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BLOCK INTRODUCTION

In Volume 1, you were introduced to the system of real numbers and the limit point of a
set of real numbers. Also, you were introduced to some real functions in this volume.
We considered a special function called the sequence and began the study of limiting
processes with the notion of convergence of infinite sequence and series. We also
discussed a related concept known as ‘infinite series’ and study the notion of
convergence of an infinite series.

In this block, we shall start with the limit concept as applied to arbitrary real functions.
The limit of a function, in general, is an abstract notion in the sense that the function
never attains its value at a point but tries to approach a value called the limiting value.
The limit concept is fundamental to all further ideas in Real Analysis. Therefore, we
shall develop it in this block and then use it to discuss the differentiability of function.

This block contains 4 units. In the first unit of the block i.e. in Unit 10, we have review
the notion of the limit of a function to which you are already familiar from your study of
Calculus. We illustrate certain basic facts about limits through a number of examples.
The attempts are made to help you to appreciate the rigorous notion of epsilon-delta
definition of the limit of a function and its geometrical meaning. Closely related to the
limit of a function is the notion of sequential limits which also we shall introduce in this
unit. Finally, we discuss the algebra of limits. In this unit, we also introduce the notion
of the continuity of a function at a point and extend it to the continuity of a function on
an interval or on a non-empty set of real numbers. Also, we discuss some continuous
and discontinuous functions as well as the algebra of continuous functions. Finally we
shall introduce the notion of uniform continuity of a function.

In Unit 11, we introduce the notion of the derivative of a function and give its
geometrical interpretation. Also, we discuss its relationship with the continuity of a
function and then we define the algebraic operations of addition, subtraction,
multiplication and division on the differentiable functions.

Unit 12 deals with the important contributions made by Rolle, Lagrange and Cauchy in
the form of mean-value theorems. We also discuss the generalized mean-value theorem,
intermediate-value theorem and Darboux theorem.

In Unit 13, we confine our discussion to Taylor’s and Maclaurin’s theorem and discuss
applications of differentiability to evaluate some intermediate forms of the functions as
well as their extreme-values.



Notations and Symbols (used in Block 4)
(Also see the notations used in Volume 1)

€ (e) belongs to (does not belong to)

€ epsilon

R( )(R‘) the set of real numbers(the set of positive real numbers)(the set of
negative real numbers)

A for all

{x|1x satisfies P} the setof all x such that x satisfies the property P

x| modulus of the real x

hg}f(x) limit of f(x)as xtendsto a

x = f(x) a functions f taking xto f(x)

= is approximately equal to

max {X, y} the maximum of xand y

min {X, y} the minimum of xand y

w.r.t. with respect to

dy

d—,y“),y’,D(y) the first derivative of yw.r.t. x.
X

;(f(x),f'(x) the first derivative of f(x)w.r.t x.
X

2
%,y(z),f”(x) the second derivative of yor f(x)w.r.t. x.
%,ym),f(“)(x) the nth derivative of yor f(x)w.r.t. x.

= is approximately equal to
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LIMIT AND CONTINUITY

Structure Page No.
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Some theorems on limits
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10.3 Extensions of the Concept of Limit 20
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10.5 Uniform Continuity 32
10.6 Summary 36
10.7 Solutions and Answers 36

10.1 INTRODUCTION

You have studied the course on Calculus. In that course you have been
introduced to functions, their types, their domains and ranges. You have also
studied the concepts of limits and continuity of functions in that course. So,
you already know how to calculate the limit of a function at a point, and to
decide whether a function is continuous at a point or not. Here we are going to
revisit these concepts. But this time we are going to look closely at the theory,
rather than just calculate the limits.

In Section 10.2 we formally introduce the concept of limit by defining it in terms
of eand d neighbourhoods. The uniqueness of limits is shown and one-sided
limits are briefly discussed. We state and prove theorems which characterises
the limit of a function in terms of convergence of a sequence thereby providing
a link to the earlier units 5 and 6 of this course. Analogous results about limits
are also proved such as basic limit properties, the squeeze theorem for limits
and the fact that the inequalities are preserved in limit.

In Sec. 10.3 infinite limits are introduced as an extension of the concept of limit
and proved some of the basic theorems which are analogs of the results of
finite limit.

Continuity of functions is discussed in Sec. 10.4 formally using the concept of
limits of functions. Basic properties of continuous functions are shown along
with a short discussion on discontinuity.
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It is very important
to know the role of
€and & when apply
this definition to find
the limits.

We define uniform continuity in Sec. 10.5 and establish the relationship
between continuity and uniform continuity. We prove an important theorem
which states that a continuous function on a bounded closed interval [a,b]is

uniformly continuous. The theorem which establishes interface of Cauchy
sequences with uniformly continuous functions is also proved.

There are many other important theorems for continuous function which are
discussed in the next unit on differentiability such as Bolzano theorem, inverse
function theorem etc. These theorems are important not only in proving
theorems on differentiation but also to prove many other important theorems in
analysis.

Objectives
After studying this Unit, you should be able to

¢ Define the limit of a function using €and 6 neighbourhoods;

e (Calculate the limit, if it exists;

¢ Define continuity of a function at a point using the €— ddefinition of the
limit;

e Check whether a function is continuous or not;

e C(Classify the type of discontinuities;

Define uniform continuity and differentiate it from continuity.

10.2 LIMIT OF A FUNCTION

In Block 2, Unit 5 and 6 we have defined limit of a sequence in terms of €and
N and proved some important theorems on limits. In this unit we define limit of
a function using the concept of neighbourhood.

You recall that when we talk of the limit of a function at a point, we are
interested in the behavior of the function very close to that point. How do the
function values change when we approach that point? If the function values
also seem to be very close to a particular value, then we say, that value is the
limit of the function at that point. That is the general idea. But for this idea to
make precise, we have to define ‘very close’, ‘approach’, in the language of
Mathematics. We shall now get down to that. But you would have that noted,
we are interested in the behavior of the function near the point. However the
function value at that point doesn’t interest us!

Here is the definition.

Definition 1: Suppose a real-valued function f is defined on a deleted
neighbourhood, I, of a point pe R. We say that /e Ris a limit of f at p, if
for every € >0,there exists a 6 >0, such that

O<|x—p|<8,x€l:>|f(x)—l|<£ .. (1)
If le Ris alimitof f at p, we write lim f(x) =1.We also express it by
X—=p
saying:
f approaches l as x approaches p.

Sometimes we also write f(x) —>las x — p.
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Remark 1: Note that whenever we are discussing the limit of a function at a
point p,we consider only the values of the function around that point. Certain

terminologies will help us to simplify the discussion. An open interval
containing a point p of the form ]p—¢,p+¢[forany € >0is called an €-
neighbourhood of p. Also if I is a neighbourhood of p,then I\{p}is called
a deleted neighbourhood of p. Based on these we can rewrite the definition
as follows:

Definition 2: A function f defined on a deleted neighbourhood I of a point
pe R, is said to have a limit /€ R, if given an €-neighbourhood of ¢there
exists a deleted o -neighbourhood of p such that whenever xlies in the

deleted & -neighbourhood of p, f(x) lies in €-neighbourhood of 7. The
following figure illustrates this

{+ €4
m{ 7
L Le—=e-

pooyinoqybiau

O neighbourhood
Fig. 1: Definition of Functional Limit

Sometimes an €-neighbourhood of p is denoted N, (p)and a deleted 6 -
neighbourhood of p is denoted by N;(p). We can then say that the limit exists
if

xe Ny(p)nI= f(x)e N (0).

Remark 2: i) The positive number 9, in the definition, depends on €.
i) The condition 0 < |x— p| tells us that x # p, making it clear, that for

defining the limit of a function at a point, we do not consider the value of
the function at that point. This means, even if a function is not defined at a
point, the limit of the function at that point may exist. Recall that in
Definitions 1 and 2 we say that f is defined on a deleted

neighbourhood, N;(p) of the point pe R.

iii) If the limit of the function f at p does not exist, then we say that f
diverges at p.

We will now illustrate these points through some examples. For each of the
functions in the examples below, the domain is taken as the largest set of real
numbers for which the definition of the function makes sense. So, the domain
for the first two functions is R , while that for the third one is R\ {2}.

Example 1: If f(x)=K is a constant function, then show that lim f(x) =K.
xX—=p

Solution: For every positive number €, we need to find a positive number 9,
such that

0<|x—p|<8xe R=|f(x)-K|<&. .. (2)
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Now, |f(x)—K|=|K —K|=0<g forall xe R.

Hence, Eqgn. (2) is true for any value of xe R.

Thus, lim f(x) =K.
x—p

Example 2: If f(x)=2x+3and p = 3,then using your knowledge of
Calculus, you know that hn% f(x)=9. Find a value for 8, when £ =1, and

when € =0.1. Also we find the limit using Definition 1.

Solution: Let us first take the case when e€=1.

Now, | f(x)—9=[2x+3-9=2/x—3| <1will be true, if |x—3| < 0.5. So, if we
take & = 0.5, then Eqn. (1) will be satisfied for € =1. Next, if € =0.1, you can
easily work out that & =0.05 will satisfy Eqgn. (1).

Next we shall find the limit using Definition 1.

Let & >0 be given. We must find a § so that if 0<|x—3|<§, then
2x+3-9|<e
2x+3-9/=2x-3

So we set S:S.Then if xsatisfies 0<|x—3/<3,then
2x+3—9|:2|x—3|<28:2§:£

Hence the limit exists and it is 9.

* %%

x*—4

Example 3: If f(x)= » then f is not defined at 2. Show that the limit of

f at2is4.
Solution: Let & > 0 be given. We must find a § so that if 0<|x—2<§,then

|f(x) —4| <e. Tofind &, we proceed as follows:

Now, 2 does not belong to the domain of this function. And when
x #2,x—2#0. Therefore, we can divide by x—2.

a _24 —4‘ =|x+2—-4|=|x—2|. This will be less than,

Thus, |f(x)—4|=

2
xX—

whenever we choose §=¢.Then if [x—2| <8, then | f(x)—4|=|x-2|<5=e.

This shows that the required limit is 4.

*k %

Note: From the above examples, you must have observed that in each case,
we first find | £ (x) = 1|, and try to express it in terms of |x— p], to arrive ata

value of J.

Next we shall show that the limit of a function, if it exists, is a unique number.
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Theorem 1: Suppose a real-valued function f is defined on a deleted
neighbourhood, I, of a point pe R. Then f can have only one limitat p.

Proof: On the contrary, suppose [ and mare limits of f at p. Then by
Definition 1 for any € >0, there exists 8, > 0, such that
0<|x—p|<8,, xe I =|f(x)—I|<€/2, and there also exists §, >0, such that

0<|x—p|<8,,xe I =|f(x)—m|<e/2.
Suppose 6= min{J,,d,}.

Then, if we choose 0<|x— p|<8,xe I, we get that

l=m| =]l f)+ f)—m|<|f ()= 1| +]f(x)—m| <&

This means that we can make |l —m| less than any positive number €. This

can only be true if || —m| = 0,that is, if /=m.

So, if the limit exists, it is unique. [ |

We shall make some remarks now.

Remark 3: i) Definition 1 can also be expressed as follows:
lim f(x) =1, if Ve > 0,38 > 0, such that whenever the distance between x
xX—=>p

and p islessthand, and x belongs to I, then the distance between f(x)
and / is less than €.

We can also say, whenever x belongs to the deleted 6 neighbourhood 7 of
P, the function value f(x)belongs to the € neighbourhood of /or,

xe Nj(p)n 1= f(x)e N, (V).

ii) Another interpretation of Definition 2 is that If Lim f(x) # [, then the
xX—=p

statement ‘there exists € >0, such that for every 6 >0,
X€ N;,(p) NI = f(x)e N.(l)”is not true. This means, there exists
Xe Ng(p)ml, such that f(x)¢ N_.(I). Or, in other words, there is a member

x, # p of I, whose distance from p is less than J, but the distance of f(x)
from [ is not less than €.

Let us see example.

Example 4: Show that hm0 f(x)= lin})ﬁdoes not exist.

x> x=0 | x
Solution: Suppose that the limit does exist. Let us take ¢ =1and let 6 > 0be
arbitrary. Consider 0<|x—0/<8or 0<|x|< 3. Then there are two possibilities:

either 0<x<dor -6 <x<0.

If 0<x<d,then f(x)=1landif —d<x<0,then f(x)=—1. Therefore the right
hand limit is 1and the left hand limit is —1.

11
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Consequently the desired limit does not exist (refer theorem 1).

*k %

Next we establish the connection between the limit of a function and limit of a
sequence that you have studied in Unit 5. Our next theorem brings out the
connection between these two limits.

Theorem 2: Suppose a real-valued function f is defined on a deleted
neighbourhood, 7, 0f a point p. Then the following statements are
equivalent:

i) lim f(x)=1
x—p

i) If (x,) is a sequence in I that converges to p, then the sequence
(f(xn))converges to [.

Proof: We need to prove i) implies ii), and ii) implies i).

i) implies ii): Suppose lim f(x)=1[. Further, suppose (xn)is a sequence in
X—=p

I, which converges to p. We have to prove that (f(x,)) —=[. Let €>0,be
given. Then since lim f(x) =1, there exists ad > 0, such that
xX—=>p

0<|x—p|<dxel=|f(x)-I<e (3)

Then, since {x,} converges to p, for this positive number §,there exists a

natural number n,, such that

n2n0:>|xn—p|<8 (4)
Combining (3) and (4), we get

n2n,=|x, - p|<d=|f(x,) -l <e.

This shows that (f(x,)) — [,and we have proved that i) implies ii).

ii) implies i): Here we are given that for every sequence (xn)in I, which
converges to p,the sequence (f(xn )) converges to /. Then we have to prove
that Lim f(x)=1.

X—p

We assume that lim f(x) # [,then by Remark 2 (ii), there exists € >0, such
xX—p

that for every &> 0 there exists an element x e 1, such that 0<|x— p| <8, but

|f(x)-1|>€.
1

In particular, for every natural number n, (i.e. by taking 6 = —j there exists
n

x, € I, such that
0<|x,,—p|<l,but |f(x,) =1 >€.
n

This shows that (f(x,)) does not converges to p whereas the sequence (x,)
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converges to p. This is not possible (in view of the hypothesis).

Hence our assumption that lim f(x) # ¢ is not true. Thus ii)= ).
X—p

Hence the theorem. [ |

Example 5: Show that the following functions do not have a limit at 0.

i) fx)=1/x,x#0,

ii) f(x)=sin(1/x),x#0.
Solution: i) Consider the sequence (x,) =(1/n).Then (f(x,)) = (n). This
sequence does not have a limit, as it is unbounded. So, we have a sequence
(x,) = (1/n) which converges to 0, but the sequence (f(x,)) = (n) does not

converge. Therefore by Theorem 2 we conclude that limit of f(x) =1/ x,
x#0,as x — 0does not exist.

ii) In this case we are going to consider two sequences converging to 0.

. Both these sequences converge to 0 as

(x,)= [1j and (y,)=

n T
T 2n7t+§

n — o . [Please refer to Unit 5]

Now (f(x,)) = (0),the constant sequence, which converges to 0.

And f(y,)= sin(2nn+g) =1. So, (f(y,)) =(1),the constant sequence,

which converges to 1. Therefore, by Theorem 1 (on uniqueness of limits)
lin(l) sin(1/ x) does not exist.

* k%

Next we shall prove another theorem that relates existence of limit of a
function and boundedness of f,in a neighbourhood.

Theorem 3: Suppose a real-valued function f is defined on a deleted
neighbourhood, 7,0f a point pe R . If lim f(x) exists, then f is bounded in
X—=p

some deleted neighbourhood of p.

Proof: Suppose lig})f(x) =1[. Then for € =1, there exists & > 0, such that
O<|x—p|<dxel=|f(x)-1<1.

Therefore, 0<|x— p|<8=||f(x)|-|I||<]f(x)-1] <1.

Or, 0<|x—p|<8,xeI=|f(x)|<|]+1. This means f is bounded on
N;(p)N1,which is a deleted neighbourhood of p. [

So far we discussed how to compute limits of some simple functions at some
given points by directly applying the definition. Infact, using the definition to get
the limit is little tedious. Here are two theorems, which will help us get the
limits of many more functions, if they exist, more easily. The first one of these
is called the Sandwich or the Squeeze Theorem.

Theorem 4 (Sandwich or squeeze theorem): Suppose the real-valued
functions f, g and hare defined on a deleted neighbourhood, I, of a point

p € R. Suppose

13
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) fx)<gx)<h(x),Vxel
and
i) Jim f(x) =1 =1im A(x).
holds. Then lig})g(x) exists and is equal to /.

Proof: Since (i) holds, for any given € > 0,33, > 0,6, > 0, such that
0<|x—p|<8,xeI=|f(x)-]<e, and
0<|x—p|< d,,xel :>|h(x)—l| <E.
Let 8=min{3,,8,}. Then 0<|x— p|<8,xe I = -e< f(x)<l+¢, and
l—e<h(x)<l+e.
Therefore, 0 <|x— p|<8,xe I = 1—e< f(x) < g(x) Sh(x)<l+€.
This means 0 <|x— p|<8,xe I = |g(x)—I| <&, that s, lim g(x) =1 m
Theorem 5 (Algebra of Limits): Suppose the real-valued functions fand g
are defined on a deleted neighbourhood, I, of a point pe R . If }ng})f(x) =1,

and lim g(x) =m,then
X—=p

) }Cigll)(f+g)(X)=l+m-

i) ligll)(f—g)(X)ﬂ—m-

i) Tim fg(x)=Im.

iv) Piékf(x) = kI, where ke R.

VW If g(x)%0 forall xe I, and if Tim g(x) =1 0, then im(Z)(x)=1/m.
x—=p x—p g
vi) If f(x)=0forall xe I,then lim+/f(x) =+/I.
x—p

This theorem can be proved using the definition of limit, or by using Theorem
2, which is the sequential criterion of limit. You have proved a similar theorem,
about limits of sequences in Unit 7. Using that theorem, it becomes easier to
use sequential criterion to prove this theorem. For illustration, we shall use the
definition to prove i), and then use sequential criterion to prove the remaining.
Let us start proving i) to vi) one by one.

Proof: We shall begin with (i).

i) Since lim f(x)=1/,and lim g(x) =m,for any given €>0,33, >0,3, >0,
x—p x—p

such that
0<|x—p|<8,,xe I =|f(x)-1|<e/2,and

O<|x—p|<8,,xe I =|g(x)—m|<e/2.
Let §=min{3,,5,}.

Then 0<|x—p|<8,xe I =|(f +)®) - +m)|=|f(x)+ g(x)—1-m|
S|f(x)—l|+|g(x)—m|<£.
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Thus, we have proved that lim(f + g)(x) =1+ m.
X—p

i) Since lim f(x)=I[, and lim g(x)=m,by Theorem2if (x,) isa
X—p xX—p
sequence in I,such that (x,) = p,then (f(x,)) = and (g(x,)) = m.

Therefore,
(f—g)x,)=(f(x,)—g(x,) > [ —m.[Recall the results from the Unit

5 on limits of sequence.]
Thus ii) is proved.
i) Again, since lim f(x)=1[,and lim g(x) =m,if (x,) is a sequencein I,
X—p X—p

such that (x,) = p,then (f(x,)) = and (g(x,)) = m. Therefore,
(fe)x,)=(f(x,)gx,) —Im.

Thus, iii) is proved.

iv) We prove this exactly in the same way. We leave the proof to you. See
E1).
1

v) We first show that lim .
=rg(x) m

Since lim g(x)=m, forany given €> 0,39, >0, such that
x—p

]
5

:>|m|—|g(x)|£|g(x)—m|<

&
5

Again, since lim g(x) =m, for any given € > 0,39, > 0, such that
X—p

0<|x—p|<81,xe I:>|g(x)—m|<

n
g

=|g(x)|>

em’

O<|x—p|<82,xe I:>|g(x)—m|< S

Let &=min{3,,5,} .

;_i‘zlgu)—mldlg(x)—ml

Then 0<|x—p|<8,xel:>‘g(x) - ‘mg(x)‘ | 5 |<8

m

) 1 1
So, we have proved that lim =—.
=rg(x) m

Now using the product rule, iii), we conclude that lim [iJ(x) =l/m.

X—p g

vi) Since the limit of f exists at p, f is bounded on some deleted
neighbourhood of p . Further, f(x) >0Vx=12>0. (Can you prove this
statement? We have left it as an exercise for you. See E3).

We first consider the case when, [ =0.
Since lim f(x) =0, Ve > 0,35 > 0, such that
X—p

O<|x—p|<8,x€ I:>|f()c)|<82
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Then 0 <|x— p|<8,xe I:>‘Jf(x)‘<£.
Thus, lim+/f(x) =0.
x—p

Now, suppose [ > 0.
Since lim f(x)=1[,Ve > 0,38 > 0, such that
X—p

0<|x—p|<5,xeI:>|f(x)—l|<8\/7

Then 0<|x—p|<8,xe I:‘\/f(x)—\ﬁ‘: %

OISO

= €.

Jr V1~ W

Thus, lim+/£(x) =+/1 .

This result can also be proved by using the sequential criterion and Theorem
in Unit 7.

Hence the theorem. |

Using Theorem 5 we can easily find the limits of polynomial functions and also
some rational functions. Our next example shows this.

Example 6: Find the limits of the following functions at the given points.

) f(x)=4x’+3x>—7,as x - 3.

4_ 3_
i) o= 46x+15,asx—>1.

Solution: i) Now, lim x =—-3. Therefore, using Theorem 5, we get lim x* =9,

x—-3 x—-3

and lim x’ = —27. Again using Theorem 5, we get

x—-3

lim (4x° +3x> —7) = 4(=27)+3(9) =7 = —88.

x—-3

i) We shall first check whether the function satisfies the conditions stated in
Theorem 5. The function f is a rational function. The polynomial in the

denominator has two zeroes, 2 and —2 . So, we can choose a
neighbourhood of 1, on which this polynomial is non-zero. Further,

lim(x* —4) = -3 # 0. Thus the function satisfies all the required conditions

x—l

of Theorem 5 v). Therefore we have

4 2,3 lim(2x* —3x> —6x+15)
ljmf(x)zljmzx 3)(2 6x+15 =k : :i.
3ol 3ol x> —4 lim (x> —4) -3

x—l

*k %

As you have seen in Example 3, we can easily find the limits of polynomial and
rational functions.

Next we discuss the limits of another important class of functions, namely,
trigonometric functions.

You must have some idea of the limits of trigopnometric functions in Calculus.
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We start with the sine function, and prove that lim sin x =sin p. Then using the

X—p
trigonometric identities, and Theorem 5, we shall find the limits of the
remaining functions.

Example 7: Show that i) lim sin x = 0.

x—0
ii) limsin x =sin p.

X—>p

Solution: i) We are first going to show that

OS|sinx|£

x,Vxe R. ... (5)
Let us consider the case when 0 < x <1. Look at Fig. 1 in which OP =1.1In
triangle OPM, sin x = PM < (arc length PA) = x. Therefore, (5) is true in this
case.
Yy
| A

» X

M A
Fig. 2: Triangle OPM, Sector OPA

Now, suppose —1< x< 0. Let y=—x. Then 0< y <1, and therefore,
O£|sin y|£|y|.

This means, 0 < [sin(—x)| < |- x| = 0 < |-sin x| < |- { = 0 <|sin x| <|x].

Thus, we have shown that 0 <|sin x{ <

x,Vxe R.

This means,—x <sinx < x,Vxe R.

We know that lim x = 0., and lim(—x) = —lim x = 0.

x—0 x—0 x—0

Using the Sandwich Theorem, we can conclude that lim sin x = 0.

x—0

i) Here we have to show that lim sin x =sin p. For that, we have to show

X—>p

that Ve > 0,38 > 0, such that 0<|x— p| <8 = |sin x—sin p|<e. But,
2cos| x+p sin AP sin AP S2|x—p
2 2 2

<2
| 2

|sinx—sinp|:

<

17
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Therefore, if we choose §=¢, then 0<|x— p| <8 =|sin x—sin p|<e,
and it follows that lim sin x =sin p.

X—>p
*k %

Example 8: Show that lim cosx =cos p .

X—>p

Solution: Now,

X—p
2

So, if we choose 8=¢, then 0 <|x— p| < 8,=|cosx —cos p| < €.

cosx—cosp|= —2sin x;psin x;pISZSh’l

S2%|x—p|=|x—p|.

Thus, lim cos x = cos p.
X—)p
* %%k

Now using Examples 4 and 5, and the theorem on Algebra of Limits, we can
show that

i) limtanx=tanp.

X—>p

i) limcotx=cotp.
X—>p

i) limsecx=secp.
x—=>p

iv) lim cosec x =cosec p.
X—>p

Example 9: Show that lim il P

x—0 X

Solution: Consider the part of the unit circle in the first quadrant shown in
Fig. 3.
¥
A
|

‘> X

0 M A

Fig. 3: Triangle OPM, Sector OPA, Traingle OPT

Then PT is perpendicular to OP and PM is perpendicular to OA. Since
(PM) < (arclength PA) < (PT), we get

X 1 sin x
— < = cosx <

Smx COSXx X

sinx<x<tanx=1< <1.

Now taking limits as x — 0, and using the Sandwich Theorem, we get
sin x

lim

x—0 X

1.

*k %

18
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Example 10: Show that i) hn% sin(1/ x) does not exist
i) im xsin(1/ x) = 0.

x—0

Solution: i) Consider the sequence ( . This sequence tends to

2nn+n/2}neN
Zero as n — oo,

Now the sequence | sin 1/; =| sin 2mt+E =) —>1, as
2nm+ 7/ 2 2

n — oo,

On the other hand, if we take the sequence (%J , which also has limit 0,
nmn neN

we find that the sequence (sm(l/%n = (sin(2nm)) =(0) = 0, as
nm neN

n — o . Since these two sequences tending to zero have two different limits,
we conclude that lim sin(1/ x) does not exist.

X—0

ii) We know that sin(1/x) < 1. Therefore, 0 < |xsin(1/x)| < |].

