of the form F(u,v)=0
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We start by considering the following example.

Example 6: Eliminate the arbitrary function /' from the equation
F(x+y+z, x*+y*—z%)=0 and obtain the corresponding PDE.

Solution: Let u=x+y+z and v=x>+y> -7’ (36)
then the given equation becomes
F(u,v)=0 (37)

Differentiating Eqgn. (37) partially w.r.t. x, we obtain
aF(au du azJ oF [8&} v az]
—| === |+=— 0
oulox 9z ox) ov \ax 0z ox
Substituting the values of u ,u_, v ,v. from Egn. (36) in Egn. (38), we get

JoF Jz JoF 0z
au[l ]25[“ a]-o

oF [OF —2(x- pz)

(38)

oul v 1+ p (39)
Similarly, differentiating Eqn. (37) partially w.r.t. y, we get
aF(au du 0z J 8F(av dv dz ]
—| =—+= + +— 0
duldy dz dy) dv\dy 0z dy
Substituting the values of u,,u_, v , v. from Eqn. (36) in the above equation,
we get
oF [dF _~2y—qz) (40)
oul v l+g¢g
Eliminating F from Egns. (39) and (40), we obtain
X—pz_Yy—4z
I+p I+g¢
o, (I+gq)(x-pz)=>1+p)(y—qz)
o, (y+2)p—-(x+z2)g=x—-y
which is the desired PDE of the first order.
The method above can be applied is general, for surfaces of the form
F(u,v)=0 (41)

where u=u(x,y,z), v=v(x, y, z) are known functions of x, y and z,and F
is an arbitrary function of « and v. If we differentiate relation (41) with
respect to x and y, respectively, we obtain

o (e, + pu_)+a—F (v, +pv.)=0 (42)
du v :
B_F (u\,+qu_)+a—F(v‘,+qv_)=0 (43)
du : dv - :

oF oF oF /ou
To eliminate — and — from Egns. (42) and (43), we calculate
du av 08, (9) ) oF /dv

from Eqgns. (42) and (43) and equate them to obtain

(v, +pv,) (v,+gqv.)
(u,+pu,) (u,+qu.)
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= pvu,—uy)+quy —uyv)=uy —vu,

du,v) du,v) du,v)
2 + ¢ = 3
Yoo T oty

(44)
which is a partial differential equation of the first order.
We now illustrate the above method through an example.

Example 7: Eliminate the arbitrary function F from the equation
F(z—x, xy) =0 and obtain the corresponding PDE.

Solution: Let u =z —x and v=xy, then
F(z—x, 2y)=F(u, v)=0
From Eqgn. (44), we have

P a(”»'ﬂ’) +qa(u, V) _ a(u, V)
d(y,z) Iz, x) 9A(x,y)

= xp—-yqg—x=0

which is the required PDE of the first order.

Hk

There are many other situations where you would have come across with
PDE/(s) of the first order. We recall some of them here.

Integrating Factor

You may recall the method you learnt in Sub-sec.15.4.3 of Unit 15.
There the problem of finding an integrating factor for a particular form of the
total differential equation

P(x, y)dx+Q(x, y)dy=0

consists in determining a function (x, y) for which (# Pdx+ u Qdy) is an
exact differential. This leads to

9
dy

which is a partial differential equation of first order for the function & (x, y)
and for known P and Q.

(ﬂP)=ain> (45)
X

Euler’s Equation for a Homogeneous Function

In Unit 7 of Block 2, we defined a function f to be a homogeneous function of
x and y of degree n, where n is a real number, if it satisfies

fAx, Ay) =2 f(x, y)
for all x, y and any constant 4 >0.

Let z= f(x, y) be a homogeneous function of x and y of degree n. Then
by Euler’s theorem, the function f satisfies the first order PDE

xf.+yf, =nf.
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Hamiltonian Function

In Unit 14 we mentioned that the equation of motion of a dynamical system of
n degrees of freedom (ref. Eqn. (27), Unit 14), are given by
dp, _=0H dg, _oH

= ) =—-.,i=12,...,n 46
dt  dq, dt OIp, (46)

where H(q,, q,.....q,, P\ P>---, P,- ) is the Hamiltonian function which is
equal to the total energy of the system. In terms of time ¢, the
q,'s(i=1,2,...,n) are the generalized coordinates and p,'s(i=1, 2, ..., n)

are the generalized momenta, which characterize the state of a dynamical
system. Eqns. (46) are a system of 2n first order partial differential equations
called Hamilton canonical equations of motion. The solution of these
equations provide a description of the properties of the dynamical system at
any time ¢. The equations are named after W. R. Hamilton (1805-1865), an
Irish physicist, astronomer and mathematician. He made important
contributions to classical mechanics, optics and algebra. His best known
contribution to mathematical physics is the reformulation of Newtonian
mechanics now called Hamiltonian mechanics.

We can thus say that there are many situations which lead to partial
differential equations of the first order. You may now yourself obtain a few
PDEs while doing the following exercises.

E1) Show that the family of right circular cones
¥ +y =(z-c)*tan’*
whose axes coincide with the z -axis satisfies a first order partial
differential equation.

E2) Eliminate the arbitrary constants a and b from the following equations
and obtain the corresponding partial differential equations. Also specify
the order of these PDEs.

i) z=ax+by+a’ +b’
i)  z=(x—a)’+(y-b)’
i)  z=x4ax’y’+b

V)  az+b=a’x+y

V)  z=ae" sinbx

4 —h?
vi)  z=ae " cosbx

vi) z=ax+by+a+b—ab.

E3) Find the partial differential equation arising from each of the following

surfaces:
XV
/(%)
z

i) z=xy+f(x7+y7)

i) z

iy  Fx*+y*+22, 22 -2x)=0

iv) 2z=(ax+y)’+p
73
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You may recall that in Sec. 6.2 of Unit 6, Block 2, we classified the ordinary
differential equations depending upon the degree of dependent variables and
its derivatives into two classes, namely, linear and non-linear. We term the
ODE which is not linear as the non-linear one. But, in the case of PDEs, as
we have already mentioned in the introduction of this unit, these equations
have further classifications. If a partial differential equation is not linear, it can
be quasi-linear, semi-linear or non-linear. We now take up this classification
for the first order partial differential equations.

16.3 CLASSIFICATION OF THE FIRST ORDER
PARTIAL DIFFERENTIAL EQUATIONS

Consider the general form of the first order PDE in two independent variables
x and y given by Egn. (18), viz.,

f(x, v, 2, p,q)=0,

with p=%,q=g—i.

Eqgn. (18) can be ciassified into the following types.

1)  Egn. (18) is said to be linear if f is linear in each of the variables z, p
and ¢ and the coefficients of these variables are functions only of the
independent variables x and y. For instance, the equation

Xp+yg=(x+y)z
is a linear equation. The most general linear, first order PDE has the
form

P(x, y)p+Q(x, y)g+R(x, y)z=H(x, y) (47)

where P, O, R and H are functions only of the independent variables
x and y. Eqgn. (47) is called homogeneous if H(x, y)=0 and non-
homogeneous if H(x, y)#0. Examples of some more linear PDEs of
the first order are

yp + xq = xy (48)
np+(x+y)g—u=e' (49)
xp—yqg—nu=0 (50)

Here Eqgns. (48) and (49) are non-homogeneous whereas, Egn. (50) is a
homogeneous equation.
2)  If we can write Eqgn. (18) in the form

P(x, y)p+0(x, y)g=R(x, y, 2) (51)
it is called a semi-linear PDE of first order. Here the coefficients P and

Q are independent of z i.e., they are functions of only independent

variables whereas, R is an arbitrary function of both dependent and
independent variables.

Equations
px(x+y)=qy(x+y)—(x—y)(2x+2y+ pad) (52)
xp+yg=7"+x" (53)
x+1)2p+(y—=1)>%q = (x+y)z* (54)

are all examples of semi-linear equations.
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3) Ifitis possible to express Egn. (18) in the form
P(x y, 2)p+0(x, y, 2)g=R(x, y, 2) (55)

then it is called a quasi-linear PDE of the first order where the
coefficients. P, Q and R are functions of x, y and z. Such equations
are linear in their highest order derivatives.

Eqn. (55), being of first order is linear in its first order partial derivatives
of the dependent variable z(x, y) i.e.,in p and ¢q.

Equations
2(xp—yq) =y’ —x7, (56)
(y+2)p—(x+y2)g=(x"~y")z (57
and
x(y: +2)p— yilx? + 2)q+ 72 =0 (58)

are all first order quasi-linear equations. In Eqns. (56)-(58), the highest
derivative is of order one and its power throughout is one.

You might have also noticed here that the linear and the semi-linear
equations are the special cases of the quasi-linear equations.

If Egn. (18) is none of the types 1), 2) and 3) mentioned above, we call it a
non-linear PDE of the first order.

For instance, we cannot put equations
220+ p*+4°) =1 (59)
and 2(y+zp)=q(xp+yq) (60)

in any of the forms 1) to 3) discussed above. Eqns. (59) and (60) are non-
linear equations.

Note that unlike ODEs, linearity in PDEs (semi-linear and quasi-linear) does
not depend on the degree of the dependent variable z as you can see in
Eqns. (52)-(54) and (58) above. Here the linearity of the derivatives of the
dependent variable is considered.

You may now try the following exercise.

E4) Classify the following equations into linear, semi-linear, quasi-linear and
non-linear equations.

) ap+yg=zx+x"+y’

i) 9x’ylz=3px’y’ +3gx’y + pg
iy  ap+2yg=x7/y

iv)  py—gx=x’-y’

V) (P =y =z2))p+2xyg=2xz

vi) (—’CZ+_}'E)P+(_\/‘Z—2x3)q+2x},+zi =0
V") COS(X # })p += Sirl( X+ _\-‘)q =z+4 .l_

vii)  pi+qt +2px+2gy+zp =0.

75
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Having discussed the classification of PDEs of the first order, you can now
classify any given PDE of the first order into linear, semi-linear, quasi-linear
and non-linear equation. Next, your natural curiosity may lead you to enquire
about is solution. Since partial derivatives of multivariable functions are
ordinary derivatives with respect to one variable (the others being held
constant), it might occur to you that the study of partial differential equations
should be an easy extension of the theory for ordinary differential equations.
But such is not the case. Partial differential equations and ordinary differential
equations are approached in different ways. To understand why, you may
recall that in the case of ODEs, a general solution of the second-order linear
ODE

d’y
dt’

p +qﬁ+:}!=0 (61)
dt

is y(r)= Ay, (t)+ By,(t) , where A and B are arbitrary constants and y, ()
and y,(r) are any two linearly independent solutions of the equation. Once
y,(t) and y,(t) are known, every solution of the equation is of the form

Ay, (t)+ By, (1) forsome A and B. Solution of Eqn. (61) for particular values

of A and B determined under given conditions is a particular solution of the
equation. But PDEs are approached in different ways because arbitrary
constants are replaced by arbitrary functions and determination of these
arbitrary functions using subsidiary conditions is usually difficult or impossible.
We shall, therefore, in the next section first define what we mean by a
solution/integral of a PDE of the first order and then classify different types of
integrals that might arise and give the relation between these different
integrals.

16.4 SOLUTIONS OF PARTIAL DIFFERENTIAL
EQUATIONS OF THE FIRST ORDER

Consider a general PDE of the first order as given by Eqgn. (18), viz.,
S vz, poq)=0

By a solution of this equation we mean a continuously differentiable function
say, ¢ defined for all x, y on some domain D c RxR such that

fx, v, 9(x, y), 8.(x, ), 8,(x, y))=0 (62)

If we write z =¢@(x, y), then this solution represents a family of surfaces in the
xyz-space. For example, you may refer to Eqn. (23) of Example 3, viz;

2z=(ax+y)* +b

where a and b are real numbers, is a two parameter family of surface and it
represents the PDE

pPx+qy=q’, (63)
which is of the first order. Eqn. (23) is the solution/integral of the PDE (63).

In Examples 1 to 3 considered in Sec. 16.2, you have seen that the two-
parameter family of surfaces give rise to linear or non-linear first order partial
differential equations. We shall, therefore, assume that a general first order
partial differential Eqn. (18), viz.,

fx ¥z, psg)=0

can have a solution
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z=F(x, y,a,b), (64)
which depends on two parameters a, b .

Depending on the number of parameters, we now classify the solutions of first
order PDE as follows:

Classification of Integrals

1)  The Complete Integral

A two-parameter family of solution (64), i.e., z=F(x, y, a, b) is called a

complete integral of Eqn. (18) if, in the region considered, I satisfies any of
the Egns. 17 (i, ii, iii). In case of Example 3, Egn. (23) is a complete integral of
the PDE (63).

2) The General Integral
In Eqgn. (64) if we take b =b(a), we obtain
Z = F(xa }’, ﬁ', b(a)) 1 (65)

which is a one-parameter family of solutions of Egn. (18) and is a subsystem
of the two-parameter family given by Eqn. (64). We can obtain the envelope
of Egn. (65) by eliminating a between relation (65) and relation

F +Fb'(a)=0
In fact we can solve the above relation for a, then
a=a(x, y)

and substituting this value of a in relation (65), we obtain the general integral
of Egn. (18) as

z=F(x, y, a(x, y), bla(x, ¥))) (66)

The surface given by Eqn. (66), being the envelope of the one-parameter
family of surfaces (65), touches every member of the family along the
characteristic curve and has the same values of p, q all along the curve as

Eqn. (65). Hence, itis a set of solutions of Egn. (18) depending on an
arbitrary function. In case of Example 3, one parameter family of solution is
written by taking » = b(a) in Egn. (23) as follows:

2z =(ax+y)’ +b(a) (67)
The envelope of Egn. (67) is obtained by solving the equation

(ax+ )‘)x+]5b’(a) =0
for @ =a(x, y) and then substituting the value of a(x, y) in Eqn. (67).
Thus, the equation
2z=(ax+y)’ +b(a(x, y)) (68)

where b is an arbitrary function gives the general solution of Eqgn. (63)

If in Egn. (66) a particular function b(a) is used, we obtain a particular
solution of the PDE. Different choices of b may give different particular
solution of the PDE (18). For instance, we may take » =a in Egn. (67) and
obtain a particular solution 2z = (ax+ y)+a of Egn. (63).

