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BLOCK INTRODUCTION 
 
In Volume 1, you were introduced to the system of real numbers and the limit point of a 

set of real numbers. Also, you were introduced to some real functions in this volume. 

We considered a special function called the sequence and began the study of limiting 

processes with the notion of convergence of infinite sequence and series. We also 

discussed a related concept known as ‘infinite series’ and study the notion of 

convergence of an infinite series.  

 

In this block, we shall start with the limit concept as applied to arbitrary real functions. 

The limit of a function, in general, is an abstract notion in the sense that the function 

never attains its value at a point but tries to approach a value called the limiting value. 

The limit concept is fundamental to all further ideas in Real Analysis. Therefore, we 

shall develop it in this block and then use it to discuss the differentiability of function.  

 

This block contains 4 units. In the first unit of the block i.e. in Unit 10, we have review 

the notion of the limit of a function to which you are already familiar from your study of 

Calculus. We illustrate certain basic facts about limits through a number of examples. 

The attempts are made to help you to appreciate the rigorous notion of epsilon-delta 

definition of the limit of a function and its geometrical meaning. Closely related to the 

limit of a function is the notion of sequential limits which also we shall introduce in this 

unit. Finally, we discuss the algebra of limits. In this unit, we also introduce the notion 

of the continuity of a function at a point and extend it to the continuity of a function on 

an interval or on a non-empty set of real numbers. Also, we discuss some continuous 

and discontinuous functions as well as the algebra of continuous functions. Finally we 

shall introduce the notion of uniform continuity of a function.  

 

In Unit 11, we introduce the notion of the derivative of a function and give its 

geometrical interpretation. Also, we discuss its relationship with the continuity of a 

function and then we define the algebraic operations of addition, subtraction, 

multiplication and division on the differentiable functions.  

 

Unit 12 deals with the important contributions made by Rolle, Lagrange and Cauchy in 

the form of mean-value theorems. We also discuss the generalized mean-value theorem, 

intermediate-value theorem and Darboux theorem.  

 

In Unit 13, we confine our discussion to Taylor’s and Maclaurin’s theorem and discuss 

applications of differentiability to evaluate some intermediate forms of the functions as 

well as their extreme-values.   
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Notations and Symbols (used in Block 4) 
(Also see the notations used in Volume I) 
 

∈  ( )∉   belongs to (does not belong to)  

∈   epsilon 

( )( )−+
RRR  the set of real numbers(the set of positive real numbers)(the set of 

negative real numbers) 

∀   for all  

x|x{  satisfies }P  the set of all x  such that x  satisfies the property P  

|x|  modulus of the real x  

)x(flim
ax→

 limit of )x(f as x tends to a  

)x(fx →  a functions f taking x to )x(f  

≈  is approximately equal to  

}y,x{max  the maximum of x and y  

}y,x{min  the minimum of x and y  

w.r.t.  with respect to  

)y(D,y,y,
dx

dy )1( ′  the first derivative of y w.r.t. x . 

)x(f),x(f(
dx

d
′  the first derivative of )x(f w.r.t x . 

)x(f,y,
dx

yd )2(

2

2

′′  the second derivative of y or )x(f w.r.t. x . 

)x(f,y,
dx

yd )n()n(

n

n

 the nth derivative of y or )x(f w.r.t. x . 

≈  is approximately equal to  
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UNIT 10 

LIMIT AND CONTINUITYLIMIT AND CONTINUITYLIMIT AND CONTINUITYLIMIT AND CONTINUITY        

Structure            Page No. 
 
10.1 Introduction               7 
  Objectives 

10.2 Limit of a Function              8 
  Preliminaries  
  Some theorems on limits 
  Limits of trigonometric functions 

10.3 Extensions of the Concept of Limit          20 

10.4 Continuous Functions            25 

10.5 Uniform Continuity            32 

10.6 Summary             36 

10.7 Solutions and Answers           36 
 

10.1 INTRODUCTION 
 
You have studied the course on Calculus. In that course you have been 
introduced to functions, their types, their domains and ranges. You have also 
studied the concepts of limits and continuity of functions in that course. So, 
you already know how to calculate the limit of a function at a point, and to 
decide whether a function is continuous at a point or not. Here we are going to 
revisit these concepts. But this time we are going to look closely at the theory, 
rather than just calculate the limits. 
 
In Section 10.2 we formally introduce the concept of limit by defining it in terms 
of ε and δ neighbourhoods. The uniqueness of limits is shown and one-sided 

limits are briefly discussed. We state and prove theorems which characterises 
the limit of a function in terms of convergence of a sequence thereby providing 
a link to the earlier units 5 and 6 of this course. Analogous results about limits 
are also proved such as basic limit properties, the squeeze theorem for limits 
and the fact that the inequalities are preserved in limit.  
 
In Sec. 10.3 infinite limits are introduced as an extension of the concept of limit 
and proved some of the basic theorems which are analogs of the results of 
finite limit.  
 
Continuity of functions is discussed in Sec. 10.4 formally using the concept of 
limits of functions. Basic properties of continuous functions are shown along 
with a short discussion on discontinuity.  
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                                                        We define uniform continuity in Sec. 10.5 and establish the relationship 
between continuity and uniform continuity. We prove an important theorem 

which states that a continuous function on a bounded closed interval ],[ ba is 

uniformly continuous. The theorem which establishes interface of Cauchy 
sequences with uniformly continuous functions is also proved.  
 
There are many other important theorems for continuous function which are 
discussed in the next unit on differentiability such as Bolzano theorem, inverse 
function theorem etc. These theorems are important not only in proving 
theorems on differentiation but also to prove many other important theorems in 
analysis.  
 

Objectives 
 
After studying this Unit, you should be able to 
 
• Define the limit of a function using εand δ neighbourhoods; 

• Calculate the limit, if it exists; 

• Define continuity of a function at a point using the δ−ε definition of the 
limit; 

• Check whether a function is continuous or not; 

• Classify the type of discontinuities; 

• Define uniform continuity and differentiate it from continuity.   
 

10.2 LIMIT OF A FUNCTION 
 
In Block 2, Unit 5 and 6 we have defined limit of a sequence in terms of εand 

N and proved some important theorems on limits. In this unit we define limit of 
a function using the concept of neighbourhood.  
 
You recall that when we talk of the limit of a function at a point, we are 
interested in the behavior of the function very close to that point. How do the 
function values change when we approach that point? If the function values 
also seem to be very close to a particular value, then we say, that value is the 
limit of the function at that point. That is the general idea. But for this idea to 
make precise, we have to define ‘very close’, ‘approach’, in the language of 
Mathematics.  We shall now get down to that. But you would have that noted, 
we are interested in the behavior of the function near the point. However the 
function value at that point doesn’t interest us! 
 
Here is the definition. 
 

Definition 1: Suppose a real-valued function f  is defined on a deleted 

neighbourhood, ,I  of a point .R∈p  We say that R∈l is a limit of f  at ,p  if 

for every ,0>ε there exists a ,0>δ  such that  

ε<−⇒∈δ<−< lxfIxpx )(,0                                                     … (1)

  

If R∈l is a limit of f  at ,p  we write lxf
px

=
→

)(lim . We also express it by 

saying:  
 

f approaches l as x  approaches .p  
 

Sometimes we also write lxf →)( as .px →  

It is very important 

to know the role of 

εand δ when apply 

this definition to find 

the limits.  
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Remark 1: Note that whenever we are discussing the limit of a function at a  
point ,p we consider only the values of the function around that point. Certain 

terminologies will help us to simplify the discussion. An open interval 

containing a point p of the form [p,p] ε+ε− for any 0>ε is called an ε -

neighbourhood of .p  Also if I is a neighbourhood of ,p then }{\ pI is called 

a deleted neighbourhood of .p  Based on these we can rewrite the definition 

as follows:  
 

Definition 2: A function f defined on a deleted neighbourhood I of a point 

,R∈p is said to have a limit ,R∈l if given an ε -neighbourhood of l there 

exists a deleted δ -neighbourhood of p such that whenever x lies in the 

deleted δ -neighbourhood of  )(, xfp lies in ε -neighbourhood of .l The 

following figure illustrates this  
 

 
 

Fig. 1: Definition of Functional Limit 
 

Sometimes an ε -neighbourhood of p is denoted )( pN ε and a deleted δ -

neighbourhood of p is denoted by ).( pNδ
′ We can then say that the limit exists 

if 

).()()( lεδ ∈⇒∩′∈ NxfIpNx  

 

Remark 2: i) The positive number ,δ  in the definition, depends on .ε   

ii) The condition px −<0  tells us that ,px ≠  making it clear, that for 

defining the limit of a function at a point, we do not consider the value of 
the function at that point. This means, even if a function is not defined at a 
point, the limit of the function at that point may exist. Recall that in 

Definitions 1 and 2 we say that f is defined on a deleted 

neighbourhood, )( pN δ
′  of the point .R∈p  

 

iii) If the limit of the function f  at p  does not exist, then we say that f  

diverges at .p  

 

We will now illustrate these points through some examples. For each of the 
functions in the examples below, the domain is taken as the largest set of real 
numbers for which the definition of the function makes sense. So, the domain 
for the first two functions is R , while that for the third one is }.2{\R  
 

Example 1: If Kxf =)(  is a constant function, then show that .)(lim Kxf
px

=
→

Solution: For every positive number ,ε we need to find a positive number ,δ  

such that 
 

.)(,0 ε<−⇒∈δ<−< Kxfxpx R                                           … (2) 
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                                                        Now, ε<=−=− 0)( KKKxf    for all R∈x .  

 

Hence, Eqn. (2) is true for any value of R∈x . 
 

Thus,  .)(lim Kxf
px

=
→

 

*** 

Example 2: If 32)( += xxf and  ,3=p then using your knowledge of 

Calculus, you know that 9)(lim
3

=
→

xf
x

. Find a value for δ , when ,1=ε  and 

when .1.0=ε  Also we find the limit using Definition 1. 
 

Solution: Let us first take the case when  1=ε .               
 

Now, 1329329)( <−=−+=− xxxf will be true, if 5.03 <−x . So, if we 

take ,5.0=δ then Eqn. (1) will be satisfied for 1=ε . Next, if 1.0=ε , you can 

easily work out that 05.0=δ  will satisfy Eqn. (1). 
 
Next we shall find the limit using Definition 1. 
 

Let 0>ε be given. We must find a δ so that if ,30 δ<−< x then 

ε<−+ 932x  

32932 −=−+ xx  

 

So we set .
2

ε
=δ Then if x satisfies ,30 δ<−< x then 

ε=
ε

=δ<−=−+
2

2232932 xx  

 
Hence the limit exists and it is 9. 

*** 

Example 3: If 
2

4
)(

2

−

−
=

x

x
xf , then f is not defined at 2. Show that the limit of 

f  at 2 is 4. 

Solution: Let 0>ε be given. We must find a δ so that if ,20 δ<−< x then 

ε<− 4)(xf . To find ,δ we proceed as follows:  

 
Now, 2 does not belong to the domain of this function. And when                 

.02,2 ≠−≠ xx  Therefore, we can divide by 2−x . 
 

Thus,  2424
2

4
4)(

2

−=−+=−
−

−
=− xx

x

x
xf . This will be less than ,δ   

whenever we choose .ε=δ Then if ,2 δ<−x then .24)( ε=δ<−=− xxf  

 
This shows that the required limit is 4.  

*** 

Note: From the above examples, you must have observed that in each case, 

we first find lxf −)( , and try to express it in terms of px − , to arrive at a 

value of δ .  
 

Next we shall show that the limit of a function, if it exists, is a unique number.  
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Theorem 1:  Suppose a real-valued function f is defined on a deleted 

neighbourhood, ,I  of a point R∈p . Then f can have only one limit at p . 

 

Proof: On the contrary, suppose l  and m are limits of f  at p . Then by 

Definition 1 for any ,0>ε  there exists ,01 >δ  such that 

,2/)(,0 1 ε<−⇒∈δ<−< lxfIxpx  and there also exists  ,02 >δ  such that  

2/)(,0 2 ε<−⇒∈δ<−< mxfIxpx . 

 

Suppose  },min{ 21 δδ=δ . 

 

Then, if we choose ,,0 Ixpx ∈δ<−<  we get that  

ε<−+−≤−+−=− mxflxfmxfxflml )()()()( . 

 

This means that we can make ml −  less than any positive number .ε  This 

can only be true if ,0=− ml that is, if .ml =  

 
So, if the limit exists, it is unique. 
 
We shall make some remarks now.       
 
Remark 3: i) Definition 1 can also be expressed as follows: 

 ,)(lim lxf
px

=
→

 if ,0,0 >δ∃>ε∀ such that whenever the distance between x  

and  p  is less than ,δ  and x  belongs to ,I  then the distance between )(xf  

and l  is less than ε . 
 

We can also say, whenever x  belongs to the deleted δ  neighbourhood I of 

p , the function value )(xf belongs to the ε  neighbourhood of l or, 

 

).()()(' lεδ ∈⇒∩′∈ NxfIpNx  

 

ii) Another interpretation of Definition 2 is that If  ,)(lim lxf
px

≠
→

then the 

statement “there exists ,0>ε  such that for every ,0>δ  

)()()(' lNxfIpNx εδ ∈⇒∩∈ ” is not true. This means, there exists 

,)(' IpNx ∩∈ δ  such that )()( lNxf ε∉ . Or, in other words, there is a member  

px ≠0   of ,I  whose distance from p  is less than δ , but the distance of )(xf  

from l  is not less than ε .   
 
Let us see example.  
 

Example 4: Show that 
x

x
xf

xx 00
lim)(lim

→→
= does not exist.   

Solution: Suppose that the limit does exist. Let us take 1=ε and let 0>δ be 

arbitrary. Consider δ<−< 00 x or δ<< x0 . Then there are two possibilities: 

either δ<< x0 or .0<<δ− x  

 

If ,0 δ<< x then 1)( =xf and if ,0<<δ− x then .1)( −=xf  Therefore the right 

hand limit is 1and the left hand limit is .1−  
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                                                        Consequently the desired limit does not exist (refer theorem 1). 

*** 

Next we establish the connection between the limit of a function and limit of a 
sequence that you have studied in Unit 5. Our next theorem brings out the 
connection between these two limits. 
 

Theorem 2: Suppose a real-valued function f  is defined on a deleted 

neighbourhood, ,I of a point  p . Then   the following statements are 

equivalent: 
 

i) lxf
px

=
→

)(lim  

ii) If ( )
nx  is a sequence in I  that converges to ,p  then the sequence

( )( )
nxf converges to .l  

 
Proof: We need to prove i) implies ii), and ii) implies i). 
 

i) implies ii):  Suppose  .)(lim lxf
px

=
→

 Further, suppose ( )
nx is a sequence in  

,I  which converges to .p  We have to prove that lxf
n

→))(( . Let ,0>ε be 

given. Then since ,)(lim lxf
px

=
→

 there exists a ,0>δ such that  

 

ε<−⇒∈δ<−< lxfIxpx )(,0                                                 (3) 

 

Then, since }{
n

x converges to ,p  for this positive number ,δ there exists a 

natural number 0n , such that   

 

<−⇒≥ pxnn n0 δ         (4)                                                                                

 

Combining (3) and (4), we get 
 

ε<−⇒δ<−⇒≥ lxfpxnn nn )(0 . 

 

This shows that ,))(( lxf
n

→ and we have proved that i) implies ii). 
 

ii) implies i): Here we are given that for every sequence ( )
nx in ,I which 

converges to ,p the sequence ( )( )
nxf converges to l . Then we have to prove 

that  lxf
px

=
→

)(lim . 

 

We assume that ,)(lim lxf
px

≠
→

then by Remark 2 (ii), there exists ,0>ε such 

that for every 0>δ  there exists an element ,Ix ∈ such that ,0 δ<−< px but 

lxf −)( ε> . 

In particular, for every natural number ,n (i.e. by taking 



=δ

n

1
there exists 

,Ix
n

∈ such that  
 

,
1

0
n

pxn <−< but lxf n −)( ε> . 

 

This shows that ))((
n

xf does not converges to p whereas the sequence )(
n

x   
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converges to .p  This is not possible (in view of the hypothesis).   

 

Hence our assumption that l≠
→

)(lim xf
px

 is not true. Thus ii)⇒ i).  

Hence the theorem.  
 
Example 5: Show that the following functions do not have a limit at 0. 

i) ,0,/1)( ≠= xxxf  

ii) 0),/1sin()( ≠= xxxf . 

Solution: i) Consider the sequence )./1()( nx
n

= Then ).())(( nxf
n

=  This 

sequence does not have a limit, as it is unbounded. So, we have a sequence 

)/1()( nx
n

=  which converges to 0, but the sequence  )())(( nxf
n

=  does not 

converge. Therefore by Theorem 2 we conclude that limit of ,/1)( xxf =  

,0≠x as 0→x does not exist.       

                     
ii) In this case we are going to consider two sequences converging to 0. 

,
1

)( 








π
=

n
xn and ( )



















π
+π

=

2
2

1

n

yn
. Both these sequences converge to 0 as  

∞→n . [Please refer to Unit 5] 

 

 Now ),0())(( =
n

xf the constant sequence, which converges to 0. 

And 1)
2

2sin()( =
π

+π= nyf n
. So, ),1())(( =

n
yf the constant sequence, 

which converges to 1. Therefore, by Theorem 1 (on uniqueness of limits) 

)/1sin(lim
0

x
x→

 does not exist. 

*** 

Next we shall prove another theorem that relates existence of limit of a 

function and boundedness of ,f in a neighbourhood.  

 

Theorem 3: Suppose a real-valued function f  is defined on a deleted 

neighbourhood, ,I of a point R∈p . If )(lim xf
px→

 exists, then f is bounded in 

some deleted neighbourhood of .p  
 

Proof: Suppose .)(lim lxf
px

=
→

 Then for ,1=ε  there exists ,0>δ such that  

1)(,0 <−⇒∈δ<−< lxfIxpx . 

Therefore, 1)()(0 <−≤−⇒δ<−< lxflxfpx . 

Or, 1)(,0 +<⇒∈δ<−< lxfIxpx . This means f is bounded on 

,)( IpN ∩′
δ which is a deleted neighbourhood of .p  

 

So far we discussed how to compute limits of some simple functions at some 
given points by directly applying the definition. Infact, using the definition to get 
the limit is little tedious. Here are two theorems, which will help us get the 
limits of many more functions, if they exist, more easily. The first one of these 
is called the Sandwich or the Squeeze Theorem. 
 

Theorem 4 (Sandwich or squeeze theorem): Suppose the real-valued 

functions gf , and h are defined on a deleted neighbourhood, ,I  of a point 

R∈p . Suppose 
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                                                        i) Ixxhxgxf ∈∀≤≤ ),()()(  
 

and  
 

ii) )(lim)(lim xhlxf
pxpx →→

== . 

holds. Then )(lim xg
px→

 exists and is equal to l . 

 

Proof: Since (ii) holds, for any given 0,0,0 21 >δ>δ∃>ε , such that  

ε<−⇒∈δ<−< lxfIxpx )(,0 1 , and 

      ε<−⇒∈δ<−< lxhIxpx )(,0 2 .       

Let },min{ 21 δδ=δ . Then ,)(,0 ε+<<ε−⇒∈δ<−< lxflIxpx  and 

ε+<<ε− lxhl )( . 

Therefore, ε+<≤≤<ε−⇒∈δ<−< lxhxgxflIxpx )()()(,0 . 

This means ε<−⇒∈δ<−< lxgIxpx )(,0 , that is, lxg
px

=
→

)(lim . 

 

Theorem 5 (Algebra of Limits): Suppose the real-valued functions f and g  

are defined on a deleted neighbourhood, ,I  of a point R∈p . If  ,)(lim lxf
px

=
→  

and  ,)(lim mxg
px

=
→

then 

 

i) .))((lim mlxgf
px

+=+
→

 

ii) .))((lim mlxgf
px

−=−
→

 

iii) .)(lim lmxfg
px

=
→

 

iv) ,)(lim klxkf
px

=
→

 where R∈k . 

v) If  ( ) 0≠xg  for all ,Ix ∈ and if ,0)(lim ≠=
→

lxg
px

then ./))((lim mlx
g

f

px
=

→
 

vi) If  ( ) 0≥xf for all ,Ix ∈ then .)(lim lxf
px

=
→

    

 

This theorem can be proved using the definition of limit, or by using Theorem 
2, which is the sequential criterion of limit. You have proved a similar theorem, 
about limits of sequences in Unit 7. Using that theorem, it becomes easier to 
use sequential criterion to prove this theorem. For illustration, we shall use the 
definition to prove i), and then use sequential criterion to prove the remaining. 
Let us start proving i) to vi) one by one.   
 
Proof: We shall begin with (i). 
 

i) Since  ,)(lim lxf
px

=
→

and ,)(lim mxg
px

=
→

for any given  ,0,0,0 21 >δ>δ∃>ε

such that  

,2/)(,0 1 ε<−⇒∈δ<−< lxfIxpx and  

2/)(,0 2 ε<−⇒∈δ<−< mxgIxpx .       

 

Let },min{ 21 δδ=δ .  

 

Then mlxgxfmlxgfIxpx −−+=+−+⇒∈δ<−< )()()())((,0                          

ε<−+−≤ mxglxf )()( . 
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Thus, we have proved that mlxgf
px

+=+
→

))((lim . 

 

ii) Since  ,)(lim lxf
px

=
→

 and   ,)(lim mxg
px

=
→

by Theorem 2 if )(
n

x  is a 

sequence in ,I such that ,)( px
n

→ then lxf
n

→))((  and mxg
n

→))(( .  

 

Therefore,  

 mlxgxfxgf
nnn

−→−=− ))()(()))((( . [Recall the results from the Unit 

5 on limits of sequence.]  
  
 Thus ii) is proved. 
 

iii) Again, since ,)(lim lxf
px

=
→

and ,)(lim mxg
px

=
→

if )(
n

x  is a sequence in ,I  

such  that ,)( px
n

→ then lxf
n

→))((  and  mxg
n

→))(( . Therefore,  

 lmxgxfxfg
nnn

→= ))()(()))((( . 

  

 Thus, iii) is proved. 
 

iv) We prove this exactly in the same way. We leave the proof to you. See 
E1). 

v) We first show that  
mxgpx

1

)(

1
lim =

→
.  

Since   mxg
px

=
→

)(lim , for any given  ,0,0 1 >δ∃>ε  such that  

 
2

)(,0 1

m
mxgIxpx <−⇒∈δ<−< .       

                                  
2

)()(
m

mxgxgm <−≤−⇒  

                                  
2

)(
m

xg >⇒ . 

Again, since mxg
px

=
→

)(lim , for any given ,0,0 2 >δ∃>ε such that  

 
2

)(,0
2

2

m
mxgIxpx

ε
<−⇒∈δ<−< .       

 

Let },min{ 21 δδ=δ .  

 Then  ε<
−

<
−

=−⇒∈δ<−<
2

)(
2

)(

)(1

)(

1
,0

m

mxg

xmg

mxg

mxg
Ixpx  

 So, we have proved that 
mxgpx

1

)(

1
lim =

→
.  

 Now using the product rule, iii), we conclude that mlx
g

f

px
/)(lim =








→

. 

 

vi) Since the limit of f exists at ,p f is bounded on some deleted 

neighbourhood of p . Further, 00)( ≥⇒∀≥ lxxf . (Can you prove this 

statement? We have left it as an exercise for you. See E3). 
 

We first consider the case when, 0=l . 
 

Since  ,0,0,0)(lim >δ∃>ε∀=
→

xf
px

such that 

2
)(,0 ε<⇒∈δ<−< xfIxpx  
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                                                         Then ε<⇒∈δ<−< )(,0 xfIxpx . 

 

Thus, 0)(lim =
→

xf
px

. 

 

Now, suppose 0>l . 
 

Since    ,0,0,)(lim >δ∃>ε∀=
→

lxf
px

such that 

llxfIxpx ε<−⇒∈δ<−< )(,0  

Then 
lxf

lxf
lxfIxpx

+

−
=−⇒∈δ<−<

)(

)(
)(,0  

.
)(

)(

)(
ε<

−
≤

+

−
=

l

lxf

lxf

lxf
 

Thus, lxf
px

=
→

)(lim . 

This result can also be proved by using the sequential criterion and Theorem           
in Unit 7. 
 
Hence the theorem.  
 
Using Theorem 5 we can easily find the limits of polynomial functions and also 
some rational functions. Our next example shows this. 
 
Example 6: Find the limits of the following functions at the given points. 
 

i) 734)( 23 −+= xxxf , as 3−→x . 

ii) 
4

15632
)(

2

34

−

+−−
=

x

xxx
xf , as .1→x  

 

Solution: i) Now, .3lim
3

−=
−→

x
x

 Therefore, using Theorem 5, we get ,9lim 2

3
=

−→
x

x
 

and  .27lim 3

3
−=

−→
x

x
 Again using Theorem 5, we get 

.887)9(3)27(4)734(lim 23

3
−=−+−=−+

−→
xx

x
 

 
ii) We shall first check whether the function satisfies the conditions stated in 

Theorem 5. The function f is a rational function. The polynomial in the 

denominator has two zeroes, 2 and 2− . So, we can choose a 
neighbourhood of 1, on which this polynomial is non-zero. Further, 

.03)4(lim 2

1
≠−=−

→
x

x
 Thus the function satisfies all the required conditions 

of Theorem 5 v). Therefore we have  

3

8

)4(lim

)15632(lim

4

15632
lim)(lim

2

1

34

1

2

34

11 −
=

−

+−−
=

−

+−−
=

→

→

→→ x

xxx

x

xxx
xf

x

x

xx
. 

*** 

As you have seen in Example 3, we can easily find the limits of polynomial and 
rational functions. 
 

Next we discuss the limits of another important class of functions, namely, 
trigonometric functions. 
   
You must have some idea of the limits of trigonometric functions in Calculus.  
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We start with the sine function, and prove that .sinsinlim px
px

=
→

Then using the 

trigonometric identities, and Theorem 5, we shall find the limits of the 
remaining functions. 
 

Example 7: Show that i) .0sinlim
0

=
→

x
x

  

ii)  .sinsinlim px
px

=
→

 

 
Solution: i) We are first going to show that  
 

 .,sin0 R∈∀≤≤ xxx                       … (5) 

 

Let us consider the case when 10 ≤< x . Look at Fig. 1 in which .1=OP In 

triangle OPM, x.PAarcPMx =<= )(sin length  Therefore, (5) is true in this 

case. 

 
 

Fig. 2: Triangle OPM, Sector OPA 
 

Now, suppose .01 <<− x  Let .xy −=  Then ,10 << y and therefore, 

yy ≤≤ sin0 . 

 

This means, xxxxxx ≤≤⇒−≤−≤⇒−≤−≤ sin0sin0)sin(0 . 

 

Thus, we have shown that .,sin0 R∈∀≤≤ xxx     

 
This means, R∈∀≤≤− xxxx ,sin . 

 

We know that .0lim
0

=
→

x
x

, and .0lim)(lim
00

=−=−
→→

xx
xx

 

 

Using the Sandwich Theorem, we can conclude that .0sinlim
0

=
→

x
x

 

 

ii)  Here we have to show that .sinsinlim px
px

=
→

 For that, we have to show 

that ,0,0 >δ∃>ε∀ such that  ε<−⇒δ<−< pxpx sinsin0 . But, 

px
pxpxpxpx

px −=
−

≤






 −
≤







 −







 +
=−

2
2

2
sin2

2
sin

2
cos2sinsin  
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                                                         Therefore, if we choose ε=δ , then ε<−⇒δ<−< pxpx sinsin0 , 

and it follows that .sinsinlim px
px

=
→

 

*** 

Example 8: Show that px
px

coscoslim =
→

. 

Solution: Now, 

pxpx
pxpxpx

px −=−≤
−

≤
−+

−=−
2

1
.2

2
sin2

2
sin

2
sin2coscos . 

So, if we choose ε=δ , then ε<−⇒δ<−< pxpx coscos,0 . 

Thus,  .coscoslim px
px

=
→

 

*** 

Now using Examples 4 and 5, and the theorem on Algebra of Limits, we can 
show that  
 

i) px
px

tantanlim =
→

. 

ii) px
px

cotcotlim =
→

. 

iii) px
px

secseclim =
→

. 

iv) pecxec
px

coscoslim =
→

.  

 

Example 9: Show that 1
sin

lim
0

=
→ x

x

x
. 

 
Solution: Consider the part of the unit circle in the first quadrant shown in     
Fig. 3. 

  
 

Fig. 3: Triangle OPM, Sector OPA, Traingle OPT 
 

Then PT is perpendicular to OP and PM is perpendicular to .OA Since 

),()()( PTPAarcPM << length we get 

1
sin

cos
cos

1

sin
1tansin <<⇒<<⇒<<

x

x
x

xx

x
xxx . 

 

Now taking limits as ,0→x and using the Sandwich Theorem, we get  

1
sin

lim
0

=
→ x

x

x
. 

