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BLOCK INTRODUCTION 
 
In the last block, you were introduced to various aspects of the language of 
mathematics – emphasising on how to communicate mathematics. Then you 
studied the set of real numbers, and its algebraic and topological properties. 
This block is devoted to the study of sequences of real numbers and the concept of 
“convergence” of such sequences. In Unit 5, you will study different kinds of 
sequences such as bounded sequences, monotone sequences and Cauchy 
sequences, and of course, the notion of subsequence. Then you will be introduced 
to the concept of convergence of sequences.  Convergence, specifically, talks about 
what it means for a sequence to have a “limit”. Once you understand this concept it 
will be easier for you to grasp the rest of the course material. This is because all the 
core concepts of real analysis such as continuity, differentiability and integrability 
employ, in some or other sense, the notion of limit.  Therefore, we have put enough 
stress on the results that characterise convergent sequences. For instance, you will 
find the Cauchy’s Criterion of Convergence quite helpful. 
  
In Unit 6, we have collected some more results on limits of sequences. First you will 
study the Squeeze Theorem, which describes how the limits of sequences fit into 

the ordered structure of R . The next result is the Monotone Convergence Theorem. 
It gives you a simple criterion of the convergence of monotone sequences. Finally, 
you will see two theorems due to Cauchy. These are Cauchy’s First Theorem on 
Limits, and Cauchy’s Second Theorem on Limits. These four theorems are 
applicable on a large class of sequences.   
  
At the end of this block you will find a set of miscellaneous examples and 
exercises related to the concepts covered in this block. Please do study them, and 
try each exercise yourself. This will help you engage with the concepts concerned, 
and understand them better. 
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Notations Notations Notations Notations aaaand Symbolsnd Symbolsnd Symbolsnd Symbols    (used in Block 2(used in Block 2(used in Block 2(used in Block 2    apart from Block 1apart from Block 1apart from Block 1apart from Block 1))))    
 

N∈nn
a )(  Real sequence defined on N  

n
n

a
∞→

lim  the limit of the sequence 
N∈nn

a )(  

 
N∈kn

k

a )(  A  subsequence of the sequence 
N∈nn

a )(  

La
n

→  the sequence 
N∈nn

a )(  converges to L  
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UNIT 5                                                        

                                    SEQUENCE AND CONVERGENCESEQUENCE AND CONVERGENCESEQUENCE AND CONVERGENCESEQUENCE AND CONVERGENCE    

StructureStructureStructureStructure                            Page NoPage NoPage NoPage Nos.s.s.s.    
5.1       Introduction       121              
 Objectives 
5.2       Real Sequences      122          
5.3 Bounded Sequences      128 
5.4 Monotone Sequences      130 
5.5 Subsequences      133 
5.6 Convergent Sequences     137  
5.7 Cauchy Sequences      143 
5.8 Criteria for Convergence or Divergence of Sequences 148 
5.9 Algebra of Convergent Sequences    152 
5.10 Summary       157 
5.11 Solution /Answers      157 
             

5.1 INTRODUCTION 
 
In the previous units you studied different subsets of real numbers. You were 
introduced to the algebraic and topological properties of the set of real 
numbers. You would also be able to distinguish between finite and infinite 
sets. In this unit we shall develop the notion of a sequence and its 
convergence, which as you will see will be used frequently in the rest of the 
course.  
 
The concept of a sequence is fundamental to real analysis. Historically, 
sequences can be seen in the work of the Greek mathematician Archimedes, 
for example, in the approximation of π . Sequences also arise in numerical 
approximations of roots of equations in real variables. 
 
We begin this unit by introducing to you the notion of a real sequence, in 
Section 5.2. In the course ‘Calculus’ you studied the bounded and monotone 
functions. In Sections 5.3 and 5.4, we shall discuss bounded and monotone 
sequences, respectively. Section 5.5 introduces the concept of subsequence 
of a sequence. Next, in Section 5.6 we shall talk about what it means for a 
sequence to converge, that is, we shall discuss the concept of limit of a 
sequence. In this section we shall also discuss the criterion of convergence 
given by an eminent mathematician, A.-L. Cauchy. Finally, in Section 5.7, we 
shall consider how the limits of sequences behave under addition, 
multiplication and reciprocals. 
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understand the behaviour of real valued functions. If you study this unit 
carefully and try each exercise as you come to it we expect that you will 
achieve the following objectives.   
 

Objectives 
 
After studying this unit, you should, be able to: 
 

• define, and give examples of, a sequence and a subsequence; 

• describe, and give examples of, a bounded sequence; 

• describe, and give examples of, a monotone sequence; 

• describe the notions of ‘convergence’  and ‘limit’ of a sequence;  

• define a Cauchy sequence, and apply the Cauchy’s Criterion for 
Sequence Convergence; 

• use the algebra of limits of convergent sequences to compute the limit of 
sums and products of sequences. 

 

5.2  REAL SEQUENCES 
 
Let us consider the case of a “bouncing ball” whose height (in meter) at each 
bounce reduces by some quantity (see Fig. 1). Assume that the heights at the 

first few bounces are 
8

1
,

4

1
,

2

1
,1 . 

    

 
 

Fig. 1 A bouncing ball 
 

Since the ball is a physical object, there are many forces like gravity and 
friction working on it, which finally take it into the resting position. If we ignore 
all the forces and assume that the height at each step becomes half the height 
at the previous step, then the height at successive steps can be represented 
as follows:  
  

L,
16

1
,

8

1
,

4

1
,

2

1
,1  

 

We can read it as a function RN→:f defined by =)(nf height at the th
n  

bounce. 
 

In fact, we can write this as an arrangement ....)),(....,),3(),2(),1(( nffff  of 

countably infinite numbers. A sequence is just an arrangement of at most 
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countably infinite numbers in a particular order. This order gives a unique 
place to each of the elements of a sequence. Let us record the formal 
definition. 
 

Definition: A real sequence is a function from N to R . 
 

For example, the function RN→:f , where 
2

1
)(

n
nf =  defines a sequence. 

The domain N  makes it possible to list the elements of the range as 

( )KK ),(,)3(),2(),1( nffff , i.e., .,
1

,,
9

1
,

4

1
,1

2 







KK

n
 In general, for a 

sequence RN→:a , we shall in place of )),(,),2(),1(( KK naaa  use the 

notation ),,,,,( 21 KK
n

aaa  which is often shortened as 
N∈nn

a )( . The numbers 

,...,, 321 aaa  are called the terms of the sequence. Thus we call 
1

a the first 

term, 
2

a the second term, 3a  the third term and so on. In general, 
n

a  is called 

the 
th

n  term, for .N∈n  Occasionally, we shall use the notations 
nnn

uyx ,,  etc 

to denote the 
th

n term of a sequence.  Also note that there is nothing special 

about the variable n in ( )
N∈nn

a . We can write ( )
N∈kk

a as well to denote the 

same sequence. 
 
Let us consider a few examples. 
 

Example 1: Check whether the following are sequences or not. 
 

i) 

 N∈










− nn 1

1
2

   ii)  
N∈n

)0(    

iii) 
N∈










n

n3

1
    iv) 








L,

8

1
,

4

1
,

2

1
,1  

 

Solution:  
 

i) Did you notice that 
n

a  is undefined for 1=n  ? Hence ( )
N∈nn

a  is not a 

sequence. However, if we take 1
1

=a , and 1
1

1
2

>∀

−

= n
n

a
n

, then 

N∈nn
a )(  is a sequence. 

  

ii) We have N∈∀= na
n

0 , which is well defined. Hence 
N∈n

)0(  is a 

sequence.  
 

iii) Here 
nn

a
3

1
= , which is defined for each N∈n . Thus ( )

N∈nn
a  is a 

sequence. 

iv) In this case, we get ,
2

1
1−

=
nn

a which is defined for all .N∈n  Hence 









L,

8

1
,

4

1
,

2

1
,1  is a sequence. 

*** 

Example 2:  Write the 
th

n  term of the following sequences. 

i) ....),0,0,0,1,2,3,4(   ii) 







....,

5

1
,

4

1
,

3

1
,

2

1
,1  
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iii) ....),1,1,1,1,1,1( −−−   iv) ( )K,15,11,10,6,5,1  

 

Solution: i) Here we have 1,2,3,4 4321 ==== aaaa
 
and ,0=

n
a for all .5≥n  

We can, then, write the 
th

n  term as  
 

 



≥

<−

=

5        0,

5 ,5

n

nn
a

n

when 

when
 

 

ii) Here K,
3

1
,

2

1
,1 321 === aaa

 

Then, the 
th

n  term is ,
1

n
a

n
=

 
for all .1≥n  

iii) Observe that this sequence has odd terms 1 and even terms 1− . That 
is, 

   





−

=

eveniswhen

oddiswhen

n

n
a

n

,1

,1
 

 Or equivalently, we can write .1,)1( 1
≥∀−=

−

na
n

n
 

 
iv) This sequence also has a pattern. To see this pattern, let us look at how 

each term, from second term onwards, is obtained 
 

   M

154

111

104

61

54

1

56

45

34

23

12

1

=+=

=+=

=+=

=+=

=+=

=

aa

aa

aa

aa

aa

a

 

 
The explanation above reveals that each odd term is 1 more than the previous 
term, whereas each even term is 4 more than the previous  term. This means, 

we can write the 
th

n term as  
  

 



+

+

=

−

−

even iswhen

odd iswhen

 n  a

 n  a
a

n

n

n
,4

,1

1

1
 

*** 

In Example 2 (iv), we saw that the 
th

n   term of the sequence is not written 

explicitly in the terms of ,n  but in the terms of 1−n
a . A sequence whose 

th
n  

term depends on one or more previous terms is called a recursive sequence. 
A formal definition is given below. 
 

Definition: A sequence 
N∈nn

a )(
 
is said to be recursive if     

)(),,,( 21 ngaaafa
knnnn

+=
−−−

K
 
for some 1≥k  where )(ng  is a function of 

.n  
 

For instance, the sequence in Example 2(iv) can be written as  
 

 ,1,2),( 11 =≥∀+=
−

anngaa
nn

 

 

where  [ ].)1(35
2

1
)( n

ng −+=  
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A famous example of a recursive sequence is given below: 
 

 
3,,1 2121 ≥+===

−−
nfffff

nnn
and  

 

You can see that for 
n

fn ,3≥  is defined as the sum of the previous two terms.  

 
Thus, the first few terms of this sequence are  
 

 L,13,8,5,3,2,1,1  

 
The sequence ( )

N∈nn
f

 
is called the Fibonacci sequence after the Italian 

mathematician Leonardo of Pisa, better known as Fibonacci (1170–1250). 
The Fibonacci sequence is one of the most frequently occurring sequences in 
nature, in one or another form.  
 
We shall see such sequences often in this course as they offer a convenient 
method for sequence representation.  
 
Now we shall discuss about the algebra of sequences. Recall that two 
functions f  and g  are equal if they have the same domain, say ,S and 

( ) ( )xgxf =  for all .Sx ∈  In particular, two sequences ( )
N∈nn

a
 
and ( )

N∈nn
b

 
are 

equal if N�∈∀= nba
nn
,  Consider, for example, the sequences 

( ) 







−=

∈
L,

3

1
,

3

1
,

2

1
,

2

1
,1

N�nn
a  and ( ) 








−−=

∈
L,

3

1
,

3

1
,

2

1
,

2

1
,1

Nnn
b

 
 

We have ,11 ba = but .22 ba ≠  So, ( )
N∈nn

a and ( )
N∈nn

b are not equal. 

 
We can construct new sequences from old ones just like we do in case of 

functions. For example, the sum of two sequences ( )
N∈nn

a  and ( )
N∈nn

b  is the 

sequence ( ) ,
N∈nn

c  defined by 1,≥∀+= nbac
nnn  

and the product is the 

sequence 
N∈nn

d )(  defined by .1≥∀= nbad
nnn

 

 

If each term of the sequence ( )
N∈nn

b
 
is nonzero, we can define the quotient of 

( )
N∈nn

a  by ( )
N∈nn

b  as the sequence ( )
N∈nn

c
 
where N∈∀= n

b

a
c

n

n

n
. 

Let us look at an example. 
 
Example 3: Find the sum, product and the quotient of the sequences 

( )

N

N

∈

∈








=

n

nn

n
a

1

 

and ( ) ( ) ,12

NN ∈∈
−=

nnn
nb  wherever defined.  

 

Solution: Then the sum of  ( )
N∈nn

a
 
and ( )

N∈nn
b is  

 

 

( )

NN

N

∈∈

∈ 






 +−
=








−+=+

nn

nnn

n

nn
n

n
ba

1
1

1 3
2  

 

The product of ( )
N∈nn

a
 
and ( )

N∈nn
b

 
is  

 

 

( )

N

N

∈

∈ 






 −
=

n

nnn

n

n
ba

12
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The quotient sequence 

N∈










nn

n

b

a

 

is not defined. This is because 

)1(

1
2

−

=

nnb

a

n

n

 

is undefined at 1=n . 

But the quotient sequence 

N∈










nn

n

a

b

 

is defined, where ).1( 2
−= nn

a

b

n

n  

*** 
 

The definition of product of two sequences leads us to the following definition. 

The th
k  power of a sequence 

N∈nn
a )(  is the sequence k

nn
a ))((

N∈  
whose th

n  

term is .k

n
a  For example, the square of the sequence ),4,3,2,1( K  is the 

sequence ).,16,9,4,1( K  If ,,0 N∈∀≥ na
n

 we can define the th
k  root  of 

N∈nn
a )(  as the sequence k

Nnn
a

1

))((
∈

 whose th
n  term is k

n
a

1

 
for all N∈n . For 

example the square root of the sequence ),4,3,2,1( K  is ),4,3,2,1( K . 

 
Now we shall discuss the geometrical representation of a sequence. Since a 

sequence ( )
N∈nn

a  is a function, each term 
n

a corresponds to a point ( )
n

an,  

in the Cartesian plane. Thus plotting the points ( ) N∈nan
n

,,
 
gives a 

geometrical representation of the sequence. For example, the sequences 

N∈










n
n

1
 and ,

1

N∈








 −

n
n

n
 can be plotted as in Fig. 2. 

 

 
(a)      (b) 

 

Fig. 2: Plots of the sequences  

N∈










n
n

1
and 

N∈








 −

n
n

n 1
 

 
An advantage of geometrical representation is that it instantly gives a hint 

about the behaviour of the terms 
n

a  as n grows. 

 

Example 4: Plot the sequence ( ) ,
N∈nn

a  where 

 

 
.

1
1

n
a

n
+=  

 

Solution: To compute the first few terms we put ,5,4,3,2,1=n  and we get 

 

1 2  3  4  5  L  

1 

N∈








 −

n
n

n 1
 

n  

1 2  3  4  5  L  

1 

N∈










n
n

1
 

n  
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09.1
5

6

5

1
1

12.1
2

5

4

1
1

15.1
3

2

3

1
1

22.1
2

3

2

1
1

41.1211

5

4

3

2

1

≈=+=

≈=+=

≈=+=

≈=+=

≈=+=

a

a

a

a

a

 

 
The plot is given below 

 

Fig. 3: Plot of .
1

1

N∈











+

n
n

 

Now try to solve some exercises. 
  

 

E1)   Identify the 
th

n  terms of the following sequences: 

 

 i)  







K,

63

1
,

35

1
,

15

1
,

3

1
 

  

 ii)  ( )K,3,1,2,1,1,1 −−−  

  

 iii)  









K,4,3,2,1 4

1

3

1

2

1

 

 

E2)   Find the first five terms of the following sequences 
 

  i)

  N∈

























+

n

n

n

1

1
1

 

ii)    

N∈












n

n

n!

10
  iii)   

N∈










+

−

n
n

n

1

1
 

 

1  2  3  4  5  L  

1  

N∈nn
a )(  

n  

2  
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 iv)   ( )










=
∈

even is if

odd isif

n
n

-

n,
n

a
nn

  ,
1

1

 
1

a where, nN

  
  

 
E3)  Are the sequences ),1,0,1,0,1( K  and ),0,1,0,1,0( K  equal? Why? 

 

E4) Write the cube, and the cube root of the sequence .
1

N∈










n
n

 

 

E5) Represent the sequence  

N∈

−

























+

n

n

n

1
1

1
1

 

geometrically. 

 

 
If you have gone through the exercises above, you would have found some 
sequences whose terms do not cross a certain number.  We shall discuss 
such sequences in the next section. 
 

5.3 BOUNDED SEQUENCES 
 

Let us consider the sequence ( )( )
N∈

−
n

n

1 .  Its each term is either 1 or .1−  Thus 

no term goes beyond the interval [ ]1,1− . Can we say something similar about 

the sequence ( )( ) ?1
N∈

−+
n

n

n  That means, do all its terms lie between two 

fixed numbers ? (Think!) Now we formally define the concept namely, 
“Bounded Sequences”. 
 

Definitions: i)  A sequence ( )
N∈nn

a  is said to be bounded below if there 

exists a number l such that N∈∀≤ na
n ,

l  . Such a number l  is called a 

lower bound of ( ) .
N∈nn

a  

 

ii) A sequence ( )
N∈nn

a  is said to be bounded above if there exists a 

number u  such that ., N∈∀≤ nua
n  

Such a number u  is called an 

upper bound of ( )
N∈nn

a . 

 

iii) When a sequence ( )
N∈nn

a  is both bounded below and bounded above, it 

is called a bounded sequence. 
 

iv) A sequence is said to be unbounded if it is not bounded.        
 

Thus for a bounded sequence ( )
N∈nn

a  we have two numbers l  and u  such 

that 
 

., N�∈∀≤≤ nua
n

l  

You can relate these definitions with the definition of bounded below, bounded 
above and bounded sets. Note that an unbounded sequence may be bounded 
above or bounded below. For example the sequence of natural numbers 

),4,3,2,1( K  is unbounded, because it is not bounded above. But it is bounded 

below by 1. Similarly, the sequence of negative integers ),4,3,2,1( K−−−−  is  
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unbounded, but is bounded above by .1−   
 

Consider the following examples to gain more clarity about the above 
definitions. 
 

Example 5:  Check whether the sequence ( )( )
N∈

−+
n

n

n 1  is bounded below or 

bounded above or both. 
 

Solution: The th
n  term of the given sequence is ( ) .1

n

n
na −+=  

You can see that 
n

a  is either 1−n  or 1+n . In either case N∈∀≤ na
n
,0 . 

Hence 0 is a lower bound of ( )
Nnn

a
∈

, and so ( )
Nnn

a
∈

 is bounded below.  

Now if u  is an upper bound of ( )
Nnn

a
∈

 then  

 

N

NN

∈∀−≤⇒

∈∀≤+⇒∈∀≤

nun

nunnua
n

,1

,1,
 

 
What does this last inequality mean?  It says that all natural numbers are 

smaller than or equal to 1−u . But this is not true, and hence ( )
N∈nn

a
 
is not 

bounded above.  
*** 

Example 6: Check whether the sequence 

N∈

























+

n

n

n

1

1
1  is bounded or not. 

Solution:  First let us check the boundedness of the sequence from below. 

 Note that N∈∀n  

 

1
1

11
1

1

1

>







+⇒>+

n

nn
. 

 
Hence the sequence is bounded below. Now we check the boundedness of 

the sequence from above. You can see that for all N∈n  

 .2
1

122
1

11
1

1

≤







+⇒≤≤+⇒≤

n
n

nnn
 

 
Thus the sequence is bounded above also. Hence the sequence is bounded. 

*** 

There are sequences which are neither bounded below nor are bounded 
above. See the following example for one such sequence. 
 

Example 7:  Show that the sequence ( )( )
N∈

−
n

n

n1  is neither bounded below 

nor is bounded above. 
 

Solution:  Let ( ) .1 na
n

n
−=  In a more explicit form, we can write 

 

−

=

even isif

odd isif

  ,  

 ,

n n

 nn
a

n
 

 

If we assume, for some R∈u  that  
 

 ,N∈∀≤ nua
n  
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then N∈∀≤ nun  which is impossible. 
 

Hence ( )
N∈nn

a  is not bounded above. Think of a similar argument for showing 

that ( )
N∈nn

a  is not bounded below. 

*** 
Now you may try the following exercises. 
  
 

E6)  Which of the following sequences are bounded below? Which are        
          bounded above? Which are both? 
 

 i) 

N∈










+

+

n
n

nn

12

2

   ii) 
( )

N∈












+

−

n

n

n

n

1

1
  

 

 iii) ( )
N∈

+−
n

nn 1    iv)  ( )( )
N∈

−+
n

n

11  

 

E7) Show that ( )
N∈nn

a  is bounded iff 
N∈nn

a |)(|  is bounded. 

 

E8)   Explain why the following sequences are unbounded. 
 

       i)  ( )( )
N∈

−
n

n

n
21

          
  ii) ( )( )

N∈
−+

n

nn
12  

        

 iii)  ( )
N∈nn

a , where 




−

∈=
=

otherwise,

 somefor ,2if,1

n

mn
a

m

n

N
.       

 

E9)  If ( )
N∈nn

a  and ( )
N∈nn

b  are bounded sequences, what can you say about    

        ( )
N∈

+
nnn

ba  and ( )
N∈nnn

ba  ? Justify. 

E10)  If 
nn

a )( is a bounded sequence, and ,0 N∈∀≠ na
n

 then 

N∈










nn
a

1

 

is 

also bounded. True or false? Justify. 
 

 
In the next section we shall discuss another kind of sequences namely, 
monotone sequences and their properties. 
 

5.4   MONOTONE SEQUENCES 
 

In the course Calculus you have studied monotone functions. Monotone 
sequences are defined in the same manner. 
 

Consider the sequence .
1

N∈










n
n

 Its terms are L,
4

1
,

3

1
,

2

1
,1  which keep on 

decreasing as n  increases . This is because nm <  implies .
11

nm
>  Now 

consider the sequence .
1

1
N∈









−

n
n

 Its terms are K,
4

3
,

3

2
,

2

1
,0 Do they behave 

in the same way as the terms of ?
1

N∈










n
n

  The answer is no. In fact, the 
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behaviour is reversed. The terms of 
N∈









−

n
n

1
1  increase with n . That is, when 

,nm <  we find .
1

1
1

1
nm

−<−  These sequences lead us to the following 

definitions. 
  

Definitions:  A sequence  ( )
N∈nn

a  is said to be  

 

i) increasing if nm <  implies .
nm

aa ≤ . 

ii) strictly increasing if nm <  implies .
nm

aa <  

iii) decreasing if nm <
 
implies .

nm
aa ≥   

iv) strictly decreasing if nm <
 
implies .

nm
aa >   

v) monotone if it is either increasing or decreasing. 

vi) strictly monotone if it is either strictly increasing or strictly decreasing. 

vii) constant if all its terms are equal.  

 
Let us look at some examples. 
 

