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COURSE INTRODUCTION 

Welcome to this third semester course through which we aim to introduce you to the 
branch of mathematics called “analysis”. The word ‘analysis’, in general, means a 
detailed examination of the elements or structure of a substance or statement of a 
result. In mathematics, analysis involves the study of the structure of sets having 
different types of elements such as the set of real numbers, the set of rational 
numbers and also the set of certain functions.   
 

Real Analysis is the branch of mathematics that studies the structure of real 
numbers and the behavior of functions defined on the set of real numbers. You 
already have some idea of the structure of the set of real numbers, and of functions 
defined on it, from the 1st semester course, Calculus. In that course you were 
introduced to many concepts such as limit, continuity, differentiability and 
integrability for real-valued functions, though more from an algorithmic and 
computational aspect. However, when you apply the algorithms, it is important to 
know the logic behind them. The study of analysis provides the reasons behind 
these computation rules. The study will also help you to develop “analytical thinking” 
and the ability to apply mathematics more precisely and confidently.  
 

The analysis of real numbers and real functions played a fundamental role in the 
development of mathematics. Though many mathematicians like Newton and 
Leibniz contributed to the development of analysis, the origin of analysis took place 
in early 19th century with the work of Cauchy, who gave precise definitions of 
concepts such as limit and continuity. The convergence criterion introduced gave a 
path way to the techniques of approximation which led to the development of the 
theory of integration theory by the mathematicians, Riemann.   

In this course we study the analysis of real numbers. The whole content is divided 
into six blocks.  
 

In Block 1, comprising 4 units, we shall discuss the language of mathematics 
including mathematical symbols and the syntax used in expressing mathematical 
ideas. The most powerful tool used in analysis for giving justification is “methods of 
proof”. In this block we also introduce you to some methods of proof. Then we 
discuss the algebraic and topological structure of real numbers, and some 
fundamental results about real numbers such as the order completeness properly 
and the Bolzano-Weierstrass theorem.  

In Block 2, comprising 2 units, we discuss the concepts of sequence and 
convergence in detail. You will also important theorems on limits of sequences here.  
 

In Block 3, comprising 3 units, we familiarise you with the concept of an infinite 
series and its convergence. We shall give a few general tests for checking the 
convergence of a series with positive terms. After that, you will study some special 
tests like D’Alembert’s Ratio test, Cauchy integral test, Raabe’s Test and Gauss’s 
test. Lastly, we discuss alternating series, i.e., a series whose terms are alternatively 
positive and negative.  
 

In Block 4, comprising 4 units, we shall study two important concepts, namely, 
continuity and differentiability. Both these concepts involve the abstract notion of the 
limit of a function, of which you have some idea from the calculus course. There you 

were introduced to the epsilon-delta ε( - )δ definition, though not in a formal way. 

Here we shall give a precise meaning to the role of ε and δ  in the definition, and 
explain how they can be used rigorously in the proofs. Then we define notion of 
continuity of a function at a point and over an interval. Next, you will study to the 
notion of a derivative of a function in a rigorous way. You have learnt many rules for 
differentiation from the calculus course. Here we explain the logic behind these 
rules. We prove some important theorems as applications of differentiation: the 
Inverse Function Theorem, Rolle’s Theorem and the Mean Value Theorems.  

In Block 5, comprising 5 units, we discuss the concept of Riemann integration, 

Newton  

(1643-1727) 

Leibniz  

(1646-1716) 

 

Cauchy  

(1789-1857) 
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which you have studied in the Calculus course. In this course we will give a rigorous 
treatment to the theory of integration, using the concept of a limit. We give the 
proofs of the results wherever necessary. 

The last block, Block 6, comprises 6 units. It covers sequences and series, whose 
terms are functions defined on subsets of the set of real numbers. Such sequences 
and series are called sequence and series of functions. We introduce two types of 
convergence – Pointwise convergence and uniform convergence. Whenever the 
convergence is established for sequences or series, their limit is called the limit 
function. The fundamental question that interests many mathematicians is whether 
the properties of limit, continuity and differentiability are preserved by the limit 
function. In this block we discuss some partial answers to this question.  
 

In all these blocks we have emphasized the importance of proofs. We give 
several proofs that involve different techniques that are explained in Unit 2. 
We advise you to work out the details by verifying each step in the proof. You 

need some practice in choosing δ for a given 0>ε . Similarly you should be 

able to choose an N corresponding to 0>ε in the sequential definition of 
limits. Thus there is a great need to develop the ability to read and write the 
proofs by doing it yourself.   

 

Throughout this course, we have tried to help you understand the results, methods 
and concepts with the help of several examples and exercises. Do solve the 
exercises as and when you encounter them, without referring to the 
“Solutions/Answers” given at the end of each unit. Only in case of some difficulty, 
you may look at the solution. You can also compare your solution, with the solutions 
given by us.  
 

As we have said above, the course, comprises 6 blocks. Each block is divided into 
units and each unit is divided into sections. The sections of a unit are numbered 
sequentially as are the exercises, theorems, etc.  
 

For your convenience, we have put  
 

***    to show the end of an example,   
 

to show the end of a proof, 
 

E1, E2, E3…   for the exercises  
 

Sec. x.y  to refer to section y of Unit x 
 

We hope you enjoy studying this course. If you have any problems in understanding 
any portion of it, please ask your academic counsellor for help at your Learner 
Support Centre, or write to us at svarma@ignou.ac.in . Also, if you feel like studying 
any topic in greater detail, you may consult the following books:  
 

1. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wiley and 
Sons (Asia) P. Ltd., 2000. 
 

2. K.A. Ross, Elementary Analysis – The Theory of Calculus Series – 
Undergraduate texts in Mathematics, Springer Verlag, 2003.  

 

3. T.M. Apostal, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd., 2002. 
 

4. Principles of Mathematical Analysis by R. Walter Rudin, McGraw-Hill 
International Editions. 

 

5. Trench, William F., "Introduction to Real Analysis", Faculty Authored and Edited 
Books & CDs. 7, https://digitalcommons.trinity.edu/mono/7 .  

 

6. Elias Zakon, Mathematical Analysis I, published by The Trillia Group, 2004, 
http://www.trillia.com/zakon-analysisI.html.     
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BLOCK INTRODUCTION 
 
You must have read the Course Introduction, from which you know that this course 
unfolds in 6 blocks. This is the first block of the course, comprising of 4 units. In this 
block, the focus will be on understanding the language of mathematics, the thought 
processes involved in doing mathematics in general, and the analytic properties     

of .R  
 
Now, from your earlier studies, you would be aware of what a theorem is, and what 
it means to prove it. However, you need to study the formal grammar of 
mathematics to be able to communicate mathematics meaningfully. For this 
purpose, in Unit 1, we introduce you to various aspects of the language of 
mathematics. Here we shall look at how to express a ‘mathematical statement’ in 
different ways. You will also study ways of connecting statements, as well as 
statements with quantifying symbols. 
 
In Unit 2, the focus is on different mathematical thought processes, the large domain 
of mathematical reasoning. Here is where you will study different ways of proving 
mathematical statements. You will also study ways of showing why a given 
statements is false. Here consider a remark about a phrase you may frequently 
come across in a ‘proof’ namely, “without loss of generality”.  This phrase means 
that it is enough to prove a particular case of the statement concerned, and all the 
remaining cases can be reduced to this case. For example, consider the statement 
“the square of every non-zero integer is a positive integer”. To prove it, we can take, 

without loss of generality, an integer 0>n , and show that 02 >n . The remaining 

case is 0<n , which can be reduced to the case proved by taking nm −= .  
 
Whatever you study in this unit, and in the previous one, will be needed by you not 
just in this course, but in all your further mathematics courses. 
 
In Unit 3, we shall reacquaint you with the set of real numbers R , with its algebraic 
and ordered properties.  You will see how the order structure of R is different from 
that of Q  due to the ‘order completeness property’ which R  possesses, but Q  

lacks. You will also see a few consequences of this property. Finally, you will see 
the notions of ‘finite’, ‘countably infinite’ and ‘uncountable’ subsets of R . 
 
Unit 4 deals with the topological structure of R . Specifically you will see the 
concepts of ‘neighbourhood’ of a point, and ‘limit point’ of a set. In this context, we 
shall present a theorem due to the mathematicians Bernhard Bolzano and Karl 
Weierstrass. Finally, we discuss the two important classes of subsets of R , namely 
-- open sets and closed sets, and show you how they are related. 
  
At the end of this block you will find a set of miscellaneous examples and 
exercises related to the concepts covered in this block. Please do study them, and 
try each exercise yourself. This will help you engage with the concepts concerned, 
and understand them better. 
 
We hope you enjoy the course! 
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NOTATIONS AND SYMBOLS (used in Block 1) 
(Also see the notations used in Calculus and Differential Equations) 
 

)( evenodd NN  odd (even) natural numbers 

primeN   set of prime numbers 

)( −+ ZZ   positive (negative) integers 

)( −+ QQ   positive (negative) rationals 

R   the set of real numbers 

)( −+ RR   positive (negative) real numbers 

⇒ ( ⇔ )  implies (implies and is implied by)  

iff  if and only if  

)(≤<   is less than (is less than or equal to) 

)(≥>   is greater than (is greater than or equal to) 

)!(∃∃   there exists (there exists a unique) 

∀   for all  









∏∑

==

n

1i

i

n

1i

i aa  )aaa(aaa n21n21 KL+++  

∴  therefore 

w.r.t.  with respect to 

YX:f →  f  is a function from the set X  to the set Y  

s.t. such that  

x|x{  satisfies }P  the set of all x  such that x  satisfies the property P  

)X(℘  the power set of the set X  

|x|  modulus of the real, or complex number, x  

«  empty set 

)(aNε  ε -neighbourhood of a  

S  closure of the set S  

o
S  interior of the set S  

Sinf   the greatest lower bound (infimum) of S  

Ssup  the least upper bound (supremum) of S   
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1.1 Introduction       9         
 Objectives 

1.2 Mathematical Statements              10  

1.3 Logical Connectives                11 
Disjunction 
Conjunction 
Negation 
Conditional Connectives  

1.4 Logical Quantifiers              19  

1.5 Summary               21 

1.6 Solutions / Answers              22 
       

1.1 INTRODUCTION 
 

You would, by now, have studied mathematics for at least 13 years. If you look 
back, you will see how the term ‘mathematics’ had different meanings for you 
when you were in Class 5, Class 10 and Class 12. What does it mean to you 
at this stage, after studying the first year courses? Does it seem to be merely a 
collection of facts? Or, do you see it as a language, with signs, symbols, and 
its own grammar? 
 

It is such questions that we will consider in this unit. In Sec.1.2, you will see 
what a mathematically acceptable sentence is. Such a sentence is called a 
‘mathematical statement’. 
 
In Sec.1.3, you will study the ways of connecting two simple mathematical 
statements to form compound statements. These statements form the basis of 
your further study in this unit and the next one. 
 
In Sec.1.4, we focus on concepts involved in particular mathematical 
statements. These are ‘quantifiers’, which correspond to the English words 
‘all’, ‘some’, ‘only one’. 
 
Throughout the unit, we shall be working towards helping you achieve the 
following objectives. To help you assess how much you have learnt, we have 
sprinkled exercises throughout the unit. Please try to solve them, as you come 
to them. Doing this will help you to understand the concepts concerned better. 
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Block 1                                                                                                                    The Structure of R
                                                         Objectives 

After studying this unit, you should be able to: 

• distinguish between mathematical statements and non-statements; 

• identify, and use, the logical connectives; 

• identify, and use, the logical quantifiers. 

 

1.2 MATHEMATICAL STATEMENTS 
 
When you think about ten wholes and two hundredths multiplied with fifty two 
thousand six hundred and twenty eight, how would you arrive at the product? 
Don’t you visualise the problem as numbers written in base 10, that is, the 

decimal system? If yes, you are actually looking at ‘ 5262810.02 × ’. Isn’t this 
easier to comprehend and solve? This is just one example of how useful a 
system of symbols can be. In fact, this is one example of one aspect of 
mathematics as a language – symbols, and rules for working with them. 
 
Similarly, when you work with sets or with variables, you do so with symbols, 
and rules (of grammar) for working with them. It is this kind of universally 
accepted symbols, and structured use of them, that helps any person working 
with mathematics, anywhere, read mathematics and communicate 
mathematical ideas to each other. This is true for any other language too, 
don’t you agree? 
 
Now, consider your own first language, or mother tongue. In the process of 
learning to use this language, you learnt its words and rules of grammar to 
construct sentences for communication with others. Similarly, for using the 
language of mathematics, there are rules of syntax and grammar that govern 
the use of words and symbols in it. A mathematical equation or inequality is a 
sentence in this language, and this sentence has nouns and verbs. For 
instance, the sentence ‘one hundred divided by twenty is equal to 5’ has the 
nouns one hundred, twenty and five; and the verbs are ‘divided by’ and ‘is 
equal to’. Similarly, you have all the parts of grammar in the language of 
mathematics. What is interesting is that this language is universal, the same 
across the world. That is, any person, anywhere in the world would understand 
and follow the same rules of grammar and syntax when doing mathematics. 
 
Let us now focus on the sentences in the language of mathematics. What is 

an “acceptable sentence”? If I say ‘ N∈x ’ is not a mathematically acceptable 
sentence, while ‘All humans are mortal’ is a mathematically acceptable 
sentence, you may wonder why. The following definition will give you an idea. 
 
Definition: A mathematical statement is a sentence that is either true for all 
the cases covered by it or false for all the cases covered by it. 
 

For instance, ‘ 52 <n  for }2,1,0{∈n ’ is a mathematical statement which is 

true for all three cases covered by it. Note that it is not considering any n  that 

is outside }.2,1,0{  

Another example of a mathematical statement is ‘The set of real numbers is a 
finite set’, which is a false statement. 
So, mathematical statements are the mathematically acceptable sentences. 
For example, all the sentences below are mathematical statements. 

i) 1|cos| ≤x  for all .x R∈  

ii) The set of stars in the sky is finite. 
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Unit 1                                                      Communicating Mathematics 

iii) 1=
dx

dy
 for .xxyy

2)(:: =→RR  

iv) All flowers have red petals. 

v) Some flowers have red petals. 
 
Note that the sentences in (i), (ii) and (v) are true for all the cases covered by 
them, and those in (iii) and (iv) are false. Hence they are examples of 
mathematical statements. 
 
Remark 1: We shall usually just say ‘statement’ instead of ‘mathematical 
statement’ each time. 
 
Next, let us see some examples of what are not statements. 

i) Add four to five. 

ii) If R∈x  such that ,5<x  is 1<x ? 

iii) .N∈x      

iv) ,γ+β+α  where .R∈γβα ,,  

 
Here, (i) is an imperative sentence, giving a command. It is not a statement as 
it is neither true nor false. Next, (ii) is a question, not a sentence; (iii) is 
ambiguous since it is not clear what x  is, and hence we can’t decide whether 
this is true or false; and (iv) is not a sentence, but an expression – an example 
of a phrase in the language of mathematics! 
 
Why don’t you try a related exercise now?  
  
 

E1) Which of the following are mathematical statements? Give reasons for 
your answers. 

 i) ,23 ++− cba  for .,, Z∈cba  

 ii) 5.023 =++− cba , for some .,, Z∈cba  

iii) All human beings work in offices. 

iv) .
2

2

dx

dy

dx

yd
=  

v) What is mathematics? 

vi) The range of 5)(:: xxff =→RR  is .R  
 

 
Now, the underpinning of mathematics is the underlying thought process. This 
shows up through a series of statements that are formed by connecting each 
other. In the next section, you will study how the statements can be logically 
connected. 
 

1.3 LOGICAL CONNECTIVES  
 
While reading English, you would have come across compound sentences, 
that is, those made up of smaller sentences connected by ‘or’ or ‘and’. For 
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Block 1                                                                                                                    The Structure of R
                                                         example, consider the statement, ‘There is a real number lying between 0  and 

1.0 ’. This is actually made up of two statements connected with AND, namely, 

‘There is a real number greater than 0 ’, and  

‘There is a real number less than 1.0 ’. 

 
In the same way, most statements in mathematics are combinations of simpler 
statements joined by words and phrases like ‘and’, ‘or’, ‘if …, then …’, ‘if and 
only if’, etc. These words and phrases are called logical connectives. There 
are several such connectives, which we shall discuss one by one in this 
section. 
 

1.3.1 Disjunction  

Consider the sentence ‘Ajay or Mustari went to the market’. This can be 
written as ‘Ajay went to the market or Mustari went to the market’. So, this 
sentence is actually made up of two simple sentences connected by ‘or’. 
When we connect two statements by ‘or’, we have a term for such a 
compound statement. 
 
Definition: The disjunction of two statements p  and q  is the compound 

statement p or ,q  denoted by .qp ∨  

 
For example, ‘The Discovery of India is a book or several women run their own 
businesses’ is the disjunction of p  and ,q  where 

:p  The Discovery of India is a book, and  

:q  Several women run their own businesses. 

Similarly, if p  denotes ‘ 02 > ’ and q  denotes ‘ 52 > ’, then qp ∨  denotes the 

statement ‘ 2  is greater than 0  OR 2  is greater than 5 ’. 

 
For any two statements p  and ,q qp ∨  is a statement. Hence, it must be 

either true or false. Let us now look at when qp ∨  is true and when it is false. 

For doing so, let us look at the examples given above. Since ‘The Discovery of 
India is a book’ is true, and q  in that example is also true, qp ∨  is certainly 

true. Now, look at the next example above, about 0,2  and .5  Since p  is true, 

but q  is not true, what about the truth value of qp ∨ ? Note that if even one of 

them is true, then the compound statement qp ∨  is true.  

  
Thus, more generally, if even one out of p  and q  is true, then  ‘ qp ∨ ’ is 

true. Otherwise, qp ∨  is false. This holds for any pair of statements p  and 
.q   

 

Let us consider an example. 
 

Example 1: Is the disjunction of the statements ‘ 737 23 +=+ t)tt(
dt

d
 for 

'R∈t  and ‘ 253 =+ ’ true or false? Give reasons for your answer. 
 

Solution: Let p  denote ‘ 73)7( 23 +=+ ttt
dt

d
 for R∈t ’, and q  denote 

‘ 253 =+ ’. Their disjunction is  ‘ 73)7( 23 +=+ ttt
dt

d
 for R∈t  or 253 =+ ’. 

As you know that p  is true and q  is false, their disjunction qp ∨  is true. 

*** 

qp ∨  is the same as pq ∨ . 

The symbol ∨  seems to 

have been first used by the 
famous polymath, Bertrand 

Russell, in an article he 

published in 1908. 

10: <p   

represents the fact that p  

denotes the statement 

‘ 10 < ’. 
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Try some exercises now. 
  
 

E2) Write down the disjunction of the following statements, and decide 
whether it is true or not. 

 i) 732 =+ ,   ii) .
4

1

5

1
<  

 
E3) Give an example, with justification, of statements p  and q , related to 

functions, such that  

 i) qp ∨  is false; 

 ii) qp ∨  is true. 
 

 
Now let us look at the logical analogue of the conjunction, ‘and’. 
 

1.3.2 Conjunction 

As in ordinary language, we use ‘and’ to combine simple statements to make 
compound ones. For instance, ‘ 541 ≠+  and Prof. Rao teaches Chemistry’ is 

formed by joining ‘ 541 ≠+ ’ and ‘Prof. Rao teaches Chemistry’ by ‘and’. Let us 
define the formal terminology for such a compound statement. 
 
Definition:  Let p  and q  be two statements. The compound statement ‘ p  

and q ’ is called the conjunction of the statements p  and .q  We denote this 

by q.p ∧    

 
For example, if  

:p  IGNOU is a mega-university, and  

:q  March 8th is International Women’s Day,  

then qp ∧ : IGNOU is a mega-university and March 8th is International 

Women’s Day. 
 
Again, ‘ 53312 =∧=+ ’ is the conjunction of ‘ 312 =+ ’ and ‘ 53 = ’. 

 
Now, when would qp ∧  be true, and when would it be false? Do you agree 

that qp ∧  will be true only when both p  and q  are true, and not otherwise? 

For instance, take the example above of IGNOU and March 8th. The 
conjunction will be true only if p  is true and q  is true, which is the case. So, 

qp ∧  is true here.  

Similarly, ‘ 53312 =∧=+ ’ is false because ‘ 53 = ’ is false. 
 
Consider another example. 
 

Example 2: For which values of a  and z  will the conjunction of ‘ ,a 12 =÷  

where R∈a ’ and ‘ 3Arg π=z , where C∈z ’ be true?  
 

Solution: Let ,a:p 12 =÷  where R∈a , and  

:q 3Arg π=z , where .C∈z  

qp ∧  will be true only when p  and q  are both true. 

p  is true only for .2=a  

The truth value of a 

statement p  is ‘true’ or 

‘false’, depending on 

whether p  is true or 

false, respectively. 

qp ∧  is the same as pq ∧ . 

The symbol ∧  seems to 

have first appeared in a 

book by the Russian 

logician, M.I. SchÖnfinkel, 

published in 1924. 



 

 

14 

Block 1                                                                                                                    The Structure of R
                                                         

q  is true for β+α= iz , where .0,0,3 >α>β=
α

β
 Thus, q  is true for 

infinitely many complex numbers lying on the ray, .0,3 >= xxy  

Thus, qp ∧  is true for 2=a  and for every .0),31( >+= xixz  

*** 
 
Why don’t you try some exercises now? 
  
 

E4) Give the set of those real numbers x  for which qp ∧  will be true, where  

 ,2: −>xp  and .73: ≠+xq  

 
E5) Give an example from calculus, of statements p  and ,q  for which qp ∨  

is true but qp ∧  is false. Justify your choice of example. 

 

 
The next connective actually relates ‘conjunction’ and ‘disjunction’, as you will 
see. 
 

1.3.3 Negation 

You must have come across young children who, when asked to do 
something, go ahead and do exactly the opposite! Or, when asked if they 
would like to eat something, will say ‘No!’, the ‘negation’ of yes! Now, if p  

denotes ‘The child eats rice’, how can we denote ‘The child does not eat rice’? 
Let us define the connective that will help us do so. 
 

Definition: The negation of a statement p  is ‘not p ’, denoted by .p~  

For example, if p  is ‘N  is a finite set’, then p~  is ‘N  is not a finite set’. Note 

that here p  is false and p~  is true. 

Let is consider another example. 
 

Example 3: Write down the negation of the following statements and give the 
truth values of all the statements. 

i) .1∫ =xdx  

ii) No human can live without oxygen. 

iii) .
7

2

2

9

5

7
≥+

−
 

Solution: i) The negation is .1∫ ≠xdx  

 Here, the given statement is false, as you know. Its negation is true. 

ii) The negation is ‘At least one human can live without oxygen’. Given the 
current level of scientific knowledge, the given statement is true, and its 
negation is false. 

iii) The negation is  |
2

9

5

7
≥+

−
.

7

2
 

 As you know, this is equivalent to .
7

2

2

9

5

7
<+

−
 

 The given statement is true, while its negation is false. 

*** 

The symbol ~, for 

negation, appeared in 

Bertrand Russell’s 

article, “Mathematical 

Logic as based on the 

theory of types”, in 

1908. 
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From the discussion above regarding the truth value of p~ , you would 

agree that if p  is true, p~  will be false, and vice versa.  

 
Let us now consider two laws, due to the logician Augustus De Morgan, 
relating conjuctions and disjunctions using negation. 
 
De Morgan’s Laws: Let p  and q  be statements. Then  

(i)  )(~ qp ∨  is equivalent to qp ~~ ∧ ;  

(ii)  )(~ qp ∧  is equivalent to qp ~~ ∨ .  

 
We will not prove these laws here, but will give some examples of their use. 
 

Example 4: Give a statement equivalent to ‘ RR→:f  is not continuous on 

R  and 1)(lim::
1

≠→
→

xff
x

RR ’. 

 

Solution: Let RR→:: fp  is continuous on R , .1)(lim:::
1

=→
→

xffq
x

RR   

Then the given statement is qp ~~ ∧ . This is equivalent to )(~ qp ∨ , that 

is, ‘For ,: RR→f  neither is f  continuous on R , nor is 1)(lim
1

=
→

xf
x

’. 

*** 

 
Why don’t you try the following exercise now? 
  
 

E6) Write down the negation of each of the following statements. 
Also decide the truth value of each negation. 

 i) .550 ≠−  

 ii) 2>n  for every .n N∈  

iii) All human beings can walk. 

iv) xxff 2)(:: =→RR  is a periodic function. 

v) R∈x  such that 
x

x

−

−

3

2
 is not defined. 

 

 
Let us now discuss the conditional connectives, representing ‘If …, then …’ 
and ‘if and only if’. 
 

1.3.4 Conditional Connectives 

Consider the statement, ‘If any student of Real Analysis gets 75% or more in 
 the examination, then she will get an A grade for the course’. We can write 
this statement as ‘If p  is true, then q  is true’, where  

:p  Any student of Real Analysis gets 75% or more in the examination, and  

:q  Any student of Real Analysis will get an A grade for the course. 

This compound statement is an example of the implication of q  by p , which 

we now define. 
 
Definitions: Given any two statements p  and ,q  we denote the statement ‘If 

p  is true, then q  is true’ by q.p ⇒  We also read this as  

Compare these laws with 

the De Morgan laws 

given in Unit 1 of the 

course, Calculus. 
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Block 1                                                                                                                    The Structure of R
                                                         ‘ p  is true implies q  is true’, or  

‘ p  being true is sufficient for q  to be true’, or  

‘ p  is true only if q  is true’, or 

‘ q  is true if p  is true’, or 

‘ q  being true is necessary for p  to be true’.  

Here, we call p  the hypothesis and q  the conclusion.  

Further, a statement of the form qp⇒  is called a conditional statement, or 

an implication. 
 
So, for example, in the conditional statement, ‘If m  is in Z , then m  belongs to 

Q ’, the hypothesis is ‘ Z∈m ’ and the conclusion is ‘ Q∈m ’. 

Mathematically, we can write this statement as  

QZ ∈⇒∈ mm . 

 
Let us analyse the statement qp⇒  for its truth value. That is, assuming that 

p  is true, under what conditions is qp⇒  true or false? For instance, if 

Z∈mp : , and Q∈mq : , then whenever p  is true, that is, Z∈m , then q  will 

automatically be true since .QZ ⊆  So here, p  being true implies that q  is 

true, i.e., qp⇒  is true. 

In other words, what you have seen in this example is that for every 
qpq,p, ⇒  is true only when both p  and q  are true and the truth of q  

follows from the truth of p . Otherwise, we cannot say that p  implies q . 

 
Remark 2: This is regarding the use of the terms ‘sufficient’ and ‘only if’. We 
say ‘ p  being true is sufficient for q  to be true’. This means that if qp⇒  is 

true, then it is enough to know that p  is true, because automatically then q  

will be true. Similarly, we say ‘ p  is true only if q  is true’, or ‘ q  being true is 

necessary for p  to be true’, when qp⇒  is true, because if q  is not true, 

then p  cannot be true in this situation. 

 
Consider an example. 
 
Example 5: Check whether the two statements qp⇒  and pq⇒  are true, 

where π=xp :  and 1: −=ix
eq . 

 

Solution: If we assume p  is true, i.e., π=x , then 1−=πi
e , that is, q  is true. 

So qp⇒  is true. 

Next, assume q  is true, that is, 1−=ix
e , i.e., 1sincos −=+ xix . 

This happens when π=x , but also when π−π= ,3x , etc. So, p  need not 

follow from q . Thus, pq⇒  is not true. Thus, ./ pq ⇒  

*** 
 
Why don’t you try a related exercise now? 
  
 

E7) Which of the following statements are true, and why?  

 i) qp⇒ , ii) rp ⇒ , iii) qrp ~)( ⇒∧ ,        

 iv) pr ⇒ , where  

‘ q  does not imply p ’ 

is symbolised as 

‘ pq ⇒/ ’ 
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,17: Q∉p   ,17:
2

2

b

a
q ≠  for any ,:,0,, RZ ∈≠∈ xrbba  where x  

is a prime number. 
 

 
In the example and exercise above, you noted that related to qp⇒  is the 

implication pq⇒ . This is, in a sense, the ‘reverse’ implication. We have a 

name for this ‘reverse’ implication, which you may already know. 
 
Definition: The converse of the implication qp⇒  is the implication pq⇒ .   

 
Note that this also means that the converse of pq⇒  is ,qp⇒  that is, the 

converse of the converse of a given implication is the given implication 
itself. 
 

So, for example, the converse of ‘ QZ ∈⇒∈ mm ’ is ‘ ZQ ∈⇒∈ mm ’. Here, 

you can see that the first implication is true, while its converse is false. (Why?) 

However, consider the implication ‘ apabp || ⇒  or bp | , where Z∈bap ,,  

and p  is a prime’. What is its converse? Isn’t it ‘If Z∈bap ,, , where p  is a 

prime such that ap |  or bp | , then abp | ’? In this case, the implication, and 

its converse, are both true. 
 
Now, what happens when we take the conjunction of an implication and its 
converse? We denote ‘ qp⇒  and pq⇒ ’ by a shorter notation, qp ⇔ . This 

may or may not be a true statement. When it is true, we have the following 
definition. 
 
Definition: Let p  and q  be two statements such that the conjunction 

)()( pqqp ⇒∧⇒  is true. Then p  and q  are called logically equivalent. 

We also read ‘ qp ⇔  is true’ as ‘ p  is true if and only if q  is true’. We also 

usually shorten ‘if and only if’ to iff. 
In this case we also say that ‘ p  being true implies and is implied by q  

being true’, or ‘ p  being true is necessary and sufficient for q  to be true’. 

 
Let us consider some examples. 
 

Example 6: Check whether ‘For ∫ =−⇔=∈
b

a

cacba 2bcdxx,,,
22

R ’ is true 

or false. 

Solution: Here ∫ =
b

a

cxdxp :  for R∈cba ,, , and cabq 2: 22 =−  for R∈cba ,, .  

Now to check if qp ⇒ , we assume p  is true. That is, ∫ =
b

a

cdxx . 

Then ,222
cab =−  that is, q  is true. 

Conversely, assume q  is true, that is, cab 222 =− . Then ∫ =
b

a

cdxx , that is, 

p  is true. 

Hence qp ⇒  and pq ⇒  are both true. Thus qp ⇔  is true. 

*** 

Note that qp ⇔  is the 

same as pq ⇔ . 



 

 

18 

Block 1                                                                                                                    The Structure of R
                                                         Example 7: Give an example, with justification, of two statements A  and ,B   

such that AB⇒  is true but A and B  are not equivalent. 

