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COURSE INTRODUCTION

Welcome to this third semester course through which we aim to introduce you to the
branch of mathematics called “analysis”. The word ‘analysis’, in general, means a
detailed examination of the elements or structure of a substance or statement of a
result. In mathematics, analysis involves the study of the structure of sets having
different types of elements such as the set of real numbers, the set of rational
numbers and also the set of certain functions.

Real Analysis is the branch of mathematics that studies the structure of real
numbers and the behavior of functions defined on the set of real numbers. You
already have some idea of the structure of the set of real numbers, and of functions
defined on it, from the 1*' semester course, Calculus. In that course you were
introduced to many concepts such as limit, continuity, differentiability and
integrability for real-valued functions, though more from an algorithmic and
computational aspect. However, when you apply the algorithms, it is important to
know the logic behind them. The study of analysis provides the reasons behind
these computation rules. The study will also help you to develop “analytical thinking”
and the ability to apply mathematics more precisely and confidently.

The analysis of real numbers and real functions played a fundamental role in the
development of mathematics. Though many mathematicians like Newton and
Leibniz contributed to the development of analysis, the origin of analysis took place
in early 19" century with the work of Cauchy, who gave precise definitions of
concepts such as limit and continuity. The convergence criterion introduced gave a
path way to the techniques of approximation which led to the development of the
theory of integration theory by the mathematicians, Riemann.

In this course we study the analysis of real numbers. The whole content is divided
into six blocks.

In Block 1, comprising 4 units, we shall discuss the language of mathematics
including mathematical symbols and the syntax used in expressing mathematical
ideas. The most powerful tool used in analysis for giving justification is “methods of
proof”. In this block we also introduce you to some methods of proof. Then we
discuss the algebraic and topological structure of real numbers, and some
fundamental results about real numbers such as the order completeness properly
and the Bolzano-Weierstrass theorem.

In Block 2, comprising 2 units, we discuss the concepts of sequence and
convergence in detail. You will also important theorems on limits of sequences here.

In Block 3, comprising 3 units, we familiarise you with the concept of an infinite
series and its convergence. We shall give a few general tests for checking the
convergence of a series with positive terms. After that, you will study some special
tests like D’Alembert’s Ratio test, Cauchy integral test, Raabe’s Test and Gauss’s
test. Lastly, we discuss alternating series, i.e., a series whose terms are alternatively
positive and negative.

In Block 4, comprising 4 units, we shall study two important concepts, namely,
continuity and differentiability. Both these concepts involve the abstract notion of the
limit of a function, of which you have some idea from the calculus course. There you
were introduced to the epsilon-delta (¢ - §) definition, though not in a formal way.

Here we shall give a precise meaning to the role of eandd in the definition, and
explain how they can be used rigorously in the proofs. Then we define notion of
continuity of a function at a point and over an interval. Next, you will study to the
notion of a derivative of a function in a rigorous way. You have learnt many rules for
differentiation from the calculus course. Here we explain the logic behind these
rules. We prove some important theorems as applications of differentiation: the
Inverse Function Theorem, Rolle’s Theorem and the Mean Value Theorems.

In Block 5, comprising 5 units, we discuss the concept of Riemann integration,
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which you have studied in the Calculus course. In this course we will give a rigorous
treatment to the theory of integration, using the concept of a limit. We give the
proofs of the results wherever necessary.

The last block, Block 6, comprises 6 units. It covers sequences and series, whose
terms are functions defined on subsets of the set of real numbers. Such sequences
and series are called sequence and series of functions. We introduce two types of
convergence — Pointwise convergence and uniform convergence. Whenever the
convergence is established for sequences or series, their limit is called the limit
function. The fundamental question that interests many mathematicians is whether
the properties of limit, continuity and differentiability are preserved by the limit
function. In this block we discuss some partial answers to this question.

In all these blocks we have emphasized the importance of proofs. We give
A several proofs that involve different techniques that are explained in Unit 2.
We advise you to work out the details by verifying each step in the proof. You
need some practice in choosing 0 for a given € > (. Similarly you should be
able to choose an N corresponding to € > 0 in the sequential definition of
limits. Thus there is a great need to develop the ability to read and write the
proofs by doing it yourself.

Throughout this course, we have tried to help you understand the results, methods
and concepts with the help of several examples and exercises. Do solve the
exercises as and when you encounter them, without referring to the
“Solutions/Answers” given at the end of each unit. Only in case of some difficulty,
you may look at the solution. You can also compare your solution, with the solutions
given by us.

As we have said above, the course, comprises 6 blocks. Each block is divided into
units and each unit is divided into sections. The sections of a unit are numbered
sequentially as are the exercises, theorems, etc.

For your convenience, we have put

i to show the end of an example,
[ | to show the end of a proof,

E1, E2, E3... for the exercises

Sec. x.y to refer to section y of Unit x

We hope you enjoy studying this course. If you have any problems in understanding
any portion of it, please ask your academic counsellor for help at your Learner
Support Centre, or write to us at svarma@ignou.ac.in . Also, if you feel like studying
any topic in greater detail, you may consult the following books:

1. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wiley and
Sons (Asia) P. Ltd., 2000.

2. K.A. Ross, Elementary Analysis — The Theory of Calculus Series —
Undergraduate texts in Mathematics, Springer Verlag, 2003.

3. T.M. Apostal, Calculus (Vol. 1), John Wiley and Sons (Asia) P. Ltd., 2002.

Principles of Mathematical Analysis by R. Walter Rudin, McGraw-Hill
International Editions.

5. Trench, William F., "Introduction to Real Analysis", Faculty Authored and Edited
Books & CDs. 7, https./digitalcommons.trinity.edu/mono/7 . s
[=1E
6. Elias Zakon, Mathematical Analysis I, published by The Trillia Group, 2004
http://www.trillia.com/zakon-analysisl.html.
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BLOCK INTRODUCTION

You must have read the Course Introduction, from which you know that this course
unfolds in 6 blocks. This is the first block of the course, comprising of 4 units. In this
block, the focus will be on understanding the language of mathematics, the thought
processes involved in doing mathematics in general, and the analytic properties

of R.

Now, from your earlier studies, you would be aware of what a theorem is, and what
it means to prove it. However, you need to study the formal grammar of
mathematics to be able to communicate mathematics meaningfully. For this
purpose, in Unit 1, we introduce you to various aspects of the language of
mathematics. Here we shall look at how to express a ‘mathematical statement’ in
different ways. You will also study ways of connecting statements, as well as
statements with quantifying symbols.

In Unit 2, the focus is on different mathematical thought processes, the large domain
of mathematical reasoning. Here is where you will study different ways of proving
mathematical statements. You will also study ways of showing why a given
statements is false. Here consider a remark about a phrase you may frequently
come across in a ‘proof’ namely, “without loss of generality”. This phrase means
that it is enough to prove a particular case of the statement concerned, and all the
remaining cases can be reduced to this case. For example, consider the statement
“the square of every non-zero integer is a positive integer”. To prove it, we can take,

without loss of generality, an integer n >0, and show that n*> >0. The remaining
case is n <0, which can be reduced to the case proved by taking m=-n.

Whatever you study in this unit, and in the previous one, will be needed by you not
just in this course, but in all your further mathematics courses.

In Unit 3, we shall reacquaint you with the set of real numbers R, with its algebraic
and ordered properties. You will see how the order structure of Ris different from
that of Q due to the ‘order completeness property’ which R possesses, but Q
lacks. You will also see a few consequences of this property. Finally, you will see
the notions of ‘finite’, ‘countably infinite’ and ‘uncountable’ subsets of R.

Unit 4 deals with the topological structure of R. Specifically you will see the
concepts of ‘neighbourhood’ of a point, and ‘limit point’ of a set. In this context, we
shall present a theorem due to the mathematicians Bernhard Bolzano and Karl
Weierstrass. Finally, we discuss the two important classes of subsets of R, namely
-- open sets and closed sets, and show you how they are related.

At the end of this block you will find a set of miscellaneous examples and
exercises related to the concepts covered in this block. Please do study them, and
try each exercise yourself. This will help you engage with the concepts concerned,
and understand them better.

We hope you enjoy the course!



NOTATIONS AND SYMBOLS (used in Block 1)

(Also see the notations used in Calculus and Differential Equations)

Nota Neyen) odd (even) natural numbers
N rime set of prime numbers
ARV positive (negative) integers
Q" (@) positive (negative) rationals
R the set of real numbers
R*(R™) positive (negative) real numbers
=>(&) implies (implies and is implied by)
iff if and only if
<5 is less than (is less than or equal to)
>(2) is greater than (is greater than or equal to)
a3 there exists (there exists a unique)
A for all
Za{naij a,+a,+---+a, (aja,...a,)
i=1 i=l
therefore
w.r.t. with respect to
f:X->Y f is a function from the set X to the set Y
s.t. such that
{x|x satisfies P} the set of all x such that x satisfies the property P
(X) the power set of the set X
IxI modulus of the real, or complex number, x
0] empty set
N,(a) £ -neighbourhood of a
S closure of the set §
S° interior of the set S
inf S the greatest lower bound (infimum) of S

sup S the least upper bound (supremum) of S



UNIT 1

COMMUNICATING MATHEMATICS ‘

Structure Page Nos.
1.1 Introduction 9
Objectives
1.2 Mathematical Statements 10
1.3 Logical Connectives 11
Disjunction
Conjunction
Negation
Conditional Connectives
1.4 Logical Quantifiers 19
1.5 Summary 21
1.6 Solutions / Answers 22

1.1 INTRODUCTION

You would, by now, have studied mathematics for at least 13 years. If you look
back, you will see how the term ‘mathematics’ had different meanings for you
when you were in Class 5, Class 10 and Class 12. What does it mean to you
at this stage, after studying the first year courses? Does it seem to be merely a
collection of facts? Or, do you see it as a language, with signs, symbols, and
its own grammar?

It is such questions that we will consider in this unit. In Sec.1.2, you will see
what a mathematically acceptable sentence is. Such a sentence is called a
‘mathematical statement’.

In Sec.1.3, you will study the ways of connecting two simple mathematical
statements to form compound statements. These statements form the basis of
your further study in this unit and the next one.

In Sec.1.4, we focus on concepts involved in particular mathematical
statements. These are ‘quantifiers’, which correspond to the English words
‘all’, ‘some’, ‘only one’.

Throughout the unit, we shall be working towards helping you achieve the
following objectives. To help you assess how much you have learnt, we have
sprinkled exercises throughout the unit. Please try to solve them, as you come
to them. Doing this will help you to understand the concepts concerned better.



Block 1 The Structure of R

Objectives

After studying this unit, you should be able to:

o distinguish between mathematical statements and non-statements;
o identify, and use, the logical connectives;

o identify, and use, the logical quantifiers.

1.2 MATHEMATICAL STATEMENTS

When you think about ten wholes and two hundredths multiplied with fifty two
thousand six hundred and twenty eight, how would you arrive at the product?
Don’t you visualise the problem as numbers written in base 10, that is, the
decimal system? If yes, you are actually looking at ‘10.02x 52628 . Isn’t this
easier to comprehend and solve? This is just one example of how useful a
system of symbols can be. In fact, this is one example of one aspect of
mathematics as a language — symbols, and rules for working with them.

Similarly, when you work with sets or with variables, you do so with symbols,
and rules (of grammar) for working with them. It is this kind of universally
accepted symbols, and structured use of them, that helps any person working
with mathematics, anywhere, read mathematics and communicate
mathematical ideas to each other. This is true for any other language too,
don’t you agree?

Now, consider your own first language, or mother tongue. In the process of
learning to use this language, you learnt its words and rules of grammar to
construct sentences for communication with others. Similarly, for using the
language of mathematics, there are rules of syntax and grammar that govern
the use of words and symbols in it. A mathematical equation or inequality is a
sentence in this language, and this sentence has nouns and verbs. For
instance, the sentence ‘one hundred divided by twenty is equal to 5’ has the
nouns one hundred, twenty and five; and the verbs are ‘divided by’ and ‘is
equal to’. Similarly, you have all the parts of grammar in the language of
mathematics. What is interesting is that this language is universal, the same
across the world. That is, any person, anywhere in the world would understand
and follow the same rules of grammar and syntax when doing mathematics.

Let us now focus on the sentences in the language of mathematics. What is
an “acceptable sentence”? If I say ‘x e N’ is not a mathematically acceptable
sentence, while ‘All humans are mortal’ is a mathematically acceptable
sentence, you may wonder why. The following definition will give you an idea.

Definition: A mathematical statement is a sentence that is either true for all
the cases covered by it or false for all the cases covered by it.

Forinstance, ‘n” <5 for ne {0, 1, 2}’ is a mathematical statement which is
true for all three cases covered by it. Note that it is not considering any n that
is outside {0, 1, 2}.

Another example of a mathematical statement is ‘The set of real numbers is a
finite set’, which is a false statement.

So, mathematical statements are the mathematically acceptable sentences.
For example, all the sentences below are mathematical statements.

i) lcosx|<1 forall xe R.

10 i)  The set of stars in the sky is finite.



ii) ﬂ:1fory:R—>R:y(x):x2.
dx

iv)  All flowers have red petals.

v)  Some flowers have red petals.

Note that the sentences in (i), (ii) and (v) are true for all the cases covered by
them, and those in (iii) and (iv) are false. Hence they are examples of
mathematical statements.

Remark 1: We shall usually just say ‘statement’ instead of ‘mathematical
statement’ each time.

Next, let us see some examples of what are not statements.
i) Add four to five.

i) If xeR suchthat x<5, is x<17?

i)  xeN.

iv)  a+p+7v, where a, B, ye R.

Here, (i) is an imperative sentence, giving a command. It is not a statement as
it is neither true nor false. Next, (ii) is a question, not a sentence; (iii) is
ambiguous since it is not clear what x is, and hence we can’t decide whether
this is true or false; and (iv) is not a sentence, but an expression — an example
of a phrase in the language of mathematics!

Why don’t you try a related exercise now?

E1) Which of the following are mathematical statements? Give reasons for
your answers.

i) 3a—b+c+?2, for a, b, ce Z.

ii) 3a—-b+c+2=0.5, forsome a, b, ce Z.
i) All human beings work in offices.
dy_dy

dx*  dx

v)  What is mathematics?

v Therangeof f:R—>R: f(x)=x/5 is R.

Now, the underpinning of mathematics is the underlying thought process. This
shows up through a series of statements that are formed by connecting each
other. In the next section, you will study how the statements can be logically
connected.

1.3 LOGICAL CONNECTIVES

While reading English, you would have come across compound sentences,
that is, those made up of smaller sentences connected by ‘or’ or ‘and’. For

11



Block 1 The Structure of R

example, consider the statement, ‘There is a real number lying between 0 and
0.1’. This is actually made up of two statements connected with AND, namely,
‘There is a real number greater than 0’, and

‘There is a real number less than 0.1°.

In the same way, most statements in mathematics are combinations of simpler
statements joined by words and phrases like ‘and’, ‘or’, ‘if ..., then ..., ‘if and
only if’, etc. These words and phrases are called logical connectives. There
are several such connectives, which we shall discuss one by one in this
section.

1.3.1 Disjunction

Consider the sentence ‘Ajay or Mustari went to the market’. This can be
written as ‘Ajay went to the market or Mustari went to the market’. So, this
sentence is actually made up of two simple sentences connected by ‘or’.
When we connect two statements by ‘or’, we have a term for such a
compound statement.

Definition: The disjunction of two statements p and ¢ is the compound
pvq isthesameas gV p.  statement p or ¢, denoted by p v q.

For example, ‘The Discovery of India is a book or several women run their own
The symbol v seems to businesses’ is the disjunction of p and ¢, where
have been first used by the
famous polymath, Bertrand p: The Discovery of India is a book, and

Russell, in an article he | P
published in 1908. q : Several women run their own businesses.

Similarly, if p denotes ‘2> 0’and g denotes ‘2> 5", then pv g denotes the

p:0<l1 statement ‘2 is greater than 0 OR 2 is greater than 5°.

represents the fact that p

ot e sttt For any two statements p and ¢, pv g is a statement. Hence, it must be
-V either true or false. Let us now look at when pv g is true and when it is false.

For doing so, let us look at the examples given above. Since ‘The Discovery of
India is a book’ is true, and ¢ in that example is also true, pv g is certainly

true. Now, look at the next example above, about 2, 0 and 5. Since p is true,
but ¢ is not true, what about the truth value of pv g ? Note that if even one of
them is true, then the compound statement pv g is true.

Thus, more generally, if even one out of p and ¢ is true, then ‘pvgq’is
true. Otherwise, p v ¢ is false. This holds for any pair of statements p and
q.

Let us consider an example.

Example 1: Is the disjunction of the statements ‘g(ﬁ +7t)=3t"+7 for
t

te R' and ‘3+5=2"true or false? Give reasons for your answer.
. d
Solution: Let p denote ‘;(ﬁ +7t)=3t>+7 for te R’, and ¢ denote
t

‘34+5=2". Their disjunction is ‘g(ﬁ +7t)=3t+7 fortre R or 3+5=2".
t

As you know that p is true and ¢ is false, their disjunction pv ¢ is true.

*kk

12



Try some exercises now.

E2) Write down the disjunction of the following statements, and decide
whether it is true or not.

1
i) 2+43=7, i —<-.
) ) 5

E3) Give an example, with justification, of statements p and ¢, related to
functions, such that

i) pV q is false;

ii) pVq istrue.

Now let us look at the logical analogue of the conjunction, ‘and’.

1.3.2 Conjunction

As in ordinary language, we use ‘and’ to combine simple statements to make
compound ones. For instance, ‘1+4 # 5 and Prof. Rao teaches Chemistry’ is
formed by joining ‘1+4 # 5’ and ‘Prof. Rao teaches Chemistry’ by ‘and’. Let us
define the formal terminology for such a compound statement.

Definition: Let p and g be two statements. The compound statement ‘ p
and ¢’ is called the conjunction of the statements p and g. We denote this
by pAg. p Aq isthesameas g A p.

For example, if The symbol A seems to

p: IGNOU is a mega-university, and have first appeared in a
book by the Russian
g : March 8" is International Women’s Day, logician, M.I. Schonfinkel,

. . . published in 1924,
then p Ag:IGNOU is a mega-university and March 8" is International

Women'’s Day.
Again, ‘2+1=3A3=5"is the conjunctionof ‘2+1=3"and ‘3=5".

Now, when would p A g be true, and when would it be false? Do you agree
that p A g will be true only when both p and ¢ are true, and not otherwise?

For instance, take the example above of IGNOU and March 8". The
conjunction will be true only if p is true and ¢ is true, which is the case. So,
p Aq istrue here.

Similarly, ‘2+1=3A3=5"is false because ‘3=5"is false.
Consider another example.

Example 2: For which values of a and z will the conjunction of ‘2+a =1, The truth value of a

where ac R’ and ‘Arg z =7/3, where ze C’ be true? statement p is ‘true’ or

‘false’, depending on
Solution: Let p:2+a=1, where ae R, and whether p is true or
q: Argz=m/3, where ze C. false, respectively.

p A g will be true only when p and ¢ are both true.
p is true only for q = 2.

13
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The symbol ~, for
negation, appeared in
Bertrand Russell’s
article, “Mathematical
Logic as based on the
theory of types”, in

14
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B_

g is true for z=a+if, where = =+/3,p>0,a > 0. Thus, g is true for
o

infinitely many complex numbers lying on the ray, y = \/gx,x > 0.
Thus, pAgq istrue for a =2 and for every z = x(1+i\/§), x>0.

*kk

Why don’t you try some exercises now?

E4) Give the set of those real numbers x for which p A g will be true, where
p:x>-2,and g:x+3#7.

E5) Give an example from calculus, of statements p and ¢, for which pv g
is true but p A g is false. Justify your choice of example.

The next connective actually relates ‘conjunction’ and ‘disjunction’, as you will
see.

1.3.3 Negation

You must have come across young children who, when asked to do
something, go ahead and do exactly the opposite! Or, when asked if they
would like to eat something, will say ‘No!’, the ‘negation’ of yes! Now, if p

denotes ‘The child eats rice’, how can we denote ‘The child does not eat rice’?
Let us define the connective that will help us do so.

Definition: The negation of a statement p is ‘not p’, denoted by ~ p.

For example, if p is ‘N is afinite set’, then ~ p is ‘N is not a finite set’. Note
that here p is false and ~ p is true.
Let is consider another example.

Example 3: Write down the negation of the following statements and give the
truth values of all the statements.

) j xdx =1.
ii) No human can live without oxygen.

iy —Le2x2
5 27
Solution: i) The negation is jxdx #1.
Here, the given statement is false, as you know. Its negation is true.

i) The negation is ‘At least one human can live without oxygen’. Given the
current level of scientific knowledge, the given statement is true, and its
negation is false.

L= 2

i)  The negation is —7+2 >—.

5 2 7
. , -7 2
As you know, this is equivalent to ?+% < 7

The given statement is true, while its negation is false.

*kk



From the discussion above regarding the truth value of ~ p, you would
agree that if p is true, ~ p will be false, and vice versa.

Let us now consider two laws, due to the logician Augustus De Morgan,
relating conjuctions and disjunctions using negation.

De Morgan’s Laws: Let p and g be statements. Then
(i) ~(p vq) isequivalentto ~p A~gq;
(i)  ~(p A q)isequivalentto ~pv~q.

We will not prove these laws here, but will give some examples of their use.

Example 4: Give a statement equivalentto * f : R — R is not continuous on
R and f:]R—)]R:lin}f(x);tl’.

Solution: Let p: f :R — R is continuous on R, q:f:]R—)]R:lin}f(x):l.

Then the given statementis ~ p A ~ ¢g. This is equivalentto ~(p v ¢q), that
is, ‘For f:R — R, neitheris f continuous on R, noris h'n}f(x) =1

*kk

Why don’t you try the following exercise now?

E6) Write down the negation of each of the following statements.
Also decide the truth value of each negation.

i) 0-5#5.
ii) n>?2 forevery ne N.
i) All human beings can walk.

iv) f:R—R:f(x)=2x is aperiodic function.

r 2 is not defined.
—X

V) x€ R such that

Let us now discuss the conditional connectives, representing ‘If ..., then ...’
and ‘if and only if’.
1.3.4 Conditional Connectives

Consider the statement, ‘If any student of Real Analysis gets 75% or more in
the examination, then she will get an A grade for the course’. We can write
this statement as ‘If p is true, then g is true’, where

p: Any student of Real Analysis gets 75% or more in the examination, and
q : Any student of Real Analysis will get an A grade for the course.

This compound statement is an example of the implication of ¢ by p, which
we now define.

Definitions: Given any two statements p and ¢, we denote the statement ‘If
p is true, then ¢ is true’ by p = ¢q. We also read this as

Compare these laws with
the De Morgan laws
given in Unit 1 of the
course, Calculus.

15



Block 1 The Structure of R

‘p is true implies ¢ is true’, or

‘ p being true is sufficient for g to be true’, or
‘p istrue only if g is true’, or

‘q istrueif p istrue’, or

‘g being true is necessary for p to be true’.

Here, we call p the hypothesis and ¢ the conclusion.
Further, a statement of the form p = ¢ is called a conditional statement, or
an implication.

So, for example, in the conditional statement, ‘If m is in Z , then m belongs to
Q’, the hypothesis is ‘m e Z’ and the conclusionis ‘me Q.

Mathematically, we can write this statement as

meZ=>me Q.

Let us analyse the statement p = ¢ for its truth value. That is, assuming that
p is true, under what conditions is p = ¢ true or false? For instance, if
p:me Z,and q:me Q, then whenever p is true, thatis, me Z, then ¢ will
automatically be true since Z < Q. So here, p being true implies that g is
true, i.e., p = q is true.

In other words, what you have seen in this example is that for every
P q, p = q is true only when both p and g are true and the truth of ¢

follows from the truth of p . Otherwise, we cannot say that p implies ¢.

Remark 2: This is regarding the use of the terms ‘sufficient’ and ‘only if’. We
say ‘ p being true is sufficient for ¢ to be true’. This means thatif p= ¢ is

true, then it is enough to know that p is true, because automatically then ¢
will be true. Similarly, we say ‘ p is true only if g is true’, or ‘g being true is
necessary for p to be true’, when p = ¢ is true, because if g is not true,
then p cannot be true in this situation.

Consider an example.

Example 5: Check whether the two statements p = ¢ and ¢ = p are true,
where p:x=7 and g:e" =—1.

Solution: If we assume p is true, i.e., x=T7, then ¢’ =—1, that is, g is true.
*q does notimply p” So p= q istrue.
is symbolised as

X X Next, assume ¢ is true, that is, e™ =—1, i.e., cosx+isin x=—1.
q=+p

This happens when x = &, but also when x =3n,— 1, etc. So, p need not
follow from ¢ . Thus, g = p is not true. Thus, g & p.

*kk

Why don’t you try a related exercise now?

E7) Which of the following statements are true, and why?
) p=>q, W) p=>r, i) (pAr=-~gq,
iv) r= p,where
16
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p:V17eQ, ¢:172%, forany a,be Z,b#0, r:v/xeR, where x
b2

is a prime number.

In the example and exercise above, you noted that related to p = ¢ is the
implication ¢ = p . This is, in a sense, the ‘reverse’ implication. We have a
name for this ‘reverse’ implication, which you may already know.

Definition: The converse of the implication p = ¢ is the implication g= p .

Note that this also means that the converse of g = p is p = ¢, that is, the

converse of the converse of a given implication is the given implication
itself.

So, for example, the converse of ‘me Z =>me Q' is ‘me Q= me Z’ . Here,

you can see that the first implication is true, while its converse is false. (Why?)
However, consider the implication ‘ plab = pla or plb,where p,a,be Z

and p is aprime’. What is its converse? Isn’t it ‘If p,a,be Z ,where p isa
prime such that pla or plb,then plab’? In this case, the implication, and
its converse, are both true.