Example 8: Show that the sequence 
N∈










n
n

2

1
is monotone. 

 

Solution: You can see that when nm < , we have .
11

22
nm

>  So the sequence 

is decreasing, and hence monotone. 
 

*** 

Example 9: Show that the sequence 

N∈










+

−

n
n

n

1

1
2

2

 is monotone. 

 

Solution:  Let 
1

2
1

1

21

1

1
22

2

2

2

+

−=

+

−+
=

+

−
=

nn

n

n

n
a

n  

 
Now let .nm <  Then 

 

 

1

1

1

1

11

22

2222

+

>

+

⇒

+<+⇒<

nm

nmnm

  

 

nm
aa

nm

nm

nm

<⇒
+

−<

+

−⇒

+

−<

+

−⇒

+

>

+

⇒

1

2
1

1

2
1

1

2

1

2

1

2

1

2

22

22

22
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Thus ( )
N∈nn

a  is increasing, and hence monotone.  

*** 

Example 10: Check whether the sequence ( )
N∈nn

a  is monotone, where  

 

 

.
,1

  ,





=

evenisif

odd isif

nn-

nn
a

n
 

Solution: Here there are 4  possibilities, as given in the following table 
 

m  n  
m

a  
n

a   

odd 

odd 

even 

even 

odd 
even 
odd 
even 

m  
m  

1−m  
1−m  

n  
1−n  

n  

1−n  

nm
aanm <⇒<  

nm
aanm ≤⇒<  

nm
aanm <⇒<  

nm
aanm <⇒<  

 

Thus in all the four cases, we have seen that nm <  implies 
nm

aa ≤
 
or 

.
nm

aa <  That is, nm <  implies .
nm

aa ≤  Thus ( )
N∈nn

a  is increasing, and 

hence monotone. 
*** 

 

Now let us look at the following example which gives us a nonmonotone 
sequence.  

Example 11: Show that the sequence 

N∈










n

n

n!

3
 is not monotone. 

 
Solution: Let us look at the first few terms of this sequence. These are 
  

 
L,

560

243
,

80

81
,

8

27
,

8

27
,

2

9
,

2

9
,3  

 
You can see that the first 5 terms of this sequence are in increasing order 

However, the th6  term is less than the th5  term.  Hence, the sequence is 
neither increasing nor decreasing. That is the sequence is not monotone. 
 

*** 
Now you should do some exercises. 
 

 
E11)  Every constant sequence is monotone? True or false? Justify.  
 
E12)  Is every strictly monotone sequence monotone? What about the 

converse? 
 
E13)  Show that every sequence that is increasing as well as decreasing is  
          constant. 
 
E14)  Which of the following sequences are monotone and which are not? 
 

          i)    
N∈









−

n

n10

1
1   ii)     

N∈










+

+−+

n
n

nnn

1

2
3

23
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 iii)    
( )

N∈










 −

n

n

n

2

1
   iv)    ( ) 10, <<

∈
cc

n

n

N
     

 v)   
N∈nn

a )( ,     where 1
1

1,1 11 ≥∀+==
+

n
a

aa

n

n
 

 vi)   ( )
N∈nn

f ,     where .1,3
21,21

==≥+=
−−

ffnfff
nnn

 

 

E15)  Prove that if ( )
N∈nn

a
 
is increasing then ( )

N∈
−

nn
a is decreasing. 

 
E16)  Give an example for each of the following: 
 

i)  an increasing sequence that is bounded above 
 
ii)  a decreasing sequence that is bounded below. 

 
E17)  Give an example of a sequence that is not monotone, and is neither 

bounded below nor bounded above . 

E18)  If ( )
N∈nn

a
 
is increasing and N∈∀> na

n
0 , then 

N∈









+

nn

n

a
a

1

 

is 

increasing. True or false? Justify. 
 

 
What do you get when you extract the odd terms of a sequence without    
changing the order of the terms? You get a “subsequence”, a concept which 
we shall discuss next.  
 

5.5  SUBSEQUENCES 
 
We shall here discuss the notion of a subsequence of a sequence. We shall 
use it frequently to prove or disprove a statement about a sequence.  
 
Consider the sequence  

 

 

( ) 







=

∈
L,

6

1
,6,

5

1
,5,

4

1
,4,

3

1
,3,

2

1
,2,1

Nnn
a  

 

If we pick the odd terms of this sequence, we get a new sequence 

 

 

( ) 







=

∈
L,

4

1
,

3

1
,

2

1
,1

Nkk
b  

 

You can see that  
 

 
L,,,

533211
ababab ===  

 

This means for each N∈k , we have 12 −
=

kk
ab . Since each term of ( )

N∈kk
b  

has been picked from ( )
N∈nn

a  without changing the order, we can call  ( )
N∈kk

b  

a “sub”sequence of ( ) .
N∈nn

a  

 
Now let us look at the sequence 
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( ) 








=

∈
K,

6

1
,6,

4

1
,4,

2

1
,2

Nkk
c  

 

You can see that all the terms of ( )
N∈kk

c are also picked from ( )
N∈nn

a ,  

keeping the order unchanged, but now with a different combination. Explicitly 
we have, 
 

 
K,, 74,63,3221 acacacac ====  

 

Thus for each N∈k , we can write ,
k

nk
ac = for some N∈

k
n . Here 

k
n depends 

on .k  For example, 
 

 
K,7,6,3,2 4321 ==== nnnn  

 

If you put in some effort, you can find a general form of 
k

n in terms of .k  

 
Now let us define what a subsequence is, formally. 
 

Definition:  A sequence ( )
N∈kk

b  is called a subsequence of a sequence 

( )
N∈nn

a  if  

 

i) for each N∈k , there is some N∈
k

n  such that 
knk

ab = . 

ii) N∈∀<
+

knn
kk 1 . 

 

Remember (i) says that every term in  ( )
N�∈kk

b is a term of ( ) ,
N∈nn

a and (ii) says 

that the terms of ( )
N∈kk

b  preserve the order in ( )
N∈nn

a . 

 
Let us consider an example. 

Example 12: Identify which of the following are subsequences of 
N∈










+
n

n

n

12
. 

i) 

 N∈










+ kk 1

1
2

   ii) 

N∈










++

+

k
kk

k

)122(2

12
2

 

 

iii) 
N∈










−
n

k

k

13 2
   iv) 

N∈












+
k

k

k

1

2

 

 

Solution: Let N∈

+

= n
n

n
a

n
,

12
. The first few terms of ( )

N∈nn
a can be 

computed as  
 

 








K,

82

9
,

65

8
,

50

7
,

37

6
,

26

5
,

17

4
,

10

3
,

5

2
,

2

1
 

 

i) Let N∈

+

= k
k

b
k

,
1

1
2

. Then 
5

1
2

=b which is not a term of ( )
N∈nn

a . That is, 

,2 n
ab ≠  for any .N∈n  (You must prove it.) Hence ( )

N∈nn
b  is not a 

subsequence of ( )
N∈nn

a . 
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ii) Let   

 

( )

( )

12where,
1

112

12

1144

12

1222

12

2

22

2

+==

+

=

++

+
=

+++

+
=

++

+
=

kna

n

n

k

k

kk

k

kk

k
b

kn

k

k

k

k

 

 

Thus for each N∈k , we have some ( )12 += knn
kk

here  such that  

knk
ab = . Also N∈∀<

+
knn

kk 1  . Hence ( )
N∈kk

b  is a subsequence of 

( )
N∈nn

a . 

 

iii) Let .
13 2

−

=

k

k
b

k

 
Here, ,

2

1
11

ab == but 
11

2
2

=b . So 
n

ab ≠2 for any N∈n . 

        Hence ( )
N∈kk

b is not a subsequence of ( )
N∈nn

a . 

iv) Let 
14

2

+

=

k

k
b

k
. If we take 

2
kn

k
= , then we can easily see that for each 

knk
abk =∈ ,N .Also N∈∀<

+
knn

kk
,1 .  Hence ( )

N∈kk
b  is a subsequence 

of ( )
N∈nn

a . 

*** 
 
Let us now look at the following result. 
 

Theorem 1: Let 
N∈nn

a )(  be a sequence. If 
N∈kk

n )( is a strictly increasing 

sequence of natural numbers, then ( )
N∈knk

a is a subsequence of 
N∈nn

a )( . 

 

Proof: Let N∈∀= kab
knk

. Since 
N∈kk

n )( is strictly increasing, we have 

1+
<

kk
nn  for all N∈k . Therefore, 

N∈kk
b )( , i.e., ( )

N∈knk

a is a subsequence of 

N∈nn
a )( .  

 

Due to Theorem 1, we shall use the notation ( )
N∈knk

a to denote a subsequence 

of 
N∈nn

a )( . Now consider an increasing sequence 
N∈nn

a )( . Let ( )
N∈knk

a be a 

subsequence of 
N∈nn

a )( . What can you say about ( )
N∈knk

a ? That is, will 

( )
N∈knk

a  be increasing? To see, let N∈l,k be such that .l<k Then  

 

 lll
nnk

aannk
k

≤⇒<⇒< . 

 

This proves that ( )
N∈knk

a  is increasing. Thus every subsequence of an 

increasing sequence is increasing. Can you write a similar statement about 
decreasing sequences?  
 
Let us now look at one more example. 
 

Example 13: Consider the sequence ,)(
N∈nn

a  where 
n

na
n

)1(−

= for all natural 

numbers .n  Answer the following. 
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i) Find a subsequence of 
N∈nn

a )(  that is decreasing and bounded below. 

 

ii) Find a subsequence of 
N∈nn

a )(  that is increasing, but not bounded above. 

 

iii) Write the first 5 terms of the subsequence 
N∈nn

a )( 2  of 
N∈nn

a )( . Is 
N∈nn

a )( 2  

monotone? Strictly monotone? 
 

Solution: We can see that the first few terms of the sequence 
N∈nn

a )(  are as 

follows.  
 

 
...,

9

1
,8,

7

1
,6,

5

1
,4,

3

1
,2,1  

 
i) Now if we look at the odd terms, we get a decreasing subsequence. That 

is the subsequence 
N

N

∈

∈−









−

=

n

nn

n
a

12

1
)( 12  is decreasing, and also 

bounded below by 0. 
 

ii) The subsequence formed by even terms is 
NN ∈∈

=
nnn

na )2()( 2  
which is 

increasing, but not bounded above. 
 

iii) Note that the subsequence .)(
2

2

)1(2

N

N

∈

−

∈







=

n

nn

n

na  Its first five terms are 

as follows: 
25

1
,16,

9

1
,4,1 . Clearly neither the subsequence is increasing 

nor decreasing. Hence, it is not a monotone subsequence. Consequently, 
it is not strictly monotone. 

 

*** 

You should try some exercises now. 
 

 

E19)  Is ),4,3,2,1( K a subsequence of ),4,3,2,1(
2222 K ?  

 
E20)  Show that ),0,0,0( K is a subsequence of ),1,1,0,0,1,1,0,0( K . 

 
E21)  Identify which of the following are subsequences of the sequence    

           ,)(
N∈nn

a where 

N∈

−

























+=

n

n

n

n
a

1
1

1
1 ? 

 
 

 i)

  N∈

−

























+

k

k

k

1

1
1   ii)   

N∈

−

























+

k

k

k

1
1

1
1         iii)

  N∈

−

























+

k

k

k

!

1
1

!

1
1  

 

E22)  Let 
N∈nn

b )(  be a subsequence of 
N∈nn

a )( , and 
N∈nn

c )(  a subsequence of 

.)(
N∈nn

b  What is the relation between 
N∈nn

a )( and 
N∈nn

c )( ? 

 
E23)  Is every subsequence of a decreasing sequence decreasing? Prove or      
            disprove. 
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E24)  If 
N∈nn

a )(
 
is a bounded sequence, what can you say about the     

         boundedness of the subsequences of 
N∈nn

a )( ? 

 

 
Thus far you have only seen the basic notions related to sequences. 
In the next section we shall introduce the concept of convergence of a 
sequence. 
 

5.6   CONVERGENT SEQUENCES 
 
The notion of convergence of a sequence is crucial to understand the 
behaviour of real valued functions, and is helpful in the estimation of sums of 
series. (You will study about series in the next block.) 
 

Consider the sequence 
N∈nn

a )( , where 1=
n

a  if n  is odd, and 0=
n

a  if n  is 

even. So, every of 
N∈nn

a )(  is 1 or 0. What happens to 
n

a  when n  tends to 

infinity? The notion of convergence addresses precisely the question: 

Given a sequence 
N∈nn

a )( , what happens to 
n

a  when n  tends to infinity?  

 

Let us consider another example of a sequence ,)(
N∈nn

a  where 
n

a
n

1
=  for all 

.N∈n  In this case, we can see that 
n

a  comes closer and closer to 0 as n  

becomes larger and larger. That is 
n

a  tends to 0 as n  tends to .∞  In other 

words, we can say that 0 is the ‘limit’ of the sequence .)(
N∈nn

a  

 
Let us now have a formal definition of limit. 
 

Definition: Let 
N∈nn

a )(  be a sequence of real numbers. Then a real number L  

is said to be a limit of 
N∈nn

a )(  if  given any 0>ε , there exists a number 

N∈
0

n  such that for all ε<−≥ ||,
0

Lann
n

. This is also expressed as 

.lim La
n

n

=
∞→

 

 
Read the definition above a few more times. It has mainly three numbers L , ε

and 
0

n . The number L  is a fixed number given to you. The number ε  is also 

given, but not fixed. You are free to choose any positive value forε . The last 

number is 0n , which is not given to you. Instead, you have to find 
0

n  in order 

to prove that L  is such that ε<− || La
n

 for every ,0nn ≥  i.e., all the terms of 

N∈nn
a )(  starting from 0n  lie in the interval ] [εε +− LL , . Since the choice of 

selecting ε  lies with us, the interval ] [εε +− LL ,  can be made as small as 

we wish. However, for smaller ,ε  we may get larger 0n , that is 0n
 
depend on 

ε . Let us see geometrically what it means in Fig. 4. Consider the horizontal 

strip of width ,2ε  generated by the lines ε−= Ly and ε+= Ly . If L  is the 

limit of the sequence 
N∈nn

a )(  then there must be some natural number 0n  on 

the x -axis such that for every n  to the right of ,0n  
n

a lies in the strip. 

Note that || La
n

−  

represents the absolute 

value of the difference of 

n
a  and .L   
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Fig.4: Geometrical illustration of limit 

 
Now consider the following theorem, which says that the limit of a sequence is 
unique whenever it exists. 
 

Theorem 2: If 
1

L  and 
2

L  are two limits of a sequence 
N∈nn

a )(  then 
21

LL = . 

Proof: Let 0>ε  be given. Then 0
2

>
ε

. Since 
1

L is a limit of 
N∈nn

a )(  there 

exists some N∈
0

n  such that 0nn ≥  implies 

2
||

1

ε
<− La

n
.                 ... (1) 

Also 
2

L  is a limit of .)(
N∈nn

a  Hence there exists N∈
0

m  such that 0mn ≥  

implies 

2
2

ε
<− La

n
.              ... (2) 

Now let }.,{max 000 nmk =  Then 0kn ≥  implies 0mn ≥  and 0nn ≥ . Thus both 

Eq. (1) and (2) hold for all 0kn ≥ . Therefore, for each 0kn ≥ , 

 

 
ε

εε
=+<

−+−=

−+−≤

−+−=−

22

||

21

21

2121

LaLa

LaaL

LaaLLL

nn

nn

nn

 

 
Since 0>ε is arbitrary, we have  

 

.000|| 21212121 LLLLLLLL =⇒=−⇒=−⇒≤−  

 
Let us consider a few examples. 
 
Example14:  Using the definition of limit, show that 1 is the limit of the 

sequence ( )K,1,1,1,1 . 
 

Solution:  Here 1=
n

a and 1L = . Then  
 

 0|11||| =−=− La
n

. 

 

ε+L  

0
n  

L  

ε+L  

n
a  

→n  
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Let 0>ε be given. Then we see that .1, ≥∀<− nLa
n

ε  So, we can take 

.10 =n  Thus for ,1≥n  we have ε<− La
n

. Hence 1 is the limit of the given 

sequence. 
*** 

Example15: Using the definition of the limit, show that 0 is the limit of the 

sequence 
N∈










n
n

1
. 

 

Solution: Here 0,
1

== L
n

a
n

. Let 0>ε be given. Our task is to find an 
0

n , 

such that .||0 ε<−⇒> Lann
n

 Now see that 

 

 nn
La

n

1
0

1
=−=−  

Then  

 
⇔<− εLa

n
 ⇔< ε

n

1
 

ε

1
>n  

Thus we see that for all 
ε

1
>n

 

 
ε<− La

n
. 

We choose 







=

ε

1
0n . Now we have 

εε

εε

<−⇒<⇒>⇒





≥⇒≥ La

n
nnnn

n

111
0 . 

 

Hence 0  is the limit of the given sequence. 
0.00000000000.....  

*** 

Example 16: Using the definition of the limit, show that .
3

2

23

32
lim =

−

+

∞→ n

n

n

 

 

Solution: Let 0>ε  be given. Here 
23

32

−

+
=

n

n
a

n
 and .

3

2
=L  Let us consider 

 

 
)23(3

13

3

2

23

32
||

−

=−

−

+
=−

nn

n
La

n
 

 

So, 
 

 

εε <

−

⇔<−

)23(3

13
||

n
La

n
 

ε3

13
23 >−⇔ n

 
ε

ε

9

613+
>⇔ n  

 

So if we choose ,
9

613
0 









ε

ε+
=n  we have for all .||,0 ε<−≥ Lann

n
 Hence, 

 
.

3

2

23

32
lim =

−

+

∞→ n

n

n

 

*** 

Now let us look at some examples of sequences that have no limit. 
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Example 17: Show that the sequence ( )( )
N∈

−
n

n

1  has no limit. 
 

Solution: Assume, if possible, a real number L  is the limit of the given 

sequence. Then for any 0>ε , there exists N∈0n such that 0nn ≥∀  

 ( ) .|1| ε<−− L
n

 
 

Now you can split the statement above into two statements according to 
weather n  is even or odd.  
 

For odd ,0nn ≥ we have  
 

 11|1||1| −ε<<ε−−⇔ε<+⇔ε<−− LLL  
 

Whereas, for even ,0nn ≥ we have  

 

 11|1||1| +ε<<ε−⇔ε<−⇔ε<− LLL  
 

Now focus at the underlined inequalities above. Do they hold for all 0>ε ? In 

particular, what happens when you choose 1=ε ? You can see that one 

inequality gives you 0<L  and the other one 0≥L .This is absurd. 

Hence, L  cannot be the limit of the sequence. Since L  is arbitrary, no real 
number is the limit of the sequence. 
 

*** 

Example18: Show that the sequence ( )
N∈nn

a  has no limit, where  

 

 

 ∈=

=

otherwise,

 somefor 2 if ,1

n

kn
a

k

n

N
 

 

Solution: First let us plot this sequence to understand the behaviour of the 

terms 
n

a  as n  increases. (See Fig. 5.) 

 
 

Fig. 5 

 
Now assume, if possible, that L  is the limit of this sequence. Then for any 

0>ε , there exists N∈0n  such that 0nn >∀  

 
 

 .|| ε<− La
n

 

 

1 5  3  7  9  11 13  15  17  

2  

4  

6  

8  

10  

12  

14  

16  

n
a  

→n  
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Looking at the definition of 
n

a , we get two cases. In case of k
n 2=  for some 

0, nnk ≥∈N we have  

    

 εεεε +<<−⇒<−⇒<− 11|1||| LLLa
n

 

 

On the other hand, when k
n 2≠ for any ,,N 0nnk ≥∈  we have  

 

 εεεε +<<−⇒<−⇒<− nLnLnLa
n

||||  

 
Now look at the underlined inequalities. Take 1=ε , for example. Then we 

have 2<L as well as 0,1 nnLn >∀<− . This is impossible. Hence, the 

sequence has no limit. 
*** 

We have seen the examples of the sequences that have limit and also of 
those that do not have. To distinguish between the two classes of sequences,  
you need the following definition. 
 
Definition: A sequence is said to be convergent if it has a limit, and 
divergent otherwise. 
 

When a sequence ( )
Nnn

a
∈

 has the limit L , we write .lim La
n

n

=
∞→

 The same 

statement can also be written as “ ( )
Nnn

a
∈

 converges to L ”, or as “ La
n

→  as 

∞→n ” or just as “ La
n

→ ”. 

 
Let us look at the following example. 
 

Example 19: Show that 
N∈










n
n

nsin
 converges to 0. 

Solution: Let 
n

n
a

n

sin
=  and .0=L  Take .0>ε  We have 

 nn

n
La

n

1
0

sin
|| ≤−=−  

 
Thus 

 
ε<− || La

n
 if ε<

n

1
 








> .

1

ε

nif  

 

Choose .
1

0 





=

ε

n  Now 

 

 

.||
111

0 εε

εε

<−⇒<⇒>⇒





≥⇒≥ La

n
nnnn

n
 

 

Therefore, 
N∈










n
n

nsin
 converges to 0. 

***  

Now let us consider the following property of convergent sequences. 
 
Theorem 3: Every convergent sequence is bounded. 
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Proof: Let us consider a convergent sequence ( )
N∈nn

a  which converges to .L  

Then for a given ,0>ε  we have some N∈0n  such that for all 0nn >

.|| ε<− La
n

 

 

Then for all ,0nn >  

 
 

 ε+<+−≤+−= |||||||||| LLLaLLaa
nnn

 

 

Let =M max |},|,|,||,{|
021 n

aaa K and =K max }.,|{| ML ε+  

 

Thus for all 1≥n  we have .|| Ka
n

≤
 
This proves that ( )

N∈nn
a  is bounded. 

 
What is the contrapositive of the statement of Theorem 3? It is “every 
unbounded sequence is divergent.” You know that a statement is true if and 
only if its contrapositive is true. This can help us in proving the divergence of 
many sequences. See one such example, given below. 
 

Example 20: Show that the sequence 
N∈n

n
n )(  is divergent. 

Solution: We know that for each N∈k  there exists some N∈n  such that 

.kn >  This implies .kkn
nn

>>  Thus for each N∈k  some term of 
N∈n

n
n )(  is 

larger than .k  Therefore, 
N∈n

n
n )(  is not bounded above. Hence 

N∈n

n
n )(  is 

unbounded. It, therefore, follows from Theorem 3, that 
N∈n

n
n )(  is divergent. 

***  
Try now the following exercises. 
 

 
E25) Using the definition of limit, prove the following limits. 
 

 i)   0
4

lim
2

=
∞→ nn

                  ii)   0
)1(2

lim =
−

∞→ n

n

n

      

 iii)   1
)1(

1lim =






 −
−

∞→ n

n

n

 iv)   0
cossin

lim =
+

∞→ n

nn

n

    

 v)   cc
n

=
∞→

lim       vi)   011lim =−−+
∞→

nn
n

 

 

E26) Prove that if ,La
n

→  then (i)  ,22
La

n
→  and (ii)  .|||| La

n
→  

 
E27) Give an example of a divergent sequence that is not monotone. 
 