Solution: Let fA :  is a continuous function on R , and  

fB :  is a polynomial over R . 

Then AB⇒  is true, since every polynomial is a continuous function. 

However, A  does not imply B , since if A  is true then f  can be any 

continuous function, like the exponential function, etc. So it need not be a 
polynomial. Hence, BA⇒  is false. Therefore, BA ⇔  is false. 

***  
 
Here are some related exercises now. 
  
 

E8) For each of the following compound statements, first identify the simple 
statements ,,, rqp  etc., that are combined to make it. Then write it in 

symbols, using the connectives, and give its truth value. 

 i) If the triangle ABC is equilateral, then it is isosceles. 

ii) The real numbers a  and b  are integers if and only if ab  is a 
rational number. 

iii) A child in India is in Class 1 or in Class 2 if she is 5 years old. 
 
E9) Write down two statements p  and q  for which p  being true is 

necessary for q  to be true but p  being true is not sufficient for q  to be 

true. 
 

 
Now we come to another important type of implication. 

Consider the implication QZ ∈⇒∈ mm . Now consider 

)(~)(~ ZQ ∈⇒∈ mm , that is, ZQ ∉⇒∉ mm . 

So, given qp ⇒ , we have shown another related implication. Let us define 

this. 
 
Definition: The contrapositive of the implication qp ⇒  is the implication 

.~~ pq ⇒   

 
Let us consider a simple example. 
 

Example 8: Give the contrapositive of ,BA⇒  and the truth value of both the 

implications, where 

RR→:: fA  is monotonic on ],[ ba , 

∫
b

a

dttfB )(:  exists, where RR→:f  and .ba R∈,  

Solution: You know, from your course on Calculus, that BA⇒  is true. 

Now consider .AB ~~ ⇒  

∫
b

a

dttfB )(:~  does not exist, where RR→:f  and .ba R∈,  

RR→::~ fA  is not monotonic on .ba ],[  

Then AB ~~ ⇒  is also true. 

*** 
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This example leads us to the following remark. 
 
Remark 3: Note that qp ⇒  and pq ~~ ⇒  are logically equivalent. 

This fact is the basis of a method of proof you will study in Unit 2. 
 
Try some exercises now. 
 
 

E10) Write down the contrapositive of each statement given in E7. Also give 
the truth values of the contrapositives. 

 

E11) Give the converse and the contrapositive of qp ⇒ , where p  is 

‘ xxff sin)(:: =→RR ’, and q  is ‘ RR→:f  has a local extremum 

at 2π−=x ’. 
 

 
Let us now discuss another part of the language of mathematics. 
       

1.4 LOGICAL QUANTIFIERS 
 
Let me begin by asking you: Can all sentences be written in symbolic form by 
using only the logical connectives you have just studied? What about 
sentences like ‘ x  is prime for some x  in 'N ? How would you symbolise the 

phrase ‘for some x ’, which we can rephrase as ‘there is an x ’, or ‘there exists 
an x ’? You must have come across these phrases often while studying 

mathematics.  
 
We use the symbol ‘ ∃∃∃∃ ’ to denote the quantifier, ‘there exists’. The way we 
use it is, for instance, to rewrite ‘There is at least one child studying in Class 5 
in India’ as  

‘ x∃(  in )() xpU ’, 

where )(xp  is the sentence ‘ x  is studying in Class 5 in India’ and U  is the 

set of all children. 
Another example of the use of the existential quantifier is the true statement 

‘ R∈∃x  such that 01 >+x ’, which is read as ‘There exists an x  in R  for 

which 01 >+x ’. 

Yet another example is the false statement ‘ N∈∃x  s.t. 0
2

1
=−x ’, which is 

read as ‘There exists an x  in N  for which 0
2

=
1

−x ’. 

 
Now suppose we take the negative of the statement about Class 5 children, 
given above. Wouldn’t it be ‘There is no child studying in Class 5 in India’? We 

could symbolise this as ‘for all x  in )(, xqU ’, where U  is the set of all 

children and )(xq  denotes the sentence ‘ x  is not studying in Class 5 in India’, 

i.e., )(xq  is the same as ).(~ xp  

We have a mathematical symbol for the quantifier ‘for all’ or ‘for every’, 

which is ‘ ∀∀∀∀ ’.  
So the statement above can be written as  

‘ )()( xqUx ∈∀ ’, or ‘ Uxxq ∈∀),( ’. 

 
Another example of the use of the universal quantifier is   

‘ xxx >∉∀ 2,N ’, which is read as ‘for every x  which is not a natural number, 

xx >2 ’. 

∃  is called the 

existential quantifier. 

‘There exists’ means 

‘there is at least one’. 

∀  is called the 

universal quantifier. 

The contrapositive of an 

implication is NOT the 

same as its converse. 
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                                                         Of course, this is a false statement, because there is at least one ,, RN ∈∉ xx  

for which it is false, for example, 
2

1
=x . 

 
We often use both quantifiers together, as in the statement, 
‘For every rational number ,x  there is a rational number lying strictly between 

x  and 1+x ’. 

In symbols, this is )1()()( +<<∈∃∈∀ xyxyx QQ . 

What would the negation of this statement be? It would be ‘There is a rational 
number x  such that there is no rational number lying strictly between x  and 

1+x ’. 
In symbols, this is 

).[1,]()()( +∉∈∀∈∃ xxyyx QQ  

This is according to the following rules for negation that relate ∀  and .∃   
 
The two rules are  

i) )()(~ xpUx ∈∀  is equivalent to )),((~)( xpUx ∈∃  and  

ii) )()(~ xpUx ∈∃  is equivalent to )),((~)( xpUx ∈∀  

where U  is the set of values that x  can take. 
 
So far you have seen some examples in which the quantifiers occur singly, or 
together. Sometimes you may come across situations where you would use ∃  

or ∀  twice or more in a statement. It is in situations like this, or worse, [say, 

])()()()()( 44332211 pUxUxUxUxUx
nn

∈∃∈∀∈∃∈∃∈∀ K , where our 

rules for negation come in useful. In fact, applying them, in a second we can 
say that the negation of this seemingly complicated statement is  

).(~)()()()()( 44332211 pUxUxUxUxUx
nn

∈∀∈∃∈∀∈∀∈∃ K  

 
Consider an example. 
 
Example 9: Write the following statement, and its negation, using logical 
quantifiers. Also interpret its negation in words.  

‘Given ,0>ε  there is a 0>δ  s.t. ε<− |1| 2
x whenever δ<− |1| x ’. 

Solution: The given statement says that for each positive real number ε , 

there is a positive real number δ  for which, whenever δ<− |1| x  is true then 

ε<− |1| 2
x  is true. We could write this in symbols as  

).|1||1(|)0()0( 2 εδδε <−⇒<−>∃>∀ xx  

What would its negation be? It would be  

)],|1||1(|)0()0([~ 2 εδδε <−⇒<−>∃>∀ xx  

which is equivalent to 

)].|1||1(|[~)0()0( 2 εδδε <−⇒<−>∀>∃ xx  

That is, there is an 0>ε  s.t for every 0>δ  and R∈x  satisfying ,|1| δ<−x  

we cannot conclude that ;|1| 2 ε<−x  

that is, there is an 0>ε  for which no 0>δ  has the property that 

.|1||1| 2 εδ <−⇒<− xx  

***  
 
In the example above, you would have realised that the given statement says 

that 1)(lim 2

1
=

→
x

x

, and its negation states that 1lim 2

1
≠

→
x

x

. 
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Why don’t you try an exercise now? 
 
 

E12) How would you present the following statements, and their negations, 
using logical quantifiers? Also interpret the negations in words. 

 i) Some people can fool all other people all the time. 

 ii) Every real number is the square of some real number. 

 iii) θθθθ nini
n sincos)sin(cos +=+ , where ZR ∈∈ n,θ . 

 

 
And finally, let us look at a very useful quantifier, which is closely linked to .∃  
You would need it for writing, for example, ‘There is one and only one key that 
fits the given desk’s lock’, in symbols.  

We use the symbol ‘ !∃∃∃∃ ’ to denote ‘there is one and only one’. The way we 

use it is, for instance, to write the statement above as ‘ )()!( xpAx ∈∃ ’, where 

)(xp  is the sentence that x  fits the desk’s lock, and A  is the set of keys. 

 
The phrase ‘there is one and only one x ’ means that there is at least one x  

satisfying the given condition, and there is only one such x . 

We also read ‘ Ax ∈∃ ! ’ as ‘there is a unique x  in A ’, or ‘there is exactly 

one x  in A ’. 
 
For other examples, try and recall the statement of uniqueness in the 
mathematics that you’ve studied so far, for example,  
‘There is a unique circle that passes through three non-collinear points in a 
plane’.  
How would you represent this in symbols? If x  denotes a circle, and y  

denotes a set of 3 non-collinear points in a given plane, then the statement is  

)!()( CxPy ∈∃∈∀ ( x  passes through y ). 

Here C  denotes the set of circles in a given plane, and P  denotes the set of 
sets of 3 non-collinear points in the same plane. 
 
And now, a short exercise for you! 
  
 

E13) Which of the following statements are true (where yx,  are in )R ? Give 

reasons for your answers. 

i) R∈∀ x , R∈∃≥ yx !,0  s.t. xy =2  

ii) RR ∈∃∈∀ yx !,  s.t. 32
xy =  

iii) RR ∈∃∈∃ yx !,  s.t. 0=xy  

iv) ).0()!()(~ =+∈∃∈∃ yxyx CC  
 

 
What you have studied so far is the essence of communicating mathematical 
ideas, using the universal language of mathematics. In the next unit you will 
see how essential this is for the core of mathematical thinking. For now, let us 
summarise what you have studied in this unit. 
 

1.5 SUMMARY 
 
In this unit, we have considered the following points: 
 
1. What a mathematical statement is. 
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                                                         2. The definition, and use of, logical connectives: 

 Given statements p  and ,q  

i) their disjunction is ‘ p  or q ’, denoted by ;qp ∨  

  qp ∨   is true if p  is true, or q  is true, or both p  and q  are true. 

ii) their conjunction is ‘ p  and q ’, denoted by ;qp ∧  

 qp ∧  is true only when both p  and q  are true. 

iii) the negation of p  is ‘not p ’, denoted by ;~ p  

 p  is true if and only if p~  is false. 

iv) ‘if p , then q ’ is denoted by ;qp ⇒  

  )(~ qp ⇒  is equivalent to ).( ~ qp ∧  

v) ‘ p  if and only if q ’ is denoted by ;qp ⇔  

in this case, p  and q  are logically equivalent. 

 

3. Logical quantifiers: ‘For every’, denoted by ‘∀ ’; ‘there exists’, denoted by 

‘ ∃ ’; and ‘there is one and only one’, denoted by ‘ !∃ ’. 

 
4. The rules of negation related to the quantifiers: 

 )()(~ xpUx∈∀  is equivalent to )),((~)( xpUx ∈∃  

 )()(~ xpUx∈∃  is equivalent to )).((~)( xpUx ∈∀  

 
In the next section, we give solutions to the exercises of this unit. You should 
have tried to solve the exercises yourself before looking at these solutions. 
 

1.6 SOLUTIONS / ANSWERS 
 
E1) i) This is not a statement, since it is not even a sentence. It is only an 

expression. 

 ii) This is a statement, and is true since, for example, 

.5.02)5.1()0()0(3 =+−+−  

 iii) This is a mathematical statement since it is a sentence which is 
always false.  

 iv) This is not a statement, since we cannot decide whether it is true or 
false, as we do not know what y  is. 

 v) This is a question, not a sentence, and hence not a statement. 

 vi) This is a true statement. 
 

E2) 







<∨=+

4

1
)732(

5

1
 is true since 

4

1

5

1
<  is true. 

 
E3) i) Here both p  and q  need to be false. So, let’s take  

  :p  Every real-valued function is continuous on ,R  

  :q  The greatest integer function is derivable at every point of .R  

  Since both p  and q  are false, qp ∨  is false. 

ii) Take p  as in (i) above, and  

 0)(::: =→ xffq RR  is well-defined. 

 Since q  is true, qp ∨  is true. 
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E4) qp ∧  is true only when p  is true and q  is true. Here, qp ∧  will be true 

for every }4,2{ ≠−>∈∈ rrrx R . 

 
E5) The example in E3 (ii) works here since qp ∨  is true, but qp ∧  is false 

(because p  is false – e.g., the greatest integer function is not 

continuous on R ). 
 

E6) i) )550(~ ≠−  is ),550( =−  which is false. 

 ii) 2(~ >n for every )N∈n  is (there is some N∈n s.t. ),2≤n  which is 

true. 

 iii) ‘There is a human being who cannot walk’, which is true. 

 iv) ‘ xxff 2)(:: =→RR  is not a periodic function’, which is true. 

 v) )}32()32{( >∧≤∨<∧≥∉ xxxxx  

  «∉∧<≤∉⇔ xxx }32{  

  [,3,2[∉⇔ x  by De Morgan’s laws. 

 

E7) i) qp⇒  is true, since if p  is true then 17  cannot be written in the 

form ,
b

a
 by definition, and hence 

2

2

17
b

a
≠  for any .0,, ≠∈ bba Z  

 ii) This is false, since ,17  being irrational, does not tell us about where 

x  lies for 17≠x . 

 iii) False, since rp ∧  is true but q~  is false. 

 iv) False, since R∈17  does not imply that 17  is irrational. 

 

E8) i) ABCp ∆:  is equilateral, ABCq ∆:  is isosceles. 

  qp⇒  is true.  

 ii) :p  a  and b  are integers, :q  Q∈ab , where ., R∈ba  

  qp ⇔  is false since q  does not imply .p  For example,  

  Q∈






 −









3

7

2

1
 but ZZ ∉

−
∉

3

7
,

2

1
. 

 iii) xp :  is a 5-year-old child in India. 

  xq :  is a child in Class 1 or Class 2. 

  qp⇒  is true, as per the Right to Education Act. 

 
E9) We need to consider p  and q , where /, ⇒⇒ ppq .q  

 For example, take ,5: π=+xq  where .x R∈   

 R∈xp :    .Q  

 Then ,pq⇒  but /⇒p q  since every irrational number is not .5−π  

 

E10) i) ,~~ pq ⇒  that is, ‘if there are 0,, ≠∈ bba Z  such that ,17
2

2

b

a
=  

then Q∈17 ’. This is true. 
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 ii) ,~~ pr ⇒  that is, ‘if there is a prime number x  with R∉x , then 

Q∈17 ’, which is false. Here r~  is false, and p~  is false. Hence 

pr ~~ ⇒  is false. 

 iii) ),(~ rpq ∧⇒  that is, ),~(~ rpq ∨⇒  that is ‘if 
2

2

17
b

a
≠  for any 

,0,, ≠∈ bba Z  then Q∈17  or R∉x  for some prime number x ’. 

  This is false. 

 iv) ,~~ rp ⇒  that is, ‘if Q∈17 , then there is a prime number x  for 

which R∉x ’. 

  This is false. 
 

E11) The converse is ,pq⇒  that is, ‘if f  has a local extremum at ,2π−=x  

then xxf sin)( = ’. 

 The contrapositive is ,~~ pq ⇒  that is, ‘if RR→:f  does not have a 

local extremum at ,2π−=x  then xxf sin)( ≠  for some R∈x ’. 

 

E12) i) xAyPx ()()( ∈∀∈∃ can fool ),y  where P  is the set of human 

beings, and A is the set }.{\ xP  

  Its negation is xAyPx ()()( ∈∃∈∀ can’t fool ),y  that is, ‘For every 

person, there is some other human being who cannot be fooled by 
him/her’. 

 ii) ).()()( 2
yxyx =∈∃∈∀ RR  

  The negation is ),()()( 2
yxyx ≠∈∀∈∃ RR  that is, ‘There is a real 

number which cannot be written as the square of any real number’. 

 iii) ]sincos)sin[(cos)()( θθθθθ ninin
n +=+∈∀∈∀ ZR . 

  The negation is 

],sincos)sin[(cos)()( θθθθθ ninin
n +≠+∈∃∈∃ ZR  

  that is, for some real number θ  and integer ,n  

.sincos)sin(cos θθθθ nini
n +≠+  

 

E13) i) True, since ,xy =  and hence is unique. 

 ii) False, for example, for ,1−=x there is no R∈y  such that .32
xy =  

 iii) True, for ,0≠x  only 0=y  satisfies .0=xy  

 iv) The given statement is ‘for every C∈x , there is no unique C∈y  for 

which 0=+ yx  ’. 

  This is false, since for each C∈x , ,xy −=∃  which is unique, such 

that .0=+ yx  
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2.1 INTRODUCTION 
 

In the previous unit, you studied about the different components of the 
language of mathematics. In this unit, you will see how these play a 
significant role in proving a mathematical statement. Here you will also 
see that the concept of a mathematical proof is the core of 
mathematics. 
 
To start with, in Sec.2.2, we will discuss what constitutes a proof. You 
will see how the statements that make up a proof are very carefully put 
together, in a well-defined reasoned way. 
 
In the next two sections, Sec.2.3 and Sec.2.4, you will study different 
methods of proof. The variety in the methods comes from the kind of 
reasoning used, as you will see. You will also see that some statements 
can be proved by several diferent methods. Practice and experience 
helps one to decide which method of proof is best for the particular 
situation. 
 
You should study this unit very carefully since it forms the basis of all 
the mathematics you will study. Throughout the unit you will be studying 
several examples. You will also get ample opportunity to create proofs, 
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while doing the exercises. Please solve these exercises as you come to 
them. This will help you decide whether you have really understood 
what you have studied till that point. 
 
The specific learning objectives of this unit now follow. 
 

Objectives 

After studying this unit, you should be able to: 

• explain what  a ‘theorem’, ‘proof’ and ‘disproof’ is; 

• describe, and apply, the direct method of proof; 

• describe, and apply, the methods of proof by contrapositive and proof by 
contradiction; 

• explain what a counterexample is, and how it can be used to disprove a 
statement; 

• state, and apply, both forms of the principle of mathematical induction. 
 

2.2 WHAT IS A PROOF? 
 
Suppose I tell somebody, “I am stronger than you.” The person is quite likely 
to turn around, look menacingly at me, and say, “Prove it!” What she or he 
really wants is to be convinced of my statement by some evidence. (In this 
case it would probably be a big physical push!) Convincing evidence is also 
what the world asks for before accepting a scientist’s prediction, or a 
historian’s claim. 
 
In the same way, if you want a mathematical statement to be accepted as true, 
you would need to provide mathematically acceptable evidence to support it. 
This means that you would need to show that the statement is universally 
true. And this would be done in the form of a ‘logically valid proof’. 
 
Let us see what a proof is. 
 
Definitions: i) A proof of a statement p  is a finite sequence of statements 

n
pp ,,1 K  such that p  follows logically from 

n
ppp ∧∧∧ K21 , i.e., 

.)( 21 pppp
n
⇒∧∧∧ K  

Each 
i

p , for ni ,,1 K= , is called a premise (or an assumption, or a 

hypothesis). 

ii) The statement p  that is proved to be true is called a theorem. 

iii) A disproof of a statement p  is a proof of )(~ p , or a proof that shows 

that p  is false. 

 
Let’s consider an example of a proof: 
 

Example 1: Prove the statement ‘For any two sets A  and ABAB ⊆∩, ’. 

Solution: One proof could be the following:  

If «=∩ BA , then ABA ⊆∩  (since every set contains )« . 

If «≠∩ BA , then let x  be an arbitrary element of .BA ∩  

Then Ax ∈  and Bx ∈  (by definition of ‘∩ ’). 

Therefore, .Ax ∈  

In the next section you 
will read about some 
ways of disproving a 
statement. 
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This is true for every x  in BA∩ , since x  was chosen arbitrarily. 

Therefore, ,ABA ⊆∩  by definition of ‘⊆ ’, 

*** 
 
Why don’t we analyse the argument in Example 1? The truth of each of the  
premises, and hence of its conclusion, follows from the truth of the earlier 
premises in it. We start by considering both possibilities. 

In the first case, we get qp⇒ , where p  is ‘ «=∩ BA ’, and q  is 

‘ ABA ⊆∩ ’. 

In the second case, we again assume that the first statement is true. Then, 
assuming the definition of ‘intersection’, the second statement is true. The third 
one is true, whenever the second one is true because of the properties of 
implication. The fourth statement is true whenever the first three are true, 
because of the definition and properties of the term ‘for all’. And finally, the last 
statement, which is the statement to be proved, is true whenever all the earlier 
ones are true. In this way, we have shown that the given statement follows 
logically from the sequence of previous statements, and hence, is true. In 
other words, we have proved the given statement. 
 
Sometimes it happens that we feel a certain statement is true, but we don’t 
succeed in proving it. It may also happen that we can’t disprove it. Such 
statements are called conjectures. If and when a conjecture is proved, it 
would be called a theorem. If it is disproved, then its negative will be a 
theorem! 
 
In this context, there’s a very famous conjecture which was made by a 
mathematician Goldbach in 1742. He stated that: 

For every N∈n , if n  is even and ,2>n  then n  is the sum of two primes. 

To this day, no one has been able to prove it or disprove it, though it appears 
simple to do. To disprove it several people have been hunting for an example 
for which the statement is not true. They have been looking for an even 
number 2>n  such that n  cannot be written as the sum of two prime 

numbers. 
 
There is no knowing how long it may take to turn a conjecture into a theorem, 
or to disprove it! A very important conjecture pertaining to topology, due to the 
famous French mathematician Henri Poincaré, was proved 100 years after it 
was made. The proof was by the Russian mathematician Grigori Perelman.  
 
Now, as you have seen, a mathematical proof of a statement consists of one 
or more premises. These premises could be of four types: 

i) a statement that has been proved earlier (e.g., In Unit 5, Block 1 of the 
course, Calculus, you have seen that to prove that the complex roots of 

a polynomial in ][xR  occur in pairs, the division algorithm is used, which 

was proved earlier in the same unit.); or 

ii) a statement that follows logically from the earlier statements given in the 
proof (as you have seen in Example 1); or  

iii) a mathematical fact that has never been proved, but is universally 
accepted as true (e.g., two points determine a line uniquely) – such a 
fact is called an axiom (or a postulate); or 

iv) the definition of a mathematical term (e.g., assuming the definition of ‘⊆ ’ 

in the proof of ABA ⊆∩  in Example 1). 

 
You will come across more examples of each type while doing the following  

See www.claymath.org/ 

millennium-problems  

for a brief overview of 

some famous conjectures 

and their background. 
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                                                         exercises, and while studying and creating proofs in this course, and in other 

courses. 
 

 

E1) Write down an example of a theorem, and its proof (of at least 4 steps), 
taken from the first or second semester courses you have studied. At 
each step, indicate which of the four types of premise it is. 

 

E2) Is every statement a theorem? Why, or why not?  
 

 

So far we have spoken about valid, or acceptable, proofs. Let us now look at a 
few erroneous proofs. So, what is NOT a proof? Here are a few examples.  

1) One ‘proof’ submitted by a student for ‘ ,ABA ⊆∩  for any two sets A  

and B ’ is: 

 Let }5,4,3{},3,2,1{ == BA , then }3{=∩ BA . So ABA ⊆∩ . 

Let’s see why this is not an acceptable proof. We want to prove a 

general statement, for any two sets A  and B . But this student has only 
proved it for one particular case. So it has not been proved for every A  

and B . Therefore, this is not acceptable as a proof. 

2) Another student began a proof for ‘
2

3
)(:}3{\}2{\:

−
=→

x

x
xff RR  is 

11− ’ as follows: 

 Since 
2

3
)(

−
=

x

x
xf  is 11− ,…. 

This is not right because the student is assuming what is to be proved, 

instead of arriving at it by starting from the definition of f  and the 

definition of a 11− function. 
 

There are several other errors that we must avoid to ensure that the proof we 
give is correct. You will realise some of them as you go through this unit and 
this course. 
 

Why don’t you check a proof for validity now? 
 
 

E3) Check whether or not the following proof is acceptable. 

 Statement: If T  is a set containing an infinite set ,S  then .TS ≠   

Proof: S  is an infinite set. 

 T  is a set containing .S  

 Therefore, SsTt ∈∃∈∀ ,  s.t. .ts ≠  

 Hence, .TS ≠  
 [Also see E11(i).] 
 

E4) Prove the statement ‘ 53)(:: −=→ xxff RR  is onto’. 
 

 

You have seen that a proof of a statement is a logical argument that verifies 
the truth of that statement. There are several ways of proving a theorem, as 
you will see in the next two sections. 
       

2.3 DIFFERENT METHODS OF PROOF 
 

In this section we shall consider three different broad strategies for proving a 
statement. We will also discuss a method that is used only for disproving a 
statement. 
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2.3.1 Direct Method 

This form of proof is based entirely on the argument that starts with a true 
premise and arrives at the required conclusion. Let us formally spell out the 
strategy. 
 
Definition: A direct proof of qp⇒  is a logically valid argument that begins 

with the assumption that p  is true. Then, in one or more steps of the form 

,,,, 211 qqqqqp
n
⇒⇒⇒ K  we conclude that q  is true. 

 
Consider the following examples. 
 
Example 2: Give a direct proof of the statement ‘The product of two odd 
integers is odd’. 

Solution: Let us clearly analyse what our hypotheses are, and what we have 
to prove. 
We start by considering any two odd integers x  and .y  So our hypothesis is 

xp :  and y  are odd integers. 

The conclusion we want to reach is  
xyq :  is odd. 

Here is the argument: 

12 += mx  for some integer m  (by definition of an odd number). 

Similarly, 12 += ny  for some integer .n  

Therefore, .1)2(2)12()12( +++=++= nmmnnmxy  

Therefore, xy  is odd. 

So we have shown that qp⇒ , using three premises. 

*** 
 

Example 3: Give a direct proof of the theorem ‘ R∈∀+≤+ yxyxyx ,|||||| ’. 

Solution: First of all, we note that there are three possibilities for x  and y : 

i) either one of them is zero, 

ii) both are positive or both are negative, 

iii) one is positive and one is negative. 
 
Let us prove the statement for each of these cases. 
 

Case 1: Suppose 0=x . Then 0|| =x  also. 

∴ |||||| yxyx +=+  

∴ The given statement is true. 

In the same way, the statement is true if 0=y . 

 

Case 2: Suppose 0,0 >> yx . Then yyxx == ||,||  and yxyx +=+ || . 

Hence |||||| yxyx +=+ . 

Similarly, if 0,0 << yx , then xx −=|| , yy −=||  and )(|| yxyx +−=+ . 

∴ |||||| yxyx +=+ . 

∴ The given statement is true. 
 

Case 3: Suppose 0,0 >< yx . Then yyxx =−= ||,|| . 

Now, if 0≥+ yx , then  

yxyx +=+ ||  
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    yx +−< , since 0<x  

   |||| yx += . 

So |||||| yxyx +<+ . 

 

Next, suppose 0<+ yx . Then 

yxyxyxyx +−<−+−=+−=+ )()()(|| |,||| yx +=  since 0>y . 

So |||||| yxyx +<+ . 

|||||| yxyx +≤+∴ . 

Similarly, if |,|||||,0,0 yxyxyx +≤+<>  i.e., in this case too, the given 

statement is proved to be true. 

*** 
 

In the example above, note that we have proved the statement for every x  

and y  since we have treated x  and y  as arbitrary real numbers, and not 

having a particular value. 
 

Why don’t you try an exercise now? 
   
 

E5) Give a direct proof of the following statements:  

i)   For any two sets A  and ccc
BABAB ∪=∩ )(, . 

ii) 
2

)(::
x

xff −=→RR  is monotonic on [3,0]  (ref. Unit 6, Calculus). 

 

 

Let us now consider two proof strategies that are different from the approach 
you have just studied. 
 

2.3.2 Indirect Methods 

In this sub-section we shall consider two roundabout methods for proving 
.qp ⇒  

 

PROOF BY CONTRAPOSITIVE:  

In this method, we use the fact that the statement qp⇒  is logically 

equivalent to its contrapositive ).~(~ pq ⇒  

Because of this equivalence, to prove ,qp⇒  we can, instead, prove 

.~~ pq ⇒  This means that we can assume that q~  is true, and then try to 

prove that p~  is true. In other words, what we do to prove qp⇒  in this 

method is to assume that q~  is true, that is, q  is false, and then show 

that p  is false. Then p~  will be true.  

 

So, you see how roundabout a way this is to prove qp⇒ . This is why it is 

called an indirect method of proof. Let us consider an example. 
 

Example 4: Prove that ‘If Z∈yx,  such that x  and y  are odd, then xy  is 

odd’, by proving its contrapositive. 

Solution: Let us name the statements involved as below. 
:p  both x  and y  are odd integers, 

xyq :  is an odd integer. 

So, xyq :~  is even, and  

xp :~  is even, or y  is even, or both are even, for ., Z∈yx  

Recall that the 

contrapositive is not 

the converse. 
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We want to prove qp⇒ , by proving that .~~ pq ⇒   

So we start by assuming that q~  is true, i.e., we suppose that xy  is even. 

Then nxy 2=  for some .N∈n  

Therefore, .2 xy  

Therefore, x2  or y2  (by definition of a prime number). 

Therefore, x  is even, or y  is even, or both are even. 

That is, p~  is true. 

So, we have shown that .~~ pq ⇒  Therefore, .qp ⇒  

*** 
 
This example leads to the point made in the following remark. 
 
Remark 1: What you have proved in Example 4 by an indirect method, has 
been proved by the direct method in Example 2. Thus, sometimes a statement 
can be proved in several ways. It is for you to decide which is the best way to 
use in a given situation. 
 
Consider another example. 
 

Example 5: Prove, by the method of contrapositive, that if CBA ,,  are three 

non-empty sets such that CBCA ×⊆× , then BA ⊆ . 

Solution: The contrapositive of the given statement is ‘if A  and B  are non-

empty sets such that BA ⊄ , then for any non-empty set CBCAC ×⊄×, ’. 

To prove this, we assume that BA ⊄ . So there is an Aa∈  such that Ba∉ . 

Now, take an arbitary non-empty set C . Then CAca ×∈),( , where Cc∈ , but 

CBca ×∉),( . So, by definition, CBCA ×⊄× . Thus, the contrapositive is 

proved. Hence the given statement is proved. 

***  
 
Why don’t you try some related exercises now? 
 
 

E6) Write down the contrapositive of the statement, ‘If f  is a 11−  function 

from a finite set X  into itself, then f  must be surjective.’ Also, prove 

the contrapositive, and hence prove the given statement. 
 

E7) Prove the statement ‘If BA,  are non-empty sets such that BA ⊆ , then 

for any non-empty set CBCAC ×⊆×, ’, by proving its contrapositive. 
 