Now, what happens when we take the conjunction of an implication and its
converse? We denote ‘ p = ¢ and g = p’ by a shorter notation, p < ¢ . This

may or may not be a true statement. When it is true, we have the following
definition.

Definition: Let p and g be two statements such that the conjunction
(p=>q)~(g= p) istrue. Then p and g are called logically equivalent.
We alsoread ‘p < ¢ istrue’ as ‘ p is true if and only if ¢ is true’. We also

usually shorten ‘if and only if’ to iff.
In this case we also say that ‘ p being true implies and is implied by ¢

being true’, or * p being true is necessary and sufficient for g to be true’.

Let us consider some examples.

b
Example 6: Check whether ‘For a, b,ce R, .[X dx=ce b’ —a’=2¢"is true

or false.

b
Solution: Here p:jxdxzc for a,b,ce R, and g:b* —a’> =2c for a,b,ce R.

b
Now to check if p = ¢, we assume p is true. That is, .[xdx =c.
Then b*>—a’® =2c, thatis, g is true.

b
Conversely, assume g is true, thatis, b* —a”> =2c. Then J.x dx =c, that is,

p is true.
Hence p = g and g = p are both true. Thus p < ¢ is true.

*kk

Note that p < ¢ is the

sameas ¢ & p.
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Example 7: Give an example, with justification, of two statements A and B,
such that B= A is true but Aand B are not equivalent.

Solution: Let A: f is a continuous function on R, and

B: f is a polynomial over R..

Then B = A is true, since every polynomial is a continuous function.
However, A does notimply B, since if A is true then f can be any

continuous function, like the exponential function, etc. So it need not be a
polynomial. Hence, A = B s false. Therefore, A < B is false.

*k%

Here are some related exercises now.

E8) For each of the following compound statements, first identify the simple
statements p, g, r, etc., that are combined to make it. Then write it in

symbols, using the connectives, and give its truth value.
i) If the triangle ABC is equilateral, then it is isosceles.

i)  Thereal numbers a and b are integers if and only if ab is a
rational number.

i) Achildin India is in Class 1 or in Class 2 if she is 5 years old.

E9) Write down two statements p and ¢ for which p being true is
necessary for g to be true but p being true is not sufficient for ¢ to be
true.

Now we come to another important type of implication.
Consider the implication me Z = me Q. Now consider

~(me Q)= ~(me Z), thatis, mg¢ Q=>me Z.
So, given p = g, we have shown another related implication. Let us define
this.

Definition: The contrapositive of the implication p = ¢ is the implication
~qg=>~p.

Let us consider a simple example.

Example 8: Give the contrapositive of A= B, and the truth value of both the

implications, where
A: f:R—>R is monotonic on [a,b],

b
B:If(t)dt exists, where f:R — R and a,be R.

Solution: You know, from your course on Calculus, that A = B s true.
Now consider ~ B = ~ A.

b
~B: J.f(t)dt does not exist, where f:R— R and a,be R.

~A: f:R—>R isnot monotonic on [a, b].
Then ~ B= ~ A is also true.

*k%
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This example leads us to the following remark.

Remark 3: Note that p = ¢ and ~ g = ~ p are logically equivalent.
This fact is the basis of a method of proof you will study in Unit 2.

Try some exercises now.

E10) Write down the contrapositive of each statement given in E7. Also give
the truth values of the contrapositives.

E11) Give the converse and the contrapositive of p = g, where p is
‘f'R->R:f(x)=sinx’,and ¢q is ‘ f : R — R has a local extremum
at x=—m/2".

Let us now discuss another part of the language of mathematics.

1.4 LOGICAL QUANTIFIERS

Let me begin by asking you: Can all sentences be written in symbolic form by
using only the logical connectives you have just studied? What about
sentences like ‘x is prime for some x in N'? How would you symbolise the
phrase ‘for some x’, which we can rephrase as ‘there is an x’, or ‘there exists
an x’? You must have come across these phrases often while studying
mathematics.

We use the symbol ‘3’ to denote the quantifier, ‘there exists’. The way we
use it is, for instance, to rewrite ‘There is at least one child studying in Class 5
in India’ as

‘dx inU)p(x)’,

where p(x) is the sentence ‘ x is studying in Class 5 in India’ and U is the

set of all children.
Another example of the use of the existential quantifier is the true statement
‘dxe R suchthat x+1>0’, which is read as ‘There exists an x in R for

which x+1>0".

: 1 L
Yet another example is the false statement ‘dxe N s.t. x —3 =0, which is

read as ‘There exists an x in N for which x—% =0".

Now suppose we take the negative of the statement about Class 5 children,
given above. Wouldn't it be “There is no child studying in Class 5 in India’? We
could symbolise this as for all x in U, g(x)’, where U is the set of all
children and g(x) denotes the sentence ‘x is not studying in Class 5 in India’,
i.e., g(x) is the same as ~ p(x).

We have a mathematical symbol for the quantifier ‘for all’ or ‘for every’,
which is ‘V°.

So the statement above can be written as

‘(VxeU)q(x)’,or‘q(x),VxeU".

Another example of the use of the universal quantifier is
‘V x¢ N, x* > x’, which is read as ‘for every x which is not a natural number,

2 )
X >Xx.

The contrapositive of an
implication is NOT the
same as its converse.

3 is called the
existential quantifier.

‘There exists’ means
‘there is at least one’.

V is called the
universal quantifier.
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Of course, this is a false statement, because there is at least one x¢ N, xe R,

for which it is false, for example, x =%.

We often use both quantifiers together, as in the statement,
‘For every rational number x, there is a rational number lying strictly between

x and x+1".

In symbols, thisis (Vxe Q)(Fye Q)(x<y<x+1).

What would the negation of this statement be? It would be ‘There is a rational
number x such that there is no rational number lying strictly between x and

x+1.

In symbols, this is

Gxe Q(Vye Q) (yelx,x+1]).

This is according to the following rules for negation that relate vV and 3.

The two rules are
i) ~(VxeU)p(x) is equivalentto (3xe U) (~ p(x)), and
ii) ~((3Jxe U)p(x) is equivalentto (Vxe U) (~ p(x)),

where U is the set of values that x can take.

So far you have seen some examples in which the quantifiers occur singly, or
together. Sometimes you may come across situations where you would use 3
or V twice or more in a statement. It is in situations like this, or worse, [say,
Vx eU) 3x,eU,)@x,eU,)(Vx,€U,)...Ax, € U,)p], where our

rules for negation come in useful. In fact, applying them, in a second we can
say that the negation of this seemingly complicated statement is

Ax, eU)(Vx,eU,)(Vx,eU,)@x,eU,)...Vx, eU,)(~ p).

Consider an example.

Example 9: Write the following statement, and its negation, using logical
quantifiers. Also interpret its negation in words.

‘Given £ >0, thereisa d >0 s.t. | x> —1l<ewhenever | x—11<J".

Solution: The given statement says that for each positive real number &,
there is a positive real number ¢ for which, whenever | x—11< J is true then

| x> —11< € is true. We could write this in symbols as

(Ve>0)30>0) (Ix—1l<d=1x"~1l<¢).

What would its negation be? It would be

~[(Ve>0)3Fo>0) (Ix=1l<o=lx* =11<8)],

which is equivalent to

@e>0) (V>0 [~(x—-1I<F=lx—1I< ).

That is, there isan £ >0 s.tforevery § >0 and xe R satisfying | x—11< 9,

we cannot conclude that | x* =11 < &;
that is, there is an £ >0 for which no ¢ >0 has the property that
Ix—1ll<o=1x*-1l<e.

*kk

In the example above, you would have realised that the given statement says
that hn} (x*) =1, and its negation states that lim x* #1.

x—l
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Why don’t you try an exercise now?

E12) How would you present the following statements, and their negations,
using logical quantifiers? Also interpret the negations in words.

i) Some people can fool all other people all the time.

i)  Every real number is the square of some real number.

iii) (cos@+isin@)" =cosnf@+isinnd, where 8 R, ne Z.

And finally, let us look at a very useful quantifier, which is closely linked to 3.
You would need it for writing, for example, ‘There is one and only one key that
fits the given desk’s lock’, in symbols.

We use the symbol ‘3!’ to denote ‘there is one and only one’. The way we

use it is, for instance, to write the statement above as ‘(3 !xe A) p(x)’, where
p(x) is the sentence that x fits the desk’s lock, and A is the set of keys.

The phrase ‘there is one and only one x’ means that there is at least one x
satisfying the given condition, and there is only one such x.

We alsoread ‘4! xe A’ as ‘there is a unique x in A’ or ‘there is exactly
one x in A’

For other examples, try and recall the statement of uniqueness in the
mathematics that you’ve studied so far, for example,

‘There is a unique circle that passes through three non-collinear points in a
plane’.

How would you represent this in symbols? If x denotes a circle, and y
denotes a set of 3 non-collinear points in a given plane, then the statement is
(V ye P)(d!xe C) (x passes through y).

Here C denotes the set of circles in a given plane, and P denotes the set of
sets of 3 non-collinear points in the same plane.

And now, a short exercise for you!

E13) Which of the following statements are true (where x, y are in R) ? Give
reasons for your answers.

) VxeR,x>0,3!'yeR st y’=x
i) VxeR,3!yeR st y*=x
iy JxeR,3!yeR st xy=0
iv) ~@3xeC) @ 'yeC) (x+y=0).

What you have studied so far is the essence of communicating mathematical
ideas, using the universal language of mathematics. In the next unit you will
see how essential this is for the core of mathematical thinking. For now, let us
summarise what you have studied in this unit.

1.5 SUMMARY

In this unit, we have considered the following points:

1.  What a mathematical statement is.
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2.  The definition, and use of, logical connectives:
Given statements p and g,

i) their disjunction is “ p or ¢’, denoted by p v g;
pVvq istrueif p istrue, or g is true, or both p and g are true.

ii) their conjunctionis ‘ p and ¢’, denoted by p A g;
p A q istrue only when both p and g are true.

i)  the negation of p is ‘not p’, denoted by ~ p;
p istrueif and only if ~ p is false.

iv)  ‘if p,then ¢’ is denoted by p = g;
~(p=q) is equivalentto (pA ~ q).

V) ‘p ifand only if ¢’ is denoted by p < ¢;
in this case, p and g are logically equivalent.

3.  Logical quantifiers: ‘For every’, denoted by ‘V’; ‘there exists’, denoted by
‘3’; and ‘there is one and only one’, denoted by ‘3 !".

4.  The rules of negation related to the quantifiers:
~(V xeU)p(x) is equivalentto (3 xe U) (~ p(x)),

~(@xeU)p(x) is equivalentto (V xe U) (~ p(x)).

In the next section, we give solutions to the exercises of this unit. You should
have tried to solve the exercises yourself before looking at these solutions.

1.6 SOLUTIONS / ANSWERS

E1) i) This is not a statement, since it is not even a sentence. It is only an
expression.

ii) This is a statement, and is true since, for example,
3000 - (0)+(-1.5)+2=0.5.

i) This is a mathematical statement since it is a sentence which is
always false.

iv) This is not a statement, since we cannot decide whether it is true or
false, as we do not know what y is.

v) This is a question, not a sentence, and hence not a statement.

vi) This is a true statement.

E2) (2+3=T7)v l<l is true since l<l is true.
5 4 5 4

E3) i) Here both p and g need to be false. So, let’s take
p: Every real-valued function is continuous on R,
q: The greatest integer function is derivable at every point of R.
Since both p and ¢ are false, pv g is false.

i) Take p asin (i) above, and
q: f:R->R: f(x)=0 is well-defined.

Since ¢ is true, pv q is true.
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E6)

E7)

E8)

E9)

E10)

pAq istrue only when p istrue and ¢ is true. Here, p A g will be true
for every xe{re R|r>-2,r #4}.

The example in E3 (ii) works here since p v ¢ is true, but p A g is false
(because p is false — e.g., the greatest integer function is not
continuous on R).

i) ~(0-=5#5) is (0—5=5), which is false.

i) ~(n>2forevery ne N) is (there is some ne Ns.t.n<2), which is
true.

i) “There is a human being who cannot walk’, which is true.
iv)' f:R—>R: f(x)=2x is not a periodic function’, which is true.
V) x¢ {(x22Ax<3) v (x<2Ax>3)}

Sxe{2<x<3}Axeg
< x¢[2,3[, by De Morgan’s laws.

i) p=q istrue, sinceif p is true then V17 cannot be written in the
2
form %, by definition, and hence 17 ;tZ—z forany a,be Z,b # 0.

ii) This is false, since V17, being irrational, does not tell us about where
Jx liesfor x#17.

i) False, since p Ar is true but ~ g is false.

iv) False, since V17 € R does not imply that V17 is irrational.

i) p:AABC isequilateral, g: AABC is isosceles.
p=q is true.

i) p: a and b areintegers, g: abe Q, where a,be R.
p < q is false since g does notimply p. For example,

[lj [ije Qbuttez, ez
2)\ 3 2 3
i) p:x is a5-year-old child in India.

q:x is a child in Class 1 or Class 2.

p = q is true, as per the Right to Education Act.

We need to consider p and ¢, where g = p, p# q.

For example, take ¢:x+5=x, where xe R.

p:xe R\Q.

Then g = p, but p % ¢ since every irrational number is not 7 —5.

2
i) ~g= ~ p, thatis, ‘if there are a,be Z, b #0 such that 17 :a—z,
b

then +/17e Q’. This is true.
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i) ~r= ~ p, thatis, ‘if there is a prime number x with Jxe R, then

NIGE Q’, which is false. Here ~ r is false, and ~ p is false. Hence

~r= ~ p is false.
2
i) g= ~(pAr), thatis, g=(~ p v ~r), thatis ‘if 17 ;tZ—Z for any

a,be Z,b+0, then \/ﬁe Q or \/;95 R for some prime number x’.
This is false.

iv) ~ p= ~r, thatis, ‘if JV17e Q, then there is a prime number x for

which V/x¢ R’
This is false.

E11) The converse is ¢ = p, thatis, ‘if f has a local extremum at x=-7/2,
then f(x)=sinx’.
The contrapositive is ~ g = ~ p, thatis, ‘if f:R — R does not have a
local extremum at x = —n/2, then f(x)#sinx forsome xe R".

E12) i) (3xe P) (Vye A) (xcanfool y), where P is the set of human
beings, and Ais the set P\ {x}.
lts negation is (Vxe P) (3 ye A) (xcan't fool y), that is, ‘For every

person, there is some other human being who cannot be fooled by
him/her’.

i) (VxeR)@yeR) (x=y").
The negation is (xe R) (Vye R) (x# y?), thatis, ‘There is a real
number which cannot be written as the square of any real number’.

i) (Ve R) (Vne Z)[(cosf+isin@)" =cosnf+isinnf].
The negation is
(30 R) (dne Z)[(cos@+isinB)" #cosnb+isinnd],
that is, for some real number 8 and integer n,

(cos@+isin @)" #cosnf+isinnb.

E13) i) True, since y=\/;, and hence is unique.

i) False, for example, for x=—1,there isno ye R such that y* = x’.
i) True, for x#0, only y=0 satisfies xy =0.

iv) The given statement is ‘for every xe C, there is no unique ye C for
which x+y=0".
This is false, since for each xe C, 3 y =—x, which is unique, such
that x+ y=0.
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MATHEMATICAL REASONING

Structure Page Nos.
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Indirect Methods
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2.4 Principle of Mathematical Induction 35
2.5 Summary 42
2.6 Solutions / Answers 42

2.1 INTRODUCTION

In the previous unit, you studied about the different components of the
language of mathematics. In this unit, you will see how these play a
significant role in proving a mathematical statement. Here you will also
see that the concept of a mathematical proof is the core of
mathematics.

To start with, in Sec.2.2, we will discuss what constitutes a proof. You
will see how the statements that make up a proof are very carefully put
together, in a well-defined reasoned way.

In the next two sections, Sec.2.3 and Sec.2.4, you will study different
methods of proof. The variety in the methods comes from the kind of
reasoning used, as you will see. You will also see that some statements
can be proved by several diferent methods. Practice and experience
helps one to decide which method of proof is best for the particular
situation.

You should study this unit very carefully since it forms the basis of all
the mathematics you will study. Throughout the unit you will be studying
several examples. You will also get ample opportunity to create proofs,
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In the next section you
will read about some
ways of disproving a
statement.
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while doing the exercises. Please solve these exercises as you come to
them. This will help you decide whether you have really understood
what you have studied till that point.

The specific learning objectives of this unit now follow.

Objectives

After studying this unit, you should be able to:

o explain what a ‘theorem’, ‘proof’ and ‘disproof’ is;
o describe, and apply, the direct method of proof;

o describe, and apply, the methods of proof by contrapositive and proof by
contradiction;

o explain what a counterexample is, and how it can be used to disprove a
statement;

o state, and apply, both forms of the principle of mathematical induction.

2.2 WHATIS A PROOF?

Suppose | tell somebody, “| am stronger than you.” The person is quite likely
to turn around, look menacingly at me, and say, “Prove it!” What she or he
really wants is to be convinced of my statement by some evidence. (In this
case it would probably be a big physical push!) Convincing evidence is also
what the world asks for before accepting a scientist’s prediction, or a
historian’s claim.

In the same way, if you want a mathematical statement to be accepted as true,
you would need to provide mathematically acceptable evidence to support it.
This means that you would need to show that the statement is universally
true. And this would be done in the form of a ‘logically valid proof’.

Let us see what a proof is.

Definitions: i) A proof of a statement p is a finite sequence of statements

p,» ..., p, suchthat p follows logically from p, Ap, A...Ap, , €.,
(PyAPyAAD)= P

Each p,,fori=1, ..., n,is called a premise (or an assumption, or a
hypothesis).

i)  The statement p that is proved to be true is called a theorem.

i) A disproof of a statement p is a proof of (~ p), or a proof that shows
that p is false.

Let’s consider an example of a proof:

Example 1: Prove the statement ‘For any two sets A and B, AnNBcC A’.

Solution: One proof could be the following:
If AnMB=(,then AnBc A (since every set contains ().
If AnB =@, then let x be an arbitrary element of AN B.

Then xe A and xe B (by definition of ‘N’).
Therefore, xe A.



This is true for every x in AN B, since x was chosen arbitrarily.
Therefore, AN B < A, by definition of ‘c’,

*kk

Why don’t we analyse the argument in Example 17 The truth of each of the
premises, and hence of its conclusion, follows from the truth of the earlier
premises in it. We start by considering both possibilities.

In the first case, we get p=> ¢, where p is'ANB=(",and q is
‘ANBCA’.

In the second case, we again assume that the first statement is true. Then,
assuming the definition of ‘intersection’, the second statement is true. The third
one is true, whenever the second one is true because of the properties of
implication. The fourth statement is true whenever the first three are true,
because of the definition and properties of the term “for all’. And finally, the last
statement, which is the statement to be proved, is true whenever all the earlier
ones are true. In this way, we have shown that the given statement follows
logically from the sequence of previous statements, and hence, is true. In
other words, we have proved the given statement.

Sometimes it happens that we feel a certain statement is true, but we don’t
succeed in proving it. It may also happen that we can’t disprove it. Such
statements are called conjectures. If and when a conjecture is proved, it
would be called a theorem. If it is disproved, then its negative will be a
theorem!

In this context, there’s a very famous conjecture which was made by a
mathematician Goldbach in 1742. He stated that:

Forevery ne N, if n is even and n > 2, then n is the sum of two primes.
To this day, no one has been able to prove it or disprove it, though it appears
simple to do. To disprove it several people have been hunting for an example
for which the statement is not true. They have been looking for an even
number n > 2 such that n cannot be written as the sum of two prime
numbers.

There is no knowing how long it may take to turn a conjecture into a theorem,
or to disprove it! A very important conjecture pertaining to topology, due to the
famous French mathematician Henri Poincaré, was proved 100 years after it
was made. The proof was by the Russian mathematician Grigori Perelman.

Now, as you have seen, a mathematical proof of a statement consists of one
or more premises. These premises could be of four types:

i) a statement that has been proved earlier (e.g., In Unit 5, Block 1 of the
course, Calculus, you have seen that to prove that the complex roots of
a polynomial in R[x] occur in pairs, the division algorithm is used, which
was proved earlier in the same unit.); or

i)  a statement that follows logically from the earlier statements given in the
proof (as you have seen in Example 1); or

i)  a mathematical fact that has never been proved, but is universally
accepted as true (e.g., two points determine a line uniquely) — such a
fact is called an axiom (or a postulate); or

iv)  the definition of a mathematical term (e.g., assuming the definition of ‘c’
in the proof of AN B < A in Example 1).

You will come across more examples of each type while doing the following

See www.claymath.org/
millennium-problems

for a brief overview of
some famous conjectures
and their background.
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exercises, and while studying and creating proofs in this course, and in other
courses.

E1) Write down an example of a theorem, and its proof (of at least 4 steps),
taken from the first or second semester courses you have studied. At
each step, indicate which of the four types of premise it is.

E2) Is every statement a theorem? Why, or why not?

So far we have spoken about valid, or acceptable, proofs. Let us now look at a
few erroneous proofs. So, what is NOT a proof? Here are a few examples.

1)  One ‘proof’ submitted by a student for ‘An B < A, for any two sets A
and B’ is:
Let A={1,2,3}, B={3,4,5},then AnB={3}.So AnBCA.

Let’s see why this is not an acceptable proof. We want to prove a
general statement, for any two sets A and B . But this student has only
proved it for one particular case. So it has not been proved for every A
and B . Therefore, this is not acceptable as a proof.

3x

X —

2)  Another student began a proof for * f : R\ {2} - R\{3}: f(x)= is
1-1" as follows:

Since f(x)= 3x

is1-1,....

This is not right because the student is assuming what is to be proved,
instead of arriving at it by starting from the definition of f and the

definition of a 1—1function.

There are several other errors that we must avoid to ensure that the proof we
give is correct. You will realise some of them as you go through this unit and
this course.

Why don’t you check a proof for validity now?

E3) Check whether or not the following proof is acceptable.
Statement: If 7' is a set containing an infinite set §, then S #T.
Proof: § is an infinite set.

T is a set containing S.
Therefore, VteT,dse S s.t. s #t.

Hence, S #T.
[Also see E11(i).]

E4) Prove the statement‘f:R —> R: f(x)=3x-5 is onto’.

You have seen that a proof of a statement is a logical argument that verifies
the truth of that statement. There are several ways of proving a theorem, as
you will see in the next two sections.

2.3 DIFFERENT METHODS OF PROOF

In this section we shall consider three different broad strategies for proving a
statement. We will also discuss a method that is used only for disproving a
statement.



2.3.1 Direct Method

This form of proof is based entirely on the argument that starts with a true
premise and arrives at the required conclusion. Let us formally spell out the
strategy.

Definition: A direct proof of p = ¢ is a logically valid argument that begins
with the assumption that p is true. Then, in one or more steps of the form

P=4q,, 49, =4q,,...,q, = q, we conclude that ¢ is true.

Consider the following examples.

Example 2: Give a direct proof of the statement “The product of two odd
integers is odd’.

Solution: Let us clearly analyse what our hypotheses are, and what we have
to prove.
We start by considering any two odd integers x and y. So our hypothesis is

p:x and y are odd integers.

The conclusion we want to reach is

q:xy is odd.

Here is the argument:

x=2m+1 for some integer m (by definition of an odd number).
Similarly, y=2n+1 for some integer n.

Therefore, xy=2m+1) 2n+1)=2C2mn+m+n)+1.
Therefore, xy is odd.
So we have shown that p = ¢, using three premises.

*kk

Example 3: Give a direct proof of the theorem ‘| x+ yI<I x|+ yIVx,yeR".
Solution: First of all, we note that there are three possibilities for x and y:

i) either one of them is zero,
i)  both are positive or both are negative,

i) one is positive and one is negative.
Let us prove the statement for each of these cases.

Case 1: Suppose x=0. Then | xI=0 also.
Sodx+yl=lxl+lyl

.. The given statement is true.

In the same way, the statement is true if y=0.

Case 2: Suppose x>0, y>0.ThenIxl=x,lyl=y and | x+yl=x+y.
Hence [ x+ yl=IxI+Iyl.

Similarly, if x<0, y<0,thenlxl=—x,lyl=—y and lx+yl=—(x+y).
Solx+yl=lxl+1yl.

.. The given statement is true.

Case 3: Suppose x<0, y>0.Thenlxl==x,lyl=1y.
Now, if x+y=>0, then

Ix+yl=x+y
29
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<—x+y,since x<0
=lxI+lyl
Solx+yl<lxl+Ilyl.

Next, suppose x+ y<0. Then
Ix+yl=—(x+y)=(x)+(—y)<—x+y=Ilxl+1yl, since y>0.
Solx+yl<lxl+Ilyl.

Sdx+yl<Iixl+1yl.

Similarly, if x>0, y<0, Ix+yl<IxI+1yl, i.e., in this case too, the given
statement is proved to be true.

*kk

In the example above, note that we have proved the statement for every x
and y since we have treated x and y as arbitrary real numbers, and not

having a particular value.

Why don’t you try an exercise now?

E5) Give a direct proof of the following statements:

i) Foranytwosets A and B, (ANB)  =A° UB"“.

i) f:R>R:f(x) :—g is monotonic on ]0,3[ (ref. Unit 6, Calculus).

Let us now consider two proof strategies that are different from the approach
you have just studied.

2.3.2 Indirect Methods

In this sub-section we shall consider two roundabout methods for proving
P=4q.