*** 
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Example 10: Show that i) )/1sin(lim
0

x
x→

does not exist 

ii) .0)/1sin(lim
0

=
→

xx
x

 

Solution: i) Consider the sequence 
N∈










π+π
n

n 2/2

1
. This sequence tends to 

zero as .∞→n  
 

Now the sequence ,1)1(
2

2sin
2/2

1
/1sin →=















 π
+π=

















π+π
n

n
 as  

.∞→n  

 

On the other hand, if we take the sequence 
N∈










π
n

n2

1
, which also has limit 0, 

we find that the sequence ,0)0())2(sin(
2

1
/1sin →=π=

















π
∈

n
n

n N  

as 

∞→n . Since these two sequences  tending to zero have two different limits, 

we conclude that )/1sin(lim x
ox→

does not exist. 

 

ii) We know that 1)/1sin( ≤x . Therefore, xxx ≤≤ )/1sin(0 . 

Taking limits as 0→x , and using the Sandwich theorem we get  

0)/1sin(lim
0

=
→

xx
x

. Fig. 4 shows the graphs of these two functions.  

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 

 

You can see that the graph of )/1sin( x  oscillates wildly between 1−  and 1, as 

x  approaches zero. The graph of )/1sin( xx also oscillates, but it is clear that 

the amplitude of the oscillations is decreasing as x  tends to zero. 

*** 

Before we proceed further we want you to try the following exercises and see 
if you have understood what you have learnt so far. 
 

 

E1) Prove Theorem 5 iv).  
 

E2) If fpl ,,,, εδ  have the same meaning as in Definition 1, find δ  in the 

following: 
 
 i) 5.0,2,115)( =ε=−= pxxf  

ii) 5.0,4,)( =ε== pxxf  
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iii) 1,1,

1
)( =ε=

+
= p

x

x
xf . 

 
E3) If 0)( ≥xf  for every x  in a deleted neighbourhood, ,I of ,p  and if 

)(lim xf
px→

 exists, then .0)(lim ≥
→

xf
px

 

 

E4) Using δ−ε definition, find )7(lim 2

2
xx

x
−

→
. 

 

 
In this section you have seen various examples of limits of functions. In the 
next one we are going to extend the concept of limits. We are going to see 
how a function behaves as .∞→x  
 

10.3  SOME EXTENSIONS OF THE LIMIT 
CONCEPT 

 

In this section we study the limit of a function as  x  tends to ∞ or ∞− and the 
notion of one-sided limits.  
 
Till now we have considered limits of functions as x  tends to some real 

number p But in many cases for instance xea x ,, etc. We need to study 

the behavior of a function as x takes larger and larger values, that is, as 

∞→x . Here is the definition: 
 

Definition 3: i) Let ,),(: R→∞af  where R∈a . We say that limit of f  as  

∞→x is l , if ,0,,0 >∈∃>ε∀ KK R such that ε<−⇒> lxfKx )( . 

ii) Let  ,),(: R→−∞ bf  where R∈b . We say that limit of f  as  −∞→x                         

is ,l  if ,0,,0 >∈∃>ε∀ KK R such that ε<−⇒−< lxfKx )( . 

 
The following example will help you understand this definition. 
 

Example 11: Show that i) 0
1

lim =







∞→ xx

. 

ii) ,0
1

lim =







∞→ n

x x
where N∈n . 

Solution: i) Now, 
xx

lxf
1

0
1

)( =−=− . This will be less than ε , if 
ε

>
1

x . 

So, for a given  0>ε ,  if we take 
ε

=
1

K , then ε<=−⇒>
x

lxfKx
1

)( . 

Therefore, 0
1

lim =







∞→ xx

. 

ii)  Here  
nn xx

lxf
1

0
1

)( =−=− . This will be less than ε , if 
ε

>
1nx . So, 

for a given ,0>ε if we take 
n

K
/1

1

ε
= , then ε<=−⇒>

nx
lxfKx

1
)( . 

Therefore, 0
1

lim =







∞→ n

x x
. 

*** 
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The results in Theorem 5 on algebra of limits holds for infinite limits also. Here 
we shall state it without proof.  
 

Theorem 6: Suppose real-valued functions f and g are defined on 

( ) R∈∞ aa ,, . If lxf
x

=
∞→

)(lim , and  mxg
x

=
∞→

)(lim , then prove that 

 

i) mlxgf
x

+=+
∞→

))((lim . 

ii) mlxgf
x

−=−
∞→

))((lim . 

iii) lmxfg
x

=
∞→

)(lim . 

iv) klxkf
x

=
∞→

)(lim , where R∈k . 

v) If  0)( ≠xg  for all ,Ix∈  and if ,0)(lim ≠=
→

mxg
px

the .)(lim lxf
px

=
→

 

vi) If ( ) 0≥xf  for all ,Ix ∈ then lxf
x

=
∞→

)(lim . 

 

Example 12: Show that .3
1

523
lim

2

2

=








+

+−

∞→ x

xx

x
 

Solution: We divide the numerator and denominator of f  by the highest 

power of x .                               

Then we get 

2

2

1
1

52
3

)(

x

xxxf

+

+−

= . Now, the limit of the numerator is 3, and that 

of the denominator is 1. Therefore, the required limit is 3. 
 
You must have noticed that we have obtained the limits obtained in i) and ii), 
using the algebra of limits. We have proved the algebra of limits for limits as 

R∈→ px . But it is also true for limits as ∞→x . We ask you to prove this   

in E5). 
*** 

You are already familiar with the evaluation of limits at infinity from your study 
of BMTC-131 Calculus course. Now we give you few exercises to check your 
knowledge. 
 

 
E5) Evaluate the following limits using only the definition.  
 

i) 3
2

3
lim

2

2

=
+∞→ x

x

x
 

ii) ,0lim =−

∞→

ax

x
e where a is a positive real number 

iii) 1
1

lim =
+∞→ x

x

x e

e
 

 

E6)  Determine the following limits. Justify your answer.  

i) 
763

52
lim

23

3

++

+−

∞→ xx

xx

x
 

ii) 
xx

xx

x sin

cos
lim

+

+

∞→
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                                                        Next we shall consider one-sided limits.  
 

One-sided limits 
 

You have seen that in finding the limit of a function at a point, we consider the 
behavior of the function as ,x the independent variable approaches that point. 

Now, on a real line, a point can be approached in two ways: from the left, and 
from the right (see Fig. 5). Both these approaches are taken into account while 
finding the limit at a point.  
 

 
 

Fig.5 
 

But, what if we consider only one approach at a time, say, we study the 
behavior of the function as x  approaches the point from the left. If we can 
arrive at a limit, that limit will be called the left hand limit of the function at 
that point. Similarly, if we consider only the right hand approach, and arrive at 
a limit, that will be called the right hand limit of the function at that point. 
These are also called one-sided limits.  
 

We formally give the definition. 
 

Definition 4: Suppose a real-valued function f is defined on a deleted 

neighbourhood, I , of a point .R∈p  Then,  
 

i)  we say that R∈l is a right hand limit of f at p , if for every ,0>ε  there 

exists a 0>δ , such that  

 
ε<−⇒∈δ<−< lxfIxpx )(,0                                                      … (6)        

  

 If R∈l is a right hand limit of f  at p , we write lxf
px

=
+

→
)(lim . 

 

ii)  we say that R∈l is a left hand limit of f  at ,p if for every ,0>ε there 

exists a 0>δ , such that  

ε<−⇒∈δ<−< lxfIxxp )(,0 .                                                    … (7) 

 

If R∈l is a left hand limit of f at p , we write lxf
px

=
−

→
)(lim . 

We have examples of functions, which do not have a limit at a given point, but 
the left hand limit of that function at that point exists and the right hand limit 
also exists. We discuss one such function below.  
 

For example, let us consider the greatest integer function defined on R . Its 
graph is shown in Fig. 6. Focus your attention on the graph around 2=x . You 

can see from the graph, that, for  ,1][,21 =<≤ xx  and for  2][,32 =<≤ xx .  

 
 

Fig. 6: Greatest Integer Function 
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So, as we approach 2 from the right side, ][x approaches 2. That is,  

2][lim
2

=
+

→
x

x
. 

 
It is also clear that as we approach 2 from the left side, ][x approaches 1. That 

is, .1][lim
2

=
−

→
x

x
 

 
Thus, for the greatest interger function, both the one-sided limits exist, but are 
not equal at 2 . 
 

Do you realize that the limit of ][x at 2 does not exist? Indeed the 2][lim
4

1

2

=

→

x

x

and the 1][lim
2

=
−

→
x

x

and they are unequal.  

 
This is the situation for this function at every integer point. That is, at every 
integer, both the one-sided limits of ][x exist and are unequal. 

 
Let us see some more example.  
 

Example 13: Let the function f be given by  
 









>

<
+=

.4,

4,
125)(

3

xx

x
x

x

xf  

 

Evaluate )(lim
4

xf
x

−
→

and )(lim
4

xf
x

+
→

. 

 

Solution: Using the algebra of limits, we get that  
 

.2
32

64

1220

4

125
lim)(lim

33

44
==

+
=

+
=

−− →→ x

x
xf

xx
 

 

By definition of ,f .24lim)(lim
44

===
++

→→
xxf

xx

 

 
Thus, in this case the left hand limit and right hand limit both exists and are 
equal.  

*** 

The next theorem tells you how these different types of limits are related. 
 

Theorem 7: Suppose a real-valued function f  is defined on a deleted 

neighbourhood, ,I  of a point .R∈p  Then the following are equivalent:  
  

i) lxf
px

=
→

)(lim  

ii) =
−

→
)(lim xf

px
lxf

px
=

+
→

)(lim . 

 

Proof:  Suppose lxf
px

=
→

)(lim  

 

Then for every ,0>ε there exists a ,0>δ  such that  
 

.)(,0 ε<−⇒∈δ<−< lxfIxpx  This means 
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                                                        ,)(,0 ε<−⇒∈δ<−< lxfIxpx  and                                                                                                             

ε<−⇒∈δ<−< lxfIxxp )(,0 .                                        

 

Therfore, lxf
px

=
+

→
)(lim  and  .)(lim lxf

px
=

−
→

 

Thus, i) implies ii). 
 
Now, suppose the two one-sided limits exist and are equal to .l  Then  

for every ,0>ε there exists ,01 >δ  such that  

 

ε<−⇒∈δ<−< lxfIxpx )(,0 1  

 

and there exists a ,02 >δ such that ε<−⇒∈δ<−< lxfIxxp )(,0 2  

If we choose { }21,min δδ=δ , then ε<−⇒∈δ<−< lxfIxpx )(,0 . 

Therefore, lxf
px

=
→

)(lim . 

 

Thus, ii) implies i). 
      

Remark 4: Theorem 7 implies that the following holds 
 

i) If any one of the one-sided limit of a function does not exists, then the limit 
of the function does not exist.  
 

ii) If both the one-side limits exist and are unequal, then the limit does not 
exist.  

 

We illustrate Remark (1) in the following example.  
 

Example 14: Check whether the 
+

→0
lim
x

and )(lim
0

xf
x

−
→

exist for the following 

function 

  









<−

=

>

=

0if1

0if0

0if1

)(

x

x

x

xf  

 

What can you conclude about ?)(lim
0

xf
x→

 

 

Solution: Since 1)( =xf for all ,0>x  1)(lim
0

+=
+→

xf
x

. Similarly since 

1)( −=xf for all .1)(lim,0
0

−=<
−

xfx  

Since )(lim),(lim)(lim
011

xfxfxf
xxx →→→

−+
≠ does not exist.  

*** 

Next we shall a theorem which gives the connection between the limit of a 
function and limit of a sequence.  
 

Theorem 8: Suppose a real-valued function f is defined on a deleted 

neighbourhood, ,I  of a point, .R∈p  Then the following are equivalent:   
 

i) lxf
px

=
+

→
)(lim  

ii) If ( ) npxx
nn

∀>, is a sequence in I  that converges to ,p  then the 

sequence ( )( )
n

xf converges to l . 
 

The proof of Theorem 2 can be modified to prove the above stated results.  
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Theorem 8 is also useful in checking the existence of a limit of a function. The 
following example shows this.  

Example 15: Check whether the limit )(xf exists for the function ( )1

1

2)( −= xxf

as .1→x  
 
Solution: We shall check whether the right hand side limit and left hand side 

exist. Let us first consider the right hand side limit .2lim )1(

1

1

−

→ +

x

x
Let 0>ε be given. 

Then for any ,0>δ we choose a positive integer 0M such that δ<
0

1

M
. Then 

if ,0Mn ≥ we get [1,1]
1

1 δ+∈+
n

and .22

2

1
0

1
1

1

Mn

n

≥=
−+

This shows that 

)(lim
1

xg
x

+→
does not exist. Therefore by Remark 4 the )(lim

1
xf

x→
does not exist.  

*** 

To refresh your memory, we repeat the exercises on one-sided limits that you 
have done in BMTC-131. 
 
 

E6)  Find  )(lim xf
x

+∞→
, where )(xf is given by the following: 

 

i) 0,
6

5
>

+

−
x

x

x
 

ii) 
x

x 1+
 

 
E7) Prove that  
 

i) ( ) 0][lim
4

=−
+→

xx
x

 

ii) 1lim
0

=
+→ x

x

x

 

 

 

This discussion on limits of functions leads us to the definition of continuous 
functions, which we take up in the next section. 
 

10.4 CONTINUOUS FUNCTIONS 
 
Continuous functions form a very important class of real-valued functions. A 
continuous function can be thought of as one, whose graph is unbroken. So, 
the greatest integer function is not continuous, since its graph consists of a 
number of steps with gaps. But this characterization of continuity is not 
precise. In fact, later you will come across a function, whose graph appears 
unbroken, but which is not continuous. The precise definition of continuous 
functions emerged in the nineteenth century through the works of 
mathematicians Bolzano and Cauchy. 
 

We shall now give the definition.  
 

Definition 5: Let f be a function defined on a neighbourhood I of .p  

Then f is said to be continuous at p , if 0,0 >δ∃>ε∀ , such that  
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                                                        ( ) ( ) ε<−⇒∈δ<− pfxfIxpx , . 

 
You must have noticed that this definition is similar to the definition of a limit. 

In fact a function is continuous at a point, if the limit of ( )xf  as x approaches 

the point p is )( pf , the value of the function at that point. So, a function is 

continuous at ,p  if  

 
i) f  is defined at p , and 

ii) ( ) ( )pfxf
px

=
→

lim . 

 
If a function is not continuous at a point, then we say that it is discontinuous 
at that point.  
 

If a function is continuous at every point of a set ,A then it is said to be 

continuous on A . 
 
Our study of limits in the earlier section helps us decide about the continuity of 
functions.  
 

For example the function xxf =)(  is continuous on R . The function 

xxf /1)( = is not continuous at 0=x , since it is not defined at   0. But it is 

continuous at every point of its domain. The function xxf sin)( =  is 

continuous on R . The greatest integer function ][)( xxf =  is not continuous 

at integers, since we have seen that this function does not have a limit at 
integer points. But it is continuous on ZR − . 
 
The sequential criterion for limits also helps to formulate a similar criterion for 
continuity at a point: 
 

We shall prove the following theorem. 
 

Theorem 9 (Sequential definition for continuity): Let f be a function 

defined on a neighbourhood I of .p  Then f is continuous at p if and only if 

for every sequence ( )
n

x  of ,A  converging to ,p  the sequence ( )( )
n

xf

converges to ( ).pf  
 

Proof: Let us suppose that f is continuous at .p Then ).()(lim pfxf
px

=
→

 Given 

,0>ε there exists a 0>δ such that .)()( ε<−⇒δ<− pfxfpx  

If 
n

x is a sequence converging to ,''a then corresponding to ,0>δ there exists 

a positive integer M such that δ<− axn for .Mn ≥  

Thus, for ,Mn ≥ we have δ<− pxn which, in turn, implies that 

,)()( ε<− pfxf n proving thereby )(
n

xf converges to ).( pf  

 

Conversely, let us suppose that whenever 
n

x converges to )(,
n

xfp converges 

to ).( pf  Then we have to prove that f is continuous at .p For this, we have 

to show that corresponding to an ,0>ε there exists some 0>δ such that  

 

 ,)()( ε<− pfxf whenever .δ<− px  

 

If not, i.e., if f is not continuous at ,p then there exists an 0>ε such that  
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whatever 0>δ we take there exists an δx such that  
 

 δ<−δ px but .)()( ε≥−δ afxf  
 

By taking ,...3/1,2/1,1=δ in succession we get a sequence },{
n

x where 

δ= xx
n

for ,/1 n=δ such that .)()( ε≥− pfxf n The sequence }{
n

x converges 

to .p For, if ,0>m these exists M such that mn </1 for Mn ≥ and therefore 

mpxn <− for .Mn ≥ But )(
n

xf does not converge to ),( pf a contradiction to 

our hypothesis. This completes the proof of the theorem.   
  
That brings us to the next theorem about the algebra of continuous 
functions. 
 

Theorem 10: Suppose hgf ,,  are functions defined on an interval I of a point   

p . If  hgf ,,  are continuous at ,p  and if R∈k , and ( ) 0≠xh  for all ,Ix ∈  

then hfffggfgf /,,,, −+  are all continuous at p . 
 

Proof: We prove the continuity for ,gf +  and leave the rest to you. 

Since  f  is continuous at p , 0,0 1 >δ∃>ε∀ , such that 

2
)()(1

ε
<−⇒δ<− pfxfpx . 

 

Similarly, since g is continuous at ,p  for this same 0,0 2 >δ∃>ε , such that 

2
)()(2

ε
<−⇒δ<− pgxgpx . 

 

If we choose { }21,min δδ=δ , then it follows that  

ε<−+−≤−−+=

+−+⇒δ<−

)()()()()()()()(

))(())((

pgxgpfxfpgpfxgxf

pgfxgfpx
 

 

Thus, gf +  is continuous at p . 
 

In this proof we have used Definition 5. We can also prove it using the Algebra 
of Limits:  
 

Now, since f and g  are defined at ,p  gf +  is also defined at .p  

Further, ( ) ( )( ) )()()(lim)(limlim))((lim pgpfxgxfxgxfxgf
pxpxpxpx

+=+=+=+
→→→→

, 

since f  and g are continuous at p . 
 

Hence we have proved  that gf +  is continuous at  .p  
 

Theorem 11: If f is continuous at ,p then f  is also continuous at .p  

 

Proof: Since f is continuous at ,p 0,0 >δ∃>ε∀ , such that 
 

ε<−⇒δ<− )()( pfxfpx . 

 

Now, )()()()( pfxfpfxf −≤− . Therefore, 

ε<−≤−⇒δ<− )()()()( pfxfpfxfpx . 

 

Thus, we have shown that  f  is continuous at .p   
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                                                        We have seen earlier, that f is continuous at ,p  if  
 

a) f  is defined at ,p and 

b) )()(lim pfxf
px

=
→

. 

 
So, even if one of a) and b) is not true, f cannot be continuous at .p  

Sometimes, f is not defined at ,p but its limit exists at .p  In such a case, we 

can define a new function, which is equal to ( )xf  at all points except ,p and 

which takes the value  )(lim xf
px→

 at .p  This new function is then continuous at 

.p But if )(lim xf
px→

 does not exist, then we cannot assign any value to ( )pf  to 

make the function continuous. Our next example will illustrate this point. 
 

Example 16: Check the functions, a) 








x

1
sin  and  b) 









x
x

1
sin  for continuity 

at point .0  

Solution: a) This function is not defined at ,0=x  and 







→ xx

1
sinlim

0
 does not 

exist, as we have shown in Example 10. Therefore, the function is not 
continuous at 0. 
 

[Look at the graph of this function shown in Fig. 4. It does not seem to have a 
break at .0=x Looks are deceptive! The function is discontinuous at .0=x ] 
 

b)   This function is also not defined at 0. But since  

,
1

sin0 x
x

x ≤







≤ by applying the Sandwich Theorem we can say that  

,0
1

sinlim
0

=







→ x

x
x

So, we define a function h  as 

0,0

,0,
1

sin)(

==

≠







=

x

x
x

xxh
 

 

Then h  is continuous at .0=x   

 
Note that it is also continuous at every other point in R . 

*** 

Both the functions in this example are discontinuous at .0=x But the 

discontinuity in the second one is removable in the sense that we can redefine 
the function at 0=x to have continuity. We shall discuss about the types of 

discontinuities little later.   
 

Given two functions f and ,g we can define their composite function gf o  if 

the range of g is a contained in the domain of .f  

 
The next theorem discusses the continuity of composite functions. 
 

Theorem 12: Let f be a function defined on a neighbourhood, ,I  of R∈p . 

Let f  be a function defined on a neighbourhood, ,J of ( )pf , such that J  is a 

subset of the range of f . If f is continuous at ,p and if g is continuous at 

( ),pf  then the composite function gf o is continuous at .p  
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Proof: Since g is continuous at ( ),pf ,0,0 >η∃>ε∀ such that 

.))(()(,)( ε<−⇒∈η<− pfgxgJxpfx  

 
Now, since f is continuous at ,p  for this ,0,0 >δ∃>η such that 

.)()(, η<−⇒∈δ<− pfxfIxpx  

 
Combining the two we can say that  ,0,0 >δ∃>ε∀ such that 

ε<−⇒∈η<−⇒∈δ<− ))(())(()(,)()(, pfgxfgJxfpfxfIxpx . 

 
Thus, gf o is continuous at .p  

 

Alternate Proof: Let ( )
n

x be a sequence in ,I such that pxn
px

=
→

lim . Then the 

sequence   ( ))(
n

xf  converges to ( )pf  since f is continuous at .p  The 

sequence ( )( )
n

xf  is in .J  Now, since g  is continuous at ( ),pf  the sequence 

( )( )( )
n

xfg  will converge to ( )( ).pfg   

 
Therefore, we conclude that gf o is continuous at ,p using sequential 

criterion. 
 
Algebra of Continuous Functions tells us that if f  and g  are functions 

continuous at a point ,p  then  gf +  and fg  are also continuous at .p The 

converse of this is not true. That is, if gf +  is continuous at p  then f  and g  

need not be continuous at .p  Same is the case with .fg  We now give you 

some examples to support our argument. 
 

Suppose ( ) ,0,: =→ xff RR if [ ],1,0∈x  and ( ) ,1=xf if [ ]1,0∉x . 

And suppose ( ) ,1,: =→ xgg RR  if [ ],1,0∈x  and ( ) ,0=xg , if [ ]1,0∉x . 

 
Both these functions are discontinuous at 0 and 1. But 
 

( ) ,1)(,: =+→+ xgfgf RR which is continuous on R . 

( ) ,0)(,: =→ xfgfg RR which is also continuous on R . 

 
Using Theorems 8 and 9, we can decide on the continuity of many more 

functions. Take the example of xxf sin)( = . This function is continuous on 

its domain, because we can write it as a composite of two functions, g  and h , 

that is, .)(,sin)(, xxgxxhhgf === o  Since both g  and h  are continuous 

functions, f  is also continuous. Here note that f  will be defined only for 

those x , for which 0sin ≥x . 
 

So far you have seen that a function f is discontinuous at a point if either the 

limit of f exists at cand is not equal to )(xf or the limit does not exist at the 

point c . Accordingly we categorise the types of discontinuities in the following 
way.   
 

1. Removable discontinuity: A function f has removable discontinuity at a 

point c if )(lim xf
cx→

exists and is not equal to )(cf . Such discontinuity can 

be removed by assigning a suitable value to the function at .cx =  
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                                                        2. Discontinuity of the first kind: When )(lim xf
cx −→

and )(lim
)(

xf
cxf +→

exists 

and are unequal, then we say that f has discontinuity of the first kind. 

3. Discontinuity of the second kind: When neither )(lim xf
cx −→

nor 

)(lim
)(

xf
cxf +→

exists, we say that f has discontinuity of the second kind.  

 
Let us see some examples. 
 
Example 16: Examine the types of Discontinuity of the functions at .0=x  
 

i) 















=

≠
=

0if,3

0if,
2sin

)(

x

x
x

x

xf  

 

ii) 








=

≠−
=

0if,2

0if,
)(

x

xxx
xf  

 
Solution: Let us try one by one. 
 
i) Note that here  

 

.22
2

2sin
lim)(lim

00
=×=

→→ x

x
xf

xx
 

 

But .3)0( =f Therefore f is not continuous.  

 

Since the )(lim
0

xf
x→

exists and is not equal to ),0(f if has a removable 

discontinuity at 0. Here the discontinuity can be removed by redefining the 

function f at 0 by 2 instead of 3. 

 

ii) We have .2lim)(lim
00

=
+

=
−→−→ x

xx
xf

xx
 

 and  

 .0lim)(lim
00

=
−

=
+→+→ x

xx
xf

xx
 

  
 Since both the left and right limits exists and are unequal, the function has 
 discontinuity of the first kind. 

*** 

Example 17: Let f be the function defined on [1,1] − by  

 







∈=

=

otherwise,0

0for
1

if,
)(

n
n

xx
xf  

 

Show that f is continuous at 0 and discontinuous at all other points.  

 

Solution: To determine where in the interval f[1,1]− is continuous, we first 

take any point 10, << cc and not of the form n/1 for N∈n . Then exists a 

unique interger 
0

n such that 
00

/1)1/(1 ncn <<+ . On the neighbourhood 
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)/1),1/(1(
00

nn + of ,0)(, =xfc and so ).(0)(lim cfxf
cx

==
→

Thus f is 

continuous at ;c and similarly f is continuous at c for any 0<c and not equal 

to n/1 for .Z∈n  
 

On the other hand, if nc /1= for some 0)(, =∈ xfn N on the deleted  

neighborhood 








−








−+ nnn

1

)1(

1
,

)1(

1
of ,

1

n
so );/1(/10)(lim

/1
nfnxf

nx
=≠=

→

and similarly for nc /1−= for some .N∈n The function is discontinuous at the 

points }.0{,/1 −∈= Znnx  

 
Consider now the point .0 Any neighborhood of 0 contains points for which 

0)( =xf and points for which .0)( ≠xf Nonetheless, for all x  we have 

,)(0 xxf ≤≤ so it follows that ).0(0)(lim
0

fxf
x

==
→

Hence, f is continuous     

at 0. 
 
Try these exercises now. You have already done similar ones in the course 
Calculus BMTC-131. 
 
 

E10) If ,: RR→f defined by




∉

∈
=

Zx

Zx
xf

,3

,2
)( ,  is f continuous at  

i) 1=x  , ii) 5.1=x ? 

E11) Let f  be defined for all R∈x  by .5)3(,3,
3

96
)(

2

=≠
−

+−
= fx

x

xx
xf Is 

f  continuous at ?3=x Is f  continuous on R ? If f has a 

discontinuity, is it a removable discontinuity?  

If so, how do you redefine f  to make it continuous? 

E12) Use the sequential definition of continuity to show that the function  

,)( xxf =  is continuous on ?R  

E13)  Suppose f is defined by .

4,43

40,2

0,1

)(








>−

≤<

≤−

=

xx

xx

xx

xf  Is f continuous on

R ? What are the types of discontinuities? Justify your answer.  

E14)  Examine the following functions for continuity onR . Also, draw the 
graph in each case and see if it is broken or not: 

 a) 









>+

≤≤

<+

=

2,2

21,

1,1

)( 2

xx

xx

xx

xf  

b) 

( )










>
−

≤<−

≤−

=

2,
14

3

20,1

0,1

)(

2

2

x
x

x

xx

xx

xf  
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                                                        c) ][)( xxxf −= . 

 

 
In the next section we shall discuss uniform continuity.   
 

10.5 UNIFORM CONTINUITY  
 
In this section we introduce a stronger form of continuity known as “uniform 
continuity”. You will learn that this type of continuity has a number of important 
properties.  
 
Let us recall the definition of a continuous function at a point .p  

 
We say that a function ,f is continuous at ,p  if ,0,0 >δ∃>ε∀ such that 

 ( ) ( ) ε<−⇒δ<− pfxfpx . 

 

Here, a positive number ε  is given to us and we find .δ  This δ depends on ,ε  

and it can also depend on .p  Let us consider two functions, xxf 3)( = and 

.)( 2
xxg =  Both these functions are continuous at 1 and at 10. 

 

Suppose 1.0=ε is given to us. Let us find the δ  for f at 1 and 10. 

 

 At 1=p , we need to find 1δ such that  

1.0331 1 <−⇒δ<− xx . Now  3/1.011.0131.033 <−⇔<−⇔<− xxx . 

 

Thus, we can take 3/1.01 =δ . 

 

Similarly, at 10=p , we need to find 2δ such that 1.030310 2 <−⇒δ<− xx . 

Now .3/1.0101.01031.0303 <−⇔<−⇔<− xxx  

 

Thus, we can take .3/1.02 =δ  

 

Here we find that we get the same δ at both the points. In fact, you can see 

that we will get the same value of δ at all points of R . So, for this function, the 

value of δ depends only on the value of ε , and not on p .  

Now let us take the next function, .)( 2
xxg =  Again, at 1=p  we need to find 

1δ such that 1.011 2

1 <−⇒δ<− xx . 