 
And now let us consider another way of proving a statement indirectly. 
 
PROOF BY CONTRADICTION:  

In this method, to prove that a statement q  is true, we start by assuming that 

q  is false (i.e., q~  is true), as in the previous method. However, here we now 

use a logical argument to arrive at a situation where some statement is true as 
well as false. 

For example, to prove ‘ 2
x  is even whenever x  is an even integer’, we start by 

assuming that 2
x  is not even for some even integer x . Since 2

x  is not even, 

2    2
x . Hence 2     .x  But we started with assuming x  is even. So, we reach a 

contradiction, namely, ‘ x  is an even integer’ and ‘ x  is not an even integer’. 
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This can only happen if our original assumption is wrong. That is, ‘ 2
x  is not 

even’ is false. Hence, ‘ 2
x  is even’ is true. 

 

So in this method, we reach a contradiction rr ~∧  for some statement .r  
This means that the truth of q~  (that we started with) logically leads us to a 

contradiction, a situation that cannot be. This can only happen when our 
assumption is wrong, that is, q~  cannot be true, that is, q~  is false. 

Therefore, q  must be true. 

 

This method is called proof by contradiction. It is also called reductio ad 
absurdum (a Latin phrase) because it relies on reducing a given assumption 
to an absurdity. It is said to have been discovered by ancient Greek 
mathematicians. Let us consider some more examples of how this method is 
applied. 
 

Example 6: Prove that 5  is irrational. 

Solution: Here 5:q  is irrational. 

To prove the given statement by contradiction, assume q~  is true, that is, 5  

is rational. By definition of a rational number, there exist positive integers a  

and b  such that ,5
b

a
=  where a  and b  have no common factors. 

ba 5=∴  
22 5ba =∴  

2|5 a∴  

,|5 a∴  since 5  is a prime number. 

ca 5=∴  for some Z∈c . 
22 25ca =∴  

,525 22
bc =∴ since 22 5ba = .  

225 bc =∴  
2|5 b∴  

b|5∴ , since 5  is a prime number. 

Hence, 5 divides both a  and ,b  which contradicts our earlier assumption that 

a  and b  have no common factor. 

Therefore, our assumption that 5  can be written as 
b

a
, where a  and b  

have no common factors is false, i.e., 5  is irrational. 

*** 
 

Example 7: Prove that the greatest integer function, ,][)(:: xxff =→ ZR  is 

not continuous at any integer. 

Solution: Let us assume that f  is continuous at some integer k . Then, 

kxf
kx

=
→

)(lim , that is, kk
kx

=
→

][lim . So, for 0,1 >∃= δε  s.t. for 

1|)()(|,|| <−<− kfxfkx δ , that is, 1|)(| <− kxf . 

Now, choose )1,(min1 δδ =  and [,] 10 kkx δ−∈ . 

Then 1)( 0 −= kxf . So, 10 || δ<− kx  (where δδ ≤1 ) and  1|)(| 0 =− kxf , 

which contradicts the premise that 1|)()(| <− kfxf  whenever δ<− || kx . 

Hence, our assumption must be wrong.  

Thus, f  is not continuous at .k  
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Since k  is an arbitrarily chosen integer, f  is not continuous at any integer. 

*** 
 
We can also use the method of contradiction to prove an implication .sr ⇒  

Here we can use the fact that )(~ sr ⇒  is logically equivalent to .~ sr∧  So, 

to prove ,sr ⇒  we can begin by assuming that sr ⇒  is false, i.e., r  is true 

and s  is false. Then we can present a valid argument to arrive at a 

contradiction. Consider the following example from plane geometry. 
 

Example 8: Prove that if two non-parallel lines 1L  and 2L  intersect, then their 

intersection consists of exactly one point. 

Solution: To prove the given implication by contradiction, let us begin by 

assuming )(~ sr ⇒  is true, that is, sr ~∧  is true, where  

1: Lr  and 2L  are two non-parallel lines, and  

1: Ls  and 2L  intersect in one point only. 

So, we assume s~  is true, that is, the two non-parallel lines 1L  and 2L  

intersect in more than one point. Let us call two of these distinct points A  and 

.B  Then, both 1L  and 2L  contain A  and .B  This contradicts the axiom from 

geometry that says ‘Given two distinct points, there is exactly one line 
containing them.’ 

Therefore, our assumption is wrong, that is, if 1L  and 2L  intersect, then they 

must intersect in only one point. 

*** 
 
The method of proof by contradiction is also used for solving many logical 
puzzles, by discarding all solutions that lead to contradictions. Consider the 
following example. 
 
Example 9: There is a village that consists of two types of people – those who 
always tell the truth, and those who always lie. Suppose that you visit the 
village and two villagers A  and  B  come up to you. Further, suppose 

A  says, “ B  always tells the truth.”                …(1) 

And B  says, “ A  and I are of opposite types.” …(2) 
What types of people are A  and ?B                 

Solution: Let us start by assuming A  is a truth-teller, that is, what A  says is 
true. 

This implies that B  is a truth-teller, using (1). 
So, what B  says is true. 

This implies that A  and B  are of opposite types, using (2). 

So we reach a contradiction, because our premises say that A  and B  are 
both truth-tellers. 
∴ The assumption we started with is false. 
∴ A  always tells lies. 

∴ What A  has said is a lie, that is, ‘ B  always tells the truth’ is a false 

statement. That is, B  lies sometimes. But, if a person in the village lies, then 
she always lies. 

∴ B  always tells lies. 
∴ A  and B  are of the same type, i.e., both of them always lie. 

*** 
 

Here are a few exercises for you now. While doing them you would realise that 
there are situations in which all the three methods of proof we have discussed 
so far can be used. 
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E8) Use the method of proof by contradiction to show that 17  is irrational. 

 
E9) If you apply the ‘proof by contradiction’ method to prove the following 

statements, what is the assumption you would start with? 

i) If f  and g  are two real valued functions over R , such that 

R∈∀≥ xxfxg )()(  and f  is not bounded above, then g  is not 

bounded above. 

ii) For 2, >∈ nn N , there do not exist positive integers zyx ,,  such 

that nnn
zyx =+ . 

 

E10) Prove, by contradiction, that 1)1(lim 2

2
−≠−

→
x

x

. 

 

 
Let us now consider a way of showing that a statement is false. 
 

2.3.3 Counterexamples 

Suppose I make the statement ‘All human beings are 5  feet tall’. You are quite 

likely to show me an example of a human being standing nearby for whom the 

statement is not true. Similarly, to prove that )()( xpx∀  is false, we need to 

prove )]()[(~ xpx∀  is true, that is, ))((~)( xpx∃  is true (see Sec.1.4). Thus, 

we need only one x  that satisfies ).(~ xp  This x  is an example of what we 

now define. 
 
Definition: An example that shows that a statement is false is a 
counterexample to the given statement. (The name itself suggests that it is 
an example to counter a given statement.) 

A common situation in which we look for counterexamples is to disprove 
statements of the form .qp⇒  For instance, to disprove the statement ‘If n  is 

an odd integer, then n  is prime’, we need to look for an odd integer which is 

not a prime number. For example, 15  is one such integer. So, 15=n  is a 
counterexample to the given statement. 
 
Notice that a counterexample to a statement p  proves that p  is false, i.e., 

p~  is true. 

 
Let us consider another example. 
 

Example 10: Disprove the statement, ‘For 22,, baba =∈R  implies ba = ’. 

Solution: In symbols, the given statement is  

)].()[()()( 22
bababa =⇒=∈∀∈∀ RR  

To disprove this statement, we need to prove its negation, namely, 
22()()( baba =∈∃∈∃ RR  with )ba ≠ . So, we need to look for a 

counterexample, that is, a pair of real numbers a  and b  for which 22
ba =  but 

.ba ≠  Can you think of such a pair? What about 1=a  and ?1−=b  They 
serve the purpose. 
In fact, there are infinitely many counterexamples for the given statement. 
Think of at least five others. 

*** 
 

Now, an exercise! 
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E11) Disprove the following statements by providing a suitable 
counterexample each. 

 i) If T  is a set containing an infinite set ,S  then .TS ≠  (Also see E3.) 

 ii) .,,)( ZN ∈∈∀+=+ yxnyxyx
nnn  

 iii) NN→:f  is 11−  iff f  is onto. 

 iv) If dxxff ∫→ )(:: RR  exists, then f  is continuous on R . 

 

 
There are some other strategies of proof, like a constructive proof, which you 
will come across later in this course and in other mathematics courses. We 
shall not discuss this method here. However, we will now discuss a very 

important technique of proof for sentences that are of the form .),( N∈nnp  

      

2.4 PRINCIPLE OF MATHEMATICAL INDUCTION 
 
In a discussion with some students the other day, one of them told me that 
girls are better than boys at studies. I asked him how he had reached such a 
conclusion. As an argument he gave me instances of several girls who had 
topped their class in their exams. What he had done was to formulate his 
general opinion of girls on the basis of several particular instances. This is an 
example of inductive logic, a process of reasoning by which general rules are 
discovered by the observation of several individual cases. Inductive reasoning 
is used in all the social sciences and sciences, including mathematics. But in 
mathematics we use a more precise form. 
 
Precision is required in mathematical induction because, as you know, a 

statement of the form )()( npSn∈∀ , where ,N⊆S  is true only if it can be  

shown to be true for each n  in .S  (In the example above, even if the student 
is given an example of one girl who is not good at studies, he is not likely to 
change his general opinion.)  
 

Here )(np  is not a statement because we don’t know if it is true or false 

unless we know the value of the variable n . We define such a sentence now. 
 

Definition: A predicate is a sentence of the form )(xP , depending on a 

variable x , such that )(xP  may be true for some values of x , and false for 

some values of x . For a given value of x , )(xP  becomes a statement. 

 

For example, if N∈< nnnP
n ,2!:)( , then )3(),2(),1( PPP  are true, but )4(P  

is not true. So )(nP  is a predicate, but KK ),100(,),2(),1( PPP  are all 

statements. 
 

So, let us come back to seeing how we can make sure that the predicate )(np  

is true for each n  that we are interested in. To answer this, let us consider an 

example. 
 
Suppose we want to prove that  

2

)1(
321

+
=++++

nn
nL  for each .N∈n                 …(3) 

Let )(np  denote the predicate ‘
2

)1(
21

+
=+++

nn
nL ’. Now, we can verify 

To disprove qp ⇔  it is 

enough to prove that 

qp ⇒  is false or 

pq ⇒  is false. 
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that it is true for a few values, say, ,100,10,5,1 ==== nnnn  and so on. 

But we still can’t be sure that it will be true for some value of n  that we haven’t  
checked for. 

However, suppose we can show that whenever )(np  is true for some knn =,  

say, then it will be true for .1+= kn  Then we are in a very good position 

because we already know that )1(p  is true. And, since )1(p  is true, so is 

),11( +p  i.e., )2(p , and so on. In this way we can show that )(np  is true for 

every .N∈n  So, our proof boils down to two broad stages, namely, 

i) Checking that the statement )1(p  is true; 

ii) Proving that whenever the statement )(kp  is true, then the statement 

)1( +kp  is true, where .N∈k  

This is the principle that we will now state formally, in a more general form. 
 

Principle of Mathematical Induction (PMI): Let )(np  be a predicate 

involving a natural number .n  Suppose the following two conditions hold: 

i) )(mp  is true for some N∈m ; 

ii) If )(kp  is true, then )1( +kp  is true, where )( mk ≥  is an arbitrary natural 

number.  

Then )(np  is true for every .mn ≥  

 
Looking at the two conditions in the principle, can you make out why it works? 

(As a hint, put 1=m  in our example above, of the sum of the first n  natural 
numbers.) 

Well, (i) tells us that the statement )(mp  is true. Then putting mk =  in (ii), we 

find that )1( +mp  is true. Again, since )1( +mp  is true, )2( +mp  is true, and 

so on.  
 
Going back to the (3) above, let us complete the second step.  

We assume that )(kp  is true, i.e., .
2

)1(
21

+
=+++

kk
kL   

We want to check if )1( +kp  is true. So let us find  

)1()21()1(21 +++++=++++ kkk LL  

                ),1(
2

)1(
++

+
= k

kk
 since )(kp  is true 

                
2

)2()1( ++
=

kk
 

So, )1( +kp  is true. 

Hence, by applying the principle of mathematical induction, we find that )(np  

is true for every .N∈n  
 
What does the PMI really say? It says that if you can walk a few steps, say m  
steps, and if at each stage you can walk one more step, then you can walk 
any distance. It sounds very simple, but you may be surprised to know that the 
technique in this principle was first used only as late as the 16th century by the 
Italian mathematician and astronomer, .F  Maurolycus (1494-1575). He used it 

to show that .)12(31 2
N∈∀=−+++ nnnL  The mathematician, Pierre de 

Fermat (1601-1665), improved on the technique and proved that this principle 
is equivalent to the following often used principle of mathematics. 
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The Well-ordering Principle (WOP): Any non-empty subset of N  contains a 
smallest (or least) element. 
 
You may be able to see the relationship between the PMI and the WOP if we 
reword the PMI in the following form. 
 

Principle of Mathematical Induction (Equivalent form): Let N⊆S  be such 

that  

i) ,Sm ∈  

ii) for each ,, mkk ≥∈N  whenever ,Sk ∈  then .1 Sk ∈+  

Then }.,2,1,{ K++= mmmS  

 
Can you see the equivalence of the two forms of the PMI? If you take 

)(|{ npnS N∈=  is true}, 

then you can see that the way we have written the principle above is a mere 
rewrite of the earlier form. 
 
Now, let us consider an example of a proof using PMI. 
 
Example 11: Use mathematical induction to prove that  

‘ .),12()1(
6

321 2222
N∈∀++=++++ nnn

n
nL ’ 

Solution: We will denote the predicate 

)12()1(
6

321 2222 ++=++++ nn
n

nL  by ).(np  

Since we want to prove )(np  is true for every ,N∈n  i.e., ,1≥∀ n  we take 

1=m  in PMI. 

Step 1: )1(p  is ),12()11(
6

1
12 ++=  which is true. 

Step 2: Suppose, for an arbitrary )(, kpk N∈  is true, i.e., 

  )12()1(
6

21 222 ++=+++ kk
k

kL  is true. 

Step 3: We need to check if the assumption in Step 2 implies that )1( +kp  is 

true.  

  )1( +kp  is )32()2(
6

1
)1(21 2222 ++

+
=+++++ kk

k
kkL  

  )32()2(
6

1
)1()21( 2222 ++

+
=+++++⇔ kk

k
kkL  

  ),32()2(
6

1
)1()12()1(

6

2 ++
+

=++++⇔ kk
k

kkk
k

 since )(kp  is true. 

  )32()2(
6

1
)]1(6)12([

6

1
++

+
=+++

+
⇔ kk

k
kkk

k
 

  ),32()2(672 2 ++=++⇔ kkkk  dividing throughout by 
6

1+k
.  

  This is a true statement. 

  So, )(kp  is true implies that )1( +kp  is true. 

  So, both the conditions of the principle of mathematical induction 
hold. 

The modern form of the 

PMI was first used in the 

19th century by the 

mathematicians De 

Morgan, Peano, Boole and 

Dedekind. 

Note the use of ⇔  in 

the proof. 



 

 

38 

Block 1                                                                                                                    The Structure of R
                                                         

Step 4: Therefore, its conclusion must hold, i.e., )(np  is true for every .N∈n  

*** 
 
Have you gone through Example 11 carefully? If so, you would have noticed 
that the proof consists of four steps: 
 

Step 1 (The basis of induction): Checking if )(mp  is true for some .N∈m  
 

Step 2 (The induction hypothesis): Assuming that )(kp  is true for an   

    arbitrary ., mkk ≥∈N  
 

Step 3 (The induction step): Showing that )1( +kp  is true, by a direct, or an  

    indirect, proof. 
 

Step 4 (Conclusion): Hence concluding that )(np  is true mn ≥∀ . 

 
Now consider an example related to a formula you have applied several times 
in the course, Calculus. 
 

Example 12: Prove the Leibniz formula: Let u  and v  be functions from R  to 

R , having derivatives up to the nth order. Then, for every ,N∈n  

)()(

0

)(
)(

iin

n

i

i

nn
vuCuv

−

=

∑= .                 …(4) 

Solution: Let )(nP  be the given predicate, (4). 
 

Step 1: You know that vuvuuv ′+′=′)( . 

     So )1(P  is true. 
 

Step 2: Now assume that )(kP  is true, for some N∈k . 
 

Step 3: Now, we want to prove that )1( +kP  is true. 

     So, )1()( +k
uv  

    

′









=′= −

=

∑ )()(

0

)( ])[( iik

k

i

i

kk
vuCuv , where ., )0()0(

vvuu ==  

    
)1(

0

)()()1(

0

+

=

−−+

=

∑∑ += i

k

i

ik

i

kiik

k

i

i

k
vuCvuC  

            L+++= + )1()(

1

)1()(

0

)1(

0 vuCvuCvuC
kkkkkk  

         )1()()1()()1(

1

+−+−+

− ++++ k

k

kmmk

m

kmmk

m

k
vuCvuCvuC L  

    ( ) )()1(

1

1

iik

k

i

i

k

i

k
vuCC

−+

=

−∑ += )1()1(

0

++ ++ k

k

kkk
vuCvuC  

( ) )()1(

1

1

iik

k

i

i

k

i

k
vuCC

−+

=

−∑ += vuCvuC
k

kkk

1

1)1(

0

1

+

+++ ++ ,                    

     (since 0

1

0 CC
kk +=  and 1

1

+

+=
k

k

k

k
CC ) 

            
)()1(

1

0

1 iik

k

i

i

k
vuC

−+
+

=

+∑= , since 
i

k

i

k

i

k
CCC

1

1

+

− =+ . 

    So )1( +kP  is true. 
 

Step 4: Hence, we conclude that )(nP  is true N∈∀ n . 

*** 

You studied this in 

Block 3 of BMTC-131. 

Note that deductive logic is 

used for proving Step 3. 
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Now consider an example in which .1≠m  
 

Example 13: Show that 32 n
n >  for .10≥n  

Solution: We write )(np  for the predicate ‘ 32 n
n > ’. 

 

Step 1: As we need to prove the result for 10≥n , the basis of induction is 

).10(p   

 For ,10242,10 10 ==n  which is greater than .103   

 Therefore, )10(p  is true. 
 

Step 2: We assume that )(kp  is true for an arbitrary ,10≥k  i.e., .2 3
k

k >  
 

Step 3: Now, we want to prove )1( +kp  is true, that is, .)1(2 31 +>+
k

k  Note 

that ,.22.22 31
k

kk >=+  by our assumption in Step 2. 

        ,.
10

1
1

3

3

k







+>  since .

10

1
12

3









+>   

       ,.
1

1
3

3

k
k








+≥  since .10≥k  

       .)1( 3+= k  

 Thus, )1( +kp  is true. 

 

Step 4: Therefore, we conclude that )(np  is true .10≥∀ n  

*** 
 

Why don’t you try to apply the principle yourself now? 
  
 

E12) Use mathematical induction to prove that  

 Z∈∀+=+ nnini
n θθθθ sincos)sin(cos  and .R∈∀ θ  

 [Hint: Use PMI to prove it for N∈n  first.] 
 

E13) Show that for any integer .
1

2

1

1

1
,1 n

n

n >+++> L  

 [Hint: Note that the basis of induction is ).2(p ]. 

 

E14) Prove that N∈∀
−

=∫ n
n

n
dxx

n

2
.

)2(6.4.2

)12(5.3.1
sin

2/

0

2 π
π

K

K
, a Wallis sine 

formula you have studied in Block 5 of the Calculus course. 
 

 

Before going further, a note of warning! To prove that )(np  is true ,mn ≥∀  

both −−−− the basis of induction, as well as the induction step, must hold. If even 
one of these conditions does not hold, we cannot arrive at the conclusion that 

)(np  is true .mn ≥∀  

For example, suppose )(np  is .,)( R∈∀+≤+ yxyxyx
nnn  Then )1(p  is 

true. But the inductive step, Step 3 does not hold. In fact, )(np  is not true for 

every .N∈n  (Can you find a value of n  for which )(np  is false?) 

 

Again, ‘ 22 3 ≥∀> nn
n ’ cannot be proved by PMI, since the basic of induction, 

)2(p , is not true, even though the induction step holds, as you have seen in  
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Example 13. In fact, the given statement is false. It is true for 10≥n  but not 

for 2≥n . 

 
Now let us look at a situation in which we may expect the principle of induction 

to work, but it doesn’t. Consider the sequence of numbers K,8,5,3,2,1,1 . 

These are the Fibonacci numbers, named after the Italian mathematician of 
the medieval period, Fibonacci. Each term in the sequence, from the third term 

on, is obtained by adding the previous 2  terms. So, if 
n

a  is the nth term, then 

1,1 21 == aa , and .321 ≥∀+= −− naaa
nnn

 
 

 
 
Fig. 1:  The Fibonacci sequence shows up in nature in many ways including the  
  way a nautilus is constructed. 

 

Suppose we want to show that N∈∀< na
n

n
2  using the PMI. Then, if )(np  

is the predicate, ,2n

n
a <  we know that )1(p  is true. 

Next, suppose we know that )(kp  is true for an arbitrary ,N∈k  i.e., .2k

k
a <  

We want to show that ,2 1

1

+

+ < k

k
a  i.e., .2 1

1

+

− <+ k

kk
aa  We know something 

about 
k

a , but we don’t know anything about .1−k
a  So, how can we apply the 

principle of induction in the form that we have stated it? In such a situation, a 
stronger, more powerful, version of the principle of induction comes in handy. 
Let’s see what this is. 
 

Principle of Mathematical Induction (Strong Form): Let )(np  be a 

predicate that involves a natural number .n  Suppose the following two 
conditions hold:  

i) )(mp  is true for some N∈m , and  

ii) whenever )(,),1(),( kpmpmp K+  are true, then )1( +kp  is true, where  

 mk ≥  is an arbitrary natural number. 

Then )(np  is true for all natural numbers .mn ≥  

 
Why do we call this principle stronger than the earlier one? This is because, in 

the induction step we are making more assumptions, i.e., that )(np  is true for 

every n  lying between m  and ,k  not just that )(kp  is true. 

 
Let us now go back to the Fibonacci sequence. 
 

Step 1: To use the strong form of the PMI, we take .1=m  We have seen that 

)1(p  is true. We also need to see if )2(p  is true because we have to 

use the relation ,21 −− +=
nnn

aaa  for .3≥n  We find that both )1(p  

and )2(p are true. 

In using the strong form  
of PMI, we often need to 
check Step 1 for more 
than one value of n. 

You will study about the 

Fibonacci sequence in 

Block 2. 
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Step 2: For an arbitrary ,2≥k  we assume that )(np  is true for every n  such 

that ,1 kn ≤≤  i.e., n

n
a 2<  for .1 kn ≤≤  

 

Step 3: We must show that )1( +kp  is true, i.e., .2 1

1

+

+ < k

k
a  Now  

 11 −+ +=
kkk

aaa  

  
1

22
−+< kk

, by our assumption in Step 2. 

       )12(2 1 += −k  

      21 2.2 −< k  

       
1

2
+= k

 
      )1( +∴ kp  is true. 

 

Step 4: Hence )(np  is true .N∈∀ n  

 
Though the “strong” form of the PMI appears to be different from the “weak” 
form, the two are actually equivalent. This is because each can be obtained 
from the other, which we shall not prove here. However, this means that we 
can use either form of mathematical induction. In a given problem we use the 
form that is more suitable. For instance, in the following example, as in the 
case of the Fibonacci sequence, you would agree that it is better to use the 
strong form of the PMI. 
 
Example 14: Use the principle of mathematical induction to prove that any 

integer 2≥n  is either a prime or a product of primes. 

Solution: Here )(np  is the predicate ‘ n  is a prime or n  is a product of 

primes’. 
 

Step 1 (Basis of induction): Since 2 is prime, )2(p  is true. 

 

Step 2 (Induction hypothesis): Assume that )(np  is true for any integer n  

such that ,2 kn ≤≤  i.e., )(,),4(),3( kppp K  are true. 

 

Step 3 (Induction step): Now consider ).1( +kp   

 If 1+k  is a prime, then )1( +kp  is true.  

 If 1+k  is not a prime, then ,1 rsk =+  where kr <≤2  and .2 ks <≤  

So, by the induction hypothesis, )(rp  is true and )(sp  is true. 

Therefore, r  and s  are either primes or products of primes. Therefore, 

1+k  is a product of primes. So, )1( +kp  is true. 

 

Step 4 (Conclusion): Therefore, )(np  is true .2≥∀ n  

*** 
 
Why don’t you try some exercises now? 
  
 

E15) If K,, 21 aa  are the terms in the Fibonacci sequence, use the principle 

of mathematical induction to show that 
n

a32 for 1≥n . Which form did 

you find more convenient, and why? 
 

E16) A sequence of positive integers },,,,{ 21 KK
n

aaa  is defined by 

4,1 21 == aa  and 22 21 +−= −− nnn
aaa  for .3≥n  
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 Conjecture a formula for ,
n

a  and prove it by the principle of 

mathematical induction. Which form of PMI would you use, and why? 
 

 
With this we come to the end of our discussion on various techniques of 
proving or disproving mathematical statements. Let us take a brief look at what 
you have studied in this unit. 
 

2.5 SUMMARY 
 
In this unit you have studied the following points: 
 
1. What constitutes a proof, and a disproof, of a mathematical statement. 
 
2. The description, and examples, of a direct method of proof. 
 
3. Two types of indirect methods of proof: proof by contrapositive and proof 

by contradiction. 
 
4. The use of counterexamples for disproving a statement. 
 
5. Statements, and the application of, the “weak” and “strong” forms of the 

principle of mathematical induction. 
 

2.6 SOLUTIONS / ANSWERS 
 
E1) There are several such examples. We give the following one. 

 Theorem: If CBA ,,  are sets, then ).()()( CABACBA ∩∪∩=∪∩  

 Proof: The proof comprises showing that  

 ),()()( CABACBA ∩∪∩⊆∪∩  and 

 ).()()( CBACABA ∪∩⊆∩∪∩  

 

 Step 1: ,, CBCCBB ∪⊆∪⊆  by definition. 

 

 Step 2: ),( CBABA ∪∩⊆∩ and  

   )( CBACA ∪∩⊆∩  (This follows from Step 1.) 

 

 Step 3: ),()()( CBACABA ∪∩⊆∩∪∩  by definition and Step 2. 

 

 Step 4: For an arbitrary element ),( CBAx ∪∩∈  Ax∈  and 

,CBx ∪∈  by definition. 

 

 Step 5: Ax∈  and ( Bx∈  or Cx ∈ ) by Step 4. 
 

 Step 6: )( BAx ∩∈  or ),( CAx ∩∈  from Step 5. 

 

 Step 7: ),()( CABAx ∩∪∩∈  from Step 6. 

 

 Step 8: ),()()( CABACBA ∩∪∩⊆∪∩  from Step 4 and Step 7. 

 

 Step 9: ),()()( CABACBA ∩∪∩=∪∩  by definition, Step 3 and   

Step 8. 
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E2) No. Only a statement that is proved to be true is a theorem. 
 
E3) This is not a valid proof. 
 The third statement does not follow from the first two statements, or from 

any definition, or from any relevant axiom. 
 
E4) Let y  be an arbitrary real number. 

 f  is surjective if R∈∃ r  s.t. yrf =)( . 

 Now, ⇒= yrf )(
3

5
53

+
=⇒=−

y
ryr . 

 Therefore, for any RR ∈
+

=∃∈
3

5
,

y
ry  s.t. .)( yrf =  

 Hence f  is surjective. 

 
E5)  i) We will prove this in two stages, namely,  

  ccc
BABA ∪⊆∩ )(  and ccc

BABA )( ∩⊆∪ .  

  Using logical equivalence of statements at each step, we shall prove 
both stage simultaneously. 

       c
BAx )( ∩∈  

  BAx ∩∉⇔  

  Ax ∉⇔  or Bx∉  

  c
Ax ∈⇔  or c

Bx ∈  

  .cc
BAx ∪∈⇔  

  Since x  is an arbitrary element, ccc
BABA ∪=∩ )( . 

  

 ii) For any [,3,0], ∈yx  

  ).()(
22

yfxf
yx

yx >⇒
−

>
−

⇒<  

  Hence f  is monotonic on [.3,0]  

 
E6) The contrapositive is 

 ‘If X  is a finite set and XXf →:  is not surjective, then f  cannot be 

injective’. 
 We shall prove this statement now. 

 Let }.,,,{ 21 n
xxxX K=  

 Then )}.(,),(),({)( 21 n
xfxfxfXf K=  

 Since f  is not surjective, )(XfX >  

 Therefore, )()(
ji

xfxf =  for some .ji ≠  

 Therefore, f  is not injective. 

 

E7) Its contrapositive is ‘If CBA ,,  are sets such that ,CBCA ×⊄×  then 

BA ⊄ ’. 

 Proof: CBCA ×⊄×  

 CAyx ×∈∃⇒ ),(  s.t. CByx ×∉),(  

 Ax∈∃⇒  s.t. Bx∉  

 .BA ⊄⇒  
 

E8) Suppose 17  is rational. 

 Then ,17
b

a
=  g.c.d .,,1),( Z∈= baba  
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,1),( =ba  and hence conclude that 17  is irrational. 

 
E9) i) Assume that g  is bounded above. 

 

ii) Given an ,2, >∈ nn N  suppose there exist N∈zyx ,,  s.t 

.nnn
zyx =+  

 

E10) Suppose that .1)1(lim 2

2
−=−

→
x

x

 

 Then given 0,0 >∃> δε  s.t. 

 ,|)1(1||2| 2 εδ <−−−⇒<− xx  i.e., ,|| 2 ε<x  i.e. ε<2
x             …(5) 

 Thus, εδδ <⇒+<<− 222 xx  

 Now, take .1.0=ε  

 For any 2,0 => xδ  lies in [,2,2] δδ +−  but /42 <=x .ε  

So we reach a contradiction to (5). Hence, our assumption must be 
wrong. 

 Hence .1)1(lim 2

2
−≠−

→
x

x

 

 

E11) i) For example, N  is an infinite set containing ,N  and NN = . 

  

 ii) ,)2(31)23( 222 −+≠=−  for example. 

  

 iii) A counterexample to ‘ NN→:f  is f⇒−11  is onto’ is 

.3)(:: +=→ nnff NN  

  Firstly, 212121 33)()( nnnnnfnf =⇒+=+⇒=   for ., 21 N∈nn  

  Hence f  is .11−  

  However, there is no N∈n  for which .1)( =nf  

  Hence f  is not onto. 

  
 iv) You should check that the greatest integer function is a 

counterexample. 
 