PROOF BY CONTRAPOSITIVE:

Recall that the In this method, we use the fact that the statement p = ¢ is logically
contrapositive is not equivalent to its contrapositive (~ ¢ = ~ p).
the converse. Because of this equivalence, to prove p = ¢, we can, instead, prove

~ g = ~ p. This means that we can assume that ~ ¢ is true, and then try to
prove that ~ p is true. In other words, what we do to prove p = ¢ in this
method is to assume that ~ ¢ is true, that is, ¢ is false, and then show
that p is false. Then ~ p will be true.

So, you see how roundabout a way this is to prove p = ¢ . This is why it is
called an indirect method of proof. Let us consider an example.

Example 4: Prove that ‘If x, ye Z such that x and y are odd, then xy is
odd’, by proving its contrapositive.

Solution: Let us name the statements involved as below.

p: both x and y are odd integers,

g : xy is an odd integer.

So, ~ ¢g: xy is even, and

30 ~ p:x iseven,or y is even, or both are even, for x, ye Z.



We want to prove p = ¢, by proving that ~ g = ~ p.
So we start by assuming that ~ q is true, i.e., we suppose that xy is even.
Then xy =2n for some ne N.

Therefore, 2)xy.

Therefore, 2/x or 2|y (by definition of a prime number).
Therefore, x is even, or y is even, or both are even.
Thatis, ~ p is true.

So, we have shown that ~ g = ~ p. Therefore, p = g.

*kk

This example leads to the point made in the following remark.

Remark 1: What you have proved in Example 4 by an indirect method, has
been proved by the direct method in Example 2. Thus, sometimes a statement
can be proved in several ways. It is for you to decide which is the best way to
use in a given situation.

Consider another example.

Example 5: Prove, by the method of contrapositive, that if A, B,C are three
non-empty sets such that AXC < BXC,then ACB.

Solution: The contrapositive of the given statement is ‘if A and B are non-
empty sets such that A & B, then for any non-empty set C,AXC & BXC"'.

To prove this, we assume that A« B . So thereis an a€ A such that a¢ B.
Now, take an arbitary non-empty set C. Then (a,c)e AXC, where ce C, but
(a,c)¢ BXC . So, by definition, AXC & BxC . Thus, the contrapositive is
proved. Hence the given statement is proved.

*kk

Why don’t you try some related exercises now?

E6) Write down the contrapositive of the statement, ‘If f isa 1—1 function
from a finite set X into itself, then f must be surjective.’ Also, prove
the contrapositive, and hence prove the given statement.

E7) Prove the statement ‘If A,B are non-empty sets such that A B, then
for any non-empty set C, AXC < BXC’, by proving its contrapositive.

And now let us consider another way of proving a statement indirectly.

PROOF BY CONTRADICTION:

In this method, to prove that a statement ¢ is true, we start by assuming that
q is false (i.e., ~ g is true), as in the previous method. However, here we now

use a logical argument to arrive at a situation where some statement is true as
well as false.

For example, to prove ‘ x” is even whenever x is an even integer’, we start by
assuming that x* is not even for some even integer x. Since x’ is not even,

2’|’x2. Hence 2/|’ x. But we started with assuming x is even. So, we reach a
contradiction, namely, ‘ x is an even integer’ and ‘ x is not an even integer’.
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This can only happen if our original assumption is wrong. That is, ‘x* is not
even’ is false. Hence, ‘ x° is even’ is true.

So in this method, we reach a contradiction rA ~ r for some statement r.
This means that the truth of ~ g (that we started with) logically leads us to a

contradiction, a situation that cannot be. This can only happen when our
assumption is wrong, that is, ~ g cannot be true, that is, ~ ¢ is false.

Therefore, g must be true.

This method is called proof by contradiction. It is also called reductio ad
absurdum (a Latin phrase) because it relies on reducing a given assumption
to an absurdity. It is said to have been discovered by ancient Greek
mathematicians. Let us consider some more examples of how this method is
applied.

Example 6: Prove that /5 is irrational.

Solution: Here ¢: V5 is irrational.

To prove the given statement by contradiction, assume ~ ¢ is true, that is, V5
is rational. By definition of a rational number, there exist positive integers a

and b such that \/— :%, where a and » have no common factors.

s.a =\/§b
s.a? =5b*
~51a?

~.5la, since 5 is a prime number.

s.a=5c forsome ce Z.

~a’=25¢2

~.25¢* =5b*,since a* =5b*.

~5¢*=b*

15| p*

~.51b, since 5 is a prime number.

Hence, 5 divides both a and b, which contradicts our earlier assumption that
a and b have no common factor.

Therefore, our assumption that /5 can be written as %, where a and b

have no common factors is false, i.e., ﬁ is irrational.

*kk

Example 7: Prove that the greatest integer function, f:R > Z: f (x) =[x], is
not continuous at any integer.

Solution: Let us assume that f is continuous at some integer k. Then,

lirrlg f(x)=k, thatis, hmk [k]=k.So,for e=1,36 >0 s.t. for

Ix—kl<d,| f(x)—f(k)I<1,thatis, | f(x)—klI<]I.

Now, choose ¢, = min (J,1) and x,e k-0, k[ .

Then f(x,)=k—1.8o, | x,—kl<d, (where 6, <d)and | f(x,)—kl=1,
which contradicts the premise that | f (x)— f (k)| <1 whenever | x—k|< .

Hence, our assumption must be wrong.
Thus, f is not continuous at k.



Since k is an arbitrarily chosen integer, f is not continuous at any integer.

*kk

We can also use the method of contradiction to prove an implication r = s.
Here we can use the fact that ~ (r = ) is logically equivalent to rA ~ 5. So,
to prove r = s, we can begin by assuming that r = s is false, i.e., r is true
and s is false. Then we can present a valid argument to arrive at a
contradiction. Consider the following example from plane geometry.

Example 8: Prove that if two non-parallel lines L, and L, intersect, then their
intersection consists of exactly one point.

Solution: To prove the given implication by contradiction, let us begin by
assuming ~ (r = s) is true, that is, rA ~ s is true, where

r: L, and L, are two non-parallel lines, and

s: L, and L, intersect in one point only.

So, we assume ~ s is true, that is, the two non-parallel lines L, and L,
intersect in more than one point. Let us call two of these distinct points A and
B. Then, both L, and L, contain A and B. This contradicts the axiom from
geometry that says ‘Given two distinct points, there is exactly one line
containing them.’

Therefore, our assumption is wrong, that s, if L, and L, intersect, then they
must intersect in only one point.

*kk

The method of proof by contradiction is also used for solving many logical
puzzles, by discarding all solutions that lead to contradictions. Consider the
following example.

Example 9: There is a village that consists of two types of people — those who
always tell the truth, and those who always lie. Suppose that you visit the
village and two villagers A and B come up to you. Further, suppose

A says, “B always tells the truth.” (1)
And B says, “A and | are of opposite types.” ...(2)
What types of people are A and B?

Solution: Let us start by assuming A is a truth-teller, that is, what A says is
true.

This implies that B is a truth-teller, using (1).

So, what B says is true.

This implies that A and B are of opposite types, using (2).

So we reach a contradiction, because our premises say that A and B are
both truth-tellers.

.. The assumption we started with is false.

- A always tells lies.

.. What A has said is a lie, that is, ‘ B always tells the truth’ is a false
statement. That is, B lies sometimes. But, if a person in the village lies, then
she always lies.

. B always tells lies.

.. A and B are of the same type, i.e., both of them always lie.

*kk

Here are a few exercises for you now. While doing them you would realise that
there are situations in which all the three methods of proof we have discussed
so far can be used.
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E8) Use the method of proof by contradiction to show that V17 is irrational.
E9) If you apply the ‘proof by contradiction’ method to prove the following
statements, what is the assumption you would start with?

i) If f and g are two real valued functions over R, such that
g(x)= f(x)Vxe R and f is not bounded above, then g is not
bounded above.

i) For ne N, n>2,there do not exist positive integers x,y,z such
that x" +y" =27".

E10) Prove, by contradiction, that lin%(x2 - =-1.

Let us now consider a way of showing that a statement is false.

2.3.3 Counterexamples

Suppose | make the statement ‘All human beings are 5 feet tall’. You are quite
likely to show me an example of a human being standing nearby for whom the
statement is not true. Similarly, to prove that (Vx) p(x) is false, we need to
prove ~[(V x)p(x)] is true, that is, (3x) (~ p(x)) is true (see Sec.1.4). Thus,
we need only one x that satisfies ~ p(x). This x is an example of what we
now define.

Definition: An example that shows that a statement is false is a
counterexample to the given statement. (The name itself suggests that it is
an example to counter a given statement.)

A common situation in which we look for counterexamples is to disprove
statements of the form p = ¢. For instance, to disprove the statement ‘If n is
an odd integer, then n is prime’, we need to look for an odd integer which is

not a prime number. For example, 15 is one such integer. So, n=15 is a
counterexample to the given statement.

Notice that a counterexample to a statement p proves that p is false, i.e.,
~ p is true.

Let us consider another example.

Example 10: Disprove the statement, ‘For a,be R,a”> =b> implies a=b".

Solution: In symbols, the given statement is
(VaeR)(VbeR)[(a’>=b*)= (a=b)].

To disprove this statement, we need to prove its negation, namely,
(FaeR) 3beR) (a’> =b* with a #b) . So, we need to look for a

counterexample, that is, a pair of real numbers a and b for which a* =b? but
a # b. Can you think of such a pair? What about a =1 and b =-1? They
serve the purpose.

In fact, there are infinitely many counterexamples for the given statement.
Think of at least five others.

*kk

Now, an exercise!



E11) Disprove the following statements by providing a suitable To disprove p & ¢ itis
counterexample each. enough to prove that

i) If T is a set containing an infinite set S, then S #T. (Also see E3.) P=4q ?S false or
q = p is false.

i) (x+y)'=x"+y"VneN, x, yeZ.
i) f:N—>Nis1-1iff f isonto.

iv) If f:]R—>]R:jf(x)dx exists, then f is continuouson R.

There are some other strategies of proof, like a constructive proof, which you
will come across later in this course and in other mathematics courses. We
shall not discuss this method here. However, we will now discuss a very
important technique of proof for sentences that are of the form p(n), ne N.

2.4 PRINCIPLE OF MATHEMATICAL INDUCTION

In a discussion with some students the other day, one of them told me that
girls are better than boys at studies. | asked him how he had reached such a
conclusion. As an argument he gave me instances of several girls who had
topped their class in their exams. What he had done was to formulate his
general opinion of girls on the basis of several particular instances. This is an
example of inductive logic, a process of reasoning by which general rules are
discovered by the observation of several individual cases. Inductive reasoning
is used in all the social sciences and sciences, including mathematics. But in
mathematics we use a more precise form.

Precision is required in mathematical induction because, as you know, a
statement of the form (V ne S)p(n), where § C N, is true only if it can be

shown to be true for each n in §. (In the example above, even if the student
is given an example of one girl who is not good at studies, he is not likely to
change his general opinion.)

Here p(n) is not a statement because we don’t know if it is true or false
unless we know the value of the variable n . We define such a sentence now.

Definition: A predicate is a sentence of the form P(x), depending on a
variable x, such that P(x) may be true for some values of x, and false for
some values of x. For a given value of x, P(x) becomes a statement.

For example, if P(n): n!<?2", ne N, then P(l), P(2),P(3) are true, but P(4)
is not true. So P(n) is a predicate, but P(1), P(2), ..., P(100), ... are all
statements.

So, let us come back to seeing how we can make sure that the predicate p(n)

is true for each n that we are interested in. To answer this, let us consider an
example.

Suppose we want to prove that
n(n+1)

1+243+---+n= foreach ne N. ...(3)

_ n(n+1)

Let p(n) denote the predicate ‘1+2+---+n ". Now, we can verify
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that it is true for a few values, say, n=1, n =5, n =10, n =100, and so on.

But we still can’t be sure that it will be true for some value of n that we haven’t
checked for.
However, suppose we can show that whenever p(n) is true for some n, n=k%

say, then it will be true for n =k +1. Then we are in a very good position
because we already know that p(1) is true. And, since p(l) is true, so is
p(1+1), i.e., p(2), and so on. In this way we can show that p(n) is true for
every ne N. So, our proof boils down to two broad stages, namely,

i) Checking that the statement p(1) is true;

i) Proving that whenever the statement p(k) is true, then the statement
p(k +1) is true, where ke N.
This is the principle that we will now state formally, in a more general form.

Principle of Mathematical Induction (PMI): Let p(n) be a predicate
involving a natural number n. Suppose the following two conditions hold:

i) p(m) is true for some me N;

i)y If p(k) istrue, then p(k+1) is true, where k(=m) is an arbitrary natural
number.
Then p(n) is true for every n > m. [ |

Looking at the two conditions in the principle, can you make out why it works?
(As a hint, put m =1 in our example above, of the sum of the first n natural
numbers.)

Well, (i) tells us that the statement p(m) is true. Then putting k = m in (ii), we

find that p(m+1) is true. Again, since p(m+1) is true, p(m+2) is true, and
SO on.

Going back to the (3) above, let us complete the second step.

e p(k) is true, i.e., 1+2+---+k = k(k2+ 1)

We want to check if p(k+1) is true. So let us find
1+2+-+k+D)=0+2+--+k)+(k+1)

_ k(k+1)

+(k +1), since p(k) is true

_(k+1) (k+2)

- 2
So, p(k+1) is true.
Hence, by applying the principle of mathematical induction, we find that p(n)
is true for every ne N.

What does the PMI really say? It says that if you can walk a few steps, say m
steps, and if at each stage you can walk one more step, then you can walk
any distance. It sounds very simple, but you may be surprised to know that the
technique in this principle was first used only as late as the 16" century by the
ltalian mathematician and astronomer, F. Maurolycus (1494-1575). He used it

toshowthat 1+3+.--+(2n—-1)= n*Vne N. The mathematician, Pierre de

Fermat (1601-1665), improved on the technique and proved that this principle
is equivalent to the following often used principle of mathematics.



The Well-ordering Principle (WOP): Any non-empty subset of N contains a

mall ri lement. |
smallest (0 eaSt) element The modern form of the

You may be able to see the relationship between the PMI and the WOP if we fﬁlcvevstsuf;%;:ﬁg in the

reword the PMI in the following form. mathematicians De

Morgan, Peano, Boole and
Principle of Mathematical Induction (Equivalent form): Let S < N be such Dedekind.

that
i) me S,

ii) foreach ke N, k > m, whenever ke §, then k+1e S.
Then S ={m, m+1, m+2, ...}. |

Can you see the equivalence of the two forms of the PMI? If you take

S ={ne Nl p(n) is true},

then you can see that the way we have written the principle above is a mere
rewrite of the earlier form.

Now, let us consider an example of a proof using PMI.

Example 11: Use mathematical induction to prove that

P42 432 4ot :g(n+l) (2n+1),V ne N.’

Solution: We will denote the predicate
12 +224+32 4412 =§(n+1) (2n+1) by p(n).

Since we want to prove p(n) is true for every ne N, i.e., V n 21, we take
m=1 in PML

Step 1: p(l) is 1 :é(1+l) (2+1), which is true.

Step 2: Suppose, for an arbitrary ke N, p(k) is true, i.e.,
PP +2% 4+ +k> :g(kﬂ) (2k +1) is true.

Step 3: We need to check if the assumption in Step 2 implies that p(k +1) is

true.

pk+1) is 12+22+-~-+k2+(k+1)2:%(k+2) (2k +3)
2 A2 ) »  k+1 .
ST +2°++k)+(k+1)" =——(k+2) 2k +3) Note the use of < in
6 the proof.

<:>§(k+1) 2k +1)+ (k+1)° :%(k+2) (2k +3), since p(k) is true.

@%[k(2k+1)+6(k+1)] :%(k+2) 2k +3)

& 2k* + Tk + 6= (k +2) (2k +3), dividing throughout by %

This is a true statement.
So, p(k) is true implies that p(k+1) is true.

So, both the conditions of the principle of mathematical induction
hold.
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used for proving Step 3.

You studied this in
Block 3 of BMTC-131.
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Step 4: Therefore, its conclusion must hold, i.e., p(n) is true for every ne N.

*k%

Have you gone through Example 11 carefully? If so, you would have noticed
that the proof consists of four steps:

Step 1 (The basis of induction): Checking if p(m) is true for some me N.

Step 2 (The induction hypothesis): Assuming that p(k) is true for an
arbitrary ke N, k >m.

Step 3 (The induction step): Showing that p(k +1) is true, by a direct, or an
indirect, proof.

Step 4 (Conclusion): Hence concluding that p(n) istrue V n>m.

Now consider an example related to a formula you have applied several times
in the course, Calculus.

Example 12: Prove the Leibniz formula: Let # and v be functions from R to
R, having derivatives up to the nth order. Then, for every ne N,

)™ = z "Cu" My ...(4)
i=0

Solution: Let P(n) be the given predicate, (4).

Step 1: You know that (uv) =uv" +u'v.
So P(1) is true.

Step 2: Now assume that P(k) is true, for some ke N.

Step 3: Now, we want to prove that P(k +1) is true.
So, (uv)*™

’

k
=[] = {z ¢ Ciu(k_’)v“)} , where " =u, v¥ =v.
i=0

k k
k ki) (i k k=) (i+1
— Ciu( + t)v(t)+z Ciu( t)v(t+)
=0 i=0

= kCou(k”)v + kcou(k)v“) + kclu(k)v(l) +--

n kcm_lu(kﬂ—m)v(m) n kcmu(k+l—m)v(m) I kck u &

i

k
k k k+1-i i
= 2( C  + Ci)u( PO L EC u* v+ C o uvtY
i=1

(k C_ + kci)u(kﬂ—i)v(i) e C, 4D, ke C. uv,
i=l
(since “C,=*"'C, and “C, =*"'C,.,)
k+1 ) )
— z k+1 Ciu(k+l—1)v(1) ’ Slnce k Cl»_l + kCi — k+1Ci .
=0

So P(k+1) is true.

Step 4: Hence, we conclude that P(n) istrue V ne N.

*kk



Now consider an example in which m #1.
Example 13: Show that 2" >n’ for n >10.
Solution: We write p(n) for the predicate ‘2" > n*’.

Step 1: As we need to prove the result for n > 10, the basis of induction is
p10).
For n =10, 2'° =1024, which is greater than 10°.
Therefore, p(10) is true.

Step 2: We assume that p(k) is true for an arbitrary k£ >10, i.e., 2" > k°.

Step 3: Now, we want to prove p(k +1) is true, that is, 2°"' > (k+1)’. Note
that 2**' =2.2* > 2.k, by our assumption in Step 2.

1Y 1y
>|1+—|.k°, since 2>|1+—|.
10 10

3
> (1 +]1€j . k*, since k >10.

=(k+1)°.
Thus, p(k+1) is true.

Step 4: Therefore, we conclude that p(n) is true V n >10.
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Why don’t you try to apply the principle yourself now?

E12) Use mathematical induction to prove that
(cos@+isin@)" =cosnf+isinnd ¥V ne Z and V fe R.
[Hint: Use PMI to prove it for ne N first.]

\k+%+-~+\/1;>\/_ﬁ.

[Hint: Note that the basis of induction is p(2).].

E13) Show that for any integer n > 1,

wl2
E14) Prove that J.sinz"x dx = 135..Gn-1) z V ne N, a Wallis sine
0

2.4.6...2n) 2
formula you have studied in Block 5 of the Calculus course.

Before going further, a note of warning! To prove that p(n) is true V n 2> m,
both — the basis of induction, as well as the induction step, must hold. If even
one of these conditions does not hold, we cannot arrive at the conclusion that
p(n) istrue V n 2> m.

For example, suppose p(n) is (x+ y)" <x"+y" Vx, ye R. Then p(l) is
true. But the inductive step, Step 3 does not hold. In fact, p(n) is not true for
every ne N. (Can you find a value of n for which p(n) is false?)

Again, ‘2" >n’ V¥ n =2’ cannot be proved by PMI, since the basic of induction,

p(2), is not true, even though the induction step holds, as you have seen in 39
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You will study about the
Fibonacci sequence in
Block 2.

In using the strong form
of PMI, we often need to
check Step 1 for more
than one value of n.
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Example 13. In fact, the given statement is false. It is true for n > 10 but not
forn>2.

Now let us look at a situation in which we may expect the principle of induction
to work, but it doesn’t. Consider the sequence of numbers 1,1, 2, 3,5, 8, ....

These are the Fibonacci numbers, named after the Italian mathematician of
the medieval period, Fibonacci. Each term in the sequence, from the third term

on, is obtained by adding the previous 2 terms. So, if a, is the nth term, then
a=1,a,=1,and a,=a, ,+a, ,V n23.

Fig. 1: The Fibonacci sequence shows up in nature in many ways including the
way a nautilus is constructed.

Suppose we want to show that a, <2" V ne N using the PMI. Then, if p(n)
is the predicate, a, <2", we know that p(1) is true.

Next, suppose we know that p(k) is true for an arbitrary ke N, i.e., a, <2".
We want to show that a,,, <2""', i.e., a, +a, , < 2. We know something

about a, , but we don’t know anything about a,_,. So, how can we apply the

principle of induction in the form that we have stated it? In such a situation, a
stronger, more powerful, version of the principle of induction comes in handy.
Let’s see what this is.

Principle of Mathematical Induction (Strong Form): Let p(n) be a
predicate that involves a natural number n. Suppose the following two
conditions hold:

i) p(m) is true for some me N, and

i)  whenever p(m), p(m+1),..., p(k) are true, then p(k+1) is true, where

k > m is an arbitrary natural number.
Then p(n) is true for all natural numbers n > m. [ |

Why do we call this principle stronger than the earlier one? This is because, in
the induction step we are making more assumptions, i.e., that p(n) is true for

every n lying between m and k, not just that p(k) is true.

Let us now go back to the Fibonacci sequence.

Step 1: To use the strong form of the PMI, we take m =1. We have seen that
p(1) is true. We also need to see if p(2) is true because we have to

use the relation a, =a, , +a, ,, for n > 3. We find that both p(1)
and p(2)are true.



Step 2: For an arbitrary k > 2, we assume that p(n) is true for every n such
that 1<n<k, ie, a, <2" for1<n<k.

Step 3: We must show that p(k +1) is true, i.e., a,,, <2"". Now
Qe =4 T a4,
<2* +2"" by our assumption in Step 2.
=224 1)
<2122
— 2k+1

- p(k+1) is true.
Step 4: Hence p(n) istrue V ne N.

Though the “strong” form of the PMI appears to be different from the “weak”
form, the two are actually equivalent. This is because each can be obtained
from the other, which we shall not prove here. However, this means that we
can use either form of mathematical induction. In a given problem we use the
form that is more suitable. For instance, in the following example, as in the
case of the Fibonacci sequence, you would agree that it is better to use the
strong form of the PMI.

Example 14: Use the principle of mathematical induction to prove that any
integer n > 2 is either a prime or a product of primes.

Solution: Here p(n) is the predicate ‘n is a prime or n is a product of
primes’.

Step 1 (Basis of induction): Since 2 is prime, p(2) is true.

Step 2 (Induction hypothesis): Assume that p(n) is true for any integer n
suchthat 2<n<k, i.e.,, p(3), p(4),..., p(k) are true.

Step 3 (Induction step): Now consider p(k +1).
If k+1 is aprime, then p(k+1) is true.
If k+1 is notaprime,then k+1=rs, where 2<r<k and 2<s<k.
So, by the induction hypothesis, p(r) is true and p(s) is true.
Therefore, r and s are either primes or products of primes. Therefore,
k +1 is a product of primes. So, p(k +1) is true.

Step 4 (Conclusion): Therefore, p(n) istrue V n=2.

*kk

Why don’t you try some exercises now?

E15) If a,, a,, ... are the terms in the Fibonacci sequence, use the principle
of mathematical induction to show that 2| a,, for n>1. Which form did
you find more convenient, and why?

E16) A sequence of positive integers {q,,a,,...,a,,...} is defined by
a,=la,=4 and a,=2a, ,—a, ,+2 for n=3.
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Conjecture a formula for a,, and prove it by the principle of
mathematical induction. Which form of PMI would you use, and why?

With this we come to the end of our discussion on various techniques of
proving or disproving mathematical statements. Let us take a brief look at what
you have studied in this unit.

2.5 SUMMARY

In this unit you have studied the following points:

1.

2.

What constitutes a proof, and a disproof, of a mathematical statement.
The description, and examples, of a direct method of proof.

Two types of indirect methods of proof: proof by contrapositive and proof
by contradiction.

The use of counterexamples for disproving a statement.

Statements, and the application of, the “weak” and “strong” forms of the
principle of mathematical induction.

2.6 SOLUTIONS / ANSWERS

E1)

There are several such examples. We give the following one.
Theorem: If A,B,C are sets, then AN(BUC)=(ANB)U(ANC).
Proof: The proof comprises showing that

AN(BUC)c (ANB)U(ANC), and

(ANB)U(ANC)c AN(BUC(C).

Step1: B BuUC, C c BUC, by definition.

Step2: AnBc An(Bu(),and
ANCc An(BuUC) (This follows from Step 1.)

Step3: (ANB)U(ANC)c An(BUC(C), by definition and Step 2.

Step 4: For an arbitrary element xe An(BuUC), xe A and
xe BuUC, by definition.

Step 5: xe A and (xe B or xe C) by Step 4.

Step 6: xe (AN B) or xe (ANC), from Step 5.
Step7: xe (AnB)U(ANC), from Step 6.
Step8: AN(BUC)c(ANB)U(ANC(C), from Step 4 and Step 7.

Step 9: AN(BUC)=(ANB)U(ANC), by definition, Step 3 and
Step 8.



E2)

E3)

E4)

E5)

E6)

E7)

ES)

No. Only a statement that is proved to be true is a theorem.

This is not a valid proof.
The third statement does not follow from the first two statements, or from
any definition, or from any relevant axiom.

Let y be an arbitrary real number.
f issurjective if 3reR s.t. f(r)=1y.