 

Suppose 11 <δ . 

 

Then, 2011 1 <<⇒<δ<− xx   

 

Now  1.012 <−x  if 1.011 <−+ xx  

If  
3

1.0

1

1.0
1 <

+
<−

x
x  

Thus, we can take 
3

1.0
1 =δ . 

Similarly, at ,10=p  we need to find 2δ such that  
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.1.010010 2

2 <−⇒δ<− xx  

 

Again, if we take 12 <δ  

then  119110 2 <<⇒<δ<− xx  

 

Now  1.01002 <−x if  1.01010 <−+ xx  

 

That  is, if  
21

1.0

10

1.0
10 <

+
<−

x
x  

Thus, we can take 
21

1.0
2 =δ . 

 

In this case 1δ  and  2δ  are different, and depend on 1=p  or 10. 

You can see this in Fig. 9.7. 
 

Actually, 
21

1.0
=δ  

will work for both points. But then, it does not work for 20=p . 

 

So, it is not possible to find a ,δ  which works for all points in the domain. Here 

we say that the continuity is not uniform.  
 
This leads us to define uniform continuity of functions. 
 

Definition 6: Let ,: R→Sf  where  R⊆S . Then f  is said to be uniformly 

continuous on S, if for every ,0>ε  there exists a ,0>δ such that, if x  and y  

are any two points in S, with  δ<− yx , then ε<− )()( yfxf . 

The function that we considered earlier, xxf 3)( = is uniformly continuous on 

,R whereas 2)( xxf = is not uniformly continuous on .R  
 

Note that we talk of uniform continuity on a set, whereas we talk of continuity 
at a point also. Can you see from the definition that a function which is 
uniformly continuous on a set is continuous at every point of the set? The 
converse of this statement is not true as we observed in the case of the 

function ,)( 2
xxf = discussed above. We now give another example to support 

our statement. 

Example 18: Show that the function, ] [ R→∞,0:f , ( ) .
1

x
xf = is continuous 

on its domain [,0] ∞ , but not uniformly continuous there. Whereas the function 

is uniformly continuous on [,[ ∞c for any fixed .0>c   
 

Solution: Using the Algebra of Continuous Functions we can say that f is 

continuous on [.,0] ∞  But, if we take ,5.0=ε we cannot find a suitable ,δ  

which works at all points of its domain. Because, for any ,0>δ we can find 

,Nn ∈ such that  ,
)1(

1

1

11
δ<

+
=

+
−

nnnn
but then 

5.011
1

11
>=−+=









+
−







nn

n
f

n
f  

Therefore, f is not uniformly continuous on [.,0] ∞   
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Next we shall check whether the function 

x
xf

1
)( = is uniformly continuous on 

[,[ ∞c for any fixed .0>c To show this, take any ,0>ε and consider 

 .
11

)()(
xx

xx

xx
xfxf

′

−′
=

′
−=′−  

For x and ,0>≥′ cx we have ,/1/10,/1/10 cxcx <′<<< and  

 ε<−′≤
′

−′
=′− xx

cxx

xx
xfxf

2

1
)()( iff .

2
ε<′− cxx  

Thus, given ,0>ε we can use .2ε=δ c This is true for any fixed .0>c  Hence 

f is uniformly continuous on ],,[ ∞c for any fixed .0>c  

*** 

Remark 6: We can explain the results of uniform continuity in the earlier 
example geometrically as given in Fig. 7 below:  
 

 
                  (a)    )0(/)( >= xxxg 1                       (b)   )0()( >xxg  

Fig. 7  
 

You may note that for any subinterval I of fixed length 0>δ in [,,[ ∞c the 

length on the y -axis of the interval )(If is less than or equal to the length of 

the interval ]),([ δ+ccf (see Fig. a), by the continuity of f at cwe can make 

the length of ]),([ δ+ccf small by restricting .δ  
 

However, this argument does not extend to all of ).,0( ∞ For ,0>δ the length 

of ]),0(( δf is not finite , and in particular, for any 0>ε and 0>δ we can find a 

,0, δ<δ′<δ′ such that the length of the interval .]),([ ε>δδ′f (see Fig. 7(b)).   

So, continuity does not guarantee uniform continuity, in general. The following 
theorem tells us that under certain extra conditions a continuous function is 
also uniformly continuous. 
 

Theorem 13:  If a real-valued function f is continuous on a closed and 

bounded interval I  in ,R then it is uniformly continuous on .I  
 

Proof: We prove this by assuming the contrary. If f  is not uniformly 

continuous on ,I then taking the negation of Definition 5, there exists some 

,0>ε for which no δ  works. That is, for every ,0>δ we can find x  and y  

belonging to ,I such that ,δ<− yx  but  .)()( ε>− yfxf In particular, for 

every N∈n , we get 
n

x  and 
n

y , such that  ,/1 nyx nn <−  but   
 

ε>− )()( nn yfxf .  
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Now, ( )
n

x  and ( )
n

y  are sequences in ,I and therefore, are bounded 

sequences. Therefore, by Bolzano Weierstrass theorem, they have 

convergent subsequences, say, ( )
knx  and ( )

kny . Both these sequences will 

converge to the same limit, say, 0x .  

 

Since the function, ,f  is continuous, the sequences  ( )( )
knxf  and ( )( )

knyf   

should converge to the same limit. But this is not possible, since 

ε>− )()(
kk nn yfxf . Hence f  is uniformly continuous on I . 

 

The condition in Theorem 10 is not necessary for a function f to be uniformly 

continuous as shown in the second part of Example 12. Note that the function 

which is continuous on the interval 0),,[ >∞ cc is uniformly continuous. But the 

domain of this function is neither bounded nor closed.  

So the condition in Theorem 10 that the domain to be a closed and bounded 

interval is not a necessary one condition for a continuous function to be 

uniformly continuous. It is only sufficient. 

 

Let us now take a further look on the function, ] [ R→∞,0:f , ./1)( xxf =  

We observe that the sequence, 








n

1
 in [,0] ∞ is a Cauchy sequence, its image 

sequence. But under the continuous function 
x

xf
1

)( = given by  

( )n
n

f =














 1
is not a Cauchy sequence. But this never happen with a 

uniformly continuous function.           
 
In the next theorem we prove that the image of a Cauchy sequence under a 
uniformly continuous function is Cauchy. 
 

Theorem 14: If a function, ,f is uniformly continuous on a subset S of R , and 

if ( )
n

x is a Cauchy sequence in ,S then the sequence ( )( )
n

xf is a Cauchy 

sequence in R . 
 

Proof: Suppose 0>ε  is given. Then, since f  is uniformly continuous on ,S  
there exists ,0>δ such that, if x  and y  are any two points in ,S with 

,δ<− yx then ε<− )()( yfxf . 

 

Now since the given sequence is Cauchy, for this ,0>δ there exists N∈0n , 

such that ., 0 δ<−⇒≥ mn xxnmn  Thus, 

( ) ( ) ,, 0 ε<−⇒δ<−⇒≥ mnmn xfxfxxnmn which means that the sequence, 

( )( )
n

xf  is Cauchy. 

 

See if you can solve these exercises now. 
 

 

E16) Show that the following functions are not uniformly continuous on their 
domains: 

 

i) 2)( xxf =  on [,0[ ∞  



 

 

36

Block 4                                                Continuity and Differentiability of Functions

                                                        ii) ( )xxg /1sin)( =  on [,0[ ∞ . 
 

E17) Show that 
21

1
)(

x
xf

+
=  is uniformly continuous on ].2,1[  

 

 
That brings us to the end of this unit. 
 

10.6 SUMMARY 
 

In this unit we have covered the following theory behind the concepts of limit 
and continuity, that you were acquainted.  
 

A new concept, that of uniform continuity was introduced.  
 
1. Discussed the theory behind the existence of limit and continuity that you 

were acquainted with in the course calculus.  

2. Explained the logic behind the rules for finding the sum product and 
quotient of limit.  

3. Some other forms of limits – one sided limits, infinite limits are also 
discussed.  

4. We have proved the sequential criterion for continuity and other rules for 
finding sum, product of limits. 

5. We introduced a new concept, that of uniform continuity. We have 
discussed the three different types of discontinuity and explained how 
this concept is different from continuity.   

6. You have seen that every uniformly continuous function is continuous, 
but the converse is not true. But, if a function is continuous on a closed 
and bounded interval, then it is uniformly continuous there. 

 

10.7 SOLUTION AND ANSWERS 
 

E1) Let R∈k and .)(lim lxf
px

=
→

 We have to show that .)(lim klxkf
px

=
→

  

 Let )(
n

x be a sequence such that xx
m

→ as .pn → Then since the 

limit exists, lxf
n

→)( and .∞→n  Therefore by Theorem ? Unit 5 

klxkf
n

→)( as .∞→n  This is true for all )(
n

x such that .xx
n

→
 

 
Therefore by Theorem 2 stated earlier we get that .)(lim klxf

px
=

→
 

 Hence the result. 
 

E2) i) 1)115(lim
2

=−=
→

x
x

l  

  5.01115 <−−x  

  5.0125 <−⇒ x  

  5.0
5

12
5 <−⇒ x  

  1.0
5

12
<−⇒ x  

  1.0
5

2
2 <−−⇒ x  
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  1.0
5

2
2

5

2
2 <−−<−−⇒ xx  

  1.0
5

2
2 <−−⇒ x  

  1.04.02 <−−⇒ x  

  5.02 <−⇒ x  

  δ<−⇒ px  

  5.0≥δ⇒  
  

 ii) 2lim
4

=
→

x
x

 

  5.0=ε  

  Given ,0>ε we need to find ,0>δ such that  

  5.0240 =ε<−⇒δ<−< xx  

  ε<− 2x  

  ε<−∈<−⇒ )2( x  

  22 )2()2( ε+<<ε−⇒ x  

  δ−≤−⇒ 4)2( 2
e and 2)2(4 ε+≤δ+  

  2)2(4 ε−−≤δ⇒ and 4)2( 2 −ε+≤δ  

  { }4)2(,)2(4min 22 −ε+ε−−=δ⇒  

    5.0=ε  

  The maximum value of }425.6,25.24min{ −−=δ  

      
75.1

}25.2,75.1min{

=

=
 

  Therefore .75.1≤δ  
 

iii) 1,
2

1

1
lim

1
=ε=

+→ x

x

x
 

By definition, ε<−
+

⇒δ<−<>δ>ε
2

1

1
10,0,0

x

x
x  

<∈−
+

⇒
2

1

1 x

x
 

ε<−
+

∈<−⇒
2

1

1 x

x
 

ε<
+

−−
<ε−⇒

)1(2

12

x

xx
 

ε<
+

−
<ε−⇒

)1(2

1

x

x
 

)1(21)1(2 xxx +∈<−<+∈−⇒  

  1)1(21)1(2 ++∈<<++∈−⇒ xxx  

  1)1(21,11)1(2 ++∈≤δ+δ−≤++∈−⇒ xx     

  )1(2 x+∈≤δ⇒ and )1(2 x+∈≤δ  

  )1(2 x+∈≤δ⇒  

  .2≤δ⇒     1,1 →∈= x  
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                                                        E3) On the contrary, we assume that 0<L where ).(lim xfL
px→

= Let 0>ε be 

such that .0=ε+L Then given 00 >δ∃>ε such that 

ε<−⇒δ<−< Lxfpx )(0  

 i.e. .0)( =ε+<<ε− LxfL  

  

 This is a contradiction to the assumption that 0)( ≥xf in a added 

neighbourhood of .p   

 
E4) We’ll take these one by one. 
 

i) Let 0>ε be given. Then  
 

ε<<
+

=−
+ 222

2 6

2

6
3

2

3

xxx

x
if 

ε
>

6
x . 

Thus, given ,0>ε we take 
ε

=
6

G so that  

ε<−
+

⇒> 3
2

3
2

2

x

x
Gx  

This shows that .3
2

3
lim

2

2

=
+∞→ x

x

x
 

 

ii) Let εbe such that .10 <ε<  Then  
 

ε<−ax
e if and only if .

1 ax
e<

ε
This means that ε<−ax

e  if and only 

if 
ε

>
1

ln
1

a
x  

 

Thus, 0lim =−

∞→

ax

x
e when .0>a  

 

iii) Let εbe such that .10 <ε< Then  
  

 ,
1

1

1
1

1
ε<<

+
=−

+ xxx

x

eee

e
whenever

ε
>

1
lnx  

 Thus, ε<−
+

⇒
ε

=> 1
1

1
ln

x

x

e

e
Gx  

 This shows that .1
1

lim =
+∞→ x

x

x e

e
 

 

E5) i) We shall prove that .0
1

lim =
∞→ xx

 

To find ,
1

lim 







−∞→ xx

we put .tx −= Then as ., ∞→−∞→ tx Then  

,
1111

0
1

tttxx
==

−
==− if we take .0>t Now ,

1
ε<

t
if .

1

ε
>t  

 

So, if we choose ,
1

ε
=K then .

11
)( ε<==−⇒>

tx
lxfKx  This  
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prove that .0
1

lim =







−∞→ xx

 

 
Alternatively, we write the given expression as  
 

3

32

23

3

76
3

52
1

763

52

xx

xx

xx

xx

++

+−

=
++

+−
. 

Since ,0
1

lim =
∞→ xx

we get that 0
1

lim =
∞→ nx x

for 1>n also and  

.
3

1

763

52
lim

23

3

=
++

+−

∞→ xx

xx

x
 

   

 ii) The given expression can be written as  
 

  .
sin

1

cos
1

lim
sin

cos
lim

x

x
x

x

xx

xx

xx

+

+

=
+

+

∞→∞→
 

  We shall prove that ,0
sin

lim =
∞→ x

x

x xx

x 1sin
≤  

  .0
sin

lim =∴
∞→ x

x

x
 

  Similarly .0
cos

lim =
∞→ x

x

x
 

  Hence .1
sin

cos
lim =

+

+

∞→ xx

xx

x
 

 

E6) We first note that for .0
1

lim,0,)( =>=
∞→ x

xxxf
x

 

 This follows from the algebra of limits.  

i) 0,
6

1

5
1

6

5
>

+

−

=
+

−
x

x

x

x

x
 

1
6

5
lim =

+

+
∴

∞→ x

x

x
for .0>x  

ii) 0,
1

>
+

x
x

x
 

x

x

x

x

x

1
1

1
lim

+

=
+

∞→
 









+=

∞→∞→ xx xx

1
1lim

1
lim  

0=  

 

E7) i) We first note that as 4→x from the right, .4][ →x  

  ∴Using the algebra limits  
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.0

44

][limlim]][[lim
444

=

−=

−=−
+++ →→→

xxxx
xxx

  

 ii) We first note that for .1,0 =>
x

x
x  

  Therefore as 0→x from the right, then 
x

x
approaches 1. 

  .1lim
0

=∴
+→ x

x

x
  

 
E14) i) To prove this, assume the contrary. Then, for 1=ε (again, an 

arbitrary choice; any fixed 0>ε would work here also) there exists 

0>δ such that δ<′−∞∈′ xxxx ),,0(, implies  

  1)()( 22 <′−′+=′−=′− xxxxxxxfxf             … (1) 

  To find an x and x′ that violates (1), we should consider x and x′

large. In particular, let δ= /1x and .2//1 δ+δ=′x Then 

,2/),,0[, δ=′−∞∈′ xxxx and  

  ,1
2

.
2

22

2
)()( =

δ

δ
>

δ







 δ
+

δ
=′−′+=′− xxxxxfxf  

  contradicting (1).  
  

 ii) We will now prove that f is not uniformly continuous function on 

[.1,0]  

   
  Let 10 <ε< and 0>δ be any positive number.  
   

  Take .
)2/(

1
,

1

π+π
=

π
=

n
y

n
x Then .1)()( =− yfxf  

   

  So, for ,0>δ choose n so that .δ<x Then, [,,0], δ∈yx implies that 

δ<− yx but .1)()( ε>=− yfxf  

   

  Hence f is not uniformly continuous.  

 
E15) The function is a continuous on the bounded closed interval and 

therefore uniformly continuous.  
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UNIT 11 

DIFFERENTIATION     
 

 

Structure                   Page No. 

11.1 Introduction                 41 
 Objectives 

11.2 Preliminaries                 42 

11.3 Basic Theorems on Derivatives              47 

11.4 The Inverse Function Theorem              52 

11.5 Summary                 60 

11.6 Solutions and Answers               60 
 

11.1 INTRODUCTION 
 
We are sure you are quite familiar with differentiation. In Calculus you have 
done extensive practice of differentiating functions. You also know that this 
branch of Mathematics was discovered while trying to solve the problem of 
finding the tangent to a given curve. Differentiation also helps us in the study 
of moving objects. In fact, the derivative measures the rate of change of the 
function under consideration. As a result, it has proved to be an excellent tool 
to study our ever changing world. 
 
In this unit we shall concentrate more on the theoretical aspects differentiation. 
We shall also approach the proofs of some theorems in a slightly different 
manner, as compared to the proofs in Calculus. We hope that this new 
approach better prepares you to understand advanced level mathematics.  
 

In Sec. 11.2 we define the derivative of a function and establish the 
connections between the concepts of differentiability and continuity both 
theoretically and graphically. The geometrical interpretation of a derivative is 
also covered. In Sec. 11.3 we prove some basic results concerning 
differentiability of sum, product, quotient and chain rule of functions. 
Afterwards in Sec. 11.4 we focus on inverse function theorems for 
differentiability.  
 

As the name suggests, these theorems consider whether a property owned by 
a function is carried over to its inverse function. Before we prove the inverse 
function theorem for differentiability, we prove the inverse function theorems 
for continuity. Some more theorems on continuity which are used for proving 
theorems on differentiability are also discussed here. These theorems are 
important in their own right.  
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                                                         Objectives 
 

After reading this unit, you should be able to 
 

• Define the derivative of a function at a given point, and find it, if it exists; 

• Show that  a function differentiable at a point is also continuous at that 
point; 

• Write and prove the formulas for the derivatives of sum, difference, 
product, quotient, scalar multiples of differentiable functions; 

• State and prove the rule for the derivative of the composite of two 
differentiable functions; 

• State and prove Bolzano Weierstrass Theorem, Intermediate Value 
Theorem and Inverse Function Theorems for continuity and 
differentiability.  
 

11.2 PRELIMINARIES 
 

We recall the definition of derivative of a function with which you are familiar 
from the Calculus course.  
 

Definition 1: Let f  be a real-valued function defined in an interval, I , and  

Ip ∈ . If  R∈h  and if 

 

  
h

pfhpf

h

)()(
lim

0

−+

→
                … (1) 

 

exists, then we say that f  is differentiable at ,p and  
h

pfhpf

h

)()(
lim

0

−+

→
 is 

called the derivative of f at .p   
 

On replacing hp + by ,x the Eqn. (1) becomes 
 

 .
)()(

lim
px

pfxf

px −

−

→
                … (2) 

 

Note that we will use either Eqn. (1) or Eqn. (2) while considering the 
derivative of a function.  

The derivative of f  at p is denoted by )( pf ′ , or )( p
dx

df
.  

If the point p is the left end point of ,I then the limit in the above definition will 

be the right-hand limit. If p  is the right end point of I , then the limit will be 

the left-hand limit. 
 

Thus, )( pf ′
h

pfhpf

h

)()(
lim

0

−+
=

→
, if the limit exists. This f ′  then defines a 

new function at all those points at which f is differentiable. It is called the 

derived function of .f  
 

You may recall from the calculus course that the motivation for this definition 
comes from geometry. You might have some intuitive idea that a tangent line 
is a line which intersects a curve only at one point. To define such a line we 
should know the slope of the line. To estimate this, we consider the family of 
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lines called secant lines which passes through the points ))(,( xfx and 

))(,( pfp for x near .p (See Fig. 1).  

 

 
 

Fig. 1: Secant lines approaching the tangent line. 
 

The slope of line through ))(,( xfx and ))(,( pfp is 
px

pfxf

−

− )()(
. As x

approaches ,p in the limiting case, the line becomes a tangent line and then 

the slope of the tangent line should therefore be 
px

pfxf

px −

−

→

)()(
lim which is 

)( pf ′ if the derivative exists. Thus we have the definition of the tangent line as 

given by the following:  
 

Definition 2: If the derivative )( pf ′ exists at some point ,p then the line 

passing through ))(,( pfp and having the slope )( pf ′ is defined to be the 

tangent line to the curve )(xfy = whose equation is given by  

 

))(()( pxpfpfy −′=− . 

 
You are already familiar with calculating the derivative of a function using 
Definition 1 from the calculus course. Here we shall give some examples to 
familiarize you with the definition.  
 

Example 1: Let RR→:f be the function defined by
2

)( xxf = . Find the 

derivative of f at a point .R∈p   
 

Solution: Let R∈p be fixed. We first note that the function f is defined an 

open interval containing .p Using Eqn. (1) of Definition 1, we consider the limit 
 

2

22

00

)(
lim

)()(
lim

h

php

h

pfhpf

hh

−+
=

−+

→→
 

 
h

phphp

h

222

0

2
lim

−++
=

→
 

 )2(lim
0

hp
h

+=
→

 

 .2 p=  
 

This shows that the limit exists and the derivative is .2)( ppf =′  

Alternatively using the Eqn. (2), of Definition 1 we get that  
 

px

px

px

pfxf

pxpx −

−
=

−

−

→→

22

lim
)()(

lim  

     .2lim ppx
px

=+=
→
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                                                        This shows that the limit exists and the derivative is .2)( ppf =′  

*** 
Replication of the method used above, will make the calculation of the 

derivative of 
n

xxf =)( easier.  

 
Example 2: Find the derivatives of the following functions, wherever they 
exist.  
 

i) 
3

5
,53)( >−= xxxf ,  

ii) 0,
1

)( >= x
x

xf , 

iii) 
4/1

)( xxf = 0, ≥x   

 

Solution: i) Now, 
h

xhx

h

xfhxf 535)(3)()( −−−+
=

−+
 

                                                          

( )( ) ( )( )
( )( )5353

53535353

−+−+

−+−+−−−+
=

xhxh

xhxxhx
 

( )( ) ( )
( )( )5353

5353

−+−+

−−−+
=

xhxh

xhx
 

( )( )5353

3

−+−+
=

xhx
 

 

Therefore, 0
lim

→h

0
lim

)()(

→
=

−+

hh

xfhxf

( )( )5353

3

−+−+ xhx
 

                                                   
532

3

−
=

x
 

 

Thus, the derivative of this function exists at all points of its domain. 
 

ii)  Here, 







−

+
=

−+

xhxhh

xfhxf 111)()(
 

                                          










+

+−
=

hxx

hxx

h

1
 

                                            
( )
( )











+++

+−
=

hxxhxx

hxx

h

1
 

                                         
( )











+++

−
=

hxxhxx

1
 

 

 Therefore, 
0

lim
→h 0

lim
)()(

→
=

−+

hh

xfhxf

( )










+++

−

hxxhxx

1
 

        

xx2

1−
=  
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3/22

1

x

−
=

  Thus, =′ )(xf
2/32

1

x

−
 for all 0>x . 

iii)  When 0=x , ( )( )00
1)()( 4/1

−+=
−+

h
hh

xfhxf
 

                                                         
4/3

1

h
= ,  

 and the limit of this does not exist as 0→h . 
 

 The derivative of the given function does not exist at 0=x . 
 

 When 0>x ,  ( )( )4/14/11)()(
xhx

hh

xfhxf
−+=

−+
 

   

( )( ) ( )( )
( )( )4/14/1

4/14/14/14/1

xhxh

xhxxhx

++

++−+
=  

   
( )( )4/14/1

xhxh

xhx

++

−+
=  

                                                   
( )

( )( )( )xhxxhxh

xhx
4/14/1

++++

−+
=  

                                                          
( )( )( )xhxxhx

1
4/14/1

++++
=  

 

 Therefore,  0
lim

→h

0
lim

)()(

→
=

−+

hh

xfhxf

( )( )( )










++++ xhxxhx

1
4/14/1

   

                                                      
4/34/1 4

1

4

1

xxx
== . 

*** 

The next example illustrates how to compute the equation of a tangent to a 
given curve.  
 
Example 3: Find the equation of the tangent line to the graph of the curve

26)(
3

−+== xxxfy at )).3(,3( f  
 

Solution: We first find the slope of the tangent line. It is given by  
 

.33
3

)3()153(
lim

3

456
lim

3

4326
lim

3

)3()(
lim)3(

2

3

3

3

3

33

=
−

−++
=

−

−+
=

−

−−+
=

−

−
=′

→→

→→

x

xxx

x

xx

x

xx

x

fxf
f

xx

xx

 

 

Thus the equation of the tangent line is ).3(3343 −=− xy  

*** 

We shall now prove a theorem which shows that continuity of a function at a 
point is a necessary condition for the existence of its derivative at that point. 
 

Theorem 1: Let  R→If :   , where I  be an open interval in ,R and Ip ∈ . If 

f is differentiable at p , then f is also continuous at p . 
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                                                        Proof: If ,, pxIx ≠∈  then we have 
 

)(
)()(

)()( px
px

pfxf
pfxf −









−

−
=− . 

 

Therefore, using the product rule of limits we can say that 
 

( ) )(lim
)()(

lim)()(lim px
px

pfxf
pfxf

pxpxpx
−









−

−
=−

→→→
 

                           
0

0).(

=

′= pf

 
 

 

Thus, )()(lim pfxf
px

=
→

. Therefore, we conclude that f is continuous at p . 

 
Thus, we have proved that the continuity is a necessary condition for the 
existence of the derivative at a point. But it is not a sufficient one. That is, if a 
function is continuous at a point, it does not follow that it is also differentiable 

there. An example of this is the function xxf =)(  at 0=x . If you have solved 

E10) of Unit 10, you would have realized that this function is continuous at 0. 
To see whether it is differentiable, we need to find whether the limit of 

x

x

x

x

x

fxf
=

−
=

−

− 0

0

)0()(
 exists as 0→x , or not.  

 

Now, if ,0<x then 1−=
−

=
x

x

x

x
. Hence the left hand limit is 1lim

0
−=

−→ x

x

x

.  

On the other hand, if ,0>x then 1==
x

x

x

x
. Hence the right hand limit is  

1lim
0

=
+→ x

x

x

.  

 
Thus the left hand limit is not the same as the right hand limit.  Therefore, 

x

x

x 0
lim

→
 does not exist. Hence xxf =)(  is not differentiable at 0=x .  

 

If you look at the graph of xxf =)(  in Fig. 2 in the margin, you see that the 

graph is unbroken at  0=x , implying the continuity at that point. But note that 
the graph is not smooth there. It has a corner at that point. This geometrical 
feature indicates that the function is not differentiable there. 
 
More precisely, we have the following:  
 

Example 4: The absolute value function, xxf =)(  is not differentiable at 

0=x . Show that it is differentiable at all other points in .R In fact, for all ,0<x

the derivative is -1, and for all ,0>x  the derivative of the function is 1.  
 

Solution: Suppose 0>x . If we choose ,0>h then 0>+ hx , and 

11limlimlim)(
000

==
−+

=
−+

=′
→→→ hhh h

xhx

h

xhx
xf . 

 

On the other hand, if ,0<x  we choose ,0<h 0<+ hx  and we get 

In 1872, K. Weierstrass 
remarkably gave an 
example of a function 
that is continuous 
everywhere and nowhere 
differentiable. The 
function is  

).3(cos
2

1
)(

0

xxf n

n
n∑

∞

=

=
 

 

Fig. 2: Graph of 

.)( xxf =
 



 

 

47 

Unit 11                                    Differentiation  

1)1(lim
)()(

limlim)(
000

−=−=
−−+−

=
−+

=′
→→→ hhh h

xhx

h

xhx
xf . 

 

 
In Fig.2 you can see that the graph on the right hand side of the origin is a line 
with slope,1, and the graph on the left of the origin is a line with slope, .1−  

*** 
Now try this exercise on your own. 
 

 

E1) Does 
3/2

)( xxf = have a tangent line at ?0=x Justify your answer.  

 

 
In all these cases we have used the definition to find the derivative. But the 
process is tedious. And, as you know, there is a way out. We find the 
derivatives of some standard functions, and then use Algebra of derivatives to 
get the derivatives of combinations of these functions. You have already done 
this in your course on Calculus. 
 
We shall prove some theorems on algebra of derivatives and some more 
theorems in the next section. 
 

11.3 BASIC THEOREMS ON DERIVATIVES 
 
There are many basic properties of various combination of functions which you 
must have used while computing derivatives in the calculus course. Here we 
give justifications of some of these properties in the form of proofs of the 
theorems. 
   
We start with the Algebra of derivatives. 
 