E12) Let ,sincos)sin(cos:)( θθθθ nininp
n +=+  for .N∈n  

 )1(p  is true, as you can see. 

 Assume that )(kp  is true for some .N∈k  

 Now, 1)sin(cos)1( ++=+ k
ikp θθ  

 )sin(cos)sin(cos θθθθ ii
k ++=  

 ),sin(cos)sin(cos θθθθ ikik ++=  since )(kp  is true 

 ,1sin1cos θθ +++= kik  using the trigonometric formulae. 

 Thus, )1( +kp  is true. 

 Hence, )(np  is true .N∈∀n  

 Also, )0(p  is trivially true. 

 Now, let n  be a negative integer. Then .N∈− n  

 Therefore, )( np −  is true. 

 Now, 1])sin[(cos)sin(cos −−+=+ nn
ii θθθθ  

 ,)](sin)([cos 1−−+−= θθ nin  since )( np −  is true. 

 1)sin(cos −−= θθ nin  
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 .sincos θθ nin +=  
 Hence the given statement is true. 
 

E13) ,
1

2

1

1

1
:)( n

n
np >+++ L  for .N∈n  

 Since )2(,2
2

1

1

1
p>+  is true. 

 Assume that )(kp  is true for some .N∈k  

 Then 1
1

1

1

11

1

1
+>

+
+>

+
+++ k

k

k

kk

L , as you can verify. 

 )1( +∴ kp  is true. 

 Hence )(np  is true .2≥∀n  
 

E14) Let ,
2

.
)2...(6.4.2

)12...(5.3.1
sin:)(

2/

0

2 π
π

∫
−

=
n

n
dxxnp

n  for .N∈n  

 Since )1(,
2

.
2

1

2

2cos1
sin

2/

0

2/

0

2
pdx

x
dxx

π
ππ

∫∫ =
−

=  is true. 

 Assume that )(kp  is true for some .N∈k  

 Now you can use integration by parts to prove that 

 .sin
1

sin

2/

0

2

2/

0

xdx
n

n
dxx

nn

∫∫
−−

=
ππ

 

 Therefore, ∫∫ +

+
=+

2/

0

2

2/

0

)1(2
sin

)1(2

12
sin

ππ

xdx
k

k
xdx

kk  

      ,
2

.
)1(2...6.4.2

]1)1(2...[5.3.1 π

+

−+
=

k

k
 since )(kp  is true. 

 Hence )(np  is true .1≥∀n  

 

E15) Let us see if we can prove this using the ‘weak’ form of the PMI. 

 Let ,2:)( 3n
anp  for .N∈n  

 )1(p  is true since .2 3a  

 Assume that )(kp  is true for some .N∈k  

 Now 2)1(31)1(3)1(3 −+−++ +=
kkk

aaa  

  1323 ++ +=
kk

aa  

  )()( 133313 −+ +++=
kkkk

aaaa  

  )()( 1333133 −− ++++=
kkkkk

aaaaa  

  133 23 −+=
kk

aa  

 Since 
k

a3  is even and 132 −k
a  is even, )1(3 +k

a  is even. 

 Thus, )1( +kp  is true. 

 Hence )(np  is true .1≥∀n  

 Note that even though the terms here are of the Fibonacci sequence, we 
did not required the strong form of the PMI for the proof. 

 

E16) .16,9,4,1 4321 ==== aaaa  

 Looking at these terms, we may conjecture that .2
na

n
=  Let us see if 

this is true. Since each term in the sequence requires the values of two 
previous terms, we need to apply the strong form of the PMI. 
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 Let ,: 2
nap

nn
=  for .N∈n  

 )1(p  is true. 

 Assume, for some )(, ipk N∈  is true .ki ≤∀  

 Now, .)1(2)1(222 222

11 +=+−−=+−= −+ kkkaaa
kkk

 

 Thus, )1( +kp  is true. 

 Hence )(np  is true .1≥∀n  
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3.5 Summary                75 
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3.1 INTRODUCTION 
 
You are already familiar with the set R of real numbers, and the basic 
operations such as addition, subtraction, multiplication and division by non-
zero elements on it. Have you ever wondered why division by zero is not 
allowed? What are the properties that are carried over to R from those of ,Q  

the set of rationals?  What exactly is the property that Q does not have, but R

has?  How big is R in comparison to ?Q To answer such questions, we shall 

begin by presenting the essential properties that determine the “algebraic” and 
the “order” structure of .R  Also, we shall focus on the “order completeness” 

property of .R  This property is at the heart of real analysis. It is because in the 
absence of this property most of the results in real analysis would become 
invalid.  
 
So, we begin Section 3.2 with an evolutionary aspect of real numbers and 

arrive at their algebraic and order properties which make R an ‘ordered field’. 
 
In Section 3.3 we shall discuss at length the order completeness property and 

show you why R is a ‘complete’ ordered field. You will see many applications 
of this property, some in this unit and others in the rest of the course. A few 

applications, for example, are the Archimedean and density properties of R
which will be discussed in this section.  
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                                                         In Section 3.4, we shall address the notions of ‘finite’ and ‘infinite’ sets in order 
to estimate the size of different subsets of .R  Specifically, we shall see that 

there are many subsets of R  which are infinite. Some, like N and Q are 

“countable” in the sense that they can be enumerated. On the other hand, we 
shall show you that R  is “uncountable”, i.e., there is no way to enumerate the 
elements of .R  

 
Specifically we expect to achieve the following objectives. 

 

Objectives 

After reading this unit, you should be able to 
 

• describe and apply the algebraic properties of real numbers; 

• describe the ordered structure on the set of real numbers, and its 
applications; 

• show whether a subset of R is bounded below, bounded above, both or 
neither; 

• explain the completeness property of the order on the real number system; 

• describe and apply Archimedean property of ;R   

• compute the infimum and supremum of subsets of ;R  

• identify whether a subset of real numbers is countable or uncountable. 

3.2 THE FIELD AND ORDER STRUCTURE OF R   
 
In this section we shall help you recall how real numbers evolved. We shall 
look at the real numbers as a set together with the operations of addition, 
subtraction, multiplication, and division by nonzero elements. We shall also 
see how real numbers can be represented on a line.  
 

3.2.1 The Real Number Line 
 
We begin with the natural numbers }.3,2,1{=N  You know that if you add two 

natural numbers, the answer is a natural number. Thus, addition is a binary 
operation on N , and so is multiplication. However, subtraction is not binary 

operation on it, because, for example, .011 N∉=−  Not only this, people faced 
problems with solving the linear equations of the form .0nx =+  Such 

problems led to the discovery of integers }.2,1,0,1,2{ KK −−=Z  You can see 

that, on ,Z  addition, multiplication and subtraction, all are binary operations. 

But, you know that there are problems with Z  too. For example, if you have to 
distribute, 2 chocolates among three kids equally, each kid cannot get a whole 
part. The answer must be something different from an integer. For algebraists 
it were the equations ,0=− qxp  with ,0≠q  that they could not solve in .Z

Specifically, the need arose to define a new operation called ‘division by 

nonzero’. This operation gave us the set Q of rational numbers defined as  

 

.0,,








≠∈= qqp
q

p
ZQ  

 
Note that many rational numbers have the same representation in .Q  For 

Recall that a binary 

operation on a set S  is a 

mapping from the set 

SS ×  into ,S  that is, it 

maps each ordered pair of 

elements of S  to an 
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example .
2

1

16

8

4

2
==  So when we write a rational number as ,/ qp  we assume 

that there is no common factor between p  and ,q  that is, qp /  is in its lowest 

form. The operations ‘+ ’ (addition), ‘ ⋅ ’ (multiplication) and / (division by 

nonzero) on Q  are defined as below. 

 

For ,, Q∈
s

r

q

p
 

 

i) 
qs

rqps

s

r

q

p +
=+  

 

ii) 
qs

pr

s

r

q

p
=⋅  

 

iii) 00, ≠≠=



















rq
qr

ps

s

r

q

p

 

 

You should note that the sets ZN,  and Q  are defined in such a way that  

 

.Q�ZN ⊆⊆  

 
If we consider the distance between 0 and 1 as the unit of length, then we can 
represent all the rational numbers on a line. (See Fig. 1.) 
 
For example 3/1  is the point which is one-third of the way from 0 to 1. 

Similarly, 2/3  is the point that is one-half of the way from 0  to 3. This is 

because the rational numbers possess a natural order inherited from ,R which 

you will see in Subsection 3.2.3.  Another fact that you know about rational 
numbers is that they can be represented by decimals using only the digits 

.9,,2,1,0 K  For example, we can write 5.02/1 −=− and 65625.132/53 =
 using the long division method. A decimal representation is an expression of 

the form  
 

.... 3210 aaaA    

 

where Z∈0A
 
and ...,, 321 aaa

 
are digits from }.9,,2,1,0{ K  

 
In the decimal representations above the number of nonzero digits after the 
decimal (.) is finite. Such a representation of a rational number is said to be 
terminating. Thus a terminating decimal representation, has the form 

,. 3210 n
aaaaA K  for some .N∈n  The corresponding rational form can be 

written as 
 

 .
10100010010

. 321
03210 n

n

n

aaaa
AaaaaA +++++= LK  

 
Let us take an example. 
 
Example 1: Find the rational number corresponding to .09375.0  

 

 

 

Fig. 1: Rational numbers on a line 

2

3
 

3

1

↑
 

0123 −−−L

 

L321
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                                                         Solution: We write 09375.0  as  

 

32

3

100000

5

10000

7

1000

3

100

9

10

0
009375.0 =+++++=  

 

So, the corresponding rational number is .323  

 

*** 

There are also rational numbers whose decimal representations do not 

terminate while carrying out long division. For example, when we divide 1by 3 
using long division method we get 3333.0 … Similarly dividing 499  by 330

results in 5121212.1 … These decimal representations, although non-
terminating, have certain block of digits that keep on recurring. We can see 

that 3 recurs in ...333.0 and 12 recurs in ....5121212.1 . We write such 
numbers briefly with a bar that covers the recurring digit or the block of digits.  
 
For example 
 

3.0...3333.0 =  

125.1...5121212.1 =   (Note that the bar does not cover 5) 

 

Now the question arises, how do we get back the number 3/1 from 3.0  or 

330/499
 
from 125.1 ? For the time being let us write:  

 

...
1000

3

100

3

10

3
3.0 +++=                    … (1) 

 
The expression on the right hand side of  Eq.(1) represents a sum of infinite 
terms whose precise meaning will only be clear in Block 3. 
 

Now we show you how to get back 3/1 from .3.0  
 

Let 3.0=x . Then .333310 K⋅=x  So subtracting x  from ,10x  we get 

.33330333310 =⋅−⋅=− KKxx  So ,39 =x  i.e. .
3

1
=x  

 

To get the rational from of ,1251⋅  let .1251⋅=x  Then we can write 

 

 ,
10

51
y

x +⋅=  where .1212120120 K⋅=⋅=y  

 

So, K121212100 ⋅=y  

         .12120 K⋅−=− y  

Hence, ,1299 =y  i.e. .
33

4
=y  Thus, we get .

330

499

330

4
51 =+⋅=x  

 
There are numbers whose decimal representations are non-terminating. Such 

numbers are called irrational numbers. For example, 2  which is the length 
of the diagonal of unit square is one such number. (See Fig. 2.) This is the 
content of the next Theorem. 

 

2

1 

1 

 

Fig. 2: The length of a 

diagonal of unit square 

is 2 . 
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Theorem 1: 2  is not a rational number. 
 
Proof: We shall prove it by contradiction (see Section 2.3 of Unit 2). So, 

assume, if possible, .2 Q∈  Then we have Z∈qp,  such that  

 ,2
q

p
=  

 

where )0(≠p  and )0(≠q  have no common factors. Squaring both sides of 

the equation above, gives us 
 

 
2

2

2
q

p
=

    

i.e.   
22

2qp = . 

 

This means 
2

p  is an even number, so is .p  Let kp 2= for some integer .k   

 
Now we have 
  

 
22

24 qk = i.e. .2
22

qp =  

 

This means 
2

q is an even number; hence, so is .q  Thus p  and q  have 2 as a 

common factor. This contradicts our assumption namely p and q have no 

common factor. Consequently, .2 Q∉  

 

You just saw that 2 is not a rational number, that is, it is irrational. So its 
decimal representation must be non-terminating and non-recurring. Like 

,2  there are many other numbers such as 7,6,5,3 etc that are 

irrational.  
 

Let us now see how to prove that 6  is irrational. 

 

Example 2: Prove that 6  is irrational. 

 

Solution: Assume, on the contrary, that 
q

p
=6  for some 0,, ≠∈ qqp Z  

such that p  and q  have no common factor. Then ).3(26
222

qqp ==  

This implies 
2

p  is even and hence p  is even. So, let ,2l=p  Then  

 

 .3264
2222

q=⇒= lll  

 

This implies 
2

3q  is even, and hence 
2

q  is even. This implies q  is even. Thus, 

we have found that 2 is a common factor of p  and .q  This contradicts our 

assumption that p  and q  have no common factor. Consequently, 6  is 

irrational.  

*** 

The irrational numbers together with rational numbers are called real 

numbers. They are denoted by the symbol .R  Now we have  

 
 .RQZN ⊆⊆⊆  

 

 

Fig. 3: Locating 2 on 

the number line. 
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Now let us see how we can represent the irrational numbers of the form ,p  

on the numbers line. For ,2  we describe the mechanism as below (see Fig. 

3.) 
 

Consider the unit square with corners at )1,1(),0,1(),0,0(  and ).1,0(  The line 

segment joining )0,0(  and )1,1(  is one of its diagonals. Draw a circle with 

centre )0,0(  and diagonal as the radius. The point where it meets the x -axis 

represents the number .2  
 
Now try these exercises. 
 

 
E1) Find the rational number corresponding to  
 

  i)   596306.2          ii)   32476.4  
 

E2)   Show that ,Q∉p  where p  is a prime number. 

 

E3)   Using compass and ruler determine the location of 3  on the number                   

line. Can you determine the location of p
 
using a compass and 

ruler, where p  is a prime number? 

 

 
If you have done E3) you would have understood how to represent an 

irrational number of the form p
 
on the number line. However many irrational 

numbers such as π cannot be represented on the number line in this way.  

We shall now focus on the structure of R  from the point of view of Algebra. 
 

3.2.2 Algebraic Structure of R  

 
The relationship between real numbers is through ‘addition’, (and the inverse 
relation namely subtraction); multiplication (and the inverse operation namely 
division); and comparison. We begin by stating the properties addition, 
subtraction, multiplication and division. You should note that these are 
instances of binary operation mentioned in Subsection 3.2.1. 
 

Definition: The binary operation which associates with ,, R∈ba  the real 

number ba +  is called the addition of real numbers. 
 
A) Properties of Addition: 
 

i) (Commutativity) R∈∀+=+ baabba ,,  

ii) (Associativity) R∈∀++=++ bacbacba ,),()(  

iii) (Existence of additive identity) R∈∃0 such that 

.00 Raaaa ∀+==+  

iv) (Existence of inverses) For each R∈a , there exists R∈− a  such that 

aaaa +−==−+ )(0)( . Read  a−  as ‘minus a’. We call a−  the 

additive inverse of .a  

 

Definition: The binary operation which associates with R∈ba,  the real 

number ba ⋅  is called the multiplication of real numbers. 
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M)  Properties of Multiplication: 
 

i) (Commutativity) R∈∀= aabba ,..  

ii) (Associativity) R∈∀= cbacbacba ,,),..()..(  

iii) (Existence of identity) R∈∃1 such that .,11 R∈∀=⋅=⋅ aaaa  

iv) (Existence of inverses) For each 0, ≠∈ aa R there exists R∈−1
a such 

that .1. 11
aaaa

−− ==  Read 1−
a  as ‘a inverse of a ’. We call 1−

a  the 
multiplicative inverse of .a  

 
D)  Distributivity: 
 

 ,..).( cabacba +=+   .,, R∈∀ cba  

 
You can see that addition and multiplication each satisfies four properties, 
namely commutativity, associativity, existence of identity, and the existence of 
inverse. In case of multiplication, inverses exist only for nonzero elements. 
The property distributivity connects addition and multiplication. Thus in all R  
satisfies 9 properties which are referred to as the field properties and any set 
that satisfies them is called a field. So, R  is a field.  Another example of a 

field is .Q  You should show that the rational numbers satisfy all the above 

properties. 
 
Using the properties above you can derive many other algebraic properties of 

.R  which belong to the realm of algebra. To get the flavour of the properties 
we present two results below. 
 

Theorem 2: Let ., R∈ba  Then the following hold. 

 

i) If ,aba =+  then ,0=b  i.e. the additive identity is unique. 

ii) If 0≠b and ,bba =⋅ then ,1=a  i.e. the multiplicative identity is unique.   

iii) .00 =⋅a  

 
Proof: i) We observe that  

  bb += 0    ( 0Q  is an additive identity) 

   baa ++−= )(   (Property A(iv)) 

   )( baa ++−=   (Property A(ii)) 

  0=+−= aa , using the Property A(iv). This completes the 

argument.  
 

ii)  1.aa =      (Property M (iii)) 

   )b.(
1−= ba    (Property M(iv)) 

   
1

.).(
−= bba    (Property M (ii)) 

   1.
1 == −

bb , using the Property M(iv). This completes the argument. 

 

iii) )10(1.0. +=+ aaa   (Distributivity) 

    1.a=  
 

This gives aaa =+0. . Hence by the uniqueness of the additive identity 

proved in (i) above, 00. =a .  
       

Theorem 3: Let ., R∈ba  Then the following holds. 
 

i) If ,0=+ ba then ,ab −= i.e., the additive inverse is unique. 
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                                                         ii) If 0≠a  and 1. =ba , then ,1. =ba  i.e. the multiplicative inverse is unique. 

iii) If ,0. =ba  then either 0=a  or .0=b  

 
Proof: i) Note that  
 
   0+= bb    (Property A(iii)) 

    ( ))( aab −++=   (Property A( iv)) 

    )()( aab −++=                (Property A (ii)) 

    )()( aba −++=   (Property A(i)) 

    )(0 a−+=                      

    a−=  
 
ii) Note that  
 

   bb .1=    (Property M( iii)) 

   baa ).(
1−=   (Property M (iv)) 

   baa ).(
1−=   (Property M (i)) 

   )(.
1

aba
−=   (Property M (ii)) 

   
11

1.
−− == aa . 

 
ii) First assume that 0≠a . We prove that .0=b  
 

 Now bb .1=     

   baa .).(
1−=   (Which property?) 

   b.).(
1

aa
−=   (Which property?) 

   ).(.
1

baa
−=   (Which property?) 

   00.
1 == −

a   (Which property?) 

 

Similarly you can show that if ,0≠b  then .0=a          

 

We can define the operation ‘subtraction’ as )( baba −+=−  and “division” as 

,./
1−= baba for 0≠b . Now we can perform all the algebraic manipulation on 

real numbers as we are used to, e.g. 1632,2552 −=−++=+ , etc. Note the 

following definitions: For R∈a and ,N∈n  

 

44 344 21

43421

terms

times

1

...

......

0if,
1

n

n

n

aaaana

aaaaa

aa
a

++++=

=

≠= −

 

 
Let us consider a few examples. 
 

Example 3: Prove that 
222

2)( bababa ++=+ for all ., R∈ba  

 
Solution:  By definition 
  

 )()()(
2

bababa ++=+  

When there is no 

confusion we shall 

write ba ⋅  as .ab  
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    bbaaba )()( +++=   (Distributivity) 

     )()( babbaa +++=   (Commutativity) 

     bbbaabaa +++=   (Distributivity) 

     bbababaa +++=   (Commutativity) 

     
22 2 baba ++=      

*** 

Example 4: Show that yxyxyx −==⇔=− or 0
22

 for all ., R∈yx  

 
Solution: The result follows from the following: 

 00
2222 =−+−⇔=− yxyxyxyx  

       0)()( =−+−⇔ yxyyxx  (Distributivity) 

       0)()( =+−⇔ yxyx  (Distributivity) 

       0=−⇔ yx  or 0=+ yx  (Theorem 3 iii)) 

       yx =⇔  or yx −=  

*** 

Why don’t you try some exercises now? 
 

 

E4)  Let a  and b  be two elements of .R  Prove the following 
 
 i)  aa −=− )1(   ii)  1)1()1( =−−  

 

E5)      Show that ( ) cbcacba ... +=+  for all .,, R∈cyx  

 

E6)       Solve the equation ,065
2 =−+ xx  by clearly justifying which property 

you are using at each step. 
 
E7)     Using the principle of mathematical induction (Section 2.4 of Unit 2),    

prove the binomial theorem: 

   
∑

=

−=+
n

i

iin

i

nn
baCba

0

)(  

 where R∈ba,  and .N∈n  

 
 

Here we have discussed only some fundamental properties of R as a field, 
although a field has many other interesting properties. You can learn them in 

our course BMTC-104(Algebra). Next we shall see that ,R  is a special kind of 

field.  
 

3.2.3 Ras an Ordered Field 
 

Now we shall discuss the order properties of .R  First, we shall define the 

concept of order on a special subset of .R  
 

There is a subset of ,R  denoted by ,
+
R  called the set of positive real 

numbers whose element satisfy the following properties:  
 

i) If 
+∈Rba, , then 

+∈+ Rba and .+∈Rab  

 
ii) For every R∈a , exactly one of the following is true: 

.0,, =∈−∈ ++
aaa RR  
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                                                         Property i) makes the operations of addition and multiplication compatible to 
order.  That is, the sum and product of two positive real numbers is positive. 

Property ii), on the other hand, classifies the elements of R into three distinct 
categories. That is, R  satisfies the law of trichotomy.  
 

The set of negative real numbers, denoted by ,
−
R  is defined as  

 

}.{ +− ∈−∈= RRR aa
 

 

Then }0{∪∪= +−
RRR . If },0{∪∈ +

Ra then a  is called a nonnegative 

real number.  
 

Using the properties of ,
+
R  we define the order ,>  called ‘greater than’ on 

R as follows: 
 

ba >  iff  .+∈− Rba  
 

Likewise the order < called ‘less than’ is defined as  
 

ba <  iff 
+∈− Rab  

 
In a similar way, the operators ≥  called ‘greater than or equal to’ and ≤  
called ‘less than or equal to’ can be defined as: 
 

ba ≥  iff     ba >    or ;ba =  

ba ≤    iff    ba <   or  .ba =  
 

The expressions such as bababa ≤>< ,,
 
and ba ≥  are called ‘inequalities’. 

We shall discuss them in more detail in Section 3.3. The definitions above 

immediately tell us that 
+∈Ra  iff 0>a  and 

−∈Ra  iff .0<a  
 
Using these definitions we shall derive the order properties of .R  

   

Theorem 4 (Order Properties of )R : Let .,, R∈cba  Then the following hold. 

 

i) If ba >  and ,cb >  then .ca >  

ii) If ba >  then .cbca +>+  

iii) If ba >  and ,0>c  then .bcac >  

iv) If ba >  and ,0>c  then .bcac <  

 

Proof: i) Since ,ba >  we have .0>− ba  That is, .+∈− Rba  Similarly
+∈− Rcb  Hence .)()(

+∈−+−=− Rcbbaca  That is 0>− ca  which implies 

.ca >  
 
ii) Note that  
 

( ) ( )

)(,0

0

baba

ba

ccba

cbcacbca

>>−=

+−=

−+−=

−−+=+−+

Q

 

      Hence .cbca +>+  
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iii)  Since ba > , we have .0>− ba i.e 
+∈− Rba Also 0>c  means .+∈Rc          

      Hence .)()(
+∈−+−=− Rcbbaca  But we have ( ) .bcaccba −=−  

 
iv)  Prove yourself on the lines of iii) above.     

    

Since the field R possesses the order properties stated above, it is an 

ordered field. Since Q is a subset of R , Q is also an ordered field. We shall 

denote by 
+
Q the set of all positive rational numbers. Symbolically, 

.
++ ∩= RQQ  Likewise, we write .

−− ∩= RQQ  

 
The order properties lead to many inequalities on real numbers. For example, 

using contradiction you can show that if x  is positive then 
x

1
 is also positive. 

Likewise, you can also show that if 1>x , then 1
1

<
x

. A few more inequalities 

are given in the following examples. 

 
Example 5: If 1>x  and 1>y , then show that .1>xy  

 

Solution: Note that 1>y  implies .0>y  Now, since 1>x and ,0>y  

Theorem 4(iii) implies, .yxy >  But, 1>y . Therefore, .1>xy  
 

     ***  

Example 6: Let .10 << x  Then show that ,10 << n
x  for all .N∈n  

 
Solution: We prove it by the principle of mathematical induction which we 
have discussed in Unit 2, Section 2.4. 
 

For 1=n , the result holds. So, assume that it is true for some .N∈n  That is, 

10 << n
x , for some .N∈n  Now, 0>x  and 0>n

x  implies 0. >n
xx , i.e., 

0
1 >+n

x . Note also that 0>x  and 1<n
x  implies that xxx

n <. . But you also 

have 1<x . Hence, 1
1 <+n

x . Thus we have shown that 10
1 << +n

x . The 
Principle of Mathematical Induction completes the proof. 
 

*** 
Now try some exercises. 
 

 
E8)   Let R�∈yx, . Then show that  

 

.0
11

0 >>⇔>>
xy

yx  

 

E9) Let dcba ,,,  be positive real numbers. If ba <  and ,dc <  then show 

that .bdac <  
 

E10)   Let 0>> yx .  Then, using the principle of induction, prove that 
nn

yx >
  
for all .N∈n  

 

E11)  Let 10 <<< ax . Then show that ax <2 . Is it also true that ax
n < for   

          all natural numbers n ? 

Can you conclude the 

following, from E10? 

.11 N∈∀>⇒> nxx
n
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                                                         E12)   Let 1>a . Then show that mnaa
mn >⇔> , for N∈nm, . Does the 

result hold when ?1<a  
 

 

Thus far you have seen that R is an ordered field. This characteristic of R
was known to people of ancient civilizations such as Babylonia, Egypt and 
India. People used to compare quantities such as lengths and areas of 
different shapes, which often turn out to be irrational numbers. In the next 
section, you will learn more about the ordered structure of the real numbers. 
 

3.3   R  AS A COMPLETE ORDERED FIELD 
 

In this section we shall discuss another crucial property of ,R
 the 

completeness of order, and see some of its applications.  
 

3.3.1 Order Completeness Property 
 

You know that every subset of N contains a least element. But in Z  there are 

subsets that do not have least elements. For example, 

,...},4,2,0,2,4{...even −−=Z
 
the set of all even integers has no least element. 

However, there are also certain subsets of Z that have least elements. For 

example, the set ...},6,4,2,6,8{ −−−=S has 8− as its least element. Can you 

think of some more subsets of Z that, too, have a least element? Do they have 
any common property? Before answering this question we recall the notion of 
a lower bound. 

 
Definition:  Let .Ø R⊆≠ S  A number R�∈l  is called a lower bound of ,S  if  

., Sxx ∈∀≤l  A set S  is called bounded below if there is some lower 

bound of .S  
 

You can see that if of l  is a lower bound of ,S  and if ll <′  then l′  is also a 

lower bound of .S  

 
Now the answer of the question above is that every subset of Z that is 
bounded below has a least element. This is guaranteed by the following 
theorem, which we state without proof. 
 
Theorem 5: Let Z⊆≠ SØ  and S  be bounded below. Then Smin  exists. 
 

Now let us turn to the set .Q  We ask you the question: What is the least 

positive rational number? The answer you should find is ‘No such number 
exists.’. Why is it the case? Because if r  is a positive rational number, then 

you can see that 
2

r

 
is also a positive rational number smaller than r . So we 

see that the notion of least element of a set becomes of little relevance when 

the set is a subset of Q . 

 
Therefore, we need to generalise the notion of the least element of a set. Let 

S  be a nonempty subset of Q  that is bounded below. This means S  has a 

lower bound. In fact you can see that, if S has one lower bound then it has 
many lower bounds. The reason is very simple. Every number smaller than a 
lower bound of S  is also a lower bound of .S  So we can talk about ‘the 

greatest lower bound’ of S  which is a lower bound of S  greater than every 



 

 

 

59 

Unit 3                                                              Algebraic Structure of R  

other lower bound of .S  The greatest lower bound of S is also called the 

infimum of ,S  which in short is denoted as .inf S  It is straight forward to see 

that a set cannot have more than one infimum. For if 1l  and 2l  are two 

infimums of a nonempty set ,S  then by definition 21 ll ≤  and .12 ll ≤  This 

gives, .21 ll =  

 
Let us consider an example. 

Example 7: Find ,inf S  where .,,8,10








∈≤≥= Nqpqp
q

p
S  

Solution: Let .S
q

p
∈  Note that 8≤q  implies .

8

11
≥

q
 Hence .

4

5

8

10
=≥

q

p
 

Thus every element of S is greater than or equal to 4/5 . This means 4/5  is a 

lower bound of S . Also you can see that .
4

5
S∈  This means, 4/5  is greater 

than every other lower bound of .S  So, .
4

5
inf =S  

 
*** 

 

The set S  in Example 7 above is nonempty, bounded below and contain its 

infimum too. However, not all subsets of Q  are like this. The point we want to 

emphasize is that there are subsets of Q  which are nonempty and 

bounded below, but do not have the infimum in .Q  A natural example 

comes from .2  
 

Consider the set }2{ 2 >∈= +
xxS Q . It contains all the positive rational 

numbers whose square is greater than 2 . Note that Ø≠S . (Why?) It is also 

easy to see that S is bounded below, for example by 0 .  Also1 is a lower 

bound of S as for every ,Sx∈ we have 122 >>x  i.e. 1>x . Similarly 1.4 is 

another lower bound of S as for every ,Sx∈ we have 
22

)4.1(2 >>x  i.e. 

4.1>x . In the same way, you can verify that the numbers  
 

 ....,41421.1,4142.1,414.1,41.1  

 
are also lower bounds of S . You can note that each of these lower bounds is 
greater than its predecessor. Does this sequence remind you to the 

approximations of ?2  Indeed, it is the case. Then you should also realise 
that the sequence contains infinitely many elements.  
What do we get from the discussion above? 
 

The set }2{ 2 >∈= +
xxS Q  is nonempty and bounded below but has no 

infimum in .Q  However, such a situation never arises in .R  That is, if S  is a 

nonempty and bounded below subset of real numbers then, the infimum of S

is always a real number.  It is because of a fundamental property possessed 

by ,R  but not by .Q  This property is stated below: 

 

Greatest Lower Bound Property of R  

Let R⊆≠ SØ  and S  be bounded below. Then Sinf  exists in .R  

You can see infimum as a 

generalisation of 

minimum. 
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                                                         The property above is also sometimes called the Infimum Property of .R  It is 

not possible to prove this property with what we have learned so far. Let us 
focus on how this property can be interpreted.  
 