Now, f(r):y:>3r—5:y:>r:yT+5.

y+5

Therefore, forany ye R,dr= eR st f(r)=y.

Hence f is surjective.

i) We will prove this in two stages, namely,
(ANB) c A“UB° and A“UB° c (AN B)".

Using logical equivalence of statements at each step, we shall prove
both stage simultaneously.

xe (AN B)*
S x¢e ANB
& x¢g AorxegB
< xe A° or xe B°
S xe A°UBC.
Since x is an arbitrary element, (AN B) = A UB°.

i) Forany x,ye ]0,3],
x<y:>;;>;2y:>f(x)>f(y).

Hence f is monotonic on ]0,3[.

The contrapositive is

‘If X is afinite setand f:X — X is not surjective, then f cannot be
injective’.

We shall prove this statement now.

Let X ={x,,x,,....,x,}.

Then f(X)={f(x).f(x)..... f(x,)}.

Since f is not surjective, |X| > | £ (X))

Therefore, f (x;)=f(x;) for some i # j.

Therefore, f is not injective.

Its contrapositive is ‘If A, B,C are sets such that AXC & BXC, then
Az B’

Proof: AXC ¢ BxC

= 3 (x,y)e AXC s.t. (x,y)¢ BxC

= dxe Ast x¢B

= AZB.

Suppose V17 is rational.

Then \/l—zg, g.cd (a,b)=1,a,be Z.
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E9)

E10)

E11)

E12)

The Structure of R

Then, as in Example 6, you can arrive at a contradiction to g.c.d
(a,b) =1, and hence conclude that \/ﬁ is irrational.

i) Assume that g is bounded above.

i) Givenan ne N,n>2, suppose there exist x,y,ze N s.t
x"+y"=7".

Suppose that 1}3()62 ~-=-1.

Then given £>0,39>0 s.t.
Ix=21<d=lx*=1-(=1l<g, ie., |x’l<e, ie x*<e€
Thus, 2—-0<x<2+8=>x"<¢€

Now, take £ =0.1.

Forany 0 >0,x=2 liesin 2—-J,2+4[, but x> =4 ¢ €.

So we reach a contradiction to (5). Hence, our assumption must be
wrong.

Hence hn% (x* =D =-1.
i) For example, N is an infinite set containing N, and N=N.
i) (3—2)*=1#3%+(=2)%, for example.

i) A counterexampleto ‘ f:N—N is 1-1= f isonto’is
f N—>N: f(n)=n+3.
Firstly, f(n)=f(n,)=>n +3=n,+3=n,=n, for n,n,e N.
Hence f is 1-1.
However, there is no ne N for which f(n)=1.
Hence f is not onto.

iv) You should check that the greatest integer function is a
counterexample.

Let p(n): (cos@+isin@)" =cosnf@+isinnd, for ne N.
p (1) is true, as you can see.

Assume that p (k) is true for some ke N.

Now, p(k+1)=(cos@+isin )"

=(cos@+isin 8)* (cos@+isin 6)

=(cosk@+isin k@) (cos@+isin @), since p(k) is true
=cosk+16+isink+16, using the trigonometric formulae.
Thus, p(k+1) is true.

Hence, p(n) is true Vne N.

Also, p(0) is trivially true.

Now, let n be a negative integer. Then —ne N.
Therefore, p(—n) is true.

Now, (cos@+isin )" =[(cos@+isin @) "]
=[cos(-n)@+isin (-n@)]™"', since p(-n) is true.

=(cosn@—isinn@)™



=cosn@+isinné.
Hence the given statement is true.

+ ! >\/Z, for ne N.

(H)L-FL-F R
P ‘f f Jn

Since — >\/_ 2,p(2) is true.

A

Assume that p(k) is true for some ke N.

Then L+- >k +——>k+1 , as you can verify.

W e e e

p(k+1) is true.
Hence p(n) is true Vn >2.

/2

E14) Let p(n): jsinz"xdx_M ™ for neN.
) 246..2n) 2’
/2 /2
1—cos2x 1z
Since |sin’xdx=| ——————dx=—", p(l) is true.
Ism xdx I 5 X ) p1

0 0
Assume that p (k) is true for some ke N.

Now you can use integration by parts to prove that
/2 71'/2

J.sin"xdx—

0

n2

/2 /2
Therefore, '[sinz(k”)xdx: =i+ .[sinZk xdx
20k+1) 1
135 J2k+D)-1] «
24.6.2(k+1) 2’
Hence p(n) is true Vn >1.

since p(k) is true.

E15) Let us see if we can prove this using the ‘weak’ form of the PMI.
Let p(n): 2|a3n, for ne N.
p(l) is true since 2|as,.
Assume that p (k) is true for some ke N.

NOW @1y = A3(411)y + 3551y 2

= Ay t A3y
= (a3 T ay ) +(ay +ay,,)
= (ay +ay +ay) +(ay, +ay)
=3a,, +2a,,_,
Since a,, is even and 2as,_, is even, a,,,,, is even.

Thus, p(k+1) is true.
Hence p(n) is true Vn >1.

Note that even though the terms here are of the Fibonacci sequence, we
did not required the strong form of the PMI for the proof.

E16) a,=1la, =4,a,=9,a, =16.
Looking at these terms, we may conjecture that a, =n’. Let us see if

this is true. Since each term in the sequence requires the values of two
previous terms, we need to apply the strong form of the PMI.
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Let p,:a, =n’, for ne N.

p(l) is true.

Assume, for some ke N, p(i) istrue Vi<k.

Now, a,,, =2a, —a,_, +2=2k>—(k=1) +2=(k +1)°.
Thus, p(k+1) is true.

Hence p(n) is true Vn >1.
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3.1 INTRODUCTION

You are already familiar with the set R of real numbers, and the basic
operations such as addition, subtraction, multiplication and division by non-
zero elements on it. Have you ever wondered why division by zero is not
allowed? What are the properties that are carried over to R from those of Q,
the set of rationals? What exactly is the property that Q does not have, but R
has? How big is Rin comparison to Q? To answer such questions, we shall
begin by presenting the essential properties that determine the “algebraic” and
the “order” structure of R. Also, we shall focus on the “order completeness”
property of R. This property is at the heart of real analysis. It is because in the
absence of this property most of the results in real analysis would become
invalid.

So, we begin Section 3.2 with an evolutionary aspect of real numbers and
arrive at their algebraic and order properties which make R an ‘ordered field'.

In Section 3.3 we shall discuss at length the order completeness property and
show you why R is a ‘complete’ ordered field. You will see many applications
of this property, some in this unit and others in the rest of the course. A few

applications, for example, are the Archimedean and density properties of R
which will be discussed in this section.
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In Section 3.4, we shall address the notions of ‘finite’ and ‘infinite’ sets in order
to estimate the size of different subsets of R. Specifically, we shall see that

there are many subsets of R which are infinite. Some, like N and Q are

“countable” in the sense that they can be enumerated. On the other hand, we
shall show you that R is “uncountable”, i.e., there is no way to enumerate the
elements of R.

Specifically we expect to achieve the following objectives.

Objectives

After reading this unit, you should be able to

e describe and apply the algebraic properties of real numbers;

e describe the ordered structure on the set of real numbers, and its
applications;

o show whether a subset of R is bounded below, bounded above, both or
neither;

e explain the completeness property of the order on the real number system;

e describe and apply Archimedean property of R;

e compute the infimum and supremum of subsets of R;

identify whether a subset of real numbers is countable or uncountable.

3.2 THE FIELD AND ORDER STRUCTURE OF R

In this section we shall help you recall how real numbers evolved. We shall
look at the real numbers as a set together with the operations of addition,
subtraction, multiplication, and division by nonzero elements. We shall also
see how real numbers can be represented on a line.

3.2.1 The Real Number Line

We begin with the natural numbers N ={1,2,3}. You know that if you add two
natural numbers, the answer is a natural number. Thus, addition is a binary
operation on N, and so is multiplication. However, subtraction is not binary
operation on it, because, for example, 1-1=0¢ N. Not only this, people faced
problems with solving the linear equations of the form x+n=0. Such
problems led to the discovery of integers Z={...—2,-1,0,1,2...}. You can see
maps each ordered pair of that, on Z, addition, multiplication and subtraction, all are binary operations.
elements of S toan But, you know that there are problems with Z too. For example, if you have to
distribute, 2 chocolates among three kids equally, each kid cannot get a whole
part. The answer must be something different from an integer. For algebraists
it were the equations p—gx=0, with ¢ #0, that they could not solve in Z.
Specifically, the need arose to define a new operation called ‘division by
nonzero’. This operation gave us the set Q of rational numbers defined as

@={£
q

48 Note that many rational numbers have the same representation in Q. For

Recall that a binary
operation on a set S is a
mapping from the set
SxS into S, thatis, it

P,q€E Z,in}
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2 1 . .
example 156 3 So when we write a rational number as p/gq, we assume

that there is no common factor between p and ¢, thatis, p/q isin its lowest
form. The operations ‘+’ (addition), ‘-’ (multiplication) and / (division by
nonzero) on Q are defined as below.

Forﬁ,zeQ,

q s

3

D £+£:ps+rq 5

q S qs 4

pr pr e=3-2-1 071 2 3
i ——=— 1

q s 45 ;

(pJ Fig. 1: Rational numbers on a line
iii) d —ﬁ,q;tOr;tO

You should note that the sets N,Z and Q are defined in such a way that
NcZcQ.

If we consider the distance between 0 and 1 as the unit of length, then we can
represent all the rational numbers on a line. (See Fig. 1.)

For example 1/3 is the point which is one-third of the way from 0 to 1.
Similarly, 3/2 is the point that is one-half of the way from 0 to 3. This is
because the rational numbers possess a natural order inherited from R, which

you will see in Subsection 3.2.3. Another fact that you know about rational
numbers is that they can be represented by decimals using only the digits
0,1,2,...,9. For example, we can write —1/2 =-0.5and 53/32 =1.65625

using the long division method. A decimal representation is an expression of
the form

Ay.q,a, as...
where A € Z and q,,a,,a,... are digits from {0,1,2,...,9}.

In the decimal representations above the number of nonzero digits after the
decimal (.) is finite. Such a representation of a rational number is said to be
terminating. Thus a terminating decimal representation, has the form

Ay.a,a,a;...a,, for some ne N. The corresponding rational form can be
written as

aq 9B a3 1 G

4 2 +. .
10 100 1000 10"

Ay.ayayay...a, = Ay +

Let us take an example.

Example 1: Find the rational number corresponding to 0.09375. 49
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Solution: We write 0.09375 as

0.09375:O+£+ ? 3 7 > 3

+ + + =—
10 100 1000 10000 100000 32

So, the corresponding rational number is 3/32.

There are also rational numbers whose decimal representations do not
terminate while carrying out long division. For example, when we divide 1by 3
using long division method we get 0.3333 ... Similarly dividing 499 by 330
results in 1.5121212 ... These decimal representations, although non-
terminating, have certain block of digits that keep on recurring. We can see
that 3recurs in 0.333...and 12 recurs in 1.5121212..... We write such
numbers briefly with a bar that covers the recurring digit or the block of digits.

For example
0.3333.. =03
1.5121212... =1.512 (Note that the bar does not cover 5)

Now the question arises, how do we get back the number 1/3 from 0.3 or
499/330 from 1.512 ? For the time being let us write:

034> 4> 4 (1)
10 100 1000

The expression on the right hand side of Eq.(1) represents a sum of infinite
terms whose precise meaning will only be clear in Block 3.

Now we show you how to get back 1/3 from 0.3.
V2 |, y
Let x=0.3. Then 10x =3-333.... So subtracting x from 10x, we get
1
1 10x—x=3-333...-0-333...=3. So 9x =3, i.e.ng.

Fig. 2: The length of a _ _
diagonal of unit square 10 get the rational from of 1512, let x=1-512. Then we can write

is\/z.

x:1-5+%, where y=0-12=0-121212.....

So, 100y =12-1212...

—y=-0-1212....

Hence, 99y =12, i.e. y:i. Thus, we get x:1-5+i:@.
33 330 330

There are numbers whose decimal representations are non-terminating. Such

numbers are called irrational numbers. For example, J2 which is the length
of the diagonal of unit square is one such number. (See Fig. 2.) This is the

50 content of the next Theorem.
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Theorem 1: \/5 is not a rational number.

Proof: We shall prove it by contradiction (see Section 2.3 of Unit 2). So,
assume, if possible, V2 e Q. Then we have p,qe Z such that

where p(#0) and ¢g(#0) have no common factors. Squaring both sides of
the equation above, gives us

2="- ie. p’=2q¢".

This means p” is an even number, so is p. Let p =2k for some integer k.
Now we have
4k*> =2q%i.e. p> =24 .

This means ¢’is an even number; hence, so is ¢. Thus p and ¢ have 2 as a
common factor. This contradicts our assumption namely p and g have no

common factor. Consequently, V2¢ Q. u
You just saw that J2is not a rational number, that is, it is irrational. So its
decimal representation must be non-terminating and non-recurring. Like
\/_2_, there are many other numbers such as \@\/g \f6 ﬁetc that are
irrational.
Let us now see how to prove that \J6 is irrational.
Example 2: Prove that J6 is irrational.
Solution: Assume, on the contrary, that V6 =2 for some p,.q€ L, q#0
q

such that p and g have no common factor. Then p*> =64" =2(3¢").
This implies p” is even and hence p is even. So, let p =2/, Then

40 =60 = 20> =34". &2

2

1

0o 1A 2
§2

This implies 3¢° is even, and hence ¢” is even. This implies ¢ is even. Thus,
we have found that 2 is a common factor of p and g. This contradicts our

N\

assumption that p and g have no common factor. Consequently, J6 is
irrational.

*k %

Fig. 3: Locating \/Eon
The irrational numbers together with rational numbers are called real the number line.

numbers. They are denoted by the symbol R. Now we have

NcZcQcR
51
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Now let us see how we can represent the irrational numbers of the form \/_

on the numbers line. For +/2, we describe the mechanism as below (see Fig.
3.)

Consider the unit square with corners at (0,0),(1,0),(1,1) and (0,1). The line
segment joining (0,0) and (1,1) is one of its diagonals. Draw a circle with
centre (0,0) and diagonal as the radius. The point where it meets the x-axis

represents the number V2.

Now try these exercises.

E1) Find the rational number corresponding to
) 2.596306 i) 4.76324

E2) Showthat /p ¢ Q, where p is a prime number.

E3) Using compass and ruler determine the location of /3 on the number

line. Can you determine the location of |/ p using a compass and
ruler, where p is a prime number?

If you have done E3) you would have understood how to represent an
irrational number of the form 4/ p on the number line. However many irrational

numbers such as m cannot be represented on the number line in this way.
We shall now focus on the structure of R from the point of view of Algebra.

3.2.2 Algebraic Structure of R

The relationship between real numbers is through ‘addition’, (and the inverse
relation namely subtraction); multiplication (and the inverse operation namely
division); and comparison. We begin by stating the properties addition,
subtraction, multiplication and division. You should note that these are
instances of binary operation mentioned in Subsection 3.2.1.

Definition: The binary operation which associates with a,be R, the real
number a+b is called the addition of real numbers.

A) Properties of Addition:

i) (Commutativity) a+b=b+a, Va,be R
i)  (Associativity) (a+b)+c=a+(b+c),Va,be R
i) (Existence of additive identity) 30e R such that
a+0=a=0+aVaR.
iv)  (Existence of inverses) For each ae R, there exists —ae R such that
a+(—a)=0=(—a)+a.Read -« as ‘minusa’. We call -« the
additive inverse of a.

Definition: The binary operation which associates with a,be R the real
number a-b is called the multiplication of real numbers.
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M) Properties of Multiplication:

i)  (Commutativity) ab=b.a, Vae R

i)  (Associativity) (a.b).c=a.(b.c), Va,b,ce R

i)  (Existence of identity) 31e Rsuchthat l-a=a-1=a, Vae R.

iv)  (Existence of inverses) For each ae R,a # 0Othere exists a™' € R such

that a.a”' =1=a'a. Read «™" as ‘ainverse of a’. We call «! the
multiplicative inverse of a.

D) Distributivity:
ab+c)=ab+a.c, Ya,b,ce R.

You can see that addition and multiplication each satisfies four properties,
namely commutativity, associativity, existence of identity, and the existence of
inverse. In case of multiplication, inverses exist only for nonzero elements.
The property distributivity connects addition and multiplication. Thus in all R
satisfies 9 properties which are referred to as the field properties and any set
that satisfies them is called a field. So, R is a field. Another example of a
field is Q. You should show that the rational numbers satisfy all the above

properties.

Using the properties above you can derive many other algebraic properties of
R. which belong to the realm of algebra. To get the flavour of the properties
we present two results below.

Theorem 2: Let a,be R. Then the following hold.

i) If a+b=a, then b=0, i.e. the additive identity is unique.
i) Ifb=0and a-b=>b,then a=1, i.e. the multiplicative identity is unique.

i) a-0=0.
Proof: i) We observe that
b=0+b (-0 is an additive identity)
=(—a+a)+b (Property A(iv))
=—a+(a+b) (Property Afii))
=—a+a =0, using the Property A(iv). This completes the
argument.
i) a=a.l (Property M (iii))
=a(b.b™) (Property M(iv))
=(ab).b™’ (Property M (ii))

=b.b™' =1, using the Property M(iv). This completes the argument.

i) a.0+a.l=a0+1) (Distributivity)
=a.l

This gives a.0+a = a. Hence by the uniqueness of the additive identity
proved in (i) above, a.0=0. [ |

Theorem 3: Let a,be R. Then the following holds.

i) If a+b=0,then b =-q,i.e., the additive inverse is unique. 53
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If a #0 and a.b=1, then ab =1, i.e. the multiplicative inverse is unique.
If a.b=0, then either a =0 or b =0.

i)

Proof: i) Note that

b=b+0 (Property A(iii))
=b+(a+(-a)) (Property A( iv))
=b+a)+(-a) (Property A (ii))
=(a+b)+(—a) (Property A(i))
=0+ (—a)
=-a

i) Note that

b=1.b (Property M( iii))
=(a.a”")b (Property M (iv))
=(a"".a)b (Property M (i)
=a”'.(ab) (Property M (ii))
=a'l=a"".

ii) First assume that a # 0. We prove that b = 0.
Now b =1.b

=(a.a™).b (Which property?)

=(a".a).b (Which property?)

=a'.(a.b) (Which property?)
=a'.0=0 (Which property?)

Similarly you can show that if »#0, then a = 0. u

We can define the operation ‘subtraction’ as a —b = a +(—b) and “division” as

al/b=a.b”" for b = 0. Now we can perform all the algebraic manipulation on
real numbers as we are used to, e.g. 2+5=5+2,2+3-6=—1, etc. Note the
following definitions: For ae Rand ne N,
When there is no
confusion we shall

1 a4 .
write a-b as ab. —=a,if az0
a

a"=aa.a...a
—

ntimes

na=a+a+a+..+a

nterms

Let us consider a few examples.
Example 3: Prove that (a+b)” =a’ +2ab+b*forall a,be R.
Solution: By definition

54 (a+b)’ =(a+b)(a+Db)
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=(a+b)a+(a+b)b (Distributivity)
=a(a+b)+b(a+b) (Commutativity)
=aa+ab+ba+bb (Distributivity)
=aa+ab+ab+bb (Commutativity)
=a’ +2ab+b’

*k %k

Example 4: Show that x> —y* =0 x=yorx=-y forall x,yeR.

Solution: The result follows from the following:
=y =0x’—xy+xy—y =0
S x(x—y)+y(x—y)=0 (Distributivity)
Sx—y)(x+y)=0 (Distributivity)
S x—y=0o0rx+y=0 (Theorem 3iii))
&S x=yorx=-y

*kk

Why don’t you try some exercises now?

E4) Let a and b be two elements of R. Prove the following
i) (-Da=-a i) (D=1
E5)  Show that (a +b).c =a.c+b.c forall x,y,ce R.

E6) Solve the equation x> +5x—6=0, by clearly justifying which property
you are using at each step.

E7) Using the principle of mathematical induction (Section 2.4 of Unit 2),
prove the binomial theorem:

(a+b)n = Z ”C[ an—ibi
i=0
where a,be R and ne N.

Here we have discussed only some fundamental properties of R as a field,
although a field has many other interesting properties. You can learn them in
our course BMTC-104(Algebra). Next we shall see that R, is a special kind of

field.
3.2.3 Ras an Ordered Field

Now we shall discuss the order properties of R. First, we shall define the
concept of order on a special subset of R.

There is a subset of R, denoted by R*, called the set of positive real
numbers whose element satisfy the following properties:

i) If a,be R",then a+be R"and abe R".

i) Forevery ae R, exactly one of the following is true:
ae ]R+,—ae R+,a=0. 55
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Property i) makes the operations of addition and multiplication compatible to
order. That is, the sum and product of two positive real numbers is positive.
Property ii), on the other hand, classifies the elements of R into three distinct
categories. That is, R satisfies the law of trichotomy.

The set of negative real numbers, denoted by R, is defined as
R ={aeR-aeR"}.

Then R=R™ UR" U{0}. If ae R" U{0}, then a is called a nonnegative
real number.

Using the properties of R", we define the order >, called ‘greater than’ on
R as follows:

a>b iff a-beR".

Likewise the order <called ‘less than’ is defined as

a<b iff b—aeR"

In a similar way, the operators > called ‘greater than or equal to’ and <
called ‘less than or equal to’ can be defined as:

a>b iff a>b ora=b;
a<b iff a<b or a=b.

The expressions such as a<b,a>b,a<b and a > b are called ‘inequalities’.
We shall discuss them in more detail in Section 3.3. The definitions above
immediately tell us that ae R" iff ¢ >0 and ae R iff a <0.

Using these definitions we shall derive the order properties of R.

Theorem 4 (Order Properties of R): Let a,b,ce R. Then the following hold.

i) fa>band b>c, then a>c.

i) fa>bthena+c>b+c.
i) If a>b and ¢>0, then ac > bc.

iv) If a>b and ¢>0, then ac<bc.

Proof: i) Since a > b, we have a—b >0. Thatis, a—be R". Similarly
b—ceR* Hence a—c=(a—b)+(b—c)e R". Thatis a—c >0 which implies
a>ec.

ii) Note that

(a+c)-(b+c)=a+c—b—c
=a—-b+c—c
=a—-b+0
=a—-b>0, (.a>b)

Hence a+c¢>b+c.



i)  Since a>b,wehave a—b>0.i.e a—be R"Also ¢ >0 means ce R".
Hence a—c=(a—b)+(b—c)e R*. Butwe have (a—b)c = ac—be.

iv)  Prove yourself on the lines of iii) above. u

Since the field R possesses the order properties stated above, it is an
ordered field. Since Qis a subset of R, Qis also an ordered field. We shall

denote by Q" the set of all positive rational numbers. Symbolically,
Q" =QnNR". Likewise, we write Q" =QNR".

The order properties lead to many inequalities on real numbers. For example,

using contradiction you can show that if x is positive then — is also positive.
X

. 1 . iy
Likewise, you can also show that if x>1, then — <1. A few more inequalities
X

are given in the following examples.
Example 5: If x>1 andy >1, then show that xy >1.

Solution: Note that y > 1 implies y > 0. Now, since x>1land y >0,
Theorem 4¢(iii) implies, xy > y. But, y >1. Therefore, xy > 1.

*kk

Example 6: Let 0 < x <1. Then show that 0< x" <1, forall ne N.

Solution: We prove it by the principle of mathematical induction which we
have discussed in Unit 2, Section 2.4.

For n =1, the result holds. So, assume that it is true for some ne N. That is,
0<x" <1, forsome ne N. Now, x>0 and x" >0 implies x.x" >0, i.e.,
x"™" > 0. Note also that x>0 and x”" <1 implies that x.x" < x. But you also

havex <1. Hence, x""' <1. Thus we have shown that 0 < x"*' <1. The
Principle of Mathematical Induction completes the proof.

* %%

Now try some exercises.

E8) Let x,ye R. Then show that

x>y>0(:)l>l>0.
y X

E9) Let a,b,c,d be positive real numbers. If a <b and ¢ <d, then show
that ac < bd.

E10) Let x> y>0. Then, using the principle of induction, prove that
x">y" forall ne N.

E11) Let 0<x<a<1.Then show that x*> <. Is it also true that x" < a for
all natural numbers n ?

Algebraic Structure of R

Can you conclude the
following, from E10?

x>1=>x">1Vne N,

57
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E12) Leta>1. Thenshowthat a" >a™ < n>m,for m,ne N. Does the
result hold when a <1?

Thus far you have seen that R is an ordered field. This characteristic of R
was known to people of ancient civilizations such as Babylonia, Egypt and
India. People used to compare quantities such as lengths and areas of
different shapes, which often turn out to be irrational numbers. In the next
section, you will learn more about the ordered structure of the real numbers.

3.3 R AS A COMPLETE ORDERED FIELD

In this section we shall discuss another crucial property of R, the
completeness of order, and see some of its applications.

3.3.1 Order Completeness Property

You know that every subset of N contains a least element. But in Z there are
subsets that do not have least elements. For example,

Z.. ={.-4,—-2,0,2,4,..1}, the set of all even integers has no least element.

However, there are also certain subsets of Zthat have least elements. For
example, the set § ={-8,—6,—2,4,6,...} has —8 as its least element. Can you
think of some more subsets of Zthat, too, have a least element? Do they have

any common property? Before answering this question we recall the notion of
a lower bound.

Definition: Let @ # S c R. A number /e R is called a lower bound of S, if
/<x, VxeS. Aset S is called bounded below if there is some lower
bound of S.

You can see that if of ¢ is a lower bound of S, andif /"< ¢ then ¢’ is also a
lower bound of S.

Now the answer of the question above is that every subset of Zthat is
bounded below has a least element. This is guaranteed by the following
theorem, which we state without proof.