E28) Is every sequence that is not monotone, divergent? Give reasons. 
 
E29) Write the converse of the statement of Theorem 3. Is the converse 

true? Justify. 
 

E30) Give an example of a sequence 
N∈nn

a )(  which is not constant, 
n

a  is  

 nonzero for all ,N∈n  and both 
N∈nn

a )(  and 

N∈










nn
a

1
 converge to the  

 same limit. 
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E31) Using the definition of limit, prove that the sequence 
N∈n

n)(  has no 

limit. 
 

 
The section above was meant to give you a basic understanding of 
convergent, and divergent sequences. In the forthcoming section we shall 
explore more about their characteristics. 
 

5.7   CAUCHY SEQUENCES 
 
In the last section, we saw that to prove that a sequence is convergent we, 
first need to find a number Lwhich could be the limit of the sequence. This 
makes the task of proving convergence difficult in many cases. For example, 
by looking at the terms of a sequence, we might have an intuitive idea that the 
sequence approach to a number, but what that number is may not be easy to 
determine. 
 
To resolve this Augustin -Louis Cauchy (1789-1857), an eminent 
mathematician, presented a criterion for convergence of sequences, which 
does not depend on .L  
 

Let us first assume that the sequence ( )
N∈nn

a  converges to L . Then for any 

0>ε , there exists N∈0n such that 0nn ≥∀  

 2
||

ε
<− La

n  

 
Now, let 

0, nnm ≥ . Then 

 

 ||||
nmnm

aLLaaa −+−=−  

    ||||
nm

aLLa −+−≤  

    |||| LaLa
nm

−+−=  

    ε
εε

=+<

22
 

 
This shows that, no matter what L is, the terms 

m
a  and 

n
a  can be made as 

close as we wish after a certain term. 

Let us consider, for example, the sequence ( )

N

N

∈

∈








=

n

nn

n
a

1
. Let .nm >  then 

 nnmnm
aa

nm

2

11111
<+<−=−  

 

This shows that as m  and n  increase, the terms 
m

a  and 
n

a  come close to 

each other. This leads to the following definition. 
  

Definition: A sequence ( )
N∈nn

a  is said to be a Cauchy sequence if for every

0>ε , there exists some N∈0n  such that  

 

 0,,|| nnmaa
nm

≥∀<− ε  

 
Augustin-Louis Cauchy 

(1789-1857) 

Fig. 6 
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The sequence ( )

N

N

∈

∈








=

n

nn

n
a

1
is Cauchy. To prove, let .0>ε  Now choose 

N∈0n such that ε<

02

1

n
 i.e. .

2

1
0

ε

>n  

 
Now 
 

 
.

2

1

2

111

0

0

ε

ε

<−⇒

<≤<−⇒≥>

nm
aa

nnnm
nnm

 

 

Hence 
N∈nn

a )( is Cauchy. 

 
We have seen above that every convergent sequence is a Cauchy 
sequence. Interestingly, the converse is also true. It is the content of the 
following theorem. 
 

Theorem 4:  Every Cauchy sequence (in R ) is convergent. 
 

Proof: Let 
N∈nn

a )(  be a Cauchy sequence. We define a set S  as below. 

 

 { }00 , : knaxkxS
n

≥∀<∈∃∈= that suchNR �  

 

The proof involves two steps. 
 
Step 1: Ø≠S  and S  is bounded above. 

 

Since 
N∈nn

a )(  is bounded, there exists some 0>M  such that 

 ., N∈∀<<− nMaM
n

 

 

Hence, SM ∈− . This shows that Ø≠S . Let Sx∈  be arbitrary. There exists 

some N∈0n  such that  
0, nnax

n
≥∀<  . But  

 

 N∈∀< nMa
n

, . 
 

This shows that .Mx <  Since Sx ∈  is arbitrary, it follows that S  is bounded 
above. The completeness property of R now implies that the supremum of S  

exists in .R  
 

Step 2:  sup S is the limit of ( )
N∈nn

a  

 

Let Su sup= . Let 0>ε be given. Since the sequence is Cauchy, there exists 

N∈0n  such that  

 

 
0,,

2
|| nnmaa

mn
≥∀<−

ε
 

 
In particular,   

S.
ε

a andS
ε

a

nn,
ε

aa
ε

ann,
ε

|a|a

nn

nnnnn

∉+∈−⇒

≥∀+<<−⇒≥∀<−

22

222

00

000 00
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     ( )Ssupu
ε

au
ε

a
nn

=+≤≤−⇒ Q
22 00

 

     

2

22

0

0

ε
|a|u

ε
au

ε

n

n

≤−⇒

≤−≤−⇒
 

 
Thus for all 

0nn ≥ , we have  

 

 
ε

εε
=+<−+−≤

−+−=−

22
||

||||

00

00

nnn

nnnn

auaa

uaaaua

 

 

Consequently 
N∈nn

a )(  converges to u . This completes the proof.  

 
Thus Cauchy sequences provide a characterisation of sequences as stated 
below. 
 
Theorem 5 (Cauchy’s Criterion of Convergence): A real sequence is 
convergent iff it is Cauchy. 
 
Proof: See Theorem 4 and the discussion above Theorem 4. 
Let us consider an example. 
 

Example 21: Show that 
( )

N∈










 −

n

n

n

2

1
 is a Cauchy sequence.  

Solution: Let
( )

n

n

n
a

2

1−
= . For mn > , we have mn 22 > . This implies .

2

1

2

1
mn

<

Now we can see that, for mn >  
 

 

( ) ( )

12

1

2

1

2

1

2

1

2

1

2

1

2

1

−
=+<

+<

−
−

−
=−

mmm

mn

m

m

n

n

mn
aa

 

 
Let 0>ε be given. Then for all mn >  we have 
 

ε<− ||
mn

aa    if   ε<
−12

1
m

 

i.e.            

ε<− ||
mn

aa        if         
ε

1
2 1

>
−m  

The inequality 
ε

1
2 1

>
−m  is true for all N∈m , if 1≥ε . For 10 << ε , we take  

logarithm with base 2 on both sides to get,  
 

,
1

log1 2 







>−

ε

m  i.e.  







+>

ε

1
log1 2m . 
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So let us take .
1

log1,1max 20

















+=

ε

n  Now we have  

.

2

1

1
2

1
log1

1
log1

1

1

2

20

ε

ε

ε

ε

ε

<−⇒

<⇒

>⇒









>−⇒









+>⇒≥>

−

−

mn

m

m

aa

m

mnmn

 

 

This proves that 
N∈nn

a )(  is a Cauchy sequence. 

*** 

The sequence in Example 21 has been proved Cauchy and hence convergent. 
(See Theorem 4.) The convergence of the sequence in Example 21 could also 
be proved using definition. Indeed, observe that the terms of the sequence 
approach 0. We next show you a sequence whose limit is not predictable. In 

Section 5.2 we introduced the Fibonacci sequence 
N∈nn

f )(  defined as 

 

,3,21 ≥∀+=
−−

nfff
nnn

 

 

and 1
21

== ff . 
 

From E14(vi), you know that ( )
N∈nn

f  is increasing. Now define the sequence 

N∈nn
a )(  by 

.1,
1

≥∀=

+

n
f

f
a

n

n

n
 

 

You can see that the first few terms of 
N∈nn

a )(  are  

 
K,625.0,6.0,667.0,5.0,1  

 
The terms do not seem to approach a familiar number. You can compute a 
few more terms to convince yourself. However, this sequence is Cauchy and 
hence convergent (by Theorem 4) as shown in the following example. 
 

Example 22: Show that the sequence 
N∈nn

a )(  defined above is Cauchy. 

 

Solution:  First let us observe that for all N∈n  
 

,
2

1

11

=

+

≥

+

==

−+ nn

n

nn

n

n

n

n

ff

f

ff

f

f

f
a  

 

since the sequence 
N∈nn

f )( is increasing. Also observe that 

n

n

nnn

n

n

n

n

a

f

fff

f

f

f
a

+

=









+

=

+

==

+

+

+

+

+

+

1

1

1

1

1

1

1

2

1

1  
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Hence 
( )( )1

1

1

1
111

1

1

1

−

−

−

+

++

−

=

+

−

+

=−

nn

nn

nn

nn
aa

aa

aa
aa  

 

But ( )( ) 2,2
2

1
1

2

1
111 1 ≥∀>








+








+≥++

−
naa

nn
. 

 
Now using the Principle of Mathematical Induction, you should show that  
 

.2,
2

1
11 ≥∀−≤−

−+
naaaa

nnnn
 

. 
Since the inequality above is true for all 2≥n , we can replace n  by 1−n , to 
get  

211
2

1
−−−

−≤−
nnnn

aaaa . 

 
Thus we get  
 

2121
2

1
−−+

−≤−
nnnn

aaaa  

 
Repeating the above process  we get 
  

  1,
2

1

2

1
11221

≥∀=−≤−
−−+

naaaa
nnnn

 

 
Now let kmn += for some N∈k . Then 
 

 
( ) )()()( 123121 −+++++++

−++−+−+−
kmkmmmmmmm

aaaaaaaa K  

 mnkmm
aaaa −=+−=

+
 

 
Hence 
 

 
m

km

km

kmmmm

kmkmmmmmmmmn
aaaaaaaaaa

2

1

2

1
1

2

1
1

2

1

2

1

2

1

2

1
1

2

1

2

1

2

1

2

1

2

1

1

121

211

123121

<

−









−

=







++++=

++++≤

−++−+−+−≤−

−

−−

−++−

−+++++++

K

L

K

 

 
Now for arbitrary 0>ε use arguments similar to the preceding example to get   

 

 

.
1

log2,2max 20

















+>

ε

n  

 
Now we have  
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ε

ε

ε

ε

ε

<−⇒

<⇒

>⇒









>−⇒









+>⇒≥>

−

−

mn

m

m

aa

m

mnmn

2

2

2

20

2

1

1
2

1
log2

1
log2

 

 

Hence 
N∈nn

a )(  is Cauchy. 

*** 

Now you should do some exercises.  
 

 
E32)   Show that the following sequences are Cauchy. Hence, conclude that 

they are convergent. 
 

 i)   







−−−− K,.

5

1
,

4

1
,

4

1
,

3

1
,

3

1
,

2

1
,

2

1
,1        (ii)   

N∈










+−
n

nn

n

12
2

  

   

  iii) ( )
N∈n

n
c  , where 1<c     

  iv) ( )
N∈nn

a , where







−
=

otherwise

prime a isif

  
n

 n  

a 
n ,

1
1

,1

 

 
E33) Show that the following sequences are not Cauchy. Hence, conclude 

that they do not converge. 
 

i) ( )( )
N∈

−
n

n

4     ii)       ( )
N∈nn

a , where ∑
=

=

n

k

n

k
a

1

1
 

 
E34)   Show that every Cauchy sequence is bounded.  In particular, every 

convergent sequence is bounded. 
 

 
By now you must have understood what convergence is, and how to use the 
definition of limit, and the Cauchy’s convergence criterion to test the 
convergence of a sequence. In the next section we shall discuss some more 
tools to compute the limits of sequences. 
 

5.8   CRITERIA FOR CONVERGENCE OR 
DIVERGENCE OF SEQUENCES 

 
In this section we shall discuss some criteria that establish the convergence or 
divergence of sequences. We start with the following criterion.  
 

Theorem 6: A sequence 
N∈nn

a )(
 
converges to L  iff every subsequence of 

N∈nn
a )(

 
converges to L . 
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Proof: Let us first assume that 
N∈nn

a )( converges to L . Let 0>ε be given. 

Then, there exists some N∈0n such that 

 

 ε<−⇒≥ Lann
n0 . 

 

Consider an arbitrary subsequence 
N∈knk

a )(
 
of 

N∈nn
a )( .  Let N∈0k be such 

that .
00

nn
k

≥
 
Now 

 

 
ε<−⇒≥≥⇒≥ Lannnkk

k
nkk 00 0

 

 

This implies 
N∈knk

a )( converges to L . 

 

Conversely, let us assume that each subsequence of 
N∈nn

a )(  converges to L . 

Then 
N∈nn

a )( converges to L because 
N∈nn

a )( is a subsequence of itself. 

 
The theorem above gives a characterisation of convergence of a sequence in 
terms of the convergence of its subsequences. In particular, it can be used to 
show the divergence of a sequence just by finding its two subsequences 
converging to two distinct limits. As an application consider the following 
example. 
 

Example 23: Show that the sequence 
N∈

−

n

n

)2(
)1(

2  is divergent. 

Solution:  Let .2
)1(2
n

n
a

−

=  Consider the subsequence 
N∈+ kk

a )( 12  and 
N∈kk

a )( 2

of 
N∈nn

a )( . 

 
Here  

 
N∈∀===

−
+

−

+
ka

k

k
,222

112)1( 22

12 . 

 
And  

 
N∈∀===

−

ka

k

k
,422

12)1( 22

2 . 

 

Thus 212 →
+k

a
 
and 42 →

k
a . Hence 

N∈nn
a )(

 
is divergent. The above 

sequence is not even Cauchy. Indeed, 22|| 1 >−=−
+ nn

aa  for all .N∈n  

 
*** 

Theorem 6 has a nice corollary which characterises the convergence of a 
sequence in terms of the convergence of its odd and even subsequences. It is 
given below. 
 

Corollary 1: A sequence ( )
N∈nn

a  converges to L  iff its subsequences 

N∈− nn
a )( 12  and 

N∈nn
a )( 2  to .L  

 

Proof: First let us assume that ( )
N∈nn

a  converges to .L  Then by Theorem 6, 

both the sequences 
N∈− nn

a )( 12  and 
N∈nn

a )( 2  converge to .L  

Conversely, assume that 
N∈− nn

a )( 12  and 
N∈nn

a )( 2  converge to .L  We have to 

show that ( )
N∈nn

a  converges to .L  Let 0>ε  be arbitrary. Then there exist  
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natural numbers 0n  and 
1

n  such that for all 0nn ≥  

 

 
ε<−

−
|| 12 La

n
 

 

and for all 
1

nn ≥  

 

 
.|| 2 ε<− La

n
 

 

Take }.,{max 102 nnn =  Then for all 
2

nn ≥  we have .|| ε<− La
n

 Hence 

( )
N∈nn

a  converges to .L  
 

Let us look at an example. 
 

Example 24: Using Corollary 1, show that the sequence ( )
N∈nn

a  converges to 

1, where 

 









−

+

=

even. is  if

odd isif

n
n

n 
na

n

,
1

1

,
1

1

 

 

Solution: The odd and even subsequences of ( )
N∈nn

a  are 
N∈










−

+

n
n 12

1
1  and 

,
2

1
1

N∈









−

n
n

 respectively. 

 

Let 0>ε  be given. Then  
 

 ε<

−

=−








−

+

12

1
1

12

1
1

nn
 if .

1
1

2

1








+>

ε

n  

 

So let .
1

1
2

1
0 
















+=

ε

n  Then for all 0nn ≥  we have 

 

 .1
12

1
1 ε<−









−

+

n
 

 

Hence .1
12

1
1lim =









−

+
∞→ nn

 Similarly, .1
2

1
1lim =








−

∞→ nn

 

 

Therefore, .1lim =
∞→

n
n

a  

*** 
Divergence to ∞  or ∞−  
 
When a sequence converges we know there is some real number to which it 
converges. Given a divergent sequence, will it be legitimate to ask where it 

diverges? To be specific, let us look at the sequence .
)1(

)(

N

N

∈

∈ 






 −
+=

n

n

nn

n
na  

Its first few terms are as follows: 
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L,

7

48
,

6

37
,

5

24
,

4

17
,

3

2
,

2

5
,0  

 

So, where is the th
n  term 

n
a  heading to? Have you observed that its 

numerator is becoming larger much faster than the denominator? Thus, it 

seems that “
n

a  is diverging to ∞ ”. Let us look at the formal definition. 

 

Definition: A sequence ( )
N∈nn

a  is said to diverge to ∞  if for every 0>M  

there exists some N∈0n  such that Ma
n

>  for all .0nn >
 
 

 
The definition above says that a sequence diverges to ∞  if given any positive 

real number M  the sequence has a term after which all the terms are greater 

than .M  

Let us come back to the discussion of the sequence .
)1(

)(

N

N

∈

∈ 






 −
+=

n

n

nn

n
na  

Pick any .0>M  Note that when n  is even 
n

na
n

1
+=  and when n  is odd, 

.
1

n
na

n
−=  Thus in any case 

 

 Mna
n

>−≥ 1  if 1+> Mn  

 

So, let  .10 += Mn  Then we can see that 

.110 MaMnMnnn
n

>⇒>−⇒+>⇒>   

 

Hence ( )
N∈nn

a  diverges to .∞  

 
Let us look at one more example. 
 

Example 25: Show that 

N∈























n

n

2

3
 diverges to .∞  

Solution: We know that for all ,N∈n  naa
n

≥  if .1>a  This implies for all 

,N∈n .
2

3

2

3
nn

n

>⋅≥







  

 

Now let 0>M  be arbitrary. Then Ma
n

>  if .Mn >  So, let  .0 Mn =  Then 

we have for all .,0 Mann
n

>>  Hence the given sequence diverges to .∞  

***  

The notion of divergence to ∞−  is analogous to divergence to ,∞  as you can 

observe from the definition given below. 
 

Definition: A sequence ( )
N∈nn

a  is said to diverge to ∞−  if for every ,0>M  

there exists some N∈0n  such that Ma
n

−<
 
for all .0nn >  

Let us have an example. 
 

Example 26: Show that 
n

n)(−  diverges to .∞−  

Solution: Let 0>M  be arbitrary. Now  
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 Mn −<−  if Mn >  if .2
Mn >   

 

So, let  2

0
Mn = . Then 

  .
2

0 MnMnMnnn −<−⇒>⇒>⇒>   

 
Therefore, the given sequence diverges to .∞−  
 

***  
Now you should try the following exercises. 
 

 
E35) Check whether or not the following sequences converges. 
 

 i) 

N∈










−+

−+

n

n

n

n

n

)1(2

)1(4
  ii) 

N∈








 +

n

n

2

)12(
sin

π
 

 

E36) Does the sequence 

N∈


















+
n

n

n

1
cos

π
 have two subsequences 

converging to different limits? Justify. 
 

E37) Show that 
N∈n

n )!(  diverges to .∞  

 

E38) Does the sequence 
N∈

−

−
n

n
n )2(  diverge to ?∞−  Justify. 

 

 
In the next we shall discuss some more tools for computation of limits 
convergent sequences. 
 

5.9  ALGEBRA OF CONVERGENT SEQUENCES 
 
Often complicated sequences can be expressed as addition, multiplication, or 
quotient of simple sequences. In this context, it is imperative to know how 
limits of sequences behave with respect to such operations. So, in this section, 
we shall discuss how to find the limits of sequences which are sum, product or 
quotient of sequences. Consider the sequences 
 

 ( )

N

N

∈

∈









+

+
=

n

nn

n

n
a

12

1
   and ( )

N

N

∈

∈









+

−
=

n

nn

n

n
b

1

1
. 

 

You can prove yourself that ( )
N∈nn

a  converges to 
2

1
and ( )

N∈nn
b  converges to 

1. Let ( )
N∈nn

c  be the sequence ( )
N∈

+
nnn

ba . That is, 

 

 

N∈∀

++

+
=

+

−
+

+

+
= n

nn

nn

n

n

n

n
c

n
,

)1)(12(

3

1

1

12

1
2

. 

 

We now ask you the question: does 
N∈nn

(c ) converge to 1
2

1
+ ? 

 

To see, consider 
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  ( )( ) )1)(12(2

37

2

3

112

3

2

3 2

++

−−
=−

++

+
=−

nn

n

nn

nn
c

n
 

 
Now 
 

 
nnn

n

nn

n

nn

n
c

n

2

5

))(2(2

10

)1)(12(2

10

)1)(12(2

37

2

3
=<

++

≤

++

+
=−   

 

 Thus if we pick N∈
0

n in such a way that ,
2

5

0

ε<

n
i.e. 

ε2

5
0

>n , then we have  

 
0,

2

3
nnc

n
≥∀<− ε  

 

Hence  
N∈nn

)(c  converges to 
2

3
. 

 
Thus, in this case, we find that 
  

 
( )

n
n

n
n

nn
n

baba
∞→∞→∞→

+=+ limlimlim  

 

Does the equality above hold for all convergent sequences ( )
N∈nn

a  and 

( )
N∈nn

b ? 

 
To investigate let us assume that  
 

 
21 lim andlim LbLa

n
n

n
n

==
∞→∞→

 

 

Then for a given ,0>ε there exists N∈10 , nn such that for all 0nn ≥  

 

,
2

1

ε
<− La

n
 

and for all 1nn ≥  

 
.

2
2

ε
<− Lb

n
 

Now let },{max 102 nnn = . Then for all 2
nn ≥ , we have 

 
( ) ( ) ε

εε
=+<−+−≤+−+

22
2121 LbLaLLba

nnnn
  

 
Hence, ( )

21
lim LLba

nn
n

+=+
∞→

. 

 
The arguments above prove the following theorem. 
 

Theorem 7: If the sequences ( )
N∈nn

a
 
and ( )

N∈nn
b  are convergent then so is 

N∈
+

nnn
ba )(  . Further,  

 

 
( ) .limlimlim

n
n

n
n

nn
n

baba
∞→∞→∞→

+=+  

 
Consider an example now. 
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Example 27:  Find the limit of the sequence 
N∈








 −
+

n
n

n

n

11
2

 

Solution: First you must prove that  
 

 
0

1
lim

2
=

∞→ nn

and .1
1

lim −=
−

∞→ n

n

n

 

 
From Theorem 7, it follows that 
 

  110
11

lim
2

−=−=






 −
+

∞→ n

n

nn

. 

*** 

As in the case of sum, we have a similar result about the product of two 
convergent sequences. 
 

Theorem 8:  If the sequences  ( )
N∈nn

a  and ( )
N∈nn

b  are convergent 

sequences, then so is ( ) ,
N∈nnn

ba  and 
 

 
).lim).(lim()(lim

n
n

n
n

nn
n

baba
∞→∞→∞→

=  

 

Proof:  Let us assume that  
 

 
1lim La

n
n

=
∞→

 and .lim 2
n

Lb
n

=
∞→

 

Assume that 0
1

≠L .  Let 0>ε  be given. Let us consider the quantity 

 

 211

2111

211121

LbLbLa

LLbLbLba

LLbLbLbaLLba

nnn

nnnn

nnnnnn

−+−=

−+−≤

−+−=−

                   

 

Now for 21
LL to be the limit of ( )

N∈nnn
ba , we have to find some N∈

0
n  such 

that for all  
�
�

0
nn ≥ the quantity 211 LbLbLa

nnn
−+− is less than ε . Look at 

the term 
nn

bLa 1−  . Since ( )
N∈nn

b is convergent, ( )
N∈nn

b  must be bounded. 