If we represent the rational numbers on a line we can see that the line 
contains many points which do not correspond to any rational number. At the 
moments let us call such points as “holes”. One such hole is shown in Fig. 4. 
In set terminology, we can find a pair ),( BA  of nonempty subsets of rational 

numbers such that  
 

1) Q=∪ BA , Ø=∩ BA . 

2) Every element of A  is smaller than every element of .B  

3) A  has no maximum element and B has no minimum element. 
 
Such a pair ),( BA  separates Q  into two parts. An example is given below  

 
−+ ∪<∈= QQ }2|{

2
xxA  and }2|{

2 >∈= +
xxB Q  

 

You can verify that the sets A  and B  satisfy all the three properties above. 

The main distinction between Q  and R is that while there are infinitely many 

pairs ),( BA  that separate ,Q  there is not even a single pair that can separate 

.R  Thus the line representing ,R  which we shall call the real line from now 

onwards, contains no holes. 
 
Analogous to the lower bounds and greatest lower bounds we can define 
upper bounds and least upper bounds for the subsets of .R  
 

Definition: Let R⊆≠ SØ . A number R∈u  is called an upper bound of S if 

xu ≥   for each .Sx ∈  If there exists some upper bound of S , then S  is called 
bounded above.  
 

Definition: A set R⊆S  is said to be bounded if it is both bounded below 

and bounded above.   
 

Definition: Let R⊆≠ SØ .  A number R∈u  is called a least upper bound 

or supremum of S  if  
 
i) u  is an upper bound of .S  

ii) vu ≤  for all upper bounds v  of .S  
 

We denote supremum of S by Ssup . As in the case of greatest lower bounds, 

a set cannot have more than one least upper bound. (Apply the definition to 
prove it.)  
 
Let us now consider an example. 

Example 8: Find the supremum of the set .
1









∈
+

= Nn
n

n
S  

Solution: You can see that 

 ,2
1

1
1

≤+=
+

nn

n
 for all .N∈n  

 

So, 2  is an upper bound of .S  Also note that if u  is any upper bound of ,S  

then  

Fig. 4: A hole at Sinf in 

Q , where 

}2{ 2 >∈= +
xxS Q . 

 Sinf  

S  

1 0  
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 ,
1

u
n

n
≤

+
 for all .N∈n  

This gives for .2,1 un ≤=  Hence, .2sup =S  

 
*** 

 

Now given a nonempty bounded above subset S  of ,R you might ask whether 

sup S  always exists or not.  

To investigate, let us suppose R⊆≠ SØ  and S  be bounded above. Define 

}.|{ SssT ∈∈−= R  (See Fig. 5 below.) 

 
Fig. 5: Negatives of upper bounds of S are lower bounds of T  

 

Let u  be an upper bound of .S  Then u−  is a lower bound of T  (apply 

definition). Hence by the infimum property of ,R  Tinf exists. Let .inf Tt =  

We shall show that St sup=− . First note that t−  is an upper bound of .S  Let 

u be another upper bound of .S  Then u−  is a lower bound of T and hence 

tu ≤− . This implies tu −≥ . Hence .supSt =−  This proves the existence of 

.supS   

 
Thus we have the following result. 
 

Theorem 6: Let R⊆≠ SØ  and S  be bound above. Then, Ssup exists inR . 
 

Theorem 6 is called the Least Upper Bound Property (also the Supremum 

Property) of .R  It can be proved that the greatest lower bound property and 

the least upper bound property of R are equivalent. Now R  being an ordered 
field, possesses the least upper bound property together with greatest lower 
bound property which make it a complete ordered field. It essentially means 

that every nonempty bounded subset of R has the infimum as well as the 
supremum in .R  This is called the Completeness Property of .R  
 
Let us look at an important result concerning the infimums and supremums of 

the subsets of R . 
 

Theorem 7: Let R⊆≠ SØ . Let l  be a lower bound and u an upper bound of 

S . Then  
 
i) Sint=l  iff for every 0>ε , there exists some Sx ∈ such that .ε+< lx  

ii) Su sup= iff for every 0>ε , there exists some Sx ∈ such that .ε−> ux  

 

Proof: i) Let .inf S=l  If possible assume that the statement “for every ,0>ε  

there exists some Sx ∈  such that ε+< lx ” is false. This means, for some 

0>ε  no element of S  is smaller than .ε+l  That is ε+l  is a lower bound of 

.S  Since ε+l  is greater than ll,  cannot be the greatest lower bound of .S  

We have arrived at a contradiction.  
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                                                         Now we prove the converse. That is, we are given that for every 0>ε , there 

exists some Sx ∈ such that .ε+< lx  To prove that ,inf S=l  we need to 

show that if we pick any lower bound l′  of ,S  we must have .ll ≤′  But this is 

indeed the case. Because if ll >′   then take 0>−′= llε  and we have an 

element x  of S  such that ,ε+< lx  i.e., ,l′<x  which is not possible. Hence 

.inf S=l  

 
ii) Construct the proof yourself by suitably modifying the arguments in i) 

above. 
          

Let us consider some examples.  

Example 9: Find the supremum and infimum of .
)1(

1








∈
−

+= Nn
n

S

n

 

Solution: Note that for all .N∈n  

 
2

3

2

1
1

)1(
1 =+≤

−
+

n

n

 

 

Also  .
2

3
S∈  Hence every upper bound of S  must be greater than or equal to 

2

3
. Hence 

2

3
 is the supremum of .S  For the infimum observe that  

 
.,

)1(
10 N∈∀

−
+≤ n

n

n

 
 

Since S∈0  every lower bound of S  must be smaller than or equal to .0  

Hence 0  is the infimum. 

*** 
 

Example 10: For a given nonempty subset S  of R  and ,R∈a  define the set  

}.|{ SxxaSa ∈+=+  If S  is bounded below, show that  

.inf)(inf SaSa +=+  

 

Solution: Let .inf S=l  This means,  

 

.,, SxxaaSxx ∈∀+≤+⇒∈∀≤ ll  

 
Hence, l+a  is a lower bound of .Sa +  Now let l′  be another lower bound of 

Sa + . That is,  
 

.,, SxxaSxxa ∈∀≤−′⇒∈∀+≤′ ll  
 

But, this means a−′l  is a lower bound of S  and hence .ll <−′ a  That is, 

.ll +≤′ a  This shows that .inf)(inf SaaSa +=+=+ l  
 

*** 
 

Using the arguments similar to Example 10, you can show that if S  is 

bounded above then .sup)(sup SaSa +=+  
 

You should try some exercises now. 
 

 

E13)  Let R⊆≠ SØ . Show that SS supinf ≤ . When does the equality 

hold? 
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E14) Does the set given below has the infimum in ?R  the supremum in ?R  

   












∈







+ Nn

n
n

n

1
 

 

E15) For a given nonempty subset S  of R  and ,R∈a  define the set 

}.|{ SsasaS ∈=  Show that if S  is bounded, then  

( )




<

>
=

.0if,inf

0if,sup
sup

a Sa

a Sa
aS  

 
E16)   Let S  be a subset of non-negative real numbers that is bounded 

above. Prove that sup .)(sup}{ 22
SSxx =∈  Examine the case when 

S  is a subset of negative real numbers. 

 

 
There are several other properties of real numbers which can be derived from 
the Completeness Property. One such property of real numbers is due to 
Archimedes about which we shall talk next. 
 

3.3.2 Archimedean Property  
 
Archimedes (287-212BC) was a Greek mathematician whose work is regarded 
as a foundation for real analysis. The concepts such as the limit of sequences 
(which you will see in Unit 5) were known to him centuries before they were 
rigorously introduced. The Archimedean property is one of his work that talks 
about the presence of arbitrarily large natural numbers and arbitrarily small 
real numbers. 
 
Theorem 8(Archimedean Property): Let .0>x  Then there exists some 

N∈n such that .
1

n
x >  

 
Proof: We shall prove it by contradiction (see Unit 2, Section 2.2). 

Assume, if possible, that 
n

x
1

≤  for all .N∈n  But since 0>x , this gives 
x

n
1

≤  

for all .N∈n  This means that x/1 is an upper bound of N . You also know 

that Ø≠N  and RN ⊆ . Hence, the supremum of N exists in R . Let 

Nsup=u . Now take 1=ε . Then there exists some N∈n such that nu <−1 . 

But this equivalent to 1+< nu . Since N∈n , N∈+ 1n . Now Nsup=u  and 

1+< nu  cannot hold together. Hence our assumption that 
n

x
1

≤  for all N∈n  

is false. This proves the theorem.  
     
The following theorem is a consequence of the Archimedean property.  
 
Theorem 9: Given two positive real numbers x  and y such that ,yx <  there 

exists a rational number r  such that .yrx <<  

 

Proof: Let us first assume that 0>x . Since .0>− xy  by the Archimedean  

property, there exists some N∈q such that .
1

q
xy >−  This implies  

 

Fig. 6: Archimedes 
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                                                         1−< qyxq . Now, consider the set }.|{ nqynS ≤∈= N  S contains all the 

natural numbers greater than or equal to qy . By the Archimedean property, 

there exists at least one such natural number. Hence, Ø≠S . But, S  is a 

subset of N . Hence, by the Well -ordering Principle (see Unit 2, Section 2.4), 

S  contains a least element, say .p  This means  

 

y
q

p
x

y
q

p

q

p
x

qyqxy
q

p
pqx

y
q

p
pqy

qyppqy

<
−

<⇒

<
−−

<⇒

−<<
−

−<⇒

<
−

−≤−⇒

<−≤

1

1
    and          

1

)1 (          
1

    and         1

1
     and    11

1     and              

Q  

Since 1−p  and q  are natural numbers, 
q

p 1−
 is a rational number, which lies 

between x  and .y  

 
If 0<x , the Archimedean property implies that there is some N∈n such that 

xn −> . Then ynxn +<+<0 . Now we can infer from the first case that there 

is a rational number r  such that ynrxn +<<+ . This implies that the 

rational number nr −  lies between x  and .y     

      
Let us consider an example. 
 

Example 11: Let Q∈a .  What is the infimum of the set of all rational 

numbers greater than ?a  

 

Solution: The given set can be written as }.|{ axxS ≥∈= Q  Note that a  is a 

lower bound of .S  Let R∈l  be another lower bound of .S  First, assume that 

Q∈l . Now, if a>l , then 
2

a+l
 is a rational number lying between a  and .l

This implies, ,
2

S
a

∈
+l

 which is a contradiction to the definition of .l  

 

Now assume that Q∉l . If a>l , then by Theorem 9 there exists some Q∈r  
such that l<< ra . This means, .Sr ∈  This again contradicts the definition of 

.a  
 

Thus in both the cases, .a≤l  Therefore, .inf aS =  

 
*** 

Another consequence of the Archimedean property is the existence of square 
roots of positive real numbers.  
 

Theorem 10: For every real number ,0>a  there exists a positive real number 

whose square is .a  

 

Proof: Let }.|{
2

axxS ≤∈= +
R  Note that Ø≠S . (Why?) Also, S is bounded  
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above. (Why? Find an upper bound.) Now the Completeness Property of R

implies that the supremum of S exists. So, let Su sup= . Note that .0>u  

(Why?) 
 

To prove the result, we need to show that au =2
. We shall do so by 

contradiction. Assume if possible, that au ≠2 . Then by the Law of Trichotomy, 

either au >2
 or .2

au <  
 

First assume .2
au <  Then 02 >− au  and 0>u imply 0

2

2

>
−

u

au
. Hence 

R∈
− au

u

2

2
, so by the Archimedean property there exists some N∈n  such 

that 
au

u
n

−
>

2

2

 
and 

u
n

1
> . This implies  

a
n

u
u >−

22

 
and .0

1
>−

n
u  

 

Therefore, a
n

a
nn

u
u

n
u >+>+−=








−

22

2

2
1121

. 

 

This means, Sxx
n

u ∈∀>







− ,

1 2

2

. That is Sxx
n

u ∈∀>− ,
1

,  which means 

n
u

1
−

 
is an upper bound of S . But this is not possible as Su sup=  and 

u
n

u <−
1

. Hence, our assumption au >2

 is false.  

 

A similar approach can be used to show that au <2
is also not true (see E20).  

Hence, by contradiction, .2
au =  

      

Now, given ,
+∈Ra  we can define the positive square root of a as 

}.{sup
22

1

axxaa ≤∈== +
R  Similarly, the positive nth root of a is defined 

as }.{sup

1

axxa
nn ≤∈= +

R  

 
Next, we state the following theorem, without proof. 
 

Theorem 11: Let .+∈Ra  Then +∈Rna

1

 for all .N∈n  
 

Theorem 12: Let 
n

a
1

≤ , for all N∈n . Then, .0≤a  

 

Proof: Assume, if possible, that 0>a . Then the given inequality is  
 

 .,
1

N∈∀≤ n
n

a  

 

But this contradicts the Archimedean property. Hence, our assumption is 
wrong. Thus, 0≤a .       
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                                                         Let us see some applications of Theorem 12. 
 

Example 12: Find Sinf , where .
1









∈= Nn
n

S  

Solution: Note that 
n

1
0 <  for all N∈n . Thus 0 is a lower bound of S . Let l  

be another lower bound of S . Then  

n

1
≤l  for all .N∈n  So, by Theorem 12, .0≤l  Hence, .0inf =S  

*** 

Example 13: What is ,inf S if ?
1









∈
+

= Nn
n

n
S  

Solution: You can see that  
 

 .,
11

11 N∈∀
+

=+< n
n

n

n
 

 

This means 1 is a lower bound of S . Now, let l  be another lower bound of S . 
Then, 

 NN ∈∀+≤⇒∈∀
+

≤ n
n

n
n

n
,

1
1,

1
ll  

        N∈∀≤−⇒ n
n

,
1

1l  

        ,01≤−⇒ l  by Theorem 15 

        1≤⇒ l  

Hence .0inf =S  

*** 

Now we turn our attention to learn about the absolute values and inequalities 
associated with the real numbers.  
 

3.3.2 Absolute Values and Inequalities 
 
First we define what we mean by the absolute value of a real number.  
 

Definition: For R∈x , the absolute value of x , denoted by x  (read as 

'mod' x ) is defined as  
 





<−

≥
=

.0

0

xx

xx
x

 if

 if
 

 

Absolute value is also sometimes called the magnitude. This is because x
 

is always a positive number for 0≠x  and 00 = . Actually, || is a function 

from R to { }0U+
R  whose graph is shown in Fig. 7. 

  

Observe that 55 = , 33 =− , and 
2

xx =  for any .R∈x  

In the following examples we present a a few results concerning the absolute 
values.  
 

Example 14: Show that |,||||| yxxy ⋅=  for all real numbers x  and .y  

 

Fig. 7: Graph of |x| 

 

0
 

x−
 

x

 

X

 

Y  

|| x  
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Solution: An elegant proof is the following. For any R∈yx,  

  

.||||)(|| 22222
yxyxyxxyxy ====  

 
*** 

You can regard || a  as the distance of a  from .0  Using this we can define the 

distance between any two elements ba,  of R  as .|| ba −  (See Fig. 8). We 

shall formally define what we mean by the distance in Unit 4. 
 
Now let us consider the following result. 
 

Example 15: Show that |,||||| yxyx +≤+   ., R∈∀ yx  

 

Solution: If possible, let us assume that yxyx +>+ .Then,           

( )2

22

22

2222

2

2

2)(

yx

yxyx

yxyx

xyyxyxyx

+=

++=

++≤

++=+=+

 

 
(See Example 14 and the observation above Example 14.) Since both the 

sides are positive, we have, .|||||| yxyx +≤+  

*** 

Now we discuss another consequence of the completeness property – the 
inequalities. You have seen some inequalities just above. Now, we discuss 
them in detail, algebraically and geometrically.  
 

Consider, for instance, the inequality ,2
2

xx ≤  where .R∈x  Certainly it is not 

true for all .R∈x  For example 1=x doesn’t satisfy it. However, our aim is to 

find all those R∈x  for which it is true. We can do this by using the definition 
of ≤ and Theorem 4. 
  
Using definition of ,≤  we have 

 

 0)2(022
22 ≤−⇔≤−⇔< xxxxxx  

      0( ≤⇔ x and )02 ≥− x  or ( 0≥x and 02 ≤− x ) 

      0( ≤⇔ x and )2≤x       or 0( ≥x  and 2≥x ) 

      0≤⇔ x  or 2≥x   
 

Thus we find that the inequality 2
2 xx ≤  is satisfied by only those real 

numbers that are either less than or equal to 0 or greater than or equal to 2. In 
set notation, this means 
 

 0|{}2|{
2 ≤∈=≤∈ xxxxx RR  or }.2≥x  

 
You can see that the set in the right hand side is much easier to visualize that 
the one in the left hand side. (See the geometrical representation of this set in 
Fig. 9.) 
 
Let us consider some more examples. 

 

Fig. 8: Distance between 

a  and .b  

 

 

}20{ ≥≤∈ xxx orR  

Fig. 9 

0  1 2  

Note that 

|||| abba −=−  for all 

., R∈ba  



 

 

68 

Block 1                                                                                                                    The Structure of R

                                                         Example 16: Let 0>a . How are the inequalities ax <||  and ax ≥||  related? 

Describe geometrically. 
 

Solution: First let us consider the inequality .|| ax <  When ,0>x  it gives 

.ax <  On the other hand, when ,0≤x  it gives ,ax <−  i.e., .xa <−  Thus we 

get .axa <<−  Thus ax <||  means x  lies strictly between a−  and .a  

Now we consider the inequality .|| ax ≥  When ,0>x  it gives ,ax ≥  otherwise 

,ax ≥−  i.e., .ax −≤  Thus ax ≥||  is equivalent to ax −≤  or .ax ≥  

In set terminology, we find that the sets  

 }||{ axx <∈R  and }||{ axx ≥∈R  

are the complements of each other. Geometrically, they are described in Fig. 
10.  

*** 
 

Example 17: Describe the set { }54 +≤−∈= xxxS R  geometrically. 

 
Solution: We write the inequality as  
 

45 −≥+ xx  

 

⇔ either 45 −≥+ xx
         

or   45 +−≤+ xx  

⇔ either 9+≤ xx
         

or   1−−≤ xx  

⇔ either 99 +≤≤−− xxx         or   11 −−≤≤+ xxx  

⇔ either xx ≤−− 9 and 9+≤ xx       or   xx ≤+1 and 1−−≤ xx  

⇔ either 90
2

9
≤−≥ andx                  or   

2

1
01 −≤≤ xand  

2

9
−≥⇔ x

    
 

The last inequality follows from the fact that “
2

1
01 −≤≤ xand ” is false. 

Hence 








−≥∈=
2

9
xxS R . See Fig. 11 for a geometrical description of .S  

*** 

Example 18: Let p  be a prime number. Show that .}{ 2
ppxx =>∈ +Q  

 

Solution: Let ,inf S=l  where }.{ 2
pxxS >∈= +Q  First assume, if possible 

that .p<l  Then, to arrive at a contradiction, we have to find a natural 

number n  such that 
n

1
+l  is a lower bound of S . That is, we have to find a 

natural number n  such that for all Sx ∈  
 

.
1 2

2

x
n

<







+l  

 

But px >2
for all Sx ∈ . So, it is sufficient to find n  such that  

 .
211 2

2

2

l
l

l −<+⇔<







+ p

nn
p

n
 

 

Fig. 10 

  
}||{ axx ≥∈R  

}||{ axx <∈R  

a−  0  a  

 

Fig. 11 
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Now you know that 
nn

11
2

<  which implies  

.
2121

2
nnn

ll +
<+  

 
Hence, it is sufficient to find n such that 
 

221
l

l
−<

+
p

n
, that is, .

21
2l

l

−

+
>

p
n  

 
Since such an n always exists by the Archimedean Property, so our 

assumption that p<l  is false.  

 

Now let us assume that .p>l  This time we need to find a natural number n

such that .
1

S
n

∈−l  That is, we need to find a natural number n  such that  

  

.
1

2

p
n

>







−l  

 
But, note that 
 

 .
2121 2

2

2

2

nnnn

l
l

l
ll −>+−=








−  

 

So, it is sufficient to find n  such that ,
22

p
n

>−
l

l  i.e., .
2

2
p

n
−

>
l

l
 But such an 

n always exists by the Archimedean Property. Hence we have arrived at a 

contradiction to the definition of .l  Therefore, our assumption that p>l  is 

false. Thus we conclude that .p=l  

 
*** 

You might be now willing to do some exercises.  
 

 

E17) Find the infimum and supremum of the set .
1

2








∈Nn
n

 Use them to  

  find the infimum and supremum of the set .
1

2

2











∈

+
Nn

n

an
  

 
E18) Justify whether the following statements are true or false: 
 

 i) }1|{}1|{
2 <∈=<∈ xxxx RR  

 ii) }2|{}4|||{ ≥∈=>∈ xxxxx RR  

 iii) R∈∀−≥−+ xxxx ,121  

 iv) N∈∀≥







+ nn

n

n

,
1

1  
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E19) Describe the set 








<
−

+
∈ 1

43

12

x

x
x R  geometrically. 

 

E20) Let 
+∈Ra . Consider the set }.{ 2

axxS ≤∈= +R  If ,supSu = then 

show that au ≥2
. 

 

E21) Show that for every 
+∈Rx , there exists some N∈n such that 

nxn <≤−1 . 
 
E22) Let x and y be two real numbers such that .yx <  Show that there 

exists an irrational number ξ  such that .yx << ξ  

 

 

Thus far we have seen that R is an ordered field that is complete with respect 
to the order. We have seen many consequences of the completeness property 

of R . We expect from you to devote an ample amount of time on the 
inequalities as they are the fundamental to every concept in real analysis. 
You can also look at our course BMTC-131 (Calculus) to learn many other 
important inequalities.  
 

3.4 COUNTABLE AND UNCOUNTABLE 
SUBSETS OF R  

 
How many stars are there in our galaxy? How many sand particles are there in 
a desert land? How many drops are there in an ocean? These numbers are 
enormously large. Yet, you will be surprised to know that they are all finite. In 

this section we shall talk about the size of different subsets of R  and of R
itself. In particular we shall give precise meaning to the terms such as ‘finite’, 
‘countable’ and ‘uncountable’.   
 
People in the old civilizations used to count the sizes of different sets by 
putting them into one-to-one correspondence (bijection). For example, you 

know that the sets }26...,,3,2,1{  and }...,,,,{ zcba have the same number of 

elements. We can assign cba →→→ 3,2,1 and so on to get an explicit 

bijection. Consider a set S . If we can establish a bijection from the set 

{ }n,...,3,2,1  to S , for some natural number ,n  then it means that we can count 

and get the total number of elements of S . Let us extend this idea to the sets 

N and Z . Look at the following illustration.  
 

,...}2,2,1,1,0{

...

...},4,3,2,1{

−−=

↓↓↓↓

=

Z

N

 

 

Although in this we cannot get the total number of elements of Z , counting  
them still makes sense. We can list them. For example, the illustration above 

provides a list of the elements of Z  with 0  as its 1st element, 1−  as the 2nd 
and so on. You might be thinking some other way of listing them. For example 

you can regard 0 as the 1st , 1 as the 2nd, 1−  as the 3rd , 2 as the 4th and so 
on. This is possible. The only thing that you have to take care while listing the 
elements of a set is that each element is listed exactly once and no element is 
skipped. 
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Now consider the set ].1,0[  From your calculus course you know that it has 

infinitely many points. Can you list its elements? You can say that 0 is the first 

one. But then what is the second? Is it 01.0,1.0 or 001.0 ? Soon you will 

realize that you have no way to list its elements. 
 
The discussion above tells us that we can put together the sets like 

},..,,,{ zcba and Zand distinguish them from ]1,0[ by saying that the first two 

are ‘countable’ i.e. their elements can be listed and the third one is 
‘uncountable’ because its elements cannot be listed. We give a formal 
meaning to the terms ‘coutable’ and ‘uncountable’ in the following definition. 
 
Definitions:  
 

1) A set S  is said to be finite if there is a bijection from { }n,...,3,2,1
 
to ,S  for 

some .N∈n  

2) A set S is said to be countably infinite if there is a bijection from N to S .   
3) A set is countable if it is either finite or countably infinite.  
4) A set is infinite if it is not finite. 
5) A set is uncountable if it is not countable. 
 

The empty set is countable as it is finite. The power set of }1,0{ is also 

countable as it is finite having the elements }1{},0{,Ø and }1,0{ . The set N is 

also countable as the identity function serves as a bijection from N to itself.  
 
Now consider the following example. 
 

Example 19: Show that the set ,...}7,5,3,1{odd =N
 
of odd natural numbers is 

countable. 
 
Solution: Look at the following illustration. 
 

 

,...}7,5,3,1{

...

...},4,3,2,1{

odd =

↓↓↓↓

=

N

N

 
 

This gives us the function odd: NN→f
 
defined by 12)( −= nnf . It is easy to 

check that f  is a bijection. Hence, oddN
 
is a countable set. 

 
*** 

You can give arguments similar to Example 16 to show that evenN , the set of 

even natural numbers, is countable. 
 

Is the set ...},11,7,5,3,2{prime =N of prime numbers countable? You may know 

that 
primeN is infinite. (Suppose, if possible that there are only finitely many 

prime numbers, say 
k

ppp ,...,, 21 . Then 1...21 +=
k

pppP
 
is again a prime 

because P is not divisible by any of 
k

ppp ,...,, 21 . Therefore, 
primeN is infinite. ) 

So, you need to check whether or not 
primeN is countably infinite. But finding a 

bijection from N to
primeN would be waste of time as it is an ‘unsolved problem’. 

That is, for any arbitrary number n, till date we do not know what the nth prime 

number is. So, let us look for other ways to show that 
primeN is countably 
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                                                         infinite. You know that NN ⊆prime
and also that N is countable. Does it imply 

that 
primeN is countably infinite? The answer lies in the following result. 

 

Theorem 13: Every subset of N is countable. 
 

Proof: You know that every finite subset is countable by definition. So, let S

be an infinite subset of N . Then, Ø≠S . So, by the well ordering principle, S

must have a least element. Let )min(1 Sx = . Again, Ø}{\ 1 ≠xS , as S is 

infinite. So, }{\ 1xS must also have a least element. Let }).{(sin\min 12 xx =  

 
Now define 
 

}).,...,,{\min( 121 −=
kk

xxxSx  

 

Again, if Ø}...,,,{\ 21 =
k

xxxS , then },...,,{ 21 k
xxxS = , which is not possible. 

So, Ø},...,,{\ 21 ≠
k

xxxS . Hence by well ordering principle 

}),..,,{\min( 211 kk
xxxSx =+ is well defined. 

 

This gives us a function Sf →N: defined by N∈∀= kxkf
k
,)( . 

 

Note that the way we have constructed ,
k

x  we see that 

 

...321 <<< xxx  

 
This proves that f is one-one.  

 

To show that f is onto, take Sx ∈ . Then 1xx > . So, let k be the largest 

natural number such that 
k

xx > . This means 1+≤
k

xx . Now 1+<
k

xx means 

xxxxS
k

=}),...,,{\min( 21 , which contradicts the definition of 1+k
x . Hence 

1+=
k

xx . 

 

This shows that every element of S  has some pre-image in .N  That is f  is 

onto. Hence, S  is countable.            
      

Theorem 13 tells us that there is a bijection from N  to ever nonempty infinite 

subset of .N  It has an important consequence. Consider any nonempty set .S  

To prove that S  is countable we need not find a bijection from N  to .S  An 

injection from S  to N  (or a surjection from N  to S ) is sufficient. This is what 
the following theorem states. 
 

Theorem 14: Let S  be an infinite subset of .R  
 

i) If N→Sf :  is an injection, then S  is countable. 

ii) If Sf →N:  is a surjection, then S  is countable. 

 

Proof: i) Let )(SfM = . Since N→Sf : is an injection, MSf →: is a bijection.  

But N⊆M , so by Theorem 13, M  is countable. That is, there is a bijection 

N→Mg : . Now from your knowledge of calculus, you know that 

N→Sfg :o is a bijection. Hence S is countable. (Why?) 
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ii) Since Sf →N: is a surjection, for each element Sx ∈ , there is some 

element N∈n such that xnf =)( . Then )(
1

xf
−

is a nonempty subset of 

N . Hence by well ordering principle )(
1

xf
−

has a least element.  

 

 So define N→Sg :  by )),((min)(
1

xfxg
−=  

  

 Now we show that g  is 11− . Let 2121 ,, xxSxx ≠∈ . Since f  is a function, 

)( 1

1
xf

−
and )( 2

1
xf

−
must have no element in common. This implies 

))(min( 1
1

xf
− and ))(min( 2

1
xf

−
cannot be equal. That is )()( 21 xgxg ≠ .  

 Now, by part (i), S  is countable.   

      
As an application of Theorem 14, consider the following example. 
 
Example 20: Show that NN×  is countable. 
 

Solution: We define a function  NNN →×:f  by nnmnmf ++= 2
)(),( . 

If we prove that f is an injection our task is over. So, for .),(),,( NN×∈qpnm  

we have 
 

nqqpnm

qqpnnmqpfnmf

−=+−+⇔

++=++⇔=
22

22

)()(

)()(),(),(
 

 
That is, nqqpnmqpnm −=−−++++ ))(( , which implies 

nqqpnmqpnm −=−−++++ )( . Now, if nq ≠ , then qpnm +++

divides nq − . But this means nqqpnm −≤+++ , which is impossible.  

 
Hence, nq = . Now, 

 

)(

0

00)(

nqpm

qpnm

qpnm

qpnmqpnmqpnm

==⇒

+=+⇒

=−−+⇒

=−−+⇒=−−++++

Q

 

 

Thus we have proved that f  is injective. Hence by Theorem 14(i), NN×  is 

countable. 
*** 

Theorem 15: A countable union of countable sets is countable. In other 

words, if ,....},,{ 321 SSS
 
is a collection of countable sets then U

∞

=1n

n
S is 

countable. 
 

Proof: Since sS
n
' are countable, we can list their elements as follows: 

 

,....,,,: 141312111 xxxxS  

,....,,,: 241322212 xxxxS  

M

,....,,,: 343332313 xxxxS
 

Recall that ( )xf
1−

 
is a 

set. 
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We define U
∞

=

→×
1

:
n

n
Sf NN by 

mn
xnmf =),( . Note that f is surjection. Also, 

since  NN × is countable, there is some bijection NNN ×→:g . Now 

Uo
∞

=

→
1

:
n

n
Sgf N  is surjection. (Why? Use your calculus knowledge.) Hence, 

by Theorem 15(ii), U
∞

=1n

n
S is countable. 