3) Singular Integral

In addition to the general integral, we can sometimes obtain still another
solution by finding the envelope of the two-parameter family (64). This is 77
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obtained by eliminating a and b from the equations

z=F(x, y,a,b)
O=F, (69)
0=F,

and is called the singular integral of Egn. (18). For instance, you know from
E2)vii) that the two parameter family of planes

z=ax+by+a+b—ab=F(x,y,a,b)
is the complete integral of the PDE
z=px+qy+p+q-—pq (70)
The envelope of this two parameter family of planes is obtained from
z=F=ax+by+a+b—ab
F=0=x+1-b=0=>x+1=b
F,=0=y+l-a=0=>y+l=a
Thus, we get the envelope as
z=x(y+D+y(x+D)+y+l+x+1-(x+1) (y+1)
=xy+x+y+l
which is the singular solution of the PDE (70).

You may also note that not all equations have singular solution. For instance,
consider the two parameter family of solution

2z=(ax+y)*+b=F(x, y, a, b) (71)

of the PDE px+qy =¢" in Example 3. Here we have
F=0=(ax+y)x=0
F, =0=1=0, which is ambiguous.

Thus, the envelope of Egn. (71) and hence the singular integral of equation

px+qy =¢q° does not exist.

However, the singular solution can also be obtained directly from the PDE
(18) without going through the process described above. This can be done by
eliminating p and ¢ from the equations

fx y,z, p,q)=0
f,=0,f,=0

In fact, the two processes are equivalent is evident from the following
discussion.

Since z= F(x, y, a, b) is a two-parameter family of solutions of Egn. (18), the
equation
f(x, y, F(x, y,a,b), F(x, y,a,b), F (x, y,a,b))=0 (73)

(72)

holds identically in @ and b . We differentiate Eqn. (73) with respectto « and
b, and obtain
LB 1ole ¥ 5 ZO,}

pooxa g ya

f‘ F:f: + prrh ¥ f;,rF = O"

yb

(74)

But we know from Eqgn. (69) that on the singular integral,
F‘ﬂ = 0’ F}r = O *
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Therefore, relation (74) reduces to

B+ f K. =0
j‘p xa f:; ya (75)
j p F\'h + ‘fq F‘_\'h == 0
In order to solve the system of Eqns. (73) for f, and f, , consider
“ Y|=F,F,—F,F, 76
F‘-j, 1:‘_‘-}, xat yb th® ya ( )

But you know from Eqns. (17) that F' satisfies F, F, — F,F,, #0 (Egn. 17 i)
and hence the only solution of Egn. (75) is

f, =0, f, =0 (ref. appendix Unit 10)
Therefore, we can find the equation of the singular integral from Eqns. (72) by
eliminating p and ¢. Egns. (72) provide an alternative characterisation of

the singular integral in terms of the given PDE whenever such an integral
exists.

4) Special Integral

Usually (but not always), the three classes 1), 2) and 3) discussed above
include all the integrals of the first order partial differential equation.
Exceptions may arise in special cases for equations of particular forms. These
equations have solutions which we call special integrals and these cannot be
obtained from 1) or 2) or 3) above.

For example, if we eliminate the function F from the equation

F(x+y,y —\/; ) =0 we obtain the first order partial differential equation
p=g= 2z . Therefore, F(x+ vy, x=z ) involving one arbitrary function, is

the general integral of the equation p—g = 24z . But z=0 also satisfies this

equation and it cannot be obtained from the general integral. It is, therefore,
the special integral of the equation.

We illustrate the ideas presented in 1) to 4) above, about the different types of
integrals of a first order partial differential equation, through the following
examples. We shall start with a two-parameter family of surfaces, construct
the corresponding partial differential equation and then derive the general
integral and the singular integral from the complete integral.
Example 8: Eliminating a and b from the family of planes

g= ax+b_\-'+a2 +b*,

determine the partial differential equation of this family of planes. State the
complete integral of the equation and find its singular integral and the general
integral.

Solution: The family of planes is

f=z—(ax+by+a*+b*)=0 (77)
Differentiating Eqgn. (77) partially w.r. to x and y, we get
p—a= 0} (78)
qg—b=0
Eliminating @ and b from Egns. (77) and (78), we get
I=px+qy+ p2 + q2 (79)

which is the partial differential equation for the given family of planes. Eqgn.
(79) is linear first order PDE. 79
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Since Egn. (77) is a two-parameter family of planes, it represents the complete
integral of the PDE (79).

Using relation (69), the singular integral is obtained by eliminating @ and b
from Eqn. (77) and equations

a—f:0:>.l‘+2(f:0
a

Jf
—=0=y+2b=0
ob z

Substituting the values of a and b from above in Egn. (77), we get the
singular integral as

-

e (D)o 22 ()

= 4z=—(x*+ }-‘3) , (80)

which is paraboloid of revolution.
If we set b =b(a), then we get the one-parameter family as

z—(ax+b(a)y+a’ +b*(a))=0 (81)

The envelope of this one-parameter family is obtained by eliminating a from
Eqgn. (81) and its derivative w.r.t a, viz.,

x+b'(a)y+2a+2b(a)b’(a)=0, (82)

which will be the general integral of the given equation.

ko

Example 9: Find the partial differential equation for the twp parameter family
of spheres of radius 1 in the xyz-space whose centres (a, b, 0) lie on the xy-

plane. State their complete integral and find the general integral and the
singular integral.

Solution: The two-parameter family of spheres of radius 1 in the xyz -space
whose centres (a, b, 0) lie on the xy-plane is

(x—a)* +(y-b)*+z° =1 (83)

You know from Example 1, the first order PDE satisfied by two parameter
family of surfaces (83) is given by

221+ p*+gH) =1 (84)

Relation (83) is the complete integral of the PDE (84) since it involves two
arbitrary constants. If we set h=5b(a) in Egn. (83), we get the one-parameter

family of spheres whose centres are (a, b(a), 0) and which lie on the curve
y=b(x) in the xy-plane. The envelope of this family is then obtained by
eliminating a from the equations

(x—a)* +(y-b(a))* +2* =1 (85)
and its derivative w.r.t. a, namely,
x—a+b'(a) (y—=b(a))=0 (86)

Eqgns. (85) and (86) determine a surface whose axis is y =b(x) and which is
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the general integral of Egn. (84). If a particular value b =2a is used in

Eqn. (86) then we get a = Er 2y . This value of a when substitutded in Egn.
(85), yields

4(22; W@ —zi-r)z -
or (y—-2x)*+5z°=5 (87)

which is a particular integral of the PDE (84).
The two-parameter family (83), gives yet another envelope which we can
obtain by eliminating a and / from equations
(x—a)’ +(y=b)Y’ +z7* =1
x—a=0,
y=b=0
= z=land z=-1 (88)

Thus the envelope of two-parameter family is the pair of planes z ==*1. Eqgn.
(88) gives us the singular integral of the PDE (84). Alternatively, we can
obtain the singular integral from the PDE directly by using the relation (72).

Here
f=220+p*+¢*)-1=0
f,=22p=0=p=0 (89)
f,=22’q=0=>4¢=0

Eliminating p, ¢ from Eqns. (89), we obtain z=1 and z =-1 which is same

as given by Eqgn. (88).

Fkk

It is easy to verify that a particular solution (87) and the singular solutions (88)
satisfy the PDE (84). Also, the singular solution (88) touches the solution (87)
along y—2x=0,z=1and y—2x=0, z=-1. We leave it for you to verify it
yourself.

E5) Verify that

i) a particular solution (87) and the singular solution (88) satisfy
the PDE (84).

i)  the singular solutions (88) touches the solution (87) along,
y=2x=0,z=1and y-2x=0, z=-1.

Let us take up another example.

Example 10: Given that the two parameter family of planes
z=ax+by+a’ +b*, (90)
is the complete integral of the PDE.
z=px+qy+pi+q°,
determine its particular integral.
Solution: We can find any number of particular integrals starting with the
complete integral. Here, we give two particular integrals. Take b =+/1-a" in 31
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the complete integral (90). This means we have to take only a subsystem of
planes from relation (90). The equation of this one-parameter family of planes

is
=z—ax—+vl—-a’> y—1=0 (91)
tdore I8 s e Db (92)

da Vi-a*

Now we eliminate a from Eqns. (91) and (92). Solving Egn. (92) for a, we get
X

X%+ 5P

Substituting the above value of a in Egn. (91) we get the envelope of the
family of planes (91) as the right circular cone whose equation is

a=

(z=1)’=x"+y’ (93)

Eqgn. (93) is a particular integral of the PDE (90). In order to find one more
particular integral of Egn. (90) we make another choice of b(a), say,

b=bla)=a.
Then
F =z—ax—ay-2a’ (94)
and
a—F:O:>x+y+4a:0 (95)
da

By eliminating a between Eqgns. (94) and (95), we obtain the envelope of Eqgn.
(94) as

8z=—(x+ j_;-')2 (96)

which is a parabolic cylinder and constitutes another particular integral of the
given PDE.

*kk

You may now try the following exercises.

E6) In Example 10 obtain the singular integral of the given PDE, it it exists.

E7) Giventhat z=ax+by+ab is the complete integral of the PDE.
Z=px+qy+pq
obtain its general integral and the singular integral.

We now end this unit by giving a summary of what we have covered in it.

16.5 SUMMARY

In this unit, we have covered the following:
1.  PDEs can arise in many ways in geometry, physics and mathematics.
For instance,

i) on elimination of arbitrary function defining the surfaces of
revolution.
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i)

vi)

on elimination of two constants, defining two parameter family of
surfaces, between the equation defining the family of surfaces and
its partial derivatives w.r. to independent variables.

on elimination of the function F defining the surfaces of the form
F(u, v)=0 where u=u(x, y, z) and v=v(x, y, z) are known
functions of x, y and z.

while satisfying the conditions of an equation to be exact.

while writing the Hamilton canonical equations of motion of a
dynamical system.

while obtaining the Euler's equation for a homogeneous function.

2.  The general form of the first order PDE is f(x, y, z, p,q)=0.

3. A first order PDE is classified as

)

linear, (non-homogeneous) if it can be expressed as

P(x, y)p+Q(x, y)g+R(x, y)z=H(x, y)
It is homogeneous if H(x, y)=0.

semi-linear, if it can be expressed in the form
P(x,y)p+Q(x, y)g=R(x, y, 2)

quasi-linear, if it can be expressed in the form
P(x, y, 2)p+0(x, y, 2)4=R(x, y, 2)

non-linear if it cannot be expressed in any of the forms given in i),
ii) and iii) above.

4, The solutions of the first-order PDEs are classified as

i)
i)

ii)

complete integral, which is a relation between the variables
involving as many constants as there are independent variables.

general integral, which is obtained by eliminating ‘a’ between the
complete integral

f(x,y,z,a,b)=0
and the equations
b=>b(a)

&
d ¥ Y v =0,
W, T g

where b is an arbitrary function.
The general integral represents the envelope of a one-parameter
family of surfaces.

singular integral, which is obtained on eliminating a and b
between the complete integral f(x, y, z, a,b)=0

9.

0
ga
f

and =—=0
= ob

The singular integral represents the envelope of the two-parameter
family of surfaces.

83
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Alternatively, the singular integral can as well be obtained by
eliminating p and ¢ from the PDE

F(x, y,z,p,q)=0

oF oF
d —=0,—=0
an dp dq

iv)  Inthe exceptional cases, if there are integrals of the given PDE
which are not included in the complete integral, the general
integral or the singular integral, these integrals are called the
special integrals.

16.6 SOLUTIONS/ANSWERS

E1) Given equation is

+y*=(z-c)’tan’

Differentiating the above equation partially w.r.t. x and y, we get
2x=2(z—c)tan’ & P
2y =2(z—c)tan’ aq

From the above two equations, we obtain
ywp—=xq=0

which is the required first order PDE

E2) i) The given equation is

z=ax+by+a’ +b’ (97)
Differentiating partially with respectto x and y, we get

p=a (98)
and ¢g=b (99)
Eliminating @ and b from Eqgn. (97) by using Egns. (98) and (99),
we get

= p):+.*;ry+1,r;v2 +qf2
which is the required PDE of the first order.

iy 4z=p’+q*, First-order.
i) xp—yg—x=0, First-order

iv)  Given equation is
az+b=a’x+y
Differentiating w.r.t. x and y , we get

2
ap=a

and aq:1:>a:l
q
and hence pg =1 is the required first order PDE.

V) z=ae"” sin bx
Differentiating above equation w.r.t. x and 1, we get
%= abe
X

bt

coshx (100)
84
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% = abe" sin bx (101)
ot

Differentiating Egns. (100) and (101) once again w.r.t. x and ¢,
respectively we get
ox’
9’z 5 5
=ab‘e”
o’
Adding the above two equations, we obtain
oz 9%z
o
which is the required PDE of the second order.

> b
=—ab e"” sin bx

sin bx

N

=0

\:‘,"
-
(8

ae”’" coshx

3 . 2 L 5
% =—bae™"" sin bx and g—; =—ab’e™" coshx (102)
i X

and g—— —ab’e™" cosbx (103)

t
From Eqgns. (102) and (103), we get

d’z 9z

o or
which is a second order PDE.

Vi) z

viii z=ax+by+a+b—ab
Differentiating the given equation w.r.t. x and y , we get
P=2Z,=@,q=%g,=
Substituting the above values of @ and b in the given equation, we
obtain
I=px+gy+p+tq—pq
which is the required first order PDE.