Taking limits as x — 0, and using the Sandwich theorem we get
ling xsin(1/x) =0 . Fig. 4 shows the graphs of these two functions.

x*sin(1/x)
0.2

1 1sin(1/x)

0.11

-1

-0.2-

Fig. 4

You can see that the graph of sin(1/x) oscillates wildly between —1 and 1, as
x approaches zero. The graph of xsin(1/ x) also oscillates, but it is clear that
the amplitude of the oscillations is decreasing as x tends to zero.

*k %

Before we proceed further we want you to try the following exercises and see
if you have understood what you have learnt so far.

E1)  Prove Theorem 5 iv).

E2) If 8,¢,1, p, f have the same meaning as in Definition 1, find d in the
following:

i) f(x)=5x—-1Lp=2,6=0.5

i) fF()=x,p=4e=05 19
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i f(x):ﬁ,pzl,ezl.

E3) If f(x)>0 forevery x in adeleted neighbourhood, I,of p, and if
lim f(x) exists, then lim f(x) = 0.
X—p X—p

E4)  Using e— ddefinition, find ljnr%(x2 ~7x).

In this section you have seen various examples of limits of functions. In the
next one we are going to extend the concept of limits. We are going to see
how a function behaves as x — oo.

10.3 SOME EXTENSIONS OF THE LIMIT
CONCEPT

In this section we study the limit of a function as x tends to ccor — « and the
notion of one-sided limits.

Till now we have considered limits of functions as x tends to some real

number p But in many cases for instance Ja, "\ x etc. We need to study
the behavior of a function as xtakes larger and larger values, that is, as

x — o . Here is the definition:

Definition 3: i) Let f:(a,) > R, where ae R. We say that limit of f as
x— oois [,if Ve>0,3K e R, K >0,suchthat x> K =|f(x)—{|<e.

i) Let f :(—,b) > R, where be R. We say that limit of f as x — —o
is 1, if Ve>0,3K € R,K >0,such that x<—K = [f(x)—[|<e.

The following example will help you understand this definition.

Example 11: Show that i) hm(lj =0.

X—>oo\ ¥

ii) hm(inj =0,where ne N.

X—>00 x

1 1 .
Solution: i) Now, |f(x)—1|= ‘— - 0‘ = H . This will be less than €, if |x{ > L
X X €

1
So, foragiven £€>0, ifwetakeKzl,then x>K:>|f(x)—l|:‘—<£.
€ X
Therefore, hm(l) =0.
X—>o0 x

y 1 1 o ol a1
i) Here |f(x)—I=|— —0=|—]. This will be less than ¢, if |x"|> . So,

X X €

1/n’ xn <€t.

1
for a given € > 0, if we take K =—1 then x>K:>|f(x)—l|=‘—
€

Therefore, hm(inj =0.

x—oo\ X

20 *k %
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The results in Theorem 5 on algebra of limits holds for infinite limits also. Here
we shall state it without proof.

Theorem 6: Suppose real-valued functions f and g are defined on
(@,00),ae R. If lim f(x) =1, and lim g(x) =m, then prove that

) Hm(f+g) 0 =1+m.
i) lim(f —g)(x)=l-m.

iii) liﬁrgfg(x)zlm.

iv) £i£gkf(x) =kl , where ke R.

v) If g(x)#0 forall xe I, and if }Ci%rrplg(x)zm;to,theljir;f(x)zl.

vi) If £(x)20 forall xe I,then lim,/f(x) =A1. ]

X300 2

2 —
Example 12: Show that hm(3x2xl+5J =3.
X"+

Solution: We divide the numerator and denominator of f by the highest
power of x.

3—%+i2

Then we get f(x) = le Now, the limit of the numerator is 3, and that
1+—
X

of the denominator is 1. Therefore, the required limit is 3.

You must have noticed that we have obtained the limits obtained in i) and ii),
using the algebra of limits. We have proved the algebra of limits for limits as
x — pe R .Butitis also true for limits as x — o. We ask you to prove this
in E5).

* %%

You are already familiar with the evaluation of limits at infinity from your study
of BMTC-131 Calculus course. Now we give you few exercises to check your
knowledge.

E5)  Evaluate the following limits using only the definition.

=3

2
) lim—
xoe x° +2
i) lime ™ =0,where ais a positive real number
i)y lim =1
xoe et 41

E6)  Determine the following limits. Justify your answer.
. . X =2x+5
) lim—
e 3x” +6x°+7
+
iy lim o
¥ x +8in X

21
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Next we shall consider one-sided limits.
One-sided limits

You have seen that in finding the limit of a function at a point, we consider the
behavior of the function as x, the independent variable approaches that point.
Now, on a real line, a point can be approached in two ways: from the left, and
from the right (see Fig. 5). Both these approaches are taken into account while
finding the limit at a point.

© - ———=—
a X
—e —r— -—
X a
Fig.5

But, what if we consider only one approach at a time, say, we study the
behavior of the function as x approaches the point from the left. If we can
arrive at a limit, that limit will be called the left hand limit of the function at
that point. Similarly, if we consider only the right hand approach, and arrive at
a limit, that will be called the right hand limit of the function at that point.
These are also called one-sided limits.

We formally give the definition.

Definition 4: Suppose a real-valued function f is defined on a deleted
neighbourhood, I , of a point pe R. Then,

i) we say that /e Ris aright hand limit of f at p, if for every € >0, there
exists a § > 0, such that
0<x—p<8,xel:>|f(x)—l|<£ ... (6)

If [ Ris a right hand limit of f at p, we write lim f(x)=1.
xX—p

i) we saythat /e Ris a left hand limit of f at p,if for every € >0, there
exists a 6 > 0, such that
0<p-x<dxel=|fx)-l<e. .. (7)

If e Ris a left hand limit of f at p, we write lim f(x)=1.

xX—p
We have examples of functions, which do not have a limit at a given point, but
the left hand limit of that function at that point exists and the right hand limit
also exists. We discuss one such function below.

For example, let us consider the greatest integer function defined on R . Its
graph is shown in Fig. 6. Focus your attention on the graph around x=2. You
can see from the graph, that, for 1<x<2,[x]=1, andfor 2<x<3,[x]=2.

a4 J/=[:<]
2 | o3&
1 *—O
~ O » X
3 -2 A 1 1 2 3
—oO -2
—oO -3

Fig. 6: Greatest Integer Function
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So, as we approach 2 from the right side, [x] approaches 2. That is,
lim[x]=2.

x—2*

It is also clear that as we approach 2 from the left side, [x] approaches 1. That
is, lim[x]=1.

x—2"

Thus, for the greatest interger function, both the one-sided limits exist, but are
not equal at 2.

Do you realize that the limit of [x] at 2 does not exist? Indeed the lim [x]=2
x—>2Z

and the lim[x]=1and they are unequal.

x—2"

This is the situation for this function at every integer point. That is, at every
integer, both the one-sided limits of [x] exist and are unequal.

Let us see some more example.

Example 13: Let the function f be given by

3
X

,x<4
f(x)=<5x+12
\/;,x>4.

Evaluate lim f(x)and lim f(x).
x—4~ x—4*

Solution: Using the algebra of limits, we get that

3 3
x—>4" x—4~ 5x+12 20+12 32

By definition of f, lim f(x)= lim vx =+/4 =2.
x—4* x—4*

Thus, in this case the left hand limit and right hand limit both exists and are
equal.

*kk

The next theorem tells you how these different types of limits are related.

Theorem 7: Suppose a real-valued function f is defined on a deleted
neighbourhood, I, of a point pe R. Then the following are equivalent:

) lim f(x)=1
X—p
i) lim f(x)= lim f(x)=1.
xX—=p X—=p
Proof: Suppose lim f(x) =1
X—p
Then for every € >0, there exists a 6 > 0, such that

0<|x—p|<8,xe I =|f(x)-I <& This means

23
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0<x—p<dxel=|f(x)-I<eg, and

O<p-x<dxel=|f(x)-l<e.

Therfore, lim f(x)=/ and lim f(x)=1.
X—p X—p
Thus, i) implies ii).

Now, suppose the two one-sided limits exist and are equal to /. Then
for every € > 0,there exists 9§, >0, such that

O<x—p<d,xel=|f(x)-l<e

and there exists a 8, > 0,such that 0< p—x<38,,xe I = |f(x)—1|<e
If we choose §=min{3,3,}, then 0<|x— p|<8,xe I =|f(x)-I|<e.
Therefore, lim f(x)=1.

xX—=p

Thus, ii) implies i). u

Remark 4: Theorem 7 implies that the following holds

i) If any one of the one-sided limit of a function does not exists, then the limit
of the function does not exist.

ii) If both the one-side limits exist and are unequal, then the limit does not
exist.

We illustrate Remark (1) in the following example.
Example 14: Check whether the lim and lim f (x)exist for the following

x—0 x—0"

function
1if x>0

fx)={ 0if x=0
~1if x<0

What can you conclude about liII(l) f(x)?

Solution: Since f(x)=1forall x>0, lng f(x)=+1. Similarly since
f(x)=—1forall x<0,1j{nf(x):—l.
n
Since lim f(x) # lim f(x),]jll(l) f(x) does not exist.
x—1* x—l- x—

*k %

Next we shall a theorem which gives the connection between the limit of a
function and limit of a sequence.

Theorem 8: Suppose a real-valued function f is defined on a deleted
neighbourhood, I, of a point, pe R. Then the following are equivalent:

i) lim f(x)=1
x—p

i)y If (x,),x, > pVnis asequencein I that convergesto p, then the
sequence (f(x,))convergesto I. u

The proof of Theorem 2 can be modified to prove the above stated results.
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Theorem 8 is also useful in checking the existence of a limit of a function. The

following example shows this.
1

Example 15: Check whether the limit f (x) exists for the function f(x)= 20
as x —1.

Solution: We shall check whether the right hand side limit and left hand side
1

exist. Let us first consider the right hand side limit lim 2. Let € > 0 be given.

x—l1*

Then for any & > 0, we choose a positive integer M ,such that L <d.Then
0
we get 1+le]1,1+8[ and =2" 22" This shows that

n 1+——1
n

if n>M

0>

im g(x)does not exist. Therefore by Remark 4 the lm} f(x)does not exist.

x—1

*k %k

To refresh your memory, we repeat the exercises on one-sided limits that you
have done in BMTC-131.

E6) Find lim f(x),where f(x)is given by the following:

X—>00

) Jx -5
\/}+6’
i Jx+1

X

x>0

E7) Prove that

) lim (x—[x])=0
i) Lim M =1
-0t x

This discussion on limits of functions leads us to the definition of continuous
functions, which we take up in the next section.

10.4 CONTINUOUS FUNCTIONS

Continuous functions form a very important class of real-valued functions. A
continuous function can be thought of as one, whose graph is unbroken. So,
the greatest integer function is not continuous, since its graph consists of a
number of steps with gaps. But this characterization of continuity is not
precise. In fact, later you will come across a function, whose graph appears
unbroken, but which is not continuous. The precise definition of continuous
functions emerged in the nineteenth century through the works of
mathematicians Bolzano and Cauchy.

We shall now give the definition.

Definition 5: Let f be a function defined on a neighbourhood I of p.
Then f is said to be continuous at p, if Ve > 0,38 > 0, such that

25
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|x—p|<8,x€I:>|f(x)—f(pl<£.

You must have noticed that this definition is similar to the definition of a limit.
In fact a function is continuous at a point, if the limit of f(x) as x approaches
the point pis f(p), the value of the function at that point. So, a function is
continuous at p, if

i) f isdefinedat p,and
i) tim f(x)= f(p).

If a function is not continuous at a point, then we say that it is discontinuous
at that point.

If a function is continuous at every point of a set A, then it is said to be
continuous on A.

Our study of limits in the earlier section helps us decide about the continuity of
functions.

For example the function f(x)= x is continuous on R . The function
f(x)=1/xis not continuous at x=0, since itis not defined at 0. Butitis
continuous at every point of its domain. The function f(x) =sin x is
continuous on R . The greatest integer function f(x)=[x] is not continuous

at integers, since we have seen that this function does not have a limit at
integer points. But it is continuous on R-7Z.

The sequential criterion for limits also helps to formulate a similar criterion for
continuity at a point:

We shall prove the following theorem.

Theorem 9 (Sequential definition for continuity): Let f be a function
defined on a neighbourhood I of p. Then f is continuous at p if and only if
for every sequence (x,) of A, converging to p, the sequence (f(x,))

converges to f(p)

Proof: Let us suppose that f is continuous at p.Then lim f(x)= f(p). Given
X—p

g >0,there exists a § > 0 such that |[x— p|< 8 = |f(x) - f(p)| <&
If x, is a sequence converging to 'a’', then corresponding to & > 0, there exists

a positive integer M such that |x, —a| < 8for n = M.

Thus, for n> M , we have < d which, in turn, implies that

X, =P
|f(x,)— f(p)| <&, proving thereby f(x,)convergesto f(p).

Conversely, let us suppose that whenever x, converges to p, f(x,)converges
to f(p). Then we have to prove that f is continuous at p.For this, we have
to show that corresponding to an € >0, there exists some & > 0 such that

| f(x)— f(p)| < & whenever |x— p|<&.

If not, i.e., if f is not continuous at p,then there exists an € > 0 such that
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whatever § > 0 we take there exists an x;such that

|xs — p|<8but | f(x5) - fa) 2e.

By taking 6 =1,1/2,1/3,...in succession we get a sequence {x, }, where
x, = xzfor =1/n, such that |f(xn)—f(p)| = €. The sequence {x, } converges
to p.For, if m >0, these exists M such that 1/n <mfor n> M and therefore

X, — p| <mfor n> M .But f(x,)does notconverge to f(p),a contradiction to
our hypothesis. This completes the proof of the theorem. m

That brings us to the next theorem about the algebra of continuous
functions.

Theorem 10: Suppose f, g,k are functions defined on an interval I of a point
p.If f,g,h are continuous at p, and if ke R, and h(x)=0 forall xe I,
then f+g,f—g, fe,f,f/h areall continuous at p .

Proof: We prove the continuity for f + g, and leave the rest to you.
Since f is continuous at p, Ve > 0,33, >0, such that

= p| <8, = |- F(p)| < g

Similarly, since g is continuous at p, for this same € > 0,35, >0, such that
lx—p| <8, =|g(x)—g(p) <§-

If we choose & =min{3,,8,}, then it follows that

= p|<8=|(f+ )X - (f +2)(p)
=|f (@) +g(x) - f(p)—g(p) <|f()— f(p)|+|g(x)-g(p)| <t

Thus, f + g is continuous at p .

In this proof we have used Definition 5. We can also prove it using the Algebra
of Limits:

Now, since f and g are defined at p, f + g is also defined at p.
Further, lim(f + g)(x) = lim(f (x)+ g(x)) = lim f (x) +lim ¢ () = £ (p) + 8(p).

since f and g are continuous at p .
Hence we have proved that f + g is continuous at p. [ |
Theorem 11: If £ is continuous at p,then |f] is also continuous at p.

Proof: Since f is continuous at p, Ve > 0,38 > 0, such that
lx—p|<8=|f(x)- f(p)<e.

Now, [ () =|f(p)]| <] £ (x)= f(p). Therefore,
= pl<8=|r ol -|r | <lreo-rp)<e.

Thus, we have shown that |f] is continuous at p. |

27
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We have seen earlier, that f is continuous at p, if

a) f isdefinedat p,and
b) Tim f (x) = f (p).

So, even if one of a) and b) is not true, f cannot be continuous at p.
Sometimes, f is not defined at p,but its limit exists at p. In such a case, we
can define a new function, which is equal to f(x) at all points except p,and
which takes the value %f(x) at p. This new function is then continuous at

p.Butif lim f(x) does not exist, then we cannot assign any value to f(p) to
xX—=p

make the function continuous. Our next example will illustrate this point.

1 1 .
Example 16: Check the functions, a) sin(—) and b) xsin(—j for continuity
X X

at point 0.

1
Solution: a) This function is not defined at x=0, and h‘msin[j does not

x—0 X

exist, as we have shown in Example 10. Therefore, the function is not
continuous at 0.

[Look at the graph of this function shown in Fig. 4. It does not seem to have a
break at x = 0.Looks are deceptive! The function is discontinuous at x =0.]

b) This function is also not defined at 0. But since

()
xXsmf —
X

lim x sin(lj =0, So, we define a function h as

x—0 X

0< < |x|, by applying the Sandwich Theorem we can say that

h(x)= xsin(lj, x#0,
X
=0,x=0
Then h is continuous at x =0.

Note that it is also continuous at every other pointin R .

*k %

Both the functions in this example are discontinuous at x = 0.But the
discontinuity in the second one is removable in the sense that we can redefine
the function at x = 0to have continuity. We shall discuss about the types of
discontinuities little later.

Given two functions f and g, we can define their composite function f o g if
the range of gis a contained in the domain of f.

The next theorem discusses the continuity of composite functions.

Theorem 12: Let f be a function defined on a neighbourhood, I, of pe R.
Let f be a function defined on a neighbourhood, J,of f(p), suchthat J isa
subset of the range of f . If fis continuous at p,and if g is continuous at
f(p), then the composite function f o g is continuous at p.
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Proof: Since g is continuous at f(p), Ve > 0,3n > 0, such that
k= f(p)<n.xe J =g -g(f(p)<e.

Now, since f is continuous at p, for this > 0,33 > 0, such that
lx—p|<8xeI=|f(x)- f(p)|<n.

Combining the two we can say that Ve > 0,30 > 0, such that
[x—p|<dxel=[f()-f(p)<n f(x)e ] =|g(f(x)-g(f(p)<e.

Thus, f o g is continuous at p. u

Alternate Proof: Let (x,)be a sequence inI,such that lim x, = p. Then the

x—p
sequence f((x,)) convergesto f(p) since f is continuous at p. The
sequence (f(x,)) isin J. Now, since g is continuous at f(p), the sequence

(g(f(x,))) will converge to g(f(p))

Therefore, we conclude that f o g is continuous at p,using sequential
criterion. =|

Algebra of Continuous Functions tells us that if f and g are functions
continuous at a point p, then f + ¢ and fg are also continuous at p.The
converse of this is not true. That is, if f + g is continuous at p then f and g
need not be continuous at p. Same is the case with fg. We now give you
some examples to support our argument.

Suppose f:R—> R, f(x)=0,if xe[01] and f(x)=1,if xe[0,1].
And suppose g:R — R, g(x)=1, if xe[0,1] and g(x)=0,, if x& [0,1].

Both these functions are discontinuous at 0 and 1. But

f+g:R>R,(f+g)(x)=1which is continuous on R .
fg:R— R, (fg)(x)=0,which is also continuous on R .

Using Theorems 8 and 9, we can decide on the continuity of many more
functions. Take the example of f(x) = Jsin x . This function is continuous on
its domain, because we can write it as a composite of two functions, ¢ and #,
thatis, f =goh,h(x)=sinx,g(x)= \/; Since both g and & are continuous
functions, f is also continuous. Here note that f will be defined only for
those x, for which sinx >0.

So far you have seen that a function f is discontinuous at a point if either the
limit of f exists at cand is not equal to f(x) or the limit does not exist at the

point c¢. Accordingly we categorise the types of discontinuities in the following
way.

1. Removable discontinuity: A function f has removable discontinuity at a
point cif lim f(x)exists and is not equal to f(c) . Such discontinuity can

be removed by assigning a suitable value to the function at x =c.

29
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2. Discontinuity of the first kind: When hm f(x)and f(li}n f(x)exists
and are unequal, then we say that f has discontinuity of the first kind.
3. Discontinuity of the second kind: When neither lim f (x)nor

lim f(x)exists, we say that f has discontinuity of the second kind.

f(x)—>c+
Let us see some examples.

Example 16: Examine the types of Discontinuity of the functions at x = 0.

sin 2x
. , if x#0
) f()=9 x
3 ,if x=0
i O x—|x,if x#0
i x)=
2 ,1if x=0

Solution: Let us try one by one.

i) Note that here

sm2xx2:2'

lim f(x) =lim i

But f(0)=3.Therefore f is not continuous.

Since the hng f(x)exists and is not equal to f(0),if has a removable

discontinuity at 0. Here the discontinuity can be removed by redefining the
function f at 0 by 2 instead of 3.

i) We have lim f(x)=lim A
and
lim f(x)=lim >~ =0.
x—0+ x—0+ X

Since both the left and right limits exists and are unequal, the function has
discontinuity of the first kind.

*k %

Example 17: Let f be the function defined on ]—-1,1[ by

x, if x=lfor nel

fx)= n

0, otherwise

Show that f is continuous at 0 and discontinuous at all other points.

Solution: To determine where in the interval 1—1,1[ f is continuous, we first
take any point ¢,0 < ¢ <1and not of the form 1/nfor ne N. Then exists a
unique interger n,such that 1/(n, +1) <c <1/n,. On the neighbourhood



Unit 10

A/(n, +1),1/n,) of c, f(x)=0,and so Mf(x)=0=f(c).Thus fis

continuous at c;and similarly f is continuous at cfor any ¢ < 0 and not equal
to 1/nfor ne Z.

On the other hand, if ¢ =1/nfor some ne N, f(x) = 0on the deleted

neighborhood ! , ! —{l}ofl,so lim f(x)=0#1/n=f(/n);
(n+1) (n-1 n n x=1/n

and similarly for ¢ =—1/nfor some ne N.The function is discontinuous at the
points x=1/n,ne Z—{0}.

Consider now the point 0. Any neighborhood of 0 contains points for which
f(x)=0and points for which f(x) # 0.Nonetheless, for all x we have

0<|f (x)|<| x| so it follows that lim f (x)=0= f(0).Hence, f is continuous
at 0.

Try these exercises now. You have already done similar ones in the course
Calculus BMTC-131.

b

2
E10) If f:R — R,defined by f(x) = {3 , Is f continuous at

i) x=1,ii) x=1.57

2_
E11) Let f be defined for all xe R by f(x):x—6);+—9,x¢3,f(3):5.ls

f continuous at x=3?Is f continuouson R ? If f has a
discontinuity, is it a removable discontinuity?

If so, how do you redefine f to make it continuous?

E12) Use the sequential definition of continuity to show that the function

f(x)=|x|, is continuous on R?
x—1, x<0
E13) Suppose f is defined by f(x)=<2x, 0<x<4.Is fcontinuous on
3x—4, x>4

R ? What are the types of discontinuities? Justify your answer.

E14) Examine the following functions for continuity onRR . Also, draw the
graph in each case and see if it is broken or not:

x+1,x<1
a) f(x)=4x>1<x<2

x+2,x>2

x—1,x<0

b) f(x)=| x> —1,0<x<2

,X>2

4(x-1)

31
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In the next section we shall discuss uniform continuity.

10.5 UNIFORM CONTINUITY

In this section we introduce a stronger form of continuity known as “uniform
continuity”. You will learn that this type of continuity has a number of important
properties.

Let us recall the definition of a continuous function at a point p.

We say that a function f, is continuous at p, if Ve > 0,33 > 0, such that
|x—p|<5:>|f(x)—f(p)|<£.

Here, a positive number € is given to us and we find 9. This d depends on €,
and it can also depend on p. Let us consider two functions, f(x)=3xand

g(x) = x”. Both these functions are continuous at 1 and at 10.
Suppose € =0.1is given to us. Let us find the & for f at 1 and 10.

At p =1, we need to find §, such that
[x=1<8, =[Bx=3|<0.1. Now [3x-3|<0.l1e 3x—1|< 0.1 < |x-1<0.1/3.

Thus, we can take 6, =0.1/3.

Similarly, at p =10, we need to find §, such that|x —10| <8, = [3x =30/ < 0.1.
Now [3x—30/< 0.1 3x—10/<0.1 < [x—10/<0.1/3.

Thus, we can take 6, =0.1/3.

Here we find that we get the same d at both the points. In fact, you can see
that we will get the same value of d at all points of R . So, for this function, the
value of ddepends only on the value of €, and noton p.

Now let us take the next function, g(x) = x*. Again, at p =1 we need to find
8 such that [x—1/ < 8, = ‘xz —1‘ <0.1.

Suppose 9, <1.

Then, [x—1] <8, <1=0<x<2

Now |x* =1 < 0.1 if [x+1x—1<0.1
If |x—1|<—0'1 U
x+1] 3

A
Thus, we can take 9, :%.

Similarly, at p =10, we need to find d, such that
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[x=10/<8, =[x ~100[<0.1.

Again, if we take 9, <1
then [x—10[<3, <1=9<x<1l

Now [x* =100{< 0.1if [x+10[x—10[<0.1

0.1 _01
[x+10] 21

1
Thus, we can take 9, = % :

That is, if [x—10]<

In this case 6, and 8, are different, and depend on p =1 or 10.
You can see this in Fig. 9.7.

1
Actually, 0= 01
21

will work for both points. But then, it does not work for p = 20.

So, it is not possible to find a &, which works for all points in the domain. Here
we say that the continuity is not uniform.

This leads us to define uniform continuity of functions.

Definition 6: Let f: S — R, where S cR.Then f is said to be uniformly
continuous on S, if for everye > 0, there exists a 6 > 0, such that, if x and y

are any two points in S, with |[x— y[< &, then |f(x)— f(»)|<€.
The function that we considered earlier, f(x) = 3xis uniformly continuous on
R, whereas f(x)=x"is not uniformly continuous on R.

Note that we talk of uniform continuity on a set, whereas we talk of continuity
at a point also. Can you see from the definition that a function which is
uniformly continuous on a set is continuous at every point of the set? The
converse of this statement is not true as we observed in the case of the

function f(x)=x’,discussed above. We now give another example to support
our statement.

Example 18: Show that the function, f: ]O,oo [%R, flx)= l.is continuous
X

on its domain ]0,co[, but not uniformly continuous there. Whereas the function
is uniformly continuous on [c,o[ for any fixed ¢ > 0.

Solution: Using the Algebra of Continuous Functions we can say that f'is
continuous on ]0,oo[. But, if we take € = 0.5, we cannot find a suitable 0,
which works at all points of its domain. Because, for any & > 0, we can find

LU |<6,butthen

ne N,such that =
n n+1| |n(n+1)|

‘f@_f(nilj

Therefore, f is not uniformly continuous on ]0,o[.