(See E34.) That is, there exists some 0>M such that 
 

 
,Mb

n
≤  for all .1≥n  

 

Since 
1

lim La
n

n

=
∞→

there exists some N∈
1

n  such that for all 
1

nn ≥  

 
.

2
1

M
La

n

ε
<−  

 

Also since ,lim
2

Lb
n

n

=
∞→

there exists some N∈
2

n  such that for all ,
2

nn ≥  

 .
2 1

2
L

Lb
n

ε
<−  

 

Thus, if we choose },{max 210 nnn = , we have for all 0nn ≥  
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ε
εε

=+<−

1

121
2

..
2 L

LM
M

LLba
nn

. 

 

This proves that ( )
nnn

ba is convergent and ( )
21

lim LLba
nn

n

=
∞→

. 

 

The proof is still not complete. We ask you to prove the case 0
1

=L   

(See E 41). 
 
Finally let us look at the following result. 
 

Theorem 9: If for all ,0, ≠∈
n

an N  and ( )
N∈nn

a
 
converges to 0≠L , then 

N∈










nn
a

1
 converges to 

L

1
. 

 
Proof: Let 0>ε  be given. Consider 

 

 

La
LaLa

aL

La
n

nn

n

n

−=
−

=− .
1

.
111

 

 

Since L  is the limit of ( )
N∈nn

a , the quantity La
n

−  can be made smaller than 

any positive number,  by choosing sufficiently large n . Our concern is can the 

quantity 
n

a

1
 be made

   

smaller than a certain positive number by choosing 

sufficiently large n? 
 

Since 
n

a  converges to L , 
n

a  converges to L . (See E26). Thus, there are 

always infinitely many terms of 
N∈nn

a |)(|
 
that lie in ,

2
,

2








+−

L
L

L
L  that is, 

in .
2

3,
2








 LL
 (Why?) 

 

That is, there exists some N∈
0

n  such that for all 0nn ≥  

  

 .
2

3

2
La

L

n
≤≤  

 

This gives 
La

n

21
≤ . Now since ( )

N∈nn
a  converges to L , there exists N∈

1
n

such that for all 
1

nn ≥  
 

 

2
2 L

La
n

ε
<−  

 

Thus if we choose },,{max 102 nnn =  we have for all 
2

nn ≥  

 

 

.
2

.
1

.
211

2
ε

ε
=<−

LLLLa
n
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Hence, 
La

n

n

11
lim =

∞→

. 

 
All the theorems above are of immense importance while evaluating the limits 
of sequences. Let us see some applications. 
 

Example 28:  Find the limit of the sequence 

N∈










+

+

n
n

nn

2

2
3

3

. 

Solution:  We can rewrite th
n  term of the given sequence as  

 

.
2

1

1
2

2

2

3

2

3

3

n

n

n

nn

+

+

=

+

+
 

Let .
2

1  and  
1

2
32

n
b

n
a

nn
+=+=  

Since ,0
1

2
→

n
we have .202 =+→

n
a Similarly we can see that 1→

n
b . 

Thus  

 

.2
1

2
=→

n

n

b

a
 

*** 

Now it is time that you do some exercises. 
 

 

E39)  If ( )
N∈nn

a  and ( )
N∈nn

b
 
are convergent sequences then show that 

 
( )

N∈
β+α

nnn
ba is also convergent and

( ) ,limlimlim
n

n
n

n
nn

n

baba
∞→∞→∞→

β+α=β+α  for all R∈βα , . 

 

E40)  Give an example of sequences ( )
N∈nn

a  and ( )
N∈nn

b  which are divergent, 

but their sum ( )
N∈

+
nnn

ba is convergent. 

 

E41)  Show that if ( )
N∈nn

a  converges to 0  and ( )
N∈nn

b  converges to L , then 

( )
N∈nnn

ba  converges to 0 . 

 

E42)  Let .1 nk ≤≤  Show that .0
n

k
lim

2
=

∞→k

 

 

E43)  Show that if ( )
N∈nn

a  converges to 1
L  and ( )

N∈nn
b  converges to ,02 ≠L

then 

  2

1lim
L

L

b

a

n

n

n

=







∞→

. 

E44)  Find the limit of the sequence 

N∈










+

++

n
n

nn

1

1
2

2

 . 

 

 
In this unit we have addressed the fundamental issues related to sequences. 
Of paramount importance is the striking relationship between convergent 
sequences and Cauchy sequences. This relationship reveals that convergent 
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sequences are nothing but Cauchy sequences. The last section is also no less 
important. In fact it is the one which empowers us with tools to compute the 
limit of complicated sequences in terms of elementary sequences.   
 

5.10  SUMMARY 

 
In this unit you have studied the following points: 
 
i)   definitions and examples of real sequences, and subsequences. 

ii)   definitions, examples, and properties of  bounded, monotone, Cauchy, 
convergent, and divergent sequences. 

iii)  criteria of convergence and divergence of sequences. 

iv) algebra of convergent sequences. 

5.11  SOLUTIONS / ANSWERS 

 
E1) i) We can observe that the sequence follows the pattern 
 

   

LLL ,
)12()12(

1
,,

97

1
,

75

1
,

53

1
,

3

1

+−⋅⋅⋅ nn
 

   

  Hence, nth term is .
)12()12(

1

+− nn
 

  
ii) In this case the pattern is 

 
 KK ,,1,,3,1,2,1,1,1 n−−−−  

   
  So, we have 
 

   

−

=

otherwise        

odd is if

,

,1

n

n
a

n
 

 iii) We can see that .

1

n

n
na =  

 

E2) i) 
5

1

4

1

3

1

2

1

5

26
,

4

17
,

3

10
,

2

3
,2 
































 

  

 ii) 
3

3125
,

3

1250
,

3

500
,50,10  

  

 iii) 
3

2
,

5

3
,

2

1
,

3

1
,0  

  

 iv) 
5

1
,

4

3
,

3

1
,

2

1
,1  

 
E3) No. We can see, for example, that the sequences differ at the first 

term. 
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E4) The cube of the given sequence is 
N∈










n
n

3

1
 and cube root is .

1

3

1

N∈















nn

 

E5) The following plot represents the sequence. 
 

 
Fig. 7 

 

E6) i) Let .
12

2

+

+
=

n

nn
a

n
 Then ,22 2

+≤⇔≤ nna
n

 which is true for all 

.N∈n  Hence 
N∈nn

a )(  is bounded above. 

 

   Also note that ,11
12

2

≥⇔≥

+

+
= n

n

nn
a

n
 which is true for all N∈n . 

  Thus 
N∈nn

a )(  is bounded below as well. Therefore 
N∈nn

a )(  is 

bounded. 
 

 ii) Let .
1

)1(

+

−
=

n

n
a

n

n
 Then .1

1
|| N∈∀≤

+

= n
n

n
a

n
 

    

   Hence for all .11, ≤≤−∈
n

an N  Therefore, 
N∈nn

a )(  is bounded. 

 

 iii) We can see that 

   ,
1

1

1

)1()1(
1

++

−
=

++

+++−
=+−

nnnn

nnnn
nn  

   which lies between 1−  and .0  Hence the sequence is bounded. 
 

 iv) We have .211|)1(1| =+≤−+
n

 So 2)1(12 ≤−+≤−
n

 for all .N∈n  

Hence, the sequence is bounded. 
 

E7) Observe that KaKaK
nn

<⇔<<− . The result follows from here. 

 

E8) i) Let .)1( 2
na

n

n
−=  From E7 to conclude the boundedness of 

N∈nn
a )(

 
it is sufficient to check the boundedness of 

N∈nn
a |)(|  We 

have .|| 2
na

n
=  If possible, assume for some R∈u  that ua

n
≤||  

for all .N∈n  This means for all N∈n  un ≤
2  i.e. ,un ≤  which is 

impossible. Hence 
N∈nn

a |)(|  is unbounded. Therefore, 
N∈nn

a )(  is 

unbounded. 

 ii) Observe that n
nnn

≥−≥−+ 12)1(2   .N∈∀n  Therefore the 

sequence is unbounded. 

 

1  3  2  4  5  6  

1  

2  

→n  

N∈

−

























+

n

n

n

1
1

1
1  
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 iii) Since 12 +
k

 is not of the form ,2
m

 we have for all N∈k  

   
.2)12(

12
ka

kk

k −≤−≤+−=
+

 

   

Now, assume if possible, that for all ., l≥∈
n

an N  Then l≥
+12

ka  for all 

.N∈k  This implies for all ,N∈k  l≥− k  that is, .l−≤k  This is 

impossible. Hence 
N∈nn

a )( is unbounded. 
 

E9) Since 
N∈nn

a )(  and 
N∈nn

b )(  are bounded, their exist R∈ML,  such that 

for all ,N∈n  
 

   
La

n
≤||  and .|| Mb

n
≤  

  

 This implies, for all N∈n  
 

   
MLbaba

nnnn
+≤+≤+ ||||||  

  
 and 

   
.|||||| LMbaba

nnnn
≤=  

   

 Hence 
N∈

+
nnn

ba )(  and 
N∈nnn

ba )(  are bounded. 

 

E10) False. We know that 
N∈










n
n

1
 is bounded, and ,0

1
N∈∀≠ n

n
 but 

N∈n
n)(

is not bounded. 
 
E11) True, by definition. 
 

E12) True. Let 
N∈nn

a )(  be a strictly monotone sequence. If 
N∈nn

a )(  is strictly 

increasing then ,
nmnm

aaaanm ≤⇒<⇒<  and hence 
N∈nn

a )(  is 

increasing.  Similarly, if 
N∈nn

a )(  is strictly decreasing then 
N∈nn

a )(  is 

decreasing. 
 
 The converse statement is: every monotone sequence is strictly 

monotone, which is not true. A counter-example is ).,4,3,2,1,1( K  

 

E13) Let 
N∈nn

a )(  be increasing and as well as decreasing. Then  

  

 
nm

aanm ≤⇒<  and 
mn

aa ≤   

     .
nm

aa =⇒  

  

 Hence 
N∈nn

a )(  is constant. 

 

E14) i) Let .
10

1
1

nn
a −=  Then for all 1≥n  we have  

 

   
.

10

1
1

1010

1
1

10

1
1

11 nnnnn
aa =−>

⋅

−=−=
++

 

   

  So, 
N∈nn

a )(  is increasing, and hence monotone. 
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 ii) Let .
1

2
3

23

+

+−+
=

n

nnn
a

n
 By factorising the numerator and the 

denominator, we get  
 

   
1

1
1

1

2

)1()1(

)1()2(
2

2

+

+=

+

+
=

+−+

+−+
=

nn

n

nnn

nnn
a

n
 

   
  Now for all 1≥n  we have 
 

   

.0
)2()1(

1

1

1

2

1
1 <

++

−
=

+

−

+

=−
+

nnnn
aa

nn
 

   

  So, 
N∈nn

a )(  is decreasing, and hence monotone. 

 

 iii) The first three terms of the sequence are .
8

1
,

4

1
,

2

1
−−  This shows 

that the sequence is neither increasing nor decreasing. Hence it is 
not monotone. 

 

 iv) Let .n

n
ca =  Then for all 1≥n  we have 

 

   
.1

1 n

nnn

n
acccca =<⋅==

+

+
 

   

  Thus 
N∈nn

a )(  is decreasing, and hence monotone. 

 v) The first three terms of the sequence are .
2

3
,2,1  This shows that 

the sequence is not monotone. 
 

 vi) Let )(nP  be the statement ,1 nn
ff ≥

+
 for all .1≥n  We shall use 

the Principle of Mathematical Induction to show that )(nP  is true 

for all .1≥n  Note that )1(P  is ,
12

ff ≥  which is true. Let )(kP  be 

true for all .1 nk ≤≤  Consider ).1( +nP  We have 

 

   nnn
fff +=

++ 12  

           ,1−
+≥

nn
ff  by Induction hypothesis 

           1+
=

n
f  

  

  This proves that )1( +nP  is true. Therefore, by the Principle of 

Mathematical Induction, )(nP  is true for all .1≥n  That is, 

nn
ff ≥

+1  for all .1≥n  This means 
Nnn

f
∈

)(  is increasing, and 

hence monotone. 
 

E15) Let 
N∈nn

a )(  be increasing. Then for all .1≥n  we have ,1 nn
aa ≥

+
 which 

implies .1 nn
aa −≤−

+
 Hence 

N∈
−

nn
a )(  is decreasing. 

 

E16) i) One such sequence is 
N∈









−

n
n

1
1 . 
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iii) One such sequence is 
N∈










n
n

1
. 

 

E17) One such sequence is .))1((
N∈

−
n

n
n  

 

E18) False. A counter-example is the sequence 
N∈










+
n

n

n

1
 which is 

increasing, and also has all positive terms, but 
N∈








 +
+

+
n

n

n

n

n 1

1
 is not 

increasing. 
 
E19) No. Because, for example, 2 is a term of the first sequence, where as 2 

never occurs in the second sequence. 
 

E20) Let ),1,1,0,0,1,1,0,0()( K=
∈Nnn

a  and ).,0,0,0()( K=
∈Nkk

b  Then we can 

write for each ,,
knk

abk =∈N  where ).,10,9,6,5,2,1()( K=
∈Nkk

n  Here 

N∈kk
n )(  is increasing sequence. Thus 

N∈kk
b )(  is a subsequence of 

.)(
N∈nn

a  

E21) We are given that .
11

1

11
1

n

n

n

n

n

n

n
a

−
−








 +
=








+=  

 i) Since 1
1

>
+

n

n
 and 0

1
≥

−

n

n
 for all ,n  we have 1

1
1

>






 +

−

n

n

n

n
 for  

  all .n  That is, 1>
n

a  for all .n  Let .
1

1
1

11

kk

k

k

k

k
b 









+

=







+=

−

 Then 

for all .1, <
k

bk  Thus 
N∈kk

b )(  is not a subsequence of .)(
N∈nn

a  

 ii) Let .
1

1 2

2

1
1

2 k

k

k
a

k
b =








+=

−

 We get 2
kn

k
=  such that .

knk
ab =  

Also 1+
<

kk
nn  for all .k  Hence 

N∈kk
b )(  is a subsequence of 

.)(
N∈nn

a  

 iii) Let .
!

1
1 !

!

1
1

k

k

k
a

k
b =








+=

−

 Then we get !kn
k

=  for all N∈k  such 

that .
knk

ab =  Also 1+
<

kk
nn  for all .N∈k  Thus 

N∈kk
b )(  is a 

subsequence of .)(
N∈nn

a  

 

E22) Since 
N∈nn

b )(  is a subsequence of .)(
N∈nn

a  there exists a strictly 

increasing sequence 
N∈kk

n )(  of natural numbers such that 
knk

ab =  for 

all .N∈k  Similarly, we have a strictly increasing sequence 
N∈ll )(m  of 

natural numbers such that 
ll m

bc =  for all .N∈l  Then for all ,N∈l  we 

have .
lll

m
nm

abc ==  It remains to show that 
N∈ll

)(
m

n  is a strictly 

increasing sequence of natural numbers. Clearly, for all NN ∈∈ ll m,  

and hence .N∈
lm

n  Now for all N∈l  we have .
11

+

<⇒<
+ llll mm

nnmm  



 

162

 

Block 2                                                                                                                       Sequences
                                                        

So, 
N∈ll

)(
m

n  is strictly increasing sequence of natural numbers. 

Therefore, 
N∈nn

c )(  is a subsequence of .)(
N∈nn

a  

 
E23) Yes, every subsequence of a decreasing sequence is decreasing. The 

proof is as follows. Let 
N∈nn

a )(  be a decreasing sequence, and 

N∈knk

a )(  a subsequence of .)(
N∈nn

a  Now 

 

  11
+

<⇒+<
kk

nnkk  (
N∈kk

n )(Q  is increasing.) 

            
1+

≥⇒
nk nn

aa  (
N∈kk

n )(Q  is increasing.) 

  

 This proves that 
N∈knk

a )(  is decreasing. 

 

E24) Consider a subsequence 
N∈knk

a )(  of 
N∈nn

a )(  Since 
N∈nn

a )(  is 

bounded, there exist some R∈u,l  such that for all ., uan
n

≤≤∈ lN  

This means for all ., uak
kn

≤≤∈ lN  Consequently, 
N∈knk

a )(  is 

bounded. 
 

E25) i) Let .
4

2
n

a
n

=  Let 0>ε  be given. We have to find an N∈0n  such 

that 0nn >  implies .|0| ε<−
n

a  We know that  

 

   ε<− |0|
n

a  if ε<− 0
4

2
n

 if ε<
2

4

n
 if 

ε

2
>n  

   

  So, if we choose ,
2

0 







=

ε

n  we have 

   
ε

2
0 >⇒> nnn , i.e., 

ε

42
>n .  

   

  Equivalently, .
4

4

1
22

ε
ε

<⇔<

nn
 

  This proves that .0
4

lim
2

=
→∞ nn

 

 

 ii) Let .
)1(2

n
a

n

n

−
=  Take 0>ε  arbitrary. 

   
  We can see that 
 

   ε<− |0|
n

a  if ε<−
−

0
)1(2

n

n

 if ε<

n

2
 if 

ε

2
>n  

   

  Choose .
2

0 





=

ε

n  Then for all 0nn >  we have ε

ε

<⇔>

n
n

22
. 

Thus, ε<−
−

0
)1(2

n

n

, that is, .|0| ε<−
n

a  
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  Therefore, .0
)1(2

lim =
−

∞→ n

n

n

 

  
 iii) We can see that 
 

   ε<=−
−

−

nn

n
1

1
)1(

1  if 
ε

1
>n  

  So, we choose .
1

0 





=

ε

n  Then for all 0nn >  we have 

   ε

ε

<⇔>

n
n

11
. That is, .1

)1(
1 ε<−

−
−

n

n

 

  Therefore, .1
)1(

1lim =






 −
−

∞→ n

n

n

 

 iv) Hint: Use the fact that for all ,N∈n  

.2|cos||sin||cossin| ≤+≤+ nnnn  

 

 v) Here .ca
n

=  Take 0>ε  arbitrary. Then ε<− || ca
n

 is equivalent 

to .0 ε<  So ε<− || ca
n

 holds always regardless of what n  is. 

Thus, any N∈0n  would work. 

 
 vi) We can observe that 
 

  
( ) ( )

11

2

11

1111
11

−++

=

−++

−++−−+
=−−+

nnnn

nnnn
nn  

    This implies for all 2≥n  
    

   
1

1

11

2
11

−

<

−++

=−−+

nnn

nn  

   

  Now, let .11 −−+= nna
n

 Take 0>ε  arbitrary. 

  We have 
 

   ε<− |0|
n

a  if ε<

−1

1

n
 if .1

1
2

+>

ε

n  

   
  So, we choose 

   2≥n  and 21
1

2
≥⇒+> nn

ε

 and ε<

−1

1

n
 

          ε<−⇒ |0|
n

a  

   

  Hence, .011lim =−−+
∞→

nn
n

 

 

E26) i) Since 
N∈nn

a )(  is bounded, hence there exists some 0>K  such 

that Ka
n

<||  for all .1≥n  We have .La
n

→  So, let 0>ε  be 

arbitrary. Then there exists some N∈0n  such that 0nn >  implies 



 

164

 

Block 2                                                                                                                       Sequences
                                                        

  .
||

||
LK

La
n

+

<−
ε

 

  

  Now we observe that for all 0nn >  

   

         |)()(||| 22
LaLaLa

nnn
−+=−  

             |||| LaLa
nn

−+=  

             |||)||(| LaLa
nn

−+≤  

             ε
ε

=

+

+<

||
|)|(

LK
LK  

 This shows that .22
La

n
→  

 
ii) Try yourself.  

 

E27) One such sequence is 
N∈nn

a )( , where ,...3,2,1,)1( =−= na
n

n
 

 

E28) No. For example, the sequence 

N∈








 −

n

n

n

)1(
 is not monotone, and is 

convergent to .0  

 
E29) The converse is “every bounded sequence is convergent”. It is false, 

because, for example, the sequence 
N∈

−
n

n ))1((  is bounded, but not 

convergent. 
 

E30) One such sequence is .
1

N∈










+
n

n

n
 We have 

  .
1

lim1
1

lim
n

n

n

n

nn

+
==

+ ∞→∞→

 

 

E31) Assume, if possible, that 
N∈n

n)(  has the limit .L  Take .1=ε  Then 

there must exist some N∈0n  such that for all 0nn ≥  

 

  LnLLn +<<+−⇔<− 111  

  

 Then the underlined inequality above gives as 
2

)1( Ln +<  for all 

,0nn ≥  which is impossible. Thus ( )
N∈n

n  has no limit. 

 

E32) i) Here .
)1(

n
a

n

n

−
=  Let .mn >  Then 

 

   
mn

aa

mn

mn

)1()1(
||

−
−

−
=−  

       
mn

11
+≤  

       
mmm

211
=+<  



 

165  

Unit 5                                                        Sequence and Convergence 

  Let 0>ε  be arbitrary. Then 

   ε<− ||
mn

aa  if ε<

m

2
 if .

2

ε

>m  

   

  So, we choose .
2

0 





=

ε

n  Then 

   .||
2

0 εε <−⇒<⇒≥>
mn

aa
m

nmn  

   

  Therefore, 
N∈nn

a )(  is Cauchy. 

 

 ii) Let .
12

2
+−

=

nn

n
a

n
 Let .mn >  Then 

   
1212

||
22

+−

−

+−

=−

mm

m

nn

n
aa

mn
 

       
1212

22
+−

+

+−

≤

mm

m

nn

n
 

       
mm

m

nn

n

−

+

−

<
22

22
 

       
12

1

12

1

−

+

−

=

mn
 

   

  Now 
12

1

12

1
1212

−

<

−

⇒−>−⇒>

mn
mnmn  

   
  Hence 

   
12

2

12

1

12

1
||

−

=

−

+

−

<−

mmm
aa

mn
 

   
  Now let 0>ε  be arbitrary. Then 

  

   ε<− ||
mn

aa  if ε<

−12

2

m
 if .

2
1

2

1








+>

ε

m  

  So, we choose .
2

10 





+=

ε

n  Then 

   εε

ε

<−⇒<

−

⇒







+>⇒≥> ||

12

22
1

2

1
0 mn

aa
m

mnmn  

   

  Therefore, 
N∈nn

a )(  is Cauchy. 