E3) i) The given equation is

z=f [ﬁ] (104)
Differentiating Eqn. (104) partially w.r.to x and y respectively, we
get

Ay Xy

p=f [’———; pJ (105)
z B

and ¢=f [i—’%’qJ (106)
Z Z

where f’ is derivative of f w.r.to

ﬂ_'wf\]l’(
S

Eliminating f~ from Eqgns. (105) a , we get
P _ 4
;XY X
15, Ea,
zZ z § 4

= plxz—xyq)=q(yz—xyp) 35
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ii)

= z(px—qy)=0,

which is the required PDE.

z=xy+ f(x*+y?)
Differentiating the above equation partially, w.r.t. x and y, we get

p=y+2xf =22 =25
g=x+2yf =1 2=2f’

Equating the above twd equations, we obtain
py—gx=y’—x"
which is the required PDE.
The given equation is
F(x*+y*+2%,22-2xy)=0
Let x>+ y*+ 2z’ =u, 22 -2xy=v (107)
Then given equation reduces to
F(u,v)=0

Differentiating the above equation w.r.to x and y partially and

eliminating 88_F and %—F we obtain (following Eqgn. (44)).
1] Vv

d(u, v) i d(u, v) B u, v)

- 108
P30, 2 Yoz A y) (108)

Here o, v) =uyv, —uyv, =2y2z-2z(-2x)=4(yz +xz-)\
Wy '
M =uv, —uy, =2z(-2y)—2x2z=—4(yz +xz) >—(109)
a(z’ x) had Xz
3?:, :)) =uy, —uy, =2x-2x)-(2y)(-2y) = 4(y* —x? ) )

Substituting from Eqgn. (109) into Eqgn. (44), we get
(z+z0) (p—q)=(y* =x*)
which is the required PDE.

2z=(ax+y)' +f

Differentiating the given equation w.r.t. x and y, we get
2p=2(ax+y) o (110)
2g=2(ax+y) (111)

Solving Egn. (111) for & and substituting the value of & obtained

in Egn. (110), we get

p=(q—.v+y')(q_y)

X

= ap+yg=q’
which is the required PDE.
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E4)

ES5)

E6)

E7)

i) Semi-linear
ii) non-linear
i) linear
iv) linear
v)  quasi-linear
vi) quasi-linear
vii) semi-linear
viii)  non-linear.
i) Particular solution (87) is
(y=2x)2+57=5
2 1 7
= z"=l-—=(y—2x
4 5(, )
Differentiating w.r.t. x and y, we get
2 -1
p=—(y—2x),zg=—1(y—2x
P = { 1=~ )
Substituting the values of z°, z’p® and z°¢” from above in Eqn.
(84), we get

HS.=1-0=28" 4 o o+ 0229 _Rgus
5 25 25

i)  Substituting z=1 and z=-1 and their derivatives w.r.t. x and y
in Egn. (84), we obtain (y—2x)=0.
From Eqgn. (90), we have
z=F(x,y,a, b)=wc+1’))_f+a2 +b?
Fa=0 and Fb=0 gives
x+2a=0 (112)
and y+2b=0 (113)

Eliminating @ and » from Eqns. (90), (112) and (113) we obtain the
singular solution

z=—(x"+y")

which is a paraboloid of revolution.

The complete integral is
z=ax+by+ab
Let b=b(a)
Then the complete integral yields
z=ax+b(a)+ab(a) (114)
Differentiating Eqn. (114) partially w.r.t. a, we get
0=x+b"(a)y+b(a)+ab’(a) (115)

Elimination of a between Eqgns. (114) and (115) gives us the general -
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integral. Singular integral is obtain by eliminating a and b between the
equations

z=ax+by+ab
O=x+b
O=y+a

in the form z=—xy.
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17.1 INTRODUCTION

In Unit 16, we observed that unlike ordinary differential equations, where
equations are either linear or non-linear, partial differential equations of the
first order have further classifications of linear equations into quasi-linear,
semi-linear and linear equtions. We also discussed there various types of
solutions/integrals of the first order PDEs. In this unit we shall discuss the
methods of finding the solutions of both linear and non-linear first order PDEs.
You would observe that the construction of an integral of the linear PDE of first
order is a multistage process and in this respect it differs from the usual
construction of an integral of an ordinary differential equation. The problem of
finding the integral of a non-linear PDE of the first order is more involved than
that for the corresponding linear equation although there are some striking
similarities.

We shall start by discussing in Sec. 17.2 the Lagrange’s method of finding the
general solution of linear first order PDE which is due to Lagrange (1736-
1813), an ltalian mathematician. The method of solving non-linear PDEs of
the first order is partly due to Lagrange. But later on, it was the French
mathematician Charpit who perfected it and presented it in a memoir in 1784
to Paris Academy of Sciences. The method is known as Charpit's method and
it gives the complete integral of the first order non-linear PDE. We shall
discuss the method in Sec. 17.3. Since the method is based on the
consideration of compatible system of first order equations, we have, started
Sec. 17.3 by first defining the compatible systems of equations and obtained
the conditions for systems to be compatible. We shall also take up in this

89
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90

section some special types, called the standard forms of the first order non-
linear PDEs, for which the application of Charpit's method become shorter and
the complete integrals can be obtained easily.

Objectives

After studying this unit, you should be able to:

e use Lagrange’'s method for solving the first order linear PDEs;
e define compatible systems of first order PDEs;

e obtain the conditions for systems of two first order non-linear PDEs to be
compatible;

¢ use Charpit's method for finding the complete integral of a non-linear PDE
of first order; and

e identify standard forms of non-linear first order PDEs and obtain their
complete integrals, using shorter method.

17.2 LINEAR EQUATIONS OF THE FIRST ORDER

Consider the quasi-linear equation
P(X's .v'! Z)P‘l‘Q(X., y-’ Z)q= R(.l'._. }','s Z) (1)

where P, Q and R are given functions of x, y, z notinvolving p or ¢ and
having continuous partial derivatives w.r.t. x, y, zon some domain containing
x, v, z. In order to obtain the general solution of Eqn. (1) we need to find a
relation between x, y and z involving an arbitrary function. The first

systematic approach to solve equations of this type was given by Lagrange.
For this reason Eqn. (1) is called the Lagrange’s equation. The method of
solution of this equation is based on the following theorem which gives its
general solution.

Theorem 1: The general solution of the quasi-linear Eqn. (1) (or Lagrange’s
equation)

P(x, y, 2)p+0(x, y, 2)g=R(x, y, 2)

F(u, v)=0 (2)
where F is an arbitrary function of u and v, and u(x,y,z)=c¢,, v(x,y,2)=c¢,
are the solutions of the system of simultaneous equations

dx _ dy 3 dz

P(x,y,2) Q(xy,2) Ry 2

(3)

Let us now prove the theorem.

Proof: Consider the two families of surfaces
u(x, y,z2)=c, and v(x, y,2) =c, (4)
If they form a solution of the system of Eqgns. (3), viz.,
dx dy dz
P(x.y.2) Q. y.2) R(xy.2)

then along any curve, given by Egns. (3) we have
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udx+udy+udz=0 .

v dx+vdy+v. dz= 0 )
Solving Egns. (5) for dx, dy, dz , we get

dx _ dy _ dz | 6)

uy,—uy, Uy, —uy, wv, —upy,

which are the differential equations of the surfaces given by Eqn. (4). Hence

the system of Eqns. (3) and (6) should both represent the same integral

curves. Comparing Egns. (3) and (6), we get
P=Kwuy.—uyv,),Q=Kuv,-uyv.),R=Kuy, —uy), (7)

where K is a non-zero function of x, y, z.
Now, consider Eqgn. (2), viz.,

F(u,v)=0
where u and v are known functions of x, y, z and F is an arbitrary function
of u and v.

Differentiating relation (2) with respect to x and y , respectively, we obtain

a_F -%.‘_% +a_F @4_& =0 (8)
3w |8 de’ | ox |3 az”
oF %+%q +8F av+@q =0 9)
du | dy 0z v |dy 0z
For non-zero solution of Ea)—F and aa—F Eqgns. (8) and (9), yield
u v
u,+pu, v +pv.
u,+qu, v, +qv, -
= (u,+pu),+qv.)—(v,+pv,) (u,+qu)=0
= puy.—uyv)+quy, —uv.)=Wy —uyv,), (10)

which is a partial differential equation of the type (1).

Substituting from Eqgn. (7) in Egn. (1) and using Egn. (10), we find that Eqgn. (1)
is satisfied identically. Thus F(u,v)=0 is a solution of Egns. (3), which is the

intersection of the two surfaces « and v given by Eqn. (4), and is called its
general solution.

This complete the proof of Theorem 1.
S . =

The system of Eqns. (3) are called the Lagrange’s auxiliary or subsidiary
equations.

The integral curves, given by the intersection of surfaces
u(x, y, z)=¢, and v(x, y, z) =c,,

are called the characteristic curves or characteristics of Eqgn. (1) and are
the solutions of Egns. (3).

Before we illustrate the method, let us summarise the steps involved in it. 91
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1)  Write the Langrange’s auxiliary equations for Eqn. (1). Viz.,
dx d_v _dz

P QO R

2)  Solve these simultaneous equations by the methods you have learnt in
Sec. 14.4 of Unit-14 and obtain the two independent solutions

u(x, y, z)=c, and v(x, y, z) =c,

3) The general solution/integral of Eqn. (1) which is the intersection of two
surfaces u(x, y, z) =¢, and v(x, y, z) =¢, can then be written in any
one of the following three equivalent forms

Fu,v)=0,u=¢() or v=y(u)
where F, ¢ and y are arbitrary functions.

We shall now illustrate the method through various examples. You may
notice that in these examples while performing step 2) mentioned above, we
have used different methods, that you learnt in Sec. 14.4 of Unit 14, for finding

the two independent solutions « =¢, and v=c¢, of the given problem.

Example 1: Find the general integral of the partial differential equation
z, +zz,=0.
Solution: The auxiliary equations are
di_dx _ds
1 z 0
The two integrals of Egns. (11) are
R=Z=C,V=X—CI=C, Ory=x—2=¢,

The general integral of the given equation is then
F(z, x—zt)=0

(11)

or

z(x, 1) =P(x—zt). (12)
You may also check that the solution obtained above satisfies the given PDE.
This can be done by differentiating Eqn. (12) w.r.t. to # and x and then
substituting it in the given equation. In this case we have

z, =@ (x—2zt) (~z—1z,)

=—z¢' (x—zt) -t (x—2t) 2,
. _ =
i 1+t¢
Similarly,

(13)

o

Z\'= »oan
o 1+tg

(14)

Substituting from Eqns. (13) and (14) in the given equation, we obtain

Z, Z, = =47 4 - (=0
R 1) 1+1¢

Thus the solution given by Egn. (12) satisfies the given equation.

dedkd

Let us consider another example.

Example 2: Find the general integral of the PDE
Xp+yg=(x+y)z (15)
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Solution: The auxiliary equations of Egn. (15) are

ﬁ_ﬂ_ dz _x_ldx-l-y_]dy_z—ldz

2 7 T - (1 6)
x ¥y Z(x+y) 0
Considering the first two fractions of Eqns. (16), we obtain
dx _ d_)
X y2
-1
—=——++¢
X y
= u(x; ¥, 2= l—l =¢
y X
Considering the last fraction of Eqns. (16), we get
X y z
= Inx+Iny-Inz= constant = v(x, y, 2) = o (5
Thus the general integral of Eqn. (15) is |
pll 1 @) g
y x 2z
where F is an arbitrary function.
The general integral can also be written as
z=xy F [l_l],
y X
where F| is an arbitrary function.
Example 3: Find the general integral of the following PDE
prg=x+y+z.
Solution: Lagrange’s auxiliary equations are
L (17)
1 1 x+y+z
Taking the first two fractions in Egns. (17) and integrating, we get
X—y=c,0rx=¢+Yy (18)
Taking the last two fractions in Eqn. (17) and using Egn. (18), we get
dyzL or £=C, + 25 %
c,+2y+z dy
o B 1y (19)
dy

Eqn. (19) is a linear equation in z and y and its I.F.=eJ‘_d"' =¢ . The
solution of Eqgn. (19) is obtained as

ze ) = I(q +2y)edy+c,
=—(¢,+2y)e " + je_" 2dy +c,
=—(¢c,+2y)e” —2e7 +c,
=—e(q +2y+2)+c¢,
z=ce’ =(g+2y+2)

93
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=ce’ —(x+y+2)
or (z+x+y+2)e™” =c, (20)
From Eqgns. (18) and (20), the required general solution is
Flx—y, e’ (z+x+y+2)]=0.

Fk &

Example 4: Find the general integral of the following PDE
(x—y)p+(x+y)g=2xz.

Solution: Lagrange’s auxiliary equations are
dx dy  dz

= = (21)
i—y x+y 2xXz

Taking the first two fractions in Egn. (21), we get the homogeneous equations
dy x+y _ l+y/x

= (22)
dx x—y l=ylx
Let y/x=v or y=xv and ﬁ:v+xﬁ.
dx dx
Substituting these values in Eqn. (22), we obtain
dv l+v
V+X—=—
x 1-v
dv 1+
or x—=
dx 1-v
i %= 2(1—:}) dy = 2(1".»'1 B 2vd1:
X 1+v° I+v 1+4+v°
Integrating the above equation, we get
2Inx=2tan”' v—In(1+v*)+In¢
or Inx’=2tan"'(y/x)—In(1+y*/x*)+Inc,
By B
or lnw=2tan'l(}=fx)
(.‘]
or (x’+y’)= c,ez“‘“"-"“
or (xz i yZ)e—Zliill'l ylx :(._I (23)
Now choosing 1, 1, . as the multipliers, each fraction of Egns. (21)
_dx+dy-dz/z  dx+dy—dzlz
(x=y)+(x+y)—2x 0
dx+afy—ﬁ=0:>)c+y—lnz=c2 (24)
4

Hence, the required general integral can be written from Egns. (23) and (24) in
the form

Fl(x*+y* Yer2 i ey y—Inz]=0.

Fdkk

You may now try the following exercise.

E1) Find the general integrals of the following differential equations:
i) 2(xp—yq) =y —x°
iy Y p—xyqg=x(z-2y)
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i) (27 =2yz=y)p+x(y+2)g=x(y—2)

V) (X +3xy") p+ (3’ +3x°y)g =2(x> + y))z

You may recall that in Unit 6. Sec. 6.3, we defined an initial value problem for
ordinary differential equation of the first order. Therein, we stated the
existence theorem for the solution of an ordinary differential equation

d b

_} = .f('ll? _)’) 2

dx
where y=y, at x=x,.