      

Example 21: Show that Q  is countable. 

 

Solution: Define NQ→:f  by ,)( 2
nnm

n

m
f ++=








 

where m  and n  have no common factors. 
 
Then similar to Example 17, you can prove that f  is an injection. Therefore, 

by Theorem 14(i), Q  is countable. 

*** 

Thus far we have seen examples of countable subsets of R only. However 

many subsets of R are uncountable. First, we shall see that ,R  itself, is 

uncountable.  
 

Theorem 16: R  is uncountable. 
 

Proof: We prove it by contradiction. Assume that R is countable. Let 

,...),,( 321 xxxL = be the list of all the elements of .R  Recall that the decimal 

expansion of a real number x  is  

 

.... 54321 aaaaaAx =  

 

with the exception that only a finite number of 
i

a ’s can be 0 . Then we can 

write 
 

 K151413121111 . aaaaaAx =  

 
..... 252423222122 aaaaaAx =  

 
..... 353433323133 aaaaaAx =  

 
..... 454443424144 aaaaaAx =  

 M

..... 555453525155 aaaaaAx =
 

 

Now we construct a real number ....0 321 bbby = such that ,...3,2,1, =∀≠ kab
kkk

 

This means that y  cannot be equal to 1x  as 111 ab ≠ . Similarly y  cannot be 

equal to 2x  as 222 ab ≠ . Indeed ,...2,1, =∀≠ ixy
i

 

 

This means that y  is not listed in L . This contradicts the assumption that L

contains all the elements of .R  Hence R is uncountable.     
 
Let us consider an example. 
 
Example 22: Show that the set of all irrational numbers is uncountable. 
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Solution: We prove it by contradiction. Assume that the set QR \ is 

countable. Then, R , being the union of two countable sets Q and QR \ , is 

also countable. But this is impossible. Hence QR \ is uncountable. 

 
*** 

You can do now following exercises. 
 
 

E23) Let S be a countable set and there is a bijection from S  to .T  Show 

that T  is countable. 
 

E24) Let R∈a . Check whether the set }{ axx >∈R  is countable or 

uncountable. 
 
E25) Show that every infinite set contains a countable subset. 
 

E26) Let S be a finite set and T  be a countably infinite set such that

Ø=∩TS . Show that TS ∪ is a countably infinite set. 
 

 

We have seen that many familiar subsets of R such as ZN�,  and Q  are 

countable, while R and QR \  are uncountable. We shall consider many other 

uncountable subsets of R in the next unit. We end this unit here. 
 

3.5 SUMMARY  

 
In this unit we have considered the following points. 
 

1. Both Q and R as ordered fields. 
 

2. Inequalities as a consequence of order properties of .R   
 

3. Greatest lower bound and least upper bound properties of .R  
 

4. Archimedean property of R and its applications such as in  
 

i) showing the existence of a rational number between every two real 
numbers. 

 

ii) showing the existence of an irrational number between every two real      
       numbers. 

 

iii)  computing infimums and supremums of subsets of R  

 

5. The concept of finite, countable and uncountable sets 
 

i) Examples of these concepts from subsets of .R  
 

ii) Some results related to these concepts.    
 

3.6  SOLUTIONS/ANSWERS 

 

E1) i) 
500000

1298153

1000000

6

100000

0

10000

3

1000

6

100

9

10

5
2596306.2 =++++++=  

        ii) Let ,
100

764324764
y

x +⋅=⋅=  where .32432403240 K⋅=⋅=y  
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 Then .3243241000 ⋅=y  So, subtracting y  from ,1000y  we get 

 32432403243241000 =⋅−⋅=− yy . 

  

 Then .
14

36

999

324
==y  Thus .

11100

52872

111000

36
764 =+⋅=x  

 

E2)   Let
n

m
p = for some ,, Z∈nm  where m  and n  have no common  

         factor. Then  

 

.
22

2

2

pnm
n

m
p =⇒=  

   This means 
2

m is a multiple of ,p and hence m is a multiple of .p  

         (why?, see margin). That  is, pkm = for some Z∈k . Now we have 
,  

 ( ) .2222
pknpnpk =⇒=  

  
Again using the same argument, we find that n  is a multiple of p . Thus

p   is a common factor of both m and n , which is a contradiction. Hence,  

.Q�∉p  
 

E3)   Draw a straight line and mark on it 0 at some point. Then mark O at 0 
and  1,2,3 and so on at equal intervals. Draw a perpendicular of length 1 
unit at 1 (See  Fig 12 below).  

 

Fig.12: Representation of 3   on the real line 
 

Let 1T  be the top of this perpendicular. The length of 1OT  is 2 .  Take a 

compass and put its foot at O  and pencil at 1T  and draw an arch. It cuts 

the line at the point 2 . Now draw a perpendicular of length 1 unit at 2 . 

Let  2T be the top of this perpendicular. Fix the foot of the compass at O  

and pencil at 2T and draw an arch. It cuts the line at 3 because 

( ) .312 2
2

2 =+=OT  

 

You can extend this procedure to locate ,p  for any prime number .p  
 

E4)  i) We have 
 

   aaaa .1)1()1( +−=+−  (Property M(iii)) 

   1.)1(. aa +−=  (Property M(i)) 

   )11(. +−= a   (Distributivity) 

   0.a=   (Property A(iii)) 

   0=    (Theorem 2 (iii))

 

               

 Since additive inverse is unique, ( ) .1 aa −=−  

 

0  1 2  3  

3  

2  

1 1 

2  

1T  2T  

Let ,
2

kpm =  for some 

.Z∈k  Now m  divides 

.2
m  Hence m  divides 

.kp  But p  is a prime, so 

m  divides .k  Then 

lmk =  for some .Z∈l  

Therefore, pmm l=2
 

which implies p  divides 

.m  
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 ii)   Put 1−=a in i) and use the fact that ( ) .11 =−−  

 
E5)   We have 
 

 

)(..)( baccba +=+   (Property M(i)) 

   bcac .. +=   (Distributivity) 

   cbca .. +=   (Property M(i)) 
 
E6)    We can see that 
 

  06)32(065
2 =++⇒=++ xxx  

   06322 =+++⇒ xxx   (Distributivity) 

   )2(3)2( +++⇒ xxx   (Distributivity) 

   0)2()3( =++⇒ xx   (Distributivity) 

   03 =+⇒ x  or 02 =+x   (Theorem 3) 

   3−=⇒ x  or 2−=x   (Property A(iv)) 

 
E7)    For ,1=n  the statement is  

  

 
( ) 10

1

101

0

11
baCbaCba +=+  , 

          
which is true. Now, assume that the statement is true for some .N∈n  
Then  

 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

∑

∑

∑

∑∑

∑

+

=

−+

=

+−+++

=

+−
−

+

+
−

−+

+
−

−

−+

=

+−−+

=

−

=

+

=

++=

+++=

++++++++=

+++++

++++=

+=

+







=

++=+

1

0

1

1

1111

1

11

1

1

1

1

21

1201

1

1

1

21

10

21

21

1

0

11

0

0

1

n

i

iin

i

n

n

i

niin

i

nn

n

i

nin

i

n

i

nn

nn

n

n

n

nnnnnnnn

nn

n

nnnnn

n

n

nnnnnn

n

i

iin

i

niin

n

i

i

n

iin

i

n

i

n

nn

baC

bbaCa

bbaCCa

babCCbaCCbaCCa

bbaCbaCbaC

abCbaCbaCa

baCbaC

babaC

bababa

L

L

L

   

Hence, the statement is true for 1+n  also. Thus by the PMI, the        

  statement of the Binomial Theorem is true  for all .N∈n  

 

E8)    Since 0>x  and ,0>y we have 0
1

>
x

 and .0
1

>
y

 Now 

 y
y

x
y

yx ⋅>⋅⇒>
11

             (by Theorem 4 (iii)) 

          1
1

>⋅⇒ x
y

 







= .1.

1
y

y
 

Recall that 

!)(!

!

rnr

n
C

r

n

−
=  
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 Consequently, .

1
.1

1
..

1

xx
x

y
>  That is, .

11

xy
>  

E9) Assume, if possible, .bdac ≥  Then, since ,0>c  we have 0
1

>
c

. Then  

  
c

d
ba

c
bd

c
ac ⋅>⇒⋅>⋅

11
 

 Now cd >  and 0>c  imply .1>
c

d
 (Why?) Then 0>b  implies .b

c

d
b >⋅  

So .ba >  But, this is a contradiction. Therefore, .bdac <  
 

E10) We are give that .0>> yx  Let N∈> nyxnP
nn
,:)( .  Then, ( ) yxP >:1  

is true, as it is given.  Assume, now, that ( )nP   is true for some .n  Then  

 ....
11 ++ =>>= nnnnn

yyyxyxxx  

 Hence ( )1+nP  is true. Thus, by the PMI, ( )nP  is true for all N∈n . 
 

E11) Let us first note that ax < implies that axx <2  because 0>x . Also, 

from the hypothesis we know that 1<x . This implies aax < because 

0>a . Next, we prove that ,ax
n < for all N∈n using the PMI.  So, let 

( ) N∈< naxnP
n

,: . Then ( )1P  is true as given. Now, let ( )nP  be true 

for some N∈n . Then aaxxxx
nn <<=+ .1  using the induction 

hypothesis, and the fact that 10 << x . This means ( )1+nP  is true. 

Hence, by PMI ( )nP  is true for all .N∈n  
 

E12) We have  

.0
1

001 >⇒>⇒>⇒>
m

m

a
aaa

 
          Now 

 

mn

mn

a

a
a

a
aaa

mn

m

m

m

nmn

>⇔

>−⇔

>⇔

>⇔>

−

0

1

1
.

1
.

 

 

The result does not hold when .1<a  For instance, take 

.1,2,
2

1
=== mna  Then we get 

2

1

2

1
2

>  which is false. 

 

E13)  We know that for all Sx ∈  
 

.supinf SxS ≤≤  
 

         Therefore, .supinf SS ≤   

 When S  is a singleton set, i.e. { },xS = then .supinf SxS ==  

E14) Let .
1













∈







+= Nn

n
nS

n

 

  

 For 1=n  we have 
 

.2
1

1
1

1
1

S
n

n

n

∈=







+=








+  
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 Hence Ø≠S . Also for all 1≥n  

 .1
1

1
1

≥







+⇒≥+

n

n
n

n
n  

 

Hence S is bounded below. Therefore, by the Greatest Lower Bound 

Property of ,R Sinf  exists in ,R  

 

 For supremum, note that for all ,N∈n  

 









>

+
+








+>









+
++>









+
++

+

nnn
n

n
n

n
n

nnn

1

1

1
1

1

1

1
1

1

1
1

1

Q

 

(Using E12 and E10 in this order.) This means 

n

n
n 








+

1
increases with 

n . Therefore, S  is not bounded above.  Consequently, Ssup  does not 

exist in R . 
 

E15)  Let Sinf=l  and .sup Su =  
 

Case i) 0≥a  : Since, u  is an upper bound of ,S  for each ,Sx∈  
 

)0( ≥≤⇒≤ aauaxux Q  
 

Hence, au is an upper bound of aS . Now, if v is any upper bound of 

aS , then  

 Sx
a

v
xSxvax ∈∀≤⇒∈∀≤  

            
a

v
⇒  is an upper bound of .S  

            vau
a

v
u ≤⇒≤⇒  

 

Therefore, ( ) .supsup SaauaS ==  
 

Case ii) :0<a Since l  is a lower bound of ,S for each ,Sx ∈  

.axax ≥⇒≤ ll This means, la  is an upper bound of aS . 
  

  Now, if v is any upper bound of ,Sa  then  

  Sx
a

v
xSxvax ∈∀≥⇒∈∀≤  

   
a

v
⇒  is a lower bound of S  

   )inf( S
a

v
=≤⇒ lQl  

   )0( <≥⇒ aav Ql  
  

 This implies, .inf)(sup SaaaS == l  
 

E16) Since, S is nonempty and bounded above, Ssup exists in .R  So, let   

 .sup Su =  Then, since u  is an upper bounded of ,S for each ,Sx ∈  

 ( )0
22 ≥≤⇒≤ xuxux Q  

 (Using E10.) Hence 2
u  is an upper bound of .2

S  
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 Now, let v  be any upper bound of .2

S  Then, for all ,Sx ∈  

( )( )

.

)0(0

0

022

xv

xvxv

xvxv

xvvx

≥⇒

≥+≥−⇒

≥+−⇒

≥−⇒≤

Q
 

 

This implies, v  is an upper bound of .S  But Su sup= . So, ,vu ≤  

which implies vu ≤2 again using E10. This proves that 

( ) .supsup
222

SuS ==  

  

For ,
−⊆≠ RS«  do yourself. 

 

E17) Let .
1

2








∈= Nn
n

S   

 On the lines of Example 12, you can show that 0inf =S  and .1sup =S  

 Let .
11

22

2

San
n

an
n

an
T +=









∈+=








∈
+

= NN  

 Hence, using Example 10, you can see that  
 

 ( ) .0infinfinf aaSaSaT =+=+=+=  

  

 Similarly, ( ) .1supsupsup +=+=+= aSaSaT  

 

E18)  i)   False. Because }1{2 <∈∈− xx R  but }1{2 2 <∈∉− xx R . 

 ii)  True.  This is because for ,0>x  

.244 2 ≥⇔≥⇔≥ xxxx  

  And, for ,0≤x ,444 22 −≤⇔≥−⇔≥ xxxx which is impossible.  

  Thus, }.2{}4{ ≥∈=≥∈ xxxxxx RR   

 

 iii)  True. By the triangle inequality, you can see that  
 

R∈∀−+≤−+=− xxxxxx ,1112 . 

 iv)  False. Because for 3=n  we get ,3
3

4
3

≥







 which is false. 

E19) Consider the inequality 
 

1
43

12
<

−

+

x

x
                        … (2) 

 

 There are two cases     i) 043 ≥−x ,  ii) 043 <−x  
  

 Case i): 043 ≥−x  
  

 This means ,
3

4
≥x  Now, Eq. (2) can be written as 

 xxx <⇔−<+ 54312 . 

 

1 0  2  3  4  5  

S  

 

Fig.13:  








<>∈=
3

4
5 x xxS  orR  
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  That is, we have 
3

4
≥x  and 5>x , which is 5>x .  

Case ii): 043 <−x  

This means 
3

4
<x  in this case the inequality (2) reduces to 

xxx >⇔−>+ 54312  

That is, we have 
3

4
<x  and ,5>x  which is .

3

4
<x  

Combining both the cases we get 
 









<>∈⇔








<
−

+
∈

3

4
54

43

12
xxx

x

x
x orRR  

 
In Fig. 13, the shaded portion of the real line represents this set. 
 

E20) Let us assume that .2
au <  To reach a contradiction, we need to find a 

natural number n such that .
1

S
n

u ∈+  That is, we need to find an N∈n

such that 
 

 

.
211

2

2

2

a
n

u

n
ua

n
u ≤++⇔≤








+  

 
 But you know that  
 

 
.

212111 2

2

2

2
n

u
u

n

u

n
u

nn

+
+<++⇒<  

               
 Thus if we can find an N∈n such that 
 

 
,

212
a

n

u
u ≤

+
+  

  
 our task is over. This is equivalent to finding an N∈n  such  

that .
21

2
ua

u
n

−

+
≥  Such an n always exists, by the Archimedean property. 

Thus we have arrived at a contradiction. Therefore, .2
au ≥   

 

E21) Assume that the statement is false. That is, for all ,N∈n  either 1−< nx

or .nx ≥  Now, if ,,1 N∈∀−< nnx then for 1=n  we get ,0<x  which is 

a contradiction as .+∈Rx  
 

 The case N∈∀≥ nnx ,  is also not possible due to the Archimedean     

 Property. Therefore, we must have some N∈n  such that .1 nxn <≤−  
 

E22) You are given .yx < This implies .22 yrx <<  Hence, by  

Theorem 9, there exists a rational r such that .22 yrx <<  This 

implies .
2

y
r

x <<
 

Now show that 2/r  is an irrational number. 

 

E23) Since S  is countable, there exists a bijection .: Sf →N  Let TSg →:  
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 be the bijection given. Then Tfg →N:o  is also a bijection. This 

means, T  is countable.  
 

E24) Let }.{ axxS >∈= R  The set S is uncountable. If possible, assume 

that S is countable.  Let }.{ axxT <∈= R  Define TSg →: as 

( ) .2 xaxg −=  We can see that g is a bijection. Then by E23, T  is 

countable. Now { }aTS ∪∪=R  is a union of countable sets. Hence, R  

is countable, which is a contradiction. 
 

 Therefore, S is uncountable.  
 

 E25) Let S be infinite. Then  Ø≠S . So, pick .1 Sx ∈  Define  { }.11 xA =  

Again, «≠AS \   as S  is infinite. Pick .\2 ASx ∈  Define      

{ }.212 xAA ∪=  Continuing this way, let us assume that 
n

A  is defined. 

  

 Then, «≠
n

AS \  as S  is infinite. So, pick .\1 nn
ASx ∈+  Then define              

{ }.11 ++ ∪=
nnn

xAA  This shows that 
n

A
 
is well defined for all .N∈n  Now, 

we know that for each  
n

An ,N∈    is finite and hence countable. 

Therefore, U
∞

=

=
1n

n
AA

 

is a countable union of countable subsets of .S  

This implies A  is a countable subset of .S  
 

E26) Since S  is finite let },,,,{ 321 n
aaaaS K=  and { }.,,, 321 LbbbT =      

Define TSf ∪→N: by 

 

  




>

≤≤
=

− nkb

nka
kf

nk

k

 if    

 if 

,

1,
)(  

 

Now, let N∈l,k  such that .l≠k  Then laa
k

≠  and .lbb
k

≠  Also since 

«,=∩TS  we have lba
k

≠  for any ., N∈lk  

 

Thus, )()( ll fkfk ≠⇒≠ . Hence f  is .11− To show that f  is onto, 

pick ,Sa
k

∈ then N∈k such that ( ) .k
akf = Similarly. If you pick ,Tb

k
∈

then N∈+ kn  such that  
 

( ) .knkn
bbknf ==+ −+  

 

Thus, f  is onto. This proves that f  is a bijection. Hence TS ∪  is 

countably infinite. 
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4.1 INTRODUCTION 
 
You are quite familiar with an elastic string or a rubber tube or a spring. 
Suppose you have an elastic string. If you first stretch it and then release the 
pressure, then the string will come back to its original length. This is a physical 
phenomenon but in mathematics, we interpret it differently. According to 
geometry, the unstretched string and the stretched string are different since 
there is a change in the length. But you will be surprised to know that 
according to another branch of mathematics, the two positions of the string are 
identical and there is no change.  This branch is known as Topology, one of 
the most exciting areas of mathematics. 
 
The word “topology” is a combination of the two Greek words “topos” and 
“logos”. The term “topos” means the top or the surface of an object and “logos” 
means the study. Thus “topology” means the study of surfaces. Since the 
surfaces in one dimensional space such as R are just points and intervals and 
their unions, we shall study the topological characteristics of such subsets of 
R . 
  
We begin with intervals in Section 4.2 and study their types and discuss 
whether the union, intersections or complements of intervals are intervals or 
not. Next, in Section 4.3 we shall introduce the notion of the neighborhood of a 
point and the notion of limit points of a set. In Section 4.4, we shall see what 
kinds of sets have limit points. Specifically, we shall discuss the Bolzano 
Weierstrass Theorem. In Section 4.5 and 4.6 we shall show you how these 
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                                                         notions give rise to two different types of subsets of R  namely -- closed sets 

and opens sets. We shall finally look at how the closed sets and open sets are 
related to each other. 
 

Objectives  
 
After reading this unit, you should, be able to 
  

• describe intervals as special subsets of R and show when the union, 
intersection or complement of an interval is an interval; 

• describe the notion of a neighborhood of a point on the line, and the  
notion of limit points of a set;  

• describe and apply Bolzano Weierstrass Theorem; 

• find the limit points of a set; 
•  describe when a set is closed and understand the properties of closed   

sets; 

• describe when a set is open and establish the relationship between open 
and closed sets. 

 

4.2 INTERVALS 
 
You can recall from your calculus course that an interval is a set that contains 
every point lying between any two points of it. Formally it can be defined as 
follows: 
 
Definition: A set R⊆S  is said to be an interval if for any ,,, yxSyx <∈  and r

is a real number such that yrx << , then .Sr ∈  

 
Let us recall different kinds of intervals you have studied such as open and 
closed. 
 
Some examples of closed intervals are [ ] [ ][ ]aaba ,  ,,, ∞−∞ and , where 

., R∈ba  Of course, in the interval [ ]ba,  it is assumed that ba ≤ . So, you can 

see that [ ]aa, is just the singleton .}{a  
 
The examples of open intervals, include the sets 
 ] [ ] [ ] [.,  ,,, aaba ∞−∞ and  Again, in ] [ba, it is assumed that .ba ≤ So, what 

does ] [aa, contain ? It contains all those real numbers greater than a  and less   

than a . But there is no such number, hence .[,] «=aa  

 
Is R an interval? Of course, it is. R contains every number lying between any 
two real numbers. We shall often write ] [., ∞∞−= �R�  Here we must tell you that 

not all intervals can be classified as open or closed. For example, [ [ba,  and 

] ]ba,  which are called semi-open (or semi-closed) intervals. 

 
Are you puzzled why the intervals such as [ [∞,a  and ] ]a,∞−  are not semi-

closed? We shall discuss more about the terminology ‘open’ and ‘closed’ in 
later sections. 
 
Let us look at some properties of intervals.   
 
Theorem 1: The intersection of two intervals is an interval. 
 
Proof: Let us assume that S and T are intervals with at least two points in 

Is TS ∩  an interval, when 

it contains just a single 

point? 

}{],[ bxaxba ≤≤∈= R  

}{],[ xaxa ≤∈=∞ R  

}{[,] xaxb ≤∈=∞− R  

}{[,] bxaxba <<∈= R  

}{[,] xaxa <∈=∞ R  

}{[,] axxa <∈=∞− R  
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.TS ∩  Choose ,, TSyx ∩∈ with yx < . Then since Syx ∈, and S is an 

interval, ] [ ., Syx ⊆  Similarly, ] [ ., Tyx ⊆ Thus ] [ ,, TSyx ∩⊆ and hence TS ∩ is 

an interval.   
             
For example, you can see that ] [ [ [9,45,2 ∩  is an interval because ] [5,2 and [ [9,4   

are intervals and ] [ ] [ ] [5,49,45,2 =∩  

 
However, the union of two intervals is not necessarily an interval. Take, for 
instance, [ ]1,0 and [ ].3,2 You can see that [ ] [ ]3,21,02,1 ∪∈ but [ ] [ ].3,21,05.1 ∪∉  

However, if we consider two intervals with nonempty intersection, will their 
union be an interval? The following theorem answers this question. 
 
Theorem 2: If the intersection of two intervals is nonempty, then their union is 
an interval. 
 
We shall not prove it here. (See E3.) 
 
Let us consider the following example. 
 
Example 1: Identify the following sets as open, closed or semi-open intervals. 
 

i) 








≤
−

+−
≤∈= 4

2

23
1

2

1
x

xx
xS R  ii) 









>+∈= 0
1

2
x

xxS R  

iii) }06{
2

3 <−+∈= xxxS R   iv) }1|1|{4 ≤−∈= xxS R

  

Solution: i) The elements of 
1S  satisfy the inequality 

 4
2

)2()1(
14

2

23
1

2

≤
−

−−
≤⇔≤

−

+−
≤

x

xx

x

xx
 

   411 ≤−≤⇔ x  and 02 ≠−x  

   52 ≤≤⇔ x      and 2≠x  

   52 ≤<⇔ x  
 

 Thus, 
1S  is the semi-open interval ].5,2]  

ii) The elements of 
2S satisfy the inequality 0

1
>+

x
x . Note that 

00
1

0
1 2

>⇔>
+

⇔>+ x
x

x

x
x  

 So, we have [,0]}0:{2 ∞=>∈= xxS R . Thus, 
2S is an open interval.  

 

iii) We know that  

  0)3()2(06
2 <+−⇔<−+ xxxx  

   0)3()2( >+−⇔ xx  

   )03,02( >+>−⇔ xx  or )03,02( <+<− xx  

   23 <<−⇔ x    or 32 −<< x  

   23 <<−⇔ x  ( 32 −<< xQ  is false.) 
 

   Thus [2,3]3 −=S . Hence 3S is an open interval. 
 

iv)   The inequality 11 ≤−x is equivalent to 111 ≤−≤− x , which is  

 equivalent to 20 ≤≤ x . Hence ]2,0[4 =S is a closed interval.  

 
*** 
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                                                         Now we talk about the complement of an interval. Look at the interval [.,] ba   It 

contains all those real numbers that lie strictly between a and b . So its 
complement must contains all those real numbers that are either smaller than 

or equal to ,a  or greater than or equal to b . Observe that a  and b  lie in the 

complement as they do not lie in ] [.,ba  

 
Thus the complement of [,] ba  is [,[],] ∞∪∞− ba . This implies that the 

complement of the interval ] [ba,  is not an interval. Can you think of an interval 

whose complement is also an interval? 
 
The following exercises would help you comprehend the concept of intervals. 
 

 

E1) Let 








<
+

∈= 1
1x

x
xA R

 

and { }||1 xxxB <+∈= R . Express A  and 

B  as intervals. Check whether BA ∩  is an open interval or not.  
 

E2) Express the sets }|{
2

xxxA ≤∈= R and }3)2(4|{
2 −≤−∈= xxxB R as 

intervals. Find BA ∪ , c
BA ∪ , and BA

c ∪  and .cc
BA ∪  

 
E3) Prove that if S and T are intervals with Ø≠∩ TS then TS ∪  is also an    
 interval.   
 

Remark: Even when the intersection is empty, the union may still be an 

interval. For example, take ]2,1]=S  and ]3,2]=T . Then ]3,1[=∪TS , 

which is an interval, but Ø=∩TS . 
 
E4)  Is �Q  an interval? Is any subset of Q  an interval? Justify. 

 

 
You have seen that intervals are special kind of subsets of R which do not 

exist in Q . (See Theorem 9 and E22 of Unit 3.) Let us now discuss two 

closely related concepts. 

 

4.3 NEIGHBOURHOODS AND LIMIT POINTS  
 
In this section we shall introduce to you the notion of ‘closeness’. Then we 
shall talk about the points that are ‘arbitrarily’ close to a given set. 
We begin with the definition of distance between real numbers. Let 

}0{: ∪→× +
RRRd be a mapping. Suppose d has the following properties: 

 

i) R∈∀≥ yxyxd ,,0),(  

ii) 0),( =yxd  iff R∈∀= yxyx ,,  

iii) R∈∀= yxxydyxd ,),,(),(  

iv) R∈∀+≤ yxyzdzxdyxd ,),,(),(),(  

 

Then ),( yxd  is called the distance between the points x  and .y  An 

important example of distance which we shall deal with is the usual distance 

between points on the line, i.e., R∈∀−= yxyxyxd ,,),( .  

 
From Unit 3, you know that every real number can be represented by a point  
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on the number line and vice-versa .So, let us consider the real number 1 and 
some points near it on the number line. (see Fig.1 below). 
 
 
 

 
 
 
 
 

Fig. 1: Points close to 1 

 
Look at the points 90 ⋅ and 11 ⋅ , both of which lie at a distance of 1.0  from 1. 

That is, 1.0)11(1)90(1 =⋅−=⋅− . So we can say that 90 ⋅  and 11 ⋅  are close 

to 1. However, you can see that the points 990 ⋅ and 011⋅ are even more close 

to 1 as 010)011(1)990(1 ⋅=⋅−=⋅− . The terms close, closer, more close, 

much close etc do not give clarity to what closeness means. So, we fix a 
distance, ),0(>ε and say that x  is close to 1 if the distance between 1 and x  
is less than ε . In this sense we can call x  lies in the ε – neighbourhood of 1. 
Below we define a neighbourhood formally.  
 

Definition: Let R∈a and 0>ε . Then an ε - neighborhood of a  is the set 

)(aNε defined as: 

 

 { }.}||{)( εεεε +<<−∈=<−∈= axaxaxxaN RR  

 
Thus ( )aN ε  is an interval around .a  That is, ( ) ] [., εεε +−= aaaN  You can see 

what this means geometrically in. Fig. 2.  
 
Now let us consider a few examples.  
 

Example 2: Represent the set )0(
100

1N

 

on the number line.  

Solution: The set )0(
100

1N

 

contains all those points that are within a distance 

of 
100

1
 from ,0 i.e., 

 .
100

1
,

100

1

100

1
||)0(

100

1 





−=









<∈= xxN R  

 
Geometrically it is represented in Fig. 3. 
 

*** 

Example 3: Show that if ,0 εε <′<  then ).()( aNaN εε ⊂′  

 

Solution: Let ).(aNx ε ′∈  Then .|| ε ′<− ax  Since ,εε <′  it follows that 

.|| ε<− ax  Hence ).(aNx ε∈  

*** 
 

Now, look at the set 








∈= Nn
n

S
1

. (See Fig. 4). 

 

Fig. 3: )0(
100

1N  

Fig. 2: )(aN ε  

 

 

 

a  a  ε−a  ε+a  

 

 

a  

100

1
−  

100

1
0

90 ⋅  

990 ⋅  011⋅  

11⋅  1 
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Fig. 4: 








∈= Nn
n

S
1

 

Its elements are ,...
10

1
,....,

10

1
,...,

4

1
,

3

1
,

2

1
,1

10010
.  

 

Does S∈0 ? No. Still you will find that 0 cannot be separated from .S  Let us 

see what it means. Consider the neighbourhood )0(
10

1N . Then )0(
11

1

10

1N∈

and S∈
11

1
. That is, .)0(

11

1

10

1 SN ∩∈  Similarly if you consider the 

neighbourhood 
100

1N )0(  of  ,0  you will see that SN ∩∈ )0(
101

1

100

1
. In fact, you 

consider any ε -neighbourhood )0(εN of 0 , by Archimedean property you will 

find some N∈n , such that ε<<
n

1
0 , i.e, .)0(

1
SN

n
∩∈ ε  Thus, we see that 

although0 lies outside ,S every neighbourhood of 0 contains points of .S  In 

other words, we can say that 0 is arbitrarily close to .S  
 
The point 0 is an example of a point which we shall define now.  
 