Theorem 2 (Algebra of Derivatives): Suppose f and g are two real-valued 

functions defined on an interval R⊆I . Suppose f  and g  are differentiable 

at Ip ∈ . Then 
 

i) kf  is differentiable at ,p where R∈k , and ( ) ( ) ( )pfkpkf ′=
′

 

ii) gf +  is differentiable at ,p and ( ) ( ) ( ) ( )pgpfpgf ′+′=
′

+  

iii) fg  is differentiable at ,p and ( ) ( ) ( ) ( ) ( ) ( )pgpfpgpfpfg ′+′=
′

 

iv) If ( ) ,0≠pg then gf / is differentiable at ,p and 

( )
( ) ( ) ( ) ( )

( )( )2
pg

pgpfpgpf
p

g

f ′−′
=

′









. 

 

Proof: We prove these one by one. 
 

i) 
h

pkfhpkf )()( −+
  

h

pfhpf
k

)()( −+
= . 

 

Therefore, taking limits on both sides, as 0→h , we get the required 
result. 
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ii) 

( ) ( )
h

pgfhpgf )()( +−++
=

( ) ( )
h

pgpfhpghpf −−+++ )()(
 

                                             +
−+

=
h

pfhpf )()(

h

pghpg )()( −+
 

 

Again, taking limits on both sides, as 0→h , we get the required result. 
 

iii)      =
−+

h

pfghpfg )()( ( ) ( )
h

pgpfhpghpf )()( −++
 

                          
( ) ( ) ( ) ( ) ( ) ( )

h

pgpfpghpfpghpfhpghpf )()( −+++−++
=  

                          
( ) ( ) ( )( ) ( ) ( )( ) ( )

h

pgpfhpfpghpghpf −++−++
=  

                         ( )
( ) ( ) ( ) ( )

( )pg
h

pfhpf

h

pghpg
hpf

−+
+

−+
+=  

 

We take limits on both sides, as 0→h . Note that since f  is differentiable at  

p , it is also continuous at  p , and therefore, ( ) ( )pfhpf
h

=+
→0

lim . This along 

with the fact that f and g are differentiable at p gives the required result.  

 

iv)  Now, 
( ) ( )

=
−+

h

pgfhpgf )(/)(/ ( )
( )

( )
( ) 









−

+

+

pg

pf

hpg

hpf

h

1
 

                                                          
( ) ( ) ( ) ( )

( ) ( ) 








+

+−+
=

hpgpg

hpgpfpghpf

h

1
 

       

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 









+

+−+−+
=

hpgpg

hpgpfpgpfpgpfpghpf

h

1
                                     

( ) ( )
( ) ( )

( ) ( )
( ) ( )








 −+
−

−+

+
=

h

pghpg
pfpg

h

pfhpf

hpgpg

1
 

 
Note that f  and g are both differentiable and, therefore, continuous. So, 

taking limit as 0→h  on both sides, we get the required formula for the 
derivative of the quotient of two functions. 

*** 

Remark 1: i) The statement (ii) in Theorem 2 can extended to any number of 

functions by using induction. So, if for   nfffNn ,.....,,, 21∈   are all 

differentiable at  ,p  we get 

 

( ) ( ) ( ) ( ) ( )pfpfpfpfff nn

′
++

′
+

′
=

′
+++ ...... 2121 . 

 
ii)  Similarly, extending Statement  iii) of the theorem, we get 
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )pfpfpfpf

pfpfpfpfpfpfpfpfpfff

nn

nnn

′
++

′
+

′
=

′

=121

32132121

.......

..........
 

 

 Further, if nfff === ....21 , we can write 



 

 

49 

Unit 11                                    Differentiation  

 ( ) ( ) ( )( ) ( )pfpfnpf
nn ′=

′ −1
. 

 

iii) Using the statements (i) and (ii) in Theorem 2, and taking 1−=k , we get 

 ( ) ( ) ( ) ( )pgpfpgf ′−′=
′

− . 

 
Let us see how this theorem can be used to get more insight into derivatives. 
Before stating the theorem we recall some definitions. 
 

Definition 3: Recall that a function is called an even function, if 

( ) ( )xfxf =−  for all x  in its domain, and a function is called an odd function,  

if ( ) ( )xfxf −=−  for all x  in its domain. 

 

Theorem 3: Show that, if f  is odd, then its derived function is even, and vice 

versa. 
 

Proof: Suppose f  is an odd function. Then ( ) ( )xfxf −=− . Differentiating 

both sides, we get ),1()( −′−=−′ xfxf and hence f ′ is an even function. 

Similarly if f is an even function. Then ( ) ( )xfxf =−  i.e. ).()( xfxf ′−=−′

Thus, ( ) ( )xfxf ′=−′− , and therefore, f ′ is an odd function.  

 
Let us see an example. 
 

Example 5:  A function RR→:f  is defined by ( ) 5++= xxxf . Find the 

points at which this function is differentiable. 
 

Solution: The given function is the sum of two functions, ( ) xxg = , and 

( ) 5+= xxh . We know that  g is differentiable everywhere, except at 0=x , 

and  h is differentiable everywhere, except at 5−=x . So, applying the formula 

for the derivative of the sum of two differentiable functions, we get that f  is 

differentiable at all points, except at 0=x and 5−=x . Further, for all 5−<x , 

( ) 1−=′ xg , and ( ) 1−=′ xh . Therefore, ( ) 2−=′ xf . For all 05 <<− x , 

( ) 1−=′ xg , and ( ) 1=′ xh .  Therefore, ( ) 0=′ xf . For all 0>x , ( ) 1=′ xg , and 

( ) 1=′ xh .  Therefore, ( ) 2=′ xf . 

f is not differentiable at 0=x and at 5−=x . 

*** 

Along with addition, subtraction, multiplication and division of functions, we 
have another important operation on functions: composition of functions. We 
shall now see how to get the derivative of the composite of two differentiable 
functions. That is, we shall derive the chain rule. But first we prove a very 
useful result. 
 

Theorem 4 (Caratheodory theorem): Let R→If : , be a function defined  

on interval .I  Let Ip ∈ . Then f  is differentiable at p  if and only if there 

exists a function R→ϕ I: , such that ϕ  is continuous  at p , and  for all 

Ix ∈ , we have 
 

( ) ( ) ( )( )pxxpfxf −ϕ=−                                                   … (3) 
 

Further, in that case, we have ( ) ( )pfp ′=ϕ . 
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                                                        Proof: We first prove the ‘only if ’ part. For that we assume that f is 

differentiable at .p  If f is differentiable at ,p then we define RI →ϕ :  by 
 

( )
( ) ( )

( )







=′

≠∈
−

−

=ϕ

pxpf

pxIx
px

pfxf

x

,

,,
 

Then  ( )
( ) ( )

( ) ( )ppf
px

pfxf
x

pxpx
ϕ=′=

−

−
=ϕ

→→
limlim . 

Therefore, ϕ is continuous  at p . Also, by definition,  

( ) ( ) ( )( )pxxpfxf −ϕ=−  for all .Ix∈  

 
Note that if ,px = then both sides of Eqn. 3 become zero. 

 
Thus we have shown that there exists a continuous function ϕ satisfying Eqn. 

(3). Now we prove the ‘if ’ part. suppose there exists a function ,ϕ satisfying  

 

( ) ( ) ( )( )pxxpfxf −ϕ=−                 … (4) 

 

for all Ix ∈ , and that the function )(xϕ is continuous at .px =  We have to 

show that f is differentiable at .p  

 
If  px ≠ , we can divide both sides of Eqn. (4) by px − . So, if px ≠ , we get 

( ) ( )
( )x

px

pfxf
ϕ=

−

−
. Therefore, 

( ) ( )
px

pfxf

px −

−

→
lim  ( )x

px
ϕ=

→
lim . This limit is equal 

to ( )pϕ , since ϕ is continuous at p . Thus, 
( ) ( )

px

pfxf

px −

−

→
lim  exists, and is 

equal to ( )pϕ . This shows that f is differentiable at ,p and ( )pf ′ ( )pϕ= . 

 
This theorem above helps us prove the chain rule, which tells us how to 
differentiate a composite function. 
 

Theorem 5 (The Chain Rule): Suppose R→Jf :  and R→Ig : , where   I  

and J  are intervals in R , and ( ) IJf ⊆ . Let Jp ∈ , such that f  is 

differentiable at p , and let g  be differentiable at ( )pf . Then the composite 

function, RJfg →:o  is differentiable at p , and  

( ) ( ) ( )( ) ( )pfpfgpfg ′′=
′

o . 

 
Proof: Since f is differentiable at p , by Caratheodory Theorem, there exists 

a function RJ →ϕ :  , such that  

 ( ) ( ) ( )( )pxxpfxf −ϕ=− , and ( ) ( )pfp ′=ϕ .                               … (5) 
 

Similarly, since g is differentiable at ( )pfq = , by Caratheodory Theorem, 

there exists a function RI →ψ :  , such that  
 

 ( ) ( ) ( )( )qyyqgyg −ψ=− , and ( ) ( )qgq ′=ψ .  
 

When we put ( )xfy = , and  ( )pfq = , we get 

( )( ) ( )( ) ( )( ) ( ) ( )( )pfxfxfpfgxfg −ψ=− , and  ( )( ) ( )( )pfgpf ′=ψ       … (6) 
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Now, using Eqn. (4) we get  
 

( )( ) ( )( ) ( )( ) ( )( )pxxxfpfgxfg −ϕψ=−   

       ( )( ) ( )[ ]( ) ( )( ) ( )( )[ ] ( )pxxxfpxxxf −ϕψ=−ϕψ= .. o  

 

This is true for all Jx ∈ . Since ϕ is continuous at p , and ψ is continuous at  

( )pf , the function, ( ) ϕψ .fo  is continuous at p , and  using Eqn. (4) and 

Eqn. (5), we get 
 

( )( ) ( )( )
( )( ) ( )[ ] ( )( ) ( )

( )( ) ( ) ( )( ) ( )...

..limlim

pfpfgppf

ppfxxf
px

pfgxfg

pxpx

′′=ϕψ=

ϕψ=ϕψ=
−

−

→→
oo

 

 
So, again, by Caratheodory Theorem we can say that the function fg o  is 

differentiable at p , and  ( ) ( ) ( )( ) ( )pfpfgpfg ′′=
′

o . 

 

Thus if f  is differentiable on J , and g  is differentiable on I , then the 

composite function fg o  is differentiable on J , and we write 

 

( ) ( ) ffgfg ′′=
′

oo .  

 
Here are some examples illustrating the use of this Chain Rule. 
 
Example 6: Differentiate the following functions with respect to x : 

 

i) )13(cos
2

+x       ii)  7)92( −x     iii)  x5tan 2  

 

Solution: i) Let ( ) =xh ( )13cos
2

+x , ( ) 13
2

+= xxf , and ( ) xxg cos= . Then 

fgh o= . Therefore, ( ) ( ) ( ) ( )( ) ( )xfxfgxfgxh ′′=
′′

=′ o . 

 

Now, ( ) xxf 6=′ , and ( )( ) ( )( ) ( )13sinsin
2

+−=−=′ xxfxfg . 
 

Thus,  ( ) ( )13sin6
2

+−=′ xxxh . 
 

ii) Here let ( ) =xh ( )7
92 −x , ( ) 92 −= xxf , and ( ) 7

xxg = . Then 

( ) 2=′ xf , and ( )( ) ( )( ) ( )66
9277 −==′ xxfxfg . 

Thus,  ( ) ( )6
9214 −=′ xxh . 

 

iii) Here the situation is different. Let us see how. 

 Let  ( ) =xh ( )x5tan
2

, ( ) xxr 5= ,  ( ) xxf tan= , and ( ) 2
xxg = . Then 

 ( ) ( )( )xrfgxh oo= . Therefore, ( ) ( )( )( ) ( ) ( )xrfxrfgxh
′

′=′ oo . 

                                                                    ( )( )( ) ( )( ) ( )xrxrfxrfg ′′′= o . 

Note that we have twice applied the Chain Rule here. 
 

Now we have ( )( )( ) ( )xxrfg 5tan2=′ o , ( )( ) ( )xxrf 5sec
2

=′ , and ( ) 5=′ xr . 
 

Thus, ( ) ( ) ( )xxxh 5sec5tan10
2

=′ . 

*** 
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                                                        It is time to try some exercises based on the theorems studied so far. 
 

 

E2) Differentiate: 
 

a) 
221

)(
x

x
xf

+
=   b) ( ) ( ) ( )35

cossin xxxf +=  

E3)  Suppose ( )




≤

>
=

0,0

0,2

x

xx
xf . Is f differentiable at 0=x ? Write the 

 derived function of f . Is this derived function continuous at 0=x ? 

 
E4)  Differentiate the following functions with respect to x . 
 

a) ( )75
sin x     b) 

3431 xx −+    c) 18cos −x  
 

 

In the next section we shall discuss a fundamental theorem in Analysis.  
 

11.4 THE INVERSE FUNCTION THEOREM 
 

We discuss Inverse Function Theorem in this section. It States that under 
certain conditions, the derivative of the inverse of a function can be obtained 
from the derivative of the original function. Graphically speaking, it makes 
sense that this is possible. We look at the graph of the inverse of a function 

,f it is the reflection of the graph of f about the origin line ).(xfy =  Thus 

each tangent line of f is reflected through the line )(xfy = into the tangent 

line of .
1−

f  

 

We next discuss some theorems about continuous functions, which will lead 
us to the proof of the Inverse Function Theorem. The theorems on continuous 
function are also important to establish since it leads to many other results 
which you will come across in later units.  
 

We shall now prove two theorems on continuous functions.  
 

Theorem 6: Let [ ] R→baf ,:  be continuous on its domain. Suppose 

( ) 0>pf  for some ( )bap ,∈ . Then there exists a neighbourhood N of p , 

such that, ( ) 0>xf  for all Nx ∈ . 

 

Proof: Let 
( )
2

pf
=ε . Since  f  is continuous at ,p for this ε , there exists a

0>δ , such that  ( ) [ ]bapp ,, ⊂δ+δ− , and ( ) ( ) ε<−⇒δ<− pfxfpx .  

 

That is, 
 

  ( ) ( ) ( ) ε+<<ε−⇒δ<− pfxfpfpx  

                  
( )

( )
( )
2

3

2

pf
xf

pf
<<⇒ ,  since 

( )
2

pf
=ε . 

 

This means, ( )
( )

0
2

>>
pf

xf , for all ( )δ+δ−∈ ppx , .  

Thus,  N ( )δ+δ−= pp ,  is the required neighbourhood.  
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Remark 2: You may note that in the earlier theorem we made the assumption 

that 0)( >pf for some ).,( bap∈  Infact if ap = i.e. ,0)( >af then we can 

similarly prove that there exists 0>δ , such that  [ ) [ ]baaa ,, ⊂δ+   , and  

( ) 0>xf , for all [ )δ+∈ aax , . In the same way if bp = i.e., if ( ) ,0>bf  then 

we can similarly prove that there exists a 0>δ , such that ( ] [ ],,, babb ⊂δ−  

and ( ) 0>xf , for all ( ]bbx ,δ−∈ . 
 

We shall prove the second theorem now. 
 

Theorem 7 (Bolzano Theorem):  Let [ ] R→baf ,:  be continuous on its 

domain. Suppose  ( ) ( ) 0<bfaf ,  that is,  ( )af  and  ( )bf   have opposite 

signs. Then there exists a point ( )bap ,∈ , such that  ( ) 0=pf . 

 

Proof: Suppose ( ) 0>af , and ( ) 0<bf . Let [ ] ( ){ }0, ≥∈= xfbaxS . Then S  

is a non-empty subset of [ ]ba, , since Sa ∈ . Let Sp sup= .  
 

Then we claim that  ap ≠ . By Theorem 5, there exists 0>δ  , such that 

( ) 0>xf  for all  [ )δ+∈ aax , . This means, Sa ∈
δ

+
2

. So,  Sa sup≠ .  

Similarly, Sb sup≠ . we  leave it for you to prove. See E6). 
 

Therefore, bpa << . Since f  is continuous, and Sp sup= , ( ) 0≥pf . Now 

we will show that ( ) 0=pf . 
 

If ( ) 0≠pf , then ( ) 0>pf , and by Theorem 5 there exists a neighbourhood  

of p , say, ( ) ( )bapp ,, ⊂δ+δ− , such that ( ) 0>xf  for all ( )δ+δ−∈ ppx , . 

But this means the point Sp ∈
δ

+
2

, since 0
2

>






 δ
+pf . This contradicts the 

fact that Sp sup= . 
 

Therefore, ( ) 0=pf .    
 

Next we shall prove another theorem on similar lines as Theorem 7 which is a 
generalized form of the Bolzano theorem. This theorem is known as 
“Intermediate Value Theorem (IVT in brief).  
 

Theorem 8 (Intermediate Value Theorem (IVT)): Suppose that f is 

continuous on ),()(],,[ bfafba ≠ and k is any number between )(af and 

).(bf Then there exists at least one point ),( bac∈ such that .)( kcf =  
 

Proof: Case 1: )()( bfkaf <<  
 

Consider .)()( kxfxg −= Then 0)()( <−= kafag and .0)()( >−= kbfbg

Therefore )(ag and )(bg are of different sign. By Theorem 7, there exist 

),( bap∈ such that 0)( =pg which implies that .)( kpf =  
 

On the other hand, if ),()( afkbf << then .0)()( <bgag  Appearing to 

Theorem 7, once again we obtain the result.  
  
Note: Now we shall give the geometrical interpretations of Theorems 6 and 7.  
 

 

Geometrically theorem 6 says that if for a continuous function f defined on 
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                                                         the closed interval ],,[ ba  the values )(af and )(bf are of opposite signs, 

then the graph of f cuts the real line x -axis at some point k such that 

.0)( =kf This is illustrated in the Figure given below.    
 

 
 

Fig. 3: The graph of f cuts the real line at )0,( p . 

 

Whereas Theorem 7 geometrically shows that if for a continuous function f

defined on a close bounded interval ],[ ba and if ),()( bfaf ≠ then given any 

k between )(af and )(bf there exists cbetween a and b such that there 

exists the line ky = exists the graph of f at ),( kc . 

 
 

(a)     (b) 
Fig. 4 

 

The graph (b) above, shows that there may be more than one value of .c   
Does the converse of IVT hold? That means if a function satisfies the 
conclusions given by Theorem 8, is it necessary that the function is 
continuous? The answer is no. The following function along with the graph 
shown in Fig. 5 explains this.  

 

Fig. 5: The graph of the function 







=

x
xf

1
sin)(   

 

The function given in graph, above, shows that there are non-continuous 
functions which satisfies the conclusions of Theorem 7. In view of the 
importance of this property, we consider the following class of functions.  
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Definition 4: A function f has the intermediate value property on an interval 

],,[ ba if for all yx < in ],[ ba and L between )(xf and ),(yf it is always 

possible to find a point ),( yxc∈ where .)( Lcf =  

Thus every continuous function has the intermediate value property. 
 

The IVT has lot of applications. One such application is to identify the points 
on the earth’s surface which are ‘exactly opposite of each other such as North 
Pole and South Pole. These points are called antipodal points. According to 
IVT theorem there is always a pair of antipodal points on the Equator of the 
Earth at which the temperature is the same. It is assumed that the temperature 
is a continuous function of position on Earth’s surface. For more details you 
can refer to any website given in reference. The figure in the margin illustrates 
this.  
 

Another application of IVT is that it sometimes helps us to locate some of the 
roots of the polynomials. We illustrate this in the following example.  
 

Example 7: Show that the equation 01124 =−+ xx has a root lying between 1 
and 2. 
 

Solution: The function 112)(
4

−+= xxxf is a continuous function on the 

closed interval 8)1(],2,1[ −=f and .9)2( =f Hence, by Theorem 7, there exists 

an [2,1]0 ∈x such that ,0)( 0 =xf i.e., 0x is a root of the equation 

01124 =−+ xx lying in the interval [.2,1]  

*** 

Remark 3: You should note that Theorem 8 only ensures the existence of a 
root of a polynomial. It does not specify the root of the polynomial.  
 
Next we shall see another example. 
 
Example 8: Any polynomial of odd degree must have at least one root.  
 

Solution: To see this let n

n
xaxaxaaxp ++++= ...)( 2

210 where n is odd, and 

the coefficients ia are constants with .0≠na
 
Assume for the moment that 

.0>na Then  

,......)(
2

2

1

102

210 







++++=++++=

−− nnnn

nn

n a
x

a

x

a

x

a
xxaxaxaaxp   

and as −∞→−∞→
n

xx , for all n and ,0...
2

2

1

10 >→







++++

−− nnnnn
aa

x

a

x

a

x

a

and so .)( −∞→xp Similarly, as +∞→+∞→
n

xx , and .)( +∞→xp Thus, for 

any ,0>M there exist points 1x and 2x such that ),(0)( 21 xpMMxp <<<−<  

and from the IVT, there is a point cbetween 1x and 2x with .0)( =cp  

 

If ,0<na then +∞→)(xp as −∞→x and −∞→)(xp as ,+∞→x and the IVT 

can be applied as above.  
 

Notice that this argument breaks down if n is even, since +∞→n
x as 

.±∞→x  
*** 

As a consequence of Theorem 8, we prove another theorem.   
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                                                        Theorem 9: Let R→If :  be continuous on the closed and bounded 

 interval, .I  Let ( ) ( ){ } JIxxfyyIf =∈== , . Then J   is an interval in .R  

 

Proof: Now, I is not empty, and therefore, J is not empty. If J is a singleton 

set, then it is called a degenerate interval. 
 

Suppose .,, dcJdc <∈  Let  dkck <<∈ ,R . Further, suppose ( )afc = , and 

( )bfd = , for some ., Iba ∈  
 

Now consider a new function, R→1: Ig , defined by ( ) ( ) kxfxg −= . Here  1I  

is the is the interval [ ]ba, , or [ ]ab,  . Then ( ) 0<ag , and ( ) 0>bg . Therefore, 

applying Theorem 8 we can say that ( ) 0=xg , for some 1Ix ∈ . That is, 

( ) kxf =  for some 1Ix ∈ . Thus, .Jk ∈ This is true for all .Jk ∈  Therefore this 

shows that J  is an interval.  
 
Remark 4: The theorem above, says that the image of a closed interval under 
a continuous function is a closed interval. The theorem is known as “The 
interval Image Theorem”.  
 
We are now ready to discuss the inverse function theorem for continuous 
function and then to differentiable function.  
We shall prove two theorems.  
 
Theorem 10 (Inverse Function Theorem for Continuous Functions): If the  

function, R→If :  is an injective, continuous function defined on the closed  

and bounded interval ,I and ( ) ,JIf =  then IJf →− :1
 is also continuous. 

 
Proof: We are going to use the sequential criterion of continuity to prove this 
theorem. 
 

Let ,Jy ∈  and let ( )ny be a sequence in J , converging to y . Then 

( ) ( )( )
nn

yfx
1−=   is a sequence in I . Since I  is bounded, ( )nx  is also 

bounded. Therefore, it has a convergent subsequence, ( )
kn

x , converging to, 

say, x . Since f  is continuous, ( )( ) ( )xfxf
kn

→ . Now, ( )( )
kn

xf  is a 

subsequence of  ( )ny , and hence must converge to y . Therefore, ( )xfy = . 
 

If ( )
qmx  is any other subsequence of ( )nx , converging to x′ , then 

( )( ) ( )xfxf
qm

′→ , and, again, ( )xfy ′= . Since f  is injective, we have xx ′= . 

 

This means that any subsequence of ( )nx  converges to x . Therefore, 

( ) xxn → . 
 

That is, ( )( ) ( )yfyf
n

11 −− → . Hence, 
1−f is continuous at y . Since y  was an 

arbitrary point of ,J we get that 
1−f is continuous on .J  

 
Now we use the theorems on continuity and the Caratheodory Theorem, to 
prove the Inverse Function Theorem for differentiable function.  
Roughly speaking it state that under certain conditions the derivative of the 
inverse of a function can be recovered from the derivative of the original 
function. Graphically it make sense that this information can be obtained since 
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the graph of the inverse of a function f is the reflection of f along the line 

.xy = Therefore each tangent line of f should be reflected into the tangent 

lines of .
1−

f  The following figures illustrates this.  
 

 
 

Fig. 6 

 
Here is the statement and proof of the theorem. 
 

Theorem 11 (Inverse Function Theorem): Let the function, R→If :   be an 

injective, continuous function defined on the closed and bounded interval I , 

and let ( ) JIf = . If f is differentiable at Ip ∈   , and ( ) 0≠′ pf , then 

IJf →− :1
  is differentiable at ( )pfq = , and  ( ) ( )

( )pf
qf

′
=

′− 11
. 

 
Proof: By Caratheodory Theorem, there exists a function R→ϕ I: , 

continuous at p , such that  

 

( ) ( ) ( )( )pxxpfxf −ϕ=−                                                           ... (5) 

 

 for Ix ∈ , and ( ) ( )pfp ′=ϕ .  Since  ( ) 0≠ϕ p , by Theorem 6, there exists a

0>δ , such that ( ) 0≠ϕ x  for all ( ) Ippx ∩δ+δ−∈ , . 

 

Let  ( )( ) UIppf =∩δ+δ− , . Then for Uy ∈  we can write,

( )( ) ( ) ( )( ) ( ) ( )( )qfyfyfpfyffqy
1111

.
−−−−

−ϕ=−=−  by using Theorem 2. 

 

Now, ( )( ) 0
1

≠ϕ
−

yf  for Uy ∈ . Therefore, we can divide by ( )( )yf
1−

ϕ , and get

( ) ( )
( )( )

( )qy
yf

qfyf −
ϕ

=−
−

−−

1

11 1
. 

 

Since the function, 
1−f  is continuous at q , and the function  ϕ  is continuous  

at ( ) pqf =−1
, the composite function, 

1−
ϕ fo  is continuous at   q  . This 

 means the function, 
1

1
−ϕ fo

 is also continuous at q .  

Again, we apply Caratheodory Theorem, and conclude that ( ) ( )qf
′−1

 exists, 

and ( ) ( )
( )( ) ( ) ( )pfpqf

qf
′

=
ϕ

=
ϕ

=
′

−

− 111
1

1 . 
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                                                        Remark 5: You may note in the theorem stated above we have the condition 

that f is differentiable at .p  If we assume that the function is differentiable on 

the interval ,I and if  ( ) 0≠′ xf  for all ,Ix∈ then we get that 
1−f  is 

differentiable on ,J and also,  
 

1

1 1
−

−

′
=

ff
f

o
.  

 

If ( ) 0=′ xf  for some 0x  in the domain of  an injective function, f , then 
1−f  is 

cannot be differentiable at 0x . 
 

Now you learn the following examples very carefully so that you understand 
how to apply this theorem. 
 

Example 9: Find the derivative of the inverse of ( ) ,, N∈= nxxf
n

wherever it 

exists.  
 

Solution: We will have to consider two cases: n  even or odd. 
 

Case 1: If n  is even, we need to take the domain of f as [ )∞,0 , so as to  

ensure the existence of its inverse. We know that ( ) 1−
=′ n

nxxf . Hence,  

( ) 0≠′ xf  for all 0>x . 

 

The inverse of f is given by ( ) n
xxf

/11
=

−
. By Inverse Function Theorem,  

( ) ( )
( ) ( )

( ) 1/1

/11

1 1111 −

−−

− ===
′

=
′ n

nnn
y

nnynxxf
yf , since 

n
xy = . 

 

Note that 
1−

f  is not differentiable at 0=x , since ( ) 00 =′f . 

If  n  is odd, then the inverse of f is given by ( ) n
xxf

/11
=

−
, and ( ) 1−

=′ n
nxxf . 

 

Then, for all  0≠x , using Inverse Function Theorem again, we get  
 

( ) ( )
( )

( )

( ) 1/1

/1

1

1

1

1

11

−

−

−

−

=

=

=
′

=
′

n

nn

n

y
n

ny

nxxf
yf

 

 

In this case also, 
1−

f  is not differentiable at 0=x , since ( ) 00 =′f . 
 

Hence the result for n is odd.  

We have seen thus far, that if, ( ) r
xxf = , where either N∈r , or ,,

1
N∈= n

n
r  

then ( ) 1−
=′ r

rxxf , for all 0>x . (Of course, ( ) 1
0

−
=′ r

rxf  exists and is equal to 

0 , if  Nr ∈ .) 
 

We can now use the chain rule to get the derivative of nm
x

/ , for 0>x . 

*** 

Example 10: Find the derivative of ( ) 0,0,,,,
/

>>∈= xnmnmxxf
nm

N . 
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Proof: The function f is a composite of two functions. That is, hgf o= , 

where ( ) ,
m

xxg = and  ( ) 0,
/1

>= xxxh
n

. Then, using Chain Rule, we can write 

( ) ( )( ) ( ) ( ) ( ) ( ) .
1

. 1/1/11/1 −−−
==′′=′ nmnmn x

n

m
x

n
xmxhxhgxf  

*** 

Example 11: Find the derivative of the inverse of ( ) 






 ππ
−∈=

2
,

2
,tan xxxf . 

 

Solution: You can see in Fig. 8, that xtan  is strictly increasing in its domain 

and its range is ( )∞∞− , . Therefore it has an inverse,  

( ) 






 ππ
−→∞∞−−

2
,

2
,:tan 1 .   