Theorem 5: Let @= S cZ and S be bounded below. Then min S exists.

Now let us turn to the set Q. We ask you the question: What is the least
positive rational number? The answer you should find is ‘No such number
exists.”. Why is it the case? Because if r is a positive rational number, then

r . ., .
you can see that 5 is also a positive rational number smaller than r. So we

see that the notion of least element of a set becomes of little relevance when
the set is a subset of Q.

Therefore, we need to generalise the notion of the least element of a set. Let
S be a nonempty subset of Q that is bounded below. This means S has a
lower bound. In fact you can see that, if S has one lower bound then it has
many lower bounds. The reason is very simple. Every number smaller than a
lower bound of S is also a lower bound of S. So we can talk about ‘the
greatest lower bound’ of S which is a lower bound of S greater than every



other lower bound of S. The greatest lower bound of S is also called the
infimum of S, which in short is denoted as inf S. It is straight forward to see

that a set cannot have more than one infimum. For if /, and ¢, are two
infimums of a nonempty set S, then by definition 7/, </, and ¢, </,. This
gives, /,=/,.

Let us consider an example.

Example 7: Find inf S, where S :{B
q

p=210,g<8,p,qe N}

11 1
Solution: Let 2 ¢ S. Note that g <8 implies — Zg. Hence EZ—O:Z
q

q q 4
Thus every element of Sis greater than or equal to 5/4. This means 5/4 is a

lower bound of S. Also you can see that %e S. This means, 5/4 is greater

than every other lower bound of §. So, inf § :%.

* %%

The set S in Example 7 above is nonempty, bounded below and contain its
infimum too. However, not all subsets of Q are like this. The point we want to
emphasize is that there are subsets of Q which are nonempty and
bounded below, but do not have the infimum in Q. A natural example

comes from \/5

Consider the set S ={xe Q"

numbers whose square is greater than 2. Note that S = @ . (Why?) It is also
easy to see that S is bounded below, for example by 0. Alsol is a lower

bound of S as for every xe S,we have x* >2>1 i.e. x>1. Similarly 1.4 is

x> > 2}. It contains all the positive rational

another lower bound of S as for every xe S, we have x* >2>(1.4)" i.e.
x>1.4.Inthe same way, you can verify that the numbers

1.41,1.414,1.4142,1.41421,....

are also lower bounds of S. You can note that each of these lower bounds is
greater than its predecessor. Does this sequence remind you to the

approximations of V22 Indeed, it is the case. Then you should also realise
that the sequence contains infinitely many elements.
What do we get from the discussion above?

Theset S ={xe Q"

infimum in Q. However, such a situation never arises in R. That s, if S is a
nonempty and bounded below subset of real numbers then, the infimum of §
is always a real number. It is because of a fundamental property possessed
by R, but not by Q. This property is stated below:

x*> > 2} is nonempty and bounded below but has no

Greatest Lower Bound Property of R
Let @# S <R and S be bounded below. Then inf S exists in R.

Algebraic Structure of R

You can see infimum as a

generalisation of
minimum.
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The property above is also sometimes called the Infimum Property of R. Itis

inf S not possible to prove this property with what we have learned so far. Let us
l focus on how this property can be interpreted.
+——e5 > If we represent the rational numbers on a line we can see that the line

contains many points which do not correspond to any rational number. At the
moments let us call such points as “holes”. One such hole is shown in Fig. 4.
In set terminology, we can find a pair (A, B) of nonempty subsets of rational

Fig. 4: Ahole at inf S'in numbers such that

Q, where
S={xeQ'|x’>2}. 1) AUB=Q, AnB=0.
2)  Every element of A is smaller than every element of B.
3) A has no maximum element and B has no minimum element.

Such a pair (A, B) separates Q into two parts. An example is given below
A={xe Q" 1x*<2}uQ and B={xe Q" Ix* >2}

You can verify that the sets A and B satisfy all the three properties above.
The main distinction between Q and R is that while there are infinitely many

pairs (A, B) that separate Q, there is not even a single pair that can separate
R. Thus the line representing R, which we shall call the real line from now
onwards, contains no holes.

Analogous to the lower bounds and greatest lower bounds we can define
upper bounds and least upper bounds for the subsets of R.

Definition: Let @ # S c R. A number u e R is called an upper bound of S if

u=x foreach xe S. If there exists some upper bound of §, then § is called
bounded above.

Definition: A set S c R is said to be bounded if it is both bounded below
and bounded above.

Definition: Let @# S cR. A number uc R is called a least upper bound
or supremum of § if

i) u is an upper bound of S.
i) u<v forall upper bounds v of §.

We denote supremum of S by supS . As in the case of greatest lower bounds,
a set cannot have more than one least upper bound. (Apply the definition to

prove it.)
Let us now consider an example.
ne N}

+1
Example 8: Find the supremum of the set S = {n—
n

Solution: You can see that
n+l1

:1+l£2, forall ne N.
n n

So, 2 is an upper bound of S. Also note that if u is any upper bound of §,
then
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1£u, forall ne N.

n
This gives for n=1,2 <u. Hence, supS$ =2.

*k %

Now given a nonempty bounded above subset S of R, you might ask whether
sup S always exists or not.

To investigate, let us suppose @#S < R and S be bounded above. Define

T ={-se Rlse S}. (See Fig. 5 below.)

-U u
—— : —
TV 0 TV
T S
a lower an upper
bound of T bound of T

Fig. 5: Negatives of upper bounds of S are lower bounds of T

Let u be an upper bound of S. Then —u is a lower bound of 7" (apply
definition). Hence by the infimum property of R, inf 7 exists. Let t =inf 7.
We shall show that —¢ =sup S . First note that —¢ is an upper bound of S. Let
u be another upper bound of S. Then —u is a lower bound of 7'and hence
—u <t. This implies u =2—t . Hence —t =supS. This proves the existence of
supsS.

Thus we have the following result.

Theorem 6: Let @S c R and S be bound above. Then, sup S exists inR .

Theorem 6 is called the Least Upper Bound Property (also the Supremum
Property) of R. It can be proved that the greatest lower bound property and

the least upper bound property of R are equivalent. Now R being an ordered
field, possesses the least upper bound property together with greatest lower
bound property which make it a complete ordered field. It essentially means

that every nonempty bounded subset of R has the infimum as well as the
supremum in R. This is called the Completeness Property of R.

Let us look at an important result concerning the infimums and supremums of
the subsets of R .

Theorem 7: Let @# S — R. Let ¢/ be a lower bound and « an upper bound of
S. Then

i) ¢=intS iff for every € >0, there exists some xe S suchthat x</+e&.
i) u=supS iff for every € >0, there exists some xe S such that x>u—¢.

Proof: i) Let /=inf S. If possible assume that the statement “for every € >0,
there exists some xe S such that x </ + &7 is false. This means, for some
€>0 no element of § is smaller than ¢+ £. Thatis ¢+ ¢ is a lower bound of
S. Since /+ ¢ is greater than 7,/ cannot be the greatest lower bound of S.
We have arrived at a contradiction. 61
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Now we prove the converse. That is, we are given that for every € > 0, there
exists some x e S such that x< 7+ &. To prove that / =inf S, we need to
show that if we pick any lower bound ¢ of S, we must have ¢’ < /. But this is
indeed the case. Because if /"> ¢ thentake ¢ = ¢"— ¢ >0 and we have an
element x of § suchthat x</+e¢, i.e., x</’, which is not possible. Hence
/=inf S.

i) Construct the proof yourself by suitably modifying the arguments in i)
above. N

ne N}

Let us consider some examples.

(=D"

n

Example 9: Find the supremum and infimum of § = {1+

Solution: Note that for all ne N.

G P
n 2 2

Also ze S. Hence every upper bound of § must be greater than or equal to

; Hence z is the supremum of S. For the infimum observe that

D"

n

0<1+

,Vne N.

Since 0 e S every lower bound of § must be smaller than or equal to 0.
Hence 0 is the infimum.

*k %k

Example 10: For a given nonempty subset § of R and ae R, define the set
a+S={a+xlxe S}. If § is bounded below, show that
inf (a+S)=a+inf S.

Solution: Let ¢/ =inf S. This means,
/<x,Vxel = a+l<a+x, Vxe .

Hence, a+ ¢ is a lower bound of a + S. Now let ¢* be another lower bound of
a+ S . Thatis,

V'<a+x,Vxe8§ = '—a<x, VxeS.

But, this means ¢’ —a is a lower bound of S and hence /' —a < (. That s,
¢’ <a+/¢. This shows that inf (a+S)=a+/¢=a+inf S.

*k %

Using the arguments similar to Example 10, you can show that if S is
bounded above then sup(a+S)=a+supS.

You should try some exercises now.

E13) Let @# S < R. Show that inf § <supS . When does the equality
hold?
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E14) Does the set given below has the infimum in R? the supremum in R ?
{[n+lj ne N}
n
E15) For a given nonempty subset S of R and ae R, define the set
aS={aslse S}. Show thatif S is bounded, then
asupS, ifa>0
sup(as)={“ P>
ainf S, ifa<O.

E16) Let S be a subset of non-negative real numbers that is bounded
above. Prove that sup {x’ ‘xe S} =(supS)>. Examine the case when
S is a subset of negative real numbers.

There are several other properties of real numbers which can be derived from
the Completeness Property. One such property of real numbers is due to
Archimedes about which we shall talk next.

3.3.2 Archimedean Property

Archimedes (287-212BC) was a Greek mathematician whose work is regarded
as a foundation for real analysis. The concepts such as the limit of sequences
(which you will see in Unit 5) were known to him centuries before they were
rigorously introduced. The Archimedean property is one of his work that talks
about the presence of arbitrarily large natural numbers and arbitrarily small
real numbers.

Theorem 8(Archimedean Property): Let x > 0. Then there exists some

ne N such that x> l Fig. 6: Archimedes
n

Proof: We shall prove it by contradiction (see Unit 2, Section 2.2).

. . 1 . o 1
Assume, if possible, that x <— for all ne N. But since x > 0, this gives n < —
n X

for all ne N. This means that 1/ xis an upper bound of N . You also know
that N#@ and N c R . Hence, the supremum of N exists in R . Let
u=supN. Now take € =1. Then there exists some ne Nsuchthat u—-1<n.

But this equivalentto u < n+1. Since ne N, n+1e N. Now u =supN and

, 1
u < n+1 cannot hold together. Hence our assumption that x<— forall ne N
n

is false. This proves the theorem. L
The following theorem is a consequence of the Archimedean property.

Theorem 9: Given two positive real numbers x and ysuch that x < y, there
exists a rational number r such that x<r < y.

Proof: Let us first assume that x > 0. Since y—x>0. by the Archimedean

1 o
property, there exists some g€ Nsuch that y—x>—. This implies
q
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gx<qy—1.Now, consider the set S ={ne Nlgy<n}. §Scontains all the
natural numbers greater than or equal to gy . By the Archimedean property,
there exists at least one such natural number. Hence, S #@. But, S is a

subset of N . Hence, by the Well -ordering Principle (see Unit 2, Section 2.4),
S contains a least element, say p. This means

gy<p and p-l<gqgy
-1
= qy—-1<p-1 and p—<y
q
p—1
=>gx<p-1 and ——<y Cogx<gy—1)
-1 —
—x<l and p—<y
q q
-1
:>x<p—<y
q
-1 . .
Since p—1 and g are natural numbers, —— is a rational number, which lies

q
between x and y.

If x <0, the Archimedean property implies that there is some ne N such that
n>-x.Then O0<n+x<n+y.Now we can infer from the first case that there
is a rational number r such that n+ x <r <n+ y. This implies that the

rational number r —n lies between x and y. ]

Let us consider an example.

Example 11: Let a€ Q. What is the infimum of the set of all rational
numbers greater than a?

Solution: The given set can be written as S ={xe Qlx>a}. Note that a is a

lower bound of S. Let /€ R be another lower bound of S. First, assume that
+a

le Q. Now, if />a,then ‘ is a rational number lying between a and /.

+
This implies, f+a

€ S, which is a contradiction to the definition of /.

Now assume that /¢ Q. If £>a, then by Theorem 9 there exists some re Q

such that a < r < /. This means, re S. This again contradicts the definition of
a.

Thus in both the cases, ¢ < a. Therefore, inf S = a.

*k %

Another consequence of the Archimedean property is the existence of square
roots of positive real numbers.

Theorem 10: For every real number a >0, there exists a positive real number
whose square is a.

Proof: Let S ={xe R" | x* <a}. Note that S # @. (Why?) Also, S is bounded
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above. (Why? Find an upper bound.) Now the Completeness Property of R
implies that the supremum of § exists. So, let u =supS . Note that u > 0.
(Why?)

To prove the result, we need to show that u° = a. We shall do so by
contradiction. Assume if possible, that «? # a. Then by the Law of Trichotomy,
either u? >4 or u’ <a.

2
u —a

First assume u”> <a. Then u> —a>0 and u > 0 imply >0. Hence

2u

22u € R, so by the Archimedean property there exists some ne N such
u —a

that n >

> and n > l This implies
u —a u

u2—2—u>a and u—l>0.
n n

2
Therefore, [M—lj :uz—%+i>a+%>a_

2
n n n n

2
This means, [u—lj >x*,Vxe S.Thatis u—l>x,‘v’xe S, which means
n n

u ! is an upper bound of §. But this is not possible as u =sup$ and
n

1 . ) |
u——<u.Hence, our assumption u”~ > a is false.
n

A similar approach can be used to show that u” < ais also not true (see E20).
Hence, by contradiction, u” = a. m

Now, given ae R", we can define the positive square root of a as
1
a=a?=sup{xe R+‘x2 < a}. Similarly, the positive n™ root of a is defined
1

as a” =sup{xe R"|x" <a}.

Next, we state the following theorem, without proof.
1

Theorem 11: Let ac R*. Then "< R* forall ne N.

Theorem 12: Let asl, forall ne N. Then, a<0.
n

Proof: Assume, if possible, that a > 0. Then the given inequality is

asl,‘v’ne N.
n

But this contradicts the Archimedean property. Hence, our assumption is
wrong. Thus, a < 0. |

65



Block 1 The Structure of R

Let us see some applications of Theorem 12.

! ne N}.

Example 12: Find inf S, where S :{—
n

Solution: Note that O<l forall ne N. Thus Ois a lower bound of S . Let ¢
n

be another lower bound of S . Then

/ Sl forall ne N. So, by Theorem 12, ¢/ <0. Hence, inf S =0.

n
ne N}?

*%k %

1
Example 13: What is inf S, if § = {ﬂ
n

Solution: You can see that

l<ipdtontl

n n

,Vne N.

This means 1 is a lower bound of S . Now, let ¢/ be another lower bound of S .

Then,
r<™ ! YneN= <141, VneN
n n
:ﬁ—lsl, Vne N
n
=(-1<0, by Theorem 15
=/<1

Hence inf S =0.

*k %

Now we turn our attention to learn about the absolute values and inequalities
associated with the real numbers.

3.3.2 Absolute Values and Inequalities

First we define what we mean by the absolute value of a real number.

Definition: For xe R, the absolute value of x, denoted by |x| (read as
'mod x') is defined as

x ifx=0
4~

—-x ifx<O.

Fig. 7: Graph of |x|

Absolute value is also sometimes called the magnitude. This is because | x|
is always a positive number for x # 0 and |0| =0. Actually, | |is a function

from Rto R* U{0} whose graph is shown in Fig. 7.

Observe that |5 =5, |-3|=3, and |x] —/x? forany xe R.

In the following examples we present a a few results concerning the absolute
values.

66 Example 14: Show that [ xy|=1xI-| yl, for all real numbers x and y.
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Solution: An elegant proof is the following. Forany x,ye R

I)cylz\/()cy)2 =\/x2y2 =\/?\/?=|x||yl.

*k %

You can regard | al as the distance of a from 0. Using this we can define the

distance between any two elements a,b of R as la—bl. (See Fig. 8). We
shall formally define what we mean by the distance in Unit 4.

Now let us consider the following result.

Example 15: Show that [ x+ yI<Ix|+1 yl, Vx,yeR.

Solution: If possible, let us assume that |x+ y| > | x|+| y| .Then,
|)c+y|2 =(x+y) =x"+y>+2xy
Sx2+y2+2|x||y|
=[x +|y[ +2 x|

— (x]+]y

(See Example 14 and the observation above Example 14.) Since both the
sides are positive, we have, | x+ yI<IxI+1yl.

* k%

Now we discuss another consequence of the completeness property — the
inequalities. You have seen some inequalities just above. Now, we discuss
them in detail, algebraically and geometrically.

Consider, for instance, the inequality 2x < x*, where xe R. Certainly it is not

true for all xe R. For example x =1doesn'’t satisfy it. However, our aim is to
find all those xe R for which it is true. We can do this by using the definition
of <and Theorem 4.

Using definition of <, we have

2x<x° ©2x-x" <0 x(2-x)<0
S (x<0and 2—x>0)or(x=>0and 2—x<0)
< (x<0and x<2) or (x=0and x=>2)
S xL0orx=22

Thus we find that the inequality 2x < x? is satisfied by only those real
numbers that are either less than or equal to 0 or greater than or equal to 2. In
set notation, this means

{xeRI2x<x*}={xe RIx<0 or x>2}.

You can see that the set in the right hand side is much easier to visualize that
the one in the left hand side. (See the geometrical representation of this set in
Fig. 9.)

Let us consider some more examples.

k— |b—a|] —t

N

Vv

a b

Fig. 8: Distance between
a and b.

Note that
la=bl=1b—al forall

a,be R.

{xeR|x<0or x22}

Fig. 9

67
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Example 16: Let a > 0. How are the inequalities | xI< a and | x > a related?
Describe geometrically.

Solution: First let us consider the inequality | x| <a. When x>0, it gives
x < a. On the other hand, when x <0, it gives —x<a, i.e., —a<x. Thus we
get —a<x<a. Thus | xI<a means x lies strictly between —a and a.
/\ Now we consider the inequality | x| =2 a. When x >0, it gives x > a, otherwise
—Xx2a,ie., x<—a. Thus | x1>a is equivalentto x<—a or x>a.

} o E | In set terminology, we find that the sets

{xeR‘IxIZa}

—a 0 a {xe R|Ixl<a} and {xe R|Ix|>a}
{xe ]R\ Ixl<a} are the complements of each other. Geometrically, they are described in Fig.
10.
Flg 10 *kk
Example 17: Describe the set § = {xe R‘ |x| —4< |x+5|} geometrically.
Solution: We write the inequality as
|x+5| > |x|—4
& either x+5 > |x|-4 or x+5<—|x|[+4
(:»either|x| < x+9 or |x|£—x—1
< either —x—-9 <x < x+9 or x+1 < x <—-x-1
& either —x—9 < xand x £ x+9 or x+1 < xand x £ —x-1
@eitherxz—ZandOS9 or ISOande—;
S x2 —2
2
. . L .
The last inequality follows from the fact that “1 < 0 and x < —5” is false.
9 . y |
S Hence S = {xe Rj x> —2}. See Fig. 11 for a geometrical description of S.
< [ } > *kk
9 0
2 Example 18: Let p be a prime number. Show that {xe Q| x* > p} :\/;
Fig. 11 Solution: Let / =inf S, where S ={xe Q*|x* > p}. First assume, if possible

that / <\/;. Then, to arrive at a contradiction, we have to find a natural

number n such that £+l is a lower bound of S'. That is, we have to find a
n

natural number n such thatforall xe S

2
[£+lj <x’.
n
But x> > pforall xe S. So, it is sufficient to find n such that

2
[Hlj <p <:>i2+%<p—€2.
68 n n-n



I 1
Now you know that — <— which implies
n

n
1 20 1+2¢
—2+—< .
n n n

Hence, it is sufficient to find n such that

+2/
-

1
I+27 < p—0* thatis, n>
n p—V/

Since such an nalways exists by the Archimedean Property, so our
assumption that /< \/; is false.

Now let us assume that /> \/; This time we need to find a natural number n

such that E—le S. That is, we need to find a natural number n such that

But, note that

2
(ﬁ—lj _p 2l 2

2
n n n n

N = . 20 .
So, it is sufficient to find n such that /> == > p, i.e., n> 7 . But such an
n -p

n always exists by the Archimedean Property. Hence we have arrived at a

contradiction to the definition of ¢. Therefore, our assumption that ¢ > \/; is
false. Thus we conclude that / = \/;

* %%

You might be now willing to do some exercises.

2

1
E17) Find the infimum and supremum of the set {
n

ne N}. Use them to

' N}

E18) Justify whether the following statements are true or false:

an® +1
n

2
n

find the infimum and supremum of the set [

) {reRlx<l}={xeRIx*<1}
i) {xeRlxlxI>4}={xeRIx>2}

iiiy | x|+]x=1 = 2x-1,VxeR

iv) [1+lj > nVneN

n

Algebraic Structure of R
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2x+1

E19) Describe the set {xe R
x_

< 1} geometrically.

E20) Let ae R". Consider the set S ={xe R*|x* <a}. If u=sup$,then

show that u*> >a.

E21) Show that for every xe R™, there exists some ne N such that
n—1<x<n.

E22) Let xand ybe two real numbers such that x < y. Show that there
exists an irrational number § such that x<& < y.

Thus far we have seen that R is an ordered field that is complete with respect
to the order. We have seen many consequences of the completeness property
of R. We expect from you to devote an ample amount of time on the
inequalities as they are the fundamental to every concept in real analysis.
You can also look at our course BMTC-131 (Calculus) to learn many other
important inequalities.

3.4 COUNTABLE AND UNCOUNTABLE
SUBSETS OF R

How many stars are there in our galaxy? How many sand particles are there in
a desert land? How many drops are there in an ocean? These numbers are
enormously large. Yet, you will be surprised to know that they are all finite. In
this section we shall talk about the size of different subsets of R and of R
itself. In particular we shall give precise meaning to the terms such as *finite’,
‘countable’ and ‘uncountable’.

People in the old civilizations used to count the sizes of different sets by
putting them into one-to-one correspondence (bijection). For example, you
know that the sets {1,2,3,...,26} and {a,b,c,...,z} have the same number of
elements. We can assign 1 — a,2 — b,3 — c and so on to get an explicit
bijection. Consider a set S . If we can establish a bijection from the set
{1,2,3,...,n} to S, for some natural number n, then it means that we can count
and get the total number of elements of . Let us extend this idea to the sets
N and Z. Look at the following illustration.

N={l, 2, 3,4,..)
Llld
Z={0,-1, 1,-2,2,...}

Although in this we cannot get the total number of elements of Z, counting
them still makes sense. We can list them. For example, the illustration above
provides a list of the elements of Z with 0 as its 1% element, —1 as the 2™
and so on. You might be thinking some other way of listing them. For example
you can regard O as the 1%, 1 as the 2", —1 as the 3", 2 as the 4™ and so
on. This is possible. The only thing that you have to take care while listing the
elements of a set is that each element is listed exactly once and no element is
skipped.



Now consider the set [0,1]. From your calculus course you know that it has
infinitely many points. Can you list its elements? You can say that Ois the first
one. But then what is the second? Is it 0.1,0.010r 0.001 ? Soon you will
realize that you have no way to list its elements.

The discussion above tells us that we can put together the sets like
{a,b,c,..,z} and Zand distinguish them from [0, 1] by saying that the first two
are ‘countable’ i.e. their elements can be listed and the third one is

‘uncountable’ because its elements cannot be listed. We give a formal
meaning to the terms ‘coutable’ and ‘uncountable’ in the following definition.

Definitions:

1) Aset S is said to be finite if there is a bijection from {1,2,3,...,n} to S, for

some ne N.

A set Sis said to be countably infinite if there is a bijection from N to §.
A set is countable if it is either finite or countably infinite.

A set is infinite if it is not finite.

A set is uncountable if it is not countable.

gL

The empty set is countable as it is finite. The power set of {0,1} is also
countable as it is finite having the elements @,{0},{1} and {0,1}. The set Nis
also countable as the identity function serves as a bijection from N to itself.

Now consider the following example.

Example 19: Show that the set N_,, ={1,3,5,7,...} of odd natural numbers is
countable.

Solution: Look at the following illustration.

N ={1, 2, 3,4,..}
Y
N.=1{, 3,5, 7,...}

This gives us the function f:N — N_,, defined by f(n)=2n-1.ltis easy to
check that f is a bijection. Hence, N ,, is a countable set.

*k %

You can give arguments similar to Example 16 to show that N the set of

even natural numbers, is countable.

even ?

Is the set N
that N
prime numbers, say p,,p,,...,p, - Then P=p,p,...p, +1 is again a prime

=1{2,3,5,7,11,...} of prime numbers countable? You may know

prime
wime 1S iNfinite. (Suppose, if possible that there are only finitely many
because Pis not divisible by any of p,, p,,..., p; . Therefore, N, is infinite. )
So, you need to check whether or not N_, . is countably infinite. But finding a
bijection from NtoN_; . would be waste of time as it is an ‘unsolved problem’.
That is, for any arbitrary number n, till date we do not know what the n" prime
number is. So, let us look for other ways to show that N__ is countably

prime

Algebraic Structure of R
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infinite. You know that N
that N

c N and also that N is countable. Does it imply

prime

is countably infinite? The answer lies in the following result.

prime
Theorem 13: Every subset of N is countable.

Proof: You know that every finite subset is countable by definition. So, let S
be an infinite subset of N . Then, S # @. So, by the well ordering principle, S
must have a least element. Let x, =min(S). Again, S\{x,} # @, as Sis

infinite. So, S\ {x,} must also have a least element. Let x, = min (sin\ {x;, }).
Now define

x, =min(S \ {x;,x,,....,x,_, }).