Definition: Let  Ø R⊆≠ S . A point R∈x  is called a limit point of S  if for 

every SxN ∩> )(,0 εε  contains an element of S  other than .x  

To clarify the definition above, note that x  need not belong to .S  So it does 

not matter whether x  belongs to S  or not, but for x  to be a limit point of 

SxNS ∩)(, ε must contain at least one element different from .x  

Now you can see why 0 is a limit point of the set 








∈= Nn
n

S
1

.  

Let us consider a few more examples. 
 

Example 4: Find all the limit points of .Q  

 

Solution: Let R∈x  be arbitrary. Consider the neighbourhood )(xN ε for some 

.0>ε  Since you  know that there are many rational numbers between ε−x

and ,ε+x the set Q∩)(xN ε  contains an element other than .x  Hence x  is a 

limit point of .Q  Since x is arbitrary in ,R  all the real numbers are the limit 

points of .Q  

*** 
 

Example 5: Show that every element of [,] ba  is a limit point of ] [.,ba  

 

Solution: Let [,] bax ∈ be arbitrary. Consider the neighbourhood )(xNε of x

for some 0>ε . We have to find some [,])( baxNp ∩∈ ε such that xp ≠ . 

Then there are three cases. (See Fig. 5.)  
 
 

0  

4

1
L

3

1
 

2

1
 

1
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Fig. 5 

 
Case 1:  }.,{min xbax −−≤ε  Now observe that  

bxxxa ≤+<+<< ε
ε

2
 (Why?).  

Take .
2

ε
+= xp  Then ] [bap ,∈  and ).(xNp ε∈  Thus ( ) ] [., baxNp ∩∈ ε  

Case 2:  .ax −>ε  Then take .
2

xa
p

+
=  Note that 

,
2

bx
xa

ax <<
+

<<− ε  

 
which implies ( ) ] [., baxNp ∩∈ ε   
 

Case 3:  .xb −>ε  Then take ( ) .2/bxp +=  Then using the arguments similar 

to the previous case, you can see that ( ) ] [., baxNp ∩∈ ε  
 
Thus, for all ,0>ε we have shown that ( ) ] [baxN ,∩ε  contains a point different 

from .x  Hence x is a limit point of ] [.,ba  Since x is arbitrary, every point of ] [ba,  

is a limit point of ] [ba, . 

*** 

You may have observed that if a is a limit point of S , then )(aNε for any 

,0>ε  contains many points of S , other than a . In fact, )(aNε contains 

infinitely many points of S distinct from .a  This is, precisely the content of the 
next theorem. 
 

Theorem 3: Let Ø R⊆≠ S and R∈a . Then a  is a limit point of S iff for every 

)(,0 aNε>ε contains infinitely many points of S other than .a  

 

Proof: First assume that a is a limit point of S . Take 0>ε . Then SaN ∩ε )(

contains some element p and ap ≠ . Let .1 px =  Choose ε<ε< 10 such that 

)(
11 aNx ε∉ . (See Fig. 6.) 

 
 
 
 

 
 

 

Fig. 6: Points ....,, 321 xxx of S  lying in )(aNε . 

 

Now )(
1

aN ε is a neighbourhood of ,a  hence there is some SaNx ∩∈ ε )(
12  

The idea of the proof is to 

begin with an arbitrary 

neighbourhood of ,a  and 

get smaller and smaller 

neighbourhoods 
successively picking a 

point from each 

neighbourhood distinct 

from the previous point. 

 
ε−a  1ε+a  2ε+a  a  ε+a  

1x  1x

1ε−a  2ε−a  

2x  
1x  L 

)(xNε

 

)(xNε

 

)(xNε

 

a  a  a  x  b  x  b  x  b  

(b) (a) (c) 
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and ax ≠2 . Also, 12 xx ≠ as )(
11 aNx ε∉ . Again we can choose 120 ε<ε<

such that )(
22 aNx ε∉ . Since )(

2
aN ε is a neighborhood of ,a there is some 

SaNx ∩∈ ε )(
23 and ax ≠3 . Also },{ 213 xxx ∉ . This process can be continued 

as given ,1−n
ε

 
and }...,,{ 21 n

xxx we can always select 
n

ε
 
such that 

10 −<<
nn

εε
 
and )(aNx

nn ε∉ . Then there exists an SaNx
nn

∩∈+ )(1 ε  
such 

that ax
n

≠+1 and },...,,{ 211 nn
xxxx ∉+ . Thus we get infinitely many points 

,...,,...,,, 1321 +nn
xxxxx of S that lie in )(aNε . 

 
The converse holds by definition.      
 
Now try solving some exercises. 
 

 
E5) Let x be a limit point of a set S  and TS ⊆ . Is x a limit point of ?T  

Justify. 
 
E6) Find the limit points of R .  
 
E7) Does a finite set have any limit points? Justify. 
 

E8) Does the set N have any limit points? What about Z ? Justify. 
 

E9) Show that 0  is a limit point of the set 








∈−
−+

Nn
n

n
1

2

)1(1
. 

 

 
If you have gone through the exercises above, you might have understood 
why the limit points of finite sets do not exist. You must have also seen that 

the limit points of some infinite sets like N and Z do not exist. This raises a 
general question, what are the  conditions that ensure the existence of a limit 
point of a set. This is the topic of discussion in the next section.  
 

4.4 BOLZANO WEIERSTRASS THEOREM 
 
In this section, we shall discuss the Bolzano-Weierstrass Theorem.  Bernhard 
(1781-1848) Bolzano discovered this theorem. He was, however, debarred 
from publishing his work. Karl Weierstrass (1815-1897) discovered the result 
independently. 
 

The theorem says that there is a limit point for a bounded infinite set S . You 

may note that boundedness or infiniteness of S alone is insufficient for the 

existence of a limit point. For instance, the unbounded and infinite sets N and 

Z have no limit points. Likewise, the finite sets are bounded, but have no limit 
points.  
 

Now think of a set S  which is bounded and infinite both. For example, take 

[6,5]}3,2,1{ ∪=S . The limit points of S  is the closed interval ].6,5[  
 
Now we state the theorem formally.  
 

Theorem 4 (Bolzano Weierstrass Theorem): Let Ø R⊆≠ S and S be  

Bernhard Bolzano 

 

Fig. 7: Bernhard 
Bolzano 
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bounded and infinite. Then there exists a limit point of S (in R ).  
 

Proof:  Consider the set 
S

A as defined below. 
 

sxxA
S

≥∈= R{
 
for finitely many }Ss ∈  

 

We shall complete the proof in two steps. 
 
Step 1: 

S
Asup exists.  

 

Since S is bounded, let l  be a lower bound and u  an upper bound of S . 

Then  Sss ∈∀≤ ,l . Hence ,s>l  for no Ss ∈ . This implies .
S

A∈l   

Hence ≠
S

A Ø. Now for any 
S

Ax ∈ , we have ,sx > for finitely many Ss ∈ . 

This means the rest of the infinitely many elements of S are larger than x . But 

since u is larger than all the elements of S , hence ux ≤ . This shows 
S

A
 
is 

bounded above.  Now the least upper bound property of R  implies 
S

Asup

exists. 
 

Step 2: 
S

Asup is a limit point of .S  

 

Let 
S

Au sup0 = . Then we have to show that 0u is a limit point of .S  So, for 

,0>ε consider the set [,])( 000 ε+ε−=ε uuuN . Since 0u
 
is the supremum of 

SS
AuA ∉ε+0, . This means ,0 su >ε+ for infinitely many Ss ∈ . Again, since 

0u
 
is the supremum of 

S
A , there is some 

S
Aa ∈ such that au <ε−0 . But 

S
Aa ∈

 
means sa > , for finitely many Ss ∈ . That is the rest of the infinitely 

many elements of S are greater than ,a  and hence greater than ε−0u . 

Thus we have infinitely many elements of S  lying between ε−0u
 
and ε+0u .  

That is 0u
 
is a limit point of .S        

 
Let us consider a few examples. 
 
Example 6: Show that there exists a limit point of the set  

 









∈+= Nn
n

n
S

πcos
2 . 

 

Solution: Notice that, for all N∈n , 
 

 .
1

2
cos

2
1

2
1cos1

1cos1
nn

n

nnn

n

n
n +≤+≤−⇒≤≤−⇒≤≤−

ππ
π  

 

Thus all the elements of S  lie between 1 and 3, hence, S  is bounded. Next to 

show that S  is infinite, we consider the function Sf →N: defined by  

.
cos

2)(
n

n
nf

π
+=  

 
Now let ., N�∈nm  Then 

 

nm

mn

n

m

mnm

m

n

n
mfnf

−−=⇒
−

=
−

⇒+=+⇒= )1(
)1()1(cos

2
cos

2)()(
ππ

 

 

Fig. 8: Karl Weierstrass 
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Now  
n

m
 is positive, hence 

nm−− )1(  must be positive. So nm −  must be even, 

say ,2knm =−  for some integer .k  Then  

 

 1
2

)1( =
+

⇒−= −

n

kn

n

m nm
 0=⇒ k .nm =⇒  

 

Thus f is one-one. This means, S  is countably infinite, and hence infinite. 

Then, by the Bolzano-Weierstrass Theorem, there exists a limit point of .S  
 

*** 
 
Example 7: Show that there exists a limit point of the set 
 









∈−= Nnm
nm

S ,
11

. 

 
Solution: You can notice that N∈∀ nm,  

 

.2
11

22
1111

≤−≤−⇒≤+≤−
nmnmnm

 

 

Hence S is bounded. Now notice that 








∈− Nn
n

1
1 is a subset of S . Since 









∈− Nn
n

1
1 is infinite, S  too is infinite. (Why?) Hence by the Bolzano-

Weierstrass Theorem, a limit point of S  exists. 
 

*** 
 
The Bolzano Weierstrass Theorem is a fundamental result in real analysis. 
Note that the theorem guarantees only the existence of a limit point of course, 
in many cases we need only that much information. Now try the following 
exercise. 
 

 
E10)   Using Bolzano Weierstrass Theorem, show that each of the following 

sets has at least one limit point in .R  
 

 (i) 








∈Nn
n32

11
      (ii)       









∈
−

Nn
n

n

6

)1(
   iii)       









∈+ Nn
n

1
1  

 

 
By now you must have understood that some sets do not have limit points at 
all even if they have infinitely many points, e.g. the set N  of natural numbers. 

Another thing is that the limit points of a set may exist, but do not all lie in the 

set.  For instance, 0  is a limit point of .
1









∈Nn
n

 But .
1

0








∈∉ Nn
n

 In the 

next section we study sets that contain all their limit points or have no limit 
point at all. 
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4.5 CLOSED SETS  
 
In this section we shall discuss closed subsets of R . Let us consider the 
closed interval ],[ ba . We have seen that every point of this interval other than 

a and b is a limit point of it. Take the point a . Let 0>ε  be arbitrary. Does 

],[)( baaN ∩ε  have any point other than ?a  There are, in fact, two cases 

arises depending on whether ba ≤ε+ or .ba >+ε  (See Fig. 9.) 
 
 
 

 
 
  (a)         (b) 

 

Fig. 9: ( ) [ ]baaN ,∩ε  

So, we can write  
  

 



>ε+

≤ε+ε+
=∩ε

baba

baaa
baaN

if,],[

if,[,[
],[)(

 
 

In either case, there is certainly a point other than a in ],[)( baaN ∩ε . (Of 

course, we have assumed that .ba < )This means a is a limit point of ],[ ba . 

On similar lines you can show that b is also a limit point of ],[ ba . Thus all the 

elements of ],[ ba are limit points of ],[ ba . 

 
Does ],[ ba have any other limit points? To answer it, let us take ax < . Then 

taking ,0>−=ε xa we find that the neighborhood [,2])( aaxxN −=ε contains 

no point of ],[ ba . Hence x is not a limit point of ],[ ba . Similarly, you can show 

that if bx > , then also x is not a limit point of ],[ ba . Thus we see that the 

interval ],[ ba contains all its limit points. 

 
The interval ],[ ba is an example of a set which will be termed a  ‘closed  set’. 

Definition:  Let R⊆S . Then S is called a closed set if S  contains all its limit 

points.  
 

Thus you can see that [ ]ba, is a closed set , when  .ba <  Again assuming 

,ba <  consider the interval ] ]ba, . For any 0>ε , the interval [,] εε +− aa

contains infinitely many points of ],] ba . So, a is a limit point of ],] ba . Since 

],] baa∉ , the interval ] ]ba,  is not closed. Similar reasons can be given to 

conclude that [,] ba  and [,[ ba are not closed. 

 
Are the sets Ø and R closed? You can see that Ø is a closed set as it has no 

limit points. R  is a closed set as its limit points are in .R  
 
Now consider the following example. 
 
Example 8: Show that every singleton set in R  is a closed set. 
   
Solution: Let { },aS = for some R∈a . If R∈x is a limit point of S then for 

every ( ) ,,0 SSxN ⊆∩> εε so ( ) SxN ∩ε  contains at most one point. This is a 

contradiction. Hence, no real number is a limit point of .S  That is, the set of 

 

 

ε−a  a  ε+a  b  b  a  ε−a  ε+a  
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                                                         limit points of S  is empty. Consequently, S  contains all its limit points. Hence 

S  is closed. 
*** 

 
You have to be little careful while using the definition of a closed set. It does 
not imply that every point of a closed set has to be a limit point, for instance, 
see the singleton set in Example 8 above. To show that a set is closed you 
need to find all the limit points of the set and then show that they all belong to 
the set. On the contrary to prove that a set is not closed, you need to find just 
one limit point of the set that lies outside it. 
Let us consider a few examples. 

Example 9: Check whether 








∈= Nn
n

S
1

 

is closed or not. 

 

Solution: Earlier you have seen that 0 is a limit point of .S  Since ,0 S∉ S is 

not a closed set.  
  

*** 
 

Example 10: Show that [ [∞,a  is closed. 

 
Solution: Let x  be a limit point of [ [∞,a . Then for each ,0>ε  there exists 

some xy ≠  such that  

 

[ [ εεε +<<−⇒∞∩∈ xyxaxNy ,)(  and ay ≥  

         ε+<⇒ xa  
     ε<−⇒ xa  

 
Since the last inequality holds for each 0>ε , we get xa ≤ , i.e., [ [∞∈ ,ax . This 

shows that every limit point of [ [∞,a  is in [ [∞,a . Hence [ [∞,a  is closed.  

 
*** 

Example 11: Show that the following set is not closed.  
 









∈+
−+

= Nn
n

S

n
1

2

)1(1
 

 

Solution:  Consider the neighbourhood ] [εεε ,)0( −=N  of .0  Then, by 

Archimedean property, there exists some N∈n such that .
1

ε<
n

So, we have  

εε <<
+

<−
nn

1

12

1
. 

That is, )0(
12

1
εN

n
∈

+
. Also, observe 

 

( )
.

12

1

2

11

12

1
12

S
nn

n

∈
+

+
−+

=
+

+

 
 

So, ( ) .0
12

1
SN

n
∩∈

+
ε  Hence 0 is a limit point of S . Since ,0 S∉ S is not a 

closed set. 
 

*** 
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Let us now look at a property of closed sets. 
 

Theorem 5: If S and T are closed subsets of R then TS ∪  is also a closed 

subset of R . 
 
Proof: Let xbe a limit point of .TS ∪  Then for every ,0>ε  there exists some 

xy ≠  such that  

 
( ) ( ) ( )( ) ( )( )

( ) ( ) TxNySxNy

TxNSxNyTSxNy

∩∈∩∈⇒

∩∪∩∈⇒∪∩∈

εε

εεε

or
 

 
This implies, x  is a limit point of S  or x is a limit point of .T  Hence Sx ∈  or

,Tx ∈  as S  and T both are closed. This implies .TSx ∪∈  Thus, TS ∪ is  

closed.          
  
To see an application of Theorem 5 consider the sets ]4,3[  and ]6,5[ , both of 

which are closed. Then ]6,5[]4,3[ ∪  is also closed. In fact, if you are given any 

finite number of closed sets, then their union is also closed as you can see 
from the following theorem. 
 

Theorem 6: If 
n

SSS ,...,, 21  
are closed sets, then U

n

i

i
S

1=

is also closed. 

 
Proof: We prove it by the Principle of Mathematical Induction. Note that the 
statement of the theorem can be rewritten as  

:)(nP If 
n

SSS ,...,, 21  
are closed, then U

n

i

i
S

1=

is closed, 2≥n .  

Clearly )2(P is true, by Theorem 5. Let )(kP be true for some nk < . Let 

U
k

i

i
SS

1=

= . Then S  is closed, which implies 1+∪
k

SS
 
is closed (using Theorem 

5). This means )1( +kP is true. Hence, the Principle of Mathematical Induction 

implies that )(nP is true for all 2≥n .      

 
Now let us consider an example. 
 
Example 12: Check whether the set },,...,,{ 21 n

xxxS = where 

,1, nix
i

≤≤∀∈R and N∈n , is closed or not. 

 

Solution: Note that we can write S as the union of its individual elements i.e. 

U
n

i

i
xS

1

}{
=

= . Since each }{
i

x
 
is closed, by Theorem 6 S  is closed. 

*** 
You must have noted that in Theorem 6 the sets s

i
S  were finite in number. 

The result cannot hold if we take infinitely many s
i

S . The next example shows 

this. 

Example 13: Let 





= 1,

1

n
S

n  for N∈n . Check whether U
∞

=1n

n
S

 

is closed or not. 

 

Solution: We note that  
 

 ]1,0]...1,
3

1
1,

2

1
]1,1[

1

⊆∪







∪








∪=

∞

=

U
n

n
S . 
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Now take ]1,0]∈x . Then there exists some N∈n such that 1
1

≤< x
n

. So 







∈ 1,

1

n
x . Hence U

∞

=

∈
1n

n
Sx . This shows that U

∞

=

=
1

]1,0]
n

n
S . You can show 

that 0  is a limit point of ] ].1,0  Since ] ],1,00∉  it follows that ]1,0]  is not a 

closed set. Hence U
∞

=1n

n
S

 

is not closed. 

*** 

Example 13 shows that the union of infinite number of closed sets need not be 
closed. However if we take the intersection of an infinite number of closed 
sets, we get a closed set. In fact, it is true that, the intersection of an arbitrary 
collection of closed sets is closed. Note that an arbitrary collection of sets is a 

set of the form }|{ Λ∈ααS , where Λ  can be any set finite, countably infinite  

or even uncountable. Now we state the result below. 
 

Theorem 7: Let }|{ Λ∈ααS
 
be an arbitrary collection of closed sets, i.e., αS

is closed for each Λ∈α . Then I
Λ∈α

αS is also closed. 

 

Proof: Let xbe a limit point of I
Λ∈α

α .S Then for each ,0>ε  there exists xy ≠

such that  

( )II
Λ∈Λ∈

∩∈⇒







∩∈

α

αε

α

αε SxNySxNy )()(  

         ( ) αε SxNy ∩∈⇒   for all .Λ∈α  

 

This implies, x  is a limit point of .allfor Λ∈ααS  But αS  is closed, hence  

αSx∈  for all .Λ∈α  

 

That is, .I
Λ∈

∈
α

αSx Therefore, I
Λ∈α

αS

 

is closed. 

 
It is often convenient to write the union of a set and all its limit points as a new 
set. So, we have the following definition. 
 
Definition: Let R�⊆S . The closure of S is the union of S  and all the limit  

points of .S  We write S  to denote the closure of S .  

 

By definition, you can see that SS ⊆ . However SS ⊆  is true only when S is 

closed. Thus we can say SS =  iff S is closed. Let us find the closure of some 

subsets of R�. 
 
In Example 4 you have seen that every real number is a limit point of Q .  

 

Hence, RQ = . Similarly, you can see that [ ]baba ,[,] = . 

 

Example 14: If TS ⊆ and T is closed, then show that .TS ⊆  

 

Solution: Assume, if  possible, that TS ⊆/ . So, let Sx ∈  such that Tx ∉ .  

Then, Sx ∉ . Since T  is closed, x  cannot be a limit point of T . This means,  
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( ) { } ( ) { } 0\\ >=∩⇔>=∩ εε ε   ,xSxN 0   ,xTxN
ε

some forØsome forØ  

 x⇔  is not a limit point of S  

 Sx∉⇔  

This is a contradiction. Hence .TS ⊆  

*** 

Now try doing the following exercises to reinforce your learning about closed 
sets. 
 

 

E11) Check whether  [ [U
0

,
>

∞
a

a

 

is closed or not. If it is not closed, what is its 

closure? 

E12) Examine whether the set  ] [U
∞

=

−
1

,
n

nn  is a closed set or not. 

E13)  Prove that the interval ] [a,∞−  is not a closed set, for any .R∈a  Is 

] [U
R

�

∈

∞−
a

a,  closed? 

E14)  Check whether the set { }013
345 =++−+∈= xxxxxS R  closed set 

or not. 

E15)   Examine whether the set  I
∞

=








+

1

5,
1

1
n

n
 is closed or not. 

E16) Find N  and .Z  
 
E17) Find the closure of the set of irrational numbers. 
 

 
We have seen that closed sets contain all those points that are arbitrarily close 
to them. On the other hand, there are many subsets of R  whose all elements 
are interior to them. We shall discuss such sets in the next section. 
 

4.6     OPEN SETS 
 

Consider the open interval [2,1] . Take the point 51⋅ in this interval. Then we 

see that [2,1][61,41])51(10 ⊆⋅⋅=⋅⋅N . Now take [2,1]001.1 ∈ . Then we know 

that 001.01001.1 =− . So the neighbourhood [2,1][002.1,1])001.1(001.0 ⊆=N . 

Now take any point  ] [.2,1∈x  You will find some neighbourhood of x lying in 

] [.2,1 (See Fig. 10). We can say x lies in the ‘interior’ of S  

 

Definition: Let R⊆S  and Sx∈ . Then x  is said to be an interior point of S

if there exists some 0>ε  such that SxN ⊆)(ε . The set of all interior points of 

S is called the interior of ,S  which we shall denote .oS  
 

As you can see, from the definition, an interior point of S  always lies in .S  

This means SS ⊆o . You may wonder if SS =o

 occurs at all. As an example, 

note that Ø Ø =o
. Another example is R  itself. To see why, let R∈a . Then 

we can always find some 0>ε  s.t. R⊆ε+ε−=ε [,])( aaaN . Thus RR =o .  

 

Let us think of some other examples. 
 

Example15: Find the interior of a finite set. 

Fig. 10: x is an interior 

point of ] [2,1 .  

 

 

1 x  2  
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                                                         Solution: Since you know that every neighbourhood contains infinitely many 

points, no neighbourhood of a point can be a subset of a finite set. Therefore a 
finite set has no interior points.  

*** 

Definition: Let .R⊆S  Then S  is called an open set if .SS =o
 

In other words, the definition above says that a set is open if and only if its 
every point is an interior point. Now consider the following example. 
 
Example 16: Show that [,] ba is an open set. 

 
Solution: You know that for each [,] bax ∈ , there exists 

0},{min >−−= xbaxε  such that [,])( baxN ⊆ε . Thus x  is an interior point 

of [,] ba .Hence [,] ba  is an open set. 

 
*** 

 
In case of the closed interval ],[ ba finding an ε as above is not possible for 

every ],[ bax ∈ . Particularly the condition is violated at the points a  and .b  

For example, we see that every neighborhood )(aNε  
of a contains some 

points outside ].,[ ba  (See Fig.11.) Hence, ],[)( baaN ⊆ε  
is not possible for 

any 0>ε . Thus a  is not an interior point of ],[ ba . Therefore, ],[ ba  is not an 

open set. 
 
 
 
 

 
 
 

Fig. 11: )(aNε contains points outside ],[ ba . 

 
Let R∈a  and 0>ε . Then ( ) ] [., εεε +−= aaaN  Hence ( )aN ε  is an open set, 

by Example 16. Thus every neighbourhood of a real number is an open set. 
 
Let us now state an important relationship between the open and closed sets. 
  

Theorem 8: Let R⊆S . Then S  is open iff c
S  is closed. 

 

Proof: First we prove that if S  is open then c
S  is closed.  

 

Let x be a limit point of c
S . Then for each 0>ε , the set c

SxN ∩)(ε contains a 

point other than x .This implies SxN ⊆/)(ε . Hence o
Sx∉ . But S is open, i.e, 

,SS =o
 so, .Sx ∉  This means .c

Sx ∈  Since x  is arbitrary every limit point of 
c

S lies in .c
S  That is, c

S  is closed. 
 

Now let us prove that if c
S  is closed then S  is open.  

 

So, let Sx ∈ . Then c
Sx ∉ . This means x cannot be a limit point of .c

S  For if 

x  is a limit point of ,
c

S  then 
c

S  being closed must contain ,x  which is a 

contradiction. Hence for some 0>ε , }{)( xSxN
c =∩ε  

or =∩ε

c
SxN )( Ø. But 

c
Sx ∉  implies that }{)( xSxN

c =∩ε  
is not possible. Hence =∩ε

c
SxN )( Ø, 

 

 )(aN
ε

 

a  b  

Recall that the complement 

of a set S  is the set 

}.{ SxxS
c ∉∈= R  
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which implies SxN ⊆ε )( . So x is an interior point of .S  Since x  is arbitrary, 

every element of S  is an interior point of .S  Hence S  is an open set. 
 
The topological relationship between a set and its complement stated in 
Theorem 8 is remarkable and has many applications. For example, given a 
finite number of open sets, we can show that their intersection is an open set. 
See the following result.  

Theorem 9: If 
n

SSS ,...,, 21  are open sets, then I
n

i

i
S

1=

is also an open set 

Proof: Let 
n

SSS ,...,, 21  be open sets. Then c

n

cc
SSS ,...,, 21 are closed sets (by  

Theorem 8). Hence U
n

i

c

i
S

1=

is a closed set (by Theorem 6). But you know that, 

using De Morgan’s law, we can write  
 

.
11

c
n

i

i

n

i

c

i
SS 









=

==

IU  

Hence 

c
n

i

i
S 








=

I
1

is closed, which implies I
n

i

i
S

1=

is open.          

 
Another application of Theorem 8 is that given an arbitrary collection of open 
sets, we can show that their union is an open set. Formally, it is stated below.  
 

Theorem 10: If }|{ Λ∈ααS is an arbitrary collection of open sets, i.e., αS is 

open for each Λ∈α , then U
Λ∈α

αS is an open set. 

 

Proof: Since αS is open for each Λ∈α , c
Sα is closed for each Λ∈α . Hence 

I
Λ∈α

α
c

S is closed. But, by De Morgan’s laws you know that  

 .

c

c
SS 







=

∧∈∧∈

UI
α

α

α

α  

 

This means 

c

S 








Λ∈α

αU is closed, which implies U
Λ∈α

αS

 

is open.            

 
Let us now prove some results about open sets in the following examples. 
 
Example 17: Prove that arbitrary intersection of open sets need not be open. 

Solution: Consider the family of open sets 








∈





− Nn

nn

1
,

1
. 

Then  },0{
1

,
1

1

=





−

∞

=

I
n

nn  

which is not an open set. This proves the result. 

*** 

Example 18: Show that the set ] [ ] [ [32]10543 ,,.,π ∪∪  is an open set. 

 
Solution: You know that union of open sets is open, and the set 

] [ ] [ []10543 32,,π, ∪⋅∪  is union of open intervals, which are open sets, 

therefore, this set is an open set. 

Theorem 10 can also be 

proved directly, by applying 

the definition of open sets 

(see E23). 



 

 

100

Block 1                                                                                                                    The Structure of R
                                                         Now you try doing some exercises. 

 

 
E18)  Show that [,] ∞a is an open set, where .R∈a  

E19)  Examine whether the set ] [U
∞

=

−
1

,
n

nn is an open set or not. 

E20)  Let R⊆S . Show that o
S  is open and S is closed.  

 

E21)   Check whether the set ] ] ] [∞∩∞− ,1525,  is an open set or not. 

E22)   Examine whether the set U
∞

=






+

1

7,
1

1
n

n
 is an open set or not 

E23) Prove Theorem 10 using the definition of open sets only. 

 

 
We end this unit here. Let us summarise what we have covered in this unit. 
 

4.7 SUMMARY  
 
In this unit we have covered the following points. 
 

1. Described the intervals in R  and their properties in terms of  the union, 
intersection and complement; 

2. Introduced  the notion of neighbourhood of a point and the limit point of a 
set; 

3. Described a necessary and sufficient condition for a real number to be a 
limit point of a set; 

4. Stated and proved Bolzano Weierstrass theorem; 

5. Introduced the notion of a closed set and the closure of  a set; 

6. Introduced the notion of the interior of set and an open set;  

7. Explained the relationship between the closed sets and open sets. 
           

4.8  SOLUTIONS/ANSWERS  
 
E1)  Assume that 1−<x . Then 01 <+x . So, multiplying both the sides of 

the inequality 1
1

<
+x

x
 with 1+x , we get 1+> xx . This means 10 > , 

which is false. Now assume that 1−>x . Then 01 >+x . In this case, if 

we multiply both the sides of the inequality 1
1

<
+x

x
 with 1+x , we get 

1+< xx . This is always true. Hence, ] [∞−= ,1A .  
 

The inequality describing B  is xx <+1 . From Example 16 of Unit 3, 

we know that this is equivalent to ( )11 +−<+> xx xx or . But 1+> xx

is not possible. Therefore, the given inequality becomes )1( +−< xx ,  

i.e., 
2

1
−<x . Hence, 





−∞−=

2

1
,B . 
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 Now, ] [ 





−−=





−∞−∩∞−=∩

2

1
,1

2

1
,,1BA . Thus BA ∩  is an 

open interval. 
  

E2)  The inequality describing A  is 
  

( )
( ) ( )
( ) ( )

)01(10

0110

010010

01

022

false.is

or

andorand

≤≤≤≤⇔

≤≤≤≤⇔

≤−≤≥≥⇔

≥−⇔

≥−⇔≤

xx

x x

x  x    -x x

xx

xxxx

Q

 

             

Therefore, [ ]1,0=A . The inequality describing B  is  

 

( )
( )( )

( )?Why
2

3

2

1

01232

0384324
22

≤≤⇔

≤−−⇔

≤+−⇔−≤−

x

xx

xxxx

 

 Therefore, 







=

2

3
,

2

1
B . 

 

 Now, [ ]U 







=








=∪

2

3
,0

2

3
,

2

1
1,0BA . 

 

     Note that ] [ ] [ 







∞∪








∞−=∞∪∞−= ,

2

3

2

1
,B  ,10,

candc
A . 