:|n+1—n|:1>0.5
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1 .
Next we shall check whether the function f(x) =—is uniformly continuous on
X

[c,oo[ for any fixed ¢ > 0.To show this, take any € >0, and consider

11 1] [ —x
|f(0) = fX)=|-——| ="
X X XX
For xand x">c¢>0,we have 0<1/x<1/¢,0<1/x"<1/c,and
’ '~ 1 ’ . /)
£ () = f ()| =71 < S|~ <eiff |x— x] < e
XX C

Thus, given €>0,we can use & = c’¢. This is true for any fixed ¢ > 0. Hence
f is uniformly continuous on [c, ], for any fixed ¢ > 0.

*kk

Remark 6: We can explain the results of uniform continuity in the earlier
example geometrically as given in Fig. 7 below:

1\
A 2

VE(Z){\_

Ve(z){¢ It
<& » X & » X
0~ neighbourhood d- neighbourhood
(@ gx)=1/x (x>0) (b) g(x) (x>0
Fig. 7

You may note that for any subinterval I of fixed length 6 > 0in [c,oo[,the
length on the y -axis of the interval f(/)is less than or equal to the length of
the interval f([c,c + d]) (see Fig. a), by the continuity of f at cwe can make
the length of f([c,c + &]) small by restricting 8.

However, this argument does not extend to all of (0,).For 6 > 0, the length
of £((0,8])is not finite , and in particular, for any € >0 and § > 0 we can find a
&’,0 < & < 8, such that the length of the interval f([&’,8]) > €.(see Fig. 7(b)).
So, continuity does not guarantee uniform continuity, in general. The following
theorem tells us that under certain extra conditions a continuous function is
also uniformly continuous.

Theorem 13: If a real-valued function f is continuous on a closed and
bounded interval I in R, then it is uniformly continuous on /.

Proof: We prove this by assuming the contrary. If f is not uniformly
continuous on /,then taking the negation of Definition 5, there exists some
€ > 0,for which no & works. That is, for every & >0, we can find x and y

belonging to 7,such that |x — | < 8, but |f(x)— f(y)|>&.In particular, for
<1/n, but

every ne N, we get x, and y , such that

|fx) =)

xl‘l_yl‘l

> €.
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Now, (x,) and (y,) are sequences in I,and therefore, are bounded
sequences. Therefore, by Bolzano Weierstrass theorem, they have
convergent subsequences, say, (xnk) and (ynk ) Both these sequences will

converge to the same limit, say, x,.

Since the function, f, is continuous, the sequences (f(xnk )) and (f(ynk ))
should converge to the same limit. But this is not possible, since
f(x,)=f(y,)|>¢€.Hence f is uniformly continuous on 1. u

The condition in Theorem 10 is not necessary for a function f to be uniformly
continuous as shown in the second part of Example 12. Note that the function
which is continuous on the interval [c,0),c > Ois uniformly continuous. But the

domain of this function is neither bounded nor closed.

So the condition in Theorem 10 that the domain to be a closed and bounded
interval is not a necessary one condition for a continuous function to be
uniformly continuous. It is only sufficient.

Let us now take a further look on the function, f :]O,oo[eR, f(x)=1/x.

1 |
We observe that the sequence, (j in ]0,oo[is a Cauchy sequence, its image
n

. 1 ¥
sequence. But under the continuous function f(x)=— given by
X

[f[ljj = (n)is not a Cauchy sequence. But this never happen with a
n
uniformly continuous function. |

In the next theorem we prove that the image of a Cauchy sequence under a
uniformly continuous function is Cauchy.

Theorem 14: If a function, f,is uniformly continuous on a subset S of R, and
if (x,)is a Cauchy sequence in S, then the sequence (f(x,))is a Cauchy
sequence in R.

Proof: Suppose € >0 is given. Then, since f is uniformly continuous on S,
there exists 8 > 0, such that, if x and y are any two points in S, with

lx—y[< 8, then |f(x)— f(y)|<e.

Now since the given sequence is Cauchy, for this 6 > 0, there exists n, e N,
such that n,m>n, = |xn —xm| < 9. Thus,

n,mzn, = |x, - x,|<8=|f(x,)- f(x,) <& which means that the sequence,
(f(x,)) is Cauchy. -

See if you can solve these exercises now.

E16) Show that the following functions are not uniformly continuous on their
domains:

) f(x)=x"on [0,oof
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E17)

i) g(x)=sin(l/x) on [0, .

Show that f(x) = " ! - is uniformly continuous on [1,2].
+

That brings us to the end of this unit.

10.6 SUMMARY

In this unit we have covered the following theory behind the concepts of limit
and continuity, that you were acquainted.

A new concept, that of uniform continuity was introduced.

1.

Discussed the theory behind the existence of limit and continuity that you
were acquainted with in the course calculus.

Explained the logic behind the rules for finding the sum product and
quotient of limit.

Some other forms of limits — one sided limits, infinite limits are also
discussed.

We have proved the sequential criterion for continuity and other rules for
finding sum, product of limits.

We introduced a new concept, that of uniform continuity. We have
discussed the three different types of discontinuity and explained how
this concept is different from continuity.

You have seen that every uniformly continuous function is continuous,
but the converse is not true. But, if a function is continuous on a closed
and bounded interval, then it is uniformly continuous there.

10.7 SOLUTION AND ANSWERS

E1)

E2)

Let ke Rand lim f(x)=1[. We have to show that lim kf (x) = kl.
X—=p

x—p
Let (x,)be a sequence such that x, — xas n— p.Then since the
limit exists, f(x,) —/and n—> co. Therefore by Theorem ? Unit 5
kf (x,) = kl as n—oo. This is true for all (x,)such that x, — x.
Therefore by Theorem 2 stated earlier we get that lxig},f(x) =kl.

Hence the result.

) £=limGx-11)=1
5x-11-1<0.5
=[5x-12/<0.5

:SX—I— <0.5
5

=x——<0.1

= <0.1

x—2—2
5



=|x-2-04<0.1
=]x-2/<0.5
:|x—p|<6
=6>0.5
i) 9341\/_:2
€=0.5
Given € > 0,we need to find &> 0, such that

0<|x—4|<5:>‘\/;—2‘<8=0.5
‘\/;—2‘<8

:>—€<(\/;—2)<8
= 2-¢)’<x<(2+¢)’
= (2-e)’<4-8and 4+8<(2+¢)’
=8<4-(2-¢)’and §<(2+¢)° -4
= §=minf4—(2-¢)’,(2+¢)’ -4}
€=0.5
The maximum value of d =min{4—2.25, 6.25—4}
=min{1.75,2.25}

=1.75
Therefore d <1.75.

i)y Iim——=—, e=1
=1l+x 2

X 1

By definition, £>0,8>0, 0<|x—1<8=
I+x 2

<€

X 1

1+x 2

=>2e(l+x)<x—1<2e (1+x)
=>2e(l+x)+1<x<2e(l+x)+1

= 2e(l+x)+1<1-93,1+0<2e (1+x)+1
=0<2e(l+x)and §<2e€ (1+x)

=0<2e(1+x)
=8<2. e=1, x—1
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E3) On the contrary, we assume that L <Owhere L=1lim f(x).Let €>0be
xX—=>p

such that L+¢=0.Then given € >0 3 6> 0such that
0<|x—p|<8=|f(x)-L|<e
ie. L—e< f(x)<L+¢e=0.

This is a contradiction to the assumption that f(x) >0in a added
neighbourhood of p.

E4)  We'll take these one by one.
i) Let €e>0be given. Then

6 , /6
<—2<e|fx> —.
2l x €

Thus, given € >0, we take G:\/Eso that
€

6

x*+

3x2
2x _3‘
x +2

2

-3

x>G=|— <e

x 42

2

This shows that lim 5 =33

xp=x” +2

i) Let ebe suchthat 0<e<1. Then

L
|e“”‘ < eif and only if — < ™. This means that |e“”‘ <¢ if and only
€
1
if x> 1 In—
a €

Thus, lime ™™ =0when a > 0.

X—>00

i) Let ebe suchthat 0<e<1.Then

* 1
| ¢ -1 = ! <i<e,wheneverx>1n—
e’ +1 e*+1 e €
Thus,x>G:1nl:> —li<e

€ e’ +1
This shows that lim =1.
xoe o ]

1
E5) i) We shall prove that lim —=0.

X0

To find lim (lj,we put x=—t.Then as x — —oo,t — 0. Then

X——o\ X
l—O‘:l:izlzl,ifwetakewo.Now 1<e,ift>l.
X x| |—t| |t] ¢t t €

1 1] 1 .
So, if we choose K =—,then x>K:>|f(x)—l|:‘—‘:—<e. This
x| 1

38 €
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prove that lim (lj =0.
X

X—y—o0

Alternatively, we write the given expression as

x> =2x+5
3x° +6x7+7

Since lim — ! =0, we get that hmi—Ofor n>lalso and

X—oo x X—>00 x

T P -2x+5 _1
=3y +6x2+7 3

i) The given expression can be written as

COS X
1+

. X+cCcosx .
lim —— =Ilim X
x— x4+ S1N X X—>00 S x

1+

X
sinx |s1nx| L

We shall prove that lim

x—eo  x

PR
. sinx

X—>00 X

=0.

Similarly lim <>

X—>00 X

=0.

X+cosx
Hence lim ——— =1.

X x+8in X

E6)  We first note that for f(x)=\/; x>0, hm =0.

X—>00 ‘I

This follows from the algebra of limits.
5

i) \[;__5 :]:_:Z;
Ja+6 1+\/6_,
X

.'.lim\/;+5=1for x>0.
e Jx+6

Vx+1

x>0

-t tm{ 7

=0

E7) i) Wefirst note that as x — 4 from the right, [x] — 4.
.. Using the algebra limits
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E14) i)

Iim[x—[x]]= hmx Iim [x]

x—4* x—4+

X
We first note that for x>0, u =1.
X

X
Therefore as x — 0from the right, then u approaches 1.

*l_,
. lim—
x—0+ X

To prove this, assume the contrary. Then, for € =1(again, an
arbitrary choice; any fixed € > 0 would work here also) there exists

8 > 0 such that x,x"e (0,

’ :‘xz
To find an xand x” that violates (1), we should consider xand x’
large. In particular, let x=1/8and x"=1/8+8/2.Then

=98/2,and

x| =[x+ x|x—x] <1 . (1)

x,x €0,
2 8)6

29
|f(x) f(x)|—|x+x||x x|—(g §j§>g.§:1,

contradicting (1).

We will now prove that f is not uniformly continuous function on
10,1[.

Let 0 <e<1land &> 0be any positive number.

1 1
Take x=—,y=————.Then [ f(x)— f(3)|=1.
nm (nm+T7/2)

So, for 8 > 0, choose nso that x < 8.Then, x, y€]0,9[,implies that
=< 8but [f()- f(y)|=1>¢

Hence f is not uniformly continuous.

E15) The function is a continuous on the bounded closed interval and
therefore uniformly continuous.

40
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11.1 INTRODUCTION

We are sure you are quite familiar with differentiation. In Calculus you have
done extensive practice of differentiating functions. You also know that this
branch of Mathematics was discovered while trying to solve the problem of
finding the tangent to a given curve. Differentiation also helps us in the study
of moving objects. In fact, the derivative measures the rate of change of the
function under consideration. As a result, it has proved to be an excellent tool
to study our ever changing world.

In this unit we shall concentrate more on the theoretical aspects differentiation.
We shall also approach the proofs of some theorems in a slightly different
manner, as compared to the proofs in Calculus. We hope that this new
approach better prepares you to understand advanced level mathematics.

In Sec. 11.2 we define the derivative of a function and establish the
connections between the concepts of differentiability and continuity both
theoretically and graphically. The geometrical interpretation of a derivative is
also covered. In Sec. 11.3 we prove some basic results concerning
differentiability of sum, product, quotient and chain rule of functions.
Afterwards in Sec. 11.4 we focus on inverse function theorems for
differentiability.

As the name suggests, these theorems consider whether a property owned by

a function is carried over to its inverse function. Before we prove the inverse

function theorem for differentiability, we prove the inverse function theorems

for continuity. Some more theorems on continuity which are used for proving

theorems on differentiability are also discussed here. These theorems are

important in their own right. 41
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Continuity and Differentiability of Functions

Objectives
After reading this unit, you should be able to

¢ Define the derivative of a function at a given point, and find it, if it exists;

e Show that a function differentiable at a point is also continuous at that
point;

e Write and prove the formulas for the derivatives of sum, difference,
product, quotient, scalar multiples of differentiable functions;

e State and prove the rule for the derivative of the composite of two
differentiable functions;

e State and prove Bolzano Weierstrass Theorem, Intermediate Value
Theorem and Inverse Function Theorems for continuity and
differentiability.

11.2 PRELIMINARIES

We recall the definition of derivative of a function with which you are familiar
from the Calculus course.

Definition 1: Let f be a real-valued function defined in an interval, 7 , and
pel.If heR andif

i L2+ M= f(p)

h—0 h

. (1)

exists, then we say that f is differentiable at p,and lim

h—0

flp+1)= f(p) o
h
called the derivative of f at p.

On replacing p+hby x,the Eqgn. (1) becomes

i L= F(P)

X—>p x— p

Note that we will use either Eqn. (1) or Eqgn. (2) while considering the
derivative of a function.
If

The derivative of f at p is denoted by f’(p), or Z—(p).
X

If the point p is the left end point of 7,then the limit in the above definition will
be the right-hand limit. If p is the right end point of 7, then the limit will be
the left-hand limit.

i L2 D= 1P

h—0

Thus, f'(p) , if the limit exists. This f” then defines a

new function at all those points at which f is differentiable. It is called the
derived function of f.

You may recall from the calculus course that the motivation for this definition
comes from geometry. You might have some intuitive idea that a tangent line
is a line which intersects a curve only at one point. To define such a line we

should know the slope of the line. To estimate this, we consider the family of
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lines called secant lines which passes through the points (x, f(x))and
(p, f(p))for xnear p.(See Fig. 1).

A

feo)

.
/
W

Fig. 1: Secant lines approaching the tangent line.

The slope of line through (x, f(x))and (p, f(p))is M As x
xX—p

approaches p,in the limiting case, the line becomes a tangent line and then

the slope of the tangent line should therefore be hmM
X—)[) x— p

f’(p)if the derivative exists. Thus we have the definition of the tangent line as
given by the following:

which is

Definition 2: If the derivative f’(p)exists at some point p,then the line
passing through (p, f(p))and having the slope f’(p)is defined to be the
tangent line to the curve y = f(x) whose equation is given by

y=f(p)=f(p)x=p).
You are already familiar with calculating the derivative of a function using

Definition 1 from the calculus course. Here we shall give some examples to
familiarize you with the definition.

Example 1: Let f:R — R be the function defined by f(x) = x*. Find the
derivative of f ata point pe R.

Solution: Let p € R be fixed. We first note that the function f is defined an
open interval containing p.Using Eqgn. (1) of Definition 1, we consider the limit

1]-mf(19+h)—f(1v):h.m(10+h)2—102

h—0 h h—0 h?
— lim p2 +2ph+h2 —p2
h—0 h
=lim(2p+h)
=2p.

This shows that the limit exists and the derivative is f'(p) =2p.
Alternatively using the Eqn. (2), of Definition 1 we get that

_ 2 _ 2

lim L =fP) . X =P

X=p X—p =P X—p
=limx+p=2p.

X—>p

Differentiation

43
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This shows that the limit exists and the derivative is f'(p) =2p.

*k %

Replication of the method used above, will make the calculation of the
derivative of f(x) = x"easier.

Example 2: Find the derivatives of the following functions, wherever they
exist.

i) f(x)=\/3x—5,x>§,

ii) f(x)=%,x>0,

X
iiiy f(x)=x"",x20

f+h)— f(x) _A3Gr+h)=5-+3x-5
h h

_ (\/3(x+h)—5 —\/3x—5)(\/3(x+h)—5 +\/3x—5)
. h(\/3(x+h—5)+\/3x—5)
- (3(x+n)-5)-(3x-5)
hl3(x+h)=5 +43x-5)
3
3+ 7)=5+3x-5)

Solution: i) Now,

lim _
Therefore, -0 GO €Y = lim 3
h =0 ([3(x+h)=5 ++3x-5)
_ 3
24/3x -5

Thus, the derivative of this function exists at all points of its domain.

f(X+h)—f(X):1£ 1 _Lj

h MNx+h x
_1([—@}
" h Jxdx+h

ii) Here,

:%(x/;\/xi;(%fz/x+h)j

:(\/;\/x+h(:/1;+\/x+h)j

Therefore, lhln}) f(x+h2— ) _ lim

-1
h=0 (\/;Jx+h(\/;+\/x+h)j
1

44 - 2)6\/;
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, -1
Thus, f (x)=ﬁ forall x>0.

i)  When x=0, f(X+h2—f(x) :%((OM)M_O)

1
- h3/4 ’
and the limit of this does not existas 4 — 0.

The derivative of the given function does not exist at x=0.

When x>0, f(“h; f(x)_%(( + )" = x4

( )”4—x”4)((x+h)”4 1/4)
h((x+h)”4 1/4)

Jxrh—vx
h((x+h)”4 1/4)
(x+h)-x

h{(x +h”4+x”4)(\/r+\/_)

| —

((x+n)" +x”4)(M+\/;)

m £ e+ h) - £ h.m[ I j
h =0 | ((x+h)"* +x"* Jx+h ++/x)
I
- 4x1/4\/; - 434

*k %

Therefore,

The next example illustrates how to compute the equation of a tangent to a
given curve.

Example 3: Find the equation of the tangent line to the graph of the curve
y=f(x)=x"+6x—2at (3, f3)).

Solution: We first find the slope of the tangent line. It is given by

F3) = i L0 -f3) :hmx3+6x—2—43

x—3 x_3 x—3 x—3
- 2 —_
:ljmx P +6x 45:h.m(x +3x+15)(x 3):33'
x—3 x—=3 x—3 x=3

Thus the equation of the tangent line is y—43=33(x—3).

*k %

We shall now prove a theorem which shows that continuity of a function at a
point is a necessary condition for the existence of its derivative at that point.

Theorem 1:Let f:1 >R ,where I be anopen intervalinR,and pe I.If
f is differentiable at p , then f is also continuous at p .
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Fig. 2: Graph of
f)=|x|.

In 1872, K. Weierstrass
remarkably gave an
example of a function
that is continuous
everywhere and nowhere
differentiable. The
function is

f(x)= iz—ln(cos3" X).
n=0

Continuity and Differentiability of Functions

Proof: If xe I,x # p, then we have

F-£(p) :[Mj@_p)_
xX—p

Therefore, using the product rule of limits we can say that

lgg;,(fm—f(p)):lgg},[wjmn(x— P

= f'(p).0
=0

Thus, lim f(x) = f(p). Therefore, we conclude that f is continuous at p .l
X—p

Thus, we have proved that the continuity is a necessary condition for the
existence of the derivative at a point. But it is not a sufficient one. That is, if a
function is continuous at a point, it does not follow that it is also differentiable

there. An example of this is the function f(x) = |x| at x=0. If you have solved
E10) of Unit 10, you would have realized that this function is continuous at 0.
To see whether it is differentiable, we need to find whether the limit of

CIRPACY) =|x|_0 :M exists as x — 0, or not.
x=0 X X

- 4

Now, if x <0,then -2 =—— = —1. Hence the left hand limitis lim ~— = —1.
X X =07 x
On the other hand, if x> 0,then M =% _1. Hence the right hand limit is
X X
. |x
Iim —=1.
x>0 x

Thus the left hand limit is not the same as the right hand limit. Therefore,

limM does not exist. Hence f(x) =|4 is not differentiable at x=0.
x—0 X

If you look at the graph of f(x) :|x| in Fig. 2 in the margin, you see that the

graph is unbroken at x=0, implying the continuity at that point. But note that
the graph is not smooth there. It has a corner at that point. This geometrical
feature indicates that the function is not differentiable there.

More precisely, we have the following:

Example 4: The absolute value function, f(x)= |x| is not differentiable at

x=0. Show that it is differentiable at all other points in R.In fact, for all x <0,
the derivative is -1, and for all x >0, the derivative of the function is 1.

Solution: Suppose x>0. If we choose h>0,then x+h >0, and

per b=l o xrhmx e

h—0 h h—0

/' =lim

On the other hand, if x <0, we choose <0, x+h <0 and we get
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£ = tim A
h—0

h—0 h—0

In Fig.2 you can see that the graph on the right hand side of the origin is a line
with slope,1, and the graph on the left of the origin is a line with slope, —1.

*k %

Now try this exercise on your own.

E1) Does f(x)=x""have atangent line at x =02 Justify your answer.

In all these cases we have used the definition to find the derivative. But the
process is tedious. And, as you know, there is a way out. We find the
derivatives of some standard functions, and then use Algebra of derivatives to
get the derivatives of combinations of these functions. You have already done
this in your course on Calculus.

We shall prove some theorems on algebra of derivatives and some more
theorems in the next section.

11.3 BASIC THEOREMS ON DERIVATIVES

There are many basic properties of various combination of functions which you
must have used while computing derivatives in the calculus course. Here we
give justifications of some of these properties in the form of proofs of the
theorems.

We start with the Algebra of derivatives.

Theorem 2 (Algebra of Derivatives): Suppose f and g are two real-valued
functions defined on an interval I/ c R. Suppose f and g are differentiable
at pe I.Then

’

i) kf is differentiable at p,where ke R, and (kf) (p)=kf'(p)

i) f + g is differentiable at p,and (f + g),(p)= f'(p)+g’(p)

’

iy fg is differentiable at p,and (f2) (p)=f"(p)e(p)+ f(p)¢'(p)
iv) If g(p) #0,then f/ g is differentiable at p,and

’

(i} (p)= L (P)e(p)=f(P)g'(p)

g (g(p)y

Proof: We prove these one by one.

Kpth)—K(p) _, fpthH=f(p)
h h

Therefore, taking limits on both sides, as 4 — 0, we get the required
result.
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(f+g)p+m=(f+g)p) _ f(p++glp+h)-f(p)—g(p)
h h

_ S+ - f(p) gp+h)-g(p)
h h

Again, taking limits on both sides, as 7 — 0, we get the required result.

fe(p+m)—fe(p) _ fp+h)glp+h)- f(p)glp)
h h
_fp+mglp+h)-flp+hle(p)+ f(p+h)e(p)-f(p)elp)
h
_f(p+h)(g(p+h)-g(p)+(f(p+h)-f(p)e(p)
h

=f(pJrh)(g'(pﬂlh)—g(p)+ f(p+h)—f(p)g(p)

i)

We take limits on both sides, as 7 — 0. Note that since f is differentiable at
p . itis also continuous at p , and therefore, lim f(p+h)= f(p). This along

with the fact that f and g are differentiable at p gives the required result.

. (f/e)p+m=(r/g)kp) _1( flp+n) f(p)
iv)  Now, —[ ) ()j

h (p+n) g(p
zl[f(wh)g(p)—f( p)g (p+h)j
h g(p)s(p+h)
A l[f(p+h) g(p)-f(ple(p)+ f (p)g(p)—f(p)g(p+h)j
h g(p)g(p+h)
_ 1 flp+h)-£(p) g(p+h)-g(p)
_g(p)g(p+h)( h 8(p)=1(p)5 h J

Note that f and g are both differentiable and, therefore, continuous. So,

taking limit as 2 — 0 on both sides, we get the required formula for the
derivative of the quotient of two functions.

*k %

Remark 1: i) The statement (ii) in Theorem 2 can extended to any number of
functions by using induction. So, if for ne N, f,, f,,...... f, areall
differentiable at p, we get

/7

(f+ fo ot 1) (D)= £, (0)+ £ (0)+ ot 1, (p).

i)  Similarly, extending Statement iii) of the theorem, we get

’

(o f.) ()= £, (D)1 (0) 1 (0) £ () * 1.0V ()£ () £ ()
ot £Vt (D), (p)

Further, if f, = f, =....= f,, we can write
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i) Using the statements (i) and (ii) in Theorem 2, and taking kK =—1, we get

’

(f-¢)(p)=r'(p)-¢'(p).

Let us see how this theorem can be used to get more insight into derivatives.
Before stating the theorem we recall some definitions.

Definition 3: Recall that a function is called an even function, if
f(— x) = f(x) for all x in its domain, and a function is called an odd function,

if f(— x): —f(x) forall x in its domain.

Theorem 3: Show that, if f is odd, then its derived function is even, and vice
versa.

Proof: Suppose f is an odd function. Then f(— x) = —f(x). Differentiating
both sides, we get f'(—x) = —f x(~1),and hence f’is an even function.

Similarly if £ is an even function. Then f(—x)= f(x) i.e. f'(=x) =—f"(x).
Thus, — (= x) = f’(x), and therefore, #’is an odd function. m

Let us see an example.

Example 5: A function f:R — R is defined by f(x) = |x| +|x+5| . Find the
points at which this function is differentiable.

Solution: The given function is the sum of two functions, g(x): |x| , and

h(x)=|x+5|. We know that ¢ is differentiable everywhere, except at x=0,
and his differentiable everywhere, except at x =—5. So, applying the formula
for the derivative of the sum of two differentiable functions, we get that f is
differentiable at all points, except at x=0and x =-5. Further, for all x <5,
¢'(x)=-1, and h’(x)=—1. Therefore, f'(x)=-2.Forall =5<x<0,
¢'(x)=-1, and K'(x)=1. Therefore, f(x)=0.Forall x>0, g'(x)=1, and
W(x)=1. Therefore, f'(x)=2.

f is not differentiable at x=0and at x=-5.

*k %

Along with addition, subtraction, multiplication and division of functions, we
have another important operation on functions: composition of functions. We
shall now see how to get the derivative of the composite of two differentiable
functions. That is, we shall derive the chain rule. But first we prove a very
useful result.

Theorem 4 (Caratheodory theorem): Let f:1 — R, be a function defined
oninterval I. Let pe I.Then f is differentiable at p if and only if there
exists a function ¢: I — R, such that ¢ is continuous at p, and for all
xe I, we have

fx)= f(p)=olx)(x~p) &)

Further, in that case, we have ¢(p)= f'(p).