Again, if S\{x,,x,,...,x,} =0, then S ={x,,x,,....,x, }, which is not possible.
So, S\{x,,x,,....x, } # @ . Hence by well ordering principle
X, =min(S \{x,, x,,..,x, })is well defined.

This gives us a function f :N — Sdefinedby f(k)=x,,Vke N.
Note that the way we have constructed x,, we see that

X <Xy <Xy <.
This proves that fis one-one.

To show that f'is onto, take x&€ S. Then x > x,. So, let kbe the largest
natural number such that x> x, . This means x <x,,. Now x<x,,, means

min(S \ {x,,x,,...,x, }) = x, which contradicts the definition of x,,,. Hence

X=X -

This shows that every element of S has some pre-image in N. Thatis f is
onto. Hence, § is countable. o

Theorem 13 tells us that there is a bijection from N to ever nonempty infinite
subset of N. It has an important consequence. Consider any nonempty set S.
To prove that S is countable we need not find a bijection from N to S. An
injection from S to N (or a surjection from N to §) is sufficient. This is what
the following theorem states.

Theorem 14: Let S be an infinite subset of R.

i) If f:5—N isaninjection, then S is countable.
i) If f:N—S isa surjection, then § is countable.

Proof: i) Let M = f(S). Since f:S — Nis an injection, f:S — M is a bijection.
But M c N, so by Theorem 13, M is countable. That is, there is a bijection

g :M — N. Now from your knowledge of calculus, you know that

go f:S — Nis a bijection. Hence Sis countable. (Why?)
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i) Since f:N— S is a surjection, for each element xe §, there is some
element ne Nsuch that f(n)=x. Then f ' (x)is a nonempty subset of

-1 .
N . Hence by well ordering principle f~'(x)has a least element. Recall that f~'(x) is a

set.

So define g:5 =N by g(x) =min(f ' (x)),

Now we show that g is 1-1. Let x,,x,€ S,x, #x,. Since f is a function,
f7'(x,)and f'(x,) must have no element in common. This implies

min( f ' (x,))and min(f‘1 (x,))cannot be equal. Thatis g(x,) # g(x,).
Now, by part (i), S is countable. [ |

As an application of Theorem 14, consider the following example.

Example 20: Show that Nx N is countable.

Solution: We define a function f:NxN — N by f(m,n)=(m+n)* +n.

If we prove that f is an injection our task is over. So, for (m,n),(p,q) € NxN.
we have

f(m,n)= f(p,q) & (m+n)’+n=(p+q)° +q
& m+n)’ —(p+q)’ =q-n

Thatis, (m+n+ p+qg)im+n—p—q)=q—n,which implies
(m+n+p+q)|m+n—p—q|:|q—n|. Now, if g #n,then m+n+p+gq

divides |¢ —n|. But this means m+n+ p +q <|g —n/|, which is impossible.
Hence, ¢ =n. Now,

(m+n+p+q)|m+n—p—q|=O:>|m+n—p—q|=0
=>m+n—-p-q=0
> m+n=p+gq
—>m=p ( qg=n)

Thus we have proved that f is injective. Hence by Theorem 14(i), NxN is
countable.

Theorem 15: A countable union of countable sets is countable. In other
words, if {S,,S,,S;,....} is a collection of countable sets then USn is

n=1

countable.

Proof: Since §,'s are countable, we can list their elements as follows:

S X s X s Xpzs Xygoeeen
S I Xy Xy Xizs Xogenes

S5 1 X515 Xy Xggs Xagsenne
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We define f:NxN — USn by f(m,n)=x,, . Note that fis surjection. Also,

n=1

since N xNis countable, there is some bijection g:N — NxN. Now

fog:N—> USn is surjection. (Why? Use your calculus knowledge.) Hence,

n=l

by Theorem 15(ii), | J S, is countable. u

n=1

Example 21: Show that Q is countable.

Solution: Define f:Q — N by f(EJ = (m+n)” +n,
n
where m and n have no common factors.

Then similar to Example 17, you can prove that f is an injection. Therefore,
by Theorem 14(i), Q is countable.

*kk

Thus far we have seen examples of countable subsets of R only. However
many subsets of R are uncountable. First, we shall see that R, itself, is

uncountable.
Theorem 16: R is uncountable.

Proof: We prove it by contradiction. Assume that R is countable. Let
L =(x,, x,,x5,...)be the list of all the elements of R. Recall that the decimal
expansion of a real number x is

x=A.aa,a,a,a;...

with the exception that only a finite number of a,’s can be 0. Then we can
write

X = ALy, G500, ..

X, = Ay .0y Ay Gy3 8y Gos....
Xy = Ay .y Ay G330y, Gy
Xy = Ay Ay G430, gs....

X5 = As.as, Asy Asy Asy Ass.e...

Now we construct a real number y=0.bb,b,...such that b, #a,,, V k=123,...
This means that y cannot be equal to x, as b, # q,,. Similarly y cannot be
equalto x, as b, #a,,.Indeed y#x,, Vi=12,..

This means that y is not listed in L. This contradicts the assumption that L
contains all the elements of R. Hence R is uncountable. |

Let us consider an example.

Example 22: Show that the set of all irrational numbers is uncountable.
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Solution: We prove it by contradiction. Assume that the set R\ Qis
countable. Then, R, being the union of two countable sets Q and R\ Q, is
also countable. But this is impossible. Hence R\ Qis uncountable.

*k %

You can do now following exercises.

E23) Let Sbe acountable set and there is a bijection from § to T. Show
that T is countable.

E24) Let ae R. Check whether the set {xe R|x > a} is countable or
uncountable.

E25) Show that every infinite set contains a countable subset.

E26) Let Sbe afinite setand T be a countably infinite set such that
ST =@. Show that S UT is a countably infinite set.

We have seen that many familiar subsets of R such as N,Z and Q are
countable, while R and R\ Q are uncountable. We shall consider many other
uncountable subsets of R in the next unit. We end this unit here.

3.5 SUMMARY

In this unit we have considered the following points.

1. Both Qand R as ordered fields.

2. Inequalities as a consequence of order properties of R.

3. Greatest lower bound and least upper bound properties of R.
4

. Archimedean property of R and its applications such as in

i) showing the existence of a rational number between every two real
numbers.

i) showing the existence of an irrational number between every two real
numbers.

iil) computing infimums and supremums of subsets of R

5. The concept of finite, countable and uncountable sets

i) Examples of these concepts from subsets of R.

i) Some results related to these concepts.

3.6 SOLUTIONS/ANSWERS

E1) i) 2.596306=2+i+ ? + 6 + 3 + 0 + 6 =1298153
10 100 1000 10000 100000 1000000 500000

i) Let x:4-76371:4-76+$, where y=0-324 =0-324324 ....
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Then 1000 y =324 -324. So, subtracting y from 1000y, we get
1000y — y =324 -324 —(0-324 =324 .

Then y=%=3—6.Thusx:4-76+ 36 _ 52872

14 111000 11100°

m
) E2) Let,/ p =—forsome m,ne Z, where m and n have no common
Let m~ = kp, for some n

ke Z. Now m divides factor. Then

2
m?. Hence m divides p :m_2 — m* = pn’°.
kp. But p is a prime, so
m divides k. Then
k = mt for some f € Z.

Therefore, m” = mlp (pk)2 =pn’ = n® = pk*.
which implies p divides

This means m”is a multiple of p,and hence m is a multiple of p.
(why?, see margin). That is, m = pk for some k e Z. Now we have

Again using the same argument, we find that » is a multiple of p. Thus
p is a common factor of both m and n, which is a contradiction. Hence,

JreQ.

E3) Draw a straight line and mark on it 0 at some point. Then mark O at 0
and 1,2,3 and so on at equal intervals. Draw a perpendicular of length 1
unit at 1 (See Fig 12 below).

m.

N
v

2 3

Fig.12: Representation of \f?) on the real line

Let 7, be the top of this perpendicular. The length of OT, is J2. Take a
compass and put its foot at O and pencil at 7, and draw an arch. It cuts

the line at the point\/z. Now draw a perpendicular of length 1 unit at/2.
Let 7, be the top of this perpendicular. Fix the foot of the compass at O

and pencil at 7, and draw an arch. It cuts the line at V3 because
o1, =(V2) +12 = 3.

You can extend this procedure to locate \/_ for any prime number p.

E4) i) We have

(-Da+a=(-)a+1la (Property M(iii))
=a.(-D)+a.l (Property M(i))
=a.(-1+1) (Distributivity)
=a.0 (Property A(iii))
=0 (Theorem 2 (iii))

76 Since additive inverse is unique, (— l)a =—a.



i) Put a=-1ini) and use the fact that —(—1):1.

E5) We have
(a+b)c=c.(a+Db) (Property M(i))
=ca+cb (Distributivity)
=ac+bc (Property M(i))

E6) We can see that

X +5x+6=0=2+3)x+6=0
=x +2x+3x+6=0 (Distributivity)
=x(x+2)+3(x+2) (Distributivity)
=x+3)(x+2)=0 (Distributivity)
= x+3=00rx+2=0 (Theorem 3)
=>x=-30rx=-2 (Property A(iv))

E7) For n =1, the statement is

(a+b) ='Cpa'b’+'Cia’b"

which is true. Now, assume that the statement is true for some ne N.

Then

=

n
. nCi an+1—tbt 4 z ncian—tbtﬂ

i=0 i=0
=a"™'+"C,a"b+"Cya"'b* +--+"C,ab"
+"Cya"b+"C,a"'b* +--+"C,_ab" +b""'

Algebraic Structure of R

Recall that
n!

n

"orl(n—-r)!

=a™ +("C+"C,)a"b+("C,+"C)a" b+ +("C +"C,_ Jab" +b™

n
:an+l +Z(n Ci +n Ci_l n—lbt +bn+l
i=1

— an+1 + i n+1Ci an+1—ibi + bn+1
i=l
n+l o
— z nCi an+1—tbt

i=0

Hence, the statement is true for n+1 also. Thus by the PMI, the
statement of the Binomial Theorem is true for all ne N.

1 1
E8) Since x>0 and y >0,we have —>0 and —>0. Now

x y
x>y :>l-x>l- y (by Theorem 4 (iii))
y y
:>l-x>1 [l.yzl)
y Yy
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1 1 1 11
Consequently, —.x.—>1.—. Thatis, —>—.
y X X y X

1
E9) Assume, if possible, ac > bd. Then, since ¢ >0, we have —>0. Then
C

ac-l>bd-l:>a>b-i
c c c

Now d >c¢ and ¢ >0 imply d >1. (Why?) Then b >0 implies b 4 > b.
C C
So a > b. But, this is a contradiction. Therefore, ac < bd.

E10) We are give that x> y>0. Let P(n):x" > y",ne N. Then, P(1):x> y
is true, as it is given. Assume, now, that P(n) is true for some n. Then
n+ 1

X =x" x>y x>y y=y""
Hence P(n+1) is true. Thus, by the PMI, P(n) is true for all ne N.

E11) Let us first note that x < a implies that x* < ax because x> 0. Also,
from the hypothesis we know that x < 1. This implies ax < a because

a > 0. Next, we prove that x" <a,for all ne Nusing the PMI. So, let
P(n):x" <a, ne N.Then P(1) is true as given. Now, let P(n) be true

for some ne N. Then x"*' = x".x < ax < a using the induction
hypothesis, and the fact that 0 < x <1. This means P(n+1) is true.

Hence, by PMI P(n) is true for all ne N.
E12) We have

1
a>l=a>0=a">0> — > 0.
Now
a" >a" & a”. >a™. !
m m
a a
Sam >
Sn—-—m>0
Sn>m

The result does not hold when a <1. For instance, take

1 1
a :l, n=2,m=1. Then we get — >— which is false.
2 27 2
E13) We know that forall xe §
inf S <x<supS.

Therefore, inf S <supS.
When § is a singleton set, i.e. § = {x} then inf S = x =sup S.

E14) Lot Sz{(ﬁzj }
n

For n =1 we have

n 1
(n+lJ =(1+1J =2eS.
n 1




Hence S #@. Also forall n>1

n+1213(n+1J >1.
n n

Hence S is bounded below. Therefore, by the Greatest Lower Bound
Property of R, inf § exists in R,

For supremum, note that for all ne N,

1 n+l 1 n 1 n 1
n+1+ >ln+1+ >|n+— o1+
n+1 n+1 n n+1

(Using E12 and E10 in this order.) This means (n+1J increases with
n

n. Therefore, S is not bounded above. Consequently, sup S does not
existin R.

E15) Let /=inf S and u =supS.

Case i) a >0 : Since, u is an upper bound of §, foreach xe S,
xfu=ax<au ((ra=0)

Hence, au is an upper bound of a$ . Now, if vis any upper bound of
as , then

"
ax<vwWxe§ = x<—Vxe s
a

v,
= — is an upper bound of S.
a
£
Sus<—=au<v
a

Therefore, sup (aS) =au=asups.

Case ii) a<0:Since 7 is a lower bound of §, foreach xe S,
(< x= al > ax.This means, a/ is an upper bound of aS .

Now, if vis any upper bound of a S, then

v
ax<vwxeS=>x>2—Vxe S
a

Vv .
— — is a lower bound of §
a

=<0 (o 0=inf §)
a
=v=al (a<0)
This implies, sup(aS)=al =ainf S.

E16) Since, Sis nonempty and bounded above, sup S exists in R. So, let
u =supS. Then, since u is an upper bounded of S, for each xe §,
x<u=x"<u’ (- x>0)

(Using E10.) Hence u? is an upper bound of S>.

Algebraic Structure of R
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Now, let v be any upper bound of S*. Then, for all xe S,

X <v=v—x*20
:(x/_—xx\/;+x)20
= Jv=—x20 CoAv+x20)

:>\/;2x.

This implies, Vv isan upper bound of S. But u =sup S . So, u < \/;
which implies u* < v again using E10. This proves that
2

supS* =u*=(supS)

For =S c R, do yourself.

E17) Let S ={—

! ne N}.

2
n

On the lines of Example 12, you can show that inf S$ =0 and sup S =1.

2
LetT:{an i1 ne N}:{a+i2
n

2
Hence, using Example 10, you can see that

ne N}=a+S.

n

inf 7 =inf(a+S)=a+inf S =a+0=a.
Similarly, supT = sup(a+S): a+supS =a+l.

E18) i) False. Because —2¢ {xe Rjx <1} but =2¢ {xe Rjx’ <1}.
i) True. This is because for x>0,
x|x|24<:)x2 24 x22.
And, for x<0, x|{>4 & —x* >4 & x* <-4, which is impossible.

Thus, {xe R|x|x|x 24} ={xe Rlx>2}.

i)  True. By the triangle inequality, you can see that

|2x—1|z|x+x—1|£|x|+|x—1, Vxe R.

3
iv) False. Because for n =3 we get (%J >3, which is false.

E19) Consider the inequality

——H+——F—
2x+1
0o 1L 2 3 4 5 <1 ... (2
%{_,\/HH ) (2)
s There are two cases i) 3x—42>0, ii) 3x—4<0

Casei):3x—4>0
Fig.13: s :{xe R

x>5 orx<i
3

4 ,
This means x> 3 Now, Eq. (2) can be written as

80 2x+1<3x—-4 <5< x.



That is, we have ng and x>5, whichis x>5.
Caseii):3x—4<0
This means x<g in this case the inequality (2) reduces to
2x+1>3x-45>x
That is, we have x<g and x > 35, which is x<%.

Combining both the cases we get

{xeR 2x+1
3

In Fig. 13, the shaded portion of the real line represents this set.

x—4

<4}(:){xe ]R|x>5 or x<g}

E20) Let us assume that u> < a. To reach a contradiction, we need to find a
1 . :
natural number nsuch that u+—e S. That is, we need to find an ne N

n
such that

2
1 , 1 2u
u+—| <asu +—2+—Sa.
n n n

But you know that

1 1 , 1 2u s  1+2u
72<*:M +72+—<l/l ot .
n n n n n

Thus if we can find an n e N such that

2_|_1+2u<

- b

n

our task is over. This is equivalent to finding an ne N such

I ZZ . Such an nalways exists, by the Archimedean property.

that n >
a—u

Thus we have arrived at a contradiction. Therefore, u* > a.

E21) Assume that the statement is false. That is, for all ne N, either x<n—1
or x>n. Now, if x<n—1,Vne N,then for n=1 we get x <0, which is
a contradiction as xe R™.

The case x>n, Vne N is also not possible due to the Archimedean
Property. Therefore, we must have some ne N suchthat n—-1<x<n.

E22) You are given x < y.This implies V2x<r< \/Ey. Hence, by
Theorem 9, there exists a rational r such that +/2x < r < \/Ey. This
r

g

E23) Since § is countable, there exists a bijection f:N — S. Let g:S > T

implies x < < y. Now show that r/~2 is an irrational number.

Algebraic Structure of R
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be the bijection given. Then go f:N —T is also a bijection. This
means, T is countable.

E24) Let S ={xe R|x >a}. The set Sis uncountable. If possible, assume
that Sis countable. Let T ={xe R|x< a}. Define g:S —»Tas

g(x) =2a—x. We can see that gis a bijection. Then by E23, T is

countable. Now R=SuT u{a} is a union of countable sets. Hence, R
is countable, which is a contradiction.

Therefore, Sis uncountable.

E25) Let S be infinite. Then S #@ . So, pick x, € S. Define A, =1{x,}.
Again, S\A#(® as S is infinite. Pick x, € S\ A. Define
A, = A u{xz}. Continuing this way, let us assume that A, is defined.

Then, S\A, #( as S is infinite. So, pick x,,, € S\ A . Then define
An+] = An U{x
we know that for each ne N, A, is finite and hence countable.

}. This shows that A, is well defined for all ne N. Now,

n+l

Therefore, A = UAn is a countable union of countable subsets of S.
n=l1

This implies A is a countable subset of S.

E26) Since S is finite let S ={a,,a,,as,...,a,} and T ={b,,b,,b,,--}
Define f:N — SUT by

a,, f1<k<n

b if k>n

k—n>

f(k)={

Now, let k,/e N such that k # ¢. Then a, #a, and b, #b,. Also since
SNT =@, we have a, #b, forany k,/e N,

Thus, k#/= f(k)# f({/). Hence f is 1-1.To show that f is onto,
pick a, € S,then ke Nsuch that f (k)= a, Similarly. If you pick b, € T,
then n+k e N such that

fla+k)=b,., =b,

n+k—n

Thus, f is onto. This proves that f is a bijection. Hence S UT is
countably infinite.
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TOPOLOGICAL STRUCTURE OF R ‘
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4.8 Solutions/Answers 100

4.1 INTRODUCTION

You are quite familiar with an elastic string or a rubber tube or a spring.
Suppose you have an elastic string. If you first stretch it and then release the
pressure, then the string will come back to its original length. This is a physical
phenomenon but in mathematics, we interpret it differently. According to
geometry, the unstretched string and the stretched string are different since
there is a change in the length. But you will be surprised to know that
according to another branch of mathematics, the two positions of the string are
identical and there is no change. This branch is known as Topology, one of
the most exciting areas of mathematics.

The word “topology” is a combination of the two Greek words “topos” and
“logos”. The term “topos” means the top or the surface of an object and “logos”
means the study. Thus “topology” means the study of surfaces. Since the
surfaces in one dimensional space such as R are just points and intervals and
their unions, we shall study the topological characteristics of such subsets of
R.

We begin with intervals in Section 4.2 and study their types and discuss
whether the union, intersections or complements of intervals are intervals or
not. Next, in Section 4.3 we shall introduce the notion of the neighborhood of a
point and the notion of limit points of a set. In Section 4.4, we shall see what
kinds of sets have limit points. Specifically, we shall discuss the Bolzano
Weierstrass Theorem. In Section 4.5 and 4.6 we shall show you how these
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[a,b]={xe R|a< x<b}
[a,0] = {xe R|a < x}
]—o0,b[={xe R|a < x}
la.b[={xe R|a<x<b}
la,[={xe R|a<x}

|—o0,a[={x€ ]R|x<a}

Is S NT aninterval, when
it contains just a single
point?

84
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notions give rise to two different types of subsets of R namely -- closed sets
and opens sets. We shall finally look at how the closed sets and open sets are
related to each other.

Objectives
After reading this unit, you should, be able to

e describe intervals as special subsets of R and show when the union,
intersection or complement of an interval is an interval;

e describe the notion of a neighborhood of a point on the line, and the
notion of limit points of a set;

e describe and apply Bolzano Weierstrass Theorem;
find the limit points of a set;

e describe when a set is closed and understand the properties of closed
sets;

e describe when a set is open and establish the relationship between open
and closed sets.

4.2 INTERVALS

You can recall from your calculus course that an interval is a set that contains
every point lying between any two points of it. Formally it can be defined as
follows:

Definition: A setS c R is said to be an interval if forany x,ye S,x<y, and r
is a real number such that x<r<y, then re §.

Let us recall different kinds of intervals you have studied such as open and
closed.

Some examples of closed intervals are [a,b], [a,[ and |- s, a], where
a,be R. Of course, in the interval [a,b] it is assumed that « <5 . So, you can
see that[a, a]is just the singleton {a.}

The examples of open intervals, include the sets

la,b[, Ja,[ and | =,a[ Again, in ]a,b it is assumed that a < b.So, what
does |u, a[ contain ? It contains all those real numbers greater than a and less
than « . But there is no such number, hence Ja,a[= Q.

Is R an interval? Of course, it is. R contains every number lying between any
two real numbers. We shall often write R = | — «, [, Here we must tell you that

not all intervals can be classified as open or closed. For example, [a,5[ and
la. 5] which are called semi-open (or semi-closed) intervals.

Are you puzzled why the intervals such as [a,[ and |- «,a] are not semi-

closed? We shall discuss more about the terminology ‘open’ and ‘closed’ in
later sections.

Let us look at some properties of intervals.
Theorem 1: The intersection of two intervals is an interval.

Proof: Let us assume that S and T are intervals with at least two points in



SNT. Choose x,ye SNT,with x<y. Then since x,ye Sand Sis an
interval, ]x, y[< S. Similarly, ]Jx, y[c7.Thus Jx, y[c S T, and hence s N Tis
an interval. [ |

For example, you can see that |2,5[~[4,9[ is an interval because ]2,5[and [4.9]
are intervals and [2,5[n}4,9[= 4, 5]

However, the union of two intervals is not necessarily an interval. Take, for
instance, [0,1]and [2,3] You can see that 1,2¢ [0,1]]u[2,3]but 1.5¢ [0,1]u[2.,3]
However, if we consider two intervals with nonempty intersection, will their

union be an interval? The following theorem answers this question.

Theorem 2: If the intersection of two intervals is nonempty, then their union is
an interval.

We shall not prove it here. (See E3.)
Let us consider the following example.

Example 1: Identify the following sets as open, closed or semi-open intervals.

x—2 X

i) S, ={xeR[x*+x-6<0) v) S, ={xeR[lx-1I<1)

2
i s =lxeRlIsX =32y i) S, ={xe R|x+->0
1 2

Solution: i) The elements of S, satisfy the inequality

2 J— - N
PRinks s LPYPIGPYC il C it P
x—2 x—=2
S1<x—-1<4 and x—-2=#0
& 2<x<5 and x#2
& 2<x<5

Thus, S, is the semi-open interval ]2,5].

1
i)  The elements of S, satisfy the inequality x+—>0. Note that
X

x*+1

x+l>0<:> >0 x>0

X X
So, we have S, ={xe R:x>0}=]0,c0[. Thus, S,is an open interval.

i)  We know that
X +x-6<0e (x—2)(x+3)<0
SR2-x)(x+3)>0
SR2-x>0,x+3>0) or 2—x<0,x+3<0)
o -3<x<?2 or2<x<-3
& -3<x<2 (2<x<-3isfalse.)

Thus S, =]-3,2[. Hence S,is an open interval.

iv)  The inequality |x —1| <1is equivalent to —1< x—1<1, which is
equivalentto 0<x<2.Hence S, =[0,2]is a closed interval.

*k %
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Now we talk about the complement of an interval. Look at the interval]a,b[. It

contains all those real numbers that lie strictly between a and b . So its
complement must contains all those real numbers that are either smaller than
or equal to a, or greater than or equal to b . Observe that a and b lie in the

complement as they do not lie in ]a,b[.

Thus the complement of ]a,b[ is ]—o0,a]U[b,eo[ . This implies that the
complement of the interval Ja, [ is not an interval. Can you think of an interval
whose complement is also an interval?

The following exercises would help you comprehend the concept of intervals.

E1) LetA:{xe]R

le} and B={xe R| x+1<Ixl }. Express A and
X+

B as intervals. Check whether A N B is an open interval or not.

E2) Expressthe sets A={xe RIx’<x}and B={xe RI4(x*-2x)<-3}as
intervals. Find AUB,AUB“ and A“UB and A° UB".

E3) Provethatif Sand T are intervals with S "7 #@then S UT is also an
interval.

Remark: Even when the intersection is empty, the union may still be an
interval. For example, take S =]1,2] and T =]2,3]. Then SUT =[1,3],

which is an interval, but SNT =0 .

E4) Is Q aninterval? Is any subset of Q an interval? Justify.

You have seen that intervals are special kind of subsets of R which do not
exist in Q. (See Theorem 9 and E22 of Unit 3.) Let us now discuss two
closely related concepts.

4.3 NEIGHBOURHOODS AND LIMIT POINTS

In this section we shall introduce to you the notion of ‘closeness’. Then we
shall talk about the points that are ‘arbitrarily’ close to a given set.
We begin with the definition of distance between real numbers. Let

d :RxR — R" U{0}be a mapping. Suppose d has the following properties:

i) dx,y)=20, VxyeR

i) dx,y)=0iff x=y, Vx,yeR

i) d(x,y)=d(y,x), Vx,ye R

iv) d(x,y)<d(x,2)+d(z,y), Vx,ye R

Then d(x,y) is called the distance between the points x and y. An
important example of distance which we shall deal with is the usual distance
between points on the line, i.e., d(x,y)=|x—)|, Vx,yeR.