 

Function, f is differentiable on its domain, and  

( ) 0sec
2

≠=′ xxf   for all  






 ππ
−∈

2
,

2
x . 

 
Thus, by Inverse Function Theorem,  
 

 ( ) ( )
( ) 222

1

1

1

tan1

1

sec

11

yxxxf
yf

+
=

+
==

′
=

′− , for all  ( )∞∞−∈ ,y . 

*** 

Working along these lines you can find the derivatives of all the inverse  
trigonometric functions.  
 

Example 12: The function, ( ) 34,:
3

++=→ xxxff RR  has an inverse. Find 

the values of ( ) ( )yf
′−1

, for the values of y  corresponding to 3,2,0 −=x . 
 

Solution:  ( ) 043
2

≠+=′ xxf  for all ( )∞∞−∈ ,x .  

 

Therefore, 
1−

f is differentiable at all ( )∞∞−∈ ,y , and 

( ) ( )
( )

.
43

11
2

1

+
=

′
=

′−

xxf
yf  

 

Then the values of ( ) ( )yf
′−1

, for 3,2,0 −=x  are, ,31/1,16/1,4/1 respectively. 

*** 

Now try these exercises on your own. 
 

 

E5)  Find the derivatives at a point 0y of the domain of the inverse function 

theorem ,f where .
2

,
2

,sin 




 ππ−
∈= xxx  

 

E6)  Given that ( ) 12,:
5

++=→ xxxff RR  has an inverse, find the 

values of  ( ) ( )yf
′−1

, for the values of y  corresponding to 1,1,0 −=x . 

 
Fig. 8: Graph of xtan  
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E7)  Given that ( ) 28,:

3
−+=→ xxxff RR  has an inverse, find the 

values of  ( ) ( )yf
′−1

, for the values of  y  corresponding to  3,2,1=x . 

 

 
That brings us to the end of this Unit. So let us summarize the points covered 
in it. 
 

11.5 SUMMARY 
 

In this unit we have done the following: 
 

• introduced the concept of derivatives of functions; 

• proved that a differentiable function is continuous, but the converse is not 
true; 

• explained how to get the derivatives of some functions, if they exist, using 
the definition; 

• given formulas for the derivatives of the sum, difference, scalar multiple, 
product, and quotient of differentiable functions, and used those to get the 
derivatives of many more functions; 

• explained the chain rule, which is useful in finding the derivatives of 
composite functions; 

• proved cartheodary Theorem for differentiable function;  

• proved the following theorems on continuity; 

i) Bolzano Theorem 

ii) Intermediate Value Theorem (IVT) 

iii) Inverse Function Theorem 

iv) Interval Image Theorem  

• Proved the Inverse Function Theorem for differentiability and discussed 
how to apply this theorem for finding the derivative of inverse functions.  

 

11.6 SOLUTIONS AND ANSWERS  
 

E1) 
3/2

x)x(f =  

 Now, 
3/1

3/2

h

1

h

0h

h

)0(f)h0(f
=

−
=

−+
 

 Therefore, 
h

)0(f)h0(f
lim

0h

−+

→
does not exist.  

 

 So, )x(f is not differentiable at .0x =  

  

 Thus, the tangent of )x(f at 0x = does not exist. 

 

E2) a) Let x)x(h = and 
2

x21)x(g +=  

 

  Therefore, 
)x(g

)x(h
)x(f =  
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  As, we can see 0)x(g ≠ for all .x R∈  

   
  Therefore, using the result (iv) of Theorem 2, we can write 
 

  
2

))x(g(

)x(g)x(h)x(g)x(h
)x(

g

h
)x(f

′−′
=

′









=′  

 

  Now, 1)x(h =′ & x4)x2(20)x(g =+=′  

 
  Therefore,  
 
 

  
22

22

22

2

)x21(

x4x21

)x21(

)x4(x)x21(1
)x(f

+

−+
=

+

−+
=′  

 

  
22

2

)x21(

x21

+

−
=   

  

 b) 
35

)(cos)(sin)( xxxf +=  
 

  Let 
3

2

5

1 )(cos)(&)(sin)( xxfxxf ==  

   

  Therefore, )()()( 21 xfxfxf +=  

   
  So, using Remark 1, we have 
 

  )(')(')( 21 xfxfxf +=′  

 

  Now, let, 
3

2

5

1 )(&)( xxhxxh ==  

  and xxgxxf cos)(&sin)( 21 ==  

 
  Therefore, using the definition of composite function, we have 
 

  ))(()(&))(()( 222111 xgohxfxoghxf == . 

 

Definition: (Composite function): Suppose R→]:f and 

,: R→Ig where I and ]  are subsets of R and .)]( If ⊆  
 

The composite function R→:]gof is defined by 

)).(())(( xfgxgof =  

 
Therefore, using Theorem 5, we have  
 

)()'()(' 111 xoghxf = and )()'()(' 222 xoghxf =  

 )('))((' 111 xgxgh=          ).('))((' 222 xgxgh=  

 

Now, xxgxxhxxh cos)(',3)(',5)(' 1

2

2

9

1 ===  and 

.sin)('2 xxg −=  
 

So, )(cos)(sin5)('
9

1 xxxf =  
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        xx cossin5 9=  
 

and )sin()(cos3)('
2

2 xxxf −=  

        xx
2

cossin3−=  

.cossin3cossin5)('
29

xxxxxf −=∴  
 

E3) 




≤

>
=

0,0

0,
)(

2

x

xx
xf  

 Now, 










<
−

>
−

=
−+

0,
00

0,
0

)0()0(

2

h
h

h
h

h

h

fhf
 

 Therefore, 
0lim

)0()0(
lim

00
==

−+
++ →→
h

h

fhf

hh  

 

   
00lim

)0()0(
lim

00
==

−+
−− →→ hh h

fhf

 

 So, 
h

fhf

h

)0()0(
lim

0

−+

→
exists. 

  

 Therefore, )(xf is differentiable at 0=x and .0)0(' =f  

 

 Derived function of ,f  

 

 




≤

>
=

0,0

0,2
)('

x

xx
xf  

 

 Now, 02lim)('lim
00

==
++ →→

xxf
xx

 

 and  00lim)('lim
00

==
−− →→ xx

xf  

 

 So, )('lim
0

xf
x→

exists and )0('0)('lim
0

fxf
x

==
→

 

  

 Therefore, the derived function )(xf ′ is continuous at .0=x  

 

E4) a) Let )(sin)(),(sin)(
575

xxgxxf == and 
7

)( xxh =  

 

  Therefore, ))(()( xgohxf =  

 

  Now, using Theorem 5, we have ).())((')(' xhxhgxf ′=  

 

  Now, xxxg cossin5)(
9

=′ [See Problem (c) of (E3)] 

  and 
6

7)( xxh =′  
 

  Therefore, )7)}{cos()(sin5{)(
6779

xxxxf =′  

    )cos()(sin35
7796

xxx=  
 

 b) Let ,)(,931)( 3
xxgxxxf =−+=  
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  and 
3431)( xxxh −+=  

 

  Therefore, ))(()( xhogxf =  

 
  Now, using Theorem 5, we have 
 

  )())((')(' xhxhgxf ′=  

 

   Now, 0,
2

1
)(' >= x

x
xg   [See E1) iv)] 

 

  So, 0)(,
9312

1
))(('

3
>

−+
= xh

xx
xhg  

   

  and 
21230)( xxh −+=′  

         
2123 x−=  

  Therefore, 0)431(),123(
4312

1
)( 32

3
>−+−

−+
=′ xxx

xx
xf

    .0)431(,
4312

123 3

3

3

>−+
−+

−
= xx

xx

x
 

 

E5) 




 ππ
−∈=

2
,

2
,sin)( xxxf  

 

 Let, 




 ππ
−=

2
,

2
I  

 

 So, [1,1])( −=If  

 

 Now, xxf cos)(' =  

  

 Let )( 00 xfy =  

 

 So, ( )
2

,
2

0cos)(' 000
ππ−∈∀≠= xxxf  

 
Therefore, by Inverse Function Theorem, we can say,  
 

] [
2

,
2

[1,1:]1 ππ−→−−
f  is differentiable for a point [1,1]0 −∈y and 

.
cos

1

)(

1
)()(

00

0

11

xxf
yf =

′
=−  

 

E6) 12)( 5 ++= xxxf  

 

 Now, .025)(' 4
R∈∀≠+= xxxf    

 

Thus by Inverse Function Theorem, RR→− :1
f is differentiable and 

,
)('

1
)()( 11

xf
yf =−

where R∈= )(xfy  
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25

1
4 +

=
x

 

 

 Then the values of )()( 11
yf

−
for 1,1,0 −=x are 

7

1
,

7

1
,

2

1
respectively.  

 

E7) 28)( 3 −+= xxxf  

 

 Now, 083)(' 2 ≠+= xxf for all .R∈x   

     

Therefore, by Inverse Function Theorem, RR→− :1
f is 

differentiable at all R∈y and 
83

1

)('

1
))((

2

1

+
==−

xxf
yf . 

 

Then the values of )()( 11
yf

−
for 3,2,1=x are 

20

1
,

11

1
and 

35

1

respectively.     
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12.1 INTRODUCTION 
 
Recall that in Unit 11, we have discussed the concept of differentiability. In that 
unit, we also established the rules for finding derivatives of combinations of 
differentiable functions. In this unit we shall concentrate on certain applications 
of differentiability such as whether the derivative possesses the Intermediate 
Value Property, or what the shape of a function is around a point at which its 
derivative vanishes. You must have seen some of these applications in your 
course Calculus. We shall also look at the geometrical significance of the 
properties possessed by derivatives, and apply them, for instance, in showing 
the existence of roots of equations. 
 
We begin the unit with Darboux (read as “Daar-boo”) Theorem in Section 12.2. 
We shall also discuss, in the section, the Interior Extremum Theorem which 
tells us how the derivative of a function behaves at an interior point of extrema. 
In Section 12.3, we shall discuss Rolle’s Theroem, and its geometrical and 
algebraic interpretation. Section 12.4 introduces three mean value theorems 
namely, Lagrange’s Mean value Theorem, Cauchy’s Mean Value Theorem, 
and Generalised Mean Valued Theorem. Finally in Section 12.5 you will see 
how to prove whether a differentiable function is monotone or not in a given 
interval. 
 
Objectives 
 

After studying this unit you should be able to: 
 

• describe and prove the Interior Extremum Theorem; 

• state and prove Darboux’s Theorem; 
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• state and prove Rolle’s Theorem, and give its geometrical and algebraic 
interpretations; 

• state, prove and apply Lagrange’s Mean Value Theorem, Cauchy’s Mean 
Value Theorem, and the Generalised Mean Value Theorem to obtain 
some known results; 

• show when a function increases/decreases in its domain. 
 

12.2 DARBOUX’S THEOREM 
 
In this section we shall discuss Darboux’s Theorem, given by the French 
Mathematician Jean Gaston Darboux (1842-1917). But before that we shall 
discuss an important result known as Interior Extremum Theorem which is 
used in the proof of Darboux’s Theorem.  
 
We begin with an example. Consider the function R→− ]5,1[:f  defined by

2
4

)1(
)(

2

+
−

=
x

xf  (see Fig. 2). 

 

Fig. 2: Graph of 2
4

)1(
)(

2

+
−

=
x

xf  

 
You know that since f  is a polynomial function, it is differentiable on [5,1] − . 

Also you can see that f  attains a minimum value at 1, i.e., 1 is a point of 

minimum of f . Now look at the derivative of f at 1. You should check that

0)1(' =f . This means the tangent on the curve of f at 1 is parallel to the x -

axis. This is not a coincidence. In fact, if you take any differentiable function 
which attains an extreme (minimum or maximum) value at an interior point of 
its domain, then its derivative is zero at that point. This is what the following 
theorem tells us. 
 
Theorem 1 (Interior Extremum Theorem): Let R→],[: baf  be a function, 

differentiable on ] [.,ba  If f  attains an extreme value at some interior point c  

of ],,[ ba  , that is, [,] bac ∈ , then .0)( =′ cf  

 
Proof: We shall prove this by contradiction. So, without loss of generality, let 

us assume that f attains a maximum value at some [,] bac ∈ such that

0)( ≠′ cf . Then either 0)( <′ cf  or .0)( >′ cf   

 
First let us consider the case .0)( <′ cf  By the definition of derivative, we have 

 .
)()(

lim)(
cx

cfxf
cf

cx −

−
=′

→
 

 
Fig. 1:Jean Gaston 

Darboux 
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Take .
2

)(cf ′−
=ε  Note that .0>ε Then there exists some δ -neighbourhood 

of )(, cNc δ  in [,] ba  such that for all )(cNx δ∈  

  

.)(
)()(

ε<′−
−

−
cf

cx

cfxf
 

 

Now we have .)(
)()(

εε <′−
−

−
<− cf

cx

cfxf
 This gives us 

.
2

)(')()(
)('

2

3
)(

)()(
)(

cf

cx

cfxf
cfcf

cx

cfxf
cf <

−

−
<⇔+′<

−

−
<−′ εε   

Since 0)( <′ cf , we get 0
)()(

<
−

−

cx

cfxf
.  Now if )(cNx δ∈  is such that ,cx <  

then we have ).()( cfxf >  This contradicts the fact that c is a point of 

maximum of f . Hence our assumption that 0)( <′ cf  is false. So, .0)( ≥′ cf   

You can produce a similar argument to show that .0)( ≤′ cf  Thus we have 

proved that .0)( =′ cf  

 
Remark 1: Interior Extremum Theorem is a very useful result about 
differentiable functions, and you will see its application in proving many 
theorems that follow.  
 
Now, let us recall the statement of the Intermediate Value Theorem from Unit 
11. It essentially says that every continuous function attains all the values 
between any two of its values. Therefore, if the derivative of a function is 
continuous, then we can say that the derivative function too has the same 
property. However, as you know, the derivative of a function need not be 
continuous. Darboux proved that whether the derivative is continuous or not, it 
always possesses the Intermediate Value Property. This is contained in the 
following theorem. 
 
Theorem 2 (Darboux’s Theorem): Let R→],[: baf  be a differentiable 

function on the closed interval ],[ ba  and r  be any number between )(af ′  

and ).(bf ′  Then there exists a number � in the open interval ] [ba,  such that 

.)( rcf =′  

 

Proof: Suppose that ).()( bfraf ′<<′  Define a real valued function 

R→],[: bag   such that .)()( rxxfxg −=  Then g  is differentiable on ],,[ ba  

and .)()( rxfxg −′=′  This means, g  is continuous on ].,[ ba  From Unit 10 

you know that every continuous function attains its minimum on a closed 
bounded interval. Hence there exists a point  ],[ bac ∈  such that  

}.)(min{)( bxaxgcg ≤≤=  

 

First we shall show that ac ≠  and .bc ≠  Note that )()( bfraf ′<<′  implies 

that ).(0)( bgag ′<<′  By the definition of derivative, you know that  
 

 .
)()(

lim)(
ax

agxg
ag

ax −

−
=′

+→
 

 

Let .0
2

)(
>

′
−=

ag
ε  Then there exists some ab −<< δ0  such that for all 

] [δ+∈ aax ,  
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 0
)()(

)(
)()(

<
−

−
⇒<′−

−

−

ax

agxg
ag

ax

agxg
ε   

 
(See the argument given in the proof of Theorem 1.) Using ax > we get 

0)()( <− agxg , which implies ).()( agxg <  This means )(ag  is not the 

minimum value of ,g  and hence .ac ≠  You should use similar arguments to 

show that bc ≠  (see E1). Thus, ] [.,bac ∈  Now the Interior Extremum 

Theorem (Theorem 1) implies that .0)( =′ cg  This means .)( rcf =′  

 
The following corollary is an immediate consequence of the theorem above. 
 
Corollary 1: If a function R→],[: baf  is differentiable on the closed interval 

],[ ba  and )(af ′  and )(bf ′  are of opposite signs, then there exists a number 

c  in the open interval ] [ba,  such that .0)( =′ cf  

 
Remark 2: We can restate the Darboux’s Theorem as follows. 
 
If f  is a differentiable function on a closed and bounded interval, then 

f ′
 possesses the Intermediate Value Property. 

  
Let us now consider some examples of application of Theorem 2. 
 
Example 1: Consider the function RR→:f  defined by 
 

 







=

≠
=

.0,0

0,
1

sin
)(

2

x

x
x

x
xf  

 

Show that f  is differentiable on every closed bounded interval of R . Hence 

conclude that f ′ satisfies the intermediate value property.   

 

Solution: You can see that f  is differentiable on ,R  and 

,
1

cos
1

sin2)(
xx

xxf −=′  for .0≠x  Also, .0)0( =′f

 

 

 
Hence, f ′ satisfies the Intermediate Value Property by Darboux’s Theorem. 

*** 

Example 2: Show that for the function 108)( 23 −−= xxxf  there is some 

] [2,1∈c  such that .15)( −=′ cf  Find a value for such a point .c  
 

Solution: Since xxxf 163)(' 2 −= , we have .20)2(,13)1( −=′−=′ ff  Since 

,131520 −<−<−  there is some ] [2,1∈c  such that 15)( −=′ cf . This gives 

us 015163 2 =+− cc . Solving this equation, we get 
3

198 ±
=c . Since 

 ] [2,1∈c , we choose .
3

198 −
=c  

*** 

Let us now look at another consequence of Darboux’s Theorem. 
 

Corollary 2: Let R→],[: baf  be differentiable on ],,[ ba  and suppose 
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].,[0)( baxxf ∈∀≠′  Then, either ],[0)( baxxf ∈∀<′  or ].,[0)( baxf ∈∀>′  
 

Proof: Suppose there exist two points 1x  and 2x  in ],[ ba  such that 21 xx <  

and ).(0)( 21 xfxf ′<<′  Then f  is differentiable on ].,[ 21 xx  Applying 

Darboux’s Theorem we get a point ] [ ],[, 21 baxxc ⊆∈  such that .0)( =′ cf  

This contradicts our assumption that ].,[0)( baxxf ∈∀≠′  Hence, either 

0)( <′ xf  for all ],[ bax ∈  or 0)( >′ xf  for all ].,[ bax ∈  

 
Example 3: Let R→]5,2[:f  be a function such that 
  









≤<

≤≤

<≤

=

54,7

43,0

32,3

)(

x

x

x

xf .  

 

Show that there is no a function ,]5,2[: R→g  differentiable on ]5,2[  such 

that )()( xfxg =′  for all ].5,2[∈x   

 
Solution: On the contrary, assume that there exists a function R→]5,2[:g

such that )()( xfxg =′  for all ].5,2[∈x We shall arrive at a contradiction.  

Note that g  is differentiable on ].5,2[  Also, note that 3)2( =′g  and .7)5( =′g  

So 4 lies between )2(g′  and ).5(g′   Hence by Darboux’s Theorem there 

exists some ] [5,2∈c  such that .4)()( ==′ cfcg  But f  never achieves 4, 

which is a contradiction. Hence there exists no function R→]5,2[:g  which is 

differentiable on ]5[,2  such that )()( xfxg =′  for all ].5,2[∈x  

*** 
Now, try the following exercises. 
 

 
E1)  Let R→],[: bag  be differentiable on ].,[ ba  Show that if ,0)( >′ bg  then 

}.)({min)( bxaxgbg ≤≤≠    

 
E2)   Prove that if a function R→− ]1,1[:f  is differentiable on ]1,1[−  and 

),1(0)1( ff ′>>−′  then there exists a number ] [1,1−∈c  such that 

.0)( =′ cf  

 
E3) Let R→]2,0[:f  be defined by  

  




<≤

<≤
=

21,1

10,0
)(

x

x
xf . 

 Show that there is no real valued function defined on ]2,0[  whose 

derivative is .f  

 

 
Thus far we have only seen two fundamental properties of derivatives. In the 
next section we shall use them to explore more properties of derivatives. 
 

12.3 ROLLE’S THEOREM 
 
In this section, we will study Rolle’s Theorem given by Michel Rolle (1652-
1719), a French mathematician. This theorem can be treated as the 
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section.  
 
Before we state the theorem, let us look at an example. Consider the graph of 
the function ]1,0[),sin()( ∈= xxxf π  shown in Fig. 4 below. 

 

 
 

Fig. 4: Graph of ]1,0[),sin()( ∈= xxxf π  

 
You know that f  is continuous and differentiable in the interval ]1,0[ . Also you 

know that )1(0)0( ff == . Now observe that there is a point c  in [1,0]  at 

which f  attains a maximum value. This point is 
2

1
=c . From the Interior 

Extremum Theorem, you know that 0)( =′ cf .  

  
This raises a general question: given a continuous and differentiable function
f defined on an interval ],[ ba , does there always exist an interior point c of 

],[ ba  such that 0)( =′ cf ?    

 
Michel Rolle was the first mathematician who found the answer of this 
question. It is stated in the following theorem, due to him. 
 
Theorem 3 (Rolle’s Theorem): Let R→],[: baf be a function such that 

 
i) f  is continuous on ],,[ ba  

ii) f  is differentiable on ] [,,ba  and 

iii) ).()( bfaf =  

 

Then there exists a real number ] [bac ,∈  such that .0)( =′ cf  

 
Proof: Since f  is continuous on the closed bounded interval ],,[ ba f  attains 

its extreme values. Let Mf =sup and .inf mf =  Then there are points 

],[, badc ∈ such that Mcf =)( and .)( mdf =  Only two possibilities arise 

now: either mM = or .mM ≠  
 
Case 1: When .mM = Then for some fixed real number k , 

],,[)( baxkxf ∈∀=  which implies ].,[0)( baxxf ∈∀=′  

 
Case 2: When mM ≠ . Then we proceed as follows:  
 

Since ),()( bfaf =  at least one of the numbers M  or ,m is different from 

),(af and hence different from )(bf . Suppose )(afM ≠ . Then it follows that 

 
 

Fig. 3: Michel Rolle 

We say that a real number 

p is a root of an equation 

0)( =xf   if 0)( =pf . 
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)()( afcf ≠ which implies that ac ≠  as f  is a function. Similarly )(bfM ≠

means )()( bfcf ≠ which implies .bc ≠  
 

Thus [.,] bac ∈  Now the lnterior Extremum Theorem implies that .0)( =′ cf  
 

Let us consider an example. 
 

Example 4: Check whether or not the following functions satisfy the conditions 
of Rolle’s Theorem.  
 

i) ].3,1[6116)( 23 ∈∀−+−= xxxxxf  

ii) ],,[,)()()( baxbxaxxf nm ∈∀−−=  where m  and n  are positive 

intergers. 

iii) ].1,0[,)( 32 ∈∀= xxxf  
 

If they do, verify the conclusion by finding a point c  in their domain where the 
derivative vanishes. 
  

Solution: i) We first note that the function 6116)( 23 −+−= xxxxf  is a 

polynomial function defined on ]3,1[ . Therefore, f is continuous on ]3,1[ and 

derivable in [.3,1]  Also .0)3()1( == ff  Thus, Conditions (i), (ii) and (iii) of 

Rolle’s Theorem are satisfied. Therefore, by Rolle’s Theorem, there is a real 
number [3,1]∈c  such that 0)( =′ cf . To find the possible values of ,c  let us 

compute ).(cf ′  We have .11123)( 2 +−=′ cccf  Thus 
 

.
3

1
2,

3

1
20)( −+=⇒=′ ccf  

 

Note that both the values of c  lie in [.3,1]  Hence the conclusion of the Rolle’s 

Theorem is verified. 
 

ii) Note that f  is continuous in ],[ ba and derivable in [,] ba  as f  is a 

polynomial. Also .0)()( == bfaf  So the hypothesis of Rolle’s Theorem 

is satisfied. Now 
 

  
11 )()()()()( −− −−+−−=′ nmnm bxaxnbxaxmxf    

  0)]()([)()(0)( 11 =−+−−−⇒=′∴ −− axnbxmbxaxxf nm   

          0)()( =−+−⇒ axnbxm   

          .0)()( =+−+⇒ mbnaxnm  
 

Let .
nm

mbna
c

+

+
=  Since m  and n  are positive integers, therefore, this point c  

lies in [.,] ba  Indeed, c  is a point which divides the closed interval ],[ ba  in the 

ratio .: nm   

 
iii) Since f  is not differentiable at fx ,0=  does not satisfy the conditions of 

the Rolle’s Theorem. 
*** 

Let us now look at how the Rolle’s Theorem can be understood geometrically. 
 
Geometrical Interpretation of Rolle’s Theorem  
 
Look at the following graph of a function R→],[: baf  satisfying the 
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                                                         conditions of Rolle’s Theorem. 

 

 
 

Fig. 5 
 

Between a   and ,b  there are some points, namely 21,cc  and ,
3

c  at which f  

attains extreme values. These are the points where f ′  vanishes. 

Geometrically, this means that the slope of the tangents at these points are 
zero, or equivalently, the tangents at these points are parallel to the x -axis. 
             
Intersetingly, Rolle’s Theorem can also be interpreted algebraically. 
 
Algebraic Interpretation of Rolle’sTheorem 
 
Let a function f  be continous on the closed interval ],,[ ba  and differentiable 

on the open interval ] [.,ba  Then between any two roots a  and b  of 

,0)( =xf  there exists at least one root c  of .0)( =′ xf   

 
We can prove this result by observing that when a  and b are roots of 

,0)( =xf  then 0)( =af  and 0)( =bf  and therefore, ).()( bfaf =  Then by 

Rolle’s Theorem there is a point c of [,] ba such that 0)( =′ cf , which means 

that c  is a root of .0)( =′ xf  

 
Let us look at some applications of Rolle’s Theorem. 

 
Example 5: Show that there is no real number λ  for which the equation 

0273 =λ+− xx has two distinct roots in ].2,0[  

 

Solution: Let .27)( 3 λ+−= xxxf  Suppose for some value of 0)(, =λ xf has 

two distinct roots α  and ,β  in ].2,0[  Without any loss of generality, suppose 

β<α . Then, ].2,0[],[ ⊆βα  Now f  is continuous on ],,[ βα  derivable in 

[,] βα and .0)()( =β=α ff  Therefore, by Rolle’s Theorem, there exists 

[,] βα∈c such that 0)( =′ cf . That is, .0273 2 =−c  This implies .3±=c  But 

neither 3 nor 3− lies in [,2,0]   that is, [.,]3,3 βα∈/−  Thus we arrive at a 

contradiction. Hence the result follows. 

*** 

Example 6: Show that if all the roots of a polynomial function P  of degree 

)2(≥n  are real, then all the roots of P′  are also real. 
 

Solution: Let P  be a polynomial of degree )2(≥n   with all roots real. You 

know that a polynomial of degree n  has n  roots. Thus P  has n  real roots, 

say 
n

ααα ,,,
21
K  sorted in ascending order. The algebraic interpretation of 
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Rolle’s Theorem tells us that between any two roots of ,P  there is a root of 

.P′  Therefore, for each },,3,2{ ni K∈  there is a root 
1−iβ  of P′  such that 

].,[
11 iii

ααβ −− ∈  Thus the roots 
121

,,, −n
βββ K  of P′  are real. Since P′ has 

degree ,1−n  P′ has no other roots. Consequently, all the roots of P′ are real. 

*** 

Now you try the following exercises. 
 

 
E4) Verify Rolle’s Theorem for the function f where 

 
  ].2,2[,sin)( ππ−∈= xxxf  

 
E5) Examine the validity of the hypothesis and the conclusion of Rolle’s 

Theorem for the functions f defined by 

 

i) 





−∈=

2
,

2
,cos)(

ππ
xxxf  

 ii) ].2,0[,)1(1)( 3

2

∈++= xxxf  

 

E6)  Show that the equation 09253 =+− xx does not have two distinct roots 

in the interval ].2,2[−  

 

E7)  Prove that between any two real roots of ,1sin =xe x there is at least one 

real root of .01cos =+xe
x

 
 

E8)  Prove that if R∈
n

aaa ,...,,
10  

be such that ,0
2

...
1

110 =++++
+

−
n

n a
a

n

a

n

a
 

then there exists at least one real number x  between 0 and 1 such that 

.0...1

10 =+++ −

n

nn axaxa
 

 

E9)  If a function f is such that its derivative, ,f ′
 is continuous on ],[ ba and 

derivable on [,,] ba then show that there exists a number [,] bac ∈  such 

that ).()(
2

1
)()()()( 2 cfabafabafbf ′′−+′−+=

  

  
 

If you have gone through the exercises above you must have understood how 
important Rolle’s Theorem is in applied problems. Next we shall see its 
generalisations. 
 

12.4 MEAN VALUE THEOREMS 
 
In this section, we shall discuss mean-value theorems given by the two 
famous French mathematicians A-L. Cauchy (1789-1857) with whom you are 
already familiar from the previous block, and Joseph-Louis Lagrange (1736-
1813).  
 

Let us consider a continuous function R→],[: baf  which has a slope at 

every interior point, except possibly at a  and .b  Look at the graph of the 
function, that is, the curve representing this function in Fig. 8 given below. 