We shall now take up the initial-value problem for a quasi-linear partial
differential equation.

As you have seen above, the solution of a PDE of the first order is the
intersection of two surfaces. Thus the initial conditions in this case will not be

at a point, but the solution surfaces will pass through a curve say I, called

the initial data curve. We shall not be proving the existence of a solution of a
PDE of the first order here in this course. However, we shall give you the
method which shows how a general solution of Eqgn. (1), viz.,

Pp+0qg=R
may be used to determine the integral surface which passes through a given
initial data curve.
We shall illustrate the method through the following examples.

Example 5: Find the general solution of the equation
Qxy—1) p+(z—2x") g=2(x—y2) (25)
and the solution surface which passes through the line x=1, y=0.
Solution: The auxiliary equations corresponding to Eqgn. (25) are
dx dy dz
2xy—1 z-2x  2(x-y2)

Each of these fractions is equal to

zdx+dy +xdz _ xdx+ ydy +(dz/2)
0 0
Integrating Egns. (27), we obtain

u=y+xz=c¢,v=x'+y’+z=c,
where ¢, and ¢, are arbitrary constants.
The general solution of the given equation can be written as

X+y +z=F(y+x2) o

where F is an arbitrary function. We shall determine the form of F using the
initial data:
x=1L y=0
Substituting this data in Egn. (28), we obtain
F(z)=1+z
and therefore, 95
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F(y+xz)=1+y+az (29)
Substituting from Eqgn. (29) into Egn. (28), we obtain the required solution
surface as

K +y—xz—y+z=1

ek dk

Let us consider another example.

Example 6: Find the equation of the integral surface of the equation

p+yGx’+y)g=22x+y) (30)
which passes through the curve
Lt =1, 3 =8,2=5(+5) (31)

where s is the defining parameter of the curve.
Solution: The auxiliary equations corresponding to Eqn. (30) are
dx _ dy dz

X y(?,,Jr2 +y) - z7(2x* + y) 5)
Each of the fractions of Egns. (32) is equal to

—xdx+ y_]dy —zdz = x"dx—y'dy+z'dz=0
Therefore, integrgting the above equation, we get

y =6z (33)

On solving the pair formed by the first and third fractions of Egns. (32) and
using Eqgn. (33), we obtain

2x x" dz _
T
d (1
= —|—|=¢;
dx \ z
2
=% =Cx+E,
or
¥ =y+c,z. (34)

Substituting the initial data in Egns. (33) and (34), we get
l=¢,(1+5), 1-s=c,5(1+5)
On eliminating s from above equations, we get a relation between ¢, and ¢,

as
¢ (2c,~D=1¢;(1—¢;)- (35)

Substituting for ¢, and ¢, from Eqgns. (33) and (34) in Eqgn. (35), we obtain the
required solution surface as

2y* —xyz=x(x"—y) (x2—y).

dedkd

You may now try the following exercises.

E2) Find the integral surface of the equation
x(y2 +z)p—y(x’2 +2)q =(x* —yg)z
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Passing through the curve
Xx+y=0,z=1.

E3) Find the integral surface of the equation yp + xq —z =0 which passes
through the curve z=x", y=0.

E4) Find the integral surface of the equation
(y—2)p+(z—x)g=x—y
which passes through the curve z =0, xy=1.

We shall now consider the method of solving non-linear equations of the first
order.

17.3 NON-LINEAR EQUATIONS OF THE FIRST
ORDER

Consider the general first order non-linear PDE

fx 5 2z p, q9=0
As we have already mentioned in Sec. 17.1, the method of finding the
complete integral of a first order non-linear PDE has been developed by
Charpit, a French mathematician. This method consists in finding another first
order PDE which is compatible with the given Eqn. (37) and which involves an
arbitrary parameter. Thus, before taking up the Charpit's method, we shall
define when a system of first order PDEs are compatible and what are the
conditions satisfied by such systems.

17.3.1 Compatible Systems of First Order Equations
Consider the first order PDEs

fxy.z, p.q)=0 (36)
and g(x, y,z, p,q)=0 (37)
Eqns. (36) and (37) are said to be compatible, if and only if,
S &
i) J=%=3_§ % #0 (38)
dp  dq
i)y p=¢x y 2),9=v(x Y, 2) (39)
obtained by solving Eqns. (36) and (37), makes the equation
dz=¢(x, y, 2)dx+y(x, v, 2)dy (40)
integrable.

For more clarity, let us consider the following example.

Example 7: Show that the equations
xp=yq, z2(xp+ yq) =2xy
are compatible and solve them.

Solution: Let f=xp—yg=0 (41)

and g=z(xp+yq)—2xy=0 (42) 97
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X =y

Then 942 8) _

dp.q) |xz yz
Thus, f and g satisfy condition (38). In order to check condition (40) we
solve Egns. (41) and (42) for p and g and obtain

=2xyz#0

p= 2 and qg= %
Substituting the valueg of p and ¢ in Egn. (40), we get
zdz=ydx+xdy
which on integration gives z* = 2xy+c.
Thus, Egns. (41) and (42) are compatiable with z° =2xy+c as a one-
parameter family of common solution.

Hk

Let us look at Eqn. (40) viz.,
gdx +wydy —dz =0

once again. You know that it is a total differential equation and the necessary
and sufficient condition for integrability (ref. Theorem 1, Unit-15) is

W 00 (90 oy
¢8z WBZ [ 4 J_O

= Y. Y, =0, + Y. (43)
Thus we can say that Egns. (36) and (37) are compatible if Eqn. (43) is
satisfied where ¢ and y are given by Eqn. (39). In order to obtain the
compatibility condition in terms of f and g, we substitute in Egns. (36) and
(37) the values of p and ¢ from Egn. (39) and then differentiate the resulting
equations with respect to x and y, and obtain

[i+1.0+f, (0. +0.0)+ [, (W . +y.9)=0 (44)
8, +8.90+8,(0.+9.0)+g (W, +yv.9)=0 (45)
ity +1, @ +o)+ [y, +y.y)=0 (46)
8, t8Y+g, (0 +oy)+g (W, +yy)=0 (47)

Multiplying Eqns. (44) and (45) by ¢, and f,, respectively and subtracting
the resulting equations, we get

(f.8,—8Jf)tof.8,—-8.f,)+(@P.+0.0) (f,8,—-8,f,)
+W. +y.9) (f,8,-8,[,)=0
a(f, g a(f, d
(f 5,)+p (/. 8) ';Mf’) (f 8) _
a(x, p) a(z, ) 4. p)
where using relation (39) we have replaced ¢ by p in the second term of
Eqgn. (48). Similarly, multiplying Eqns. (46) and (47) by g, and f,,
respectively and subtracting the resulting equations, we obtain

of. g , of. 8 —(0,+0, y 9, 8) _
B(y,q) 8(2 q) B(Q, p)

(48)

(49)
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Adding Eqgns. (48) and (49) and using relation (43) we obtain the condition for
the compatibility of Egns. (36) and (37) as
JIf, g) , I, g)+pa(’t,g)+q8(t,g)=0
d(x,p) d(y,q) ~d(z,p) 9d(zq)

The expression on the left hand side of Eqn. (50) is denoted by [ f, g]. Thus,
we have

(50)

_of.8) 9. 8) , 90, Ofi8)
dx, p) d(y,q) 9z p) Iz q)
Thus we see that the condition for integrability of Eqgn. (40) is that
[f, g]l=0
Eqn. (51) can also be written in the form

Jdg  , 0g o w08 dg ., . .08
=+ f =+(pf, +qf)=—(f.+pf.)=—(f, +qf)—==0 (52
™ T = (pf, +4qf,) % (f.+pf) % (f, +4f.) o (52)

We can use Eqgn. (52), which is a first order PDE, for finding the equation

g =0, compatible with the given equation f =0. Once g is known we can
find p and ¢ and then integrate Egn. (40) to obtain one parameter family of
solutions in the form

h(x, v, 2,b)=0 (53)

Lf, gl

(51)

[f.gl=f,

where b is an arbitrary constant. The solution given by Eqgn. (53) shall satisfy
both the Eqgns. (36) and (37). Thus, compatible equations have a one-
parameter family of common solutions.

Note that, as we have mentioned above, compatible Eqns. (36) and (37) have
a one-parameter family of common solutions. This does not mean that every
solution of f(x, v, z, p, ¢) =0 is necessarily the solution of

g(x, v, z, p, q) =0 orvice-versa. In Example 7, z = xy satisfy Egn. (41) and
hence is a solution of Eqn. (41) but it does not satisfy Egn. (42).

Let us now consider a few examples to illustrate the method discussed above.

Example 8: Show that the partial differential equation

p’x+q’y—z=0 (54)
is compatible with

p’x—q’y=0 (55)
and find their one-parameter family of common solutions.
Solution: Let f=p°’x+¢°y—2z=0
and g=p’x—q°y=0
Here we have

fo=p' [, =4, f,=2px, f,=2qy, f.=-1

g.=pr.8=-9".8,=2px, g,=-29y, 8. =0
Using condition (52), we get

[f.81=2xp> —2yq’ —(p* - p) 2px+(q° — q) 29y
=2(p’x—q°y)=0 [using Eqn. (55)]

Hence the given system of PDEs are compatible.

99
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Solving Egns. (54) and (55) for p and ¢, we get

1
Y 28 L N 56
5 [2-’:] 2 (23’} o

Considering only the positive values of p and ¢ in Egn. (56) and substituting
in

r |-

dz = pdx+qdy ,

we obtain
N2 o_dx dy
N PR N

which on integration gives the one-parameter family of common solutions as
V2z=x+ \E +b

where b is an arbitrary parameter.

Fdkdk

Let us consider another example.

Example 9: Show that the equation

Z=px+qy (57)
is compatible with any equation
f(x v, 2, p.q)=0 (58)

that is homogeneous in x, y and z.
Solution: In this case, we have
Lf. gl=xf, +yf, +(xp+yq) f., (59)

where g = px+qgy—2z=0
If f is homogeneous in x, v, z and is of degree say n, then by Euler's
theorem (ref Unit-4, Block-1), we have

xfo+yf, +zf. =nf
Thus Egn. (59) reduces to

[f.g]l=f.(xp+ yg—2)+nf =0 (by virtue of Egns. (57) and (58)).
Thus the compatibility condition is satisfied and Eqgns. (57) and (58) are
compatible.

ek

You may now try the following exercises.

E5) Show that the equations
f(x, y, p)=0and g(x, y,¢q)=0
are compatible if f, g, —f,g,=0.

E6) Shot that the partial differential equations
f(x, y,p,g)=0 and g(x, y, p, ) =0
are compatible if
9IS, 8)  9f,8) _
dx, p) 9. q)
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E7) Show that the equations (y—2)p+(z—x)g=x—y and z— px—qy=0
are compatible.

E8) Show that the equations xp— yg = x and x’p +¢ = xz are compatible
and find their one-parameter family of common solutions.

We shall now discuss Charpit's method of finding the complete integral of first
order non-linear PDEs.

17.3.2 Charpit’s Method

As mentioned earlier, in the Charpit’s method of finding the complete integral
of non-linear PDE of the form (36), namely,

f(x.y z, p,g)=0,
we introduce another PDE of the first order of the type
F(x,y,z, p,q,a)=0 (60)
which contains an arbitrary parameter a and which is compatible with
Egn. (36). In other words, we try to find a function F such that
i) Eqns. (36) and (60) can be solved to obtain
p=px Yy, 3 0a),9=(x,Y, 2, a) (61)
i)  The p, g obtained in Egn. (61) makes the equation
dz=p(x, y, z,a)dx+q(x, y, z, @) dy (62)

integrable.

Once we are able to find such a function F', we can integrate Eqn. (62) and
obtain the two parameter family of solution in the form

G(x, y,z,a,b)=0, (63)
which will be the complete integral of Eqgn. (36).

Thus the main problem now is the determination of the second Eqgn. (60).
Infact, this problem has already been resolved in Sub-sec. 17.3.1 and we need
only to obtain an equation F =0 compatible with the given equation f =0.
You know that the conditions for the compatability of equations F =0 and

[ =0 as given by Egns. (38) and (52) are:

B(f F)
~ Ap, q)
and
f,5 rqa—+( of, +af,)or —(f;.+pf;>‘3—F—tf,+qf;)a_F=o (64)
p dgq

Note that Eqgn. (64) is a first order linear PDE for determining the function F
which is considered to be a function of five variables x, y, z, p and ¢q.
Following the Lagrange’s method of solving first order linear PDE, the auxiliary
equations for Eqgn. (64) are
dx _ _dy _ dz ‘dp _ dg | (65)
f,, fq pf +4f, —(f_.- +pf,) =(f,*af,)

Eqns. (65) are known as the Charpit’s equations and can be written at once
using the given Eqgn. (36). 101
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Once we find a solution of the system of Eqns. (65) involving p or ¢ or both
in the form of Egn. (60), viz.,

F(x,y,z, p,q,a)=0,

then the problem reduces to solving Egns. (36) and (60) for p and ¢ and

then integrating Eqn. (62) by using the methods of solving total differential
equations which you have learnt in Unit 15.

We shall now illustrate the method through the examples.

Example 10: Find the complete integral of

' = pgxy
by Charpit's method.
Solution: Let f = pgxy—z° =
In this case, the auxiliary Eqns. (65) yield
dx dy dz dp dqg

axy pxy C2pgxy  2p-pqy 22— pgx

dz  dz _ pdx+qdy+ xdp+ ydg
2pgxy  27° 22(px +qy)

(using given equation)

dz _d(xp+yq)
Z xp+ yq

=

On integration, we obtain F which is compatible with f as
F=z—alxp+yq)=0, (66)

where a is an arbitrary constant. Solving the given equation and Eqn. (66) for
p and ¢, we obtain

p_z 2a ] _Z li\}l—4a2
1++1-40% ) 2a

X

1++/1-4a’

}e

Let c=
2a
Then, we can write
Z CZ
P=—y4d=—
cX '_\’

where a(c'+¢)=1, ¢ being a constant.