Differentiation
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Proof: We first prove the ‘only if ’ part. For that we assume that fis
differentiable at p. If f is differentiable at p,then we define ¢:1 — R by

fx)-£(p)

olx)=4 x-p
f(p). x=p
)

,xel,x#p

—_

Then lim @(x)= tim 0= F(p) _ f(p)=0olp).

xX—p xX—p X —

Therefore, @ is continuous at p . Also, by definition,
f(x)—f(p)z (p(x)(x—p) forall xe I.

Note that if x = p,then both sides of Eqn. 3 become zero.

Thus we have shown that there exists a continuous function ¢ satisfying Eqn.
(3). Now we prove the ‘if ’ part. suppose there exists a function @, satisfying

fx)= f(p)=olx)(x-p) (@)

for all xe I, and that the function @(x)is continuous at x = p. We have to
show that f is differentiable at p.

If x# p,we can divide both sides of Eqn. (4) by x— p. So, if x# p, we get
F)=1p) ¢(x). Therefore, hmw = lim(x) . This limit is equal

x—p X—p

to (p(p), since ¢ is continuous at p . Thus, ﬁmw
x—p X — p

equal to (p(p). This shows that f is differentiable at p,and f'(p) :(p(p). [

exists, and is

This theorem above helps us prove the chain rule, which tells us how to
differentiate a composite function.

Theorem 5 (The Chain Rule): Suppose f:J - R and g:I —» R, where [
and J are intervalsin R, and f(J)gI. Let pe J,suchthat f is

differentiable at p , and let g be differentiable at f(p). Then the composite
function, go f : J — R is differentiable at p , and

’

(gof)(p)=g"(f(p))f (p).

Proof: Since f is differentiable at p , by Caratheodory Theorem, there exists
afunction ¢:J — R , such that

fx)= f(p)=0lx)(x~p), and ¢(p) = f(p). )

Similarly, since g is differentiable at g = f(p), by Caratheodory Theorem,
there exists a function y: 7 — R , such that

g(v)-glg)=w(y)(y—q), and wlg)=g'(q).

When we put y = f(x), and q:f(p), we get
g(7()=g(F(p) =w(f()(f(x)= £(p)). and w(r(p)=g(f(p) ... (6)
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g(f() =g (£ (p) =y (f(x)eplx)(x~p)
=y (/). o(l(x~p) =y £(x). ()] (= p)

This is true for all xe J . Since ¢ is continuous at p , and w is continuous at

f(p), the function, (wof).(p is continuous at p , and using Eqgn. (4) and
Eqgn. (5), we get

i ELD=IUD iy (ool by £0)- 0(r)
=y(/(p)-0(p)=2¢"(f(p)). f(p)

So, again, by Caratheodory Theorem we can say that the function g o f is

differentiable at p , and (g o f)/(p)= g (F(p))f(p).

Thus if f is differentiable on J, and g is differentiable on I, then the
composite function g o f is differentiable on J , and we write

(gof) =(g" F)f" .
Here are some examples illustrating the use of this Chain Rule.

Example 6: Differentiate the following functions with respect to x:
) cosBx*+1) i) (2x-9) i) tan”5x

Solution: i) Let 4(x)= cos(3x* +1), f(x)=3x>+1, and g(x)=cosx. Then
h=go f . Therefore, h'(x)=(g o f) (x) = g'(f(x))f(x).

Now, f(x)=6x, and g’(f(x))=—sin(f(x)) = —sin(3x> +1).

Thus, #'(x)=—6xsin(3x” +1).

iy Here let h(x)=(2x-9), f(x)=2x-9, and g(x)=x". Then
fx)=2,and g(f(x))=7(f(x))" =7(2x-9)".
Thus, i'(x)=14(2x-9)".

iif) Here the situation is different. Let us see how.
Let h(x) = tan’(5x), r(x) =5x, f(x)z tanx, and g(x)=x. Then

h(x)=(g o f o r)x). Therefore, '(x)=g’(f or)(x)) (f o) (x).
= g (£ o 1) () £ () ().

Note that we have twice applied the Chain Rule here.
Now we have g((f o r)(x))=2tan(5x), f(r(x))=sec’(5x), and r(x)=5.

Thus, 4(x)=10tan(5x)sec’(5x).

*k %
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It is time to try some exercises based on the theorems studied so far.

E2) Differentiate:

a) f(x)= al > b) £(x)=(sinx)’ + (cos x)’
1+ 2x
x2, x>0 _ _ .
E3) Suppose f(x)= g0 " Is f differentiable at x=0? Write the
,x <

derived function of f . Is this derived function continuous at x=07?

E4) Differentiate the following functions with respect to x.

a) sins(x7) b) V14+3x—4x’ c¢) cosy/8x—1

In the next section we shall discuss a fundamental theorem in Analysis.

11.4 THE INVERSE FUNCTION THEOREM

We discuss Inverse Function Theorem in this section. It States that under
certain conditions, the derivative of the inverse of a function can be obtained
from the derivative of the original function. Graphically speaking, it makes
sense that this is possible. We look at the graph of the inverse of a function
f,itis the reflection of the graph of f about the origin line y = f(x). Thus

each tangent line of f is reflected through the line y = f(x) into the tangent
line of £7'.

We next discuss some theorems about continuous functions, which will lead
us to the proof of the Inverse Function Theorem. The theorems on continuous

function are also important to establish since it leads to many other results
which you will come across in later units.

We shall now prove two theorems on continuous functions.

Theorem 6: Let f: [a,b] — R be continuous on its domain. Suppose
f(p)>0 for some pe (a,b). Then there exists a neighbourhood N of p,
such that, f(x)> O forall xe N.

Proof: Let € = . Since f is continuous at p,for this €, there exists a

£(p)

2
8>0, suchthat (p—38, p+8)c|a,b], and |x—p|<8:>|f(x)—f(p)|<8.
That is,

x—p|<8= f(p)-e< f(x)< f(p)+e
f(p) 3f(p) f(p)

L2 ——=~ since ¢ =—~,
5 < flx)< S S 5

This means, f(x)>@>0, forall xe (p—3§, p+9).

=

Thus, N =(p—-3, p+8) is the required neighbourhood. u
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Remark 2: You may note that in the earlier theorem we made the assumption
that f(p)>O0for some pe (a,b). Infactif p=ai.e. f(a)>0,then we can

similarly prove that there exists &> 0, such that [a,a+8) c[a,b] , and
f(x)>0,forall xe[a,a+8). Inthe same way if p=bi.e.,if f(b)>0, then
we can similarly prove that there exists a 8> 0, such that (b—8,b]c[a,b],
and f(x)>0,forall xe (b-38,b].

We shall prove the second theorem now.

Theorem 7 (Bolzano Theorem): Let f : [a,b] — R be continuous on its
domain. Suppose f(a)f(b)< 0, thatis, f(a) and f(b) have opposite
signs. Then there exists a point pe (a,b), such that f(p) =0.

Proof: Suppose f(a)>0, and f(b)< O0.LetS :{xe [a,b]f(x)z O}. Then S

is a non-empty subset of [a,b], since ae S.Let p=supS.

Then we claim that p # a. By Theorem 5, there exists 8 >0 , such that
f(x)>0 forall xe[a,a+3). This means, a+§e S.So, a#supS.
Similarly, b # sup S . we leave it for you to prove. See EB6).

Therefore, a < p <b. Since f is continuous,and p=sup S, f(p)z 0. Now
we will show that f(p)=0.

It f(p)=0,then f(p)>0,and by Theorem 5 there exists a neighbourhood
of p,say, (p—8 p+8)c(a,b), suchthat f(x)>0 forall xe(p—3§, p+39).

But this means the point p +§e S, since f(p +§J > (. This contradicts the
factthat p=sup S .

Therefore, f(p):O. [ |

Next we shall prove another theorem on similar lines as Theorem 7 which is a
generalized form of the Bolzano theorem. This theorem is known as
“Intermediate Value Theorem (IVT in brief).

Theorem 8 (Intermediate Value Theorem (IVT)): Suppose that fis
continuous on [a,b], f(a) # f(b),and k is any number between f(a)and
f(b).Then there exists at least one point ce (a,b) such that f(c)=k.

Proof: Case 1: f(a)<k< f(b)

Consider g(x)= f(x)—k.Then g(a)= f(a)—k <0and g(b)= f(b)—k >0.
Therefore g(a)and g(b)are of different sign. By Theorem 7, there exist
pe€ (a,b)such that g(p)=0which implies that f(p)=k.

On the other hand, if f(b) <k < f(a),then g(a)g(b)<0. Appearing to
Theorem 7, once again we obtain the result. [ |

Note: Now we shall give the geometrical interpretations of Theorems 6 and 7.

Geometrically theorem 6 says that if for a continuous function f defined on
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the closed interval [a,b], the values f(a)and f(b)are of opposite signs,
then the graph of f cuts the real line x-axis at some point k such that
f (k) =0.This is illustrated in the Figure given below.

YA

y=o+x-1
1__

7
Fig. 3: The graph of f cuts the real line at (p,0).

Whereas Theorem 7 geometrically shows that if for a continuous function f
defined on a close bounded interval [a,b]and if f(a)# f(b),then given any
k between f(a)and f(b)there exists cbetween aand b such that there
exists the line y =k exists the graph of f at (¢,k).

)/ YA
Yy =f(0)
) . f(b)g-----1
| I . : K == b
y=10)/ i i
f@tr--— i - f(a)g-----+4 :
—a ¢ b x =1kt
f(a) < f(b) f(a)> fb)
(a) (b)
Fig. 4

The graph (b) above, shows that there may be more than one value of c.
Does the converse of IVT hold? That means if a function satisfies the
conclusions given by Theorem 8, is it necessary that the function is
continuous? The answer is no. The following function along with the graph
shown in Fig. 5 explains this.

¥ T %t = 2/3n
y= sin% 1
1 Lil |
Ll i I
=2/« %, =2/% %
1| % =2/5n

(1
Fig. 5: The graph of the function f(x)=sin (—J
X

The function given in graph, above, shows that there are non-continuous
functions which satisfies the conclusions of Theorem 7. In view of the
importance of this property, we consider the following class of functions.
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Definition 4: A function f has the intermediate value property on an interval
[a,b],if forall x<yin [a,b]and Lbetween f(x)and f(y),itis always
possible to find a point ce (x, y) where f(c)=L.

Thus every continuous function has the intermediate value property.

The IVT has lot of applications. One such application is to identify the points
on the earth’s surface which are ‘exactly opposite of each other such as North
Pole and South Pole. These points are called antipodal points. According to
IVT theorem there is always a pair of antipodal points on the Equator of the
Earth at which the temperature is the same. It is assumed that the temperature
is a continuous function of position on Earth’s surface. For more details you

can refer to any website given in reference. The figure in the margin illustrates
this.

Another application of IVT is that it sometimes helps us to locate some of the
roots of the polynomials. We illustrate this in the following example.

Example 7: Show that the equation x* +2x—11=0 has a root lying between 1
and 2.

Solution: The function f(x)=x"+2x—11is a continuous function on the
closed interval [1,2], f(I)=—8and f(2)=9.Hence, by Theorem 7, there exists
an x,€]l,2[such that f(x,)=0,i.e., x,is a root of the equation

x* +2x—11=0lying in the interval 1,2[.

* k%

Remark 3: You should note that Theorem 8 only ensures the existence of a
root of a polynomial. It does not specify the root of the polynomial.

Next we shall see another example.

Example 8: Any polynomial of odd degree must have at least one root.

Solution: To see this let p(x) =a, + a,x + a,x’ +...+ a, x" where nis odd, and
the coefficients a; are constants with a, # 0. Assume for the moment that
a, >0.Then

_ 2 n_ n| G 4 a,
p(x)=a,+ax+a,x"+..+a,x"=x (—n+?+xn_2+...+an ,

X X

n—1 n-2
X

a
and as x — —oo,x" — —cofor all nand (—°+
X X

a a
—L 4+ 2 +...+anJ—>an >0,

and so p(x) — —oo.Similarly, as x — +oo,x" — +ecand p(x) — +oo. Thus, for
any M > 0,there exist points x,and x, such that p(x,)<-M <0< M < p(x,),
and from the IVT, there is a point cbetween x,and x, with p(c)=0.

If a, <0,then p(x) = +ecas x - —ocand p(x) = —oas x — +eo,and the IVT
can be applied as above.

Notice that this argument breaks down if nis even, since x" — +as
X — too,

*k %

As a consequence of Theorem 8, we prove another theorem.

Differentiation
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Theorem 9: Let f:/ — R be continuous on the closed and bounded
interval, I. Let f(I):{y|y =f(x),xe I}: J . Then J is aninterval in R.

Proof: Now, I is not empty, and therefore, J is not empty. If J is a singleton
set, then it is called a degenerate interval.

Suppose c,d e J,c<d. Let ke R,c<k<d.Further, suppose ¢ :f(a), and
d :f(b), for some a,be I.

Now consider a new function, g:I, - R, defined by g(x): f(x)—k. Here I,
is the is the interval [a,b], or [b,a] . Then g(a)<0, and g(b)>0. Therefore,
applying Theorem 8 we can say that g(x) =0, forsome xe [,. Thatis,
f(x):k for some xe I,. Thus, ke J.This is true for all ke J. Therefore this
shows that J is an interval. u

Remark 4: The theorem above, says that the image of a closed interval under
a continuous function is a closed interval. The theorem is known as “The
interval Image Theorem”.

We are now ready to discuss the inverse function theorem for continuous
function and then to differentiable function.
We shall prove two theorems.

Theorem 10 (Inverse Function Theorem for Continuous Functions): If the
function, f:I — R is an injective, continuous function defined on the closed
and bounded interval /,and f(I): J, then f~':J — 1 is also continuous.
Proof: We are going to use the sequential criterion of continuity to prove this
theorem.

Letye J, and let (yn)be a sequence inJ , converging to y. Then

(x )=(f"(y,)) is asequencein I.Since I is bounded, (x,) is also
bounded. Therefore, it has a convergent subsequence, (x”k ) converging to,
say, x. Since f is continuous, (f(x, ))— f(x). Now, (f(x, ) isa
subsequence of (y”), and hence must converge to y. Therefore, y = f(x).
If (xmq) is any other subsequence of (xn), converging to x”, then

(f(xmq ))—> f(x'), and, again, y = f(x"). Since f is injective, we have x = x’.

This means that any subsequence of (xn) converges to x. Therefore,
(x,)— x.

Thatis, (£7'(y,))— £ (v). Hence, f'is continuous at y. Since y was an

arbitrary point of J,we get that f'is continuous on J. [

Now we use the theorems on continuity and the Caratheodory Theorem, to
prove the Inverse Function Theorem for differentiable function.

Roughly speaking it state that under certain conditions the derivative of the
inverse of a function can be recovered from the derivative of the original
function. Graphically it make sense that this information can be obtained since
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the graph of the inverse of a function f is the reflection of f along the line
y = x. Therefore each tangent line of f should be reflected into the tangent

lines of f~'. The following figures illustrates this.

Fig. 6

Here is the statement and proof of the theorem.

Theorem 11 (Inverse Function Theorem): Let the function, f:/ - R be an
injective, continuous function defined on the closed and bounded interval 7,
and let f(I): J . If fis differentiable at pe I , and f’(p);t 0, then

. 1
f':J =1 isdifferentiable at g = f(p), and (™) (¢)= 0]
p

Proof: By Caratheodory Theorem, there exists a function ¢:/ -> R,
continuous at p , such that

fx)=f(p)=9(x)(x-p) . (5)

for xe I, and (p(p): f'(p). Since (p(p);t 0, by Theorem 6, there exists a
8> 0, such that @(x)=0 forall xe (p—8, p+8)N1.

Let f((p—S,p+8)mI):U . Then for ye U we can write,
v=a=f(f")-r(p)=0(r () (f ()~ £ "(q)) by using Theorem 2.

Now, ¢(f'())#0 for ye U . Therefore, we can divide by ¢(f(y)), and get

1 RV 1 3
f (y)_f (q)_(Pf_l(Y) (y C])-

Since the function, ' is continuous at ¢, and the function ¢ is continuous

at f‘l(q)zp, the composite function, @o £~ is continuous at ¢ . This

means the function,
Qo f
Again, we apply Caratheodory Theorem, and conclude that (f‘l) () exists,
1 1 1

and (f_l)(CI): (P(f—l(q)): (p(p): f(p) )

— is also continuous at g .

Differentiation

57
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Remark 5: You may note in the theorem stated above we have the condition
that f is differentiable at p. If we assume that the function is differentiable on

the interval I,and if f’(x)#0 for all xe I,then we getthat ' is

differentiable on J,and also,
1
=
frof™
If f'(x):O for some x, in the domain of an injective function, f,then f~' is
cannot be differentiable at x, .

Now you learn the following examples very carefully so that you understand
how to apply this theorem.

Example 9: Find the derivative of the inverse of f(x)=x",ne N,wherever it
exists.

Solution: We will have to consider two cases: n even or odd.

Case 1: If n is even, we need to take the domain of f as [O,oo), so as to
ensure the existence of its inverse. We know that f’(x)=nx"". Hence,
F£/(x)#0 forall x>0.

The inverse of fis given by f~'(x)=x"". By Inverse Function Theorem,
Y 1 1 1 1 " . 0
(f ]) (y): f;(x) = S = I’ly(n_l)/" = ;y(” )_1, since y=x .

Note that f~' is not differentiable at x=0, since f'(O):O.
If n is odd, then the inverse of fis givenby f~'(x)=x"",and f’'(x)=nx"".

Then, for all x #0, using Inverse Function Theorem again, we get

o 1 1
(f ) (y) - f/(x) = nxn—l
_ 1
- ny(n—l)/n
:l (1/n)-1

n

In this case also, f~' is not differentiable at x=0, since f'(O) =0.

Hence the result for nis odd.

We have seen thus far, that if, f(x)=x", where either re N, or r _Len
n

then f’(x)=rx"", forall x>0. (Of course, f'(0)=rx"" exists and is equal to
0,if reN.)

We can now use the chain rule to get the derivative of x™'", for x>0.

*k %

Example 10: Find the derivative of f(x)=x""",m,ne N,m,n>0,x>0.
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Proof: The function f is a composite of two functions. Thatis, f = goh,

where g(x)=x",and h(x)=x"",x>0. Then, using Chain Rule, we can write

f,(x) = g’(h(x)) h'(x) _ m(xl/n )n—l‘l x(l/n)—l _m x(m/n)—l‘
n n

*kk

. R . T T
Example 11: Find the derivative of the inverse of f(x)=tanx,xe (_EEJ
Solution: You can see in Fig. 8, that tan x is strictly increasing in its domain y=tanx||
and its range is(— oo,oo). Therefore it has an inverse, |

|

|

|

A

tan ' : (— o0, 00) — I L
22 N

Function, f is differentiable on its domain, and b

’ n T ig. 8:
f'(x)=sec’ x#0 forall xe (—E,EJ Fig. 8: Graph of tanx

Thus, by Inverse Function Theorem,

Y 1 1 1 1
= = = = ,forall ye (—oo,00).
(f )(y) f(x) sec’x I+tan’x 14y’ v ( )

* k%

Working along these lines you can find the derivatives of all the inverse
trigonometric functions.

Example 12: The function, f : R > R, f(x)=x’ +4x+3 has an inverse. Find

/7

the values of (#~') (y), for the values of y corresponding to x = 0,-2.3.
Solution: f'(x)=3x>+4 %0 forall xe (—o0,00).
Therefore, f~'is differentiable at all y e (—oo,0), and

RIS B
( )(y)—f,(x)—3x2+4-

Then the values of (f‘l) (y), for x=0,-2,3 are, 1/4,1/16,1/31, respectively.

*k %

Now try these exercises on your own.

E5) Find the derivatives at a point y,of the domain of the inverse function
theorem f,where x =sin x,xe }_—;g[

E6)  Giventhat f:R - R, f(x)=x" +2x+1 has an inverse, find the

values of (#7')(y), for the values of y corresponding to x = 0,~1,1. 59
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Giventhat f:R — R,f(x): x* +8x—2 has an inverse, find the

values of (f‘l) (y), for the values of y correspondingto x=1,23.

That brings us to the end of this Unit. So let us summarize the points covered
in it.

11

.5 SUMMARY

In this unit we have done the following:

introduced the concept of derivatives of functions;

proved that a differentiable function is continuous, but the converse is not
true;

explained how to get the derivatives of some functions, if they exist, using
the definition;

given formulas for the derivatives of the sum, difference, scalar multiple,
product, and quotient of differentiable functions, and used those to get the
derivatives of many more functions;

explained the chain rule, which is useful in finding the derivatives of
composite functions;

proved cartheodary Theorem for differentiable function;
proved the following theorems on continuity;

i)  Bolzano Theorem

i) Intermediate Value Theorem (IVT)

i) Inverse Function Theorem

iv) Interval Image Theorem

Proved the Inverse Function Theorem for differentiability and discussed
how to apply this theorem for finding the derivative of inverse functions.

11

E1)

E2)

.6 SOLUTIONS AND ANSWERS
f(x) _ X2/
Now, f(0+h)—-£(0) _ h*”? -0 _ 1
h h NE

Therefore, m

wdoes not exist.

So, f(x)is not differentiable at x = 0.

Thus, the tangent of f(x)at x = 0does not exist.

a) Leth(x)=xand g(x)=1+2x"
Therefore, £(x) = 1)
g(x)
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As, we can see g(x) #0forall x e R.

Therefore, using the result (iv) of Theorem 2, we can write

’

00 :(gj (x) = L0800 ~h(0g' )
g (g(x))

Now, h'(x) =1& g'(x) =0+2(2x) =4x

Therefore,

1(1+2x%)—x(4x) 1+ 2x* —4x?
(1+2x%)* (1+2x%)*

f(x) =
(1+2x%)*
b)  f(x)=(sinx)’ +(cosx)’
Let f,(x) = (sinx)’ & f,(x) = (cos x)’
Therefore, f(x)= f,(x)+ f,(x)
So, using Remark 1, we have
F)= £+ f,'(x)

Now, let, &, (x) = x° & h,(x) = x°
and f,(x)=sinx & g,(x)=cosx

Therefore, using the definition of composite function, we have
f] ()C) = (/’ZIOg])(X) & fz (X) = (/’l20 gz)(x) .

Definition: (Composite function): Suppose f :]— R and
g:1 —>R,where I and ] are subsets of Rand f(])c 1.

The composite function gof :] —» Ris defined by

(gof )(x) = g(f (x)).

Therefore, using Theorem 5, we have

fi'(x) =(hog,) (x)and f,'(x) = (h,0g,)' (x)
= hlv(gl(-x))glv(-x) = hzv(gz(-x))gzv(-x)-

Now, A,'(x)=5x",h,"(x) =3x", g,'(x) = cosx and
g, (x)=—sinx.

So, f,'(x) = 5(sin x)’ (cos x)
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E3)

E4)
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= 5sin’ xcosx

and f,'(x) =3(cosx)’(-sinx)
=-3sin xcos” x

- f'(x)=5sin’ xcosx —3sin xcos’ x.

x*, x>0
X)=
A {O, x<0
h* -0
— h>0
Now, f(0+h2—f(0): h
ﬂ, h<0
h
hmf(0+h)—f(0):ﬁm,1:0
Therefore, 1o+ h h—0"
ljmf(0+h)_f(0):1jm0:0
h—0" h h—0~
So, m f(0+hlz_f(0) exists.

Therefore, f(x)is differentiable at x=0and f'(0) =0.

Derived function of f,

) 2x, x>0

X)=
0, x<0

Now, 1]11)1 f'(x)= lin)l 2x=0
x—0" x—0"

and ljll)lf'(x)ZliII)lO:O
x—0" x—0"

So, 1)(13(1) f'(x) exists and ljigf'(x):O:f'(O)
Therefore, the derived function f’(x)is continuous at x = 0.
a) Let f(x)=sin’(x'),g(x)=sin’(x)and h(x)=x’
Therefore, f(x)=(goh)(x)
Now, using Theorem 5, we have f'(x)=g'(h(x))H (x).

Now, g’(x)=S5sin’ xcosx [See Problem (c) of (E3)]
and /'(x)="7x°

Therefore, f'(x)={5sin’(x")cos(x”)}{7x%)

=35x°sin’ (x") cos(x”)

b) Let £F(x)=+1+3x—9x>,g(x) =/x,



Unit 11

E5)

E6)

Differentiation

and h(x)=14+3x—4x’
Therefore, f(x)=(goh)(x)

Now, using Theorem 5, we have

['(x)=g'(h(x)K'(x)

Now, g'(x) =L,x >0 [SeeE1)iv)]

2/x

1
24/1+3x-9x°

and 4'(x)=0+3-12x"
=3-12x"
Therefore, f'(x) =

So, g'(h (.X)) =

,h(x)>0

1

241+ 3x — 4x°
_ 3—12x°
W1 +3x—4x°

3-12x*),1+3x-4x)>0

,(14+3x—4x)>0.

f(x)=sin x, xe}—E E[

2°2
Let, I = —E,E
22

So, f(I)=]-L1[
Now, f'(x)=cosx

Let y, = /(%)

So, f'(x,)=cosx, #0 V x, € (—%,%)
Therefore, by Inverse Function Theorem, we can say,

-1 — ]—%%[ is differentiable for a point y, €]—1,1[ and
1 1

f(x) - cos X,

(f ') =

flx)=x"+2x+1
Now, f'(x)=5x"+2#0VxeR.

Thus by Inverse Function Theorem, ' :R — Ris differentiable and

a1 B
) (y)——f,(x),where y=f(x)eR o
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E7)

Then the values of (f)'(y)for x=0,—1,1are respectively.

b b

gQ =

11
277
fx)=x"+8x-2

Now, f'(x)=3x"+8=0forall xeR.