 

 iii) Let ,n

n
ca =  where .10 << c  For ,mn >  we can see that 

 

   mmnmmnmmn

mn
cccccccaa <−=−=−=−

−− )1(|)1(|||||  

   
  Let 0>ε  be arbitrary. Then we have 
 

   ε<− ||
mn

aa  iff ε<
m

c  if 

m

c








<

11

ε

 if 







>

ε

1
log 1

c

m  
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  So, let us choose .
1

log 10 















=

ε
c

n  Then 

 

   .||log10 εε <−⇒>⇒≥>
mn

c

aamnmn  

   

  Hence, 
N∈nn

a )(  is Cauchy. 

 

iv) For any ,, N∈nm  we can see that 

 

   















∉−

∉∈

∈∉

∈

=−

prime

primeprime

primeprime

prime

mn

nm ,
nn

nm
n

nm
m

nm

aa

N

NN

NN

N

,
11

,,
1

,,
1

,,0

||

 if

 if        

 if       

if 

 

   
  Thus for ,mn >  we have 
 

   .
2

||
m

aa
mn

<−  

  So, for a given ,0>ε  we find 





=

ε

2
0n  such that  

   .||0 ε<−⇒>>
mn

aanmn  

   

  Hence, 
N∈nn

a )(  is Cauchy. 

 

E33) i) If the sequence 
n

n ))4((−  is Cauchy, then for each 0>ε  there 

exists some N∈0n  such that 

 

   .|)4()4(|
0

ε<−−−⇒≥>
mn

nmn  

   

  Now fix ,1=ε  and .0nm =  Then we have 

 

   1|)4()4(| 0

0
<−−−⇒>

nn
nn  

             00 )4(1)4()4(1
nnn

−+<−<−+−⇒  

   

  This implies for each even ,0nn >  

 

   ,)4(14)4(1)4( 00 nnnn
−+<⇒−+<−  

   
  which is impossible. Hence the given sequence is not Cauchy. 
 

 ii) If 
N∈nn

a )(  is Cauchy, then for each ,0>ε  there exists some 

N∈0n  such that 

 

   .||0 ε<−⇒≥>
mn

aanmn  
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  Now fix 
2

1
=ε  and .0nm =  Then 

   
2

1
||

00 <−⇒>
nn

aann  

             
2

11

2

1

1

1

00

<++

+

+

+

⇒
nnn

L  

   

  Take .2 0nn =  Then we have 

 

   

444 3444 21

LL

0

00000 2

1

2

1

2

11

2

1

1

1

n

nnnnnn
+++>++

+

+

+

 

        
2

1

2

1
0

0

=⋅= n
n

 

 This is a contradiction. Hence 
N∈nn

a )(  is not Cauchy. 

 
E34) We know that every Cauchy sequence is convergent, and every 

convergent sequence is bounded. Therefore, every Cauchy sequence 
is bounded. 

 

E35) i) Let .
)1(2

)1(4
n

n

n

n

n
a

−+

−+
=  Then 

   
34

58
12

−

−
=

−

n

n
a n  and 

14

18
2

+

+
=

n

n
a

n
 

   
  Let 0>ε  be arbitrary. Then  

 

   ε<

−

=−

−

−
=−

−

34

1
2

34

58
|2| 12

nn

n
a

n
 

  if .
1

3
4

1








+>

ε

n  

   

  So, let .
1

3
4

1
0 
















+=

ε

n  Then for all 0nn >  

   ,|2| 12 ε<−
−n

a  which implies .2lim 12 =
−

∞→
n

n

a  

   
  Now 

   ε<

+

=−

+

+
=−

14

1
2

14

18
|2| 2

nn

n
a

n
 if .1

1

4

1








−>

ε

n   

   

  So, let .1
1

4

1
0 
















−=

ε

n  Then for all 0nn >  

   ,|2| 2 ε<−
n

a  which implies .2lim 2 =
∞→

n
n

a  

   

  Therefore, .2lim =
∞→

n
n

a  Hence, the sequence is convergent. 

 

 ii) Let .
2

)12(
sin 







 +
=

πn
a

n
 Then 

terms 



 

168

 

Block 2                                                                                                                       Sequences
                                                        

   1
2

2sin
2

14
sin12 −=








−=







 −
=

−

π
ππ n

n
a

n
 

   
  and 

   1
2

2sin
2

14
sin2 =








+=







 +
=

π
ππ n

n
a

n
 

   

  So we have 112 −→
−n

a  and .12 →
n

a  

   

  Hence 
N∈nn

a )(  is not convergent. 

 

E36) As ,1
1

, →

+

∞→

n

n
n  and so it seems that .cos

1
cos π

π
→








+n

n
 To 

prove it, let 0>ε  be given. Then we can write 

 

  


















−

+


















+

+
−=−

+ 2

1sin
2

1sin2cos
1

cos

π
π

π
π

π
π n

n

n

n

n

n
 

               








+

−










+

+
=

)1(2
sin

)1(2

12
sin2

nn

n π
π

 

     









+

−










+

−=

)1(2
sin

)1(2
sin2

nn

ππ
π

 

     









+

−










+

=

)1(2
sin

)1(2
sin2

nn

ππ
 

               

2

)1(2
sin2 









+

≤

n

π
 

               

2

)1(2
2 









+

⋅≤

n

π
   ( |||sin| xx ≤Q  for small x .) 

     
2

2

2n

π
≤  if 

ε

π
>n . 

  

 So, we choose .0 







=

ε

π
n  Then for all 0nn >  

  .cos
1

cos επ
π

<−

+n

n
 Hence .cos

1
cos π

π
→









+n

n
 

  

 Therefore, no two subsequences of 

N∈


















+
n

n

n

1
cos

π
have different 

limits. 
 

E37) Let !.na
n

=  Take .N∈M  Then we know that  .)!1( MM >+  So, for 

each ,N∈M  we have found an 10 += Mn  such that .
0

Ma
n

>  Hence 

N∈nn
a )(  diverges to .∞  
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E38) Let .
2

2
n

n

n

n
na

−
=−=

−

 If −∞→
n

a  then for ,1=M  we must have an 

N∈0n  such that 

  M
n

n
−<

−

02

0  , i.e., ,2 0

0

n
n >  

  

 which is not true. Hence 
N∈nn

a )(  does not converge to .∞−  

 

E39) Since 
N∈nn

a )(  and 
N∈nn

b )(  are convergent, we have 

 

  )(lim)(lim)(lim
n

n
n

n
nn

n

baba βαβα
∞→∞→∞→

+=+  

              
n

nn
n

nn

ba
∞→∞→∞→∞→

⋅+⋅= limlimlimlim βα  

              
n

n
n

n

ba
∞→∞→

+= limlim βα  

 

E40) We can see that the sequences 
N∈n

n)(  and 
N∈

−
n

n)(  are both divergent, 

but their sum 
NN ∈∈

=−+
nn

nn )0()(  is convergent. 

 

E41) We have 0→
n

a  and .Lb
n

→  Let 0>ε  be arbitrary. If ,0=L  then 

there exist N∈10 ,nn  such that for all ,||,0 ε<>
n

ann  and for all 

.||,1 ε<>
n

bnn  Therefore, for all },{max 10 nnn >  

   .|||||| εεε =⋅<=
nnnn

baba  

  

  Hence, .0→
nn

ba  

  

  On the other hand, when ,0≠L  we write 

 

   |||| LaLababa
nnnnnn

+−=  

          |||| LaLaba
nnnn

+−≤  

          |||||||| LaLba
nnn

+−≤               ... (3) 

  
  Now we have to make the right hand side of the Eq. (3) smaller than 

,ε  for sufficiently large values of .n  We do this by making each of the 

terms |||| Lba
nn

−  and |||| La
n

 smaller than .2ε  The quantity ||
n

a  

occurs  in each of these terms, we know that 0→
n

a  implies .0|| →
n

a  

(See E26(ii)). Therefore, for the first occurrence of |,|
n

a  we choose 

N∈0n  such that for all .||,0 ε<>
n

ann  

 

 For the second occurrence of |,|
n

a  we choose N∈1n  such that for all 

.|)|2(||,1 Lann
n

ε<>  Since ,Lb
n

→  there exists some N∈2n  such 

that for all .
2

||,2

ε
<−> Lbnn

n
 Now choose }.,,{max 2103 nnnn =  

Then for all 3nn >  we have 

 

   |||||||||| LaLbaba
nnnnn

+−≤  
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          .||
||22

ε
εε

ε =⋅+⋅< L
L

 

  

  Therefore, .0→
nn

ba  This completes the proof. 

 
E42) We are given that .1 nk ≤≤  Let 0>ε  be arbitrary. Consider 
 

   ε<≤=−

kn

k

n

k 1
0

22
 if 

ε

1
>k . 

 So, choose .
1

0 





=

ε

n  Then for all 0nk >  we have 

   .0
2

ε<−

n

k
 

 Hence, .0lim
2

=
∞→ n

k

k

 

 

E43) We know that .0lim 2 ≠=
∞→

Lb
n

n

 Hence 

   ,
11

lim
2Lb

n
n

=
∞→

 provided .0 N∈∀≠ nb
n

 

 Now  

   .
11

limlimlim
2

1

2

1
L

L

L
L

b
a

b

a

n
n

n
n

n

n

n

=⋅=⋅=
∞→∞→∞→

 

 
E44) We can write  

   
1

1
1

1
22

2

+

+=

+

++

n

n

n

nn
 

  Now let 0>ε  be given. Then 

 

   ε<=<

+

=−

+ nn

n

n

n

n

n 1

1
0

1 222
 if 

ε

1
>n  

  

 So by choosing ,
1

0 





=

ε

n  we find that for all .0
1

,
20 ε<−

+

>

n

n
nn   

 Therefore, .0
1

lim
2

=

+∞→ n

n

n

 

  
  Hence, 
 

  101
1

lim1lim
1

1
lim

22

2

=+=

+

+=

+

++

∞→∞→∞→ n

n

n

nn

nnn
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6.1 INTRODUCTION 
 
In Unit 5 you studied different kinds of sequences and the criteria for the 
convergence of a sequence. You also studied that Cauchy sequences are 
convergent and convergent sequences are Cauchy. You have also seen some 
algebraic tools to compute the limit of convergent sequences. But as you will 
see, those tools are still inadequate to compute the limit, or prove divergence, 
of a wide variety of sequences. 
   
Beginning with Section 6.2, you will study how the limits of sequences behave 

regarding order (on R ). Specifically, you will see how this behaviour gives us 
the squeeze theorem as a powerful tool to compute the limit of a sequence 
lying between two sequences converging to the same limit. In Section 6.3, we 
shall discuss the Monotone Convergence Theorem, which talks about the 
convergence of monotone sequences.  
 
 In Section 6.4, you will see Cauchy’s First Theorem on Limits and its 
applications. There is also Cauchy’s Second Theorem on Limits, which you 
will study in Section 6.5. 
 

Objectives 
 

After studying this unit, you should be able to: 
  

• explain how limits of sequences behave with respect to order on ;R�  

 



 

172

 

Block 2                                                                                                                       Sequences
                                                        

• apply the Squeeze Theorem to compute the limits of sequences; 

• explain, through monotone convergence theorem, under what   

   conditions monotone sequences converge;  

• state, prove and apply Cauchy’s first and second theorem on limits; 

• compute the limits of sequences whose nth terms involve a power of 1/n. 

 

6.2  ORDER AND LIMITS 

 

In Unit 3, the order properties on R  were introduced. Here, we shall study the 

relationship between the order (on R ) and the limit of convergent sequences 

in R . Once you understand this relationship it will be convenient for you to 
apply the Squeeze Theorem, for computation of limits, whenever applicable.  
 

Let us consider the sequence .
2

1
1

N∈









−

n

n
 You can see that all its terms are 

positive because n
n

∀< ,1
2

1
. You can also show that its limit is 1, which also is 

positive. Now consider the sequence .
1

N∈










n
n

 This sequence also has all 

positive terms. What is its limit? Is it positive? In fact, its limit is nonnegative. 
More generally, must the limit, if it exists, of a sequence with nonnegative 
terms be nonnegative? The answer lies in the following theorem. 
 

Theorem 1: If 
N∈nn

a )( is a convergent sequence with 0≥
n

a , for all N∈n , 

then .0lim ≥
∞→

n
n

a  

 

Proof:  We shall prove this by contradiction. Let .lim
n

n

aL
∞→

=  If possible, 

take 0<L . Then 0>− L . Let .L−=ε  Then there must be some N∈0n  such 

that for all 0nn ≥  

 

 
.02 <<⇒+<<−⇒<−

nnn
aLLaLLa εεε

 
 

This means the terms L,,, 21 000 ++ nnn
aaa

 
are all negative. Thus, we have 

arrived at a contradiction. Hence .0≥L  

  

For example, the sequence 
N∈










+
n

n 1

1
3

 

is convergent and has all terms 

positive. Hence its limit is nonnegative. 
 
There are many implications of Theorem 1. First, let us look at the following 
corollary.  
 

Corollary 1: if 
N∈nn

a )( is a convergent sequence with N∈∀≤ na
n

,0 then

.0lim ≤
∞→

n
n

a  

Proof: Since N∈∀≤ na
n

0 , we have N∈∀≥− na
n

0 . Also 
N∈

−
nn

a )(  is 

convergent as 
N∈nn

a )(  is convergent. Now applying Theorem 1 on the 
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sequence ,)(
N∈

−
nn

a  we get  

 

 .0lim0lim0)(lim ≤⇒≥−⇒≥−
∞→∞→∞→

n
n

n
n

n
n

aaa  

 
Let us consider an example. 
 

Example 1:  Let 
N∈nn

a )(  and 
N∈nn

b )(  be convergent sequences such that 

N∈∀≤ nba
nn

. Then show that 

 

n
n

n
n

ba
∞→∞→

≤ limlim . 

 

Solution: Define a sequence 
N∈nn

c )(
 
by N∈∀−= nabc

nnn
, . We have 

N∈nn
a )(

 
and 

N∈nn
b )(

 
are convergent, so is 

N∈nn
c )(  (See E39 of Unit 5.)  Also,  

 

00 ≥⇒≥−⇒≤
nnnnn

cabba . 

 
Therefore, by Theorem ,1  
  

0)(lim0lim ≥−⇒≥
∞→∞→

nn
n

n
n

abc

 
     0limlim ≥−⇒

∞→∞→
n

n
n

n

ab  (See E39 of Unit 5.) 

     .limlim
n

n
n

n

ab
∞→∞→

≥⇒  

 
This completes the proof. 

*** 

Now consider the sequences 
NN ∈∈ nnnn

ba )(,)(
 
and 

N∈nn
c )(

 
where 

 

n
c

n
b

n
a

nnn

1
1,

1
1,

1

1
1

2
+=−=

+

+=  

 

You know that ,
1

11
2

+

<−

nn
 so that 

nn
ab < . Also, you can check that 

.
1

1

1
2

nn
<

+

 Hence .nn
ca < . Thus, we have N∈∀<< ncab

nnn
. Now verify  

that both the sequences 
N∈nn

b )(  and 
N∈nn

c )(  converge to 1. Is this information 

sufficient to conclude about the convergence of ( )
N∈nn

a ? Intuitively, you can 

see that as n tends to ∞  both 
n

b  and 
n

c  approach to 1 and 
n

a lies between 

n
b  and 

n
c  for all .N∈n  So it seems natural to expect that 1→

n
a as n  tends 

to ∞ , also.  In fact, we have 

 

n
n

n
nn

n
n

cb
n

a
∞→∞→∞→∞→

===








+

+= limlim1
1

1
1limlim

2  

 

What is essentially happening here is that the terms 
n

b  and 
n

c  ”squeeze” (or 

force) 
n

a to approach 1, the common limit of ( )
N∈nn

b  and ( )
N∈nn

c . In general, 

we have the following theorem. 
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Theorem 2 (Squeeze Theorem): Let ( ) ( )
NN ∈∈ nnnn

ba , and ( )
N∈nn

c  be three 

sequences such that N∈∀≤≤ ncab
nnn
, . If ( )

N∈nn
b  and ( )

N∈nn
c converge to 

the same limit L , then ( )
N∈nn

a also converges to L .  

 

We say that a sequence 
N∈nn

a )(  lies between two sequences 
N∈nn

b )(  and 

N∈nn
c )( if for all N∈n either 

nnn
cab ≤≤ or 

nnn
bac ≤≤ . In this terminology 

Theorem 2 can be reworded as follows:  
 

“If 
N∈nn

b )( and 
N∈nn

c )( are sequences converging to the same limit L , and 

N∈nn
a )( is any sequence lying between 

N∈nn
b )(  and 

N∈nn
c )( , then 

N∈nn
a )( must 

converge to L .”  
 

Proof: Let ( )
N∈nn

b and ( )
N∈nn

c both converge to L . Then, for given 0>ε we 

have N∈10 , nn  such that 
 

0, nnLbL
n

>∀+<<− εε
 

 

And 
 

1, nnLcL
n

>∀+<<− εε  

 

Now let }.,max{ 102 nnn =  Then for all 
2

nn >  
 

εε +<≤≤<− LcabL
nnn

. 
 

This implies, 
  

2, nnLaL
n

>∀+<<− εε  

 

Hence .lim La
n

n

=
∞→

 

 

Let us think about whether its converse is true or not. That is, whether for any 

sequences ,)(
N∈nn

a
N∈nn

b )( and N∈nn
c )( with ,limlimlim

n
n

n
n

n
n

cba
∞→∞→∞→

==

 
any one 

of them lies between the other two? Let us consider, for example, the 

sequences 
NN ∈∈

















−

nn
nn

22

1
,

1

 
and .

)1(

N∈








 −

n

n

n
 We can see that ,

11
22

nn
<−

but 
n

n)1(−
does not lie between 2

1

n
−

 
and 2

1

n
. 

 

The Squeeze Theorem is a powerful tool as it empowers you to compute the 
limit of a sequence by comparing it with two “suitably chosen” sequences. But, 
to use it effectively, some knowledge of inequalities is required.  Let us 
consider some examples of its applications, now. 
 

Example 2: Using the Squeeze Theorem, show that .0
sin

lim =
∞→ n

n

n
 

Solution: Let 
n

nsin
a

n
= . Then we know that 1nsin 1 ≤≤− , for all N∈n .  

 
This implies  
 

nn

n

n

1sin 1
≤≤− .  

Theorem 2 is 
sometimes also called 

Sandwich Theorem. 
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So we can take 
n

b
n

1
−= , and 

n
c

n

1
= . Now .0limlim ==

∞→∞→
n

n
n

n

cb  Since 

,
nnn

cab ≤≤  by the Squeeze Theorem .0
sin

limlim ==
∞→∞→ n

n
a

n
n

n
 

 

*** 

Example 3:  Let ( )
N∈nn

a be the sequence as defined below: 

( )
∑

=

∈∀

+

=

n

k

n
n

kn

a

1
2

,
1

N  

 

Find 
n

n

a
∞→

lim , if it exists. 

 
Solution: Before we use the Squeeze Theorem, we need to find two 

sequences 
N∈nn

b )(  and 
N∈nn

c )(  so that 
nnn

cab ≤≤  holds for all .1≥n  To get 

such sequences, let us consider the quantity 
2)(

1

kn +

 for .1 nk ≤≤  We know 

that for all 1≥k  

22

22 1

)(

1
)(

nkn
nknnkn <

+

⇒>+⇒>+  

 

Also, for all nk ≤≤1  

 
22

22

)(

1

)2(

1
)()2(

knn
knnknnn

+

≤⇒+≥⇒+≥+  

Thus for all nk ,,2,1 K=  we have 

 

( ) ( )
.

11

2

1
222

nknn
<

+

≤

 
 
This implies 
 

( ) ( )









=<<⇒

<<⇒<

+

≤

∑

∑∑∑ ∑ ∑

=

=== = =

n
n

a
n

n
a

nnknn

n

k

n

n

k

n

n

k

n

k

n

k

n

k

1

1
2

1
2

1 1 1
222

1,
1

4

1

1
1

1
4

111

2

1

Q

 

 

Take 
n

b
n

4

1
=  and .

1

n
c

n
=  Then .lim0lim

n
n

n
n

cb
∞→∞→

== Hence by the Squeeze 

Theorem, .0lim =
∞→

n
n

a  

*** 

Example 4: Let 
N∈nn

a )(
 
be a sequence of nonnegative terms. If l→

n
a , then 

show that l→
n

a .  

 

Solution:  Since N∈∀≥ na
n

,0  we have N∈∀≥ na
n

,0 . Now  

)(0 l
l

l
l +

+

−

=−≤
n

n

n

n
a

a

a

a  



 

176

 

Block 2                                                                                                                       Sequences
                                                        

l

l

+

−

=

n

n

a

a
 

)(
1

llQl
l

≥+−≤
nn

aa  

Since l→
n

a , we have 0)( →− l
n

a . This implies 0
1

→− l
l

n
a . So, let 

0=
n

b  and .||
1

l
l

−=
nn

ac  Then 
nnn

cab ≤−≤ || l  for all .1≥n  Hence 

by the Squeeze Theorem, 0→− l
n

a , which implies l→
n

a . 

 
*** 

Example 5:  Find ,
2cossin

lim
2

n

nn

n ∞→

if it exists.
 

Solution:  Let .
2cossin

2
n

nn
a

n
=

 
Then,  

 

( )12ncos and1sin
12cossin

0
22

≤≤≤=≤ n
nn

nn
a

n
Q   

 

Take 0=
n

b and .
1

2
n

c
n

= Then .lim0lim
n

n
n

n

cb
∞→∞→

==  

 
Hence, by the squeeze Theorem, 
 

.0lim0lim =⇒=
∞→∞→

n
n

n
n

aa
 

 
*** 

Example 6: Show that .12lim

1

=
∞→

n

n

 

Solution: We know that ,12 >  so 12

1

>
n  for all .N∈n  This means, we can 

write 
n

n a+= 12

1

 for some sequence 
N∈nn

a )( , where 0>
n

a  for all .N∈n  

Then ,1)1(2
n

n

n
ana +≥+=  which implies ,1

n
an≥  i.e., .

1

n
a

n
≤

 
Thus 

n
a

n

1
0 ≤<  for all .N∈n  We know that .0

1
→

n
 So, applying the Squeeze 

Theorem, we get .0lim =
∞→

n
n

a  Therefore, .1lim1lim2lim

1

=+=
∞→∞→∞→

n
nn

n

n

a  

 
*** 

You should do the following exercises now. 
 

 

E1)  Let 
N∈nn

a )( be a convergent sequence with βα ≤≤
n

a , where R∈βα , ,     

        for all N∈n . Then show that .lim β≤≤α
∞→

n
n

a  

E2)  Let 
N∈nn

a )(  be a sequence such that N∈∀< n
n

a
n

1
. Must 

N∈nn
a )(  be      
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           convergent? Why, or why not? 
 