I y
. dz= pdx+qdy = (— ﬁ + cﬁJ be
c X y
Integrating, we obtain the complete integral of the given equation in the form

z=bx"“y°, b being the constant of integration.

drdkk

Remark: For any given problem, it is not necessary to use all of the Charpit’s
Eqgns. (65) for finding F . This is illustrated in our next example. What we
have to be careful about is that p or q must occur in the solutions obtained.

Example 11: Using Charpit’s method find the complete integral of the
102 equation
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(P’ +q)y=qz
Solution: The given equation can be expressed as

f=(p*+q") y—qz=
The auxiliary equations in this case are

dx  dy dz _dp _ dq
2py 2qy-z 2p°y+2¢°y-qz pq —(P’+q)+q’

The last two fractions in the above equations yield
pdp +qdg =0
Integrating the above equation, we get

pz-i-qz:a, (67)

where a is a constant.
Solving Eqgn. (67) and the given equation for p and ¢, we get

pogaT—aly’

Substituting these values of p and ¢ in dz= pdx+ qdy and taking p with
only positive sign, we get

and q——’

7

zdz—aydy _

1!(17 —a‘v2

l 2az dz —2a° vdy

2(!’ \/az —a }

l d(az’ -d* y )

2 Jaz' —a’ }
Integrating, we get

Jaz’ —a’y’ =ax+b, b being the constant of integration.

= az’ —azy2 = (ax+b)2

=dx

which is the required complete integral.

*kk

Note that a first order PDE can have more than one complete integral as
illustrated in the following example.

Example 12: Find the complete integral of the PDE
220+ p*+q°) =1

using Charpit’s method.
Solution: Let f=z"(1+p°+¢°)-1=0
The auxiliary Egns. (65) in this case give

dx dy _ dz . dp _ dg (68)
2pz°  2qz° 2p°t+2¢°7F 2p(+pP+q°) -2z +pt+4q°)
From the last two fractions, we get 103
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dp _dq

P 9
where a is an arbitrary constant.
Solving for p and ¢ the given equation and Eqn. (69), we obtain

or p=agq (69)

__a and g = 1
\/1+a2 \/I+a2

_ — _—
. dz= pdx+qdy = e 1’1 ——dx + 1 ”jl = dy
V1+d z J1+a? z

which on integration gives the complete integral of the given equation as

—V1=z2*V1+4a’ =ax+ y+c, ¢ is a constant of integration

e
L

or (ax+y+c)Y=01+a>)(1-2%) (70)
If in Egns. (68), we consider 3" and the 4" fractions, we obtain
dz dp , ; ;
ST = (using the given equation)

z(1-z°) -p

| SN B dz+@ =0

z 2(—-z) 201+2) p
which on integration gives

ZpP=b(1-7%) (71)

where b is an arbitrary constant.
Solving the given equation and Eqn. (71 ) for p and ¢, we obtain

= and g=+1-b

A dzzpdx+qdy=b1, d,\+w,"]—b2

Integrating the above equatton we get another complete integral of the given
eqguation as

(bx+1=b*y+c) +7° =1 (72)

ke

d\

We now take up an example where from the complete integral of the given
equation we have also obtained its general and singular integrals.

Example 13: Use Charpit's method to find the complete integral of the
equation

(P’ +4*)y=¢z (73)
Also obtain its general and singular integrals.

Solution: Let f =(p>+¢°)y—gz=0
Charpit’s auxiliary equations are
de  dy dz _dp _ dq
2py 2qy-z 2p°y+2¢°y-qz aqp —(P +q))+q’
Taking the last two fractions, we get
pdp+qdg =0
Integrating, we get p>+¢”° =a’, a is a constant. (74)
Solving Egns.(73) and (74) for p and ¢, we obtain

a2

pP=—AZ2 —a’y” and g=

Z &




Unit 17 First Order Partial Differential Equations

4

a ) - a" H
dZ, = pdx +Qd\’ =—nZ - az)}“dx+_} dy
Z z
zdz —a’ ydy
or X2 D_ gk,
2 2.2

T-ay

Integrating the above equation we obtain the required complete integral as
(Z2-a’y)'"*=ax+b

or 22 —a’y* =(ax+b)’ (75)

where b is an arbitrary constant.

Singular Integral
Differentiating Egn. (75) partially w.r.t. @ and b, we get

2ay’ +2(ax+b)x=0 (76)
2(ax+b)=0 (77)

Eliminating ¢ and b between Eqns. (75), (76) and (77), we get
z =0, which satisfies Egn. (73) and is its singular solution.

General Integral
Replacing » by ¢(a) in Egn. (75), we get

2 =a’y’ =[ax +¢p(a) (78)
Differentiating Egn. (78) partially w.r.t. a, we get

—2ay’ =2ax+¢(a)] [x+ ¢ (a)] (79)
General integral of Eqn. (73) is obtained by eliminating a from Eqgns. (78) and

(79).

ks

You may now try the following exercise to check your understanding of the
Charpit's method.

E9) Using Charpit's method, find the complete integrals of the following
equations:

i) px+q’y=z

i)y  2z+xap+yg)=yp’
i)  2z+pi+qy+2y°=0
iv)  2x(z’¢"+1)=pz

V) pxy+pqtqy=yz

After solving E9), you must have observed that the method given by Charpit

for finding the complete integral of a non-linear first order PDE is usually quite

lengthy and involved. However, there are some special types of first order

non-linear PDEs whose complete integrals can be obtained easily by the

Charpit's method. These special types of non-linear PDEs of first order are

called standard forms of Eqn. (36). We now take up the methods of

integrating these standard forms. 105
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17.3.3 Standard Forms

Let us discuss various types of standard forms of Egn. (36) one by one.

Type I: Equations involving only p and q:
Let us start by taking an example of the equation involving only p and ¢.

Example 14: Find the complete integral of the equation
pg=1

Solution: For the given equation, the Charpit's auxiliary equations are
dx _dy dz dp dq
?_?_ 2pgq _F_F

(80)

From the fourth fraction, we get
dp=0
= p=constant=a, say.
From the above equation and the given equation, we get

1
aq=12>q=;.

Substituting for p and ¢ in dz = pdx+ gdy , we obtain
dz=a dx+ld}-'
a
Integrating, we get the complete integral of the given equation as

1
z=ax+—y+b.
a

In the auxiliary system of Eqns. (80) if we consider the last fraction then we
obtain
dg=0
= g =a (constant)
and the complete integral is of the form
Z =lx+a_v+b.
a

ko

In general, the non-linear PDEs of first order which do not contain the
variables x, y, zexplicitly and involve only p and ¢ are of the form

f(p, =0 (81)
In this case the Charpit’s equations (or auxiliary Egns. (65)) are

dx dy dz _dp dq

L, f, pofy+tdf, O O
From the last two fractions in the above system of equations we get either
p=a or g=a,where a is a constant.
If we consider p =a, then Eqgn. (81) takes the form f(a, ¢) =0 which on
solving gives ¢ =Q(a).
Therefore, the equation dz = pdx +qdy reduces to

dz =adx +Q(a)dy
which on integration gives the complete integral of Egn. (81) as

z=ax+Q(a) y+b, (82)

where b is an arbitrary constant.
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Similarly, if we consider ¢ =a then from Eqn. (81) we obtain p = Q(a) and
the complete integral of Egn. (81) assumes the following form

z=Q(a)x+ay+b (83)

We now illustrate the method through an example.

Example 15: Find the complete integral of the equation
p'-q' =4 (84)

Solution: The given equation is of the form f(p, g)=0. Letus take p=a

(a constant).
Putting p =a in Eqn. (84), we obtain

g=tVa’ -4 =Q(a)
Substituting the values of a and Q(a) in Egn. (82), the complete integral of
Eqn. (84) is

z=ax*+a’ -4 y+c, ¢ being a constant.

*kk

We next take up an example to illustrate how a given equation can be easily
solved if we first reduce it to the form (81).

Example 16: Find the complete integral of the equation
(x+y)(p+q)’ +(x=y) (p—q) =1

Solution: Let x+ y=U’and x—y=V"

Then
dz 0z dU o0z 9V
p:—:—_+__
dx JdU dx oV odx
1 oz 1 oz
e g, S R 85
2U oU | 2V 9V {6)
and
dz 09z U 9z 9V
q:—: —_—
dy dU dy dV ody
1 oz 1 oz
e T a s TSR 86
2U oU 2V oV (86)

Substituting for p and ¢ from Egns. (85) and (86) in the given equation, it
reduces to

Y (ozY
—=| =1
(auj +[av)

This equation is of Type | and we can write down its complete integral directly
by using Eqgn. (82) in the form

z=aU ++J1-a’V+b

=ayx+y++1—a’\Jx— y +b (substituting back the values of U
and V intermsof x and y.)
where a and b are arbitrary constants.

* Rk

You may now try the following exercise.

107
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E10) Find the complete integrals of the following equations:
) p+q—pg=0
ii) pP+q’ =1
iii) p=e’

V) (y=x) (gy=px)=(p-¢q)’

V) (1-x%) yp>+x°¢=0

We next take up those equations which do not involve the independent
variables x, y explicitly.

Type lI: Equations not Involving the Independent Variables

Equations of the type (36) which do not involve x, y explicitly are of the form

f(z, p.q)=0 (87)
Charpit's Egns. (65) in this case assume the form
dx _dy  dz dp dg

L s B, =0 =4.
the last two of which yield

dp d
L, L (88)
P 4q
Integrating the above equation, we obtain
p=aq or g=ap (89)
where a is a constant.
From Eqgns. (87) and (89), we then have
f(z,aq,9)=0
= g=0(a, 2) (90)

On substituting for p and ¢, from Eqgns. (89) and (90), in the equation
7= pdx+ qdy , we get

lz=aqdx+q dy=0(a, z) (adx+dy)
Thus, the complete integral of Eqn. (87) is given by
dz
I =ax+y+b,
Q(a,z)
where b is an arbitrary constant.
On using an alternative solution of Eqn. (88) as ¢ = ap the complete integral

of Egn. (87) is given by

j d =x+ay+b
O(a,z)

Let us consider the following examples.

Example 17: Find the complete integral of the equation
zpg—p—q=0
Solution: The given equation is
zpg—p—q=0 (91)

108 Putting p=aq in the given equation, we obtain
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zaq’ —ag—q=0

a+1

= g=0o0rg=
az

Now, if ¢=0, p=0
&Rl i q=a+1* p=a+l
az Z

For the case p=0, g=0, the relation

dz = pdx+qdy ,
yields

dz=0
= z=constant.
which is obviously not the complete integral of the given equation.

+1 +1
Further, for g = g P ¢ , the relation
az Z
dz = pdx + gdy

yields
dz i (dx+i dyJ
a

.
“

which on integration gives the complete integral of the given equation in the
form
,» 2(1+a)
Z —
a
b being an arbitrary constant.

(ax+y)+b
dkk

We now take up an example where we have reduced the given equation to
Type Il equation and then obtain its complete integral.

Example 18: Find the complete integral of the equation
q’y* = z2(z— px)

Solution: Let X =lnx and Y =Iny (91)

dz dz dX 1 0z

dx oX dx «x oX

dz _dz dY 1 oz

oy 9Y dy y oY

then p=

and ¢=

z 0
If we denote 5—;{ by P and £ by Q then substituting px=P and gy=0

dy
from Eqns. (92) and (93), respectively the given equation reduces to
Q2 =z>—zP (94)
which is of the Type Il above. To solve Eqn. (94)
let us take Q =aP, a being a constant. (95)

Then from Egns. (94) and (95), we obtain
a’P*+zP-7z"=0
— 7+ +4a%7? _

= P= b kz (96)
2a°

where k:%(_&m)

2a
. dz=PdX +QdY

109
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=k zdX +a k zdY [using Egns. (95) and (96)]
=k z(dX +adY)

Z

= =dX +adY

7
“

Integrating, the above equation we obtain

X+aY+]nb=%Inz

or Inx+alny+ lnb:%ln z [using Egn. (91)]

or Xb yu - ZH!{
which is the required complete integral.

Fdkdk

You may now try the following exercise.

E11) Find the complete integrals of the following equations:
i) 4z = pq
i) pi=2zq
iy p+q’ =27z
iv) z=p'-¢°

V) pzx3 =2(z-9y)

We next take up the equations of the form (36) in which z does not occur
explicitly and which are in variable separable form. In other words, we
consider the equations of the form which can be written as

f,p)=g(y, q)

Type lll: Variable Separable Equations

Let us start by considering a simple example.

Example 19: Find the complete integral of the equation
g—p+x—=y=0

Solution: The given equation can be written as
p—x=q-y (97)
You may note that Eqn. (97) is of variable separable form where left hand side
is a function of x and p only and right hand side is a function of y and ¢.
For Egn. (97) the Charpit’s auxiliary equations are
dx _dy dz _dp dg
1l =1 p—g 1 =i
From the first and the fourth fractions in the above equation, we obtain
dx dp
11
Intewgrating, we get
p=x+a or p—x=a
We then obtain from Eqgn. (97)
g—y=aorg=y+a
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7z = pdx+gqdy , yields
dz=(x+a)dx+ (y+a)dy

or 2z=(x+a)’ +(y+a)’ +b, where b is an arbitrary constant, is the
required complete integral.

*kk

In general, we consider a first order PDE which can be written in the form
fxp)=g(y. q)
= flxp)-g(y.q9)=0
For such an equation, Charpit's equations are
dc _dy _ dz _dp _dq
5, —&, M-8, ~L &
The first and the fourth fractions of Egns. (98) give
i
Je g
= @ -f—L =0
dx fp
You may note that Egn. (99) is an ODE in x and p. We can solve it by
writing it in the form

fdx+f,dp=0

(99)

= d f(x, p)=0
= f(x, p)=constant=a, say (100)

Similarly, from 2™ and 5" fractions of Eqns. (98) and by making use of the
given equation, we get
g(y, g)= constant=a (101)

Note that in Eqn. (101) we have again taken the constant of integration as ‘a’.
This is because we are given f(x, p)=g(y, q). Here f is afunction of x
and p whereas g is afunction of y and ¢ and if both are equal then each

of f and g has to be separately equal to the same constant.