Therefore, by Inverse Function Theorem, /™' :R — Ris
1 1

' 3c+8

differentiable at all ye Rand (f")(y)=

1 1 1
Then the values of (™) (y)for x=1,2,3are —,— and —
) 11°20 33

respectively.
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12.1 INTRODUCTION

Recall that in Unit 11, we have discussed the concept of differentiability. In that
unit, we also established the rules for finding derivatives of combinations of
differentiable functions. In this unit we shall concentrate on certain applications
of differentiability such as whether the derivative possesses the Intermediate
Value Property, or what the shape of a function is around a point at which its
derivative vanishes. You must have seen some of these applications in your
course Calculus. We shall also look at the geometrical significance of the
properties possessed by derivatives, and apply them, for instance, in showing
the existence of roots of equations.

We begin the unit with Darboux (read as “Daar-boo”) Theorem in Section 12.2.
We shall also discuss, in the section, the Interior Extremum Theorem which
tells us how the derivative of a function behaves at an interior point of extrema.
In Section 12.3, we shall discuss Rolle’s Theroem, and its geometrical and
algebraic interpretation. Section 12.4 introduces three mean value theorems
namely, Lagrange’s Mean value Theorem, Cauchy’s Mean Value Theorem,
and Generalised Mean Valued Theorem. Finally in Section 12.5 you will see
how to prove whether a differentiable function is monotone or not in a given
interval.

Objectives

After studying this unit you should be able to:

e describe and prove the Interior Extremum Theorem;
e state and prove Darboux’s Theorem;

65
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Fig. 1:Jean Gaston

Darboux

Continuity and Differentiability of Functions

e state and prove Rolle’s Theorem, and give its geometrical and algebraic
interpretations;

e state, prove and apply Lagrange’s Mean Value Theorem, Cauchy’s Mean
Value Theorem, and the Generalised Mean Value Theorem to obtain
some known results;

e show when a function increases/decreases in its domain.

12.2 DARBOUX’S THEOREM

In this section we shall discuss Darboux’s Theorem, given by the French
Mathematician Jean Gaston Darboux (1842-1917). But before that we shall
discuss an important result known as Interior Extremum Theorem which is
used in the proof of Darboux’s Theorem.

We begin with an example. Consider the function f :[-1,5] > R defined by

2
Fo=7D" 10 (see Fig. 2),
A
= e
-5 1 5 10 15
o
Fig. 2: Graph of f(x)= (x;l) +2

You know that since f is a polynomial function, it is differentiable on]—1,5[ .
Also you can see that f attains a minimum value at 1, i.e., 1 is a point of
minimum of f . Now look at the derivative of f at 1. You should check that
f'(1)=0. This means the tangent on the curve of f at 1 is parallel to the x-

axis. This is not a coincidence. In fact, if you take any differentiable function
which attains an extreme (minimum or maximum) value at an interior point of
its domain, then its derivative is zero at that point. This is what the following
theorem tells us.

Theorem 1 (Interior Extremum Theorem): Let f :[a,b] — R be a function,
differentiable on ]a,b [ If f attains an extreme value at some interior point ¢
of [a,b], ,thatis, cela,b[, then f'(c)=0.

Proof: We shall prove this by contradiction. So, without loss of generality, let
us assume that f attains a maximum value at some c €]a, b[ such that

f’(c)#0. Then either f’(c)<0 or f’(c)>0.

First let us consider the case f’(c) < 0. By the definition of derivative, we have

f’(c) :111’11 f(x)_f(c)

x—c¢ xX—c
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= fl©
2

. Note that £ > 0.Then there exists some ¢ -neighbourhood

of ¢, N4 (c) in ]a,b[ such that forall xe N(c)

f)—-f©)

X—C

- (o)< e
Now we have —e <

— f’(c) < €. This gives us

f(x)— f(co) < f'(o)
xX—c 2

f(x)—f(o)
X—C

Flo)—e< f)—f(e)
X—cC

<fllo)+e %f'(c) <
J(x)—f(e)
xX—c
then we have f(x)> f(c). This contradicts the fact that cis a point of
maximum of f . Hence our assumption that f’(c) <0 is false. So, f’(c)>0.
You can produce a similar argument to show that f’(c) <0. Thus we have
proved that f’(c)=0. [

Since f’(c) <0, we get <0. Now if xe Ny(c) is such that x <c,

Remark 1: Interior Extremum Theorem is a very useful result about
differentiable functions, and you will see its application in proving many
theorems that follow.

Now, let us recall the statement of the Intermediate Value Theorem from Unit
11. It essentially says that every continuous function attains all the values
between any two of its values. Therefore, if the derivative of a function is
continuous, then we can say that the derivative function too has the same
property. However, as you know, the derivative of a function need not be
continuous. Darboux proved that whether the derivative is continuous or not, it
always possesses the Intermediate Value Property. This is contained in the
following theorem.

Theorem 2 (Darboux’s Theorem): Let f :[a,b] — R be a differentiable
function on the closed interval [a,b] and r be any number between f’(a)
and f’(b). Then there exists a number c in the open interval ]a,b[ such that

fe)=r.

Proof: Suppose that f’(a) < r < f'(b). Define a real valued function
g:la,p]—> R suchthat g(x)= f(x)—rx. Then g is differentiable on [a,b],
and g’(x)= f’(x)—r. This means, g is continuous on [a,b]. From Unit 10
you know that every continuous function attains its minimum on a closed
bounded interval. Hence there exists a point ce [a,b] such that

g(c)=min{g(x)|a <x<b}.

First we shall show that ¢ #a and ¢ #b. Note that f'(a) < r < f'(b) implies
that g’(a) <0< g’(b). By the definition of derivative, you know that

g’(a) — llm g(x) — g(a)
x—a® XxX—a )

_g(a)

Let €= > (. Then there exists some 0< 0 <b—a such that for all

xela,a+6]
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g(X)—g(a)_g,(a)<€:>g(X)—g(a)<0
X—a X—a

(See the argument given in the proof of Theorem 1.) Using x > a we get
g(x)—g(a) <0, which implies g(x) < g(a). This means g(a) is not the
minimum value of g, and hence c # a. You should use similar arguments to

show that ¢ #b (see E1). Thus, ce]a,b[. Now the Interior Extremum
Theorem (Theorem 1) implies that g’(c) =0. This means f’(c)=r. u

The following corollary is an immediate consequence of the theorem above.

Corollary 1: If a function f :[a,b] — R is differentiable on the closed interval
[a,b] and f’(a) and f’(b) are of opposite signs, then there exists a number
¢ in the open interval Ja,b [ such that £’(c) =0.

Remark 2: We can restate the Darboux’s Theorem as follows.

If f is a differentiable function on a closed and bounded interval, then
f~ possesses the Intermediate Value Property.

Let us now consider some examples of application of Theorem 2.

Example 1: Consider the function f:R — R defined by

, .1
—, x#0
Flx) = X~ sin . X
0, x=0.

Show that f is differentiable on every closed bounded interval of R . Hence
conclude that 7’ satisfies the intermediate value property.

Solution: You can see that f is differentiable on R, and

f'(x)=2x sin l—cos l, for x #0. Also, £'(0)=0.
X X

Hence, f’satisfies the Intermediate Value Property by Darboux’s Theorem.

*k %

Example 2: Show that for the function f(x)=x"—-8x> —10 there is some
ce ]1, 2[ such that f’(c) =—15. Find a value for such a point c.

Solution: Since f'(x) =3x” —16x, we have f’(1) =-13, f'(2) = —20. Since
-20<-15<-13, there is some ce ]1,2[ such that f’(c) =—15. This gives

+4/1
us 3¢® —16¢+15 = 0. Solving this equation, we get ¢ = 8 2 . Since
-1
ce ]1,2[, we choose ¢ = 8 3 9.

*k %

Let us now look at another consequence of Darboux’s Theorem.

Corollary 2: Let f :[a,b] > R be differentiable on [a,b], and suppose
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f'(x)#0V xe[a,b]. Then, either f'(x) <0V xe [a,b] or f'(x)>0Vea,b].

Proof: Suppose there exist two points x, and x, in [a,b] such that x, <x,
and f'(x,) <0< f’(x,). Then f is differentiable on [x,,x,]. Applying
Darboux’s Theorem we get a point ce ]prz[g [a,b] such that f'(c)=0.
This contradicts our assumption that f’(x) # 0V x € [a,b]. Hence, either
f(x)<0 forall xe[a,b] or f'(x)>0 forall xe[a,b]. u

Example 3: Let f:[2,5] - R be a function such that

3, 2<x<3
f(x)=10, 3<x<4.
7, 4<x<5

Show that there is no a function g :[2,5] —» R, differentiable on [2,5] such
that g’(x) = f(x) forall xe[2,5].

Solution: On the contrary, assume that there exists a function g :[2,5] > R
such that g’(x) = f(x) forall xe[2,5]. We shall arrive at a contradiction.
Note that g is differentiable on [2,5]. Also, note that g’(2)=3 and g’(5)=7.
So 4 lies between g’(2) and g’(5). Hence by Darboux’s Theorem there
exists some ce ]2,5[ such that g’(c) = f(c) =4. But f never achieves 4,
which is a contradiction. Hence there exists no function g :[2,5]— R which is
differentiable on 2[,5] such that g’(x) = f(x) for all xe[2,5].

* k%

Now, try the following exercises.

E1) Let g:[a,b] = R be differentiable on [a,b]. Show that if g’(b) >0, then
g(b) #min {g(x)|a < x<b}.

E2) Prove that if a function f:[-1,1] - R is differentiable on [-1,1] and
f'(=1)>0> £'(1), then there exists a number ce ]—1,1[ such that
f(e)=0.

E3) Let f:[0,2] > R be defined by
3 0, 0<x<1
f(x)_{L 1<x<2’
Show that there is no real valued function defined on [0,2] whose
derivative is f.

Thus far we have only seen two fundamental properties of derivatives. In the
next section we shall use them to explore more properties of derivatives.

12.3 ROLLE’S THEOREM

In this section, we will study Rolle’s Theorem given by Michel Rolle (1652-
1719), a French mathematician. This theorem can be treated as the
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Fig. 3: Michel Rolle

We say that a real number
p is aroot of an equation

f(x)=0 if f(p)=0.

70

foundation for the mean value theorems which you will study in the next
section.

Before we state the theorem, let us look at an example. Consider the graph of
the function f(x) = sin(zx), x e [0,1] shown in Fig. 4 below.

A
1.5+

0.5+

< } f >
-0.5 0 4 0.5 0.5

Fig. 4: Graph of f(x) = sin(zx), xe [0,1]
You know that f is continuous and differentiable in the interval [0,1]. Also you
know that f(0)=0= f(1). Now observe that there is a point ¢ in ]0,1[ at
which f attains a maximum value. This pointis ¢ = % From the Interior

Extremum Theorem, you know that 7’(c) =0.

This raises a general question: given a continuous and differentiable function
f defined on an interval [a,b], does there always exist an interior point c of

[a,b] such that f'(c)=07?

Michel Rolle was the first mathematician who found the answer of this
question. It is stated in the following theorem, due to him.

Theorem 3 (Rolle’s Theorem): Let f :[a,b] — R be a function such that

i)  f iscontinuous on [a,b],
iy f is differentiable on |a,b[, and
i)y f(a)= f(b).

Then there exists a real number ce ]a,b[ such that f’(c) =0.

Proof: Since f is continuous on the closed bounded interval [a,b], f attains
its extreme values. Let sup f = M and inf f = m. Then there are points

c,d € la,b]suchthat f(c)=M and f(d)=m. Only two possibilities arise
now: either M =mor M # m.

Case 1: When M = m. Then for some fixed real number &,
f(x)=k VY xe[a,b], which implies f’(x)=0V x¢&[a,b].

Case 2: WhenM # m . Then we proceed as follows:

Since f(a)= f(b), atleast one of the numbers M or m,is different from
f(a),and hence different from f(b). Suppose M # f(a) . Then it follows that
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f(c)# f(a)which implies that c #a as f is a function. Similarly M # f(b)
means f(c) # f(b)which implies ¢ # b.

Thus cela,b[. Now the Interior Extremum Theorem implies that f'(c)=0. W

Let us consider an example.

Example 4: Check whether or not the following functions satisfy the conditions
of Rolle’s Theorem.

) f(x)=x—-6x>+11x-6V xe[1,3].

iy fx)=x—-a)"(x—>b)',Vxela,b], where m and n are positive
intergers.

iy f(x)=x¥*,V xe[0,1].

If they do, verify the conclusion by finding a point ¢ in their domain where the
derivative vanishes.

Solution: i) We first note that the function f(x)=x’—6x>+11x—6 is a
polynomial function defined on [1,3]. Therefore, f is continuous on [1,3]and
derivable in ]1,3[. Also f(1)= f(3) =0. Thus, Conditions (i), (ii) and (iii) of
Rolle’s Theorem are satisfied. Therefore, by Rolle’s Theorem, there is a real
number ce]1,3[ such that f’(c¢) = 0. To find the possible values of ¢, let us

compute f’(c). We have f’(c)=3c’>—12c+11. Thus

, 1 1
f(==0¢=20—,2 7 |
N
Note that both the values of ¢ lie in ]1,3[. Hence the conclusion of the Rolle’s
Theorem is verified.

i) Notethat f is continuous in [a,b]and derivable in |a,b[ as f isa
polynomial. Also f(a)= f(b) =0. So the hypothesis of Rolle’s Theorem
is satisfied. Now

') =mx—a)"" (x=b)" +n(x—a)" (x—b)""

S (x)=0=(x—a)" (x=b)" ' [m(x—b)+n(x—a)] =0
=>mx-b)+n(x—a)=0
= (m+n)x—(na+mb)=0.

Let ¢ = na+mb. Since m and n are positive integers, therefore, this point ¢

m+n
liesin ]a,b[. Indeed, c is a point which divides the closed interval [a,b] in the

ratio m : n.

i) Since f is not differentiable at x =0, f does not satisfy the conditions of
the Rolle’s Theorem.

*k %

Let us now look at how the Rolle’s Theorem can be understood geometrically.
Geometrical Interpretation of Rolle’s Theorem

Look at the following graph of a function f :[a,b] — R satisfying the
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conditions of Rolle’s Theorem.

YA

C,

Fig. 5

Between a and b, there are some points, namely c,,c, and c,, at which f
attains extreme values. These are the points where f” vanishes.

Geometrically, this means that the slope of the tangents at these points are
zero, or equivalently, the tangents at these points are parallel to the x-axis.

Intersetingly, Rolle’s Theorem can also be interpreted algebraically.
Algebraic Interpretation of Rolle’sTheorem

Let a function f be continous on the closed interval [a,b,] and differentiable
on the open interval ]a,b [ Then between any two roots a and b of
f(x)=0, there exists at least one root ¢ of f’(x)=0.

We can prove this result by observing that when a and b are roots of
f(x)=0, then f(a)=0 and f(b)=0 and therefore, f(a)= f(b). Then by
Rolle’s Theorem there is a point c of ]a,b[ such that f’(¢) =0, which means
that ¢ is a root of f'(x)=0.

Let us look at some applications of Rolle’s Theorem.

Example 5: Show that there is no real number A for which the equation
x* —27x+ A =0 has two distinct roots in [0,2].

Solution: Let f(x)=x’—27x+A. Suppose for some value of A, f(x) =0has
two distinct roots a0 and £, in [0,2]. Without any loss of generality, suppose
a<P.Then, [a, ] <[0,2]. Now f is continuous on [a, 3], derivable in
Ja,Bl[and f(a) = f(B)=0. Therefore, by Rolle’s Theorem, there exists
cela, B[ suchthat f'(c)=0. Thatis, 3¢c> —27 = 0. This implies ¢ =+3. But
neither 3 nor —3lies in 10,2[, thatis, —3,3¢]a, S[. Thus we arrive at a
contradiction. Hence the result follows.

*k %

Example 6: Show that if all the roots of a polynomial function P of degree
n(=2) are real, then all the roots of P” are also real.

Solution: Let P be a polynomial of degree n(>2) with all roots real. You
know that a polynomial of degree n has n roots. Thus P has n real roots,
say «,,a,,...,«, sorted in ascending order. The algebraic interpretation of
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Rolle’s Theorem tells us that between any two roots of P, there is a root of

P’. Therefore, for each i€ {2,3,...,n} there is a root p., of P’ such that

p._€la. ,,a]. Thusthe roots f,,f,,...,3,., of P" are real. Since P"has

degree n—1, P’has no other roots. Consequently, all the roots of P’ are real.

*k %

Now you try the following exercises.

E4) Verify Rolle’s Theorem for the function f where
f(x)=sinx,xe [-27,27].

E5) Examine the validity of the hypothesis and the conclusion of Rolle’s
Theorem for the functions f defined by

) f(x) =cosx, xe}—%,%[

2

iy  f(x)=1+(x+D?,xe[0,2].

E6) Show that the equation x’ —25x+9 = 0does not have two distinct roots
in the interval [-2,2].

E7) Prove that between any two real roots of e sin x =1, there is at least one
real root of e* cosx+1=0.

E8) Provethatif a,,q,,...,a, € R be such that &+ﬂ+...+h+an =0,
n+l n 2

then there exists at least one real number x between 0 and 1 such that
ax"+ax"" +..+a, =0.

E9) If afunction £ is such that its derivative, f’, is continuous on [a,b]and
derivable on ]a,b[, then show that there exists a number ce]a,b[ such

that f(b) = f(a)+(b—a)f () +%<b —a)* (0.

If you have gone through the exercises above you must have understood how
important Rolle’s Theorem is in applied problems. Next we shall see its
generalisations.

12.4 MEAN VALUE THEOREMS

In this section, we shall discuss mean-value theorems given by the two
famous French mathematicians A-L. Cauchy (1789-1857) with whom you are
already familiar from the previous block, and Joseph-Louis Lagrange (1736-
1813).

Let us consider a continuous function f :[a,b] — R which has a slope at Fig. 6: Augustin-

every interior point, except possibly at @ and b. Look at the graph of the Louis Cauchy
function, that is, the curve representing this function in Fig. 8 given below.
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Fig. 7: Joseph-Louis
Lagrange

We shall write MVT in short
for Mean Value Theorem.
The terminology Mean
Value Theorem stems from
the fact that all these
theorems relate the mean
value of the derivative over
an interval [a,b] to the
actual derivative at an
interior point of [a,b].
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—da

Fig. 8: The tangent at ¢ has the slope

Then (a, f(a)) and (b, f (b)) are two points on the curve. The line passing
f®O)~f@
b—-a

through them is a secant line of the curve, which has slope

question that concerned Lagrange and his contemporaries is: Does there
exists a tangent at some point ¢ to this curve that is parallel to this secant
line? Lagrange’s Mean Value Theorem provides the answer.

Theorem 4 (Lagrange’s Mean Value Theorem): If a function f :[a,b]—> R
is continuous on [a,b]and derivable on ]a, b[, then there exists a point
f®b)-f(a)

b—a
Proof: Consider a function f :[a,b] — R, which is continuous on [a,b]and
derivable on ]a,b[ . Define a function ¢ :[a,b] — R such that
d(x)= f(x)+ Ax forall xe[a,b],where Ais a constant to be chosen such
that ¢(a) = @(b). Now

cela,b[ such that f'(c)=

#(a)= ()= f(a)+Aa=f(b)+ Ab=> A:—w_
—da

Then, the function ¢, being the sum of two continuous and derivable functions
satisfies the conditions of the Rolle’s Theorem. That is, ¢ is continuous on
[a,b], derivable on ]a,b[, and, of course, ¢(a)=¢(b).

Therefore by Rolle’s Theorem there is a real number c € ]a,b[ such that

¢’(c)=0. But ¢'(x)= f'(x)+ A. So, we have f’(c)z_A:—f(b;_f(a)'
—a

Langrange’s Mean Value Theorem is often stated in the following form:
Let f :[a,a+ h] — R be a function which is continuous on [a,a + h] and

derivable on Ja,a + h[, where h > 0. Then there exists a real number 4 in
]0,1[ such that f(a+h)= f(a)+hf (a+6h).

Lagrange’s Mean-Value Theorem has many important implications. Let us first
look at the following corollary.

Corollary 3: If a function f is continuous on [a,b], derivable on ]a,b[ and
f'(x)=0 forall xe]la,b[, then f(x)=k V xe[a,b], where k is some fixed
real number, i.e., f is a constant function.
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Proof: Let A be any point of [a,b]. Then [a,A] Z[a,b]. Now f is continuous
on [a,A] and is derivable on Ja, A[.

Therefore, by Lagrange’s Mean Value Theorem, there exists some cela, A[

such that f’(c) = M. Now
—da

f/x)=0Vxela,bl= f(c)=0= f(A) = f(a)

But A is an arbitrary point of [a,b].Therefore f(x)= f(a) =k (say)
¥V x€ [a,b]. Thus, f is a constant function. [ |

Yet another application is given below.

Assume that an object moves through some geographical area from time
t, totime 7,,and f(¢) is its position at time 7. Then at some point of

time between 7, and ¢, , the object must have moved at its average speed
f@)—f@)

L, =t

The following examples show that the conditions of Lagrange’s Mean Value
Theorem cannot be weakened. That is, if we restrict the continiuity to a proper
subset of [a,b], or differentiablitiy to a proper subset of |a,b[, the conclusion

may no longer hold.

Example 7: Let a function f be defined on [1,2]as follows:

1, if x=1
fx)=4x%0f l<x<?2
2, if x=2

Show that f does not satisfy the conditions of Lagrange’s MVT. Does the
conclusion of the theorem hold in this case?

Solution: Note that f is continuous on the semi-open interval [1,2[ and
derivable on the open interval]l, 2[. However, f is discontinuous at x=2,
because hn% f(x)=4+# f(2). So the first condition of Lagrange’s Mean Value

Theorem is violated. Note that the conclusion is also not true, as

FAC I KO f'(c) forany ce]1,2]. (Indeed, f'(x)=2x forall xe]1,2].

2-1
fQ-fO _,

So, f'(c)=2c, whereas -

)
Example 8: Let f(x)=|x|Vxe[-1,2]. Does f satisfy all the conditions of

Lagranges’s MVT? Does the conclusion of the theorem hold? Justify your
answer.

Solution: Here f is continuous on [—1,2]and derivable at all points of [-1,2]
except at x =0. So, the second condition of Lagrange’s Mean Value Theorem
is violated.
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x if 0<x<2

w it =
e can write f(x) {_x if —1<x<0

s , ] 1if 0<x<2
0 S =1 i —1<x <0
f@Q-f=H_2-1_1

Also = =—.
2—(-1 2+1 3

Thus @ =fED
2—(-1)
theorem does not hold.

# f’(x)forany xin ]-1,2[. Hence, the conclusion of the

*k %

Remark 3: Note that the conditions of Lagrange’s Mean Value Theorem are
only sufficient. They are not necessary. This is evident from the following
function.

0 if 03x<l
4
1 1

f(X): X if ZSX<E

X Lexen
2 2

3

You can see that Z lies in ]0,2[ and f’(SJ :1:M_

2-0
However, f is neither continuous on [0, 2], nor differentiable on 0, 2[.

Example 9: Verify the hypothesis of Lagrange’s Mean Value Theorem for the
following functions. Hence, for each of the functions find a point cthat satisfies
the conclusion of the theorem.

) ==, xe 4]
X

N 1

i) f(x)=Inx, xe[1,1+—}
e

Solution: i) Here f(x):l,xe [1,4]. You know that f is continuous in [1,4]
X

and derivable in ]1,4[. So, f satisfies the hypothesis of Lagrange’s M.V.T,

S@H-fO

4-1

and, hence there exists a point ce |1,4[ satisfying f’(c) = . Putting

the values of f and f’, you get

-
3 L.

=cC

We can choose ¢=2 as it belongs to ]1,4[.
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i) Here f(x)=Inx,where xe[l,1+e']. You know that f is continuous in

[1,1+¢7']and derivable in ]1,1+¢”'[. Therefore, the hypotheses of
Lagrange’s Mean Value Theorem are satisfied by f. So, there exists a

point ce]l,1+e”' [ such that

fA+eH-fD
(I+eh-1

flo)=

Putting the values of f and f’, you get

1 In(+e")-Inl 1
= 5 ==
c e eln(l+¢7)

Now use the inequality

li <In(l+x)<x forall x>0 (See Example 17.)

to show that ce]l,1+e'[. (Indeed, put x =ein the inequality above, and
simplify.)

*kk

Example 10: Given any real numbers a <b, show that there exists a real
number ¢ between a and b such that

c’ Z;(az +ab+Db%).

Solution: Consider the function f,defined by f(x)=x’ forall xe[a,b].

Note that f satisfies the hypothesis of Lagrange’s Mean Value Theorem.
Hence, there exists ¢ e]a, b[ such that
_ 3_ 3
f’(c) — f(bb) f(a) — 3C2 — b a

—da

*k %

=’ :;(a2 +ab+b*)

Now it is time for you to apply the results learnt to some exercises.

E10) Check whether or not the Lagrange’s Mean Value Theorem is
applicable for the following functions. If yes, find a suitable point ‘¢’ in
the interior of their domain.

i) £(x)=cosx forall xe[o,ﬂ.

i) f(x)=x+[x+] forall xe[-2,2].

E11) Consider afunction f defined as f(x)=x(x—1)(x—2)(x—23) for all
x€ [0,3]. How many points are there in ]0,3[ at which the slope of f
is equal to the slope of the line passing through (0, £ (0)) and
(3, f(3)?
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E12) If the functions f and g are continuous in [a,b], differentiable in
Ja,b[ and f'(x)=g’(x) forall xe ]a,b[, then show that f — g is
constant.

E13) Show thaton the curve, y =ax®> +bx+c,(a,b,ce R,a #0), the secant
line passing through the points whose abscissa are x=mand x =n,is

parallel to the tangent at the point whose abscissa is given by
x=(m+n)/2.

E14) Leta function f be defined and continuous on [a —h,a+ h], and
derivable on Ja —h,a + h[, where ae R and h > 0. Prove that there
exists a real number 6(0 < 6 < 1) for which

fla+h)+ fa—h)—2f(a)=h[f"(a+06h)— f'(a—6h)].

Now let us discuss Cauchy’s Mean Value Theorem which is a generalised
form of Lagrange’s Mean Value Theorem by using two functions.