 
Hence, 

   

[ ] ] ]

] [ ] [{ } ] [

] [ ] [ ] [.,1
2

1
,

2

3

2

1
,,10,

,
2

1
0,

2

3
,

2

1
,10,

,
2

3
1,,

2

3

2

1
,1,0

U U U U

U UU

U UU

∞





∞−=





∞





∞−∞∞−=∪







∞∞−=





∞∞−=∪







∞∞−=















∞





∞−=∪

cc

c

c

BA

BA

BA

 

 

E3)  Let TSyx ∪∈,  be such that TySx ∈∈ ,  and .yx <  Since ,«≠∩TS

let TSz ∩∈ . Take R∈r  such that yrx << . Then, by the Law of 

Trichotomy, exactly one of the following holds 
 

.,, zrzrzr ><=  

 
If ,zr =  we are done. If ,zr < then .zrx <<  Then, since S  is an 

interval Sr ∈ . If ,zr >  then .yrz << Then, since T  is an interval 

.Tr ∈  Thus in either case .TSr ∪∈  Hence, TS ∪  is an interval. 

 
E4) We know that there is an irrational number between any two rational  
 numbers. Hence, Q  is not an interval. The same reasoning implies that 

no subset of Q  is an interval. 
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                                                         E5)  Since x  is a limit point of ,S  for each ( ) { } Ø\,0 ≠∩> xSxN εε . Then 

{ } { }
( ) { } ( ) { } ( )
( ) { } Ø\

\\

\\

≠∩⇒

∩⊆∩⇒

⊆⇒⊆

xTxN

xTxNxSxN

xTxSTS

ε

εε Why?  

 Hence, x  is a limit point of .T  

 

E6)  Let R�∈x . Then «≠∩ }{\)( xxN Rε  for all .ε 0>  

Hence x  is a limit point of R . Since x  is arbitrary, all the real numbers 

are the limit points of R . 
 

E7)  From Theorem 3, we know that if a  is a limit point of a finite set ,S  

then ( ) SaN ∩ε  must contain infinitely many points different from .a   

 
This is impossible. Hence, finite sets have no limit points.  

 
E8)   Let .N�∈n  Then  

( ) { } { }I I Ø\
2

1
,

2

1
\

2

1 =







+−= nnnnnN N�N�  

 Hence n is not a limit point of .N  Since N∈n  is arbitrary, no point of N   

is a limit point of .N  
 
Now, let .\N�R∈x Then there exists some N�∈n  such that .1 nxn <<−  

(Why?) Let }.1,{min +−−= nxxnε  Then we can see that 

( ) { } Ø.\ =∩ xxN N�ε Hence, x  is not a limit point of .N  

 
Thus we have shown that the limit points of N� do not exist. 

 
A similar reasoning can be used to show that ,Z  too, has no limit 

points.   
 

E9)  Let  
( )

.
1

2

11









∈−
−+

= Nn
n

S

n

 

We can see that when n is odd, .
1

S
n

∈−  Now, for each 0>ε  there 

exists some N∈n such that  

( ) { } Ø0\0
11

≠∩⇒−<−⇒> SN
nn

εεε  

This implies, 0  is a limit point of .S  
 

E10)  i) Let 








∈= NnS
n32

11
. We can see that for all ,N∈n  

.11
2

11
01

2

1
0

33
<<⇒<<

nn
 

  Hence S is bounded. Now we define Sf →N: by ( ) .
2

11
3n

nf =  

We shall prove that f  is one-one. So, let N�∈nm,  such that .nm ≠   

 
Then 

nmnm

nm
nm

3333

33

2

11

2

11

2

1

2

1
2233 ≠⇒≠⇒≠⇒≠  
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Thus f  is one-one. This implies S  is countably infinite (why?), 

and hence infinite. Therefore, by the Bolzano Weierstrass 
Theorem, S  has a limit point.  
 

ii) Let 
( )













∈
−

= NnS
n

n

6

1
 . Then  

 

( )
N∈∀<

−
≤− n

n

n

1
6

1
1 . 

 So, S  is bounded. Now define Sf →N:  by ( ) ( )
n

n

nf
6

1−
= . 

 
We prove that f  is one-one. Let N∈nm,  such that ( ) ( ).nfmf =  

Then 

 
nmnm

n

n

m

m

−− =−⇒
−

=
−

6)1(
6

)1(

6

)1(
 

             0=−⇒ nm  (Why?) 
             nm =⇒  

 

Thus, f  is one-one. Hence, S  is (countably) infinite. Therefore, by 

the Bolzano Weierstrass Theorem S  has at least one limit point. 

 

iii) Here 








∈+= Nn
n

S
1

1 . 

 
Show that S  is bounded and infinite. Then apply the Bolzano 

Weierstrass Theorem. 
 

E11)  First we show that ] [ [ [U
0

,,0
>

∞=∞
a

a . So, let ] [∞∈ ,0x . Then  

 

[ [ [ [U
0

,,0
>

∞∈⇒∞∈⇒>
a

axxxx . 

  

Now, let [ [U
0

,
>

∞∈
a

ax . Then [ [∞∈ ,ax for some ,0>a  which implies 

.0>> ax  Consequently, ] [∞∈ ,0x . 

 
 Now, we show that 0  is a limit point of ] [∞,0 . Let 0>ε  be arbitrary.  

 
Then there exists some N∈n such that  
 

] [ ( )0,
11

0 εεεε N
nn

=−∈⇒<< . 

 

But ] [∞∈ ,0
1

n
 also. Thus ( ) ] [ Ø,00 ≠∞∩εN . Therefore 0  is a limit 

point of ] [∞,0  . Since ] [,,00 ∞∉ we conclude that ] [∞,0  is not closed.  

 
E12)  We know that for each ,R∈x  t someexistshere N∈n  such that  
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.nxn <<−  Hence ] [.,
1

U
∞

=

−⊆
n

nnR  But ] [ R⊆− nn, for each N∈n , so  

] [U
∞

=

⊆−
1

,
n

nn R�. 

 

Therefore, ] [U
∞

=

−=
1

,
n

nnR� . Since R  is closed, the given set is also 

closed.  
 

E13)  Let 0>ε  be arbitrary. Then 

 
( ) ] [ ] [.,, aaaaN εε −=∞−∩  

 
Since ,0>ε  there exists some R∈x  such that .axa <<− ε  That is,  

 
] [ { }≠∞−∩ aaaN \,)(ε Ø 

 

Hence, a  is a limit point of ] [., a∞−  But ] [,, aa ∞−∉  hence ] [a,∞−  is 

not closed.  
 

Now, let us see, what the set ] [U
R

�
∈

∞−
a

a, is equal to. Take .R�∈x  Then 

ax <  for some R∈a .That is ] [ax ,∞−∈ for some .R�∈a  Therefore, 

] [U
R∈

∞−∈
a

ax ,,  which implies ] [U
R

R
∈

∞−⊆
a

a .,  But we already know 

that ] [ R�⊆∞− a,  for all R∈a .  Therefore, ] [U
R

R
∈

⊆∞−
a

a .,  

This proves that ] [U
R

R
∈

∞−=
a

a .,  Since R is closed, ] [U
R∈

∞−
a

a, is also 

closed.  
 

E14)  We know that 13 345 ++−+ xxxx  is a polynomial of degree 5, and 

hence has at most 5 real roots. Thus 
 

}013{
345 =++−+∈= xxxxxS R  

  
has at most 5 points. Therefore, S , being a finite set, is closed. 

 

E15)  We know that 





+ 5,

1
1

n
 is closed for each N∈n . Therefore, by  

 

Theorem 7, I
∞

=








+

1

5,
1

1
n n

 is closed. 

 
E16)  From E8 we know that the limit points of N  do not exist. Therefore, 

NN = . Similarly, .ZZ =  

 

E17)  We have to find c
Q . So, let Q�∈x . Then we know (from E22) of Unit 

3)  that for each ,0>ε  there exists an irrational number between ε−x

and .ε+x  That is, for each 0>ε , the set ( ) �
Q

c
xN ∩ε  contains an 

element different from .x  Therefore, x  is a limit point of .c
Q  Since x  is 
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arbitrary, every rational number is a limit point of .c
Q  Hence 

.RQQQ =∪= cc  

 
E18)  Let ] [∞∈ ,ax . Choose ax −=ε . Then  

 
( ) ] [ ] [ ] [.,2,, ∞⊆+=+−= aaaxxxN εεεε  

 This implies x  is an interior point of ] [∞,a . Since x  is arbitrary, every 

element of ] [∞,a  is an interior point of ] [∞,a . That is ] [ ] [∞⊆∞ ,, aa  

holds always.  Hence ] [ ] [,,, ∞=∞ aa  and ] [∞,a   is open. 

 

E19)  Since ] [nn,−  is open for each N∈n , by Theorem 10, ] [U
∞

=

−
1

,
n

nn  is 

open. 
 

E20)   i) Let o
Sx ∈ . Then there exists an 0>ε such that ( ) SxN ⊆ε . Let

( ).xNy ε∈ Then there exists a 0>δ such that ( ) ( ) SxNyN ⊆⊆ εδ

So, .oSy ∈ Therefore ( ) o
SxN ⊆ε . Thus x is an interior point of o

S . 

Since x is arbitrary every element of o
S  is an interior point of o

S . 

Hence o
S  is open. 

 

 ii) Let x  be a limit point of S . Assume, if possible, that Sx ∉ . Then 

Sx ∉  and x  is not a limit point of S . So, there exists an 0>ε  such 

that  

   «« =∩⇔=∩ SxNxSxN )(}{\)( εε  

     c
xNS )(ε⊆⇔  

     c
xNS )(ε⊆⇔            ( c

xN )(εQ  is closed) 

     «=∩⇔ SxN )(ε  

     «=∩⇔ }{\)( xSxNε  

This proves that x  is not a limit point of S  , a contradiction.  

 

Therefore, Sx ∈ , and hence S  is closed. 
 

E21)  We know that ] ] ] [ ] ],25,15,1525, =∞∩∞−  

 

E22)  You know that 





+ 7,

1
1

n
 is open for each N∈n  hence by Theorem 10 

 U
∞

=








+

1

7,
1

1
n n

is open. 

 

E23) To prove that U
Λ∈α

αS  is open, we need to show that .UU
o

Λ∈Λ∈

=








α
α

α
α SS  

We already know that .UU
o

Λ∈Λ∈

⊆








α
α

α
α SS  This means, we have to show 

that .

o

UU 







⊆

Λ∈Λ∈ α
α

α
α SS  So, let .U

Λ∈

∈
α

αSx  Then αSx∈  for some 
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.Λ∈α  But αS  is open i.e. .oαα SS =  Therefore, .oαSx∈  Now there 

exists some 0>ε  such that .)( αε SxN ⊆  This implies .)( U
Λ∈

⊆
α

αε SxN   

 Hence .

o

U 







∈

Λ∈α
αSx  This completes the proof. 
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MISCELLANEOUS EXAMPLES AND EXERCISES 
 
The examples and exercises given below cover the concepts and processes 
you have studied in this block. Doing them will give you a better understanding 
of the concepts concerned, as well as practice in solving such problems. 
 

Miscellaneous Examples 
 

Example 1: Given two sets S  and T of ,R define { }., TySxyxTS ∈∈+=+  

Suppose S  and T are bounded. Check whether TS +  is bounded or not. 
 

Solution : Let 1l  be a lower bound of ,S  and 1u  an upper bound of .S  

Similarly, let 2l be a lower bound of ,T  and 2u  an upper bound of .T  Then we 

have  
 

,, 11 uxSx ≤≤∈∀ l  

 
and  
 

., 22 uyTy ≤≤∈∀ l  

 

Therefore, .,, 2121 uuyxTySx +≤+≤+∈∀∈∀ ll  

 

This implies 21 ll + is a lower bound of TS + and 21 uu + is an upper bound of 

.TS +  Hence, TS + is bounded.  
 ***  

Example 2: Show that if ,1>a  then aa n <<
1

1  for all natural numbers .n  

 
Solution:  We shall prove this, in two parts, by the method of contradiction. 

So, suppose that 1

1

≤na for some .N∈n  You also know, from Theorem 14 of 

Unit 3, that 0

1

>na for all .N�∈n  
 

Then from E9 of Unit 3, you know that n

n

na 1

1

≤














 

i.e. .1≤a This is a 

contradiction to the hypothesis that .1>a  Hence 1

1

>na for all .N�∈n  

Again, suppose that aa n ≥

1

for some .N∈n  Then  
 

 1

1

1
−≥⇒≥⇒≥










nnn

n

n aaaaa  

 

But you know, from E10 of Unit 3, that if ,1>a  then 1>n
a for all .N∈n  So, 

again, we have arrived at a contradiction. Hence, ,

1

aa n < for all .N∈n  

 
*** 

Example 3: Show that if R∈ba,  are such that ,||
22

ba ≥  then .|| ba ≥  
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                                                         Solution: When b  is negative, then .|| R∈∀≥ aba  So, let us assume that 

.0≥b  Now 

 

 0||||
2222 ≥−⇒≥ baba  

    0||||||
22 ≥−+−⇒ bbabaa  

    0)|(|)|(||| ≥−+−⇒ babbaa  

    0)|(|)|(| ≥−+⇒ baba  

    0|| ≥−⇒ ba   )0||( ≥+baQ  

    ba ≥⇒ ||  

*** 

Example 4: Which of the following statements are true, and which are false? 
Justify your answers with a short proof or a counter-example. 
 
i) Every subset of a bounded set is bounded. 
ii) Every point of a bounded set is its interior point. 
iii) The set of all limit points of a countable set is countable. 
iv) ‘’No subset of N  is uncountable.’’ is the negation of “Every subset of N  

is countable.” 
 

Solution: i) Let S  be a bounded set, and .ST ⊆  Then, there exist real 

numbers l  and u  such that ux ≤≤l  for all .Sx ∈  This implies ux ≤≤l  for 

all .Tx ∈  Therefore, T  is bounded. This shows that every subset of a 

bounded set is bounded. Hence the statement is true. 
 

ii) Consider the set }1{  which is bounded. We have },1{1∈  but there is no 

0>ε  such that ] [ }.1{1,1 ⊆+− εε  Therefore, 1 is not an interior point of 

}.1{  Hence, the statement is false. 

 

iii) Consider the set Q   which is countable. You also know that R  is the set 

of all limit points of ,Q  and that R  is uncountable. Therefore, the 

statement is false. 
 
iv) Note that the given statement can symbolically be written as ,~ qp ≡   

where 
 
  :p  Every subset of N  is countable. 

  :q  No subset of N  is uncountable. 

  
But you know that  

 
  :~ p  Some subset of N  is uncountable. 

 
 So, .~ qp ≡  Hence the statement is false. 

 
*** 

Example 5:  Prove that ., R∈∀−≤− yxyxyx  

 

Solution: For any R∈yx, we have yyxyyxx +−≤+−= . This implies   

 

yxyx −≤−                   … (1) 



 

 

109

Block 1                                               Miscellaneous Examples and Exercises 

Now interchanging the role of x and ,y  in Eq. (1) we get |,||||| xyxy −≤−  

i.e., 
 

|||)||(| yxyx −≤−−                  … (2) 

 

From Eqs. (1) and (2), we get .yxyx −≤−  

*** 

Example 6:  Show that every subset of a countable set is countable. 
 

Solution: Let S be a countable set, and .ST ⊆ Since ST ⊆ , there exists an 

injection .: STf →  Since S is countable, there exists a bijection .: N�→Sg  

Then the composition N→Tfg :o is an injection. Hence by Theorem 17 (i) of 

Unit 3, T  is countable. 
*** 

Example 7: Let S  and T  be two finite sets. Show that TS ×  is also finite. 
 

Solution:  Since S  is finite, let },,,{ 21 m
xxx K  be the list of elements of .S  

Similarly, let },,,{ 21 n
yyy K  be the list of elements of .T  Then 

}1,1),{( njmiyx
ji

≤≤≤≤  is the list of elements of .TS ×  Thus TS ×  has 

mn  elements. Hence TS ×  is finite. 
 

*** 

Miscellaneous Exercises 
 
E1)  Prove or disprove: If QR�\, ∈yx , then QR�\∈+ yx .  

 
E2)  Using the Principle of Mathematical Induction show that if S  contains n  

elements, then ),(S℘  the power set of ,S  contains n
2 elements. 

 
E3)  Use the Well-ordering Principle to show that there is no N∈n such that 

10 << n . 
 

E4) Which of the following sets are finite, and which are infinite? Justify your 
answers. 

 

 i)  








∈∀<≤∈ NR n
n

xx
1

0  ii)      }100,,12,11,10{ 100
K  

 iii) 








≠∈ 0,
1

nn
n

Z  iv)     U
Z∈n

n }{ 2  

 
E5)  Check whether the following sets are bounded below, bounded above or both.  

Accordingly, show whether they have the infimum, the supremum or both in .R  
 

i) 












∈+=
−

NnS nn

11
1

32  ii)       








>
+

= 0
4

x
x

x
S  

iii) })1({ N∈−+= nnS
n

 iv)      }{sin R∈= xxS  

 
E6) Union of two bounded sets is bounded. True or False? Justify your 

answer. 
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                                                         E7) Find the infimum and supremum of the following sets. 

 

 i)  }23{ 2 −<∈= xxxS R  ii)     }1|1|{ ≤−∈= xxS R  

 
E8) Which of the following sets are countable and which are uncountable? 

Justify your answers.   
 

 i)  { }L,0001.0,001.0,01.0,1.0  ii) 









∈
+

−
Qx

x

x

2

1
2

2

 

 

 iii) { } { }3|3| ≥∈∪<∈ xxxx NR   iv) { }U
∞

=

<<−∈
1

1|
n

nxnx R  

 

 v) NQ×  vi) ]1,0[  

 
E9)  Identify which of the following sets are closed, which are open and 

which are neither. 
 

 i)  }1{ 2 +≤∈ xxx R  ii)  [ ]1,0∩Q  

 

 iii) U
∞

=





 +

+1

1
,

1
n

n

n

n

n
 iv) 









∈+ N,,
1

nm
n

m  

 

E10)  Show that for any subsets S and T of ,R TSTS ∪=∪ . 

 
E11)  Show that if S  is open and T is closed, then  

 
 i) TS \ is open, ii) ST \ is closed. 

 

SOLUTIONS/ANSWERS 
 

E1) The statement is false. For a counter-example, let π=x  and .1 π−=y  
Then 1=+ yx which is rational.  

 

E2) Write ( ) ( ) .2:
n

SnSnP =℘⇒=   

 So, ( ) ( ) .21:1 =℘⇒= SSP  

 
 We know that when S  is a singleton, )(S℘ contains just two elements, 

namely Ø  and .S  Therefore, )1(P  is true. 

 

 Now let us assume that for some n  )(kP is true for all .1, nkk ≤≤  We 

have to show that )1( +nP is true. So, let }.,,,,{ 121 +=
nn

xxxxS K  Look 

at the element .1+n
x  Every subset of S either contains 1+n

x  or does not. 

This means, for any ,SA ⊆ we can write 
 

   BA =  or },{ 1+∪=
n

xBA  

  

 where B  is a subset of }.,,,{ 21 n
xxx K  Since },,,{ 21 n

xxx K  contains n  

elements, by the induction hypothesis, the number of sB  is 
n

2 . Hence 
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the number of sA  is
1

222
+=+ nnn

. This means )1( +nP is true. 

Therefore, by PMI )(nP  holds for all .N∈n  

 

E3) We shall prove it by contradiction. Let { }.10 <<∈= nnS N  Assume, if 

possible, that Ø≠S  . Since S is a subset of ,N  the Well Ordering 

principle implies that S contains a least element, say p . So, 10 << p . 

But then ,10
2 <<< pp  which implies .

2
Sp ∈  This is a contradiction to 

the definition of .p  Therefore, Ø=S . 
 

E4) i) By the Archimedean Property we know that if 
n

x
1

0 <≤  for all 

N∈n , then .0=x  Then the given set is },0{  which is finite. 
 

 ii) The given set is }.10010,{ 100≤≤∈= nnnS N  Let 

}.9100,,3,2,1{
100 −= KN  Let us define the function SNf →:  by

.9)( += nnf  
   

 Now let us show that f  is a bijection. Take Nnm ∈,  such that 

).()( nfmf =  Then 
 

   .9999 nmnmnm =⇒+=+⇒+=+  
   

 So f  is .11−  Now let .Sx ∈  Then nx =  for some natural 

number n  lying in }.100,,11,10{
100

K  This implies 9+= nx  for 

some natural number n  lying in .}9100,,3,2,1{
100

N=−K  This 

means )(nfx =  for some .Nn ∈  Hence f  is onto. Therefore, f  

is a bijection. Thus S  is a finite set. 
 

 iii) Let .0,
1









≠∈= nn
n

S Z

 

Let us define Sf →Z:  by 

    









−

=
,

1

1

,
1

)(

n

n
nf  

  

 Now you can show that f  is a bijection. Since Z  is countable, 

and Sf →Z:  is a bijection, it follows that S  is countable. 

 

 iv) Note that },,9,4,1,0{}{ 2
KU =

∈Zn

n  which is the set of the squares of 

whole numbers. The set of whole numbers is infinite, and so is the 
set of their squares. 

E5)  i) We know that for all 330

1

<<∈ n,n N . For all N∈n  
    

   ,21

2

2
122

1

1
1

1
1

n

n

n <⇒<⇒<
−

−

  

 which is true. Thus for all .22,

1
1

<∈
−

nn N This implies for all  

 N∈n  

if 0>n else. 
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  5320

11
1

<+<
−

nn . 

  
 Hence S is bounded below as well as bounded above, i.e. S is 

bounded. Therefore, by the completeness properly of ,R the 

infimum and the supremum of S  exist in .R  

 
  ii) We have for all ,Sx ∈  

   
1

4
040 <

+
<⇒+<<

x

x
xx

 
 This means S is bounded. Hence by the Completeness Property of 

,R the infimum and the supremum of S exist in .R  

  
 iii) We can write 
 

  




+

−
=−+

,1

,1
)1(

n

n
n

n  

   
  So, 
    

   },1{},1{ evenisoddis nnnnnnS NN ∈+∈−= U  

      }0{},5,3,1{},4,2,0{ ∪=∪= NKK  

   

 So, S  is bounded below by ,0  but has no upper bound (Why?). 

Since S  is  nonempty, by the Greatest Lower Bound Property of 

,R S  has infimum in .R  
 

 iv) We know that 1sin1 ≤≤− x  for all .R∈x  Thus S  is bounded, and 

nonempty subset of .R  Hence, by the Completeness Property of 

,R S  has both infimum and supremum in .R  

 

E6) Let S  and T  be two bounded sets. Then there exist real numbers 

121
,, ull  and 

2
u  such that 

11
ux ≤≤l  for all ,Sx∈  and 

22
ux ≤≤l  for 

all .Tx ∈  Let },{min
21

lll =  and }.,{max
21

uuu =  Then we have 

ux ≤≤l  for all .TSx ∪∈  Hence TS ∪  is bounded.   

  
E7) i) We have 
  

  ( )( ) 2102102323
22 <<⇒<−−⇒<+−⇒−< xxxxxxx  

  

 Thus { }.21 <<∈= xxS R
 
So, 1 is a lower bound of ,S and 2 an 

upper bound of S . Let u be some upper bound of  .S  If ,2<u  

then 2
2

2
<

+
<

u
u . Since we know that an upper bound is never 

smaller than a lower bound, u≤1 . Then 2
2

2
1 <

+
<

u
, which 

implies S
u

∈
+

2

2
. This is a contradiction to the definition of u . 

Hence 2≥u . Thus .2sup =S  

 
 Now let l  be some lower bound of S . If  1>l  then 

when n  is odd 

when n  is even 



 

 

113

Block 1                                               Miscellaneous Examples and Exercises 

  2
2

1
1 <<

+
< l
l

, which implies that  .
2

1
S∈

+l
 This is a 

contradiction to the definition of .l  Hence 1≤l . This implies 

1inf =S . 
 

ii) We have 2011111 ≤≤⇔≤−≤−⇔≤− xxx .  

 Therefore, }.20{ ≤≤∈= xxS R  So, 0  and 2  are, respectively, 

lower and upper bounds of S . Also, S∈2,0 . Hence 0inf =S and 

2sup =S . 

 

E8)  i) Let  .
10

1









∈= NnS
n

 

Now look at the function Sf →N:  defined 

by .
10

1
)(

n
nf =  

 We can see that for each 
n

ySy
10

1
, =∈ for some N∈n . That is, 

f  is onto. Hence S  is countable. (Why?) 

 

 ii)   Let S  be the given set. We can see that Q⊆S . Since Q is 

countable, S too is countable (Why?). 
 

 iii)  If possible, assume that S is countable. Then }3{ <∈= xxA R  

must be countable, because SA ⊆ . Now, let }.3{ >∈= xxB R
 

Define BAf →: by xxf −= 6)( . We can show that f  is a 

bijection. Hence B must be countable. Now }3{∪∪= BAR  is 

also countable, which is a contradiction. Hence S  is uncountable. 

 

 iv)  Let  .}1{
1

U
∞

=

<<−∈=
n

nxnxS R  Then we can write ,\NR
+=S  or 

equivalently, NR ∪=+
S . If S  is countable, then 

+
R  must be 

countable, which is not possible. Hence, S  is uncountable. 
   

   v) Define the function NNNQ ×→×:f  by 

  ( )knnmk
n

m
f ,)(, 2 ++=








. Show that f  is a bijection from NQ×  

to .NN×  Since NN × is countable, by E23 of Unit 3, NQ×  is 

countable. 
  

 vi) Assume, if possible, ]1,0[  is countable. Then nxxf +=)(  is a 

bijection from ]1,0[  to ],1[ nn −  for any .Z∈n  This means, ],1[ nn −  

   is countable for any .Z∈n  Now we have U
Z

R
∈

−=
n

nn ],1[ (Why?) 

  

 On the right hand side is a countable union of countable sets, and 

hence a countable set. But on the left hand is R  which we know is 

uncountable. This is a contradiction. Therefore, ]1,0[  is 

uncountable. 
 

 E9) i)  We have }.01{}1{
22 ≤−−∈=+≤∈ xxxxxx RR  
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          We can factorise 12 −− xx  as  
 

   .
2

51

2

51
12










 −
−









 +
−=−− xxxx  

         Now 

   








 +
≤≤

−
⇔≤−−

2

51

2

51
012

xxx  

          Thus the given set becomes equal to ,
2

51
,

2

51







 +−
 which is 

closed.  
 

     ii)  Let [ ]1,0∩∈Qx  . Then for every 0>ε there exists an irrational 

number between  x and ε+x . (See ….  of Unit 3.) So, for every 

( ) [ ]1,0,0 ��Q∩⊆/> xNεε . Hence [ ]1,0�Q∩  is not open.  

 We know that [ ]1,0
2

1
∩∉Q . In order to prove that [ ]1,0�Q∩  is 

not closed, it is sufficient to show that 
2

1
 is a limit point of 

[ ].1,0�Q∩ So, let 0>ε , and consider the neighbourhood 








2

1
εN

of .
2

1
 There are three cases: 

 

                 Case i) 
2

1
>ε  

       When ,
2

1
>ε we have 0

2

1
<ε− . So 








∈ ε

2

1
0 N . Also 

   [ ]1,00 ∩∈Q . Hence [ ]1,0
2

1
∩∩








ε QN  contains a point other 

than 
2

1
. 

 

  Case ii) 
2

1
1−>ε  

 

  In this case ε+<
2

1
1 . Also 1

2

1
< . This means 








∈ ε

2

1
1 N .  

  Hence [ ]1,0
2

1
∩∩








ε QN  contains a point other than 

2

1
. 

  Case iii) 








−≤ε
2

1
1,

2

1
min   

 

  In this case 1
2

1

2

1

2

1
0 ≤ε+<<ε−≤  
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 Now by Theorem 12 of Unit 3, we know that there exists a rational 

number between  ε−
2

1
and .

2

1
 Hence [ ]1,0

2

1
∩∩








ε QN

contains a point other than 
2

1
.  

 

Thus, for every [ ]1,0
2

1
,0 ∩∩








>ε ε QN  contains a point other 

than 
2

1
. 

 

 Hence,  
2

1
is a limit point of [ ]1,0∩Q . Since [ ]1,0

2

1
∩∉Q , it is 

proved that [ ]1,0∩Q  is not closed.  

 
 iii)   We know that for all N∈n   
 

       
2

1

1
≥

+n

n
 and 2

1
≤

+

n

n
 

 
  That is, for all N∈n  

   





⊆




 +

+
⇒≤

+
<

+
≤ 2,

2

11
,

1
2

1

12

1

n

n

n

n

n

n

n

n
 

   

  This implies 





⊆




 +

+

∞

=

2,
2

11
,

11

U
n n

n

n

n
 

  Also for ,1=n  

 

   





=




 +

+
2,

2

11
,

1 n

n

n

n
 

 

  Hence 





=




 +

+

∞

=

2,
2

11
,

11

U
n n

n

n

n
 which is closed, but not open.  

 iv)  Let .,
1









∈+= Nnm
n

mS  First we check whether S is closed or 

not. Taking 1=m , and N∈n , we have S
n

∈+
1

1 . Now we shall 

show that 1 is a limit point of S . So, take 0>ε . Then, there exists 

some N∈n  such that  .
1

ε<
n

This implies 

   ( ).1
1

11
1

11 ε∈+⇒ε+<+< N
nn

 

 

  So for each ( ) SN ∩>ε ε 1,0  contains an element other than 1.  

   
  That is, 1 is a limit point of .S  But .1 S∉  Therefore, S  is not 

closed. 
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 Now we check whether S is open or not. Pick .
2

3

2

1
1 S∈=+  Then 

for each 0>ε there exists an irrational number between ε−
2

3
and 

.ε  That is, for each SN ⊆/







>ε ε

2

3
,0 . Hence 

2

3
is not an interior 

point of .S Therefore, S is not open.  
 

 E10) Note that SS ⊆ and .TT ⊆  Therefore, ,TSTS ∪⊆∪  which implies 

.TSTS ∪⊆∪  (See Example 14 of Unit 4.) On the other hand, 

TSS ∪⊆  and TST ∪⊆ .  Therefore, TSS ∪⊆ and TST ∪⊆ . This 

implies TSTS ∪⊆∪ . Consequently, TSTS ∪=∪ . 

 

Interchanging the roles of S and ,T we have .STxTx ∪∈⇒∈  Thus 

TSTS ∪⊆∪ . The proof is over. 

 

E11) i) Write .\ c
TSTS ∩=  Since S and 

c
T both are open, TS \ is open. 

  

 ii) Write .\ c
STST ∩=  Since T and 

c
S both are closed, ST \ is 

closed.   
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