E3)  Use the Squeeze Theorem to compute the limits of the following   
        sequences: 
 

 i)   

N∈






















+

n

n

2
1

2  ii)  

N∈










−

+

n
n

n

13

13
2

2

 

 iii) 

N∈










+
n

n

n )!2(

2
 iv) 

 N∈










n

n

n 2
sin

1 π

 

 
E4)   Find the following limits. 
 

 i)   
nn

n

n
++

∞→ 1
lim  ii) n

n

n

1

lim
∞→

 

 iii) 






 −

∏

−

=

∞→

1

0

lim
n

i
n n

in
 iv)

  

2

1

)!(lim n

n

n
∞→  

   

 
Sometimes it is not easy to find convergent sequences squeezing a given 
sequence. So, we need to look for other properties of a sequence to decide 
whether it converges or not. In the next section we shall discuss one such 
property.  
 

6.3  MONOTONE CONVERGENCE THEOREM 

 
From Unit 5, you know that monotone sequences either increase consistently 
or decrease consistently. This property makes their convergence or 
divergence predictable. In this section you will study an important theorem 
about the sequences that are monotone. Such sequences play a crucial role in 

real analysis. For example, consider the sequence .
1

N∈










+
n

n

n
 

 
You can easily prove that it is increasing and bounded above. This means its 
terms increase successively. But since it is bounded above, they will never 
cross the least upper bound. What does this imply? Does the sequence 
converge to its least upper bound, namely 1? This is indeed the case, as the 
following theorem shows. 
 
Theorem 3(Monotone Convergence Theorem): Every monotone bounded 
sequence is convergent. 
 

Proof: Let ( )
N∈nn

a  be a monotone bounded sequence.  There are two cases. 

 

Case 1: Assume that ( )
N∈nn

a is increasing . Since ( )
N∈nn

a is bounded, it follows 

that ( )
N∈nn

a is bounded above. Let  

 

{ }N∈= naL
n

sup . 

 

Then by Theorem 10  of Unit 3 , for each 0>ε there exists a natural number 

0n such that 
0n

aL <−ε . But ( )
N∈nn

a is increasing, hence  
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0 ,
0

nnaa
nn

≥∀≤ . 

Thus, for all 0nn ≥  

.0 since, ≥−<−⇒

<−⇒<−

nn

nn

aLaL

aLaL

ε

εε

 

 

This proves La
n

n

=
∞→

lim . Hence, ( )
N∈nn

a is convergent.  

 

Case 2: Assume that ( )
N∈nn

a
 
is decreasing. The proof of this case requires 

similar reasoning, and we leave it for you to work out (see E7). 
 
Let us consider an example. 

Example 7: Show that the sequence 

N∈






















+

n

n

n

1
1 is convergent. What is its 

limit? 

Solution: Let .
1

1

n

n

n
a 








+=  First let us show that 

N∈nn
a )(  is increasing. Using 

the Binomial Theorem we can write 
 

 
r

n

r

n

nr

n
a

1

0

∑
=









=  and 

r

n

r

n

nr

n
a

)1(

111

0

1
+








 +

=∑
+

=

+
 

 

Now we write for nr ≤≤0  
  

 
rr

n
rnnnn

rnr

n 1
))1(()2()1(

!

11
⋅−−−−=








K  

            
n

rn

n

n

n

n

n

n

r

))1((21

!

1 −−−
⋅

−
⋅= L              ... (1) 

 

Similarly for ,0 nr ≤≤  we write 

 

 
1

))1(1(

1

1

11

1

!

1

)1(

11

+

−−+

+

−
⋅

+

⋅

+

+
=

+







 +

n

rn

n

n

n

n

n

n

rnr

n

r
K                       ... (2) 

 

Comparing the right hand sides of Eqs. (1) and )2(  we have 

 

1

))1(1()1(
,,

1

1
,

1

1
,

!

1

!

1

+

−−+
≤

−−

+

≤
−

+

+
==

n

rn

n

rn

n

n

n

n

n

n

n

n

rr
K  

 

Thus, for all nr ≤≤0  
  

 
rr

nr

n

nr

n

)1(

111

+







 +

≤







 

 
Hence 
  

 
1

00 )1(

1

1

1

)1(

111
+

==
+










+

+

+

+







 +

≤







∑∑ nr

n

r

r

n

r nn

n

nr

n

nr

n
 



 

179  

 

Unit 6                                                               Limits of Sequences  

Thus for all N∈n  we have proved that .1+
≤

nn
aa  Therefore, 

N∈nn
a )(  is  

increasing. To prove that 
N∈nn

a )(  is bounded observe that 0>
n

a  for all N∈n  

and for nr ≤≤0  

   

 
n

rn

n

n

n

n

n

n

rnr

n

r

))1((21

!

11 −−−
⋅

−
⋅=








L  

           
12

1

!

1
11.1.1

!

1
−

≤=≤
r

rr
KK  

Then 
 

 3
2

1
1

1
1

1

1
1

10

<+≤







+=








= ∑∑∑

=

−

==

n

r

r

n

r

rr

n

r

n

nr

n

nr

n
a  (Why?) 

 

Thus 
N∈nn

a )(  is bounded above. Now the Monotone Convergence Theorem 

implies that 
N∈nn

a )(  is convergent. 

 
The limit of this sequence is known as the Euler number e , that is, 

  
n

n n
e 








+=

∞→

1
1lim . 

 
Unfortunately, this sequence converges very slowly. That is, you need to take 
sufficiently large values of n to get a desired approximation to e . For instance, 

when you take 1000=n , you get the number 
 

    6308812194735892457387169239322.2  

 
of which only the first three digits match in the exact value of e . Note that the 

decimal expansion of e goes as 
 

...59045235367182818284.2=e  

*** 
It can be proved that e is an irrational number, however we shall not prove it 

here. 
 
Let us consider some more examples, where Monotone Convergence 
Theorem can be applied. 
 

 Example 8: Show that the sequence 
N∈nn

a )( , where  

 

 
,

1

2

1

1

1

nnnn
a

n

+

++

+

+

+

= K  

 
is monotone and bounded. Hence conclude that it is convergent. 
 
Solution:  Let us first show that the sequence is monotone. So, consider  
 

nnnnnn
aa

nn

++

+

−++

++

++

+

++

=−
+

)1(

1

)1()1(

1

2)1(

1

1)1(

1
1 K  

 

Leonhard Euler 

(1707-1783) 
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)1()1(

1

+++

+

nn
 

   








+

++

+

+

+

−

nnnn

1

2

1

1

1
K  

   
1

1

)1()1(

1

)1(

1

+

−

+++

+

++

=

nnnnn
 

   .
)12)(1(2

1
N�∈∀

++

= n
nn

 

 

This implies ( )
N∈nn

a
 
is increasing. Now note that ,0

n
a< and  

  

 

1
111

terms

=+++<

44 344 21
K

n

n

nnn
a  

  

Consequently, 
N∈nn

a )(
 
is bounded, and hence convergent. 

 

*** 

Example 9: Let ( )
N∈nn

a
 
be a sequence, defined by ,21 =a  and 

 









+=

+

n

nn

a
aa

2

2

1
1

 for all .1≥n  

 

Show that ( )
N∈nn

a
 
is convergent. Also find the limit. 

 

Solution: Let us compute the first few terms of this sequence. These are 
 

414216.1
408

577

,416667.1
12

17

,5.1
2

3

,2

4

3

2

1

≈=

≈=

==

=

a

a

a

a

 

 

This shows that the first 4 terms are decreasing. Soon you shall see that this     
behaviour continues for all the terms. Using the Principle of Mathematical 

Induction you can see that all the terms   are positive. That is, 0  is a lower 
bound of the sequence. In fact, we can get a tighter lower bound, as shown 
below. 

.20
2

4

1

4
4

4

1

24
4

4

1
2

2

1

1

2

1

2

1

2

1

2

1

2

≥∀>







−=









−+=

−







++=−

−

−

−

−

−

−

n
a

a

a
a

a
aa

n

n

n

n

n

nn

 

 
This implies  
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( ) ( ) 022 >+−
nn

aa . 

 

Since you already have seen that ,0>
n

a
 
we have 02 >+

n
a . This implies 

 ,02 >−
n

a i.e., 2>
n

a . 
 

Thus the sequence is bounded below. Now we prove that it is decreasing. 
Note that 

( )20
2

22

2

12

2

1
2

1
>>

−
=








−=








+−=−

+ n

n

n

n

n

n

nnnn
a

a

a

a
a

a
aaaa Q . 

 

This implies 11 ≥∀>
+

naa
nn

. 

 
Thus the sequence is decreasing as well. Hence, by the Monotone 

Convergence Theorem, it is convergent. Now if La
n

n

=
∞→

lim then La
n

n

=
+

∞→
1lim .  

 
Hence we have  
 

2
2

2

1
=⇒








+= L

L
LL . 

*** 

Now you should try the following exercises. 
 

 
E5)   Evaluate the following limits 
 

         i) 

100
1

1lim

+

∞→









+

n

n n
   ii)  

2

lim n

n

e
−

∞→

 

          

 iii)   

n

n n

100
1

1lim 







+

∞→

           iv)  

n

n n

n









+∞→ 1
lim  

 

E6)   Check, for convergence, the sequence ( ) ,
N∈nn

a
 
defined by 

  

1and11
11

=≥∀+=
+

anaa
nn

.  

 

E7)   Let 
N∈nn

a )(
 
be a decreasing sequence that is bounded below. Show that       

          }{inflim N� ∈=
∞→

naa
nn

n

. 

 

E8)   Check whether or not the sequence ,)(
N∈nn

a
 
defined by  

2 and1,
2

1
2 11 =≥∀

+

−=
+

an
a

a

n

n
 

          is convergent. 
 

E9)   Let 
N∈nn

a )(
 
be a sequence of positive terms that is increasing, but not 

bounded above. Show that 
N∈nn

a )(  diverges to ∞ .  

 
E10)  Use E9 to show that the following sequences diverge to ∞ . 
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i)  
N∈n

n )!(        ii)  

N∈










+

++

n
n

nn

1

1
2

 

 

E11) Let 
N∈nn

a )(  be a bounded sequence, and 
N∈knk

a )(  a decreasing 

subsequence of 
N∈nn

a )( . Must 
N∈knk

a )(
 
converge? Justify. 

 

E12) Let 
N∈nn

a )( be a sequence which is bounded but not monotone. For 

some ,1≥k  let 
N∈+ nkn

a )(  be a monotone subsequence of 
N∈nn

a )( . What 

can you say about the convergence of 
N∈nn

a )( ? Justify. 

 

 
In the next section we shall look at how to find the limit of sequences whose 
terms represent the arithmetic or geometric means of the terms of other 

convergent sequences.  
 

6.4 CAUCHY’S FIRST THEOREM ON LIMITS    
 
Recall that in Unit 5, you studied Cauchy sequences and Cauchy’s criterion of 
convergence. Here we shall discuss a theorem due to Cauchy, namely, 
Cauchy’s First Theorem on Limits, applicable to certain types of sequences.  

As you must know, the arithmetic mean of n numbers 
n

aaa ,...,, 21 is the 

number  
 

 n

aaa
b

n

n

+++
=

K
21 . 

 
Let us consider  
 

 
1,

1
≥∀

−
= n

n

n
a

n
. 

 

Then the arithmetic mean of the first 20 terms of ( )
N∈nn

a  is 

 

 820113.0
20

20

19
...

3

2

2

1
0

20

2021
20 ≈

++++

=

+++

=

aaa
b

K
 

and .95.0
20

19
20 ==a  The difference between 20a  and 20b

 
is 

0.129887.ab 2020 =−  

 

With the help of a calculator you can check that 0.099833.ab 3030 =−  

 

As we take larger and larger n , we find that 
n

a
 
and 

n
b

 
come closer and 

closer to each other. Practically this means that we can estimate the value of 

n
b

 
by

n
a , for large n . Can we always do so, without regard to what 

n
a  is? 

Take for instance, na
n

=
 
and see what happens. You will find that in this 

case, 
n

b and
n

a
 
do not come closer, but move apart as n  tends to ∞ . Thus, it 

is not always possible to estimate 
n

b
 
by 

n
a . So, what forces 

n
b

 
to come 
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closer to 
n

a in the first case then? Could it be related to the convergence of 

( )
N∈nn

a ? This was observed by the famous mathematician Cauchy, whom you 

have already met in Unit 5. 
 
Let us see what he stated in this context. 
 

Theorem 4 (Cauchy’s First Theorem on Limits): Let ( )
N∈nn

a
 
be a sequence 

converging to L. Then the sequence 
 

N∈








 +++

n

n

n

aaa K21

 
 

converges to L as well. 
 

Proof: Since ( )
N∈nn

a  converges to L, for a given 0>ε , there exists a number 

N∈0n such that  

 

0
2

nnLa
n

>∀<−
ε

. 

 
Also, from Unit 5, you know that the convergent sequences are bounded. 

Hence there exists an 0>M  such that 
  

1≥∀< nMa
n

. 

 
This implies  
 

1, ≥∀+<+≤− nLMLaLa
nn

. 

 

Now for all 0nn > , let us consider 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )








<

−

+

+

<








−

+

+

<

−++−

+

−++−

≤

−++−+−++−

=

−++−+−

=

−+++

=−

+++

+

+

1
2

2

......

......

..

00

00

11

11

21

2121

00

00

n

nn

n

LMn

n

nn

n

LMn

n

LaLa

n

LaLa

n

LaLaLaLa

n

LaLaLa

n

nLaaa
L

n

aaa

nnn

nnn

n

nn

Q

K

K

ε

ε

 

 
Now to finish the proof we must choose a sufficiently large n  so that 

( )

2

0 ε
<

+

n

LMn
. This can be done if we choose  .

)(2 0

ε

LMn
n

+

>  



 

184

 

Block 2                                                                                                                       Sequences
                                                        So, let  

 

( )







 +

=

ε

LMn
n

0

1

2
. 

 

Then, for all { }10 ,max nnn >   we have 

  

.
22

21
ε

εε
=+<−

+++

L
n

aaa
n

K
 

 

 

Hence, .lim 21
L

n

aaa
n

n

=
+++

∞→

K

 
 

Let us now consider some examples. 
 

Example 10: Find 






















++++

∞→

n

n

n
n

1

3

1

2

1

321
1

lim K  using Cauchy’s First 

Theorem on Limits. 

Solution:  Note that n
n

na

1

= . From E4  you know that   .1lim =
∞→

n
n

a Hence by 

Cauchy’s First Theorem on Limits, 
 

.1
321

lim

1

3

1

2

1

=
















++++

∞→ n

n n

n

K
 

*** 

Remark 1:  Note that the converse of Theorem 4 is not true. For a 

counterexample, let us consider ( )
n

n
a 1−= . Then 

 

( ) ( ) ( )

n

n
n

n

nn

aaaa
n

n

1

odd is  if,
1

even is  if,0

1111321

≤







=

−++−++−
=

++++ KK

 

 

Thus, 
nn

aaa
n

1
0 21

≤
+++

≤
L

 for all .N∈n  Hence, by the Squeeze  

 

Theorem 
 

 
.0lim 21

=
+++

∞→ n

aaa
n

n

K
 

 

But you know that ( ) ( )( )
NN ∈∈

−=
n

n

nn
a 1  is not convergent. (See Example 17 of 

Unit 5). 
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Example 11: Find .
1

2

1

1

1
lim

222









+

++

+

+

+
∞→

nnnn
n

L  

 

 
Solution: We can rewrite the limit given above as  

 



















+

++

+

+

+

=
∞→

222
1

1

2
1

1

1
1

11
lim

n

n

nn

n
L

n

L  

Now let, 
 

 .,,2,1,

1

1

2

nk

n

k

a
k

L=

+

=  

 

Since 0lim
2

=
∞→ n

k

k

 (See E42 of Unit 5), it follows that 1lim =
∞→

k
k

a . Thus we have 

 

 

( ) 1
1

lim
21

=+++=
∞→

n
n

aaa
n

L L

  

(by Theorem 4) 

*** 

There is a nice corollary to Theorem 4. It is about the limit of the sequence of 
geometric means of the first n terms of a convergent sequence. 
 

Corollary 3: Let the sequence ( )
N∈nn

a , where N∈∀> na
n

,0 , converge to the  

limit L. Then the sequence 
  

 

( )

N∈










n

n
n

aaa

1

21 K  

 

also converges to L.  
 
Proof: To prove this corollary we shall use a result that you will study in Unit 

10of Block 4 . This result states that if the sequence ( )
N∈nn

a  converges to L 

and f  is a continuous function defined on the range of ( )
N∈nn

a , then the 

sequence ( )( )
N∈nn

af  converges to ( )Lf .  

 
Symbolically it means, 
 

 
( ) ( ) ( )Lfafaf

n
n

n
n

==
∞→∞→

limlim , 

 

where f is continuous. In the same unit you will also study that the 

natural logarithm function ln , defined on 
+

R , is continuous. Thus we 

have  

 
Laa

n

n

n
n

lnlimlnlnlim =







=

∞→
∞→

 

 
Therefore, by Theorem 4 we have 

Recall that the geometric 

mean of two positive 

numbers a  and b  is 

.ab  The geometric mean 

of three positive numbers 

cba ,,  is .)( 3

1

abc  More 

generally, the geometric 

mean of n  positive 

numbers 
n

aaa ,,, 21 K  is 

.)(

1

21
n

n
aaa K  
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( )
L

n

aaa
L

n

aaa
n

n

n

n

ln
ln

limln
lnlnln

lim 2121
=⇒=







 +++

∞→∞→

KK

 

                  ( ) Laaa n
n

n

lnlnlim
1

21 =⇒
∞→

K  

                  ( ) Laaa n
n

n

lnlimln
1

,2,1 =




⇒
∞→

K   

                  ( ) .lim
1

21 Laaa n
n

n

=⇒
∞→

K    

 
Corollary 3 truly provides us with a powerful tool for computation of limits. To 
appreciate its worth, let us consider a few examples.   

Example 12: Find n

n

n

1

)1(lim +
∞→

. 

 
Solution: Let us write  
 

 

( )n
n

nb

1

1+=  

   
n

n

n

1

1

3

4
.

2

3
.

1

2







 +
= K  

   ( ) ,..
1

.321
n

n
aaaa K=  where .

1

n

n
a

n

+
=  

 

Thus 
n

b is the geometrical mean of 
n

aaa ,,, 21 K . You already know that

1lim =
∞→

n
n

a . Hence by Corollary 3, .1lim =
∞→

n
n

b  

*** 

Example 13: Let 

n

n

n

n
a 







 +
=

1
 and 

( )

,

!

1
1

n

n

n

n
b

+
=  for all N�∈n . Deduce the limit 

of ( )
N∈nn

b
 
by expressing ( ) ..

1

.21
n

nn
aaab K=  

 
Solution:  Note that 
 

( )

( )

( )

( )

n

n

nn

nn

nnn

n
n

b

n

n

n

n

n

n

n

n

n

n

n
aaa

=
+

=








 +
=








 +

−

=



















 +










−

















=

−

1

1

1

1

132
1

21

!

1

!

1

1

1

1
.

3

1
.

2

1
.

1

1

1
.

1
.

3

4
.

2

3
.

1

2
..

K

KK

 

 

You know that .
1

1lim
1

limlim e
nn

n
a

n

n

n

n
n

n

=







+=







 +
=

∞→∞→∞→
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Hence by Corollary 3 , eb
n

n

=
∞→

lim .  

*** 

A question that is often asked is -- given a sequence how does one know 
whether Cauchy’s First Theorem on Limits or its corollary can be applied?       
A thumb rule is that when the nth term of the sequence is expressed as a sum 
of a finite number of terms, you should try Cauchy’s First Theorem on Limits.  
 

And, when the nth term involves the power of 
n

1
, try its corollary. 

Now try the following exercises to assess how much you have grasped. 
 

 
E13)  Show that  
 

.0
)2(

1
...

)2(

1

)1(

1
lim

222
=








++

+

+

+∞→ nnnn

 

 

E14)  Does the sequence 
N∈=









− ∑

n

n

k kn 1
2

11
1 converge to 1? Justify. 

 
E15)  Using Corollary 3, find the limits 
 

         i) 

[ ]n

n

n

n

1

)!1(

2
lim

+

+

∞→

        ii) 
n

n n

n

1

!

)12(.7.5.3.1
lim 







 −

∞→

K
         iii) 

2

1

1

2

)!(
lim

+
∞→

n

n

n

n
 

 

 
If you have gone through the exercises above, you must have understood how 
to apply Cauchy’s First Theorem on Limits. In the next section we shall 
discuss one more theorem due to Cauchy. 
 

 6.5 CAUCHY’S SECOND THEOREM ON LIMITS    
 

Consider the sequence ( ) ( )
N∈∈

=
nnn

na
N

. You know that it is not convergent. 

But 

N∈

+










nn

n

a

a 1 is convergent, and .1
1

limlim 1
=

+
=

∞→

+

∞→ n

n

a

a

n
n

n

n

 

 

Now look at the sequence 
N�∈










n

n
n

a

1

, where 
n

a is the same as above.  Does it 

converge? Of course, it converges to the same limit as 

N∈

+










nn

n

a

a 1 does. Now 

take ( )

N∈

∈ 







=

n

n

nn

n

c
a

2N
, where R∈c . Without worrying about the 

convergence of ( ) ,
N∈nn

a
 
consider 

( )
.

1
.

1

22

2

1

1 








+

=

+

=

+

+

n

n
c

c

n

n

c

a

a

n

n

n

n

 

So,  

.
1

lim.lim

2

1
c

n

n
c

a

a

n
n

n

n

=








+

=
∞→

+

∞→
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.
1

lim

lim
limlim

22
1

2

1

c
c

n

c

n

c
a

n

n

n

n

n

n
n

n

==











==

∞→

∞→

∞→∞→

 

What do you observe from the examples above? Can we say, if  

N∈

+










nn

n

a

a 1  

converges to L , then so does 
N�∈










n

n
n

a

1

? Note that the sequences above are 

of positive terms. It is exactly this condition, namely, the  terms of the 

sequence
N∈nn

a )( are positive that ensures the limits of the sequences 

N∈n
n

n
a )(

1

 
and 

N∈

+










nn

n

a

a 1

 

are equal, as you can see from the following theorem 

due to Cauchy.  
 

Theorem 5 (Cauchy’s Second Theorem on Limits): Let ( )
N∈nn

a  be a 

sequence of positive terms. If 

N∈

+










nn

n

a

a 1 is convergent, then  

 

.limlim 1
1

n

n

n

n
n

n a

a
a

+

∞→∞→

=  

 

Proof:  Let L
a

a

n

n

n

=
+

∞→

1lim . Then, for any ,0>ε there exists some N∈0n
 
such 

that for all 0nn ≥  

 

εεε +<<−⇒<−
++

L
a

a
LL

a

a

n

n

n

n 11      ... (3) 

 

Since 0nn ≥ , let knn =− 0  
for some .0≥k  From Eq. (3), we get k  

inequalities for .1,,1, 000 −++= knnnn K
 
Multiplying these k  inequalities we 

get 
 

( )
k

kn

kn

n

n

n

nk

L
a

a

a

a

a

a
L )(.