Theorem 5 (Cauchy’s Mean Value Theorem): Let f and g be two
functions defined on [a,b] such that

i) fand g are continuous on [a,b],

i) fand g are derivable on ]a,b[,and

i) g'(x)20Vxela,bl.

f©) _ f®B)~f(a)
gc) gb)-gla)

Then there exists a number ¢ €]a, b[ such that

Proof: Let us define a function ¢ by
0 (x)=f(x)+Ag(x) forall xela,b],

where A is a constant to be chosen such that ¢ (a)= ¢ (b). If ¢(a) =¢(D),
) -f@

then f(a)+Ag(a)= f(b)+Ag(b) which gives A= .
g(b)—g(a)

Note that g(b)— g(a) #0. (Because, if g(b)=g(a) then g satisfies the
conditions of Rolle’s Theorem. Consequently, g'(c) =0 for some c€]a,b[.

This contradicts the hypothesis (iii). ) Observe that
i) ¢ iscontinuous on [a,b],

ii) ¢ isderivable on ]a,bl[,

iii)  g(a)=¢(b).

This means, ¢ satisfies the conditions of Rolle’s Theorem, and hence there is
a point c€la,b[ such that ¢'(c) =0. This implies f'(c)+Ag’(c)=0

o SO B -f@ =

ie. T——=-A= .
g () gb)—g(a)

If in the statement of the theorem above, b is replaced by a + h,then the
number cela,b] can be written as a + 6h, where 0 <0 < 1. So, Cauchy’s
MVT can be restated as follows:
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Alternative statement of Cauchy’s Mean Value Theorem

Let f and g be defined and continuous on [a, a + k], derivable on Ja,a + h[
and g’(x)# 0V xela,a+h[. Then there exists a real number de ]Ol[ such
that

fa+6h) _ fla+h)-f(a)

gla+6h)  gla+h)—g(a)

Lagrange’s Mean Value Theorem can be deduced from Cauchy’s Mean Value
Theorem by taking the function g as g(x)=x.

Now let us look at some applications of Cauchy’s Mean Value Theorem.

Example 11: Verify Cauchy’s Mean Value Theorem for the functions f and g
defined as f(x)=x% g(x)=x*Vxe[2,4].

Solution: The functions f and g, being polynomial functions, are continuous
in [2,4] and derivable in 12,4[. Also g’(x)=4x" 0V xe]2,4[. So, all the

conditions of Cauchy’s Mean Value Theorem are satisfied. Therefore, there
exists a point c<]2,4[ such that

f@-J@_flO_ 12 _2 _  _, 55
§@)-g2) gc) 240 4c

We see that ¢ =+/10 lies in 12,4[. So Cauchy’s Mean Value Theorem is
verified.

*kk

sin & —sin 3

Example 12: Let , S e }Og[ Show that =cot @, for some @

cos B —cosa
such that o <@ < .

Solution: Let f(x)=sinxand g(x)=cosx, where xe [a,p] c }O,g[.

Now f’(x)=cosxand g’(x)=—sinx. Functions f and g are both
continuous on [a, B], derivable on Ja,B[,and g’(x) # 0V xe]a,B[. Therefore,
by Cauchy’s Mean Value Theorem, there exists some 6e]a, B[ such that

sin f/ —sin & cosd sin & — sin
B = B =coté.

cosff—cosa —sinf  cosf—cosa

*k %

The next theorem generalises both Lagrange’s and Cauchy’s Mean Value
Theorems. In this theorem, three functions f, g,k are involved.

Theorem 6 (Generalised Mean Value Theorem): If the functions f,¢ and &
are continuous in [a,b], and derivable in Ja,b[, then there exists a real
number cela,b| such that

f© g Ho
fla) g(a) h(a)|=0.
fb) gb) hb)
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Proof: Define the function ¢ :[a,b] - R by

J) g(x) h(x)
0 ) =|f(a) gla) ha).
fb) g®) hb)

Observe that ¢ is a linear combination of the fuctions f, g and & with
constanct coefficients. Since each of the functions f, g and & is continuous on
[a,b]and derivable on ]a, b, therefore ¢ is also continuous on [a,b]and
derivable on ]a,b[. Now

fla) ga) h(a)
0 (@)=|f(a) g(a) h(a)=0=¢ (D).
f(®) g®) hb)

Therefore, ¢ satisfies all the conditions of Rolle’s Theorem. So there exists
c €la,b[ such that ¢’(c) =0, i.e.,

f'©) ge) W
¢(e)=|f(a) gl@ h(a)=0.
f(b) gb) hb) =

Now you may try the following exercises.

E15) Verify the Cauchy’s Mean Value Theorem for the functions,

f(x) =sin x, g(x) = cos x in the interval [—72[,0}

E16) Check whether or not the functions f and g be defined on [a,b] by

f(x)=e"and g(x)=e"" satisfy the conditions of Cauchy’s Mean
Value Theorem.

E17) Let f(x) =+/xand g(x):LVxe [a,b] given that a > 0. Verify]
X

NE

Cauchy’s Mean Value Theorem and show that the point ¢ obtained
thus, is the geometric mean of a and b.

E18) Leta function f be continuous on [a,b], and differentiable on ]a,b[,
where a > 0. Show that there exists some ce ]a,b[ such that
bf(a)—af® ,

HOZSIO _ (o)-c o)

E19) Derive Cauchy’s M.V.T. and Lagrange’s M.V.T. from the Generalised
M.V.T.

We hope by now you must have learnt how to apply mean value theorems in
specific problems. Next we shall see some applications of mean value
theorems in establishing monotonicily of functions, and of inequalities involving
monotone functions.
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12.5 INCREASING AND DECREASING
FUNCTIONS

In the course Calculus (BMTC-131) you have studied monotone functions, i.e,
increasing or decreasing functions, and certain criteria for showing whether a
given function is increasing or decreasing. We shall study and discuss these
concepts again as they are central to real analysis, and use them to prove
certain inequalities.

Let us recall the following definitions.

Definition: A function f:R — R said to be increasing if for all
x,ye R,x< y implies f(x)< f(y). Incase x< y implies the strict inequality
f(x)< f(y) wecall f strictly increasing.

Definition: A function f:R — R is said to be decreasing if for all
x,ye R,x<y implies f(x)> f(y). Incase, x< y implies the strict inequality
f(x)> f(y) wecall f strictly decreasing.

It is easy to see thatif f is an increasing function that is differentiable at
every point of an interval, say ]a,b[, then f'(x)>0Vxe ]a,b[. And, if f is
strictly increasing on [a,b], besides being differentiable on ]a,b[, then

f(x)>0Vxe ]a,b[. Thus the differentiable functions that are increasing (or

strictly increasing) have the property that their graphs have always
nonnegative (or positive) slopes. Below we have plotted one such function.

Y A

> X

@ |-
o

Fig. 9: A graph of an increasing function.

Now consider the following result.

Theorem 7: If a function f :[a,b] — R is continuous on [a,b], derivable in
]a,b[ and f’(x)>0 forall xela,b[, then f is strictly increasing on [a,b].

Proof: Let x, and x, be any two points of [a,b] such that x, <x,.Then f is

continuous in [x,, x,] and derivable in ]x,, x,[. So by Lagrange’s Mean Value
Theorem,

Jf ()~ f(x)

Xy =X

= f"(c) >0,

for some point ¢ such that x, <c<x,.

This implies that f(x,)— f(x,) >0, i.e., f(x,)> f(x,). Therefore, f is strictly
increasing on [a,b]. H

A function that is either
increasing or decreasing
on its domain is called a
monotone function.

A function that is strictly
increasing or strictly
decreasing on its
domain is called a
strictly monotone
function.

Observe thatin
Theorem 6 if we
replace f’(x) >0 by
f(x) =0, then from

the conclusion the
word ‘strictly’ can be
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Now consider the following examples.

Example 13: Show that the function f:R — R defined by
f(x)=x"=3x>+3x-5 isincreasing on R.

Solution: We have f(x)=x’—-3x>+3x-5. Note that f is continuous, and
differentiable on R. Now,

f(x)=3x"—6x+3=3(x-1)>>0 forall xe R.

Therefore, f is increasing on R.

*k %

Example 14: Find the intervals in which the function f defined on R by
f(x)=2x>—15x> +36x+5 is increasing or decreasing.

Solution: Here f(x)=2x’ —15x” +36x+5. Since f is a polynomial, f is
differentiable, and

f'(x)=6x> =30x+36=6(x—2)(x—3).

So f’(x)>0, whenever x>3 or x<2. Thus f is increasing in the intervals
]—oo,z[ and ]3,00[.

On the other hand, f’(x) <0, for 2<x<3. Therefore f is decreasing in
[2,3].

* k%

Now with the help of increasing and decreasing functions we shall prove some
inequalities involving real valued functions.

e

Example 15: Prove that sinx < x for 0<x < ER

Solution: Let f(x)=x—sinx, where 0< x < % Note that f is continuous in
[0721 and derivable in }072[ [ Also f'(x)=1-cosx>0 for 0<x< %
Therefore, by Theorem 6, f is strictly increasing in [O%} So, for all

0<xs%, we get

fO)<f(x)=0<x—sinx =sinx<x.

Example 16: Prove that tan x > x, whenever 0 < x < %
Solution: Let ¢ be any real number such that 0 < ¢ <%. Consider the
function, f defined by f(x)=tanx—xVxe[0,c].

You know that f is continuous as well as derivable on [0,c].

Also, f’(x)=sec’ x—1=tan> x>0V xe |0,c[. Therefore, f is strictly
increasing in [0, c].
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Consequently, f(0)< f(c)=0< f(c)=>tanc>c

Since ¢ arbitrary, the inequality follows.

*k %

Example 17: Show that x > In (1 + x) >lL forall x>0.
+x

Solution: Let us prove the first inequality first. So, let f(x) =x—In(1+x), for
x=0.
1 X

Therefore f'(x)=1- = .
I+x 1+x

Thus we have f’(x) >0 forall x>0. Therefore f is strictly increasing in
[0, o[

Now x>0= f(x)> f(0)= x>In(1+x).
To prove the second inquality, let
X
g(x)=In(1+x)———, for x=0.
1+ x
Then g is differentiabe, and

| ek A !
I+x (A+x)° (1+x)?*

g'(x)=
So, g’(x)>0V x>0, and hence g is strictly increasing on [0, o[.

Now x>0:>g(x)>g(0):>1n(1+x)>l—+x—.
X

* k%

Now try the following exercises.

E20) Find the intervals in which the function, f, defined on R by
f(x)=x’—6x>+9x+4,Vxe R, is increasing or decreasing.

E21) Let f:[a,b] > R be continuous on [a,b], derivable on ]a,b[, and
f(x)<0 forall xe]a,b[. Show that f is strictly decreasing on [a,b].

E22) Show that the function f, defined on R by
f(x)=9-12x+6x" —x’,Vxe R, is decreasing in every interval.

E23) Let f:[a,b] > R be derivable in the interior of [a,b] such that
f’(x)> 0 for all interior points x of [a,b]. What can you conclude

about the monotonicity of f on [a,b]?, on ]a,b[? Justify.

E24) Prove that
) x—x'<tan”' x if x>0
i) et >1—x if x>0,
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We end our discussion on increasing and decreasing functions here. You can
go through the Block 4 of our course BMTC-131 to learn more about them. Let
us now summarise what we have covered in this unit.

12.6 SUMMARY

In this unit, we have covered the following points:

1) If a differentiable function attains an extreme value at an interior point,
then its derivative vanishes at the point.

2) Derivatives possess Intermediate Value Property.

3) We have discussed Rolle’s Theorem, and its geometrical and algebraic
interpretations, and some applications.

4) We have discussed Langrange’s M.V.T., Cauchy’s M.V.T., and the
Generalised M.V.T.; and their applications.

5) We have seen how to use the sign of derivative in deducing the
monotonicity of functions.

6) Finally, we have discussed how to prove some inequalities involving real-
valued functions.

12.7 SOLUTIONS/ANSWERS

E1) We are given that g is a differentiable function on [a,b]. Since

g’(b)>0, letus take £ = %b) Now, by the definition of derivative,

there exists some 0< J <b—a such thatfor all xe |b—5,5]
—g( , —g(
8(x)—g( )_g(b) cem 8H—8B)
x=b xX—

= g(x)-g()<0
= g(x) < g(b)

This proves that g(b) # min{g(x)l a < x<b}.
E2) It follows directly from Darboux’s Theorem.

E3) On the contrany assume that g :[0,2] — R is a function such that
g’(x)= f(x) Vxe[0,2]. Now consider the number % which lies

between g’(0) and g’(2). Since g is differentiable in [0,2], by
Darboux’s Theorem there exists some ce ]O, 2[ such that

g'(c) :%: f(c). But, by the definition of f, there is no such ¢. Hence

there exists no real valued function on [0,2] whose derivative is f.
E4) We note that the function sine is continuous and differentiable on R.

Therefore, f is continuous as well as differentiable on ]— 2, 27[[. Also

f(27)=0= f(2x). Thus f satisfies the conditions of Rolle’s
Theorem. Hence, there exists a point ce ]—27[, 27[[ such that f’(c)=0.
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E5)

To find ¢, we solve the equation f’(c)=0. So

f(c)=0=cosc=0

2n+1
:c:("ijez

-3z 7w 37
=>c=—=, "= cce 2w, 27w
Sy, ek [)
_ T . . .
i) We have f(x)=cosx,xe [—55} So, f is continuous in

V4

T
_Z 7| and differentiable in — .~ Further, f| == |=0=f| Z |
22 22 2 2
Thus, the conditions of Rolle’s Theorem are satisfied. Therefore,

T , ,
these exists a number ce }—55[ such that f'(¢) =0, i.e.,

—sinc¢ =0. This implies ¢ =0.
2
i) Here f(x)=1+(x+1)3,xe[0,2]. Clearly f is continuous on [0,2]
and differentiable on ]O, 2[. But we can see that f(0)=2, and

2
f(2)=1+33 #2. Hence f does not satisfy the hypotheses of
Rolle’s Theorem. Now let us examine whether f satisfies the
conclusion of Rolle’s Theorem or not. We can compute

f(x)= #1 Since x>0, f'(x) > 0. Thus, there is no point
3(x+1)3

ce ]O 2[ such that f’(c)=0. That is, the conclusion of Rolle’s
Theorem does not hold.

E6) Letusdefine f(x)=x"—25x+9 forall xe [-2,2]. If possible, let

E7)

a < f3 be two roots of the equation x* —25x+9 =0 in [-2,2]. Then
f(a)=f(B)=0. Since f is continuous and differentiable on [a, ], f
satisfies the hypotheses of Rolle’s Theorem. Hence there exist some

ce e, B[ such that
, 5
f(e)=0=>3c*-25=0=>c=+t——.
3

But none of these values of ¢ lies in ]— 2, 2[.

Since ]a,,b’[g ]—2,2[, none of the values of ¢ lies in ]a',,b’[. Thisis a

contradiction. Hence the given equation does not have two distinict roots
in [-2,2].

Let « and b be any two roots of the equation e* sin x =1. We know that

e'sinx=1esinx=¢ " &sinx—e " =0.

So, let f(x)=sinx—e *,Vxe R.Then f(a)= f(b)=0. Since f is
differentiable, f is continuous as well. So f satisfies the conditions of

Rolle’s Theorem. Therefore, there exists some ce ]a,b[ such that %5
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f(c)=0=cosc+e“ =0

=e‘cosc+1=0

Thus, ¢ is a root of the equation e* cosx+1=0. This is what we wanted
to prove.

E8) The idea is to define a function f such that its derivative is
f()=ax"+ax"" ++a,.

So, let us define f:[0,1]— R by

n+l

a,x" a,x
)

aox n
X)=———+
F ) n+1 n 1
Then £(0)=0, and
f(1):—a° +ﬂ+-~~+h+an:0.
n+l n 2

Since f is a polynomial, f is continuous and differentiable on [0,1].
Hence f satisfies the hypothetis of Rolle’s Theorem. Therefore, there

exists some xe ]01[ such that
f(x)=0=ax"+ax"" +--+a, =0.
E9) Let us define a function ¢:[a,b] > R by
@(x) = f(b)~ f(x)=(b—x) f'(x)~(b—x)* A,V x€ [a,b],
where A is chosen in such a way that ¢(a) = ¢(b).

Since f is differentiable, and f” is continuous on [a,b], the function ¢
is continuous on [a,b] and differentiable on ]a,b[. Also d(a) =¢(b)=0
by the choice of A. Thus ¢ satisfies the hypothesis of Rolle’s Theorem.

Hence, there exists a point ce ]a,b[ such that
F)=0=—f'()+ f(©)=(b=c) f(c)+2(b-c)A=0
= A= % 7).

Substituting x=a and A :%f”(c) in the definition of ¢(x), we get the

desired result.

V4
E10) i) We have f(x)=cosx,Vxe [OE} We can see that f is continuous

on [O%} and differentiable on }Og[ Thus f satisfies the
hypotheses of Lagrange’s M.V.T. Therefore, there exists a point

ce }Og[ such that
86
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2
Since we know that 0 < 2 < 1, we get sin”™' (—) € }O,z[
V.4 T 2

i) Here f(x)=x+I1x+1l,Vxe[-2,2].

We know that f is continuous as it is the sum of two continuous
functions. However, f is not differentiable at x =—1. This is evident
from the following arguments

lim fO-fED _ lim x4 x+11+1
x——1 xX— (_1) x——1 x+1

—tim [ 1+
x>l x+1

1+ lim 2L
-1 x+1

:1+limM [Taking x+1=y]
y—0 y

. .yl . . . ,
Since hn(}i does not exists, f is not differentiable at x =—1.
=0y

Thus f does not satisfy hypotheses of Lagrange’s M.V.T., and
hence Lagrange’s M.V.T. is not applicable.

E11) We are given the function
fx)=(x-1)(x-2)(x-3),Vxe[0,3].

Since f is a polynomial, f is continuous on [0,3], and differentiable on
]0,3[. Thus, f satisfies the hypothesis of Lagrange’s M.V.T. Therefore,
there exists some ce ]03[ such that

f’(C)=%:>3cz—12c+11=2
= (c-1D(c-3)=0
=c=13

Since 3¢ 10,3[, there is only one point, namely, ¢ =1€]0,3[ at which
the slope of the tangent on the graph of f is equal to the slope of the
line passing through (0, £(0)) and (3, £ (3)).

E12) Let A€ [a,b] be arbitrary. Define h:[a,A] > R by
h(x) = f(x) - g(x),Vxe [a,A].

Since both f and g are continuous on [a, 4], &k is also continuous on

87



L S, Continuity and Differentiability of Functions
[a,A]. Since both f and g are differentiable on ]a,/i[, h is also
differentiable on ]a,/i[. Thus h satisfies the hypothesis of Lagrange’s

Mean Value Theorem. Therefore, there exists some ce ]a,/i[ such that

h(4) — h(a)

A—a
But 4'(c) = f'(c)—g’(c) =0. This implies h(A) = h(a). Since A is
arbitrary, h(x) = h(a) for all xe [a,b]. Consequently A is a constant, i.e.
f — g is aconstant.

h'(c)=

E13) Assume, without loss of generality, that m < n. Note that the given curve
represents the function f(x)=ax” +bx+c defined on [m,n]. Since f

is a polynomial, f is continuous on [m,n], and derivable on ]mn[
Thus f satisfies the hypothesis of Lagrange’s Mean Value Theorem.
Therefore, there exists some xe ]mn[ such that

P LWL L (ant bk o) (am +bm+o)
n—m n—m
= 2ax+b=a(m+n)+b
m+n
=>x=
2
Thus x="""" is the abscissa of the point where the tangent to the

curve has a slope equal to the slope of the secant line passing through
the point with abscissa are x=m and x =n.

E14) Define g :[0,1]—> R by
gx)= f(a+xh)+ f(a—xh),¥V xe[0,1].

Since f(a+xh) and f(a—xh) are continuous on [0,1], and
differentiable on ]01[ the function g also is continuous on [0,1] and
differentiable on ]0,1[. Therefore, there is some fe ]01[ such that

oo 81— g(0)
g (9)——1_ 0
But ¢'(8) = f'(a+6h)h— f'(a—6h)h, g(0)=2f(a),and

g)y=fla+h)+ f(a—=h).

Thus
hf (a+6h) — f'(a=6h)]= fla+h)+ f(a—h)-2f (a).
E15) We know that both f and g are continuous in [—%,O} and

V4
differentiable in }—%,O[ Also, g’(x)—sinx # 0 forany xe }E’O['
88
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Thus f and g satisfy the condition of Cauchy’s Mean Value Theorem.

T
Therefore, these exists some ce }E’O[ such that

T
0)- f| =2
f'(C)_f() f[ ZJ

g (=)
g(0) g[ 2)

ie.,

cosc 0+1 T
:—:>tanc:—1:>c:—z.

—sinc  1-0

Since ce }—%,O[, Cauchy’s Mean Value Theorem is verified.

E16) We know that f and g are continuous on R, and hence on [a,b].
Likewise, f and g are differentiable on R, and hence on ]a,b[.
Further, g’(x)=—¢™". So, g’(x)#0 forany xe& Ja,b[. Thus f and g
satisfiy the conditions of Cauchy’s Mean Value Theorem. Therefore,
there exists some ce ]a,b[ such that

o _fo)-f@
g'le) gb)-gla)

This implies

= —e = e“_eb

= ¥ =" (-a#b)
_a+b
2

Since ce ]a,b[, Cauchy’s Mean Value Theroem is verified.

E17) We know that f and g are continuous on R*. Since a >0,
[a,p]c R". So, f and g are continuous on [a,b]. Also, f and g
are differentiable on R*, and therefore on ]a,b[. Further,

g’(x)=—2—13/2. Thus g’(x) =0 forany xe Ja,b[. Thus f and g satisfy
X

the conditions of Cauchy’s Mean Value Theorem. Therefore, there exists

some ce ]a,b[ such that

f(e) _J®)-f(a)
g'c) gb)-gla)

This implies
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Simplifying this equation, we get ¢ = Jab as desired.

E18) Observe that

fla) f®)
bf (a)—af (b) _ 4 b
b-a B 1
a b
J(x)

Now, let F(x) = , and G(x)zl, for all xe [a,b]. Since f is
X

X
continuous on [a,b], and a >0 the function F is also continuous on

[a,b]. Since f is differentiable on ]a,b[, F is differentiable on ]a,b[.
Similarly, the function G is also continuous on [a,b] and differentiable

on Ja,b[. Now G’(x) =—L2. So, G'(x) #0 forany xe Ja,b|.
x

Thus F and G satisfy the conditions of Cauchy’s Mean Value
Theorem. Therefore, there exists some ce ]a,b[ such that
F'(¢c) _F()-F(a) _bf(a)—af (b)
G'(c) G(b)-G(a) b—a

We know that F’(c) = f©_ f(c), and G'(c) :—Lz. Substituting
c

2
C C
these valued in the equation above, and simplifying we get

bf (@)= af (b)

FO=f ()= =

E19) Let us take h(x)=1 in the statement of Generalised Mean Value
Theorem. Then we have a point ce ]a,b[ such that

f© g 0
fla@) g(a) 1)=0.
f) gb) 1

This implies,

f©lgla)—gd-g' () f(@)—-fb)]=0,ie.,
f(e) _J®)-f(a)
g'c) gb)—gla)’

which is the conclusion of Cuchy’s Mean Value Theorem.

Similarly, if you take h(x) =1, and g(x) = x in the Generalised Mean

Value Theorem, you will get Lgrange’s Mean Value Theorem.
90
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E20) We have f(x)=x"—6x>+9x+4, for xe R. Since f is a polynomial

function, f is differentiabe. Now f’(x)=3x* —12x+9=3(x—1)(x-3).

For x<1 or x >3, we find that f’(x) > 0. This means f is increasing in

]—oo, 1[ and ]3,c>o[. On the other hand, for 1< x<3 we get f'(x) <0.

This means f is decreasing on [1,3].

E21) Let x,,x, € [a,b] be such that x, <x,. Then f is continuous on
[x,,x,], and differentiable on ]xl,x2 [ Hence by Lagrange’s Mean Value
Theorem, we get some point ce ]xl,xz[ such that

f)—f(x)

Xy =X

= (@)= f(x,)=f(x)=f'(©)(x,—x).
We are given that f’(x) <0 forall xe ]a,b[. This implies f’(c) <0. Now
(x, —x,) >0 implies that
J ()= f(x)<0, ie, f(x)<f(x).
Since x,,x, are arbitrary, we have proved that f is strictly decreasing.

E22) We are given that f(x)=9-12x+6x” —x’, for xe R. Clearly f is
differentiable and f’(x) =—12+12x—3x> = -3(x—2)>. We can see that
f'(x)<0 forall xe R. Thus f is decreasing in every interval of R.

E23) The function f need not be monotone on [a,b]. For instance, let
f:10,11 = R be defined by

1, v =
f(x)=4x>, if O<x<l
28 it”_gf=1"

Then £ is derivable on ]0,1[, and f’(x)=2x. So f’(x)>0 for all
xXe ]0,1[. However, we can see that f is neither increasing nor
decreasing on [0,1]. Of course, f is increasing on ]0,1[.

For the second part, the answer is f is strictly increasing. The proof is
same as the proof of Theorem 6.

E24) i) Letusdefine f(x)=x—x’—tan""x, forall x>0. We know that f is
continuous and differentiable on [O,oo[. Also
I —3x*—-2x"

1+ x? 1+ x?

f(x)=1-3x*-

Thus £'(x) <0 forall x>0 and f’(0)=0. Therefore, f is strictly
decreasing on ]0,o9[.

So, x>0 implies f(x)< f(0), i.e., x—x’ <tan™' x. o1
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i) Let f(x)=e"—1+x, forall x=0. We know that f is continuous
and differentiable on [O,oo[. Also, f'(x)=—e " +1. So, for x>0 we
have f'(x)<0 and f’(0)=0. Thus f is strictly decreasing on
10,00[. Therefore,

x>0= f(x)< f(0)

=e —-1+x<0
=e ' <l-nx

92
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13.1 INTRODUCTION

In your Calculus course, you have come across various functions. In this
course also you have examined many different types functions for continuity
and differentiability such as, polynomial functions, trigonometric functions, step
functions, exponential functions, and so on. You may have realised that
polynomial functions are the easiest to handle. We can easily find the value of
such a function at a point of its domain. Further, these functions are
continouous and differentiable at all points of the domain. So, if we can find a
polynomial function, which is approximately equal to a given function, f,then

we are in a better position to understand this f.Such an approximation by a
polynomial function may also help us in finding approximate values of f at
different points of its domain.