Egns. (100) and (101) can now be solved to obtain
p=F(a,x) and g=G(a,y)
dz = pdx+ gdy reduces to
dz =F(a, x)dx+G(a, y)dy
which on integration gives the complete integral as
= I F(a,x)dx +_[ G(a,y)dy+b,

where b is another arbitrary constant.
Let us take up examples to illustrate the method discussed above.

Example 20: Find the complete integral of the equation
p2 +q2 =x+Yy

Solution: The given equation can be written as
pP-x=y-¢q’

Hence each side must be equal to the same constant, say a.

p’—x=a and y—q¢’ =a 11
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= p=*vx+a and g=%,/y—a
Any combination of *+ signs can be taken. We take here p and g with the
positive signs only. Then
dz = pdx+ qdy , yields
dz=~a+x dx+\y—a dy
Integrating, the complete integral is obtained as

2 . 3/2 2 312
z=—(a+x)""+—=(v—a)’'".
3 3

ko

We now take up an example where we have transformed the given equation to
Type lll equation to obtain its complete integral.

Example 21: Find the complete integral of the equation

yzp'=gq
72
Solution: Let us take Z = ‘"7 and re-write the given equation as
y 2'p*=z4q (102)
dz 0Z dz 07
Now zp=z—=—=P,sayand zg=z—=—=0, say.
3 ox Ox ¥ 3 dy dy Q. say
With above substitutions Egn. (102) reduces to
yP*=Q or P"—:g (103)

y
You may notice that Eqn. (103) is now a variable separable equation so if we
take P =a then we get Q = ya’
Putting these values of P and Q in dZ = Pdx+ Qdy, we get
dZ = adx + ya’dy

Integrating, Z = ax+ éazyz +b, b aconstant.

Putting back the value of Z =z”/2 in the above equation, we get
z'=2ax+a’y* +2b
as the required complete integral of the given equation.

Fkdk

How about doing an exercise now?

E12) Find the complete integrals of the following equations:
)  g=xp+p’
i \/f_’ +4q=2x
i)  pP-ylg=x—y
iv)  ply(+x7)=gx’
V)P ARy =2+

viy  plg(xX’+y)=p’+gq
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You may recall that in Unit 6, Block 2, we defined the Clairaut’s equation as
the ODE of the type
y=xp+f(p).
In the case of the first order PDE, we can write the Clairaut's equation in the
form
z=px+qy+ f(p,q)

We now give the method of solving such equations by using the Charpit's
equations.

Type IV: Clairaut’s Equation

Let us consider a simple example of the PDE of the Clairaut’s type.

Example 22: Find the complete integral of the equation
z=px+qy+pq.

Solution: The given equation is
px+qy+pg—z=

The auxiliary Egns. (65) in this case take the form
de_dy_ dz _dp_dq

x y px+gy 0 O
From the last two fractions of the above equations, we get
p=a,q=b
where a and b are arbitrary constants.
If we substitute the above values of p and ¢ in the given equation, we obtain

z=ax+by+ab
which is the required complete integral.

* ket

In general, consider the Clairaut’s form of the first order PDE
px+qy+ f(p,q9)—2=0 (104)
For Eqgn. (104), the Charpit’s Egns. (65) assume the form
dx _ dy _ dz _ dp _ dq
x+f, y+f, pxtq+pf,+qf, O 0

Obvious solution of this system of equations are
p=aand g=>b

If we substitute these values of p and ¢ in Eqn. (104), we get
z=ax+by+ f(a,b),
which is the complete integral of Egn. (104).

Let us now consider an example where we have solved the given equation by
first reducing it to the Clairaut’s form.

Example 23: Find the complete integral of the equation
pqz=p(xq+p)+q*(p+q°)

Solution: The given equation is
Pqz=p'(xq+pH+q (yp+q°)

Dividing both sides by pq , we get the equation 13



Block 4

First Order Partial Differential Equations

114

3 3
Z= px+p—+yq+q—
q

P

3 3

= z=ap+ },{]+(L+Q_J

q P
which is in the Clairaut’s form.
Hence substituting in the above equation

p=a and g=>b,

where a and b are arbitrary constants, we obtain the complete integral of the
given equation as

z=ax+by+| —+—|.

b a

You may now try the following exercise.

E13) Find the complete integrals of the following equations:

)  (p+q) (z—xp—yq)=1

i) z=ap+yg+op’+Pg’+y

iii) z= ‘r;uc~}-qy+3(,.r)(1?)”3

We now end this unit by giving a summary of what we have covered in it.

17.4 SUMMARY

In this unit we have covered the following:

1. The Lagrange’s method for solving quasi-linear PDE of first order
yields the general integral F(u, v) =0 of an equation

P(x, y, 2)p+0(x, y, )¢ =R(x, y, 2)
where u(x, y, z) =constant and v(x, y,z)=constant are two
independent integrals of the auxiliary equations
dx _dy B dz
P(x,y,z2) Qx, y2) R(x ¥ 2)

2. First order PDEs

f(x, y, 2, p,q)=0, (see Eqgn. (37))
and
g(x, y,z, p,q) =0, (see Eqgn. (38))
are compatible, if and only if,
) 7298
dp, q)
i) p=d0(x,y, 2),g=w(x, y, z) obtained by solving
fx, y,2, p,g)=0 and g(x, y, z, p, ¢) =0 makes
dz =¢(x, y,2)dx+y(x, y, z)dz integrable.
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3.  Condition ii) in Step 2 above, alternatively yields, the condition of
compatibility of Eqns. (36) and (37) as
a0 g) 008 o8, 908) 4
dx, p) d(y.q) = Iz, p)  Iz.q)

[Fg]

4.  The Charpit’'s method of solving PDE of the form (36) consists of the
following steps.

i) determine one solution of the auxiliary equations
dx _dy  dz dp dg

£, 1, o +df, —f+pf) —(f,+af.)

involving p or g or both which contains an arbitrary constant and
is of the form F(x, y, z,p, ¢, a) =0, a being constant.

i) solve f=0and F=0for p and g intermsof x, y, z.

i)  substitute the above values of p and ¢ in the relation
z = pdx+qdy
and integrate it to obtain the complete integral of Eqn. (36).

5.  There are four special forms of Egn. (36) called standard forms to
which Charpit's method can be applied easily. These forms are

I Equations involving p and ¢ only, for which the auxiliary
equations reduces to

de _dy  dz _dp dgq

f, f, pof,+daf, 0 0

Il Equations not involving the independent variables explicitly, for
which the auxiliary equations reduces to

dx _dy  dz _ dp _ dq
f, f, pof,+df, —-pf. —d.
[l Variable separable equations of the form f(x, p)= g(y, p) for
which auxiliary equations yield the solution of the form
fx, p)=a=g(y, q)
where a is a constant.

IV For the first order PDE of the Clairaut’s form, namely,
z=xp+yq+ f(p, q) the auxiliary equations yield the solution of
the form

p=a and g =b, giving
z=ax+by+ f(a, b)
where a, b are arbitrary constants.

17.5 SOLUTIONS/ANSWERS

E1) i) The given equation can be written as
wp—p=y —x°
The auxiliary equations are
dx dy  dz  xdx+ ydy+zdz
0

2

= e R
' o ¥ 15
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The integral of the above system of equations are
u=xy=c, and v=x’+y*+z*=c,
Hence the general integral of given PDE is
F(xy, x>+ _\,-‘2 +7z%)=0,
where F is an arbitrary function.

i)  The given equation is
y'p—xyq=x(z~2y)
The auxiliary equations are
de _dy  dz
v —xy x(z-2y)
Integrating the above system of equation, we get
u=x’+y’=c, and v=yz—y’ =c,
Hence the general integral of the given PDE is
X +yt=9(yz—y?)

i) The auxiliary equations corresponding to the given equation are

dx _dy  dz xdx+ydy+zdz
.z3—2yz—y2 x(y+z) x(y—2) 0
Integrating above system of equations, we have the two families of

surfaces

u=y*-2yz-z"=¢,v=x’+y*+z° =¢,
Hence the general integral of given PDE is

¥ +y +27 = f(y* -2y -7"),
where f is an arbitrary function.

iv)  The auxiliary equations corresponding to the given equation are
wdx zxdy xydz dx+dy+dz —ﬁ+ﬂ+£

y=z Z—% X—Y 0 x y z
Integrating the last two fractions, we get the two families of
surfaces as

x+y+z=c¢ and xyz =c,
Thus the general integral of the given PDE is
Fx+y+2z,xy2)=0

v)  Auxiliary equations are
de  dy dz
2+ 3xy2 y3 +3x2y 2(.J|r2 + yl )z

11
Choosing —, —, 0 as multipliers, each fraction of (i)
Xy

dx dy
i + s

_x v ;
ATy L

Taking the last fraction of (i) and fraction (i), we get > =¢, (i)

Choosing 1, 1, 0 as multipliers, each fraction of (i) is

3 dx+dy _dx+dy
2+30°+y +3x%y  (x+y)

(iv)

16 Choosing 1, —1, 0 as multipliers, each fraction of (i)
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B dx—dy _dx—dy

X430 -y -3y (x—y)°
From (iv) and (v) (x+ y)~ (dx+dy) = (x— y) " (dx —dy)
Integrating, —(x+ y)* +(x—y)~ =c,
Thus, the required general solution is

F {(x— W2 =(x+y)7, %} =)

(v)

E2) The auxiliary equations are
dx dy B dz
x(y'+z) —-y(x’+2) (FP-y')z
_yzdx+zxdy + xydz _ xdx+ ydy —dz
0 0

Integrating, we have
xyz=¢, and x’+y’ -2z =c, (105)
The given curve is x+ y =0, z =1, whose parametric equation is
x=t,y=—t,z=1
Substituting these values in Eqgn. (105), we get
~1 =¢, and 2t -2 =c,
Eliminating ¢ from the above equations, we get
2¢,+2=-c;
In the above relation substituting for ¢, and ¢, from Egn. (105), we get
¥+ y +2xyz-2z+42=0,
which is the desired integral surface.

E3) The auxiliary equations are
dx _dy dz _dx+dy+dz
y X Z X+y+z

. dx dy
Integrating — = —, we get
y X
=y =¢ (106)
. dz dx+y+z 3
And integrating, — = SEA I+ , we obtain
Z x+y+z
c+ Y+
e (107)

7

<

The given curve z =x’, y =0 has the parametric equations as
x:f, '\}:0, z= 4
Substituting these values of x, y, z in Eqns. (106) and (107), we get

3
9 t+1
I =i and —s =03
£

Eliminating ¢ from these equations, we get
l+¢

=c,
G

Substituting in the above equation the values for ¢, and ¢, from Eqgns.
(106) and (107), we get
z(+x*=y*) =(x"—y%) (x+ y+2) as the desired integral surface.
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E4)

E5)

E6)

E7)

The auxiliary equations are
dx dy  dz _dx+dy+dz  xdx+ ydy+zdz

Y=g, E—=% XY 0 0
Integrating, we get
x+y+z=c and X’ +y' +z' =¢, (108)
The given curve z =0, xy =1 has parametric equations as
|

x= yeE—51=0
t

Substituting these values of x, y, z in Eqn. (108), we obtain
r+l=c, and ¢’ Jrl,zc7
t t°

Eliminating ¢ from these equation, we get

e —2=¢,
In this equation substituting the values of ¢, and ¢, from Egn. (108), we
have

xy+yz+zx—1=0

1—xy
= 7=

x+y
which is the desired integral surface.

From Eqgn. (52), the compatibility condition for two PDEs of first order is

g dg ; g s g og
s = e o ——r— . ) = : )==0
Lf. gl=f, e vt % +(pf, +4f,) P (f:+2r2) % (fy+daf;) %

Since our PDEs are
f(x, ¥, p)=0and g(x, y,q)=0
.fq :0’ f;’ :0‘ g;) :0’ g: :0

Then Egn. (52) reduces to

fp g.\' _fj.' gq :0
which is the required condition.

Here f(x, y, p, ¢)=0 and g(x,y, p, 9)=0
f.=0and g_=0
Then Egn. (52) reduces to
SoBot Tl =S8 =18, =9
= f.e~fe e~ 2)=0

oS, 8) o, 8) _,
d(x, p) 9(y, q)
which is the required condition.

Herelet, f=(y—2)p+(z—x)g—(x—y)=0

and g=z—-px—qy=0

Using Egn. (52), we get

[f. gl=(y—2) (=p)+(z—x) (=) +[(y—2)p+(z—x)q].1
=[=1=g+ p(g—p)] (=x)—=[1+ p+q(g— p)] (=y)
=(g=p) [xp+ygl=(x=y)+ yp—gx
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E8)

E9)

=(g—p)z—(x—y)+yp—qgx [since xp+yg=2z from g =0]
=10 [since z(g—p)=(x—y)—yp+qgx from f=0]
Hence the given PDEs are compatible.

Let f=xp—yq=0

and g=x"p+q—xz=0

Using Egn. (52), we get

[f, g]=xQ2xp—2)= y.(0)+[(xp = yql(=x) =[p + p.Olx* ~[~q +¢.0].1
=2x".p—xz—xp+xyq—px’ +q

=—Xxz+4g+Xxyq

= —xzp + xyq + X [since —xz+¢q = —.\'Zp from g =0]
=x(yq—xp)
=0 [using f =0]

Hence the given PDEs are compatible.
On solving f =0 and g =0 for pand ¢, we get

_I+yz  x(z—x)
B 1+xy’ 1= 1+xy
Substituting the above values of p and ¢ in dz = pdx+qdy , we get
_1+yz dx x(z—x) &
1+ xy 1+ xy
(1+ xy)dz = (1 + yz)dx + x(z — x)dy
(1+ xy)dz = (1+ xy + yz)dx+ xzdy — x*dy — xydx (adding and
subtracting xydx)
(I+xy)dz = (1 + xy)dx + z(ydx + xdy) — x(xdy + ydx)
(A+xy)d(z—x)—(z—x) (xdy+ ydx)=0
(A+xy)d(z—x)—(z—x)d(1+xy)=0
(I1+xy)d(z—x)—(z—x) d(1+ xy)
(1+xy)°

=% d(”“’]:(}
1+ xy

Integrating, we get
s
=b
1+ xy
= z=x+b(l+xy), for b being an arbitrary constant, is a one-
parameter family of commong solutions of the given PDEs.