 

Fig. 6: Augustin-

Louis Cauchy 
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Fig. 8: The tangent at c has the slope .
)()(

ab

afbf

−

−
 

 

Then ))(,( afa  and ))(,( bfb  are two points on the curve. The line passing 

through them is a secant line of the curve, which has slope .
)()(

ab

afbf

−

−
 The 

question that concerned Lagrange and his contemporaries is: Does there 
exists a tangent at some point c  to this curve that is parallel to this secant 
line? Lagrange’s Mean Value Theorem provides the answer. 
 

Theorem 4 (Lagrange’s Mean Value Theorem): If a function R→],[: baf  
is continuous on ],[ ba and derivable on [,,] ba then there exists a point 

[,] bac ∈ such that .
)()(

)(
ab

afbf
cf

−

−
=′  

 

Proof: Consider a function ,],[: R→baf  which is continuous on ],[ ba and 

derivable on [,] ba . Define a function R→],[: baφ  such that 

Axxfx += )()(φ  for all ],,[ bax ∈ where A is a constant to be chosen such 

that ).()( ba φφ =  Now  
 

⇒= )()( ba φφ ⇒+=+ AbbfAaaf )()( .
)()(

ab

afbf
A

−

−
−=  

 

Then, the function ,φ  being the sum of two continuous and derivable functions 

satisfies the conditions of the Rolle’s Theorem. That is, φ  is continuous on 

],,[ ba  derivable on ] [,,ba  and, of course, ).()( ba φφ =  

 
Therefore by Rolle’s Theorem there is a real number [,] bac ∈ such that 

.0)( =φ′ c  But .)()( Axfx +′=′φ  So, we have .
)()(

)(
ab

afbf
Acf

−

−
=−=′  

 

Langrange’s Mean Value Theorem is often stated in the following form: 
 

Let R→+ ],[: haaf be a function which is continuous on ],[ haa +  and 

derivable on [,,] haa +  where .0>h  Then there exists a real number θ  in 

] [1,0  such that  ).()()( hafhafhaf θ+′+=+  
 

Lagrange’s Mean-Value Theorem has many important implications. Let us first 
look at the following corollary. 
 

Corollary 3: If a function f is continuous on ],,[ ba derivable on [,] ba and 

0)( =′ xf  for all [,,] bax∈  then ],,[)( baxkxf ∈∀=  where k is some fixed 

 real number, i.e., f  is a constant function. 

 

Fig. 7: Joseph-Louis 
Lagrange 
 

We shall write MVT in short 
for Mean Value Theorem. 
The terminology Mean 
Value Theorem stems from 
the fact that all these 
theorems relate the mean 
value of the derivative over 

an interval ],[ ba  to the 

actual derivative at an 

interior point of ].,[ ba  
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Proof: Let λ  be any point of ],[ ba . Then ].,[],[ baa ⊆λ  Now f  is continuous 

on ],[ λa  and is derivable on [.,] λa  

 
Therefore, by Lagrange’s Mean Value Theorem, there exists some [,] λac∈

such that .
)()(

)(
a

aff
cf

−

−
=′

λ

λ
 Now  

 
 [,]0)( baxxf ∈∀=′ )()(0)( affcf =⇒=′⇒ λ  

 
But λ  is an arbitrary point of ],[ ba .Therefore kafxf == )()( (say) 

].,[ bax∈∀ Thus, f  is a constant function. 

 
Yet another application is given below. 
 
Assume that an object moves through some geographical area from time 

1t  to time 2t , and )(tf  is its position at time t .  Then at some point of 

time between 1t  and 2t , the object must have moved at its average speed 

.
)()(

12

12

tt

tftf

−

−
 

 
The following examples show that the conditions of Lagrange’s Mean Value 
Theorem cannot be weakened. That is, if we restrict the continiuity to a proper 

subset of ],,[ ba  or differentiablitiy to a proper subset of [,,] ba  the conclusion 

may no longer hold. 
 
Example 7: Let a function f  be defined on ]2,1[ as follows:  

 

 








=

<<

=

=

2,2

21,

1,1

)(
2

x

xx

x

xf

if

if

if

 

 
Show that f  does not satisfy the conditions of Lagrange’s MVT. Does the 

conclusion of the theorem hold in this case? 
 
Solution: Note that f  is continuous on the semi-open interval [2,1[ and 

derivable on the open interval [.2,1] However, f  is discontinuous at 2=x , 

because ).2(4)(lim
2

fxf
x

≠=
→

 So the first condition of Lagrange’s Mean Value 

Theorem is violated. Note that the conclusion is also not true, as 

)(
12

)1()2(
cf

ff
′≠

−

−
 for any ] [.2,1∈c  (Indeed, xxf 2)(' =  for all ] [.2,1∈x  

So, ccf 2)(' = , whereas .1
12

)1()2(
=

−

− ff
)    

*** 

Example 8:  Let ].2,1[)( −∈∀= xxxf  Does f  satisfy all the conditions of 

Lagranges’s MVT? Does the conclusion of the theorem hold? Justify your 
answer. 
 
Solution: Here f  is continuous on ]2,1[− and derivable at all points of ]2,1[−

except at .0=x  So, the second condition of Lagrange’s Mean Value Theorem 
is violated.  
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We can write 




<≤−−

≤≤
=

01

20
)(

xx

xx
xf

if

if
  

 

So, 




<<−−

<<
=′

011

201
)(

x

x
xf

if

if
 

 

Also .
3

1

12

12

)1(2

)1()2(
=

+

−
=

−−

−− ff
 

 

Thus )(
)1(2

)1()2(
xf

ff
′≠

−−

−−
for any x in [.2,1] −  Hence, the conclusion of the 

theorem does not hold. 
*** 

Remark 3: Note that the conditions of Lagrange’s Mean Value Theorem are 
only sufficient. They are not necessary. This is evident from the following 
function.  
 















≤≤+

<≤

<≤

=

2
2

1
1

2

2

1

4

1

4

1
00

)(

x
x

xx

x

xf

if

if

if

 

 

You can see that 
8

3
 lies in ] [2,0  and .

02

)0()2(
1

8

3

−

−
==








′

ff
f  

 
However, f  is neither continuous on ],2,0[  nor differentiable on [.2,0]  

 
Example 9: Verify the hypothesis of Lagrange’s Mean Value Theorem for the 
following functions. Hence, for each of the functions find a point c that satisfies 
the conclusion of the theorem. 
 

i) ]4,1[,
1

)( ∈= x
x

xf  

ii) 





+∈=

e
xxxf

1
1,1,ln)(  

Solution: i) Here ].4,1[,
1

)( ∈= x
x

xf  You know that f  is continuous in ]4,1[

and derivable in [.4,1]  So, f  satisfies the hypothesis of Lagrange’s M.V.T, 

and, hence there exists a point [4,1]∈c  satisfying .
14

)1()4(
)(

−

−
=′

ff
cf

 
Putting 

the values of f  and ,f ′
 you get 

 

.2
3

1
4

1

1
2

±=⇒

−








=− c
c

 

 

We can choose 2=c  as it belongs to ] [.4,1  
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ii)  Here ,ln)( xxf = where ].1,1[ 1−+∈ ex  You know that f  is continuous in 

]1,1[ 1−+ e and derivable in [.1,1] 1−+ e  Therefore, the hypotheses of 

Lagrange’s Mean Value Theorem are satisfied by .f  So, there exists a 

point [1,1] 1−+∈ ec such that 

 

 .
1)1(

)1()1(
)(

1

1

−+

−+
=′

−

−

e

fef
cf  

 
Putting the values of f and ,f ′ you get  

 

 
)1(ln

11ln)1(ln1
11

1

−−

−

+
=⇒

−+
=

ee
c

e

e

c
 

 

Now use the inequality  
 

xx
x

x
<+<

+
)1(ln

1
 for all 0>x   (See Example 17.) 

 

to show that [.1,1] 1−+∈ ec  (Indeed, put ex = in the inequality above, and 

simplify.) 
*** 

Example 10: Given any real numbers ,ba <  show that there exists a real 

number c  between a  and b such that  

 

).(
3

1 222 babac ++=  

 

Solution: Consider the function ,f defined by 3)( xxf =  for all ].,[ bax ∈  

 
Note that f satisfies the hypothesis of Lagrange’s Mean Value Theorem. 

Hence, there exists [,] bac ∈ such that  

 

ab

ab
c

ab

afbf
cf

−

−
=⇒

−

−
=′

33
23

)()(
)( )(

3

1 222 babac ++=⇒  

*** 
Now it is time for you to apply the results learnt to some exercises. 
 

 
E10) Check whether or not the Lagrange’s Mean Value Theorem is 

applicable for the following functions. If yes, find a suitable point ‘c ’ in 
the interior of their domain.  

 

i) xxf cos)( =  for all .
2

,0 





∈

π
x  

ii) 1)( ++= xxxf  for all ].2,2[−∈x  

 
E11) Consider a function f  defined as )3()2()1()( −−−= xxxxxf  for all 

].3,0[∈x  How many points are there in ] [3,0  at which the slope of f  

is equal to the slope of the line passing through ))0(,0( f  and 

?))3(,3( f  
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                                                        E12) If the functions f  and g  are continuous in ],,[ ba  differentiable in 

] [ba,  and )()( xgxf ′=′  for all ] [,,bax ∈  then show that gf −  is 

constant. 
 

E13) Show that on the curve, ),0,,,(,2 ≠∈++= acbacbxaxy R  the secant 

line passing through the points whose abscissa are mx = and ,nx = is 

parallel to the tangent at the point whose abscissa is given by 
.2/)( nmx +=  

 
E14) Let a function f be defined and continuous on ],,[ haha +−  and 

derivable on [,,] haha +−  where R∈a  and .0>h  Prove that there 

exists a real number )10( <θ<θ for which 

)].()([)(2)()( hafhafhafhafhaf θ−′−θ+′=−−++  

 

 
Now let us discuss Cauchy’s Mean Value Theorem which is a generalised 
form of Lagrange’s Mean Value Theorem by using two functions.  
 
Theorem 5 (Cauchy’s Mean Value Theorem): Let f  and g  be two 

functions defined on ],[ ba such that 

  
i) f and g are continuous on ],,[ ba  

ii) f and g are derivable on [,,] ba and  

iii) [.,]0)( baxxg ∈∀≠′  

Then there exists a number [,] bac ∈ such that .
)()(

)()(

)(

)(

agbg

afbf

cg

cf

−

−
=

′

′
 

Proof: Let us define a function φ  by 

 
  φ )()()( xgAxfx +=  for all ],,[ bax ∈   

 

where A  is a constant to be chosen such that φ =)(a φ ).(b  If ),()( ba φφ =  

then )()()()( bgAbfagAaf +=+  which gives  .
)()(

)()(

agbg

afbf
A

−

−
−=  

 
Note that 0)()( ≠− agbg . (Because, if )()( agbg =  then g satisfies the 

conditions of Rolle’s Theorem. Consequently, 0)(' =cg  for some [.,] bac ∈  

This contradicts the hypothesis (iii). )  Observe that  
i) φ  is continuous on ],,[ ba  

ii) φ  is derivable on [,,] ba  

iii) ).()( ba φφ =  

 
This means, φ satisfies the conditions of Rolle’s Theorem, and hence there is 

a point [,] bac ∈ such that .0)( =′ cφ  This implies 0)()( =′+′ cgAcf  

 

i.e. .
)()(

)()(

)(

)(

agbg

afbf
A

cg

cf

−

−
=−=

′

′
 

 
If in the statement of the theorem above, b  is replaced by ,ha + then the 

number [,] bac ∈  can be written as ,ha θ+  where .10 <θ<  So, Cauchy’s 

MVT can be restated as follows: 
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Alternative statement of Cauchy’s Mean Value Theorem  
 
Let f and g be defined and continuous on ],,[ haa + derivable on [,] haa +

and [.,]0)( haaxxg +∈∀≠′
 Then there exists a real number ] [1,0∈θ  such 

that   

.
)()(

)()(

)(

)(

aghag

afhaf

hag

haf

−+

−+
=

+′

+′

θ

θ
 

 
Lagrange’s Mean Value Theorem can be deduced from Cauchy’s Mean Value 

Theorem by taking the function g as xxg =)( .  

 
Now let us look at some applications of Cauchy’s Mean Value Theorem.  
 
Example 11: Verify Cauchy’s Mean Value Theorem for the functions f and g

defined as ]4,2[)(,)( 42 ∈∀== xxxgxxf . 

 
Solution: The functions f and ,g  being polynomial functions, are continuous 

in ]4,2[  and derivable in [.4,2]  Also [.4,2]04)( 3 ∈∀≠=′ xxxg  So, all the 

conditions of Cauchy’s Mean Value Theorem are satisfied. Therefore, there 
exists a point [4,2]∈c such that 

  

10
4

2

240

12

)(

)(

)2()4(

)2()4(
3

±=⇒=⇒
′

′
=

−

−
c

c

c

cg

cf

gg

ff
 

 

We see that 10=c lies in [.4,2]  So Cauchy’s Mean Value Theorem is 

verified. 
*** 

Example 12: Let .
2

,0, 





∈

π
βα  Show that ,cot

coscos

sinsin
θ

αβ

βα
=

−

−
 for some θ  

such that .βθα <<  

Solution: Let xxf sin)( = and ,cos)( xxg =  where .
2

,0],[ 




 π
⊂βα∈x  

Now xxf cos)( =′ and .sin)( xxg −=′
 Functions f  and g  are both 

continuous on ],,[ βα derivable on [,,] βα and [.,]0)( βα∈∀≠′ xxg  Therefore, 

by Cauchy’s Mean Value Theorem, there exists some [,] βα∈θ such that  

 

.cot
coscos

sinsin

sin

cos

coscos

sinsin
θ

αβ

βα

θ

θ

αβ

αβ
=

−

−
⇒

−
=

−

−
 

*** 

The next theorem generalises both Lagrange’s and Cauchy’s Mean Value 
Theorems. In this theorem, three functions hgf ,,  are involved. 
 

Theorem 6 (Generalised Mean Value Theorem): If the functions gf ,  and h

are continuous in ],,[ ba  and derivable in [,,] ba  then there exists a real 

number [,] bac ∈  such that  
 

.0

)()()(

)()()(

)()()(

=

′′′

bhbgbf

ahagaf

chcgcf
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                                                        Proof: Define the function φ R→],[: ba  by 

 

φ .

)()()(

)()()(

)()()(

)(

bhbgbf

ahagaf

xhxgxf

x =  

 

Observe that φ  is a linear combination of the fuctions gf , and h  with 

constanct coefficients. Since each of the functions gf , and h is continuous on 

],[ ba and derivable on [,,] ba therefore φ is also continuous on ],[ ba and 

derivable on [.,] ba  Now 

 

φ === 0

)()()(

)()()(

)()()(

)(

bhbgbf

ahagaf

ahagaf

a φ ).(b  

 
Therefore, φ  satisfies all the conditions of Rolle’s Theorem. So there exists 

[,] bac ∈ such that ,0)( =′ cφ  i.e.,  

 

.0

)()()(

)()()(

)()()(

)( =

′′′

=φ′

bhbgbf

ahagaf

chcgcf

c  

 
Now you may try the following exercises. 
  

 
E15) Verify the Cauchy’s Mean Value Theorem for the functions, 

xxgxxf cos)(,sin)( == in the interval .0,
2 





−

π
 

E16) Check whether or not the functions f and g  be defined on ],[ ba  by  

 xexf =)( and xexg −=)(  satisfy the conditions of Cauchy’s Mean 

Value Theorem.  

E17) Let xxf =)( and ],[
1

)( bax
x

xg ∈∀= given that .0>a  Verify] 

Cauchy’s Mean Value Theorem and show that the point c  obtained 
thus, is the geometric mean of a  and .b  

E18) Let a function f  be continuous on ],,[ ba  and differentiable on ] [,,ba  

where .0>a  Show that there exists some ] [bac ,∈  such that 

).()(
)()(

cfccf
ab

bfaafb
′−=

−

−
 

E19) Derive Cauchy’s M.V.T. and Lagrange’s M.V.T. from the Generalised 
M.V.T. 

 

 

We hope by now you must have learnt how to apply mean value theorems in 
specific problems. Next we shall see some applications of mean value 
theorems in establishing monotonicily of functions, and of inequalities involving 
monotone  functions. 
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12.5 INCREASING AND DECREASING 
FUNCTIONS 

 

In the course Calculus (BMTC-131) you have studied monotone functions, i.e, 
increasing or decreasing functions, and certain criteria for showing whether a 
given function is increasing or decreasing. We shall study and discuss these 
concepts again as they are central to real analysis, and use them to prove 
certain inequalities. 
 

Let us recall the following definitions. 
 

Definition: A function RR→:f  said to be increasing if for all

yxyx <∈ ,, R  implies ).()( yfxf ≤  In case yx <  implies the strict inequality 

)()( yfxf <  we call f  strictly increasing. 

  

Definition: A function RR→:f  is said to be decreasing if for all 

yxyx <∈ ,, R  implies ).()( yfxf ≥  In case, yx <  implies the strict inequality 

)()( yfxf >  we call f  strictly decreasing. 
 

It is easy to see that if f  is an increasing function that is differentiable at 

every point of an interval, say ] [,,ba  then ] [.,0)( baxxf ∈∀≥′  And, if f  is 

strictly increasing on ],,[ ba  besides being differentiable on ] [,,ba  then 

] [.,0)( baxxf ∈∀>′  Thus the differentiable functions that are increasing (or 

strictly increasing) have the property that their graphs have always 
nonnegative (or positive) slopes. Below we have plotted one such function. 
 
 

 
 

Fig. 9: A graph of an increasing function. 
 

Now consider the following result. 
 

Theorem 7: If a function R→],[: baf  is continuous on ],,[ ba  derivable in 

] [ba,  and 0)( >′ xf  for all [,,] bax ∈
 
then f

 
is strictly increasing on ].,[ ba  

 

Proof: Let 1x  and 2x  be any two points of ],[ ba  such that .21 xx < Then f  is 

continuous in ],[ 21 xx  and derivable in [.,] 21 xx  So by Lagrange’s Mean Value 

Theorem,  
  

 

,0)(
)()(

12

12 >′=
−

−
cf

xx

xfxf
 

 

for some point  �  such that 21 xcx << . 
 

This implies that ,0)()( 12 >− xfxf  i.e., ).()( 12 xfxf >  Therefore, f  is strictly 

increasing on ].,[ ba   

Observe that in 
Theorem 6 if we 

replace 0)( >′ xf  by 

,0)( ≥′ xf  then from 

the conclusion the 
word ‘strictly’ can be 

A function that is either 
increasing or decreasing 
on its domain is called a 
monotone function.   
 
A function that is strictly 
increasing or strictly 
decreasing on its 
domain is called a 
strictly monotone 
function. 
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                                                        Now consider the following examples. 

 
Example 13: Show that the function RR→:f  defined by 

533)( 23 −+−= xxxxf  is increasing on .R  

 

Solution: We have .533)( 23 −+−= xxxxf  Note that f  is continuous, and 

differentiable on .R  Now, 
 

 0)1(3363)( 22 ≥−=+−=′ xxxxf  for all .R∈x  

 

Therefore, f  is increasing on .R  

*** 

Example 14: Find the intervals in which the function f  defined on R  by 

536152)( 23 ++−= xxxxf  is increasing or decreasing. 

 

Solution: Here .536152)( 23 ++−= xxxxf  Since f  is a polynomial, f  is 

differentiable, and 
 

 )3()2(636306)( 2 −−=+−=′ xxxxxf . 
 

So ,0)( >′ xf  whenever 3>x  or .2<x  Thus f  is increasing in the intervals 

] [2,∞−  and ] [.,3 ∞  

On the other hand, ,0)( <′ xf  for .32 ≤≤ x  Therefore f  is decreasing in 

].3,2[  

*** 

Now with the help of increasing and decreasing functions we shall prove some 
inequalities involving real valued functions. 
 

Example 15: Prove that xx <sin  for .
2

0
π

≤< x  

Solution: Let ,sin)( xxxf −=  where .
2

0
π

≤≤ x
 
Note that f  is continuous in  








2
,0
π

 and derivable in .
2

,0 




 π

 

Also 0cos1)( >−=′ xxf  for .
2

0
π

<< x  

Therefore, by Theorem 6, f  is strictly increasing in .
2

,0 




 π
 So, for all 

,
2

0
π

≤< x  we get  

xxxff sin0)()0( −<⇒<  .sin xx <⇒  

*** 

Example 16: Prove that ,tan xx >  whenever .
2

0
π

<< x  

Solution: Let c  be any real number such that .
2

0
π

<< c  Consider the 

function, f  defined by ].,0[tan)( cxxxxf ∈∀−=  

 
You know that f  is continuous as well as derivable on ].,0[ c  
 

Also, ] [.,00tan1sec)( 22 cxxxxf ∈∀>=−=′  Therefore, f  is strictly 

increasing in ].,0[ c  
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Consequently, cccfcff >⇒<⇒< tan)(0)()0(  

Since c  arbitrary, the inequality follows. 

*** 

Example 17: Show that 
x

x
xx

+
>+>

1
)1(ln  for all .0>x  

 

Solution: Let us prove the first inequality first. So, let ),1(ln)( xxxf +−=  for 

.0≥x  

Therefore .
11

1
1)(

x

x

x
xf

+
=

+
−=′  

 

Thus we have 0)( >′ xf  for all .0>x  Therefore f  is strictly increasing in 

[.,0[ ∞  

 
Now ).1(ln)0()(0 xxfxfx +>⇒>⇒>  

 
To prove the second inquality, let  
 

 ,
1

)1(ln)(
x

x
xxg

+
−+=  for .0≥x  

 
Then g  is differentiabe, and 

 .
)1(

1

)1(

1

1

1
)(

22
xxx

xg
+

=
+

−
+

=′  

 
So, ,00)( >∀>′ xxg  and hence g  is strictly increasing on [.,0[ ∞  

 

Now .
1

)1(ln)0()(0
x

x
xgxgx

+
>+⇒>⇒>  

***  
Now try the following exercises. 
 

 
E20) Find the intervals in which the function, ,f  defined on R  by 

,,496)( 23
R∈∀++−= xxxxxf  is increasing or decreasing. 

 

E21) Let R→],[: baf  be continuous on ],,[ ba  derivable on ] [,,ba  and 

0)( <′ xf  for all ] [.,bax ∈  Show that f  is strictly decreasing on ].,[ ba  

 
E22) Show that the function ,f  defined on R  by 

,,6129)( 32
R∈∀−+−= xxxxxf  is decreasing in every interval. 

 
E23)  Let R→],[: baf  be derivable in the interior of ],[ ba  such that 

0)( >′ xf  for all interior points x  of ].,[ ba  What can you conclude 

about the monotonicity of f  on ?,],[ ba  on ] [ ?,ba  Justify. 

 
E24) Prove that 

  i) xxx 13 tan −<−  if 0>x  

  ii) xe
x −>− 1  if .0>x  

 



 

84

 

Block 4                                                        Continuity and Differentiability of Functions
                                                        We end our discussion on increasing and decreasing functions here. You can 

go through the Block 4 of our course BMTC-131 to learn more about them. Let 
us now summarise what we have covered in this unit. 
 

12.6  SUMMARY  
 
In this unit, we have covered the following points: 
 
1) If a differentiable function attains an extreme value at an interior point, 

then its derivative vanishes at the point. 

2) Derivatives possess Intermediate Value Property. 

3) We have discussed Rolle’s Theorem, and its geometrical and algebraic 
interpretations, and some applications. 

4) We have discussed Langrange’s M.V.T., Cauchy’s M.V.T., and the 
Generalised M.V.T.; and their applications. 

5) We have seen how to use the sign of derivative in deducing the 
monotonicity of functions. 

6) Finally, we have discussed how to prove some inequalities involving real-
valued functions. 

 

12.7  SOLUTIONS/ANSWERS   
 
E1)  We are given that g  is a differentiable function on ].,[ ba  Since 

,0)( >′ bg  let us take .
2

)(bg ′
=ε  Now, by the definition of derivative, 

there exists some ab −<< δ0  such that for all ] [bbx ,δ−∈  

   

  0
)()(

)(
)()(

>
−

−
⇒<′−

−

−

bx

bgxg
bg

bx

bgxg
ε  

                    0)()( <−⇒ bgxg  

                    )()( bgxg <⇒  

  
 This proves that }.|)({min)( bxaxgbg ≤≤≠  

 
E2) It follows directly from Darboux’s Theorem. 

 
E3) On the contrany assume that R→]2,0[:g  is a function such that 

].2,0[)()( ∈∀=′ xxfxg  Now consider the number 
2

1
 which lies 

between )0(g ′  and ).2(g ′  Since g  is differentiable in ],2,0[  by 

Darboux’s Theorem there exists some ] [2,0∈c  such that 

).(
2

1
)( cfcg ==′  But, by the definition of ,f  there is no such .c  Hence 

there exists no real valued function on ]2,0[  whose derivative is .f  

 
E4) We note that the function sine is continuous and differentiable on .R  

Therefore, f  is continuous as well as differentiable on ] [.2,2 ππ−  Also 

).2(0)2( ππ ff ==−  Thus f  satisfies the conditions of Rolle’s 

Theorem. Hence, there exists a point ] [ππ 2,2−∈c  such that .0)( =′ cf  
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 To find ,c  we solve the equation .0)( =′ cf  So 

 
  0cos0)( =⇒=′ ccf  

                 Z∈






 +
=⇒ n

n
c ,

2

12
π  

                 
2

3
,

2
,

2

3 πππ−
=⇒ c        ] [( )ππ 2,2−∈cQ  

 

E5) i) We have .
2

,
2

,cos)( 







−∈=

ππ
xxxf  So, f  is continuous in 









−

2
,

2

ππ
 and differentiable in .

2
,

2

ππ
−  Further, .

2
0

2








==








−

ππ
ff  

Thus, the conditions of Rolle’s Theorem are satisfied. Therefore, 

these exists a number 







−∈

2
,

2

ππ
c  such that ,0)( =′ cf  i.e., 

.0sin =− c  This implies .0=c  
 

ii) Here ].2,0[,)1(1)( 3

2

∈++= xxxf  Clearly f  is continuous on ]2,0[  

and differentiable on ] [.2,0  But we can see that ,2)0( =f  and 

.231)2( 3

2

≠+=f  Hence f  does not satisfy the hypotheses of 

Rolle’s Theorem. Now let us examine whether f  satisfies the 

conclusion of Rolle’s Theorem or not. We can compute 

.

)1(3

2
)(

3

1

+

=′

x

xf  Since .0)(,0 >′≥ xfx  Thus, there is no point 

] [2,0∈c  such that .0)( =′ cf  That is, the conclusion of Rolle’s 

Theorem does not hold. 
 

E6) Let us define 925)( 3 +−= xxxf  for all ].2,2[−∈x  If possible, let 

βα <  be two roots of the equation 09253 =+− xx  in ].2,2[−  Then 

.0)()( == βα ff  Since f  is continuous and differentiable on ],[ βα , f  

satisfies the hypotheses of Rolle’s Theorem. Hence there exist some 

] [βα ,∈c  such that 

  .
3

5
02530)( 2 ±=⇒=−⇒=′ cccf  

 But none of these values of c  lies in ] [.2,2−  

  

Since ] [ ] [,2,2, −⊆βα  none of the values of c  lies in ] [., βα  This is a 

contradiction. Hence the given equation does not have two distinict roots 
in ].2,2[−  

 

E7) Let a  and b  be any two roots of the equation .1sin =xe x  We know that 

.0sinsin1sin =−⇔=⇔= −− xxx exexxe   

  

 So, let .,sin)( R∈∀−= − xexxf x Then .0)()( == bfaf  Since f  is 

differentiable, f  is continuous as well. So f  satisfies the conditions of 

Rolle’s Theorem. Therefore, there exists some ] [bac ,∈  such that 
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  0cos0)( =+⇒=′ −ceccf  

             01cos =+⇒ cec  
  

 Thus, c  is a root of the equation .01cos =+xe x  This is what we wanted 

to prove. 
 
E8) The idea is to define a function f  such that its derivative is

.)( 1

10 n

nn axaxaxf +++=′ −
L   

  
 So, let us define R→]1,0[:f  by 

 

  .
11

)( 1

1

0 xa

n

xa

n

xa
xf n

nn

+++
+

=
+

L  

  
 Then ,0)0( =f  and 

 

  .0
21

)1( 110 =++++
+

= −
n

n a
a

n

a

n

a
f L  

  
 Since f  is a polynomial, f  is continuous and differentiable on ].1,0[  

Hence f  satisfies the hypothetis of Rolle’s Theorem. Therefore, there 

exists some ] [1,0∈x  such that  

 

  .00)( 1

10 =+++⇒=′ −

n

nn axaxaxf L  

 
E9) Let us define a function R→],[: baφ  by 
 

  ],,[,)()()()()()( 2 baxAxbxfxbxfbfx ∈∀−−′−−−=φ  
  

 where A  is chosen in such a way that ).()( ba φφ =  

  
 Since f  is differentiable, and f ′  is continuous on ],,[ ba  the function φ  

is continuous on ],[ ba  and differentiable on ] [.,ba  Also 0)()( == ba φφ  

by the choice of .A  Thus φ  satisfies the hypothesis of Rolle’s Theorem.  
 