In this unit we are going to see how a given functions can be approximated by
a polynomial function. Taylor’s theorem will help us in this quest. But, before
that we shall introduce the concept of higher order derivatives in Sec 13.2. We
shall then discuss Taylor’'s theorem and illustrate how we use it to obtain
useful approximations and their values.

Afterwards in Sec. 13.3 we state and prove some necessary and sufficient
conditions for a function to have a local extremum at a point of its domain.

Objectives
After studying this unit you should be able to:

e find the nth derivative (n >1) of a function, whenever it exists;

e state and prove Taylor’'s theorem; 93
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e Use Taylor’s theorem to find the approximate values of some functions;
e Use Taylor's theorem to find the series expansions of some functions;

e find and classify the extreme points of a function, if they exists.

13.2 DERIVATIVES OF HIGHER ORDERS

In this section we shall discuss Higher order derivatives and Taylor’s theorem.

Let us start with an example.

Consider the function f,defined on the interval [1,8]by f(x)=x’ +5x—3.

This is a polynomial function, and you will agree that it is differentiable at all
points in [1,8]. Recall, that at 1€ [1,8],we will consider the right-hand limit of

the difference quotient L_lf(l) while finding the derivative. Similarly, at
X—
8 € [1,8], we shall consider the left-hand limit of the difference quotient
f(x)—g(S). At any point x e [1,8],the derivative of this function is 3x> +5,we
X—

get the derived function of fas f':[1,8] = R, f'(x)=3x>+5. Now, this is
again a polynomial function, and so it is differentiable. The derivative, f”, of

f ata point xe[1,8]is given by 6xwe have a new function, f”:[1,8] = R,
f7(x) = 6x.This is the derived function of f’. This f”(x) = 6x s called the
second order derivative of f at x. Our new function f”is again differentiable
on [1,8]and its derived function, f”is given by

f7:[1,8] = R, f”(x) =6. f”(x)is the third order derivative of f at x. This
f”is a constant function, and its derivative, ¥ (x) =0,V xe[1,8]. This is the
fourth order derivative of f at x.

Now, if we keep on differentiating further, we will get all successive

derivatives, £ (x), f©@(x), f7(x),...of fat xequals zero. The derivative
f7, 7, f*and so on are called higher order derivatives.

The formal definition of the higher order derivatives as follows.

Definition 1: If the derivatives f” of a function f exists on an interval

I containing a point p,then this derivative of f”is called second derivative
and is denoted by f”(p)or f®(p).

In a similar way we define the third derivative, the fourth derivative and so on.

The existence of the (n—1)" derivative is necessary to define n™ derivative.
Then we have

x)—f""(p)
xX—p

(n=1)
£ (py =tim I ()

Let us find the higher order derivatives of some functions.

Example 1: Find i) fourth order derivative of f(x)=¢"at x =2.
i) fifth order derivative of f(x)=sin(4x+1)at x=1.

Solution: i) fis an exponential function and is differentiable on R.
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f7(x)=f?(x)=9¢™
f7(x) = fO(x)=27¢*
FP(x)=8le™,and f¥(2)=8le".

i) The sine function is also differentiable on R.

f'(x)=4cos(4x+1)
P (x)=4%cos(4x+1)
FP(x) =4’ cos(4x+1)
FP(x)=4"cos(4x+1)
FP(x)=4" cos(4x+1),
and f©(1)=4"sin5.

*k %

The next example will test whether you have understood differentiability of
functions. Study it carefully.

Example 2: Find £ (x),if possible, when f:R >R, f(x) =|x’|

Solution: Now f(x) = |x3| .

—(x*), x<0
So f(x)=1 |
X, x2>0.
Let us first consider xe (0,).For all xe (0,0), f(x) = x". Therefore,
f(x)=3x% f"(x)=6xand f?(x)=6.

Now for all xe (—,0), f(x) =—x". Therefore, f'(x)=-3x>, f"(x) =—6x, and
FO)=-6.

If x=0,then f’(0)will exist, if %Mexists.

3
Now lim LM =1O) _jyp, =0
h—0* h =0tk
=lim A’
h—0*

=0.

And. fim LO=FO) .~k =0

h—0" h h—0" h
= lim (=h*)
h—0"
=0.

This means, f'(0) exists, and is equal to zero.

—3x*, x<0
SO, f/(x): 0, X=0
3x%, x>0 95
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Let us now find the second order derivative.

Again, for x <0, f”(x) = —6x.
for x>0, f”(x) =6x

exists.

(- £(0)
h

For x =0, we need to find if Ihm%

Proceeding as before, check that lim S W=7 © = lim 34 =0,and

h—0" h h—0"

tim L= O _ i 35 o,
h—0" h h—0~
Therefore we conclude that f”(0) = 0.

—-6x, x<0
So f(x)= 0, x=0
6x, x>0

Moreover we can write f”(x) =6 x

,xe R.
* %%k

Recall that in Example 1 of Unit 11 we have seen that the absolute value
function is differentiable at all xe R, x # 0. It is not differentiable at x = 0.

-6, x<0

Using that result we can say, that :{ o and £ (0)does not

b

exist.

* k%

In the next example we consider some functions which you will see often in
your study of Analysis.

Example 3: Find the following derivatives:

) fO(x),when f(x)=x".
i)  g”(x),when g(x)=(ax+b)", m,ne N.
i) 7" (x),when h(x) =sin(ax+b), ne N.

iv) p"(x),when p(x)=sin3xcosx.

Solution: i) f(x)=x".Therefore, we get f’'(x)=5x"*, f"(x) =20x",
£7(x) =60x%, f@(x) =120x, £ (x) =120. You can see that
FM0)=0Vn>S5.

i) gx)=(ax+b)". So,
g’ (x) = ma(ax+b)""
g"(x) =m(m—1)a’*(ax+b)">
g7 (x)=m(m—=1)(m-2)a’(ax+b)""
Now, proceeding in this manner, we can guess that
g (x)=m(m—-D(m=2)....(m—(n-1)a"(ax+b)"™",when m>n.
In particular, when m=n, g (x) = m(m—1)(m—2)...1.a", as constant and
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then g (x)=0for n>m.

Here, for m > n, we have guessed the form of g (x), based on our

knowledge of the first three derivatives of g. But it has to be proved. This can

be easily done with the help of induction.
Suppose P(n): g (x) =m(m—1)(m—2)...m—(n—1)a" (ax+b)"™".
Then P(1) = g'(x) = ma(ax+b)""is true.

Let us assume that p(k)is true, k < m. Therefore,
g® @) =mm—-1)(m=2)...(m—(k =1))a* (ax+b)"™*

If we differentiate both sides of Eqn. (2), we get
"V (x) =m(m—1)(m=2)...(m = (k =1))a" (m - k).a(ax +b)"™*"

This tells us that p(k +1) is true.
Hence, by induction, p(n)is true for all n.

i)  h(x)=sin(ax+b).Therefore,
h'(x) = acos(ax+b)
h”(x) = —a’ sin(ax + b)
h® (x) = —a’ cos(ax + b)
h™ (x) = a* sin(ax +b)

We observe the pattern of these derivatives, and write,

h(x)=asin(ax+b+7/2)

h’(x) = a” sin(ax +b+2.1/2)

h?(x)=a’ sin(ax+b+3.1/2)

h* (x) = a* sin(ax+b+4.1/2),and so on.

Based on this, we can write 1"’ (x) = a" sin(ax+b+n7/?2).

This statement needs to be proved by induction. We leave it as an exercise for

you to try.

iv) p(x)=sin3xcosx= %(2 sin 3x cos x)
I _. .
= E[sm 4x+sin 2x]

- p™ (%) =%[4" sin(4x + nm/2) + 2" sin(2x + nw/2)]

You should now try to find the higher order derivatives of some functions on
your own.

Try these exercises now.

E1) Let h(x)=sin(ax+ b).Use induction to prove
h" (x) =a" sin(ax + b+ nw/2).

97
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E2) If f(x)=cosax,xe R,a#0,find f®(x),and " (x), ne N.

E3) If f(x)=In(ax+b),a#0,xeR,find £'(x), £ (x), £ (x),and
£ (x),neN.

You recall that in the introduction to this unit we talked about finding a
polynomial which is approximately equal to a given function in a
neighbourhood of a given point. We now come to this problem.

Suppose a function f is defined on an interval I containing a point a. If we
take the function F,(x) = f(a)Vae I,then F, is a constant function, and
agrees with the function f at a. Now we suppose that f is differentiable at 'a
and consider the function Bon I defined by P (x)= f(a)+ (x—a)f (a),xe I.

A\l

The expression on the R.H.S of equation above is a polynomial function (of
degree 1, and we have P,(a) = f(a),and P(a)= f'(a).

If the second order derivative of f also exists at a,then we define a function

(r= ‘”f()

P,on I givenby P,(x) = f(a)+(x—a) f'(a)+
This is also a polynomial function, and we have
P,(a)= f(a),P)(a)= f'(a)and Pj(a)= f"(a).

Do you observe a pattern in the process of defining these polynomial functions
F,, Pand P, ? Infact by this process we are finding polynomial functions
defined on I,which seem to agree more and more with the function f at the
point 'a'. This leads us to believe that we are getting better and better
polynomials, as an approximate of f at the point 'a’

You have studied curve tracing in your Calculus course. In the light of that, let
us see the current discussion.

We have f(a) = F,(a).So this means that the curves for f and F,cross at the
point (a, f (a)).For P, in addition we have f’(a)= P/(a).So we know that the
curves for f and P have the same slope at 'a’

Extending this process further, if the given function f has derivatives of order
n at the point a,then we have

(x— a) (x— a)

P,(x)=f@+x-a)f(@+——f(@+.+——f"(a - (3)

Thus, P,(a) = f(a),P/(a)= f'(a),P (a) = f"(a),and, in general,
P™(a)=f"(@)Vm<n.

We hope that the polynomial function on the R.H.S of Eqn (3) gives us a
“good” approximation of f at a, and that the “goodness” will get better as we

increase n.
A word of caution though!

In the previous two paragraphs we have been talking about our “beliefs” and
“hopes”. Are we justified in believing and hoping? The answer to this question
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is given to us by Taylor's Theorem, which we state now. In fact, the
polynomials F,,P,,...,P,,ne Nare called Taylor Polynomials of f at a.

Theorem 1(Taylor’s Theorem): Let f: 1 — R,where I =[p,q]is closed a
interval in R . Let ne N. Suppose that f’, f’,...., f " exist and continuous on

I,and f“*" exists on the open interval (p,q).If ae I,thenforany x >a,
x e I,there exists a point c between a and x, such that

(n)
f(x)= fla)+ f'(a)(x—a)+ f: ( )( a)2+...+¥(x—a)"
f(”"‘l)(c) _ n+l
+—(n+1)! (x—a) .. (4)

Proof: Let J be the interval with end points xand a. If x =a,then Eqn. (4) is
true. Suppose x #a,and x >a.Let J =[a, x].

We define a new function F:J — R, as

(x ) T eee (x

F(y=fx)-fO-x-1)f - @ f(”)()

_A(x_t)nﬂ
(x_a)n+l ’

where Ais a constant, such that F(x)=0.
If F(a)=0,then from (5) we get

(x—a)” a)

_G-a)" a)”

Fla)=f(x)-fl@-Gx-af(@-——f"(a)-

Therefore, we get

@y —(x L fo@. .6

(x—

A=f(x)-fl@-(x-a)f(a)-

a constant.

(Recall that @ and x are two fixed points in [ p, g]).

For that, we proceed as follows: we know that £, ', f’,...., f* and

(a—x)",me N are all continuous on [a, x] and differentiable on (a,x).So Fis
continuous on [a, x], and differentiable on (a, x). Therefore, F satisfies all the

conditions of Rolle’s Theorem. Therefore by Rolle’s theorem there
existsce]a, x[, such that F'(c)=0.

Now we find F’(¢) . For that we differentiate both sides of Eqgn. (5) with respect
to r we get

F'(t)y==f' )+ f/()—(x=0)f" )+ (x=0)f"(t) - (x—f)

f7@

="

. (n+1) An+1)(x—1)"
oy -+

(X _ a)n+l

" (@)-A=0.

99
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_—(X D" ) An+D(x—1)"  [All other terms get @)
a AN (x—a)™ cancelled except these "
two terms].
Now we put con both sides of Eqn. (7) and get
, - el A D(x—c)" by Rolle’

Flo ==t pon ('z:_)flfnf) ~0  tnaorem - (8)
From Eqgn. (8), we get

(x a)nH (n+1)

TG . (9)
Substituting this value of Ain Eqn. (6) we get
- f@= - @ D (@)= 2 @)

(X a)n+l (n+1)
o @
And hence,
(x— a) ” (X a) )
f) = fl@+x-a) f(@)+———f(@+.+——f"(a)
(x a)n+l (n+1) [ |
AN

Alternate Proof: Let J ={r:a<t<x}. For te J,put
F= 10~ FO- -0 0~ O praye - O7 gy A(((f::;))j
where Ais a constant to be so chosen such that F(x):F(a).If F(a)=0then
= f@+ =) f @+t S0 @+ 4 - (10)

The function F satisfies the condltlons of Rolle’s Theorem.
i) £ f,....f ™ are continuous on [a, x]

ii) Are differentiable on Ja, x|

iy  F(a)=F(x).

So 3 ceJa, x[ such that F'(c)=0. Observe that

n(ntl) o\
0= F'(c) = (x C) Flor A(n+1)(xn+1c)
(x—a)

Which implies

(n+1)
f©

(n+1)'( —a) . (11)



Unit 13

Substituing for (11), we get in (10), we get

(x— a)"+1 n+l

X—a

F0) = f@+ =) f @+ + =0 —
Remark 1: The Theorem 1 also holds for x < a,in that case the interval will be
[x,a].

Remark 2: Using the form of expression for P, given in Eqgn (3), we can write
fx)=F,(x)+

where P (x)is the nth Taylor polynomial of f . We also write
(x a)n+1

(n+1)!
between a and x (obtained from Rolle’s Theorem). This formula of R is called
the Lagrange Form of Remainder.

f(x)=P,(x)+R,(x),where R, (x)= £ (c), where cis some point

So, when we try to approximate a given function by a Taylor polynomial, we
know that there is an “error” of R (x) = f(x)— P, (x).

Here are some examples to clarify these concepts.

Example 4: If f(x)= m,xz 0,find A (x),R,(x),P,(x)and R,(x), for
x> 0.Show that, for x > 0, the inequality 1+ % —);2 <Jl+x< 1+§ holds.
Solution: f(x)=+/1+x = (1+x)"?. Therefore,

=3

f%w=—%a+m4“

P70 =S,

s@ﬂmﬂfm>—fw>~%Mfm»3

P,(x)=f(0)+x.£(0) =1+5

2

x° reN_ X _l -3/2
Rl(x)—Ef (c)= 2[ 4j(1+c) ,0<c<x

Buhf©+#mH%f%)

:1+£—lx2
2 8

3

R,(x)= % (c) = %[gja +6)2 0<c<x.

Now, v1+x =PF(x)+R,(x)

2
X X —3/2

=l+———({0+0c)7"", O<c<x.
2 8

fia@)+———f(c) u

101
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Since %(1+c)_3/2 >0,

«/1+x<1+§ - (12)

Again, V1+x = P,(x)+ R,(x)

3
:1+£—1x2 + X1+, 0<e<x
2 8 16

3

Here, (14 ¢)™"
16

> (. Therefore,

1+§—%x2 <1+ x.This together with Eqn. (12) gives

1+§—%x2 <Al+x <1+§, v x> 0.

*kk

Note that we have used Taylor’s Theorem to establish the inequality.

In the next example you will see how to find an approximate value and how to
estimate the error in approximation using Taylor’s theorem.

Example 5: Find the approximate value of /1.2 using Taylor's Theorem with
n =2.Also estimate the error.

Solution: We first note that 1.2=1+0.2i.e. (1.2)"° =(1+0.2)"*. This is of the

"3where x = 0.2. Therefore we consider the function

form (1+x)
f(x)=(1+x)"?, x>0and apply Taylor's theorem for n=2at a =0. Then we

have for x >0, Then, if f(x)=P, +R,,where
2 3

P,(x)= f(0)+x f’(0)+%f”(0),and R,(x) :%f“)(c), 0<c<u

’ _l 213 o7 :__2 =513 pm :E -8/3
Here f(x)—3(1+x) , [ (x) 5 A+x)7", f7(x) 27(1+)c) .

o) ==2.

Therefore, £(0)=1, f'(0)= 5

1
3
S P(x)=1+xx— +—[ j

1.2=1+0.2.
0.2)?

Hence, P,(0.2)=1+ 0.2[%} - (+2/9)

21422 004936y 46

3 9 9

So, the approximate value of /1.2 is1.062.

The error, given by R, (x) = (062) [ j(l )P < % =0.00049.
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Here, since ¢>0,1+c¢>1,hence (1+c¢)”

*kk

Example 6: Find the approximate value of e, with error less than 10~
Solution: We consider f(x) =e¢",defined on R, and take a =0,x=1.
Now f'(x)=f"(x)=...= fP(x)=e",ne N.

Therefore, £(0)= f’(0)= £"(0)=...= f"(0)=1.

2 n c

Hence P, (x)—1+x+—+ + ,and R, (x)=———,0<c<l.
2! (n+1)!
<107,
1)'
, e“| < 3happens if we choose n, so that
R, (x) —| | i <107, or, whenever (n+1)!>3x10° =3000.

(n +1)v| (n+1)!
Now, 7!=5040 > 3000. So, it is enough to take n =6.

.. The approximate value of ewith n=6,is

e :1+1+l+l+l+l+é =2.718055...,and the error is less than 107>

20 31 41 3!

*kk

A special case of Taylor's Theorem, with a =0, is known as Maclaurin’s
Theorem.

Theorem 2 (Maclaurin’s Theorem): Let f: 1 — R,where I =[p,q].Let

ne N.Suppose f, f,..., £ are continuous on I,and f“*" exists on (p,q).
If Oe I,then for any xe I,there exists a point ¢,0 < ¢ < x, such that

fx)=fO)+xf’ (0)+—f (0) 4.t f(")(O) ( D1 f(’””( )-
Remark: If xe[p,q],x=a+ h,then Taylor's theorem can be written as
Note that
K2 h could be
f)=fla+h)=f@+hf (a)+—f”(a)+ + f(”) (@) negative also.
+L+1f("+l)(c) a<c<a+h, or
(n+1)! ’ ’
fla+h) = f@+h @+ @+t )+ (”” @ o.0<0 <1,

The nth Taylor Polynomial of a function which is ntimes differentiable, is

Po= f@+ (s @+ O e+ B o) 0
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are called Taylor coefficients of f .

f’ (a) f ™ (a)
n!

The coefficients, f’(a), o

Now, if a function f is infinitely differentiable, that is, if the derivatives of all
orders of f exist, then we can write it as a series,

Fla)+(x—a)f (a >+(x “)

fa)+... ... (13)

This series is generally called a power series.

We do not know whether this power series converges or not. It has been
proved that the series (13) will converge if and only if the sequence {R, (x)} of

remainder converges to zero in a neighbourhood of 'a’. In that case, the
series (13) is called the Taylor Series or Taylor Expansion of f. Infact you

might have observed that the Taylor polynomials are nothing but the partial
sums of this Taylor series. Again, if a =0, the series (8) becomes

f(0)+xf’(0)+%f”(0)+.... .. (14)

This is called the Maclaurin’s Series or Maclaurin’s Expansion of f.

Let us see some examples.

Example 7: Find the Maclaurin’s series for

i) e, xeR, i) cosx VxelR, i) log(l+x),xe[0,1]
Solution: i) Let f(x)=¢* ¥V xe R.Then f"(x)=¢*, Vne N,xe R.
So, f(0)=¢"=1,and f™(0)=1V neN.

Therefore, the Macluarin’s series of f'is

2 n
X

1+ x+—+...+
2!

+...
n!

Using Ratio test, you can easily show that the series

L
2!

1+|x|+ +...
!

is convergent, and hence the series
2 n

X X
1+ x+—+...+
2! n!

+...

is also convergent. Therefore,

2

n!
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ii)

Let f(x)=cosx, xe R.

Then £(0)=1, f/(0)=-sin0=0, f"(0) =—cos0=—1,and so on. In

general, £ (0)= cos[ j ne N.So we write the Maclaurin’s series,

2
X X

l——4+—+..+(D"
20 4 (2n)!

.. (15)

We know that cosx = P, (x)+ R, (x),where

n+l

X

R (x)=——f""(0x),0<0<1

(n+1)!

n+l
= cos 9x+wj
(n+1)! 2
n+l
Therefore, , ((ocost<1V te R)andhence
(n+1)!

limR (x) —>0as n—o V xeR

This means that (15) is a convergent series, and we can write

2 4 2n

cosx=1-+2 4. A+ (=D
2! 4l (2n)!

+... VYxeR.

Let f(x)=log(l+x),xe[0,1].

?
1 4 By —
Then f(x)— f( ) 2 - )z,f (x)= L+ 2y
“) @) M
f ()—( gl — 1+ .;ne N

So, f(0)=logl=0, f(0)=1, £/ (0)=—1, f2(0) =2, f¥(0)=-3I,...,
[P =E=D" (-1

Now we can write the Maclaurin’s series,

x2 x3 X4 (_1)n—1xn
X——+———+. +——+
2 3 4 n
In this case,
x2 x3 X4 (_1)nxn
R =log(l+x)—<x——+——"—+...+
L, (x) =log(1+ x) {x >34 .
n+ (n)
(H),f (6x)

B xn+1 (_1)nn'
C (n+ D! 1+6x)"™

105
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B (_1)nxn+1
(n+1)(1+6x)""
n+l
Therefore, (R, (x)| < al .Since 0<x<1,(1+6x)>1,and ! <lI.
n+1 1+6x

So, we conclude that R (x) — 0as n — oo, and write

2 3 4
X X

x
logd+x)=x——+—-——"+...,0<x<1.
& ) 2 3 4

*kk

Note: From these examples you must have observed that it is easy to find the
Taylor polynomials which gives an approximation to the function. But the
approximation includes some measurement of the error. Taylor’'s theorem can
be used to estimate the error in approximation. If the remainder tends to
0,then we get the Taylor series expansion. On the other hand, if certain
accuracy is specified like in Example 6, then the question involves finding a
suitable n.

It is time to try solve some exercises now.

E4) Find the fifth Taylor polynomial, P,(x)of sin xon [-1,1],a = 0.Show that

. 1
|smx—P5(x)|<mfor |x|<1.

E5) Find the approximate value of +/1.2 and T using Taylor’s theorem with
n=72.

3 3 5

E6) Using Taylor's theorem, show that x — % <sinx<x —% + %,x >0,

3 3 3
X ) b~ W S

and x——2>2sinx=>x——+—for x<0.
3! 315

E7) Assuming the convergence of the power series,

(x—m/4) (x—7/4)°

> > >+.VxeR
1+m* /16 4(1+m"/16)

i) show that tan™ x =tan™" /4 +

Hint: Apply Taylor's theorem to f(x) = tan™' xwith a =7/4.

i) Expand cos xin powers of (x—m/4).

So far you have learnt a fundamental theorem known as Taylor's Theorem
which gives a useful technique for approximating a function via Taylor
polynomial. This was done by finding the higher order derivatives of the
function. In view of this sometimes Taylor's Theorem is considered as an
extension of mean value theorem which relates a function to its higher order
derivatives.

In the next section we shall study another important concept called ‘extrema’,
which also involves higher order derivatives.
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13.3 EXTREMA OF A FUNCTION

In this section we deal with the concept of extrema which is a common term
for maxima and minima of a function.

In Calculus you must have learnt that the study of extrema are useful in
drawing the graph of a function. There you must have learnt that it is useful to
study local extrema (local maxima and local minima) rather than absolute
extrema (a term used to differentiate an extrema from local extrema).

We begin the study of local extrema by considering an example of a function. The term ‘relative’

and ‘local’ are

Take the function f :[0,47], f(x) =sin x. We know that —1 <sin x <1for all used commonly in
x. The highest value of sin x, which is is attained at two points, /2 and the text book.
Sw/2in [0,47].Its lowest value, —1is attained at 3x/2and 7x/2in We mainly use the
[0,47].We say that sin x has a relative or local maximum at x =m/2and at term local.

x=57/2. Likewise, we say that sin x has a relative or local minimum at
3n/2and 7m/2. We also say that sin x has local extrema at
nt/2,3n/2,5n/2and 7mt/2.
A

/\ 1'N=Sin%
21t

Fig. 1: Graph of f(x)=sin x.

e B

We formally give the definition now.

Definition 1: Let f be a function defined on an interval 1,and let c be an
interior point of 1.

i)  fis said to have a local or relative maximum at x = ¢, if 3a &> 0, such
that f(x)< f(c) V x€lc—98,c+9d[,x #c.

i) fis said to have a local or relative minimum at x = ¢, if 3ad > 0, such that
f(x)> f(c)Vxelc—9d,c+9[,x #c.

i)  fis said to have a local extremum, if it has a local maximum or a local
minimum at x =c.

If you look at Fig. 1, you see that, the tangents at the points P,Q,Rand S are
all parallel to x -axis. That means the derivative f’(x)of the function at each
of these points is 0. We shall now prove this fact in the following theorem.

Theorem 3: Let f be a function defined on an interval 1.Suppose f has a
local extremum at an interior point c e 1. If the derivative of f at c exits, then

f(c)=0.