From Unit 3, you know that every real number can be represented by a point



on the number line and vice-versa .So, let us consider the real number 1 and
some points near it on the number line. (see Fig.1 below).

+—0— L -9 L ——>
0-9 T 1 T 11
0-99 101

Fig. 1: Points close to 1

Look at the points 0-9and 1-1, both of which lie at a distance of 0.1 from 1.
That s, [1-(0-9)|=|l—(1-1)|=0.1. So we can say that 0-9 and 1-1 are close
to 1. However, you can see that the points 0-99and 1-01are even more close
to 1 as [1-(0-99) =[l-(1-01)|=0-01. The terms close, closer, more close,

much close etc do not give clarity to what closeness means. So, we fix a
distance, £ (> 0), and say that x is close to 1 if the distance between 1 and x

is less than €. In this sense we can call x lies in the & — neighbourhood of 1.
Below we define a neighbourhood formally.

Definition: Let ae Rand € >0. Then an ¢ - neighborhood of «a is the set
N, (a)defined as:

N.(a)={xe R| Ix—a|<8}={xe R|a—€<x<a+€}.

Thus N,(a) is an interval around a. Thatis, N,(a)=Ja—¢&,a + €[ You can see 1

A

—|
what this means geometrically in. Fig. 2. J L
a—€& a a+é&

Now let us consider a few examples.

Fig.2: N,(a)
Example 2: Represent the set N | (0) on the number line.
100
Solution: The set N | (0) contains all those points that are within a distance
0 ] [
of — from 0,i.e.,
100 19 L
1 1 1 100 100
N, 0O)=xeR|lxl<—}=|——,—|. .
O {x | 100} } 100 100[ Fig. 3: N | (0)

100
Geometrically it is represented in Fig. 3.

*k %

Example 3: Show thatif 0<&’<¢, then N_.(a) C N (a).

Solution: Let xe N, (a). Then |x—al<&’. Since £ < ¢, it follows that
|x—al<é&. Hence xe N, (a).

*kk

Now, look at the set S = {l
n

ne N}. (See Fig. 4).
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—e ® *—eo *—>
o 1 11 !
4 3 2
1
Fig. 4 S:{— neN}
n
111 1 1
Its elements are 1,—,—,—,...,.—5 s 00 »
234 10 10

Does 0€ S ? No. Still you will find that 0 cannot be separated from S. Let us

see what it means. Consider the neighbourhood N | (0). Then Le N, (0)

10 10

1 1
and HE S.Thatis, —e N, (0)nS. Similarly if you consider the

10

neighbourhood N | (0) of 0, you will see that ILE N, (0)nS . Infact, you

100 100
consider any ¢ -neighbourhood N, (0) of 0, by Archimedean property you will

find some ne N, such that 0 < l <ég,ie, le N,(0)nS. Thus, we see that
n n

although O lies outside S, every neighbourhood of 0 contains points of S. In
other words, we can say that 0 is arbitrarily close to S.

The point 0 is an example of a point which we shall define now.

Definition: Let @# S cR. A point xe R is called a limit point of S if for
every £ >0,N,.(x)n S contains an element of S other than x.

To clarify the definition above, note that x need not belong to S. So it does
not matter whether x belongs to S or not, but for x to be a limit point of
S,N,(x) n S must contain at least one element different from x.

Now you can see why 0 is a limit point of the set § = {—
n

lneN}.

Let us consider a few more examples.
Example 4: Find all the limit points of Q.

Solution: Let xe R be arbitrary. Consider the neighbourhood N, (x) for some

&£ > 0. Since you know that there are many rational numbers between x—&
and x +¢&,the set N,(x) nQ contains an element other than x. Hence x is a

limit point of Q. Since xis arbitrary in R, all the real numbers are the limit
points of Q.

Example 5: Show that every element of a,b[ is a limit point of |, 5[.

Solution: Let x e ]a,b[ be arbitrary. Consider the neighbourhood N, (x)of x

for some €>0. We have to find some pe N,(x)N]a,b[such that p # x.
Then there are three cases. (See Fig. 5.)



N, (x) N, (x) N, (x)
— — —
a X b ax p a X b
(a) (b) (c)
Fig. 5

Case 1: &£ <min{x—a,b— x}. Now observe that

a<x<x+§<x+8$b (Why?).

Take p:x+§. Then pe Ja,b[ and pe N, (x). Thus pe N, (x) Ja. ]

a+x

Case 2: ¢>x—a. Thentake p= . Note that

a+x

x—€<a< <x<b,

which implies pe N, (x)N Ja, b].

Case 3: ¢>b-x Thentake p =(x+5b)/2. Then using the arguments similar
to the previous case, you can see that pe N, (x)N Ja,b[.

Thus, for all £ >0, we have shown that N, (x) ]a,b[ contains a point different
from x. Hence xis a limit point of |a,4[. Since xis arbitrary, every point of Ja, 5|
is a limit point of Ja, b[.

* k%

You may have observed that if a is a limit point of S, then N, (a) for any
£ >0, contains many points of S, other than « . In fact, N, (a) contains

infinitely many points of S distinct from a. This is, precisely the content of the
next theorem.

The idea of the proof is to
Theorem 3: Let @# S cRand ae R. Then « is a limit point of § iff for every begin with an arbitrary

€ >0, N, (a) contains infinitely many points of S other than a. neighbourhood of 4, and
get smaller and smaller

. . L. . neighbourhoods
Proof: First assume that a is a limit point of S. Take € >0. Then N .(a)NS successively picking a
point from each

contains some element pand p #a. Let x, = p. Choose 0< €, <€such that neighbourhood distinct

x, &€ N, (a). (See Fig. 6.) from the previous point.
Xy X,
< i e R [ o [ o [
— 1 1 J ¢ I A
a-€ a—e a-e, a a+ée, a+e a+e

Fig. 6: Points x,x,,x,....of S lyingin N (a).

Now N, (a)is a neighbourhood of a, hence there is some x, € N, (a)NS 89
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and x, #a.Also, x, # x,as x, & N, (a). Again we can choose 0<¢, <§,
such that x, ¢ N, (a). Since N, (a)is a neighborhood of a,there is some
x;€ N, (a)nSand x; #a. Also x; & {x;, x,}. This process can be continued
as given £, and {x,,x,...,x, } we can always select £, such that
O<eg,<¢,,and x, & N, (a). Then there exists an x,,,
that x

X5 Xyy Xsseens X, X,,15...0f Sthat liein N,(a).

EN, (a)m S such

#aand x, ,, & {x,x,,....,x, } . Thus we get infinitely many points

n+l

The converse holds by definition. u

Now try solving some exercises.

E5) Let xbe alimit pointofaset S and ScT.Is xa limit point of T?
Justify.

E6) Find the limit points of R .
E7) Does a finite set have any limit points? Justify.
E8) Does the set N have any limit points? What about Z ? Justify.

neN}.

E9)  Show that 0 is a limit point of the set {—H—(Z_i_l
n

If you have gone through the exercises above, you might have understood
why the limit points of finite sets do not exist. You must have also seen that
the limit points of some infinite sets like Nand Z do not exist. This raises a
general question, what are the conditions that ensure the existence of a limit
point of a set. This is the topic of discussion in the next section.

4.4 BOLZANO WEIERSTRASS THEOREM

In this section, we shall discuss the Bolzano-Weierstrass Theorem. Bernhard
(1781-1848) Bolzano discovered this theorem. He was, however, debarred
from publishing his work. Karl Weierstrass (1815-1897) discovered the result
independently.

The theorem says that there is a limit point for a bounded infinite set S. You
may note that boundedness or infiniteness of S alone is insufficient for the
existence of a limit point. For instance, the unbounded and infinite sets Nand

Z have no limit points. Likewise, the finite sets are bounded, but have no limit
points.

Now think of a set S which is bounded and infinite both. For example, take
S ={1,2,3}U]5,6[ . The limit points of S is the closed interval [5,6].

Now we state the theorem formally.

Theorem 4 (Bolzano Weierstrass Theorem): Let @+ S —c Rand S be



bounded and infinite. Then there exists a limit point of S (in R).

Proof: Consider the set A, as defined below.

Ay ={xe R|x2s forfinitely many se S}
We shall complete the proof in two steps.
Step 1: supA;exists.

Since Sis bounded, let ¢ be a lower bound and u an upper bound of §.
Then (<s,Vse S.Hence />, forno se S. This implies /e A;.

Hence A, #@. Now for any xe A, we have x > s, for finitely many se §.

This means the rest of the infinitely many elements of § are larger than x . But
since u is larger than all the elements of S, hence x <u . This shows A; is

bounded above. Now the least upper bound property of R implies sup A,
exists.

Step 2: sup A is a limit point of S.

Let u, =supA,. Then we have to show that u,is a limit point of S. So, for

€ > 0, consider the set N, (u,) =]u, —¢€,u, +€[ . Since u, is the supremum of
Aq, u, +&¢ A . This means u, +¢€ > s, for infinitely many s< S . Again, since
u, is the supremum of A, there is some ae A;such that u,—¢ <a. But
ac A, means a > s, for finitely many se §. That is the rest of the infinitely
many elements of S are greater than «, and hence greater than u, —¢€.

Thus we have infinitely many elements of S lying between u,—€ and u, +€.
Thatis u, is a limit point of S. |

Let us consider a few examples.

Example 6: Show that there exists a limit point of the set

S:{2+“”””‘neN}.
n

Solution: Notice that, for all ne N,

1 cosnz 1 1 COSNT 1
—1<cosnzt<l=>—-——< <—=2——<L2+ <24—.
n n n n n n

Thus all the elements of S lie between 1 and 3, hence, S is bounded. Next to
show that S is infinite, we consider the function f:N — S defined by

cosnw

f(n)=2+ .
n

Now let m,ne N. Then

COSnT _ COSmMT N -D _ -D

m n m

f)=fm)=2+ 2+

= ﬂ — (_l)m—n
n

Fig. 8: Karl Weierstrass
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m—n

Now mn is positive, hence (1)
n

say m—n =2k, for some integer k. Then

must be positive. So m—n must be even,

ﬂ—(—l)’"—" _ n+2k

= =]l =>k=0=>m=n.
n n

Thus fis one-one. This means, S is countably infinite, and hence infinite.
Then, by the Bolzano-Weierstrass Theorem, there exists a limit point of S.

*k %

Example 7: Show that there exists a limit point of the set

Sz{i_l
m n

Solution: You can notice that Vm,ne N

m,ne N}.

leg o cpcliley
n m n

LI PR
m n m

Hence S is bounded. Now notice that {1—1

n
n

Weierstrass Theorem, a limit point of S exists.

ne N}is a subset of S. Since

ne N}is infinite, S too is infinite. (Why?) Hence by the Bolzano-

* %%

The Bolzano Weierstrass Theorem is a fundamental result in real analysis.
Note that the theorem guarantees only the existence of a limit point of course,
in many cases we need only that much information. Now try the following
exercise.

E10) Using Bolzano Weierstrass Theorem, show that each of the following

sets has at least one limit point in R.
(i) hent ) 1 en! iy {i+dfnen
27" 6" n

By now you must have understood that some sets do not have limit points at
all even if they have infinitely many points, e.g. the set N of natural numbers.
Another thing is that the limit points of a set may exist, but do not all lie in the

ne N}. But O¢ {l
n

next section we study sets that contain all their limit points or have no limit
point at all.

set. For instance, 0 is a limit point of {l
n

ne N}. In the



4.5 CLOSED SETS

In this section we shall discuss closed subsets of R . Let us consider the
closed interval [a,b]. We have seen that every point of this interval other than

a and b is a limit point of it. Take the point a . Let £ >0 be arbitrary. Does
N_.(a)N[a,b] have any point other than a? There are, in fact, two cases
arises depending on whether a+&<bor a+&>b. (See Fig. 9.)

1 1 [ [ ] 1 [ [
1 1 L L d 1L L
a-€& q a+e b a—¢& a b a+é&

(a) (b)

Fig. 9: Ng(a)ﬂ [a,b]
So, we can write

l[a,a+¢€ , if a+e<b
N.(a)N[a,b]= .

[a,b] ,if a+e>b
In either case, there is certainly a point other than a in N (a) N[a,b]. (Of
course, we have assumed that a < b.)This means a is a limit point of [a,b].
On similar lines you can show that b is also a limit point of [a,b]. Thus all the
elements of [a,b]are limit points of [a,b].

Does [a,b] have any other limit points? To answer it, let us take x < a . Then
taking € = a—x > 0, we find that the neighborhood N, (x) =]2x —a,a[ contains
no point of [a,b]. Hence x is not a limit point of [a,b]. Similarly, you can show
that if x> b, then also x is not a limit point of [a,b]. Thus we see that the
interval [a,b] contains all its limit points.

The interval [a,b]is an example of a set which will be termed a ‘closed set'.

Definition: Let S cR. Then Sis called a closed set if S contains all its limit
points.

Thus you can see that [a,b]is a closed set, when a <b. Again assuming
a < b, consider the interval ]a,b]. Forany £ >0, the interval Ja—¢&,a+&[
contains infinitely many points of la,b]. So, ais a limit point of Ja,b]. Since
a¢ la,b], the interval ]a,b] is not closed. Similar reasons can be given to
conclude that Ja,b[ and [a,b[ are not closed.

Are the sets @ and R closed? You can see that @ is a closed set as it has no
limit points. R is a closed set as its limit points are in R.

Now consider the following example.
Example 8: Show that every singleton set in R is a closed set.

Solution: Let S ={a},for some ae R. If xe Ris a limit point of § then for
every £>0, N,(x)nScS,s0 N,(x)nS contains at most one point. This is a
contradiction. Hence, no real number is a limit point of S. That is, the set of
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limit points of § is empty. Consequently, S contains all its limit points. Hence
S is closed.

*k %

You have to be little careful while using the definition of a closed set. It does
not imply that every point of a closed set has to be a limit point, for instance,
see the singleton set in Example 8 above. To show that a set is closed you
need to find all the limit points of the set and then show that they all belong to
the set. On the contrary to prove that a set is not closed, you need to find just
one limit point of the set that lies outside it.

Let us consider a few examples.

Example 9: Check whether § = {l

n

ne N} is closed or not.

Solution: Earlier you have seen that 0 is a limit point of S. Since 0¢ S, Sis
not a closed set.

*k %

Example 10: Show that [a, [ is closed.

Solution: Let x be a limit point of [a,s[. Then for each £>0, there exists
some y = x such that

ye Ng(x)ﬁ[a,w[jé'—x< y<x+€&and y=a
—a<x+t¢&
—>a—x<E&

Since the last inequality holds for each ¢ >0, we get a<x, i.e., xe [a,o[. This
shows that every limit point of [a, | is in [a,[. Hence [a, [ is closed.

* %%

Example 11: Show that the following set is not closed.
G- {M e N}

2 n
Solution: Consider the neighbourhood N, (0)=]-¢,&[ of 0. Then, by

: . 1
Archimedean property, there exists some ne N such that — < £.So, we have

n
1
-£< <—<e€.
2n+1 n
1
That is, € N,.(0). Also, observe
2n+1
1 1+(=1)" 1
= + (S
2n+1 2 2n+1
So R N,(0)nS. Hence Ois a limit point of S. Since 0¢ S, Sis not a
' 2n+1
closed set.

*k %



Let us now look at a property of closed sets.

Theorem 5: If Sand T are closed subsets of Rthen S UT is also a closed
subset of R.

Proof: Let xbe a limit point of S UT. Then for every £ >0, there exists some
y # x such that

ye Ng(x)m(S UT):> ye(Ng(x)mS)u(Ng(x)mT)
= ye Ng(x)mS or yeNg(x)mT

This implies, x is a limit point of S or xis a limit point of T. Hence xe S or
xe T, as S and T both are closed. This implies xe S UT. Thus, SUT s
closed. [ |

To see an application of Theorem 5 consider the sets [3,4] and [5,6], both of
which are closed. Then [3,4]U|[5,6] is also closed. In fact, if you are given any

finite number of closed sets, then their union is also closed as you can see
from the following theorem.

Theorem 6: If S,,S,.,...,S, are closed sets, then US[ is also closed.
i=1

Proof: We prove it by the Principle of Mathematical Induction. Note that the
statement of the theorem can be rewritten as

P(n):If §,,5,....., are closed, then | JS, is closed, n>2.
=1

Clearly P(2)is true, by Theorem 5. Let P(k) be true for some k < n. Let

k

S = US[ . Then § is closed, which implies S U S, ., is closed (using Theorem
i=1

5). This means P(k +1)is true. Hence, the Principle of Mathematical Induction

implies that P(n)is true forall n>2. m

Now let us consider an example.

Example 12: Check whether the set S ={x,,x,,..., x, },where
x,e R,V1<i<n,and ne N, is closed or not.

Solution: Note that we can write S as the union of its individual elements i.e.

S = U{x[}. Since each {x;} is closed, by Theorem 6 § is closed.

i=1
*kk

You must have noted that in Theorem 6 the sets ;s were finite in number.
The result cannot hold if we take infinitely many S;s. The next example shows
this.

Example 13: Let §, = FI} for ne N. Check whether USn is closed or not.

n

n=1

Solution: We note that

” 1 1
S =[11 —,1 -1 ... < 1]10,1].
U1 [ ]u{2 }{3 }u c 10.1]
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1
Now take x<]0,1]. Then there exists some ne Nsuch that —<x<1. So
n

xe }ll} Hence xe [ JS, . This shows that [ S, =]0,1]. You can show
n

n=l1 n=1

that 0 is a limit point of 0,1} Since 0¢ J0,1] it follows that 10,1] is not a

closed set. Hence USn is not closed.

n=1
kK

Example 13 shows that the union of infinite number of closed sets need not be
closed. However if we take the intersection of an infinite number of closed
sets, we get a closed set. In fact, it is true that, the intersection of an arbitrary
collection of closed sets is closed. Note that an arbitrary collection of sets is a

set of the form {S, | @€ A}, where A can be any set finite, countably infinite
or even uncountable. Now we state the result below.

Theorem 7: Let {S, | @€ A} be an arbitrary collection of closed sets, i.e., S,
is closed for each ate A. Then ﬂsa is also closed.

aeA

Proof: Let xbe a limit point of ﬂSQ.Then for each € >0, there exists y # x
acA

such that

ye Ng(x)m(ﬂSaJ: ye (N, (x)NS,)

acA aeA

= ye N,(x)ns, for all e A.

This implies, x is a limit point of S, for all @e A. But S, is closed, hence
xe§, forall ae A.

Thatis, xe ()S,.Therefore, (S, is closed. |

ac\ acA

It is often convenient to write the union of a set and all its limit points as a new
set. So, we have the following definition.

Definition: Let S c R. The closure of S is the union of § and all the limit
points of S. We write S to denote the closure of S .

By definition, you can see that S < S . However ScS istrue only when S'is

closed. Thus we cansay S =S iff Sis closed. Let us find the closure of some
subsets of R.

In Example 4 you have seen that every real number is a limit point of Q.
Hence, Q=R . Similarly, you can see that Ja,b[ =[a,b].
Example 14: If S cT and T is closed, then show that ScT.

Solution: Assume, if possible, that §g;T. So, let xe S suchthat xe T .
Then, x¢ S . Since T is closed, x cannot be a limit point of 7. This means,



N, (x)nT\{x}=@, forsomee >0 N,(x)nS\{x}=0,for somee>0
< x is not a limit point of §
S XéE E
This is a contradiction. Hence S c 7.

*k %

Now try doing the following exercises to reinforce your learning about closed
sets.

E11) Check whether | J[a, [ is closed or not. If it is not closed, what is its

a>0

closure?

E12) Examine whether the set | J ]-n.n[ is a closed set or not.
n=1

E13) Prove that the interval |- «,a [ is not a closed set, for any ae R. Is
|J]-o.dl closed?

acR
E14) Check whether the set S ={xe R|x® +3x* —x’ + x+1=0} closed set
or not.
E15) Examine whether the set ﬂ[ml,s} is closed or not.
n

n=l

E16) Find N and Z.

E17) Find the closure of the set of irrational numbers.

We have seen that closed sets contain all those points that are arbitrarily close

to them. On the other hand, there are many subsets of R whose all elements
are interior to them. We shall discuss such sets in the next section.

4.6 OPEN SETS

Consider the open interval ]1,2[ . Take the point 1-5in this interval. Then we
see that N,,(1-5)=]1-4,1-6[c]L,2[ . Now take 1.001€]1,2[ . Then we know
that 1.001-1=0.001. So the neighbourhood N, (1.001) =]1,1.002[< ]1,2[ .
Now take any point xe J1,2[. You will find some neighbourhood of xlying in
I.2[. (See Fig. 10). We can say xlies in the ‘interior’ of §

Definition: Let S € R and xe S. Then x is said to be an interior point of S
if there exists some € >0 such that N,(x) c S . The set of all interior points of

S is called the interior of S, which we shall denote S°.

As you can see, from the definition, an interior point of S always liesin S.
This means S° < S . You may wonder if §° =S occurs at all. As an example,

note that @° =@. Another example is R itself. To see why, let ae R. Then
we can always find some € >0 s.t. N.(a)=]a—¢€,a+e[cR.Thus R° =R.

Let us think of some other examples.

Example15: Find the interior of a finite set.

1 T.7T [
D R I
1 X 2

Fig. 10: xis an interior
point of |1,2].
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Recall that the complement
of aset S isthe set

S°={xeR|xe S}.
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Solution: Since you know that every neighbourhood contains infinitely many
points, no neighbourhood of a point can be a subset of a finite set. Therefore a
finite set has no interior points.

*k %

Definition: Let S c R. Then § is called an open set if S° =S.

In other words, the definition above says that a set is open if and only if its
every point is an interior point. Now consider the following example.

Example 16: Show that ]a,b[is an open set.

Solution: You know that for each xe]a,b[, there exists
& =min{x—a,b—x}>0 such that N.(x) c]a,b[. Thus x is an interior point
of ]a,b[ .Hence ]a,b[ is an open set.

*%k %

In case of the closed interval [a,b]finding an €as above is not possible for
every x e [a,b]. Particularly the condition is violated at the points a and b.
For example, we see that every neighborhood N,(a) of a contains some
points outside [a,b]. (See Fig.11.) Hence, N (a) <[a,b] is not possible for
any € >0. Thus a is not an interior point of [a,b]. Therefore, [a,b] is not an
open set.

N (a)

f_H

. _a ]

i L L J
a b

Fig. 11: N, (a) contains points outside [a,b].

Let ac R and £>0. Then N,(a)=]a—-e,a+¢e[ Hence N,(a) is an open set,
by Example 16. Thus every neighbourhood of a real number is an open set.

Let us now state an important relationship between the open and closed sets.

Theorem 8: Let S c R . Then § is open iff §° is closed.
Proof: First we prove that if S is open then §¢ is closed.

Let x be a limit point of . Then for each € >0, the set N, (x) nS“contains a
point other than x .This implies N,.(x) ¢ S . Hence x¢ S°. But Sis open, i.e,
S°=S§, so, x¢ S. This means xe S°. Since x is arbitrary every limit point of
S¢liesin S°. Thatis, S° is closed.

Now let us prove that if S is closed then § is open.

So, let xe §. Then x¢ S°. This means x cannot be a limit point of S°. For if
x is a limit point of S, then S being closed must contain x, whichis a
contradiction. Hence for some € >0, N (x)NS ={x} or N, (x)"S° =@. But

xe¢ S implies that N, (x) NS ={x} is not possible. Hence N,(x) NS =@,



which implies N (x) € S . So x is an interior point of S. Since x is arbitrary,
every element of S is an interior point of S. Hence § is an open set. [ |

The topological relationship between a set and its complement stated in
Theorem 8 is remarkable and has many applications. For example, given a
finite number of open sets, we can show that their intersection is an open set.
See the following result.

Theorem 9: If S,,S,,...,S, are open sets, then ﬂS[ is also an open set
i=1

Proof: Let S, S,.....S, be open sets. Then §;.S;..... S, are closed sets (by

Theorem 8). Hence USf is a closed set (by Theorem 6). But you know that,
i=1
using De Morgan’s law, we can write

Ust<{As |
i=1 i=1

Hence (ﬂ SJ is closed, which implies ﬂS[ is open. u

i=1

Another application of Theorem 8 is that given an arbitrary collection of open
sets, we can show that their union is an open set. Formally, it is stated below.
Theorem 10: If {S, lare A}is an arbitrary collection of open sets, i.e., S, is
open for each ae A, then USQ is an open set.

oA
Proof: Since S, is open for each ae A, S is closed for each ate A. Hence
ﬂS; is closed. But, by De Morgan’s laws you know that

o)

QaEN aEN

This means (U SQJ is closed, which implies | J S, is open. - Theorem 10 can also be
aeA aeA proved directly, by applying
the definition of open sets
Let us now prove some results about open sets in the following examples. (see E23).

Example 17: Prove that arbitrary intersection of open sets need not be open.

Solution: Consider the family of open sets ﬂ—ll[

Then ﬂ}—ll[ ={0}, which is not an open set. This proves the result.
n n

n=l1
*kk

Example 18: Show that the set ]3,7r[u]4.5,10[u]\/5,\/§[ is an open set.

Solution: You know that union of open sets is open, and the set
]3,7r[u]4-5,10[u]x5,\/§[ is union of open intervals, which are open sets,

therefore, this set is an open set. 99
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Now you try doing some exercises.

100

E18)

E19)

E20)

E21)

E22)

E23)

Show that Ja, [ is an open set, where ae R.

Examine whether the set | J] —n.n [is an open set or not.

n=l1

Let ScR. Show that S° is open and S is closed.

Check whether the set | — «,25]n]15, [ is an open set or not.