 Hence, there exists a point ] [bac ,∈  such that 
 

  0)(2)()()()(0)( =−+′′−−′+′−⇒=′ Acbcfcbcfcfcφ  

                ).(
2

1
cfA ′′=⇒  

 Substituting ax =  and )(
2

1
cfA ′′=  in the definition of ),(xφ  we get the 

desired result. 
 

E10) i) We have .
2

,0,cos)( 







∈∀=

π
xxxf  We can see that f  is continuous 

on 








2
,0
π

 and differentiable on .
2

,0 






 π
 Thus f  satisfies the 

hypotheses of Lagrange’s M.V.T. Therefore, there exists a point 









∈

2
,0
π

c  such that 
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2

10
sin

0
2

)0(
2

)(
ππ

π

−
=−⇒

−

−








=′ c

ff

cf  

                                







=⇒ −

π

2
sin

1
c  

  Since we know that 1
2

0 <<
π

, we get .
2

,0
2

sin
1









∈






− π

π
 

 ii) Here ].2,2[|,1|)( −∈∀++= xxxxf  

   
  We know that f  is continuous as it is the sum of two continuous 

functions. However, f  is not differentiable at .1−=x  This is evident 

from the following arguments 
 

   
1

1|1|
lim

)1(

)1()(
lim

11 +

+++
=

−−

−−

−→−→ x

xx

x

fxf

xx
 

                               








+

+
+=

−→ 1

|1|
1lim

1 x

x

x
 

                               
1

|1|
lim1

1 +

+
+=

−→ x

x

x
 

                               
y

y

y

||
lim1

0→
+=          [Taking yx =+1 ] 

  Since 
y

y

y

||
lim

0→
 does not exists, f  is not differentiable at .1−=x  

Thus f  does not satisfy hypotheses of Lagrange’s M.V.T., and 

hence Lagrange’s M.V.T. is not applicable. 
 
E11) We are given the function 
 

   ].3,0[),3()2()1()( ∈∀−−−= xxxxxf  

  
 Since f  is a polynomial, f  is continuous on ],3,0[  and differentiable on

] [.3,0  Thus, f  satisfies the hypothesis of Lagrange’s M.V.T. Therefore, 

there exists some ] [3,0∈c  such that 

 

  211123
03

)0()3(
)( 2 =+−⇒

−

−
=′ cc

ff
cf  

                               0)3()1( =−−⇒ cc  

                               3,1=⇒ c  

  

 Since [,3,0]3∉  there is only one point, namely, [3,0]1∈=c  at which 

the slope of the tangent on the graph of f  is equal to the slope of the 

line passing through ))0(,0( f  and )).3(,3( f  

 
E12) Let ],[ ba∈λ  be arbitrary. Define R→],[: λah  by  
 

  ].,[),()()( λaxxgxfxh ∈∀−=  
  

 Since both f  and g  are continuous on ha ],,[ λ  is also continuous on 



 

88

 

Block 4                                                        Continuity and Differentiability of Functions
                                                        

  ].,[ λa  Since both f  and g  are differentiable on ] [ ha ,,λ  is also 

differentiable on ] [.,λa  Thus h  satisfies the hypothesis of Lagrange’s 

Mean Value Theorem. Therefore, there exists some ] [λ,ac ∈  such that 

 

  .
)()(

)(
a

ahh
ch

−

−
=′

λ

λ
 

   

 But .0)()()( =′−′=′ cgcfch  This implies ).()( ahh =λ  Since λ  is 

arbitrary, )()( ahxh =  for all ].,[ bax ∈  Consequently h  is a constant, i.e. 

gf −  is a constant. 
 

E13) Assume, without loss of generality, that .nm <  Note that the given curve 

represents the function cbxaxxf ++= 2)(  defined on ].,[ nm  Since f  

is a polynomial, f  is continuous on ],,[ nm  and derivable on ] [., nm  

Thus f  satisfies the hypothesis of Lagrange’s Mean Value Theorem. 

Therefore, there exists some ] [nmx ,∈  such that 

 

  
mn

cbmamcbnan
bax

mn

mfnf
xf

−

++−++
=+⇒

−

−
=′

)()(
2

)()(
)(

22

 

                                bnmabax ++=+⇒ )(2  

                                   
2

nm
x

+
=⇒  

 Thus 
2

nm
x

+
=  is the abscissa of the point where the tangent to the 

curve has a slope equal to the slope of the secant line passing through 
the point with abscissa are mx =  and .nx =  

 
E14) Define R→]1,0[:g  by  

 
  ].1,0[),()()( ∈∀−++= xxhafxhafxg  

  
 Since )( xhaf +  and )( xhaf −  are continuous on ],1,0[  and 

differentiable on ] [,1,0  the function g  also is continuous on ]1,0[  and 

differentiable on ] [.1,0  Therefore, there is some ] [1,0∈θ  such that 

 

  .
01

)0()1(
)(

−

−
=′

gg
g θ  

  
 But ),(2)0(,)()()( afghhafhhafg =−′−+′=′ θθθ and 

 
  ).()()1( hafhafg −++=   

  
 Thus 
 

  [ ] ).(2)()()()( afhafhafhafhafh −−++=−′−+′ θθ  
 

E15) We know that both f  and g  are continuous in 







− 0,

2

π
 and 

differentiable in .0,
2 








−

π
 Also, 0sin)( ≠−′ xxg  for any .0,

2 







−∈

π
x  
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Thus f  and g  satisfy the condition of Cauchy’s Mean Value Theorem. 

Therefore, these exists some 







−∈ 0,

2

π
c  such that 

  ,

2
)0(

2
)0(

)(

)(









−−









−−

=
′

′

π

π

gg

ff

cg

cf
 

 i.e., 
 

  .
4

1tan
01

10

sin

cos π
−=⇒−=⇒

−

+
=

−
cc

c

c
 

  

 Since ,0,
2 








−∈

π
c  Cauchy’s Mean Value Theorem is verified. 

 
E16) We know that f  and g  are continuous on ,R  and hence on ].,[ ba  

Likewise, f  and g  are differentiable on ,R  and hence on ] [.,ba  

Further, .)( xexg −−=′  So, 0)( ≠′ xg  for any ] [.,bax ∈  Thus f  and g  

satisfiy the conditions of Cauchy’s Mean Value Theorem. Therefore, 

there exists some ] [bac ,∈  such that 
 

  .
)()(

)()(

)(

)(

agbg

afbf

cg

cf

−

−
=

′

′
 

  
 This implies 
 

  









−

−
=−⇒

−

−
=

− −−−

ab

ab
c

ab

ab

c

c

ee

ee
e

ee

ee

e

e

11

2
 

                          
ba

abba
c

ee

eeee
e

−

−⋅
=−⇒

)(2  

                          bac
ee

+=⇒ 2       )( ba ≠Q  

                          
2

ba
c

+
=⇒  

  

 Since ] [,,bac ∈  Cauchy’s Mean Value Theroem is verified. 
 

E17) We know that f  and g  are continuous on .+
R  Since 0>a ,

.],[ +⊆ Rba   So, f  and g  are continuous on ].,[ ba  Also, f  and g  

are differentiable on ,+
R  and therefore on ] [.,ba  Further, 

.
2

1
)(

23x
xg −=′  Thus 0)( ≠′ xg  for any ] [.,bax ∈  Thus f  and g  satisfy 

the conditions of Cauchy’s Mean Value Theorem. Therefore, there exists 

some ] [bac ,∈  such that 
 

  .
)()(

)()(

)(

)(

agbg

afbf

cg

cf

−

−
=

′

′
 

  

 This implies 
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  .
11

2

1

2

1

2

3

2

1









−

−
=

−
−

−

ab

ab

c

c

 

  

 Simplifying this equation, we get abc =  as desired. 

 
E18) Observe that 

  .
11

)()(

)()(

ba

b

bf

a

af

ab

bafabf

−

−

=
−

−
 

  

 Now, let ,
)(

)(
x

xf
xF =  and ,

1
)(

x
xG =  for all ].,[ bax ∈  Since f  is 

continuous on ],,[ ba  and 0>a  the function F  is also continuous on 

].,[ ba  Since f  is differentiable on ] [ Fba ,,  is differentiable on ] [.,ba  

Similarly, the function G  is also continuous on ],[ ba  and differentiable 

on ] [.,ba  Now .
1

)(
2x

xG −=′  So, 0)( ≠′ xG  for any ] [.,bax ∈  

  

 Thus F  and G  satisfy the conditions of Cauchy’s Mean Value 

Theorem. Therefore, there exists some ] [bac ,∈  such that 

  .
)()(

)()(

)()(

)(

)(

ab

bafabf

aGbG

aFbF

cG

cF

−

−
=

−

−
=

′

′
 

  

 We know that ,
)()(

)(
2c

cf

c

cf
cF −

′
=′  and .

1
)(

2c
cG −=′  Substituting 

these valued in the equation above, and simplifying we get 
   

  .
)()(

)()(
ab

bafabf
cfccf

−

−
=′−  

 
E19) Let us take 1)( =xh  in the statement of Generalised Mean Value 

Theorem. Then we have a point ] [bac ,∈  such that 

 

  .0

1)()(

1)()(

0)()(

=

′′

bgbf

agaf

cgcf

 

  This implies, 
 
  ,0)]()([)()]()([)( =−′−−′ bfafcgbgagcf  i.e., 

  ,
)()(

)()(

)(

)(

agbg

afbf

cg

cf

−

−
=

′

′
 

  
 which is the conclusion of Cuchy’s Mean Value Theorem. 
  
 Similarly, if you take ,1)( =xh  and xxg =)(  in the Generalised Mean 

Value Theorem, you will get Lgrange’s Mean Value Theorem. 
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E20) We have ,496)( 23 ++−= xxxxf  for .R∈x  Since f  is a polynomial 

function, f  is differentiabe. Now ).3()1(39123)( 2 −−=+−=′ xxxxxf  

For 1<x  or ,3>x  we find that .0)( >′ xf  This means f  is increasing in 

] [1,∞−  and ] [.,3 ∞  On the other hand, for 31 ≤≤ x  we get .0)( ≤′ xf  

This means f  is decreasing on ].3,1[  

 

E21) Let ],[, 21 baxx ∈  be such that .21 xx <  Then f  is continuous on 

],,[ 21 xx  and differentiable on ] [., 21 xx  Hence by Lagrange’s Mean Value 

Theorem, we get some point ] [21, xxc ∈  such that 

 

  ).()()()()(
)()(

1212

12

12 xxcfxfxfcf
xx

xfxf
−′=−⇒′=

−

−
 

  

 We are given that 0)( <′ xf  for all ] [.,bax ∈  This implies .0)( <′ cf  Now 

0)( 12 >− xx  implies that  

 

  ,0)()( 12 <− xfxf  i.e., ).()( 12 xfxf <  

  

 Since 21, xx  are arbitrary, we have proved that f  is strictly decreasing. 

 

E22) We are given that ,6129)( 32 xxxxf −+−=  for .R∈x  Clearly f  is 

differentiable and .)2(331212)( 22 −−=−+−=′ xxxxf  We can see that 

0)( ≤′ xf  for all .R∈x  Thus f  is decreasing in every interval of .R  

 
E23) The function f  need not be monotone on ].,[ ba  For instance, let 

R→]1,0[:f  be defined by 

  

  









=

,2

,

,1

)( 2xxf  

  

 Then f  is derivable on ] [,1,0  and .2)( xxf =′  So 0)( >′ xf  for all 

] [.1,0∈x  However, we can see that f  is neither increasing nor 

decreasing on ]1,0[ . Of course, f  is increasing on ] [.1,0  

  
 For the second part, the answer is f  is strictly increasing. The proof is 

same as the proof of Theorem 6. 
 

E24) i) Let us define ,tan)( 13 xxxxf −−−=  for all .0≥x  We know that f  is 

continuous and differentiable on [ [.,0 ∞  Also 

   .
1

23

1

1
31)(

2

24

2

2

x

xx

x
xxf

+

−−
=

+
−−=′  

   

  Thus 0)( <′ xf  for all 0>x  and .0)0( =′f  Therefore, f  is strictly 

decreasing on [.,0] ∞  

   

  So, 0>x  implies ),0()( fxf <  i.e., .tan 13
xxx

−<−  

if     0=x  

if     10 << x  

if     .1=x  
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 ii) Let ,1)( xexf x +−= −  for all .0≥x  We know that f  is continuous 

and differentiable on [ [.,0 ∞  Also, 1)(' +−= − xexf . So, for 0>x  we 

have 0)( <′ xf  and .0)0( =′f  Thus f  is strictly decreasing on 

[.,0] ∞  Therefore,  

 
   )0()(0 fxfx <⇒>  

           01 <+−⇒ −
xe

x  

           .1 xe
x −<⇒ −  
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UNIT 13 

HIGHER ORDER DERIVATIVESHIGHER ORDER DERIVATIVESHIGHER ORDER DERIVATIVESHIGHER ORDER DERIVATIVES            

Structure             Page No 

13.1 Introduction                93        
Objectives            

13.2 Derivatives of Higher Orders              94  

13.3 Extrema of a Function             107 

13.4 Summary              117 

13.5 Solutions/Answers             118 
 

13.1 INTRODUCTION 
 
In your Calculus course, you have come across various functions. In this 
course also you have examined many different types functions for continuity 
and differentiability such as, polynomial functions, trigonometric functions, step 
functions, exponential functions, and so on. You may have realised that 
polynomial functions are the easiest to handle. We can easily find the value of 
such a function at a point of its domain. Further, these functions are 
continouous and differentiable at all points of the domain. So, if we can find a 

polynomial function, which is approximately equal to a given function, ,f then 

we are in a better position to understand this .f Such an approximation by a 

polynomial function may also help us in finding approximate values of f at 

different points of its domain.  
 
In this unit we are going to see how a given functions can be approximated by 
a polynomial function. Taylor’s theorem will help us in this quest. But, before 
that we shall introduce the concept of higher order derivatives in Sec 13.2. We 
shall then discuss Taylor’s theorem and illustrate how we use it to obtain 
useful approximations and their values.   
 
Afterwards in Sec. 13.3 we state and prove some necessary and sufficient 
conditions for a function to have a local extremum at a point of its domain.  
 
Objectives 
 
After studying this unit you should be able to: 
 
•  find the nth derivative )1( ≥n of a function, whenever it exists; 

• state and prove Taylor’s theorem; 
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• Use Taylor’s theorem to find the approximate values of some functions; 

• Use Taylor’s theorem to find the series expansions of some functions; 

• find and classify the extreme points of a function, if they exists.  
 

13.2 DERIVATIVES OF HIGHER ORDERS 
 
In this section we shall discuss Higher order derivatives and Taylor’s theorem.  
 
Let us start with an example.  
 

Consider the function ,f defined on the interval ]8,1[ by .35)( 3 −+= xxxf  

This is a polynomial function, and you will agree that it is differentiable at all 

points in ]8,1[ . Recall, that at ],8,1[1∈ we will consider the right-hand limit of 

the difference quotient 
1

)1()(

−

−

x

fxf
while finding the derivative. Similarly, at 

],8,1[8∈ we shall consider the left-hand limit of the difference quotient 

.
8

)8()(

−

−

x

fxf
 At any point ],8,1[∈x the derivative of this function is ,53 2 +x we 

get the derived function of f as ,]8,1[: R→′f .53)( 2 +=′ xxf  Now, this is 

again a polynomial function, and so it is differentiable. The derivative, ,f ′′ of 

f ′ at a point ]8,1[∈x is given by x6 we have a new function, ,]8,1[: R→′′f  

.6)( xxf =′′ This is the derived function of .f ′  This xxf 6)( =′′ is called the 

second order derivative of f at x . Our new function f ′′ is again differentiable 

on ]8,1[ and its derived function, f ′′′ is given by 

.6)(,]8,1[: =′′′→′′′ xff R )(xf ′′′ is the third order derivative of f at x . This 

f ′′′ is a constant function, and its derivative, ].8,1[,0)()4( ∈∀= xxf  This is the 

fourth order derivative of f at .x  
 

Now, if we keep on differentiating further, we will get all successive 

derivatives, ),...(),(),( )7()6()5( xfxfxf of f at x equals zero. The derivative 
4,, fff ′′′′′ and so on are called higher order derivatives.  

 

The formal definition of the higher order derivatives as follows.  
 

Definition 1: If the derivatives f ′ of a function f exists on an interval 

I containing a point ,p then this derivative of f ′ is called second derivative 

and is denoted by )( pf ′′ or ).()2( pf  
 

In a similar way we define the third derivative, the fourth derivative and so on. 

The existence of the th)1( −n derivative is necessary to define thn  derivative. 

Then we have  
 

px

pfxf
pf

nn

px

n

−

−
=

−−

→

)()(
lim)(

)1()1(
)(

             ... (1)  

 

Let us find the higher order derivatives of some functions.  
 

Example 1: Find i) fourth order derivative of xexf 3)( = at .2=x  

ii) fifth order derivative of )14sin()( += xxf at .1=x  

 

Solution: i) f is an exponential function and is differentiable on .R  

We have introduced 
“derived function” in 
Unit 11. 
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xexf 33)( =′  
xexfxf 3)2( 9)()( ==′′  

xexfxf 3)3( 27)()( ==′′′  

,81)( 3)4( xexf = and .81)2( 6)4( ef =  

 

ii)  The sine function is also differentiable on .R  
 

)14cos(4)( +=′ xxf  

)14cos(4)( 2)2( += xxf  

)14cos(4)( 3)3( += xxf  

)14cos(4)( 4)4( += xxf  

),14cos(4)( 5)5( += xxf  

 and .5sin4)1( 5)5( =f  

*** 

The next example will test whether you have understood differentiability of 
functions. Study it carefully.  
 

Example 2: Find ),()3( xf if possible, when .)(,:
3

xxff =→RR  
 

Solution: Now
3

)( xxf = . 

 

So 






≥

<−
=

.0,

0),(
)(

3

3

xx

xx
xf  

 

Let us first consider ).,0( ∞∈x For all .)(),,0( 3xxfx =∞∈ Therefore, 

xxfxxf 6)(,3)( 2 =′′=′ and .6)()3( =xf  

 

Now for all .)(),0,( 3xxfx −=−∞∈ Therefore, ,6)(,3)( 2 xxfxxf −=′′−=′ and 

6)()3( −=xf . 
 

If ,0=x then )0(f ′ will exist, if 
h

fhf

h

)0()(
lim

0

−

→
exists.  

 

Now 
h

h

h

fhf

hh

0
lim

)0()(
lim

3

00

−
=

−
++ →→

 

   2

0
lim h
h +→

=  

   .0=  
 

And, 
h

h

h

fhf

hh

0
lim

)0()(
lim

3

00

−−
=

−
−− →→

 

   )(lim 2

0
h

h
−=

−→
 

   .0=  

This means, )0(f ′ exists, and is equal to zero.  
 

So, 









>

=

<−

=′

0,3

0,0

0,3

)(

2

2

xx

x

xx

xf  
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Again, for .6)(,0 xxfx −=′′<  

for xxfx 6)(,0 =′′>  

For ,0=x we need to find if 
h

fhf

h

)0()(
lim

0

′−′

→
exists.  

 

Proceeding as before, check that ,03lim
)0()(

lim
00

==
′−′

++ →→
h

h

fhf

hh
and 

.0)3(lim
)0()(

lim
00

=−=
′−′

−− →→
h

h

fhf

hh
 

 

Therefore we conclude that .0)0( =′′f  
 

So 









>

=

<−

=′′

0,6

0,0

0,6

)(

xx

x

xx

xf  

 

Moreover we can write .,6)( R∈=′′ xxxf  

*** 

Recall that in Example 1 of Unit 11 we have seen that the absolute value 

function is differentiable at all .0, ≠∈ xx R It is not differentiable at .0=x  

 

Using that result we can say, that ,
0,6

0,6
)3(





>

<−
=

x

x
f and )0()3(f does not 

exist.  
*** 

In the next example we consider some functions which you will see often in 
your study of Analysis.  
 

Example 3: Find the following derivatives:  
 

i) ),()5( xf when .)( 5xxf =  

ii) ),()( xg n when .,,)()( N∈+= nmbaxxg m  

iii) ),()( xh n when .),sin()( N∈+= nbaxxh  

iv) ),(xpn when .cos3sin)( xxxp =  
 

Solution: i) .)( 5xxf = Therefore, we get ,20)(,5)( 34 xxfxxf =′′=′  

.120)(,120)(,60)( )5()4(2 ===′′′ xfxxfxxf You can see that 

.50)()( >∀= nxf n  
 

ii)  mbaxxg )()( += . So,  

 1)()( −+=′ mbaxmaxg  

 22 )()1()( −+−=′′ mbaxammxg  

 33 )()2)(1()( −+−−=′′′ mbaxammmxg  
 

Now, proceeding in this manner, we can guess that  
 

,)())1().....(2)(1()()( nmnn baxanmmmmxg −+−−−−= when .nm ≥  

In particular, when ,.1)...2()1()(, )( mm ammmxgnm −−== as constant and 



 

97  

Unit 13                                                                 Higher Order Derivatives 

then 0)()( =xg n for .mn >  
 

Here, for ,nm ≥ we have guessed the form of ),()( xg n based on our 

knowledge of the first three derivatives of .g  But it has to be proved. This can 

be easily done with the help of induction.  
 

Suppose nmnn baxanmmmmxgnP −+−−−−= )())1()...(2)(1()(:)( )( . 
 

Then 1)()()1( −+=′= mbaxamxgP is true.  
 

Let us assume that )(kp is true, mk < . Therefore, 
kmkk baxakmmmmxg −+−−−−= )())1()...(2)(1()()(             ... (2)  

 

If we differentiate both sides of Eqn. (2), we get  
 

1)1( )().())1()...(2)(1()( −−+ +−−−−−= kmkk baxakmakmmmmxg  

 

This tells us that )1( +kp is true.  
 

Hence, by induction, )(np is true for all .n  
 

iii) ).sin()( baxxh += Therefore,  

 )cos()( baxaxh +=′  

 )sin()( 2 baxaxh +−=′′  

 )cos()( 3)3( baxaxh +−=  

 )sin()( 4)4( baxaxh +=  
 

We observe the pattern of these derivatives, and write,  
 

 )2/sin()( π++=′ baxaxh  

 )2/.2sin()( 2 π++=′′ baxaxh  

 )2/.3sin()( 3)3( π++= baxaxh  

 ),2/.4sin()( 4)4( π++= baxaxh and so on.  
 

Based on this, we can write ).2/sin()()( π++= nbaxaxh nn  
 

This statement needs to be proved by induction. We leave it as an exercise for 
you to try.  

iv) )cos3sin2(
2

1
cos3sin)( xxxxxp ==  

  ]2sin4[sin
2

1
xx +=  

 )]2/2sin(2)2/4sin(4[
2

1
)()( π++π+=∴ nxnxxp nnn  

*** 

You should now try to find the higher order derivatives of some functions on 
your own.  
 

Try these exercises now. 
 

 

E1) Let ).sin()( baxxh += Use induction to prove 

).2/sin()()( π++= nbaxaxh nn  
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E2) If ,0,,cos)( ≠∈= axaxxf R find ),()3( xf and .),()(
N∈nxf n  

 

E3) If  ,,0),ln()( R∈≠+= xabaxxf find ),(),(),( )3( xfxfxf ′′′ and 

.),()(
N∈nxf n  

 

 
You recall that in the introduction to this unit we talked about finding a 
polynomial which is approximately equal to a given function in a 
neighbourhood of a given point. We now come to this problem. 
 

Suppose a function f is defined on an interval I containing a point .a If we 

take the function ,)()(0 IaafxP ∈∀= then 0P  is a constant function, and 

agrees with the function f at .a Now we suppose that f is differentiable at ''a  

and consider the function 1P on I defined by .),()()()(1 IxafaxafxP ∈′−+=  
 

The expression on the R.H.S of equation above is a polynomial function (of 

degree 1, and we have ),()(1 afaP = and ).()(1 afaP ′=′  
 

If the second order derivative of f also exists at ,a then we define a function 

2P on I given by ).(
!2

)(
)()()()(

2

2 af
ax

afaxafxP ′′
−

+′−+=  

This is also a polynomial function, and we have  
 

 )()(),()( 22 afaPafaP ′=′= and ).()(2 afaP ′′=′′  
 

Do you observe a pattern in the process of defining these polynomial functions 

10 , PP and ?2P  Infact by this process we are finding polynomial functions 

defined on ,I which seem to agree more and more with the function f at the 

point '.'a This leads us to believe that we are getting better and better 

polynomials, as an approximate of f at the point ''a . 
 

You have studied curve tracing in your Calculus course. In the light of that, let 
us see the current discussion.  
 

We have ).()( 0 aPaf = So this means that the curves for f and 0P cross at the 

point )).(,( afa For ,1P in addition we have ).()( 1 aPaf ′=′ So we know that the 

curves for f and 1P have the same slope at '.'a   

Extending this process further, if the given function f has derivatives of order 

n at the point ,a then we have  

)(
!

)(
...)(

!2

)(
)()()()(

2

af
n

ax
af

ax
afaxafxP

n

n
′′

−
++′′

−
+′−+=            ... (3) 

 

Thus, ),()(),()(),()( afaPafaPafaP nnn
′′=′′′=′= and, in general, 

.)()()( nmafaP mm

n
≤∀=   

 

We hope that the polynomial function on the R.H.S of Eqn (3) gives us a 

“good” approximation of f at ,a and that the “goodness” will get better as we 

increase .n  
 

A word of caution though! 
 

In the previous two paragraphs we have been talking about our “beliefs” and 
“hopes”. Are we justified in believing and hoping? The answer to this question 

R.H.S is the short form for 
Right Hand side of an 
equality sign in an 
equation and L.H.S for the 
Left Hand Side. 
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is given to us by Taylor’s Theorem, which we state now. In fact, the 

polynomials N∈nPPP
n
,,...,, 10 are called Taylor Polynomials of f at .a   

 

Theorem 1(Taylor’s Theorem): Let ,: R→If where ],[ qpI = is closed a 

interval in R . Let N∈n . Suppose that )(,....,, nfff ′′′ exist and continuous on 

,I and )1( +nf exists on the open interval ).,( qp If ,Ia ∈ then for any ,ax >  

,Ix ∈ there exists a point c between a and ,x such that  
 

n
n

ax
n

af
ax

af
axafafxf )(

!

)(
...)(

!2

)(
))(()()(

)(
2

−++−
′′

+−′+=  

  
1

)1(

)(
)!1(

)( +
+

−
+

+
n

n

ax
n

cf
                ... (4) 

 

Proof: Let J be the interval with end points x and a . If ,ax = then Eqn. (4) is 

true. Suppose ,ax ≠ and .ax > Let ].,[ xaJ =  
 

We define a new function ,: R→JF as  
 

)(
!

)(
...)(

!2

)(
)()()()()(

)(
2

tf
n

tx
tf

tx
tftxtfxftF

n
n−

−−′′
−

−′−−−=  

  ,....
)(

)(
1

1

+

+

−

−
−

n

n

ax

txA
               ... (5) 

where A is a constant, such that .0)( =xF  

 

If ,0)( =aF then from (5) we get  
 

.0)(
!

)(
....)(

!2

)(
)()()()()(

)(
2

=−
−

−−′′
−

−′−−−= Aaf
n

ax
af

ax
afaxafxfaF

n
n

 

Therefore, we get  
 

),(
!

)(
...)(

!2

)(
)()()()(

)(
2

af
n

ax
af

ax
afaxafxfA

n
n−

−−′′
−

−′−−−=      ... (6) 

a constant. 
 

(Recall that a and x are two fixed points in ]).,[ qp   

 

For that, we proceed as follows: we know that )(,....,,, nffff ′′′ and 

N∈− mxa m ,)( are all continuous on ],[ xa and differentiable on ).,( xa So F is 

continuous on ],,[ xa and differentiable on ).,( xa Therefore, F satisfies all the 

conditions of Rolle’s Theorem. Therefore by Rolle’s theorem there 

exists [,,] xac ∈  such that .0)( =′ cF  

 

Now we find )(tF ′ . For that we differentiate both sides of Eqn. (5) with respect 

to t  we get  

)(
!2

)(
)()()()()()()(

2

tf
tx

tftxtftxtftftF ′′′
−

−′′−+′′−−′+′−=′  

  
1

)1(

)(

))(1(
)(

!

)(
+

+

−

−+
+−

−
−⋅⋅⋅⋅−

n

n
n

n

ax

txnA
tf

n

tx
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1

)1(

)(

)()1(
)(

!

)(
+

+

−

−+
+

−−
=

n

n
n

n

ax

txnA
tf

n

tx
              ... (7) 

 
 

Now we put c on both sides of Eqn. (7) and get  

 

0
)(

))(1(
)(

!