Proof: Suppose f has a local maximum at c. Therefore, Ja & > 0, such that
f(x)< f(c) Vxele—=90,c+d[,x#c. 107
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Thatis, f(x)— f(c)<0V xelc—09,c+9[,x #c. Now, if xe]c,c+ 9[,then

JO=T(E 6 (Note that f(x)~ f(c)<0and x—c > 0). Therefore,

X—C
i SO =F©

x—c* X—cC

.. (16)

On the other hand, if xe]c—29,c[,then x—c<0and f(x)— f(c) <0. Thus,
f-1@©

X—C

Therefore lim 2=/ 5 .. (17)

x—c X—cC

We know that f'(c) = limM,exists. This will happen only if the left
X—c x —C

S () - f(c)
X—C
equal. And these limits will be equal only if both are zero.

hand and right hand limits of as x — cgivenin (16) and (17) are

Therefore, f’(c)=0.

Similar argument shows that if f has a local minimum at cthen f’(c) =0.We
leave this to you as an exercise. (See EB8). [ |

Theorem 3 gives us a necessary condition for f to have a local extremum at
c.ls this sufficient? That is, if f’(c) =0, can we say that cis a local extremum?
Let us see.

Here is a simple example to illustrate that the answer is no. Consdier the
function f:[-1,1] = R, f(x) = x’.Then 0 is an internal point of [—1,1].Further,
f’(x)=3x*,and £’(0) =0.We shall check if f has a local minimum or
maximum at 0? Note that f(0) =0.Any neighbourhood of 0 will contain some
positive and some negative numbers. The value of f at a positive number is

positive and that at a negative number is negative. So every neighbourhood
has function values which are less than f(0)and also which are more than

f(0). Therefore by Definition 1, 0is not a local extrema. This is also clear in
the graph of this function. See Fig. 2.

Fig. 2: Graph of f(x)=x"in ]-11].

This shows that the condition f’(c) = 0is not a sufficient condition for local

108 extrema. You should also note that the condition f’(c) =0 can be checked
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only when f is differentiable at c. What about the points in the domain of

f where f is not differentiable? Can a local extremum of f occur at such a

point? The answer is yes. Take the example of the absolute value function

f:R >R, f(x)=| x| See its graph in Fig. 3.
)=

XY

Fig. 3: Graph of | x|.

You know that this function is continuous on R, and differentiable on
R —{0}. This function is not differentiable at x = 0.But isn't it clear from Fig. 3,
that f has a minimumat x=0?

Recall the following definition from the calculus course.

Definition 2: A point x = c is called a critical point for the function f,if either
f does not have a derivative at c or if the derivative of f exists, then
f'(c)=0.1f f/(c)=0,then, f(c)is called a stationary value.

So what Theorem 3 does is this: From amongst the points at which the given
function is differentiable, it helps us pick up some possible points at which a
local extremum can occur.

Among the possible points indicated by this theorem, how do we find the
actual local extrema? The theorems which follow will help us in this. Both
these theorems (Theorem 4 and 5) give us sufficient conditions for the
existence of local extreme points.

Theorem 4 (First Derivative Test): Let f be continuous on the interval
I =[a,b],and let c be an interior point of I.Assume that f is differentiable on
la,c[ and ]Jc,b[.Then,

Then

i) if 3a 8>0,suchthat Jc—8,c+8[cI,and f'(x)=0for c—d<x<c,and
f'(x)<0for c < x<c+3dthen f has alocal maximum at c.

i) if 3a 8>0,suchthat Jc—8,c+8[cI,and f'(x)<0for c—d<x<cand
f'(x)=0for c<x<c+39d,then f has a local minimum at c.

Proof: i) If xe]c—9,c[,then we apply the Mean Value Theorem (MVT,
Theorem) to the function f on [x,c]. We know that f is continuous on
[x,c], and differentiable on ]x,c[ since ]x,c[]a, c].

Therefore, by MVT, 3 x, €]x, c[, such that

f(C)—f(X) — f/(xo)'
cC—X

Since x, €lx,c[c]lc—8, ¢, f'(x,) = 0. 109
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And f(c)— f(x)=(c—x)f"(x,)=0,since c—x>0and f'(x,)=0.
Therefore, f(x)< f(c)for xelc—9,c ... (18)

Now suppose xe€]c,c+9[. Then fis continuous on [c, x] and differentiable on
le, x[. So, again, by MVT, 3 x, €]c, x[, such that

f(X)—f(C) — f/(xl)
X—C

Therefore, f(x)— f(c)=f"(x)(x—c).
Now x—c>0and f’(x,) <0.Thus, f(x)— f(c)<0,and we conclude that

JF(x) = f(c),for
x€lc,c+9[ ... (19)

Combining (18) and (19), we get that f(x) < f(c¢) V x€lc—9,c +J[.This
means that f has a local maximum at c.

i) The proof of this part is similar to that of i). We leave it to you as an
exercise. (See E9). [ |

You may note that Theorem 4 gives us a sufficient condition for the
existence of a local extremum.

Now, go through the following examples.

Example 8: Let us consider the following function

x4[2+sin 1), x#0
fx)= x
0 , x=0.

Check whether f has a local minimum at 0. Also check if f satisfies the
condition (ii) in Theorem 4.

Solution: We shall first check whether f has a local extrema. We first note
that this function is differentiable on R. Since [sin 6| <1for all 6 we get that

2+sinl >1>0forall x#0.Also, x* >0 Vx.

X

Hence f(x)=0V xe R.

So we can say that x =0is a local (and also global) minimum of f. Infact it is

a minimum point. Now we shall check whether the condition (ii) in Theorem 4
is satisfied.

, 1 1
f(x)= 4x3[2+ sin —j—xz cos—
X X

1 1
= xz[Sx +4xsin ——cos—}.
X X
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Consider 8x+ 4xsin l — cosl

X X
1
x:#,sin[lj: sin(4n+1)= =l and cos[—j:O.
(4n+Dm X 2 X
Therefore, 8x+4xsinl—cosl: 16 + 8 >0 .. (20)
X x (@n+Dmn (4n+Drn
If xzi,sinlzsin 2nmt =0, and cosl=1.
2nm X X
1 1 8
Thus, 8x+4xsin ——cos—=——-1<0V n=>2 .. (21)
X x 2nm
From Eqgn. (20) and Eqgn. (21), we observe that f| ———— |>0and
(4n+ D)

f’[%j <Oforall n>2.

nT

Now, given any & -neighbourhood, ]1-9,d[ of 0,we can choose 7 large
enough, such that . <dand _ < d.S0 f’takes both positive and
4n+Dm 2nm

negative values on the right side of 0,no matter how small 6 neighbourhood is
chosen.

Thus the condition (ii) given in Theorem 4 for a local minimum is not satisfied. W

This example tells us that the conditions given in Theorem 4 are only sufficient
but not necessary for the existence of local extrema of a function.

So, Theorem 3 gives us a necessary condition, and Theorem 4 gives us a
sufficient condition for the existence of the extrema of a function. We now
apply both these conditions to arrive at the extrema in our next example.

Example 9: Examine the following functions for relative extrema:

) f(x)=x-3x—4, xeR
i) f)=x-2)"(x+1)°,xeR

i) x—2Vx+2,x>0.

Solution: i) f(x)=x"-3x-4= f'(x)=3x>-3=3(x-D(x+1).
f(x)=0= x==1.

So, x=1and x =—1are the two possible extremum points.

First consider x=1.1f 0<x<1,x+1>0and x—1<0.Therefore, f'(x)<0.

If x>1,x+1>0and x—1>0.Therefore, f'(x)>0.Applying Theorem 4, we
conclude that f has a local minimum at x=1.

Now consider x=—-1.If x<—-1,x—1<0and x+1<0.Therefore, f’(x)>0.

111
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Theorem 4 tells us that f has a local maximum at x =—1.

i) f()=x-2)'(x+1)’, xeR.

So, f/(x)=4(x=2(x+1’ +5(x-2)"(x+1*
=(x-2>(x+1D*(9x—-6). ... (22)
f'(x)=0at x=2,—1and 2/3.

Let us take these stationary points one by one.

Case 1: x=-1
If x<-1,then x—2<0,and (x—2)’ <0.Also x+1<0,and therefore
(x+1*>0and 9x-6<0.

Thus from Eqn (16), we get, f'(x) >0for x <—1, whereas, if —1< x <0, then
x—2<0,and (x—2)*<0.Since x+1>0, (x+1)* >0, and 9x—-6<0.

This means, that f” does not change sign while passing through
x=—1.Hence, f has neither a relative maximum, nor a minimum at x =—1.

Case2: x=2/3

For 0<x<2/3,(x—2)’ <0,(x+1)* >0and (9x—6) < 0.This shows that
f'(x)>0for 0<x<2/3.

lf 2/3<x<Lthen (x—2)° <0,(x+1)*>0,and (9x —6) > 0. This shows that
f’(x) <0for 2/3 < x <1.Therefore, since f’changes sign from positive to
negative while passing through x =2/3, we can say that f has a relative
maximum at 2/3.

Case 3: x=2

2/3<x<2=(x-2)"<0,(x+4)* >0,and (9x—6)>0.So f'(x)<Ofor
2/3<x<2.

x>2= f(x)>0.
So we conclude that f has a local minimum at x = 2.

i) f(x)=+vx-2Jx+2,x>0.

PRI _Jx+2-2Jx
Wx Jx+2  2dxdx+2

F()=0Vx+2=2Jx = x+2=4x= x=2/3.

Now the sign of £’(x)will be determined by the sign of +/x +2 —2+/x.

2—4x 3(2/3—-x)
Va2 -2x=2F _ ,
Jx+2+2d0x Jx+2+240x
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So f(x)>0for 0<x<2/3,and f'(x)<O0for x >2/3.Therefore by the first
derivative test we conclude that f has a local maximum at 2/3.

*kk

You have seen that the sign of the first derivatives helps us to decide whether
a stationary point is a local maximum, minimum, or neither. Higher order
derivatives of a function can also be used to decide the nature of stationary
points. The next theorem shows us how the second derivative is used in this.

Theorem 5 (The Second Derivative Test): Let / be an interval, and cbe an
interior point of 7.Suppose f : I — Ris differentiable on 7,and f’(c) =0.

i) If f7(c)<0,then f has a local maximum at c.

i) If £7(c)>0,then f has a local minimum at c.

Proof: Since f”(c)exists, it implies that f and f’exist and are continuous in
a neighbourhood, (¢ —9,c+ d)of ¢, where 8>0,and (c—9,c+9) C I.

i) Since f"(c) <0, f is strictly decreasing at x =c. Thus, 3§, > 0,9, <§,
such that f'(x) < f'(c) ¥V x€ (c,c+9,),and f'(x)> f'(c)Vxelc—38,,cl.
Since f’(c) =0, this means f’(x)is negative in ]c,c+ 3,[,and positive in
Jc—38,,c[.In other words, f’changes sign from positive to negative in

passing through c. Therefore, by the first derivative test, Theorem 4, we
conclude that f has a local maximum at c.

i)  The proof of this is on exactly similar lines. We leave it to you as an
exercise. See E10). [ |

Note: The Theorems 3, 4 and 5 illustrates that the first and second
derivatives, when they exists, help us identify the local minima and maxima of
a function.

Here are a few examples to illustrate the use, and the limitations of
Theorem 5.

Example 10: Examine the following functions for local extrema.
i)  f(x)=sinx(1+cosx),xe [0,2m].

ii) f(x)=£— ! ,xe R\{0,1}.
x x-—1

i) f(x)= Gj x>0.

Solution: i) f’(x) =cosx(1+cosx)—sin’x
=CcoSsx+cos2x

o f(x)=0=> cosx+cos2x=0= cosx=—cos2x.

T
=S>x=—.
3

Now f”(x)=—sin x—2sin 2x,and 113
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f"[Ej:—sinE—Zsin R
3 3

3 2\/§:ﬁ<0.

2 2 2

So, f has alocal maximum at g

. , -4 1 —4(x=1)>+x*

i X)=—++ = =
) T X (x=1) x*(x—1)°
=x"—4(x-D)*=0=3x"-8x+4=0

= 3x-2)(x-2)=0.

:>x=z or x=2.
3

” _i_ 2
fx)= > —(x_1)3
f’(2)=1-2=-1<0and
£7(2/13)=27+54=81>0.

Hence f has a local maximum at 2, and a local minimum at 2/3.

i) Let y= (lj .Then logy = xﬁn[lj =—x/n.

x x

..l-y'z—logx—l
y

-y =—y(1+logx).

, I . . 1
Now f'(x)=y =0if —y(l+logx)=0if logx=—1thatis, if x=—.
e

Since y'=—y(1+logx),

o 1
y ==y (1+10gX)—y-;-

1
=i
.y”(—j=—=—e-e”e <0.
e 1
e

. 1
So, has a local maximum at —.
e

*k %

Example 11: Examine the nature of the stationary point x = 0 for function
f(x)=x,g(x)=x"and h(x)=—x*, xe R.

Solution: It is easy to check that f'(0)= f"(0)=0, g’(0)=g”"(0)=0and
H(0)=h"(0)=0.

Theorem 5 cannot be used here. We now look at the graphs of these function
given in Fig. 4 a), b) and c), below:
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5--
5+ 5+

5 0 5

-5 0 5 -5 0 5 5

+-5 -5+ 1

-10
(a) Graph of f (b) Graphof g (c) Graphof h

Fig. 4

Isn’t it clear that x = Qis neither a local maximum, nor a minimum for f.

x =0is a local (and global) minimum for g,and it is local (and global)
maximum for h.

* %k

This example shows that Theorem 5 is of no help if the second derivative is
zero. We now state without proof, a general theorem, that uses higher
derivatives of a function to classify its stationary points.

Theorem 6: Let I be an interval. Let ce I, and let n > 2. Suppose that the
derivatives f”, f”....., f " exist and are continuous in a neighbourhood of
c,and that f'(c)= f"(c)=...= f""(c)=0,but £ (c)#0.

i) If nisevenand £ (c)>0,then f has a local minimum at c.

i) If nisevenand f"(c)<0,then f has a local maximum at c.

i) If nis odd, then f has neither a local minimum nor a local
maximum at c. u

We are not including the proof of this theorem. But it can be easily proved by
using Taylor’'s Theorem. You may note that the second derivative test,
Theorem 5, is a special case of this theorem, when n = 2.

In the next example we use Theorem 6 to find the extreme points.

Example 12: Examine the function f(x) = (x—3)’(x+1)*for extreme values.
Solution: f'(x)=(x-3)*(x+1)’(9x-7)

So the stationary points of f are —1,7/9and 3.

Now, f"(x)=8(x—3)’(x+1)*(9x* —14x +1), therefore,

f (=D =f"(3)=0,and

f”(7/9)=8[_—20j [EJ [£—14x%+1}

9 9 9 115
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7. .
SoX =§|s a local minimum.

F7(x)=24(x - 3 (x+D(21x* —49x* +7x+13)
Again, f7(-1)= f"(3)=0.

FP(x)=24[2(x=3)(x +D)(21x* —49x*> + Tx+13)
+(x=3)*(x+1D(63x> —98x+7)
+(x=3)2(21x* —49x* +7Tx+13]

Thus, f*Y(3)=0and f(-1)=24.16(—64) <0.
Hence f has a local maximum at x =—1.

Now, £ (x)=24[2(x+1)(21x° —49x> + Tx +13)
+14(x=3)Bx = 1)(9x> —14x +1)
+14(x=3)*(x+ D (Ox =7)]

So f¥(3)#0.

Since the first non-zero derivative at x =3 is of odd order 5, f has neither a
maximum, nor a minimum at x =3.

*k %

You must have learnt from the course Calculus that the absolute or global
maximum (or minimum) value of a function, defined on the interval [a,b], is the

greatest (or smallest) value taken by the function in that interval. Thus a
maximum (or minimum) is always a local maximum (or minimum) value. A
function can have more than one local maximum (or local minimum) value.
Among these values there can only be one value which is maximum and same
is the cae with minimum. Therefore if the function is differerentiable at all
interior points of the interval, we first find all the stationary points of the

function, say, c,,c,....,c,. Then we look at the values

f(a), f(c), f(cy),.... f(c,), f(b). The greatest among these is the absolute

maximum value of the function, and the least is the absolute minimum value of
the function. The following example will make this clear.

Example 12: Find the absolute maximum and minimum values of the function
f(x)=3x*-2x—6x>+6x+10n [0,2].

Solution: We first find the stationary points.
f/(x)=12x" —6x*> —12x+6.

So f/(x)=0=2x"—x*-2x+1=00r (x-D(x+1)(2x-1)=0

Thatis, x= —1,%or 1.
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—1¢ [0,2]. So the stationary points of fin [0,2]are x :%and x=1.

1

39
2j—g,f(l)—2and f(2)=21.

Now f(O):l,f(

So, the absolute maximum value is 21 and absolute minimum value is 1.

*k %

You should now try your hand at the following exercises.

E8) If f:1— R, has alocal minimum at d,show that f'(d) =0, if it exists.

E9)  Use the first derivative test to find the relative extremes of the function
given by

) f(x)=10x°—24x° +15x* —40x’ +108, Vxe R,
i) fx)=x'+2x"-4,xeR.
E10) Prove Theorem 5 ii).

E11) Find the local maximum and minimum points of the function f defined
by

i) f(x):sinx+;si112x+;sin3x,xe[O,Tc]

iy f(x) :2x+i2,x¢0.
X

E12) Determine whether x =0is a relative extremum of the following
functions:
) f)=x'+2 i) gx)=sinx—x
x3 X2
i) h(x) :sinx+€ iv) k(x) :cosx—1+—2—

E13) Find the absolute maximum and minimum values of
f(x)=x*—4x’ =2x* +12x+1in the interval [-2,5].

That brings us to end of the unit. Let us briefly recall what we have covered in
it.

13.4 SUMMARY

In this unit we have

i) introduced the notion of higher order derivatives of a function,
i) proved Taylor's theorem,
i) stated Maclaurin’s theorem, which is a special case of Taylor’'s theorem,

iv) defined relative (or local) maximum and minimum and stationary points of
a function,

v) proved that if the derivative of a function exists at its local extremum point,
it has to be zero,

vi) observed that the condition in v) is necessary, and not sufficient.

vii) proved the first derivative test to find the local extrema of a function, and
noted that the condition is a sufficient one. 117
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viii) proved the second derivative test to find the local extremum of a function,

ix) stated a general test using the higher order derivatives to find the local
extrema of a function.

13.5 SOLUTIONS AND ANSWERS

E1) Ah(x)=sin(ax+b).
Let P, :h" (x)=a"sin(ax+b+nm/2).

Then P, : ' (x)=h"(x) =acos(ax+b)
=asin(ax+b+m/2).
So Pis true.

Suppose P, is true.

Therefore, K™ (x) = a" sin(ax+b + kn/2).

S hEY (x) = dih(k)(x) =a*.acos(ax+b+kn/2)
X

=a"" sin(ax+b+kn/2+7/2)
=a""sin(ax+ b+ (k+Dx/2).
- B is true.

Hence by induction, P, is true forall ne N.

E2) f()=cosax f’(x)=-asinax=acos(ax+m/2)
f7(x) =—a’ cosax=a’ cos(ax+ T)

fP(x)=a’sinax = a’ cos(ax+3m/2)

So, in general, £ (x)=a" cos(ax+nm/2),which can be proved by
Induction as in E1).

a

E3) f(x)=loglax+b) - f'(x)=
ax+b

2

—a (e — 2a
(ax+Db)’ ARS (ax+Db)’

)" (n-D'a"
AP = D" (n=bia ,to be proved by induction.
(ax+Db)"

3

)=

E4) f(x)=sinx, a=0 f(0)=0
f’(x)=cosx, £ 0)=1
f7(x)=—sinx, £7(0)=0
fPx)=-cosx,  fP0)=-1
OO0 =r20=0 f20)=1

7
. X
[sinx— P, (x)| = e )

,Where O<|c|<1.

7
X ) 1 1
=|—1(— <—=
7!( sin c)

7 5040
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E5) Let f(x)=1+x, x>—1, a=0. f(0)=1

, 1 , 1
= s O = —
() N /(0 >
” _ _1 ” _
f (X)——4(1+x)3,2,f 0)=-1/4

fx)= f(0)+xf’(0)+%f”(0)
JI12 = 1+0.2G)+ (0.2)° (Llj

20 L 4

:1+O.1—%

2

=1.095

1y 1(-1
V2 =1+ z1+1(—j+—(—j
2) 21 4

=1.375.

E6) Let f(x)=sinx,a=0. f(0)=0.
f'(x)=cosx, f(0)=1
f7(x)==sinx, f7(0)=0
fPx) ==cosx, fP(0)=-1
fPx)=sinx  fP0)=0
fPx)=cosx fP0)=1

Now f(x)= f(O)+xf'(O)+%f”(0)+%f”’(c),where O<c < x:

3 3
) X .
smxzx—gcos(c)Zx—Elf x>0, cosc<1

3 5
X :
<x——+—,for x>0, since cosc<1.
315!
3 3 5

X .
Sx——Ssinx<x——+—, x>0.
3! 5!

Now suppose x<0.Then y=—x>0,and we have

3 3 5
Y cgnv<yv_2 4+
YTy SEYEYT
3 3 5
.'.—x+x—Ssin(—x)g—x_x_+x_
3! 3t 5
3 5 3
x——+—<sinx<x——
3! 5! 3!
E7) |) Let f(X) = tan_l X a= g f(a) = tan_l (g)
’ 1 [T 1
X)=—7, — | =
fW=e f(4j n’
1+
16

119
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roon T2 ATy —T
PO/ (4)‘ ( nzjz

2 1+—

16

So, by Taylor’s theorem,

» _l(n) (x—m/4) m(x—m/4)?
tan x=tan | — |+ 5 — 3 5
4) 1+7*/16 4(1+w*/16)

i) Let f(x)=cosx,a=mn/4.  fla)=1/2
f(x)==sinx, f'(a)=-1/+2
f(x)=—cosx, f7(a)=—1/~2
O =sinx, £f¥(a)=1/2....
L _(=m/d)_ (x-n/4)  (x=n/4)

SJ.COSX =—F—
V2 NG 212 3142

%Hﬂ%{ﬂ%{ﬂ ..... }

E8) f has a local minimum at d.Therefore, 3 3, > 0 such that
f)> f(d) Vxeld—5,,d +8[,x#d. Thatis,
FO)—-f(d)>0V xeld-8,,d +8[,x#d.

f(d)
d

Now, if xe]d —3,,d[,then ST ¢ since x—d < 0. Therefore,

x—
o D= o
x—d”~ x—d

i L@ 5

x—d

If xeld,d +9d,[,then f(x);c];(d) > 0. Therefore,

X —

Since f'(d) =lim f(x);:;(d) exists,

x—d xX—

i L=y D=1 o,

x—d”~ x—d x—d* X
E9) i) f(x)=10x°—24x" +15x* —40x’ +108.
o (%) =60x” —120x* +60x° —120x7
=60x°[x’ —2x* +x—2]

=60x" (x> + D (x=2).
o f(x)=0 for x=0and 2.

If x<0,x—2<0.Therefore f'(x)<0.
0<x<2=x-2<0= f'(x)<0.

.. f’(x) does not change sign at x =0.

120 Hence f does not have a local extremum at x =0.
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E10) To prove: If f”(c)>0,then f has a local minimum at ¢, when f’(c)=0.

x<2, f'(x)<0and if x>2, f(x)>0.

.. f” changes sign from —veto + vewhile passing through
x=2.Hence f has alocal minimum at x=2.

fO)=x"+2x"—4= f(x)=4x" +dx=4x(x* +1)

f’(x)=0if x=0,and changes sign from —veto + vewhile passing

through x =0.Hence f has a local minimum at x=0.

Now, fand f’exist and are continuous in a neighbourhood
(c=0,c+0),6>0,(c—98,c+d) < 1. Since f"(c)>0, f’is strictly
increasing at ¢,and 3§, > 0,9, <9, such that

f(x)< f(c)Vxe(c—38,,c)and f'(x)> f(c)Vxe (c,c+9,).Since
f'(c)=0,we have f’(x)is negative V xe (c—9,,c),and f'(x)is
positive ¥ x(c,c+9,).So f’ changes sign from negative to positive in
passing through c.

Therefore, by the first derivative test, we conclude that f has a local
minimum at c.

E11) i)

E12) i)

f(x)=sinx+;sin2x+;sin3x, xe€[0,x].
o f(x)=cosx+cos2x+cos3x=0
= cos2x+2cosxcos2x=0 cos2x+cos3x
= cos2x(1+2cosx)=0 — 2082 X COS.X
T 27 3%
:xzi’i’_
4 3 4

f7(x) =—sin x— 2sin 2x — 3sin 3x
o T 1 3
—|=———F7=—-—F7<0

f@ N

f”(%j:__\/g+£_0>0
3 2 2

— |=—=+2—-——F—=<0.
53
.. f has local maximum at gand %n,and local minimum at 27?
1
fx)=2x+—
X
, 2 1
f(x):Z——3:2(1——3j=0:>x=1
X X
” 6 ”
f (x)=7:>f H=>0
Hence f has a local minimum at x =1.

f)=x+2= f(x)=3x>= £(0)=0

121
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i)

f(x)=6x= f"(0)=0.
f7(x)=6= f7(0)#0.
. x=0is not a local extremum.

gx)=sinx—x= g'(x)=cosx—1=g’(0)=0
g’(x)=-sinx= g"(0)=0.
g”(x)=cosx= g”(0)=1=0.

So g has no local extremum at x=0.
3
h(x) =sin x+%.

2
H(x) = cosx+% = (0)=1%0.

. x=0is not a local extremum

2
k(x)zcosx—1+%

k'(x)=—sinx+x=k’(0)=0
k”(x)=—cosx+1=k"(0)=0
k”(x)=sinx= k" (0)=0

k@ (x)=cosx= k™ (0)=1#0.

Since 4 is even, k has a local minimum at x =0.

E13) f(x)=x"—4x’ -2x* +12x+1, xe[-2,5].

f(x)=4x" —=12x* —4x+12=0=> x’ =3x* —x+3=0

= x-Dx=-3)(x+1)=0
=x=-11,3.

We look for absolute max. and min. values among

FE, fED fML ), FO).
FE) =17, D ==8, f(D) =8, f(3) =8, f(5) =136.

.. f has a global or absolute maximum at x =5, and a global minimum
at —land 3.