Uy

U 44

=0, provided 1+xy =0

i) The given PDE is
pzx+q2y=z (109)
The auxiliarly equations are

de _dy _ dz __dp _ dq
2px 29y 2Ap’x+q’y) p-p° q-¢°

pldx+2pxdp _ q’dy +2qvydy
p’x q'y

= pz.xzaqzy. (110)
where a is a constant.
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ii)

On solving Egns. (109) and (110) for p and ¢, we get

1/2 112
- = and ¢ = 4
# (I+a)x (1+a)y

Substituting these values of p and ¢ in dz = pdx+ ¢dy , we get

(i 1/2 - 1/2 | 172
[_j dz=[_) m[_J &
z X y

Integrating, we get
((A+a)z}"” = (a0 + ()" +b,
which is the required complete integral of the given PDE.

The given PDE is

f=2z+xp+yg)—yp’=0 (111)
The auxiliary equations corresponding to Egns. (65) are
dx  _dy _ dz B dp dg

2x—=2yp B 2y B 2xp—2yp> +2yq - —(2p+p2) e (2g—p*>+q.2)
From 2™ and 4" fractions, we get
dy dp

2—+—=0
y p
Integrating, we get
yp=a (112)
Solving Egns. (111) and (112) for p and ¢, we get
_ a _ H2 _E__Z
Py ™7 ™5y

Substituting these values of p and ¢ in dz = pdx+ gdy , we get
2

dz =% dx+ = 7 d}!—a;fd}f—id}f
yooo2y y y
. 2
= ydz+zdy =—dx—Zdy +——dy

o3

y ¥ y

Integrating, we get

yz=—-——=+b
y Y
ax b a’
= z=—Ft+t——7F,
y y 4y

which is the complete integral of the given PDE.

The given PDE is

f=2z+p*+qy+2y* =0 (113)
The auxiliary equations corresponding to Eqgn. (65) are
dx _dy  dz dp dg

2p y 2p*+qy —(0+p2) —(g+4y+42)
Here 1*' and 4" fractions yield

dx+dp =0
Integrating, x+p=a
= p=a—x (114)
From Egns. (113) and (114), we get

B —(2z+2yz+(a—x)2)

y
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Substituting for p and ¢ in dz = pdx+qdy , we get
e 2 ."2 .
dz =(a—x) dx— Lol M dy
y
= ydz=y*(a—x)dx—(a—x)’ ydy—2y’dy—2z ydy
= y’dz+2zydy+(a—x)’ ydy—y*(a—x)dx+2y’dy =0
or
d v%+i(a—x)2y3 22 =0
) 4
Integrating, we get
¥ [2z+(a-x)"+y’1=b,
which is the complete integral of the given PDE.
iv) 22 =2(a’+1)x* +2ay+b
V) z=ax+be’(y+a)™
E10) i) The given PDE is
p+q—pq=0
which is an equation in p and g only
Let p=a
We then get from the given equation
_ a
a-—1
Substituting for p and ¢, from above, in dz = pdx+ gdy , we get
dz=a dx+ ¢ dy
a—1
Integrating, we get the complete integral of the given PDE as
z=ax+— -y+b
a —
ii) z=axtl-a’ y+b
iy z=ex+ay+b
iv)  The given PDE is

(y=x) (gy-px)=(p-gq)°
Let y+x=U,and xy=V
0z 0z aU+8_zBV

B S B0 B BV B

:az_i_vﬁ

oU "oV
&mmm%q=§£=§%+x§5

y

The given equation then reduces to

0z :( z T
oU aV

This equation is now of the Type 1 and we can write its complete
integral directly, using Eqgn. (82), in the form
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E11) i)

E12) i)

z:aU-l-\/EV+b

=5 z=a(y+.x)+\/a xy+b
The given PDE can be written as
].—;?(' pz +i=0

X Yy
Let V1—x* = X and }2 =Y

Then the given PDE reduces to

oz f oz
=, =0
[ax] oy

and its complete integral, using Egn. (82), is
z=aX +(-a>)Y +b

2.2

=avl+x’ _az}

+b

The given PDE is

f=4z—pq=0 (115)
which is Type Il equation
Putting p =ag in the given equation, we get

4z =aq’ $q=i1#4—z
a

Considering only the positive signs and substituting the values of
p and g, from above, in the equation dz = pdx+qdy , we get

.z=a1fﬂahc+,|’3 dy
a a
1};—i dz = adx+dy

Integrating, we get the complete integral of the given PDE as

Jaz
Jal
2

= *daz=ax+y+b
= az=(ax+y+b)’

=(ax+y)+b

a’lnlzl=(ax+b+y)’
8(x+ay+b)’ =(1+a’)z’
4(a’*—1) z=(ax+y+b)’

Proceed as in Example 18 and obtain

X y(l b:z]fi'

where k :%[—a +a’ +4]

The given PDE is
g=xp+p’
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Vi)

E13) i)

Hence each side must be equal to the same constant, say a.
xp+p’=aand g=a

—x*tx* +4a
2
Substituting the values of p and ¢, from above, in the relation
dz = pdx+qdy , we get
—xtvx*+4a

dz - — dx+a dy

On integration, we get the complete integral of the given PDE as

2 [.2
£ [% x++vx*+4a }+a}-'+b

= p=

+aln

z=——=%

4

Z =%(2.r—a)3+azy+b

Vil +a

2

a
z= +—In
2

> 1
x+\/x"+a|—%—2+ln lyl+b
y

|
z=aVl+x° +Eaz}*2+b

where a and b are arbitrary constants.
Hint: The given PDE can be written as

pz(l +x7) _4
i ¥

312

Z :%(IZ +a’)"?* +(y*=a®)"* +b

Hint: Dividing the given PDE by ¢’x”, we get
P _ yq* - y*

2

X q
which is in variable separable form.

y=+a
y+a

Hint: Dividing the given PDE by p’q, we get

z+br=ln‘x+wja+x2 ‘+ 1 In
2Ja

a

The given PDE is
(p+q) (z—xp—yq)=1
It can be written in the form

I=xp+yq+
P+q
which is a Clairaut’s equation
Hence the complete integral of the given equation is
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z=ax+by+
a+b

i) z=ax+b_v+m

|||) 3:0X+by+3(ab)”3

124



MISCELLANEOUS EXERCISES

1i

State whether the following statements are true or false. Justify your
answers with the help of a short proof or a counter example.

i)  The equation yzdx+ (x’y—xz)dy+(x’z—xy)dz =0 is integrable.

dz d : :
i) The solution of the PDE —=+ 2= =22 is z=—[y+ f(x— y)I.
dx dy
iii)  The complete solution of the second order PDE ahg =xX—Y,
xdy

involves two arbitrary constants.
iv) ThePDEs p’x+¢’y=z and p’x—g’y=0 are compatible.
v)  The complete integral of the PDE (\/; + \/E ) =2x is given by

2x—a)’ .
7= (T) + az_)-' +b, a and b are arbitrary constants.

vi)  One of the solution of the simultaneous differential equation
dx B dy . dz

x(y'=2x) y2y'-x) 2x’-y)

vii)  The equation (6x+ yz)dx+ (xz—2y)dy + (xy+2z)dz =0 is exact.

. 3/2
sty =

Find the integral curves of the following system of equations

) e dy_ s
3 5 3z+tan(3y—5x)

. dx dy dz

”) 2 2 = 2 2 = 2 2
x(y"=z7) —-yz"+x) z(x*+y°)

dx dy dz

iii) : m— =—
X' =¥ Y —EX I —Xy

) : dx _ dy _ ’dz :
ye=3) x(x=y) Zx"+y")

dx dy dz
v)

x' =y =7 B 2xy T2z

Find the differential equation of the space curves in which the following
two families of surfaces # =¢, and v =¢, intersect.

i) u=x"+y* +z2, v=xyz

i) wu=x"+y,v=3x+2y+z

iy wu=xyz,v=x"+y -2z.

Find the equations of the system of curves on the cylinder 2y = x”

orthogonal to its intersection with the hyperboloids of one-parameter
system xy=z+c.

Show that there is no set of surfaces orthogonal to the curves given by
dv_ dy _dz
Z Z+X X '

An electric circuit consists of an inductance of 0.1 henry, a resistance of
10 ohms, a condenser of capacitance 25 microfarads and
electromagnetic force of 400cos200¢ volts. Write the system of

simultaneous equtions governing the charge and the current at time r. 125
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10.

11.

12.

Classify the following equations into linear, semi-linear, quasi-linear and
non-linear equations.

) (P +)p—xyg=7x+y’

ii) Xp— yXq = XZ°

iy  yp—xg=xyz+x

iv) Z2A+p*+gH)=1

V) @xy-Dp+(z-x)g=2x-yz)
vi)  uu, =e’ +sinx,u=u(x,y)

vi) pt+g=x+y+z

Vi) z(p—q)=7"+(x+y)’

X)  p+tq=pq

X)  xXp+(x+y)g=(x+y) (2’ +])

Determine the total differential equations for the following family of
surfaces, ¢ being the defining parameter in each case.

) yx+z)=c(y+2)

i)  (yz+D (ey+D=(xy+1)
i) xyz=c

iv) 2zy—x(y*+z%)=2cx
v) 3x*—y*+zi+xyz=c.

Verify that the total differential equatons are exact/integrable and find the
corresponding integrals.
i) 2vzdx+ zxdy—xy(1+ 2)dz =0

iy  zydx=zxdy+y'ds

i) (= =+ 2xy+2x0)dx+(y' — 2" —x7 +2yz+2yx)dy
+(ZP =" =y  +22x+22y)dz =0

iv)  (y+2)dx+(z+x)dy+(x+y)dz=0

V) (vz+z0)dx—xzdy+xydz=0

vi)  Zdx+ (' =2y2)dy + (2y* — yz—x2)dz =

Find f(y) such that the total differential equation
{(yz+2)/x}dx—zdy+ f(y)dz=0
is integrable. Hence solve it.

Eliminate the arbitrary constants a and b from the following equations
and obtain the corrresponing PDEs.
i) z=(x+a)(y+b)

ii) z=(x*+a) (x*+b)

iy z=xy+yVxi—-a’+b

iv) z=ax+by+ab
z=ax+a’y’ +b

vi) z=ax+(-a)y+b

Find the PDE arising from each of the following surfaces:
) z=x+y+ fxy)
i) z2=f(x=y)
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13.

14.

15.

16.

17.

i) z=y*+ 2j‘(l+ In yJ

X
iv) S+ z—xy)=0
V) x+_v+z:=f(x2+y2+zz)
vi) y=f(x—at)+g(x+at)
vi)  z=f(x+iy)+g(x—iy)

Find the general integral of the following PDEs:

i) xzp + yzq = Xy

ii) ptanx+gtany=tanz

i) 2(p-q) =2’ +(x+y)

iv)  X(y-2p+y(z-x)g=2"(x~y)

V)  (y+z)p-(x+yg=x* -y

Find the integral surface of the following PDEs passing through the

given curves.
i) (y-2)p+(z—=x)g=x-y; 2=0, y=2x
1

i) (x=Y)p+(y—-x—-2)q=2z z=

Verify that the equations
)  z=+v2x+a+42y+b,and
i)y  ZHu=20+A")(x+y)

; i
are both complete integrals of the PDE z=—+—. Show further, that

P 4
the complete integral ii) is the envelope of the one parameter subsystem
obtained by taking b = I ™ integral i).
A 1+4

Show that z=ax+(y/a)+b is a complete integral of pg=1. Find the

particular solution corresponding to the sub-family b =a . Also find the
singular integral, if it exists.

Find the complete integrals of the following PDEs:
) (C+y) (P’ +qY)=1

i) NP+’ +E=-y) (p-q) =1
i) z= px+qy+m

v)  ¢'=2p’(l-p°)

V) ' =l+p+q°

v z2(p*-q)=x-y

vi)  2x(z°¢* +1) = pz

viii)  pP+q’—=2px—2qy+1=0

ix)  2(z+px+qy)=yp°

X) pg=p+q.
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EXERCISES
1. ) True, verify the condition of integrability.
i)  False, $=$=%:>x—y=q; _?]= yto=y+f(x=y).
iy  False,
;:;} . :%=§—_w\’+¢(y) 2= 2 (g

solution involves two arbitrary functions.

iv) True, Here f=p’x+¢’y—z=0and g=p’x—¢°y=0
Verify that the compatibility condition [ f, g]=0 is satisfied.

v) False, \p—2x=—y/g=—a (say)

= p=Q2x-a)’ q=a

Qx—a)
J dz=pdx+qd}-':>z=T+a y+b.
dhydryde
vi)  True, _5." . T _ ‘Z _ yields .m-'zm:c.
¥ =X 2z2(x" = y7)

vii)  True, verify the condition of exactness.