_ © 1 ,
Examine whether the set U} 1+—,7[ is an open set or not
n

n=l1

Prove Theorem 10 using the definition of open sets only.

We end this unit here. Let us summarise what we have covered in this unit.

4.7

SUMMARY

In this unit we have covered the following points.

1.

Described the intervals in R and their properties in terms of the union,
intersection and complement;

2. Introduced the notion of neighbourhood of a point and the limit point of a
set;

3.  Described a necessary and sufficient condition for a real number to be a
limit point of a set;

4.  Stated and proved Bolzano Weierstrass theorem;

5.  Introduced the notion of a closed set and the closure of a set;

6. Introduced the notion of the interior of set and an open set;

7. Explained the relationship between the closed sets and open sets.

4.8 SOLUTIONS/ANSWERS

E1) Assumethat x<—1.Then x+1<0. So, multiplying both the sides of

the inequality al

1<1 with x+1, we get x> x+1. Thismeans 0>1,
X+

which is false. Now assume that x > —1. Then x+1> 0. In this case, if

we multiply both the sides of the inequality Ll <1 with x+1, we get
X+

x < x+1. This is always true. Hence, A=]-1,[.

The inequality describing B is x+1<|x. From Example 16 of Unit 3,

we know that this is equivalentto x> x+10r x <—(x+1). But x> x+1
is not possible. Therefore, the given inequality becomes x<—(x+1),

ie., x<—l. Hence, B = —oo,—l .
2 2



E2)

E3)

E4)

Now, AmBz] —1,00 [m}—oo,—l[z}—l,—%[ . Thus AnB is an
open interval.

The inequality describing A is

P¥<xex—x'20
<:>x(1—x)20
& (x>0 and 1-x>0) or (x<0 and 1-x<0)
e ((0<x<1)or (1£x<0)
s 0<x<1 (-1<x<0is false.)

Therefore, A=[O,1]. The inequality describing B is

4(x? - 2x)< -3 4x? —8x+3<0
s (2x-3)2x-1)<0

1 3
& —<x<— (Why?
SSx 2( y?)

Therefore, B= F ,3} .
2 2

13 3
Now, AU B=|0,1 —,—|=10,—].
L ]U[z 2} [ 2}
. ] 1 3
Note that A° =]-o,0[U]1,e0[andB =}—w,{u},w[.

Hence,

wor b= U 4]+
w0B={k=olU=lU| 33 |- F=olU| 5|
w08 =FeolUleAU o U o = =3 Ul

Let x,ye SUT be suchthat xe S,yeT and x<y. Since ST =,
let ze ST . Take re R suchthat x<r<y. Then, by the Law of
Trichotomy, exactly one of the following holds

r==z, r<z, r>z.

If r=z, we are done. If r<zthen x<r <z Then, since S is an
interval re S . If r>z, then z<r<y.Then, since T is an interval
reT. Thusin either case re SUT. Hence, S UT is an interval.

We know that there is an irrational number between any two rational
numbers. Hence, Q is not an interval. The same reasoning implies that
no subset of Q is an interval.
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Since x is a limit point of §, foreach £>0, N,(x)nS\{x}#@. Then

ScT=S\{x}cT\{x}
=N, (x)nS\{x}c N, (x) T \{x} (Why?)
=N, (x)"T\{x}>0

Hence, x is a limit point of T.

Let xe R. Then N, (x) "R\ {x} =} forall &> 0.

Hence x is a limit point of R. Since x is arbitrary, all the real numbers
are the limit points of R.

From Theorem 3, we know that if « is a limit point of a finite set S,
then N, (a)n S must contain infinitely many points different from a.

This is impossible. Hence, finite sets have no limit points.

Let ne N. Then
Nl(n)ﬂN\{n}z}n—;,n+;{ﬂN\{n}=@

Hence nis not a limit point of N. Since ne N is arbitrary, no point of N
is a limit point of N.

Now, let xe R\N.Then there exists some ne N suchthat n—-1<x<n.
(Why?) Let € =min{n—x,x—n+1}. Then we can see that

N, (x)nN\{x}=@.Hence, x is not a limit point of N.
Thus we have shown that the limit points of N do not exist.

A similar reasoning can be used to show that Z, too, has no limit

points.
ne N}.

o :{m_l
2
We can see that when nis odd, —le S. Now, for each £>0 there

n
n
exists some ne N such that

gsto gl N,(0)nS\{0}= 0
n n

This implies, 0 is a limit point of S.

ne N}. We can see that for all ne N,

O<L<1:>O<£<11.
2311 2311

n

11
Hence S is bounded. Now we define f:N — S by f(n): S

We shall prove that f is one-one. So, let m,ne N such that m#n.

Then

1 11 11
:>2W¢23n

3m#3n=>2" # 2" :,»2%7&23”



E11)

E12)

Thus f is one-one. This implies § is countably infinite (why?),

and hence infinite. Therefore, by the Bolzano Weierstrass
Theorem, S has a limit point.

i) LetS= {ﬂ
&

ne N} . Then

—1sﬂ<1 Vne N.

_ 1)"

So, § is bounded. Now define f:N—S by f(n)= ( o

We prove that f is one-one. Let m,ne N such that 7 (m)= f(n).
Then

S
6" 6"
= m-n=0 (Why?)
=>m=n

Thus, f is one-one. Hence, S is (countably) infinite. Therefore, by
the Bolzano Weierstrass Theorem S has at least one limit point.

i) Here S :{1+

! neN}.

n

Show that § is bounded and infinite. Then apply the Bolzano
Weierstrass Theorem.

First we show that [0,eo[=( J[a,[. So, let xe ]0,o[. Then

a>0

x>0= x€[x,00[= xe U[a,oo[.

a>0

Now, let xe [ J[a,e[. Then xe [a,e[for some a >0, which implies

a>0

x>a>0. Consequently, xe |0, .
Now, we show that 0 is a limit point of J0,[. Let £ >0 be arbitrary.

Then there exists some rne N such that

0<lcemle l-e.e[=N,(0).
n n

But Le 10,00 [ also. Thus N, (0)n]0,0 [# @ . Therefore 0 is a limit
n

point of [0,[ . Since 0¢ |0, [, we conclude that ]0, [ is not closed.

We know that for each xe R, thereexistssome ne N such that
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E13)

E14)

E15)

E16)

E17)

—n<x<n. Hence RgU]—n,n[. But ]—n,n[ngor each ne N, so

n=l1

Q]—n,n[gR.

Therefore, R =( J]-n.n[. Since R is closed, the given set is also
n=1

closed.

Let £ >0 be arbitrary. Then
N,(@)n]-w,a] =]a-€.al.

Since £>0, there exists some xe R such that a—e<x<a. Thatis,
N,(a) N ]-o,a[\{a}2 D

Hence, a is a limit point of |-, al. But a& |—oo,a[, hence |-, a| is
not closed.

Now, let us see, what the set | J]-eo,d[is equal to. Take xe R. Then
aeR

x<a for some ae R.Thatis xe |-oo,a [for some ae R. Therefore,
xe | J]-oe,a[, which implies R [ J] -, a[. But we already know

aeR aeR

that |—co,a[ c R forall acR. Therefore, | J]-o,a[c R.

acR

This proves that R =|_J]-,al. Since Ris closed, | ], d[is also
aeR aeR
closed.

We know that x° +3x* — x* + x +1 is a polynomial of degree 5, and
hence has at most 5 real roots. Thus

S={xeR[x’+3x' —x’ +x+1=0}

has at most 5 points. Therefore, S, being a finite set, is closed.

We know that [HL,S} is closed for each ne N. Therefore, by
n

Theorem 7, ﬂ[1+l,5} is closed.

n

n=l1

From E8 we know that the limit points of N do not exist. Therefore,
N=N. Similarly, Z = Z.

We have to find Q° . So, let xe Q. Then we know (from E22) of Unit
3) that for each >0, there exists an irrational number between x —&

and x+e¢. Thatis, for each £>0, the set N, (x) Q¢ contains an
element different from x. Therefore, x is a limit point of Q°. Since x is



E18)

E19)

E20)

E21)

E22)

E23)

arbitrary, every rational number is a limit point of Q“. Hence

Q =QuQ =R

Let xe Ju,[. Choose e=x—a. Then

Ng(x)=]x—8,x+8[=]a,a+28[g]a,OO[.
This implies x is an interior point of ]a,~[. Since x is arbitrary, every
element of |a, [ is an interior point of Ja,[. That is ]a,[ < ]a, o[
holds always. Hence ]a,oo[=]a,|, and Ja,[ is open.

Since }n.n[ is open for each ne N, by Theorem 10, | J]-n.n[ is
n=l1

open.

i) Let xe S°. Then there exists an &> 0such that N,(x)c S . Let
ye N,(x). Then there exists a 6 >0such that N;(y)c N, (x)c S

So, ye S°.Therefore N,(x)c S°. Thus xis an interior point of S°.

Since xis arbitrary every element of §° is an interior point of §°.
Hence S° is open.

i) Let x be a limit point of S. Assume, if possible, that xe S . Then
xe S and x is not a limit point of S . So, there exists an £ >0 such
that

N.(xX)NS\{x}=0 & N, (x)nS=0Q
& SN, (x)
& S N, (%) (*~N, (x)° is closed)
SN,(x)NS=0
SN, (x)NS\{x}=0
This proves that x is not a limit point of S , a contradiction.

Therefore, xe S, and hence S is closed.

We know that |—e0,25] J15,00[ = ]15,25]

You know that }1+l,7[ is open for each ne N hence by Theorem 10
n

oo

U}1+l,7[ is open.
n

n=1

To prove that [ JS,, is open, we need to show that (USO,J =Js..

acA acA acA

We already know that (USO,J < [ JS,,. This means, we have to show

aeA aeA

that | S, Q(US(ZJ . So, let xe [ JS,. Then xe S, for some

acA aeA acA
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ae A.But S, isopenie. §,=S,. Therefore, xe S_,. Now there
exists some £ >0 such that N,.(x) < S,. This implies N,(x) < USO,.

aeA

Hence xe (USO,J . This completes the proof.

aeA
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MISCELLANEOUS EXAMPLES AND EXERCISES

The examples and exercises given below cover the concepts and processes
you have studied in this block. Doing them will give you a better understanding
of the concepts concerned, as well as practice in solving such problems.

Miscellaneous Examples

Example 1: Given two sets S and T of R, define S+T ={x+y|xe S,ye T}
Suppose S and T are bounded. Check whether S +T is bounded or not.

Solution : Let 7, be a lower bound of S, and «, an upper bound of S.

Similarly, let 7, be a lower bound of 7', and u, an upper bound of T. Then we
have

Vxe S, {,<x<u,,
and

VyeT, (,<y<u,.
Therefore, Vxe S,Vye T, 0, +{, <x+y<u, +u,.

This implies ¢, + ¢, is a lower bound of S+T7 and u, +u, is an upper bound of
S+T. Hence, S +T is bounded.

* %%

1
Example 2: Show that if a >1, then 1<a" < a for all natural numbers n.

Solution: We shall prove this, in two parts, by the method of contradiction.
1

So, suppose that a” < 1for some ne N. You also know, from Theorem 14 of
1

Unit 3, that a >0for all ne N.

1

Then from E9 of Unit 3, you know that [aﬂj <1"ie. a<l.Thisisa

1

contradiction to the hypothesis that a > 1. Hence a" >1for all ne N.
1

Again, suppose that a" > afor some ne N. Then

1 n
(a”} >ad"=Da2d"=>1>a""

But you know, from E10 of Unit 3, that if « >1, then &" >1for all ne N. So,
1

again, we have arrived at a contradiction. Hence, a” < a,for all ne N.

*k %

Example 3: Show that if a,be R are such that |al*>b°, then lal >b.
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Solution: When b is negative, then lal>bVae R. So, let us assume that
b>0. Now

lal’>b> =1al> =b*> >0
=lal’> =lalb+lalb-b*>0
=lal(al-b)+b(lal-b)=0
= (lal+b) (lal-b)=0
=lal-b>0 (o lal+b=0)
=lal=b

*kk

Example 4: Which of the following statements are true, and which are false?
Justify your answers with a short proof or a counter-example.

i) Every subset of a bounded set is bounded.
i)  Every point of a bounded set is its interior point.
i) The set of all limit points of a countable set is countable.

iv)  “No subset of N is uncountable.” is the negation of “Every subset of N
is countable.”

Solution: i) Let S be a bounded set, and T < S. Then, there exist real
numbers ¢ and u such that / < x <u for all xe S. This implies ¢/ < x <u for
all xeT. Therefore, T is bounded. This shows that every subset of a
bounded set is bounded. Hence the statement is true.

i) Consider the set {1} which is bounded. We have 1€ {1}, but there is no
€ >0 suchthat |I—&,1+&[ < {1}. Therefore, 1 is not an interior point of
{1}. Hence, the statement is false.

iy Consider the set Q which is countable. You also know that R is the set
of all limit points of Q, and that R is uncountable. Therefore, the
statement is false.

iv) Note that the given statement can symbolically be writtenas ~ p =g,
where

p: Every subset of N is countable.
q: No subset of N is uncountable.

But you know that

~ p: Some subset of N is uncountable.

So, ~ p =¢q. Hence the statement is false.

*k %

Example 5: Prove that Hx|—| y|‘s|x—y|Vx,ye R.
Solution: For any x,ye Rwe have |x|=|x—y+ )| <|x—y|+|y|. This implies

=l <= (1)
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Now interchanging the role of xand y, in Eq. (1) we get | yl=IxI<ly—x],
ie.,

—(Ixl=lyh)dx—yl ... (2)

From Egs. (1) and (2), we get Hx|—|y|‘s|x—y|.

*k %

Example 6: Show that every subset of a countable set is countable.

Solution: Let S be a countable set,and 7 < S.Since T < S, there exists an
injection f:T — S. Since S is countable, there exists a bijection g:S — N.
Then the composition go f:T — Nis an injection. Hence by Theorem 17 (i) of
Unit 3, T is countable.

*kk

Example 7: Let S and T be two finite sets. Show that § xT is also finite.

Solution: Since S is finite, let {x,,x,,...,x,} be the list of elements of §.
Similarly, let {y,,y,,...,¥,} be the list of elements of 7. Then

{(x,y)|1<i<m,1< j<n} is the list of elements of SxT. Thus SxT has
mn elements. Hence S xT is finite.

* k%

Miscellaneous Exercises

E1) Prove ordisprove: If x,ye R\Q, then x+ye R\Q.

E2) Using the Principle of Mathematical Induction show that if S contains n
elements, then (S), the power set of S, contains 2" elements.

E3) Use the Well-ordering Principle to show that there is no ne Nsuch that
O<n<l.

E4) Which of the following sets are finite, and which are infinite? Justify your
answers.

i) {xe R

) {l
n

osKlvneN} i) (IO, .100%)

n

ne Z,n;tO} vy J{n*)

neZ

E5) Check whether the following sets are bounded below, bounded above or both.
Accordingly, show whether they have the infimum, the supremum or both inR.

1 1
i S={21"+3" neN} i) S:{ a
x+4

iy S={n+D"

x>0}

ne N} iv)  S={sinx|xeR}

E6) Union of two bounded sets is bounded. True or False? Justify your
answer.
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E7) Find the infimum and supremum of the following sets.
i) S={xeR|x*<3x-2} ii) S:{xe]R|Ix—1I£1}

E8) Which of the following sets are countable and which are uncountable?
Justify your answers.
X€E Q}

i)  {xeRlx<3}u{reNIx>3} i) [|JfxeRIn-l<x<n}

n=l1

x2+2

2_
) {0.1,0.01,0.001,0.000L---} i) {x !

V) Q X N VI) [0’ 1]

E9) Identify which of the following sets are closed, which are open and
which are neither.

) {xe R\xz <x+1) iy  Qn[o]]
i O[ " ””} V) Am+t|lmneN
Ml 1+n” n n|

E10) Show that for any subsets S and T of R, SUT=SuUT.

E11) Show that if S is open and T is closed, then

i) S\T is open, ii) T\S is closed.

SOLUTIONS/ANSWERS

E1) The statement is false. For a counter-example, let x=7 and y=1-7.
Then x+ y=1which is rational.

E2) Write P(n): |S|=n=|p(s)=2"
So, P(1): |S|=1=|p(s)=2.

We know that when § is a singleton, (S) contains just two elements,
namely @ and S. Therefore, P(1) is true.

Now let us assume that for some n P(k)is true for all k,1<k <n. We
have to show that P (n+1)is true. So, let S ={x,,x,,...,x,,x,,,}. Look
at the element x,,,. Every subset of S either contains x,,, or does not.

This means, for any A S, we can write

A=B or A=Bu{x,,},

where B is a subset of {x,,x,,...,x,}. Since {x,x,,...,x,} contains n
110 elements, by the induction hypothesis, the number of Bs is 2". Hence
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E3)

E4)

the number of As is2” +2" =2"". This means P (n +1)is true.
Therefore, by PMI P (n) holds for all ne N.

We shall prove it by contradiction. Let § = {ne N|O <n< 1}. Assume, if

possible, that § # @ . Since S is a subset of N, the Well Ordering
principle implies that S contains a least element, say p . So, 0< p<1.

But then 0< p* < p <1, which implies p” e S. This is a contradiction to
the definition of p. Therefore, S =0 .

1
i) By the Archimedean Property we know that if 0 <x <— for all
n

ne N, then x =0. Then the given set is {0}, which is finite.
i) The given setis § ={v/n|ne N,10<n <100"™}. Let
N ={1,2,3,...,100'” —9}. Let us define the function f: N — S by

f(n)y=+n+9.

Now let us show that f is a bijection. Take m,ne N such that

f(m)= f(n). Then
Am+9=4Vn+9=>m+9=n+9=>m=n.

So f is1-1. Nowlet xe §. Then x=+/n for some natural
number 7 lying in {10,11,...,100'}. This implies x =+n+9 for
some natural number n lying in {1,2,3,...,100'” =9} = N. This

means x = f(n) forsome ne N. Hence f is onto. Therefore, f
is a bijection. Thus S is a finite set.

n

i) Let S = {l

ne Z,n;tO}. Let us define f:Z— S by

if n>0 else.

T

fn)=

b

n-—1

Now you can show that f is a bijection. Since Z is countable,
and f:Z— S is abijection, it follows that S is countable.

iv)  Note that U{nz} ={0,1,4,9,...}, which is the set of the squares of
nez
whole numbers. The set of whole numbers is infinite, and so is the
set of their squares.
1

)  We know that for all ne N,0<3" <3. Forallne N

! '
PV ES PR Py

1t
2 n

1
which is true. Thus for all ne N, 21 " < 2.This implies for all

ne N 111
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E6)

E7)

112

i)

1 1

0<2 "+3"<5.

Hence S is bounded below as well as bounded above, i.e. Sis
bounded. Therefore, by the completeness properly of R, the
infimum and the supremum of § existin R.

We have forall xe S,

O<x<x+4=0< <1

x+4
This means S is bounded. Hence by the Completeness Property of
R, the infimum and the supremum of § exist in R.

We can write

n—1, when n is odd

n+(=1)" ={

n+1, when n is even
So,

S={n—1|ne N,nis odd} U{n+1|ne N,nis even}
={0,2,4,... }U{1,3,5,...} =N U{0}

So, S is bounded below by 0, but has no upper bound (Why?).
Since S is nonempty, by the Greatest Lower Bound Property of
R, S hasinfimumin R.

We know that —1<sinx <1 for all xe R. Thus S is bounded, and
nonempty subset of R. Hence, by the Completeness Property of
R, S has both infimum and supremum in R.

Let S and T be two bounded sets. Then there exist real numbers
l,,0,,u, and u, suchthat /, <x<u, forall xe §, and ¢, <x<u, for
all xeT. Let /=min{/,,/,} and u =max {u,,u,}. Then we have

¢ <x<u forall xe SUT. Hence S UT is bounded.

i)

We have
x*<3x-2=x"=3x+2<0=(x-1)(x-2)<0=1<x<2

Thus § ={xe Rll<x<2} So, 1is alower bound of $,and 2 an
upper bound of S . Let u be some upper bound of S. If u <2,

+2
then u<u

< 2. Since we know that an upper bound is never

u+?2

smaller than a lower bound, 1<u. Then 1< <2, which

+2 —
“ € S . This is a contradiction to the definition of u .

implies
Hence u>2. Thus supS =2.

Now let ¢ be some lower bound of S .If ¢ >1 then
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1< %H < ¢ <2, which implies that %He S. Thisisa

contradiction to the definition of /. Hence ¢ <1. This implies
inf S =1.
i)  Wehave [x-]|<le-1<x-1<10<x<2.

Therefore, S ={xe ]R|OSxS2}. So, 0 and 2 are, respectively,

lower and upper bounds of S . Also, 0,2€ S . Hence inf § =0 and
supS =2.

E8) i) Let Sz{%

ne N}. Now look at the function f:N — § defined

1
10"

by f(n)=

1
We can see that foreach ye S,y :Wfor some ne N. That is,

f isonto. Hence S is countable. (Why?)

ii) Let S be the given set. We can see that S c Q. Since Qs
countable, S too is countable (Why?).

i) If possible, assume that S is countable. Then A={xe ]R|x <3}

must be countable, because Ac S . Now, let B={xe ]R|x> 3}.
Define f:A— Bby f(x)=6—x.Wecan showthat f isa

bijection. Hence B must be countable. Now R =AU BuU {3} is
also countable, which is a contradiction. Hence S is uncountable.

iv) Let S=(J{xeR|n-1<x<n}. Thenwe can write S=R"\N, or

n=l1
equivalently, R" =S UN. If S is countable, then R" must be
countable, which is not possible. Hence, S is uncountable.

v)  Define the function f:QxN — NXxN by
f(ﬂ,kJ = ((m+n)2 +n,k). Show that f is a bijection from QxN
n

to NxN. Since N x N is countable, by E23 of Unit 3, QxN is
countable.

vi)  Assume, if possible, [0,1] is countable. Then f(x)=x+n isa
bijection from [0,1] to [n—1,n] for any ne Z. This means, [n—1,n]
is countable for any ne Z. Now we have R =|_J[n—1,n](Why?)

neZ

On the right hand side is a countable union of countable sets, and
hence a countable set. But on the left hand is R which we know is
uncountable. This is a contradiction. Therefore, [0,1] is
uncountable.

E9) )  Wehave {xe R|x’ <x+1}={xe R|x’ —x-1<0}.
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We can factorise x> —x—1 as

x’ —x—1:[x—1+\/gj[x—1_\/§J
5 :

2
Now
x? —x—lSO@[l_\/g <x< 1+2\/§j
Thus the given set becomes equal to {1_2\/5, 1+2\/§} which is
closed.

iy  Let xe QN [0,1] . Then for every & > 0there exists an irrational
number between xand x+¢&. (See .... of Unit 3.) So, for every
£>0,N,(x)cQn]0,1]. Hence Q N[0,1] is not open.

1
We know that —¢ Q n[0,1]. In order to prove that Q N [0.1] is

B

not closed, it is sufficient to show that — is a limit point of

NG

Qn [0,11 So, let £ >0, and consider the neighbourhood N{%j

of L There are three cases:
J2

1
Casei) e>—

V2
When 8>L we have L—e<0 So Oe N, (Lj Also
V2’ V2 : ‘W2 )
0e Qn[0,1]. Hence N{%} N Q N[0,1] contains a point other
1
than —.
V2
Case ii) 8>1—L
V2
In this case 1<L+e Also L<1 This means 1e N [Lj
e 7 <L 72 )
1 1
Hence N.| —— |nQ M 0,1] contains a point other than — .
[F5)nenb N
Case iii) € < min {L I—L}
< Nk ;
In this case0<i—e<i<i+e<1
< 7S
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Now by Theorem 12 of Unit 3, we know that there exists a rational

number between 1 €and L Hence N, [Lj NQnM [0,1]

V2 V2 V2

contains a point other than

Si-

Thus, for every € >0, N, [Lj NQN [0,1] contains a point other

V2

1

than —.
J2

L

D

Hence, 1 is alimit point of Q" [0,1]. Since ——¢ QN [0.1], itis

D

proved that Q N [O,l] is not closed.
We know that forall ne N

2l and n+1£2
n+l 2 n

Thatis, forall ne N
lS n <n+ls2:> n ’n+1 c 1’2
2 n+l n n+l n 2

This implies U[ " n+l}g[;,2}

o n+l’ n

Also for n =1,

n n+l| 12
n+l n 2’

Hence [ _ ,nH} :[1,2} which is closed, but not open.
Zln+l n 2
Let S = {m+l m,ne N}. First we check whether S is closed or
n

not. Taking m =1, and ne N, we have 1+le S . Now we shall
n

show that 1 is a limit point of S . So, take € > 0. Then, there exists

1
some ne N such that — < €. This implies
n

l<l+icliemiite N, (1).
n n

So foreach € >0, N, (l)m S contains an element other than 1.

Thatis, 1 is a limit point of S. But 1¢ S. Therefore, S is not
closed.
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Now we check whether S is open or not. Pick 1+l :ge S. Then
2 2
for each € > Othere exists an irrational number between %—e and

e. Thatis, for eache > 0, N{%} & S . Hence %is not an interior

point of S. Therefore, S is not open.

E10) Note that S < Sand T cT. Therefore, SUT < S UT, which implies
SUT cSuUT. (See Example 14 of Unit 4.) On the other hand,
ScSuT and T c SUT. Therefore, ScSuTand T cSUT. This
implies SUT cSUT. Consequently, SUT=SUT.

Interchanging the roles of S and 7', we have xe T = xeTuUS. Thus

SUT cSUT.The proof is over.
E11) i) Write S\T =SNT*. Since S and T‘both are open, S\T is open.

i) Write T\S=TnNS . Since T and S‘both are closed, T\ S is
closed.
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