11

21

0

0

0

0

0

0
εε +<<−

−+

+

+

++

K  

 
This implies, 
 

( ) ( ) ( ) ( )

( ) ( )

n
n

nn

n

n
n

n

n
n

n
n

n

n

nn

n

nnnk

n

knk

cab

aLaaL

L
a

a
LL

a

a
L

<<⇒

+<<−⇒

+<<−⇒+<<−

−−

−−+

1

1
1

11
1

0

0

0

0

0

0

0

0

0

εε

εεεε

 

  

where ( ) n
n

n

n

n
aLb

1
1

0

0

.
−

−= ε and .)(

1
.1

0

0

n

a

n

n

n n

aLc
−

+= ε

 
Note that ,lim ε−=

∞→

Lb
n

n  
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and ε+=
∞→

Lc
n

n

lim
 
(Why?) Hence by the Squeeze Theorem, 

.lim
1

εε +≤≤−
∞→

LaL n
n

n

 

But ε  is arbitrary, hence .lim
1

La n
n

n

=
∞→  

 

Let us consider some applications of Theorem 5. 
 
Example 14: Find the limit of the sequence 

 
( )( ) ( )[ ]

.

221
1

N∈















++
n

nnnn

n

K

 

 

Solution: Let 
( )( ) ( )nnn

n
a

n

n

221 K++

= . Then 0>
n

a for all N∈n . Now 

consider  
 

( )

( )( ) ( )( )

( )( ) ( )

( )

( )

n

n

n

n

n

n

n

n

n

n

n

n

n

n

nnn

nnnn

n

a

a









+









+









+

=








 +

+

+
=

++

++++

+
=

+

+

1
1.

1
22

1
1

1
.

122

1

221

221232

1
1

1 K

K

 

 

Hence, 
4

.
2.2

1
lim 1 e

e
a

a

n

n

n

==
+

∞→

. So, 

( )( ) ( )[ ]
( )( ) ( )

5).Theorem(by
4

lim

221
lim

221

lim

1

1

1

e

a

nnn

n

nnn

n

n
n

n

nn

n

n

n

=

=










++

=

++

∞→

∞→∞→ KK

 

*** 

Example 15: Find ( ) .!
1

lim
1

n

n

n
n∞→

 

Solution: Note that we can write ( )
n

n
n

n

n
n

n

1

1 !
!

1








= So, let .

!
nn

n

n
a =  Hence  

( )

( )
.

1

!1
11 ++

+

+
=

nn

n

n
a  Now  

( )

( )
n

nn

n

n

n

n

n

n

n

n

n

n

a

a









+

=








+

=

+

+
=

+

+

1
1

1

1!1

!1
1

1  
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So, .
1

1
1

1
limlim 1

e

n

a

a

n
n

n

n

n

=









+

=
∞→

+

∞→

 

 
Hence, by Cauchy’s Second Theorem on Limits,  
 

( ) .
1

lim!
1

lim
11

e
an

n
n

n
n

n

n

==
∞→∞→

 

*** 

You should do the following exercises now.  
 
 

E16)  Find 
( )( ) ( )[ ]

N∈
+++

∞→

k
n

nkkk n

n

 ,
21

lim

1

where
K

. 

 
E17)  Find  

          i)  
( ) n

n n

n

1

2!

!2
lim 








∞→

            ii)   
( )

N∈







∞→

k
n

kn n

k
n

 ,
!

!
lim

1

where . 

 

 
With this we come to the end of this unit. Let us now see what we have 
covered in this unit.  
 

 6.6 SUMMARY 
 
In this unit, we have discussed the following points: 
 

1. How limits behave with respect to order; 

2. How to find the limit of a sequence by the Squeeze Theorem; 

3. The Convergence and divergence criteria of monotone sequences through 
Monotone Convergence Theorem; 

4. How to apply the Cauchy’s First Theorem on Limits; 

5. How to apply the Cauchy’s Second Theorem on Limits. 

 

6.7 SOLUTIONS/ANSWERS    
 

E1) Since 
N∈nn

a )(  is convergent, the sequence 
N∈

−
nn

a )( α  is also 

convergent. Also 
n

a≤α  implies 0≥−α
n

a  for all .N∈n  Therefore, by 

Theorem 1, we have 
 

  0limlim0)(lim ≥−⇒≥−
∞→∞→∞→

αα
n

n
n

n
n

aa  

          .lim0lim αα ≥⇒≥−⇒
∞→∞→

n
n

n
n

aa  

  

 Similarly, show that .lim β≤
∞→

n
n

a  

E2) No. For example, the sequence 
N∈

−
n

n)(  satisfies the inequality 
n

n
1

<−  

 for all ,N∈n  but 
N∈

−
n

n)(  is divergent. 
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E3) i) Let .
1

2

2









+=

n
a

n
 Then we know that 2

1
2 >+

n
 for all .N∈n  This 

implies, 
22>

n
a  for all .N∈n  Now for all N∈n  

    

   .
5

4
14

4
14

4
1

2
2

2

nnnnnn
a

n
+=++<++=








+=  

   

  So, take 4=
n

b  and .
5

4
n

c
n

+=  We know that  

  .lim4
5

lim4lim
n

nn
n

n

b
n

c
∞→∞→∞→

==+=   

 

  Therefore, by the Squeeze Theorem, .4lim =
∞→

n
n

a  

 

 ii) Let .
13

13
2

2

−

+
=

n

n
a

n
 Observe that for all N∈n  

    

   .
3

1
1

3

13

13

13
1

22

2

2

2

nn

n

n

n
+<

+
<

−

+
<  

   

  Take 1=
n

b  and .
3

1
1

2
n

c
n

+=  We can see that .1lim =
∞→

n
n

c  Hence, 

by the Squeeze Theorem, .1lim =
∞→

n
n

a  

  

 iii) Observe that for all N∈n  
    

   
!

2

!)2(

2
0

nn

nn

<

+

<  

  It can be proved that .0
!

2
lim =

∞→ n

n

n

 Therefore, by the Squeeze 

Theorem, .0
!)2(

2
lim =

+∞→ n

n

n

 

 
 iv) Observe the inequality 
 

   
n

n

nn

1

2
sin

11
≤≤−

π
 

   

  for all ,N∈n  and apply the Squeeze Theorem to get 

.0
2

sin
1

lim =







∞→

πn

nn

 

 

E4) i) We can write 

   

1
1

1

1

1
++

=

++

n

nn

n
 



 

192

 

Block 2                                                                                                                       Sequences
                                                        

Now we know that ,1
1

1lim =+
∞→ nn

 and 0
1

1 >+

n
 for all .N∈n  

Therefore, from Example 4, we have .11
1

1lim ==+
∞→ nn

 Thus 

 
2

1

11

1

1lim
1

1lim

1

1
lim =

+

=

++

=

++

∞→∞→

∞→

nn

n

n

nn

n
 

 ii) We know that 1≥n  implies .1

1

≥
nn  We can, therefore, write 

  ,1

1

n

n an +=  for some sequence ,)(
N∈nn

a  where 0≥
n

a  for all .1≥n  
 

  Therefore, 

   L+
−

++=+=
2

2

)1(
1)1(

nn

n

n
a

nn
anan  

    
  This gives 
 

     .
2

2

)1(
1 2

n
aa

nn
n

nn
≤⇒

−
+≥  

    

  Now 
n

n n
2

11

1

+≤≤  for all .N∈n  Since 0
2

lim =
∞→ nn

, it follows by 

the Squeeze Theorem, .1lim

1

=
∞→

n

n

n  

  

 iii) Let 
n

n

i

n

n

n

nn

n

n

n

n

n

n

in
a

!1211

0

=
−

⋅
−

⋅=
−

= ∏

−

=

L  

   
  To apply Squeeze Theorem, we must find an upper bound of 

.
!

N∈










n

n
n

n
 We know that nin ≤−  for all .2,,2,1,0 −= ni K  This 

implies  
 

    ∏

−

=

−−

≤⇒≤−

2

0

11
!)(

n

i

nn
nnnin  

    1
!
1

≤⇒
−n

n

n
 

    
nn

n

n

1!
≤⇒  

  So 
n

a
n

1
0 ≤<  for all .N∈n  Now the Squeeze Theorem implies that

.0lim =
∞→

n
n

a  

 iv) Observe that 1! ≥n  which implies .1)!(
2

1

≥
nn  Also observe that 

 

   nnnn
nnnnn

11

1 2

)!(! ≤⇒≤≤
−  
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  In part ii) we have proved that .1lim

1

=
∞→

n

n

n  Therefore by the Squeeze 

  Theorem, .1)!(lim
2

1

=
∞→

n

n

n  

 
E5) i) We can see that 
 

    

100100
1

1
1

1
1

1 







+⋅








+=








+

+

nnn

nn

 

    ,
1

1lim
1

1lim
1

1lim

100100

e
nnn n

n

n

n

n

=







+⋅








+=








+⇒

∞→∞→

+

∞→

 

   because .11
1

1lim
1

1lim
100

100100

==















+=








+

∞→∞→ nn nn

 

  

 ii) Let .
2

n

n
ea =  We know that ,0>

n
a  for all .N∈n  Now 

,
11

22

ne

a
n

n
<=  because 2

2

ne
n

>  for all .N∈n  Thus .
1

0
2

n
a

n
<<  

Applying the Squeeze Theorem, now we get .0lim =
∞→

n
n

a  

  

 iii) .
1

1lim
1

1lim 100

100
100

e
nn

n

nn

n

=




















+=








+

∞→∞→

 

  

 iv) 
n

n

n
n

n

n

n

n

nnn

n

n









+

=









+

=



















+

=








+

∞→

∞→∞→∞→ 1
1lim

1

1
1

1
lim

1
1

1
lim

1
lim  .

1

e
=  

 

E6) It is easy to see that 0>
n

a  for all .1≥n  (Why?) Let us prove that the 

sequence is increasing. We have ,1
1

=a and .22 =a  So .
12

aa >  Let 

1−
>

nn
aa  for some .1>n  Since 

nn
aa +=

+
12

1  and 1

2 1
−

+=
nn

aa , it follows 

that  
 

  1111

22

1 )()(
−++−+

−=+−⇒−=−
nnnnnnnnnn

aaaaaaaaaa  

      0
1

1

1 >

+

−

=−⇒
+

−

+

nn

nn

nn

aa

aa
aa  

      .1 nn
aa >⇒

+
 

  

 Thus, by the Principle of Mathematical Induction, 
nn

aa >
+1  for all .1≥n  

Hence 
N∈nn

a )(  is increasing. Using the Principle of Mathematical 

Induction, now let us show that 
N∈nn

a )(  is bounded above by 2. We have 

2
1

<a . Assume that 2<
n

a for some 1>n . Then  

 

  .232111 <=+<+=
+ nn

aa   
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  It follows that 
N∈nn

a )(  is bounded above by 2. Hence, by the Monotone 

Convergence Theorem, 
N∈nn

a )(  is convergent. 

 

E7) Since 
N∈nn

a )(  is decreasing, 
N∈

−
nn

a )(  is increasing. Since 
N∈nn

a )(  is 

bounded below, 
N∈

−
nn

a )(  is bounded above. Thus 
N∈

−
nn

a )(  is 

increasing and bounded above. Therefore, by Case 1 of the proof of the 

Monotone Convergence Theorem, 
N∈

−
nn

a )(  is convergent, and hence 

N∈nn
a )(  is convergent. Now 

 

  [ ])(limlim
n

n
n

n

aa −−=
∞→∞→

 

       )(lim
n

n

a−−=
∞→

 

       }{sup N∈−−= na
n

 

       }){inf( N∈−−= na
n

  )inf)(sup( SS −=−Q  

       }.{inf N∈= na
n

 

 
E8) Let us compute the first few terms of the sequence. 

 .7321,7331,751,2 4321 ⋅=⋅=⋅== aaaa  

  
 It appears that the sequence is decreasing. So, consider 
 

  
2

3

2

1
2

2

1
+

−
=−

+

−=−
+

n

n

n

n

nn

a

a
a

a
aa  

  

 But to make 01 <−
+ nn

aa  we must show that 03 2
<−

n
a  i.e. 3>

n
a  for 

all .1≥n  We already have .321 >=a  So, let us assume that 3>
n

a  

for some .1>n  Then 
  

 23

1

2

1
232

+

<

+

⇒+>+

n

n

a
a  

               
23

1

2

1

+

−>

+

−⇒
n

a
 

            .3
23

332

23

1)23(2

23

1
2

2

1
2 =

+

+
=

+

−+
=

+

−>

+

−⇒
n

a
 

  

 It follows that 3
2

1
21 >

+

−=
+

n

n

a
a . Thus, 3>

n
a  for all ,1≥n  and 

hence 
N∈nn

a )(  is bounded below. 

 

 Now we have ,01 <−
+ nn

aa  i.e., 
nn

aa <
+1  for all .1≥n  This implies 

N∈nn
a )(  is decreasing. Therefore, by the Monotone Convergence 

Theorem, 
N∈nn

a )(  is convergent. 

 

E9) Let 0>M  be any real number. Since 
N∈nn

a )(  is not bounded above, 

there is some N∈0n  such that .
0

Ma
n

>  But 
N∈nn

a )(  is increasing. So 
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   .
00 Maann

nn
>>⇒>

 
 

 
 Therefore, 

N∈nn
a )(  diverges to .∞  

 

E10) i) We know that !!)1( nn >+  for all .1≥n  This means 
N∈n

n )!(  is 

increasing. Now if Kn <!  for some ,0>K  then Kn <  (why?), 

which is not possible. Hence 
N∈n

n )!(  is not bounded above. 

Therefore, by E9, 
N∈n

n )!(  diverges to .∞  

 

 ii) Let .
1

1
1

1 22

+

+=

+

++
=

n

n

n

nn
a

n
 Then 

2

)1(
1

2

1
+

+
+=

+

n

n
a

n
. 

   

  So, 
12

)1(
22

1
+

>

+

+
⇔>

+

n

n

n

n
aa

nn
 

       )2()1(
23

+>+⇔ nnn  

      031
2

>++⇔ nn  

 

Thus 
nn

aa >
+1  for all ,1≥n  which implies 

N∈nn
a )(  is increasing.  

 

Now, if possible, assume that 0>K is an upper bound of 
N∈nn

a )( . 

Then for all ,1≥n  

   

  .1
11

1
22

−<

+

⇒<

+

+ K
n

n
K

n

n
 

 
We can write 
  

.1
11

)1(

1

2

−>

+

−=

+

−+
=

+

n
n

n
n

n

nnn

n

n
 

 

This implies Kn <  for all 1≥n . This is a contradiction to the fact 

that N  is unbounded. Hence 
N∈nn

a )(  is not bounded above.  

 

Therefore, by E9, 
N∈nn

a )(  diverges to .∞  

 

E11) Yes. Since 
N∈nn

a )(  is bounded, by E24 of Unit 5, 
N∈knk

a )(  is bounded. 

Also 
N∈knk

a )(  is decreasing. Hence by the Monotone Convergence 

Theorem 
N∈knk

a )(  is convergent. 

 

E12) Since 
N∈nn

a )(  is bounded, 
N∈+ nkn

a )(  is bounded. Also 
N∈+ nkn

a )(  is 

monotone. Hence by the Monotone Convergence Theorem 
N∈+ nkn

a )(  is 

convergent. Now, let .lim La
kn

n

=
+

∞→

 Then .lim La
n

n

=
∞→

 Hence 
N∈nn

a )(  is 

convergent. 

 
E13) Let us write 
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++









+

+









+

=++

+

+

+

=
222222 )2(

1

2
1

1

1
1

11

)2(

1

)2(

1

)1(

1

n

n
n

n
n

nnnn
b

n
LL  

 Now take ,

1

1
2









+

=

n

k
n

a
k

 for .1 nk ≤≤  Then  

 .0

1

1
limlim

2
=









+

=
∞→∞→

n

k
n

a
n

k
k

 

  
 Therefore, by the Cauchy’s First Theorem on Limits, we have  
 

  .0)(
1

limlim
21

=+++=
∞→∞→

n
n

n
n

aaa
n

b L  

 

E14) Let .
1

2
n

a
n

=  Then .0lim =
∞→

n
n

a  Now 

  

 















++++−=








−

∞→
=

∞→
∑ 222

1
2

1

3

1

2

1

1

11
1lim

11
1lim

nnkn n

n

k
n

L  

       






 ++++
−=

∞→ n

aaaa
n

n

L321lim1  

       .101 =−=  
 

E15) i) Let .

]!)1[(

2
1

n

n

n

n
b

+

+
=  Then .

!)1(

)2(

+

+
=

n

n
b

n

n

n
 We have to express  

  n

nn
aaab

1

21 )( K=  for a suitable sequence 
N∈nn

a )(  of positive terms.              

If we take ,
1

2
n

n

n

n
a 









+

+
=  then we have 

 

  

nn

nn

n

n

n

n
aaaaa 









+

+








 +

























=

−

−

1

2
.

1
.

4

5
.

3

4
.

2

3
...

132

1321 KK  

             
n

n

n

n

n

n

n

n

)1(

)2(
.

)1(
.

4

5
.

3

4
.

2

3
1

1

3

3

2

2

+

++
=

−

−

K  

             
!)1(

)2(

+

+
=

n

n
n

 

   

  Hence .)(

1

21
n

nn
aaab K=  Now, we write 

   










+

+










+

+

=








+

+=

+

−+

1

1
1

1

1
1

1

1
1

1

11

n

n

n
a

n

n

n
 



 

197  

 

Unit 6                                                               Limits of Sequences  

  Hence, .
1

1

1
1lim

1

1
1lim

lim

1

e
e

n

n
a

n

n

n

n
n

==










+

+










+

+

=

∞→

+

∞→

∞→

 

   

  Therefore, by Corollary 3, .lim eb
n

n

=
∞→

 

 

ii) Let 
n

n
b

n

n
b

n

n

n

n

K

KK

3.2.1

)12(7.5.3.1

!

)12(7.5.3.1
1

−
=⇒







 −
=  

          
n

n

n
aaab K21.=⇒  

          ,).(

1

21
n

nn
aaab K=⇒  

  where .
1

2
12

nn

n
a

n
−=

−
=   Since ,1lim =

∞→
n

n

a  by Corollary 3 .1lim =
∞→

n
n

b  

  
 iii) Let 

   

2

)1(

2

1

1

2

!

2

)!(
++

=⇒=
nn

n

nn

n

n

n
b

n
b  

         
n

n

n

n
b

+++
=⇒

L212

!
 

         
n

n

n

n
b

22

3
.

2

2
.

2

1
32
L=⇒  

         
n

n

n
aaaab K321 ..=⇒  

         ,)..(

1

321
n

nn
aaaab K=⇒  

   

  where .
2nn

n
a =  Since ,0lim =

∞→
n

n

a  by Corollary 3 .0lim =
∞→

n
n

b  

 

E16) Let .
)()2()1(

nn

n

nkkk
a

+++
=

K
 Then we have 0>

n
a  for all .N∈n  

Now 
 

  
)()2()1()1(

)1()()2()1(
1

1

nkkk

n

n

nknkkk

a

a
n

n

n

n

+++

⋅

+

+++++
=

+

+

K

K
 

   

n

n

n

n

nk









+

⋅








+

++
=

11

1
 

   
n

n

n

k









+

⋅








+

+=

1
1

1

1
1  

  

 So, .
11

1lim 1

eea

a

n

n

n

=⋅=
+

∞→

 Therefore, by Theorem 5, .
1

lim

1

e
a n

n
n

=
∞→

 

E17) i) Let .
!

!)2(
2

n

n
a

n
=  Then 0>

n
a  for all .1≥n Now  
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!)2(

!

!)1(

!)22(
2

2

1

n

n

n

n

a

a

n

n
⋅

+

+
=

+  

          
!)2(

!

!)1(!)1(

!)2()12()22(
2

n

n

nnnn

nnn
⋅

++

++
=  

          








+

−=

1

1
22

n
 

   

  Thus .4lim 1
=

+

∞→

n

n

n a

a
 Therefore, by Theorem 5, .4lim

1

=
∞→

n
n

n

a  

  

 ii) Let .
)!(

!)(
kn

n

kn
a =  Then 0>

n
a   for all .1≥n  Now  

   
!)(

)!(

)!)1((

!)(1

kn

n

n

kkn

a

a
k

k

n

n
⋅

+

+
=

+  

           
!)(

)!(

)!()1(

!)()1()1()(

kn

n

nn

knknkknkkn
k

kk
⋅

+

+−++
=

K
 

           








+

−
−









+

−=

1

1

1

1

n

k
k

n
kk L  

   
  Thus  
 

  .lim
factors

1 k

kn

n

n

kkkk
a

a
=⋅=

+

∞→
43421 L   

   

  Therefore by Theorem 5, .lim

1

kn

n
n

ka =
∞→
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MISCELLANEOUS EXAMPLES AND EXERCISES 
 
The examples and exercises given below cover the concepts and processes 
you have studied in this block. Doing them will give you a better understanding 
of the concepts concerned, as well as practice in solving such problems. 
 

Miscellaneous Examples 
 

Example 1: Find a lower bound of the sequence .
73

6

N∈










+
n

n
 Also find its 

infimum. Is it bounded above? 
 

Solution: Let ,
73

6

+

=

n
a

n
 for .N∈n  Since 0>

n
a  for all ,N∈n  it follows that 

0 is a lower bound of .)(
N∈nn

a  Now observe that as n  gets larger and larger, 

n
a  gets smaller and smaller. It seems that 0 is the infimum of .)(

N∈nn
a  To 

prove it, let as take any .0>ε  We have to find an N∈n  such that .
73

6

+

>ε

n
 

(See Theorem 7(i) of Unit 3.) Simplifying this inequality we get ,
3

76

ε

ε−
>n  and 

such an n  exists by the Archimedean Property of .R  Therefore, 0 is the 

infimum of .)(
N∈nn

a  To see that the sequence is bounded above, observe that 

10

6

73

6
≤

+n
 for all .N∈n  This means, 

10

6
 is an upper bound of .)(

N∈nn
a  

***  

Example 2: Identify which of the following sequences are monotone, and 
which are not. 
 

i) 

N∈








 −

n

n

n

)1(
 ii) 

N∈
−

n
nn )( 2

 

iii) ( )
N∈

−
n

n
2

)1(  iv) 

N∈










++

++

n
nn

nn

432

123
2

2

 

v) ,)(
N∈nn

a  where 
4

32
1

+
=

+

n

n

a
a  for all ,1≥n  and .1

1
=a  

Solution: i) The first three terms of the given sequence are .
3

1
,

2

1
,1 −−  We 

can now see that the sequence is neither increasing nor decreasing. 
Therefore, the sequence is not monotone. 
 

ii) Let .2
nna

n
−=  Then .)1(1 2

1
+−+=

+
nna

n
 Now 

,2)1(1 22

1
nnnnnaa

nn
−=+−+−+=−

+
 which is negative for all .1≥n  

This means, 
nn

aa <
+1  for all .1≥n  Therefore, 

N∈nn
a )(  is decreasing. 