2. ) The first two terms of auxiliary equations yield
3y—-3x=¢

R i st rd i 3{!2

Combining 1 and 3 fraction dx=————

3z +tanc,

= Inc¢, +x=1In(3z+tanc,)

= 3z+tanc, =c,e’

The integral curves are the intersection of two families of surfaces

3y—5x=¢ and e *{3z+tan(3y —5x)} =c,.

i dx dy _ dz
x(y' =z =y +x%) (P +yY)
dx_dy_d
_x y 1z _Xxdx+ydy+zdz
0 0
. X 4 2 9
Integrating —=c¢, and x"+y +z =c,
¥z
. Required solution is f(i X +y+ ,;3] =0.
yZ
d dy d
i) — =2 - &
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_ dx —dy B dy —dz N dz —dx
=y x+y+z) (-x+y+z) (Z-x0)(x+y+2)

From first two fractions In(x—y)=In(y —z)+In¢,

= X7 =

y—2z
From the second and third fraction In(y—z) =In(z —x)+In¢,
S =c;

Z—X

. Required solution is f{ Lamd A i ZJ =0.
V=7 =%

dx dy _dz

Y@x-y) -2G-y) 2 +))
From the first two fractions

x’dx =—y’dy or 3x’dx+3y’dy=0
Integrating x* +y* =¢,
Choosing 1, —1, 0 as multipliers, each fraction

_ dx—dy _ dx —dy

Y-+ -y G- +y)
From the third fraction and the above fraction.

dz _ dx—dy dz _dx—dy

YY) G- Ay 2 x-y

Integrating (x—y)/z=c,

. Required solution is f[f * % (& y)J s,

7
<

Given system can be written as
dx dy dz

v +zP-x* —=2xy T —2xz
From the last two fractions y/z =¢,
Choosing x,y, z as multipliers
xdx+ydy+zdz _xdx+ydy+zdz
X =xyt—xzt +2xy7 +2x2°  x(P+y*+7H)

xdx+ydy+zdz  dz
x(x*+y +7°) 2z
Integrating (x* + y*+z%)/z=c,

From above and third fraction

. Required solution is f [l uj =0.

Z Z

de  dy  dz
(=22 w2 -xP) wxP-yh)’

a{x_ﬁ_ dz

y =X B 2x—3y '
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dx dy _ dz
x(y'+2) —y(*+2) 2(x*-y?)

ii)

(x+y)(z+])=¢ and (x-y) (z—D=c,.

The surface orthogonal to the curves given by
dx dy dz
Z B ZrX B X
has the differential equation
zdx+(z+x)dy+xdz=0.
Check that the condition of integrability is not satisfied for this differential

equation, hence it cannot be solved. Hence no set of surfaces
orthogonal to the given curve exists.

Here R=10, L=0.1, C =25x10"°, E(t) = 400c0s200¢
Governing equations are

% —100i +400000g = 400cos 2001
't
and % =1

dt

di = @ =dt
400c0s2001 + (1007 —400000¢) i '

i) quasi-linear
i)  semi-linear
iy linear

iv)  non-linear
v) quasi-linear
vi)  non-linear
vii)  linear

viii) quasi-linear
ix) non-linear
x)  semi-linear

) O+ y2)dx+(az+27)dy+(y* —xy)dz=0
ii) I+ y2)dx+x(z—x)dy—(1+xy)dz=0

i)  yzdx+xzdy+xy dz=0

iv)  yzdx+(x y—z0)dy+(x’z—xy)dz=0

V) (6x+ yz)dx+(xz—=2y)dy+(xy+2z)dz=0.

i) 2yz dx+zx dy —xy(1+2)dz=0
Dividing by xyz throughout, we get
%4-@—[]-}“1](& =0
X y 4
Integrating, 2ZInx+Iny—(z+Inz)=Inc¢
orlnx +lny—-Inc—=Inz=z or x’y=cze".

i)  Given equation can be written as
ydx—xdy dz (EJ dz
—=—ord|—|=—

y? Z y) z
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10.

X "
Integrating, —=Inz—Inc, or z=ce"".
y

iy  Adding and subtracting x’dx, y’dy, z’dz in the first, second and

the third term, respectively of the given equation and simplifying,
we get

[—(.JrE + y2 +722)+ 2x(x+ v+ z)ldx
+[=(x* + y* +2°) +2y(x+ y+2)ldy
+[-(x*+y* +z2°)+2z(x+ y+2)ldz=0
or,
—(P+y +2) (dx+dy+d) +2(x+ y+2z) (xdx+ ydy+zdz) =0
dx+dy+dz 2xdx+2ydy+2zdz
x+y+z B .)c2+_1u2+z’2
Integrating, In(x+y+z)=In(x*+y*+z*)+Inc
or, (x+y+2z)=c(x*+y>+z%), ¢ being arbitrary.

or,

V) xy+yz+z=c.

V) (vz+27)dx—xzdy+xydz=0
Let x=uz, .dx=udz+zdu and y=vz, ..dy=vdz+zdv
Putting the above values in the given equation, we get
vz + ) (wdz+ zdu)—uz*(vdz + zdv) +vu 2°dz =0

or, W+D)Zdu—-uz’dv+v+Duz’dz=0
Dividing by (v+1uz’, we get

du dv +£= 0

u v+l z
Integrating, we get

uz=c(v+1)

o, xz=c(y+2z).

vi)  Substitution x=uz and y=vz reduces the given equation to
Zdu+z°(1-2v)dv=0
or, du+(1-2v)dv=0
Integrating, u+v—v’=c¢
or, (x+y)z-y'=cz’.

Mutliplying the given equation throughout by x, we get
(yz+2z)dx—xzdy+xf(y)dz=0 (i)

If Eqn. (i) is integrable, then intgrability condition yields,
(yz+2)(—x—xf")—xzlf —(y+ D]+ [z2—(-2)]=0

or, xz(l+y)f =xzf [.fE%J
df _ dy

or, -—-—=
f  1+y

Integrating, we get f =c(y+1), ¢ being a constant.
Putting this value of f in (i), we get
zZ(y+1dx—xzdy+xc(y+1)dz=0
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dx dy cdz
F 5 PR

r —— —
x y+l1 2z
Integrating, we get the required solution as

xz" =c¢,(y+1), ¢ and ¢, are arbitrary constants.

0

1. i)  pg=z
ii) pqg =4xy
i)  px+qy=pq
iv)  z=px+qy+pq
V)  g=2yp°
vi) p+g=1.

12. i) Differentiating the given equation w.r.t. x and y, we get

p=1+f'(xy).y
g =1+ f"(xy).x
Eliminating f’(xy) from the above two equations, the required
PDEis xp—yg=x—1y.

ii) p+q=0

iii) px3 +qx=2y’

iv) py—qx=y*—-x?

v)  Differentiating the given equation partially w.r.t. x and y, we get
1+ p=f'(x>+y*+2°) 2x+22p)

l+q =f'();2 + yz +z2) (2y+2zq9)

Eliminating f~ from the above two equations

(I+p)  l+gq
2x+2zp 2y+2zq
= (—2)p+(z—-x)g=x-Yy.

Vi) y=f(x—at)+ g(x+at)
ﬁ: f(x—at)+ g’ (x+at)
ox
2 }
a—‘:=f”(x—ar)+g”(.r+at)
dx
dy . 3
P f(x—at) (—a)+ g (x+ar) (a)
azy ” 2 » 2
sz (x—at) (—a) "+ g (x+at)a
=a’[f"(x—at)+ g"(x+at)]
ox’
B 2 :
. Required PDE is %zaz%'
. 9’z 9%z
S——=0);
vii) e +ay‘
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14.

15.

ii)

) X
x'}} B ZA B ¢[_] -
y
sin z sin x
b fios)
sin y sin y
Given zp—zg=2"+(x+y)’
Lagrange’s auxiliary equations are
dx _dy _ dz
2z —z Z+(x+y)’

From the first two fractions, we get x+ y =¢,.
From the second and third fractions, we get

—zdz 2zdz
dy =——— ofr ——=-2dy
FR gl Zg
ZE+(‘2
Integrating, In(z* +¢)—Inc* =-2y or =—L=¢™
»

or, ¥ +(x+y)’]=c,
Thus, the required general integral is ¢*' [z + (x+ y)’]=d(x+y) .

@( 11 1]
xyz, —+—+—|=0
X y z

PO +y* =28, xy+2)=0

S(Jr+y+z)2 =9(x*+ yz +z%)

Given equationis (x—y)p+(y—x—2z)g=2 (i)
Lagrange’s auxiliary equations are
d« _ dy _dz _dx+dy+dz o)
=y P=x=2 Z 0
. From the last fraction x+ y+z =¢, (iii)
Taking D =ﬁ or el ... =0
y-x-z z  2y=¢ 3
Integrating In(2y —¢,)—2Inz=1In¢, or 2y—c,)=c,z’
or, (y—x—2)/7" =c, (iv)
Givencurveis z=1, x>+ y* =1 (v)
Putting z =1 in (iii) and (iv), we get
x+y=c¢—land y—x=¢, +1 (vi)
But 2(x’+ y*)=(x+y) +(y—x)° (vii)
Using (v) and (vi), (vii) becomes
2=(c, =) +(c, +1)° (viii)

Putting the values of ¢, and ¢, from (iii) and (iv) in (viii), we get the
required integral surface as
x+y+2)+(y—x—2)° =27 (x+y+2)-2z°(y—x—-2)=0

The given equation is

z=+2x+a +\/2y+b (i)
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Differentiating w.r.t. x and y, we get

1
p= and g =

1
NJ2x+a 2y+b
1 1

—+—=2x+a+,2y+b=z
P q
which shows that (i) is a solution of

(|
—+—=z

P 9
Since it contains two arbitrary constants « and b, it is a complete
integral.
Similarly verify that ii) is a complete integral.

When b:—%—i, then

1+ A

z=«]2x+a+1/2y—%—$ (i)

Differentiating the above equation w.r.t. a, we get

2x+a
2y d__HK =\/
\/" A 1+4 ) (i)

Adding Egns. (ii) and (iii), we get
2 2
2x+a=—= iv
rta=2"g (iv)

Also V2x+a-A,[2y-2-E_ -0 (v)
A 1+A

Subtracting Egn. (v) from Eqgn. (ii), we get

gl By okt
N Tea

a Y2 2 ¥
2y ——— =
o ) (1+A)° L

Adding Egns. (ii) and (v), we get

M
1+l 1+l
A A

= 20+A") x+ )= +u
which is our solution ii).

2(x+ Ay) =

16. z=ax+2+b Q)
a

Differentiating w.r.t. x and y, we get
1
p=a and g=—
a

pq=1
Thus (i) is a solution of pg=1. It involves two arbitary constants so it is
a complete integral. For b =a, we obtain the particular integral

Z=Cfx+l+(£

a
The problem has no singular solution.

2 17. i) Given (> +y%) (p>+¢°) =1 (i)
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v)

Let x=rcos@, y=rsin @ (i)
then x*+y*=r> @=tan'(y/x)
_9z_0z dr 0z 98

P % "orox 96 ax
—%coqlﬁi—mm‘?i e L
o ro 960\ ox x*+y’

Similarly, g = g—f = %sin 6+ CO:G s—z

Putting these values of p and ¢ in Egn. (i) and simplifying, we get

(32 ) 1[az 2| ( azj2 [82.}:

NN=—| +=l=—| |=lie,|r—| +|—| =1 iii

' {[arj r 08 rar 06 ()
Let In» = R then Egn. (iii) reduces to

zY (9zY)

— | +=—=]| =1

(5%) +(56)
which is Type-I (standard form) Charpti’s equation whose solution
is z=aR+bB+c; a, b, ¢ being arbitrary constants.

where a’+b>=1i.e., b=+1-a’
z=alnr++l1-a° @+c¢

where r=4/x’+y® and @=tan"'(y/x).

Take x+y=X* and x—y=Y"’ and proceed as in i) above.
The required complete integral is

z=ayx+y+yl-a’ Jx—y+c.
z=ax+by++Jaa’ + b’ +y.

Given equation is ¢ =z’ p°(1-p°)

Let ¢ =ap then we have a’p’ -z’ p*(1-p*)=0
== pz(arz—z2 +z2p )=0

= either p=0 or p=+y/(z"-a’)/z

Now dz = pdx+ qdy = p(dx+ ady)

When p=0 then dz=0=z=c

when p=+,/(z> —a’)/z then

dz=%[J(z* —a’) /2] (dx+ady)

dx+ady =i%(32 —-a®>)122z dz

Integrating x+ay+b=(z"—a*)"’

or (x+ay+b)’ =z -a’
Hence the required complete integral is

5

P —a’=(x+ay+b) or z=c.

z=zcosh[(x+ay+b)/{/(+a’)].
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vi)  The given equation can be written in the form

Let vz dz = dZ so that 2 g

(i)

With above substitution Eqgn. (i) becomes

P -Q*=x—-y where P =a—Z, 0 :8_2
ox dy
Separating variables we can write
P’—x=0%-y=a (say)

then P=(x+a)"?, Q=(a+y)"’

sodZ =(x+a)?dx+(a+y)"?dy

Integrating, z =§(_r+ a)’? +E(y +a) +b

) "l 3b
= 2 =(a+x)"*+(a+y)"* +c where c=—.

vii)  Write the given equation as

1(,3) ol 2
23[[&.8)) +I}.{,ax

Take zdz=dZ sothat z*/2 =7 and given equation becomes
, P oz 0z

“=——| where P=—, 0 =—
Q 2x ox 0 dy
Now variables are separated. Proceed as in vi) above and
integrate to obtain

22 =2x*(1+a)+2vay+2b
where a, b are arbitrary constants.

vii) Given equationis p’+¢° —2px—2qy+1=0
Here f=p°+q’ —2px—2qy+1=0 (i)
Charpit’s auxiliary equations are
dp  dq dz _ dx _ dy
-2p -2q -pQ2p-2x)-4q2q-2y) -Q2p-2y) -(2q-2y)

From the first two fractions, we get p =aq
Putting p =agq in (i), we get

(@’ +1)¢* =2(ax+ y)g+1=0
. 2(ax+ y)i\/4(ax+ v): —4(a’ +1)
: 2(a’ +1)
Putting the valus of p and ¢ in dz= pdx+qdy, we get

= (ax+y) iJ(ajc +y)" —(a”+1) (@di-+dy) (i)
(a”+1)

Put ax+ y =v so that adx+dy =dv and Eqn. (ii) gives

(@ +Ddz=[vEv: —(a® +1)]dv



Block 4 Solutions/Answers to Miscellaneous Exercises

Integrating,
(a* +1)z :%vf +%v,/v3 —(a® +1) i%(a: +DInfy+4v> - (@’ +])‘+b

is the complete integral where v =ax+ y and a, b are constants.

; ax b a
KX) Z2=S—+t———7s:
y" y 4}

X) z2=2(a+1)(x+y;"a)+b.
_x_
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