 

iii) We know that when n  is odd, 2
n  is also odd. And, when n  is even, 2

n  

is even. Thus the sequence expands as ),,1,1,1,1( K−−  which is 

neither increasing nor decreasing. Therefore, the sequence is not 
monotone. 
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iv) Let .
432

123
2

2

++

++
=

nn

nn
a

n
 Then  

  

 
972

683

4)1(3)1(2

1)1(2)1(3
2

2

2

2

1
++

++
=

++++

++++
=

+

nn

nn

nn

nn
a

n
 

  

 Now, 
432

123

972

683
2

2

2

2

1
++

++
−

++

++
=−

+

nn

nn

nn

nn
aa

nn
 

                        0
)432()972(

)35(5
22

2

>

++++

++
=

nnnn

nn
 for all .1≥n  

  

 This implies, 
nn

aa >
+1  for all .1≥n  Therefore, 

N∈nn
a )(  is increasing, 

and hence monotone. 
 

v) We are given .1
1

=a  So .
4

5
12

aa >=  Now assume that 
nn

aa >
+1  for 

some .N∈n  Then 

 ,
4

32

4

32
1

1
12 nn

nn

nn
aa

aa
aa >⇔

+
>

+
⇔>

+

+

++
 which is true. Therefore, 

by the Principle of Mathematical Induction, 
N∈nn

a )(  is increasing, and 

hence monotone. 

***  

Example 3: If 
N∈nn

a )(  and 
N∈nn

b )(  are two Cauchy sequences, then so is the 

sequence .)(
N∈

+
nnn

ba  Examine the validity of the statement. 

 

Solution: Let 
N∈nn

a )(  and 
N∈nn

b )(  be Cauchy sequences. Take .0>ε  Then 

there exist N∈10 , nn  such that 
2

||
0

ε
<−⇒≥>

mn
aanmn  and 

.
2

||
1

ε
<−⇒≥>

mn
bbnmn  

 

Now, let }.,{max 102 nnn =  Then for all 2nmn ≥>  we have 

 

|)()(||)()(|
mnmnmmnn

bbaababa −+−=+−+  

                          ||||
mnmn

bbaa −+−≤  

                          .
22

ε
εε

=+<  

 

This shows that 
N∈

+
nnn

ba )(  is a Cauchy sequence. Hence the given 

statement is valid. 
***  

Example 4: Assume that .10 << r  Let 
N∈nn

a )(  be a sequence satisfying 

n

nn
raa <−

+
||

1
 for all .1≥n  Show that 

N∈nn
a )(  is a Cauchy sequence. 

 

Solution: Let 0>ε  be arbitrary. Take any N∈nm,  such that .mn >  Then 

.|||||||| 1111 mnnnmnnnmn
aaaaaaaaaa −+−≤−+−=−

−−−−
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Similarly, if ,1 mn >−  then we can write 

|||||| 2211 mnnnmn
aaaaaa −+−≤−

−−−−
 

 
Thus we have for all ,mn >  
 

|||||||| 1211 mmnnnnmn
aaaaaaaa −++−+−≤−

+−−−
L  

     
mnn

rrr +++≤
−−

L
21

 

     ]1[
12 −−

++++=
mnm

rrrr L  

     
r

r
r

mn

m

−

−
=

−

1

)1(
 

        
r

r
m

−

<

1
 

Now if we choose m  such that ,
1

ε<

− r

r
m

 we are done. That is, we have to 

choose m  such that 

  

.
ln

))1((ln
))1((lnln)1(

r

r
mrrmrr

m ε
εε

−
>⇔−<⇔−<   

 

Such an m  always exists by the Archimedean Property of .R  So, let 

.
ln

))1((ln
0 







 −
=

r

r
n

ε
 Then .||

1
||0 ε<−⇒

−

<−⇒>>
mn

m

mn
aa

r

r
aanmn   

 

Therefore, 
N∈nn

a )(  is a Cauchy sequence. 

***  

Example 5: Let a sequence 
N∈nn

a )(  be defined by ,1
1

=a  and 
nn

aa +=
+

2
1

 

for all .1≥n  Show that 
N∈nn

a )(  is convergent. Also, find .lim
n

n

a
∞→

 

 

Solution: We are given that 
 

nnnn
aaaa +=⇒+=

++
22 2

11
 

             222

1
2

nnnn
aaaa −+=−⇒

+
 

             )1()2()()( 11 nnnnnn
aaaaaa +−=+−⇒

++
 

It is easy to see that 0 is a lower bound of .)(
N∈nn

a  Therefore, 01 >+
+ nn

aa  for 

all .N∈n  Hence .
)1()2(

1

1

nn

nn

nn

aa

aa
aa

+

+−
=−

+

+
 

 

Now 01 >−
+ nn

aa  if and only if ,02 >−
n

a  i.e., .2<
n

a  

 

We have .1
1

=a  So, assume that 2<
n

a  for some .N∈n  Then 

.2222
1

=+<+=
+ nn

aa  Therefore, by the Principle of Mathematical 

Induction, 
N∈nn

a )(  is bounded above by 2. This implies 01 >−
+ nn

aa  for all 

.N∈n  That is, 
N∈nn

a )(  is increasing. Consequently, by the Monotone 

Convergence Theorem, 
N∈nn

a )(  is convergent. 

Now, assume that .lim La
n

n

=
∞→

 Then .lim 1 La
n

n

=
+

∞→

 Hence, .2 LL +=  Solving 
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this, we get 1−=L  or .2=L  But 0>
n

a  for all .N∈n  Therefore, by Theorem 

 1 of Unit 6, .0≥L  Thus, it follows that .2=L  

***  

Example 6: Show that 
  

.lim 2

1

2

1

2

1
1

3

1
2

∞=









++++

∞→

n

n
n

L

 

Solution: Observe that for all ,N∈n  .
3

1

2

1

2

1

2

1
1

3

1
2

>







++++

n
L  

Therefore, for all ,N∈n  

 

 .3

1

2

1

2

1

2

1
1

3

1
2

nn
n

>









++++ L

 
 

Now, given any ,0>M  there exists some N∈n  such that .3
Mn >  This 

implies ,3

1

Mn >  and hence  
 

 .2

1

2

1

2

1
1

3

1
2

Mn
n

>









++++ L

 
 

This proves that the given sequence diverges to .∞  That is, 
 

 .lim 2

1

2

1

2

1
1

3

1
2

∞=









++++

∞→

n

n
n

L

 

***  

Example 7: Let 
N∈nn

a )(  be an increasing sequence, and 
N∈knk

a )(  be a 

subsequence of .)(
N∈nn

a  Show 

 

i) 
N∈knk

a )(  is increasing, 

ii) 
N∈knk

a )(  is unbounded if 
N∈nn

a )(  is unbounded. 

 
Solution: i) The proof of this is similar to the proof of E23 of Unit 5. 
 

ii) Assume that 
N∈nn

a )(  is unbounded. If possible, let 
N∈knk

a )(  be 

bounded. Then there exists some N∈M  such that Ma
kn

≤  for all 

.N∈k  We know that 
k

nk ≤  for all .N∈k  Since 
N∈nn

a )(  is increasing, 

this implies that 
knk

aa ≤  for all .N∈k  Consequently, Ma
k

≤  for all 

.N∈k  This is a contradiction to the assumption that 
N∈nn

a )(  is 

bounded. Therefore, 
N∈kn

k
a )(  is unbounded. 

*** 
Miscellaneous Exercises 
 

E1)   For the sequence 
N

N

∈

∈








=

n

nn

n
a

2
cos)(

π
 answer the following: 

 i) Does 
N∈nn

a )(  have a constant subsequence? If so, find one such. 



 

 

203 

Block 2                                               Miscellaneous Examples and Exercises 

 ii) Does 
N∈nn

a )(  have any increasing subsequence? 

 iii) Is there any unbounded subsequence of ?)(
N∈nn

a  

E2)   Let 
2

)12(
sin

1
π−

=
n

na n

n
 for all .N∈n  Find two subsequences of 

N∈nn
a )(  that converge to distinct limits. 

 

E3)   Does the sequence in E1 above converge?  If yes, what is its limit?  If 

no, for each R∈L ,  find an 0>ε such that infinitely many terms of 

N∈nn
a )(  satisfy .ε≥− La

n  

E4)  Check whether the following sequences are subsequences of 
N∈










n
n

1
  

or not. 
 

i) 
( )

N∈










+
k

kk 1

2

 

 ii)  

   
( )

N∈










+

−

k
kk !1

1

!

1

    

       

 

iii)     

 
( )

N∈










+

+

k
k

k

!1

1!

  

iv) ,)(
N∈kk

b  where 
k

b  










+

=

else

prime isif

1,

1

,
1

k

  k 
k

 

E5)   Let ,
1

1

n

n

n
a 








+=  where .N∈n  Show that 

 

          i) 
N∈nn

a )( is increasing.   ii) 
N∈nn

a )(
 
is bounded. 

 

E6)  Show that if 
N∈nn

a )(  is increasing, then 
N∈

−
nn

a )1(  is decreasing. Also 

show that if 
N∈nn

a )(  is bounded then so is .)1(
N∈

−
nn

a  

E7) If 
N∈nn

a )(  is a sequence of positive terms, then 

N∈

+










nn

n

a

a 1  is a monotone 

sequence. True or false? Justify your answer. 
 

E8) Let nna
n

n
)1(−+=  for all .N∈n  

  

 i) Find a subsequence of 
N∈nn

a )(  that is bounded above. 

 ii) Find a subsequence of 
N∈nn

a )(  that is increasing. 

 iii) Does there exist a subsequence of 
N∈nn

a )(  that is increasing and 

bounded above both? 

 iv) Is 
N∈nn

a )(  convergent? 

E9) Let 
N∈nn

a )(  be a sequence such that 
nnn

aa
2

1
||

1
<−

+
 for all .1n ≥  Show 

that 
N∈nn

a )(  is convergent. 

 

E10) Give an example of a sequence 
N∈nn

a )(  such that 

  |||| 11 −+
−≤−

nnnn
aaaa  for all .2≥n  Does such a sequence necessarily 

converge? Justify. 
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                                                        E11) Let α  and β  be two real numbers such that .0 βα <<  Show that if  

 ,)(

1

nnn

n
a βα +=  then .lim β=

∞→
n

n

a  

E12) Find .
!

1
lim

1

n

n n

n








 +

∞→

 

 

SOLUTIONS/ANSWERS 

 

E1) i) Observe that if we put ,14 += kn  where K,2,1,0=k  in the 

sequence 
N∈nn

a )(  then we get the subsequence .)( 014 ≥+ kk
a  This 

subsequence expands as 

   ),0,0,0(,
2

4cos,
2

2cos,
2

cos KK =















+








+

π
π

π
π

π
 

  which is a constant subsequence. 

 ii) Yes, the constant subsequence we have found in (i) is increasing. 

 iii) We know that 1
2

cos ≤

πn
 for all .N∈n  This means 

N∈nn
a )(  is 

bounded. Hence, there is no unbounded subsequence of .)(
N∈nn

a  

(Why?) 
 

E2) Note that 
 

  .)1()cos(
2

sin

1

1

11

nnnn

n
nnnnna

+

−=−=







−= π

π
π  

  

 Taking n  odd or even gives us two subsequences, namely  
 

 

N∈

−











−

k

kk 12

1

)12(  and .)2( 2

1

N∈











−

k

kk  Since 

N∈












n

nn

1

converges to 1, the 

above subsequences converge to 1 and ,1−  respectively. 
 

E3) The sequence 
N

N

∈

∈








=

n

nn

n
a

2
cos)(

π
 does not converge because its 

  subsequences ),0,0,0( K  and ),1,1,1( K  converge to two distinct limits.  

 Now, let R∈L  be arbitrary. If ,0≠L  and  if n  is odd then, 
 

  .||
2

cos|| LL
n

La
n

=−=−

π
 

  

 So, take || L=ε  in this case. This gives ε≥−
−

|| 12 La
n

 for infinitely 

many .N∈n  Now assume that .0=L  Then take kn 4=  for .N∈k  So, 
in this case 

 

  .1|1||2cos||| =−=−=− LLkLa
n

π  
  

 This gives us ,1=ε  such that ε≥− || 4 La
n

 for infinitely many .N∈n  

E4) Let N�∈∀= n
n

a
n

,
1
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i) We have 
( )

.
2/)1(

1

1

2

+

=

+

=

kkkk
b

k
 This gives for each 

( )
NN ∈

+
=∈

2

1
,

kk
nk

k
such that .

knk
ab =  

  Further, whenever ,k l<  we have 

  

  

( ) ( )
,

2

1

2

1kk +
<

+ ll

 
i.e., .

l
nn

k
<  

  

 Hence 
N∈kk

b )(  is a subsequence of .)(
N∈nn

a  

  

 ii) Let

 

 

       

( )

( )

( )[ ]

( ) !1!

!11

!1!

!!1

!)1(

1

!

1

kkk

kk

kk

kk

kk
b

k

+

−+
=

+

−+
=

+

−=  

       
( ) ( )

.
1!1

1

+−

=

kk
 

 

Thus, for each N∈k , we have  ( ) ( ).1!1 +−= kkn
k

 Now let us 

check whether or not l<k  implies 
l

nn
k

< . Let .l<k  Then  

( ) ( )!1!1 −<− lk  and ( ) ( ).1+<+ l1k  Hence 

( ) ( ) ( ) ( ),1!11!1 +−<+− llkk  which means .
l

nn
k

<  

 

Thus 
N∈kk

n )(  is a strictly increasing sequence of natural numbers. 

Consequently, 
N∈kk

b )(  is a subsequence of .)(
N∈nn

a  
  

 iii) Let 
( )

.
!1

1!

+

+
=

k

k
b

k
 If we expand this we get 

  

  

,,
!4

7
,

6

3
,

2

2








L  i.e., 








L,

24

7
,

2

1
,1  

 

You can observe that the term 
24

7
 belongs to .)(

N∈kk
b  But there is 

 no such term in .)(
N∈nn

a  Hence 
N∈kk

b )(  is not a subsequence of 

.)(
N∈nn

a  
 

iv) If we expand ,)(
N∈kk

b  we get .,
7

1
,

5

1
,

5

1
,

3

1
,

2

1
,

2

1








L  This shows 

that the terms 
2

1

 
is repeated in ,)(

N∈kk
b  whereas it appears only 

once in .)(
N∈nn

a  Hence 
N∈kk

b )(  is not a subsequence of .)(
N∈nn

a  
 

E5)  i) Using the Binomial Theorem, we get 

 

 ∑
=









=

n

k

kn

nk

n
a

0

1

 

and 
( )

.
1

111

0

1 k

n

k

n

nk

n
a

+







 +

=∑
+

=

+
 

  

 Now  

 

 
( )

k

n

k

k

n

k

nn

nk

n

nk

n
aa

1

1

11

0

1

0

1 ∑∑
=

+

=

+ 







−

+







 +

=−  

Note that 1 is 

not a prime 
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                     ( ) ( )
1

0 1

1

1

11

1

11
+

= +









+

+

+















−

+







 +

=∑ n

n

k

kk

nn

n

nk

n

nk

n
 

                                
( )

∑
=

















−

+







 +

>

n

k

kk
nk

n

nk

n

0

1

1

11
 

  Now  you can see that  
 

  

 
( )

( )( ) ( )( )

( )
kk

nk

knnn

nk

n

1!

11111

1

11

+

−−+−++
=

+







 + L
 

          










+

−
−









+

−








+

−=

1

1
1

1

2
1

1

1
1

!

1

n

k

nnk
L            ... (1) 

  And  
 

   

( )( ) ( )( )

kk
nk

knnnn

nk

n

!

121.1 −−−−
=







 L
 

               






 −
−








−








−=

n

k

nnk

1
1

2
1

1
1

!

1
L                ... (2)

   

 Since you know that 
 

  
,

n

i

n

i
−>

+

− 1
1

1  for ,11 −≤≤ ki  

  

the right hand side of Eq. (1) is greater than the right hand side of 
Eq. (2). Hence  
 

  ( )
kk

nk

n

nk

n 1

1

11








>

+







 +

, 

  

for all .0 nk ≤≤  This implies 
nn

aa >
+1  for all .N∈n  That is, 

( )
N∈nn

a  is increasing. 

 

 ii) To see the boundedness, note that  

 
.1,11 ni

n

i
≤≤∀<−  

       

  Hence  
 

 !

11
1

2
1

1
1

!

1

kn

k

nnk
<







 −
−








−








− L  

      

  Then  ∑ ∑
= =

+=<

n

k

n

k

n

kk
a

0 1 !

1
1

!

1
 

                              
∑

=

−
+<

n

k

k

1
1

2

1
1           ),2!(

1
N∈∀>

−

kk
k

Q  

                              N∈∀=

−

+= n,3

2

1
1

1
1 . 

 Thus, 
N∈nn

a )(  is bounded. 
 

E6)   If 
N∈nn

a )( is increasing then .,1 N∈∀≤
+

naa
nn  

This implies 

.,11 1 N∈∀−≥−
+

naa
nn

 Thus  
N∈

−
nn

a )1(  is decreasing. Now 
N∈nn

a )(  is 
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bounded above means there exists some  R∈u  such that 

N∈∀≤ nua
n

, . This implies N∈∀−≥− nua
n

,11 . Hence 
N∈

−
nn

a )1( is 

bounded below. 
 

E7) The statement is false. As a counter-example, consider the sequence 

  ),2,1,2,1,2,1()( K=
∈Nnn

a  which has all the terms positive. However, 









=









∈

+

L,
2

1
,2,

2

1
,21

Nnn

n

a

a
 which is not monotone. 

   

E8) i) Let )12()12( −−−= kkb
k

 where .N∈k  Then we have 

12 −
=

kk
ab  for each .N∈k  Also, since 

N∈
−

k
k )12(  is a strictly 

increasing sequence of natural numbers, it follows that 
N∈kk

b )(  is a 

subsequence of .)(
N∈nn

a  In order to show that 
N∈kk

b )(  is bounded 

above, note that for all ,N∈k  ,)12(12
2

−≤− kk  which implies 

.1212 −≤− kk  That is, 0≤
k

b  for all .N∈k  
   

  Therefore, 
N∈kk

b )(  is bounded above. 
 

 ii) Let kkb
k

22 +=  for all .N∈k  It is easy to see that 
kk

ab 2=  for 

all .N∈k  Since 
N∈k

k)2(  is a strictly increasing sequence of natural 

numbers, it follows that 
N∈kk

b )(  is a subsequence of .)(
N∈nn

a  Now 

you can show that 
N∈kk

b )(  is increasing. 

 iii) You can prove that 
N∈− nn

a )( 12  is decreasing, whereas 
N∈nn

a )( 2  is 

increasing. Thus any increasing subsequence of 
N∈nn

a )(  must be 

a subsequence of .)( 2 N∈nn
a  Note that 

N∈nn
a )( 2  is unbounded. 

Therefore, every subsequence of 
N∈nn

a )( 2  is unbounded. (See 

Example 7.) Consequently, 
N∈nn

a )(  has no subsequence that is 

increasing and bounded above both. 
 

 iv) The fact that 
N∈nn

a )( 2  is unbounded implies that 
N∈nn

a )(  is also 

unbounded. Therefore, 
N∈nn

a )(  is not convergent. 

E9) See Example 4. 
 

E10) Define a  sequence 
N∈nn

a )(  by 

  









−

+

=

,
1

1

,
1

2

n

n
a

n
 

  

 First let us assume that n  is odd. Then 

 

  
1

11
1

1
2

1

1
11

+

−−−=







+−









+

−=−
+

nnnn
aa

nn
 

  

 and 

  .
1

11
1

1

1
1

1
21

−

++=








−

−−







+=−

−

nnnn
aa

nn
  

 So, 

when n  is odd 

 
when n  is even. 
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  .||
1

11
1

1

11
1|| 11 −+

−=

−

++<

+

++=−
nnnn

aa
nnnn

aa    

 Therefore, .|||| 11 −+
−≤−

nnnn
aaaa  

 Now let us take n  to be even. Then 
   

  
nnnn

aa
nn

1

1

1
1

1
1

1

1
21 +

+

+=







−−









+

+=−
+

 

  

 and 

  .
1

11
1

1

1
2

1
11

−

−−−=








−

+−







−=−

−

nnnn
aa

nn
 

  

 So, in this case we get    

  
1

11
1

1

1

1
1

1

1

1
1|| 1

−

++<+

+

+=+

+

+=−
+

nnnnnn
aa

nn
 

              .|| 1−
−=

nn
aa  

 This shows that |||| 11 −+
−≤−

nnnn
aaaa  for all .N∈n  Now let us check 

whether 
N∈nn

a )(  is convergent or not. Note that the odd and even 

subsequence of 
N∈nn

a )(  are 
N∈










−

+

n
n 12

1
2  and ,

2

1
1

N∈









−

n
n

 

respectively. You can see that both these subsequences do not 

converge to the same limit. Therefore, by Theorem 6 of Unit 5 
N∈nn

a )(  is 

not convergent. 
 

 Thus we conclude that any sequence 
N∈nn

a )(  that satisfies 

 |||| 11 −+
−≤−

nnnn
aaaa  for all ,N∈n  need not be convergent. 

 

E11) Since ,0 βα <<  we have .
nn

βα <  Now ,2 nnnn

n
a ββα <+=  which 

implies β
n

n
a

1

2<  for all .N∈n  Also 0>α  implies .0>
n

α  Therefore, 

,nnnn

n
a ββα >+=  which means .β>

n
a  Thus we have ββ

n

n
a

1

2<<  

for all .N∈n  Since ββ →
n

1

2  as ,∞→n  by the Squeeze Theorem, we 

get .lim β=
∞→

n
n

a  

 

E12) Let 
!

1

n

n
a

n

+
=  for all .N∈n  Then 

N∈nn
a )(  is a sequence of positive 

terms. Now  

  .
)1(

2

1

!

!)1(

2
2

1

+

+
=

+

⋅

+

+
=

+

n

n

n

n

n

n

a

a

n

n  

 It can be shown that .0lim 1
=

+

∞→

n

n

n a

a
 Therefore, by the Cauchy’s Second 

  Theorem on Limits, we get .0
!

1
limlim

1
1

=






 +
=

∞→∞→

n

n

n

n
n n

n
a  
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