)(
)(

1

)1(
=

−

−+
+

−−
=′

+

+

n

n
n

n

ax

cxnA
cf

n

cx
cF              ... (8) 

 
From Eqn. (8), we get  
 

)(
)!1(

)( )1(
1

cf
n

ax
A

n
n

+
+

+

−
=                 ... (9) 

 
Substituting this value of A in Eqn. (6) we get  
 

)(
!

)(
...)(

!2

)(
)()()()(

)(
2

af
n

ax
af

ax
afaxafxf

n
n−

−−′′
−

−′−−−  

   )(
)!1(

)( )1(
1

cf
n

ax n
n

+
+

+

−
=  

 
And hence,  
 

)(
!

)(
...)(

!2

)(
)()()()(

)(
2

af
n

ax
af

ax
afaxafxf

n
n−

++′′
−

+′−+=  

  ).(
)!1(

)( )1(
1

cf
n

ax n
n

+
+

+

−
+  

 

Alternate Proof: Let }.:{ xtatJ ≤≤=  For ,Jt ∈ put  
1

2

)(

)(
)(

!

)(
...)(

!2

)(
)()()()()(

+










−

−
−

−
−−′′

−
−′−−−=

n

n
n

ax

tx
Atf

n

tx
tf

tx
tftxtfxftF

where A is a constant to be so chosen such that ).()( aFxF = If 0)( =aF then 

Aaf
n

ax
afaxafxf

n
n

+
−

++′−+= )(
!

)(
...)()()()(           ... (10) 

The function F satisfies the conditions of Rolle’s Theorem. 

i) )(,...,, nfff ′′′ are continuous on ],[ xa  

ii) Are differentiable on [,] xa  

iii) ).()( xFaF =  

So [,] xac ∈∃ such that 0)( =′ cF . Observe that  

1

)1(

)(

))(1(
)(

!

)(
)(0

+

+

−

−+
+

−−
=′=

n

nnn

ax

cxnA
cf

n

cx
cF  

Which implies  

1

)1(

)(
)!1(

)( +

+

−
+

=
n

n

ax
n

cf
A               ... (11) 

[All other terms get 
cancelled except these 
two terms]. 

(by Rolle’s 
theorem  
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Substituing for (11), we get in (10), we get 
  

11

)(
!)1(

)(
)(

!

)(
...)()()()(

++

+

−
+

−
++′−+=

nn
n

n

cf
n

ax
af

n

ax
afaxafxf  

Remark 1: The Theorem 1 also holds for ,ax < in that case the interval will be 

].,[ ax  

Remark 2: Using the form of expression for 
n

P given in Eqn (3), we can write  
 

),(
!)1(

)(
)()(

)1(
1

cf
n

ax
xPxf

n
n

n

+
+

+

−
+=  

 

where )(xP
n

is the nth Taylor polynomial of f . We also write  

),()()( xRxPxf
nn

+= where ),(
)!1(

)(
)(

)1(
1

cf
n

ax
xR

n
n

n

+
+

+

−
= where c is some point 

between a and x (obtained from Rolle’s Theorem). This formula of 
n

R is called 

the Lagrange Form of Remainder.  
 

So, when we try to approximate a given function by a Taylor polynomial, we 

know that there is an “error” of ).()()( xPxfxR
nn

−=  
 

Here are some examples to clarify these concepts.  
 

Example 4: If ,0,1)( ≥+= xxxf find )(),(),( 211 xPxRxP and ),(2 xR for 

.0>x Show that, for ,0>x the inequality 
2

11
82

1
2

x
x

xx
+<+<−+ holds. 

Solution: .)1(1)( 2/1xxxf +=+= Therefore,  

2/1)1(
2

1
)( −+=′ xxf  

2/3)1(
4

1
)( −+−=′′ xxf  

2/5)1(
8

3
)( −+=′′′ xxf . 

 

So, 
4

1
)0(,

2

1
)0(,1)0( −=′′=′= fff and .

8

3
)0( =′′′f  

2
1)0(.)0()(

x
fxf +=′+=xP1  

xcc
x

cf
x

<<+







−=′′=

−
0,)1(

4

1

2
)(

!2
)(

2/3
22

xR1  

2

2

8

1

2
1

)0(
!2

)0()0()(

x
x

f
x

fxf

−+=

′′+′+=xP2

 

.0,)1(
8

3

6
)(

!3
)(

2/5
33

xcc
x

cf
x

<<+







=′′′=

−
xR2  

 

Now, )()(1 11 xRxPx +=+  

  .0,)1(
82

1
2/3

2

xcc
xx

<<+−+=
−
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Since ,0)1(
8

2/3
2

>+
−

c
x

 

 

 
2

11
x

x +<+                ... (12) 

 

Again, )()(1 22 xRxPx +=+  

  xcc
x

x
x

<<++−+=
−

0,)1(
168

1

2
1

2/5
3

2
 

Here, .0)1(
16

2/5
3

>+
−

c
x

Therefore,  

 

.1
8

1

2
1 2 xx

x
+<−+ This together with Eqn. (12) gives   

.0,
2

11
8

1

2
1 2 >∀+<+<−+ x

x
xx

x
 

*** 

Note that we have used Taylor’s Theorem to establish the inequality.  
 
In the next example you will see how to find an approximate value and how to 
estimate the error in approximation using Taylor’s theorem.  
 

Example 5: Find the approximate value of 3 2.1 using Taylor’s Theorem with 

.2=n Also estimate the error.  
 

Solution: We first note that 2.012.1 += i.e. .)2.01()2.1( 3/13/1 +=  This is of the 

form 3/1)1( x+ where .2.0=x Therefore we consider the function 

0,)1()( 3/1 ≥+= xxxf and apply Taylor’s theorem for 2=n at .0=a  Then we 

have for ,0>x Then, if ,)( 22 RPxf += where 

),0(
!2

)0()0()(
2

2 f
x

fxfxP ′′+′+= and .0),(
!3

)(
)3(

3

2 xccf
x

xR <<=  

 

Here 3/83/53/2 )1(
27

10
)(,)1(

9

2
)(,)1(

3

1
)( −−− +=′′′+

−
=′′+=′ xxfxxfxxf . 

 

Therefore, .
9

2
)0(,

3

1
)0(,1)0(

−
=′′=′= fff  








 −
+×+=∴

9

2

!23

1
1)(

2

2

x
xxP  

 

.2.012.1 +=  

Hence, )9/2(
2

)2.0(

3

1
2.01)2.0(

2

2 +−







+=P  

  062.1
9

56.9

9

04.0

3

2.0
1 ==−+=  

 

So, the approximate value of 3 2.1 is 062.1 . 
 

The error, given by .00049.0
162

08.0
)1(

27

10

6

)2.0(
)(

3/8
3

2 =<+







=

−
cxR  
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Here, since ,11,0 >+> cc hence .1)1( 3./8 <+ −c  

*** 

Example 6: Find the approximate value of ,e with error less than .10 3−  

 

Solution: We consider ,)( xexf = defined on ,R and take .1,0 == xa  

 

Now .,)(...)()( )(
N∈===′′=′ nexfxfxf xx  

 

Therefore, .1)0(...)0()0()0( )( ===′′=′= nffff  
 

Hence ,
!

...
!2

1)(
2

n

xx
xxP

n

n ++++= and .10,
)!1(

)( <<
+

= c
n

e
xR

c

n  

 

We want .10
)!1(

)(
3−

<
+

=
n

e
xR

c

n
 

 

For 3,10 <<<
c

ec happens if we choose ,n so that  

 

,10
)!1(

3

)!1(
)(

3−
<

+
<

+
=

nn

e
xR

c

n
or, whenever .3000103)!1( 3 =×>+n  

Now, .30005040!7 >= So, it is enough to take .6=n  
 

∴The approximate value of e with ,6=n is  
 

...,718055.2
!6

1

!5

1

!4

1

!3

1

!2

1
11 =++++++=e and the error is less than .10 3−  

*** 

A special case of Taylor’s Theorem, with ,0=a is known as Maclaurin’s 

Theorem.  
 

Theorem 2 (Maclaurin’s Theorem): Let ,: R→If where ].,[ qpI = Let 

.N∈n Suppose )(,...,, nfff ′′′ are continuous on ,I and )1( +nf exists on ),( qp . 

If ,0 I∈ then for any ,Ix ∈ there exists a point ,0, xcc << such that  
 

 ).(
)!1(

)0(
!

...)0(
!2

)0()0()(
)1(

1
)(

2

cf
n

x
f

n

x
f

x
fxfxf

n
n

n
n

+
+

+
+++′′+′+=  

 

Remark: If ,],,[ haxqpx +=∈ then Taylor’s theorem can be written as  
 

)(
!

...)(
!2

)()()()(
)(

2

af
n

h
af

h
afhafhafxf

n
n

++′′+′+=+=  

    ,),(
)!1(

)1(
1

hacacf
n

h n
n

+<<
+

+
+

+

or  

.10),(
)!1(

)(
!

...)(
!2

)()()(
)1(

1
)(

2

<θ<θ+
+

+++′′+′+=+
+

+

haf
n

h
af

n

h
af

h
afhafhaf

n
n

n
n

 

The nth Taylor Polynomial of a function which is n times differentiable, is 

)(
!

)(
...)(

!2

)(
)()()()(

)(
2

af
n

ax
af

ax
afaxafxP

n
n

n

−
++′′

−
+′−+=  

Note that 

h could be 

negative also.  
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The coefficients, 
!

)(
,...,

!2

)(
),(

)(

n

afaf
af

n′′
′ are called Taylor coefficients of f . 

 

Now, if a function f is infinitely differentiable, that is, if the derivatives of all 

orders of f exist, then we can write it as a series,  
 

...)(
!2

)(
)()()(

2

+′′
−

+′−+ af
ax

afaxaf             ... (13) 

 

This series is generally called a power series.  
 
We do not know whether this power series converges or not. It has been 

proved that the series (13) will converge if and only if the sequence )}({ xR
n

of 

remainder converges to zero in a neighbourhood of '.'a  In that case, the 

series (13) is called the Taylor Series or Taylor Expansion of .f  Infact you 

might have observed that the Taylor polynomials are nothing but the partial 

sums of this Taylor series. Again, if ,0=a the series (8) becomes  

 

....)0(
!2

)0()0(
2

+′′+′+ f
x

fxf              ... (14) 

 

This is called the Maclaurin’s Series or Maclaurin’s Expansion of .f  

 
Let us see some examples.  
 
Example 7: Find the Maclaurin’s series for  
 

i)  R∈xex , ,  ii)  ,cos R∈∀ xx  iii) ]1,0[),1log( ∈+ xx  

  

Solution: i) Let .)( R∈∀= xexf x Then .,,)()(
RN ∈∈∀= xnexf xn  

 

So, ,1)0( 0 == ef and .1)0()(
N∈∀= nf n  

 

Therefore, the Macluarin’s series of f is  

 

...
!

...
!2

1
2

+++++
n

xx
x

n

   

 
Using Ratio test, you can easily show that the series  
 

...
!

...
!2

1

4

+++++
n

xx
x  

 
is convergent, and hence the series  
 

...
!

...
!2

1
2

+++++
n

xx
x

n

 

 
is also convergent. Therefore,  
 

....
!

...
!2

1
2

R∈∀+++++= x
n

xx
xe

n
x
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ii) Let .,cos)( R∈= xxxf  

 

Then ,10cos)0(,00sin)0(,1)0( −=−=′′=−=′= fff and so on. In 

general, .,
2

cos)0(
)(

N∈






 π
= n

n
f

n
So we write the Maclaurin’s series,  

...
)!2(

)1(...
!4!2

1
242

+−+++−
n

xxx n
n

             ... (15) 

 

We know that ),()(cos xRxPx nn += where  

 








 π+
+θ

+
=

<θ<θ
+

=

+

+
+

2

)1(
cos

)!1(

10),(
)!1(

)(

1

)1(
1

n
x

n

x

xf
n

x
xR

n

n
n

n

 

 

Therefore, )1cos(,
)!1(

)(

1

R∈∀≤
+

≤

+

tt
n

x
xR

n

n Q and hence 

 0)(lim →
∞→

xRn
n

as .R∈∀∞→ xn  

 
This means that (15) is a convergent series, and we can write  
 

....
)!2(

)1(...
!4!2

1cos
242

R∈∀+−+++−= x
n

xxx
x

n
n

 

 

iii) Let ].1,0[),1log()( ∈+= xxxf  

 

 Then 
3

)3(

2 )1(

2
)(,

)1(

1
)(,

1

1
)(

x
xf

x
xf

x
xf

+
=

+

−
=′′

+
=′  

 .,
)1(

)!1()1(
)(,...,

)1(

3.2
)(

1
)(

4

)4(
N∈

+

−−
=

+

−
=

−

n
x

n
xf

x
xf

n

n
n

 

 

So, ,...,!3)0(,2)0(,1)0(,1)0(,01log)0( )4()3( −==−=′′=′== fffff  

)!1()1()( 1)( −−= − nxf nn  

 
Now we can write the Maclaurin’s series,  
 

...
)1(

...
432

1432

+
−

++−+−
−

n

xxxx
x

nn

 

 
In this case,  







 −

++−+−−+=
n

xxxx
xxxR

nn

n

)1(
...

432
)1log()(

432

 

 )(
)!1(

)(
1

xf
n

x n
n

θ
+

=
+

 

 

 








θ+

−

+
=

+

+

1

1

)1(

!)1(

)!1( n

nn

x

n

n

x
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1

1

)1()1(

)1(
+

+

θ++

−
=

n

nn

xn

x
 

 

Therefore, .
1

)(
1

+
≤

+

n

x
xR

n

n Since ,1)1(,10 ≥θ+≤≤ xx and .1
1

1
≤

θ+ x
 

 

So, we conclude that 0)( →xRn as ,∞→n and write  

.10...,
43

x

2
)1log(

432

≤≤+−+−=+ x
xx

xx  

*** 

Note: From these examples you must have observed that it is easy to find the 
Taylor polynomials which gives an approximation to the function. But the 
approximation includes some measurement of the error. Taylor’s theorem can 
be used to estimate the error in approximation. If the remainder tends to 

,0 then we get the Taylor series expansion. On the other hand, if certain 

accuracy is specified like in Example 6, then the question involves finding a 
suitable .n  

 
It is time to try solve some exercises now.  
 

 

E4) Find the fifth Taylor polynomial, )(3 xP of xsin on .0],1,1[ =− a Show that 

5040

1
)(sin 5 <− xPx for .1<x  

 

E5) Find the approximate value of 2.1 and ,2 using Taylor’s theorem with 

.2=n  

E6) Using Taylor’s theorem, show that ,0,
!5!3

sin
!3

533

≥+−≤≤− x
xx

xx
x

x   

 and 
!5!3

sin
!3

533
xx

xx
x

x +−≥≥− for .0<x  

 
E7) Assuming the convergence of the power series,  
 

 i) show that R∈∀+
π+

π−π
−

π+

π−
+π=

−−
x

xx
x ...

)16/1(4

)4/(

16/1

)4/(
4/tantan

22

2

2

11
 

   

  Hint: Apply Taylor’s theorem to xxf 1tan)( −= with .4/π=a  

 

 ii) Expand xcos in powers of ).4/( π−x  

 

 
So far you have learnt a fundamental theorem known as Taylor’s Theorem 
which gives a useful technique for approximating a function via Taylor 
polynomial. This was done by finding the higher order derivatives of the 
function. In view of this sometimes Taylor’s Theorem is considered as an 
extension of mean value theorem which relates a function to its higher order 
derivatives.  
 
In the next section we shall study another important concept called ‘extrema’, 
which also involves higher order derivatives.  
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13.3 EXTREMA OF A FUNCTION 
 
In this section we deal with the concept of extrema which is a common term 
for maxima and minima of a function.  
 
In Calculus you must have learnt that the study of extrema are useful in 
drawing the graph of a function. There you must have learnt that it is useful to 
study local extrema (local maxima and local minima) rather than absolute 
extrema (a term used to differentiate an extrema from local extrema).  
 

We begin the study of local extrema by considering an example of a function.  
 

Take the function .sin)(],4,0[: xxff =π We know that 1sin1 ≤≤− x for all 

.x The highest value of ,sin x which is is attained at two points, 2/π and 

2/5π in ].4,0[ π Its lowest value, 1− is attained at 2/3π and 2/7π in 

].4,0[ π We say that xsin has a relative or local maximum at 2/π=x and at 

.2/5π=x  Likewise, we say that xsin has a relative or local minimum at 

2/3π and  .2/7π  We also say that xsin has local extrema at 

2/5,2/3,2/ πππ and .2/7π  

 
 

Fig. 1: Graph of .sin)( xxf =  

 
We formally give the definition now.  
 

Definition 1: Let f be a function defined on an interval ,I and let c be an 

interior point of .I  
 

i) f is said to have a local or relative maximum at ,cx = if ,0>δ∃a such 

that .[,,])()( cxccxcfxf ≠δ+δ−∈∀<  

ii) f is said to have a local or relative minimum at ,cx = if ,0>δ∃a such that 

.[,,])()( cxccxcfxf ≠δ+δ−∈∀>  

iii) f is said to have a local extremum, if it has a local maximum or a local 

minimum at .cx =  

 

If you look at Fig. 1, you see that, the tangents at the points RQP ,, and S are 

all parallel to x -axis. That means the derivative )(xf ′ of the function at each 

of these points is .0  We shall now prove this fact in the following theorem.   
 

Theorem 3: Let f be a function defined on an interval .I Suppose f has a 

local extremum at an interior point .Ic ∈ If the derivative of f at c exits, then 

.0)( =′ cf  

 

Proof: Suppose f has a local maximum at .c Therefore, ,0>δ∃a such that 

.[,,])()( cxccxcfxf ≠δ+δ−∈∀<   

The term ‘relative’ 
and ‘local’ are 
used commonly in 
the text book.  
 
We mainly use the 
term local.  
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                                                        That is, .[,,]0)()( cxccxcfxf ≠δ+δ−∈∀<−  Now, if [,,] δ+∈ ccx then 

.0
)()(

<
−

−

cx

cfxf
(Note that 0)()( <− cfxf and ).0>− cx  Therefore,  

0
)()(

lim ≤
−

−
+→ cx

cfxf

cx
              ... (16) 

 

On the other hand, if [,,] ccx δ−∈ then 0<− cx and .0)()( <− cfxf  Thus, 

.0
)()(

>
−

−

cx

cfxf
 

 

Therefore 0
)()(

lim ≥
−

−
−→ cx

cfxf

cx
             ... (17)  

 

We know that ,
)()(

lim)(
cx

cfxf
cf

cx −

−
=′

→
exists. This will happen only if the left 

hand and right hand limits of 
cx

cfxf

−

− )()(
as cx → given in (16) and (17) are 

equal. And these limits will be equal only if both are zero.  
 

Therefore, .0)( =′ cf  

 

Similar argument shows that if f has a local minimum at c then .0)( =′ cf We 

leave this to you as an exercise. (See E8).  
 

Theorem 3 gives us a necessary condition for f to have a local extremum at 

.c Is this sufficient? That is, if ,0)( =′ cf can we say that c is a local extremum? 

Let us see.  
 
Here is a simple example to illustrate that the answer is no. Consdier the 

function .)(,]1,1[: 3xxff =→− R Then 0 is an internal point of ].1,1[− Further, 

,3)( 2xxf =′ and .0)0( =′f We shall check if f has a local minimum or 

maximum at ?0 Note that .0)0( =f Any neighbourhood of 0 will contain some 

positive and some negative numbers. The value of f at a positive number is 

positive and that at a negative number is negative. So every neighbourhood 

has function values which are less than )0(f and also which are more than 

).0(f Therefore by Definition 1, 0 is not a local extrema. This is also clear in 

the graph of this function. See Fig. 2. 
 

 
 

Fig. 2: Graph of 
3)( xxf = in [.1,1] −  

 

This shows that the condition 0)( =′ cf is not a sufficient condition for local 

extrema. You should also note that the condition 0)( =′ cf can be checked 
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only when f is differentiable at .c What about the points in the domain of 

f where f  is not differentiable? Can a local extremum of f occur at such a 

point? The answer is yes. Take the example of the absolute value function 

.)(,: xxff =→RR  See its graph in Fig. 3. 

 
Fig. 3: Graph of .x  

 

You know that this function is continuous on ,R and differentiable on 

}.0{−R This function is not differentiable at .0=x But isn’t it clear from Fig. 3, 

that f has a minimum at ?0=x  

 
Recall the following definition from the calculus course.  
 

Definition 2: A point cx = is called a critical point for the function ,f if either 

f does not have a derivative at c or if the derivative of f exists, then 

.0)( =′ cf  If ,0)( =′ cf then, )(cf is called a stationary value.  

 
So what Theorem 3 does is this: From amongst the points at which the given 
function is differentiable, it helps us pick up some possible points at which a 
local extremum can occur.  
 
Among the possible points indicated by this theorem, how do we find the 
actual local extrema? The theorems which follow will help us in this. Both 
these theorems (Theorem 4 and 5) give us sufficient conditions for the 
existence of local extreme points.  
 

Theorem 4 (First Derivative Test): Let f be continuous on the interval 

],,[ baI = and let c be an interior point of .I Assume that f is differentiable on 

[,] ca and [.,] bc Then,  

 
Then  
 

i) if ,0>δ∃ a such that ,[,] Icc ⊆δ+δ− and 0)( ≥′ xf for ,cxc <<δ− and 

0)( ≤′ xf for δ+<< cxc then f has a local maximum at .c  

 

ii) if ,0>δ∃ a such that ,[,] Icc ⊆δ+δ− and 0)( ≤′ xf for cxc <<δ− and 

0)( ≥′ xf for ,δ+<< cxc then f has a local minimum at .c  

 

Proof: i) If [,,] ccx δ−∈ then we apply the Mean Value Theorem (MVT, 

Theorem) to the function f on ].,[ cx We know that f is continuous on 

],,[ cx and differentiable on [,] cx since [.,][,] cacx ⊆  

 

Therefore, by MVT, [,,]0 cxx ∈∃ such that ).(
)()(

0xf
xc

xfcf
′=

−

−
 

 

Since .0)([,,][,] 00 ≥′δ−⊆∈ xfcccxx  



 

110 

 

Block 4                                                        Continuity and Differentiability of Functions
                                                        

Hence, ,0
)()(

≥
−

−

xc

xfcf
 

 

And ,0)()()()( 0 ≥′−=− xfxcxfcf since 0≥− xc and .0)( 0 ≥′ xf  

 

Therefore, )()( cfxf ≤ for [,] ccx δ−∈             ... (18) 
 

Now suppose [.,] δ+∈ ccx Then f is continuous on ],[ xc and differentiable on 

[.,] xc So, again, by MVT, [,,]1 xcx ∈∃ such that  
 

 )(
)()(

1xf
cx

cfxf
′=

−

−
 

 

Therefore, ).)(()()( 1 cxxfcfxf −′=−  

Now 0>− cx and .0)( 1 ≤′ xf Thus, ,0)()( ≤− cfxf and we conclude that 

),()( cfxf ≤ for  

 [,] δ+∈ ccx                ... (19) 

 

Combining (18) and (19), we get that [.,])()( δ+δ−∈∀≤ ccxcfxf This 

means that f has a local maximum at .c  

 
ii) The proof of this part is similar to that of i). We leave it to you as an 

exercise. (See E9).  
 
You may note that Theorem 4 gives us a sufficient condition for the 
existence of a local extremum.  
 

Now, go through the following examples.  
 

Example 8: Let us consider the following function  
 

 









=

≠







+

=

.0,0

0,
1

sin2
)(

4

x

x
x

x
xf  

 

Check whether f has a local minimum at 0. Also check if f satisfies the 

condition (ii) in Theorem 4.  
 

Solution: We shall first check whether f has a local extrema. We first note 

that this function is differentiable on .R  Since 1sin ≤θ for all θ  we get that 

01
1

sin2 ≥≥+
x

for all 0≠x . Also, .04 xx ∀≥  

 

Hence .0)( R∈∀≥ xxf  
 

So we can say that 0=x is a local (and also global) minimum of .f  Infact it is 

a minimum point. Now we shall check whether the condition (ii) in Theorem 4 
is satisfied.  
 

x
x

x
xxf

1
cos

1
sin24)(

23
−







+=′  

            .
1

cos
1

sin48
2







−+=

xx
xxx  
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Consider 
xx

xx
1

cos
1

sin48 −+  

 

If 1
2

)14sin(
1

sin,
)14(

2
=

π
+=









π+
= n

xn
x and .0

1
cos =









x
 

Therefore, 0
)14(

8

)14(

161
cos

1
sin48 >

π+
+

π+
=−+

nnxx
xx                   ... (20) 

 

If ,02sin
1

sin,
2

1
=π=

π
= n

xn
x and .1

1
cos =

x
 

 

Thus, 201
2

81
cos

1
sin48 ≥∀<−

π
=−+ n

nxx
xx            ... (21) 

From Eqn. (20) and Eqn. (21), we observe that 0
)14(

2
>









π+
′

n
f and 

0
2

1
<









π
′

n
f for all .2≥n  

 

Now, given any δ -neighbourhood, [,] δδ− of ,0 we can choose n large 

enough, such that δ<
π+ )14(

2

n
and .

2

1
δ<

πn
So f ′ takes both positive and 

negative values on the right side of ,0 no matter how small δ neighbourhood is 

chosen.  
 
Thus the condition (ii) given in Theorem 4 for a local minimum is not satisfied.  
 
This example tells us that the conditions given in Theorem 4 are only sufficient 
but not necessary for the existence of local extrema of a function.  
 
So, Theorem 3 gives us a necessary condition, and Theorem 4 gives us a 
sufficient condition for the existence of the extrema of a function. We now 
apply both these conditions to arrive at the extrema in our next example.  
 
Example 9: Examine the following functions for relative extrema:   
 

i) R∈−−= xxxxf ,43)( 3  

ii) R∈+−= xxxxf ,)1()2()( 54  

iii) .0,22 >+− xxx  

 

Solution: i)  ).1)(1(333)(43)( 23 +−=−=′⇒−−= xxxxfxxxf  

 

.10)( ±=⇒=′ xxf  

 

So, 1=x and 1−=x are the two possible extremum points. 
 

First consider .1=x If 01,10 >+<< xx and .01 <−x Therefore, .0)( <′ xf  

 

If 01,1 >+> xx and .01 >−x Therefore, .0)( >′ xf Applying Theorem 4, we 

conclude that f has a local minimum at .1=x  

 

Now consider .1−=x If 01,1 <−−< xx and .01 <+x Therefore, .0)( >′ xf  
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ii) .,)1()2()( 54
R∈+−= xxxxf  

 

 So, 4453 )1()2(5)1()2(4)( +−++−=′ xxxxxf  

  ).69()1()2( 43 −+−= xxx             … (22) 

 0)( =′ xf at 1,2 −=x and .3/2  

 
Let us take these stationary points one by one.  
 

Case 1: 1−=x  

If ,1−<x then ,02 <−x and .0)2( 3 <−x Also ,01 <+x and therefore 

0)1( 4 >+x and .069 <−x  

 

Thus from Eqn (16), we get, 0)( >′ xf for ,1−<x whereas, if ,01 <<− x then 

,02 <−x and .0)2( 3 <−x Since ,01 >+x  ,0)1( 4 >+x and .069 <−x  

 

This means, that f ′ does not change sign while passing through 

.1−=x Hence, f has neither a relative maximum, nor a minimum at .1−=x  

 

Case 2: 3/2=x  
 

For 0)1(,0)2(,3/20 43 >+<−<< xxx and .0)69( <−x This shows that 

0)( >′ xf for .3/20 << x  

 

If ,13/2 << x then ,0)1(,0)2( 43 >+<− xx and .0)69( >−x This shows that 

0)( <′ xf for .13/2 << x Therefore, since f ′ changes sign from positive to 

negative while passing through ,3/2=x we can say that f has a relative 

maximum at .3/2  
 

Case 3: 2=x  
 

,0)4(,0)2(23/2 43 >+<−⇒<< xxx and .0)69( >−x So 0)( <′ xf for 

.23/2 << x  
 

.0)(2 >′⇒> xfx  
 

So we conclude that f has a local minimum at .2=x  

 

iii) .0,22)( >+−= xxxxf  

 

 .
22

22

2

1

2

1
)(

+

−+
=

+
−=′

xx

xx

xx
xf  

  

 .3/242220)( =⇒=+⇒=+⇒=′ xxxxxxf  

 

Now the sign of )(xf ′ will be determined by the sign of .22 xx −+  
 

 .
22

)3/2(3

22

42
22

xx

x

xx

xx
xx

++

−
=

++

−+
=−+  
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So 0)( >′ xf for ,3/20 << x and 0)( <′ xf for .3/2>x Therefore by the first 

derivative test we conclude that f has a local maximum at .3/2  

*** 

You have seen that the sign of the first derivatives helps us to decide whether 
a stationary point is a local maximum, minimum, or neither. Higher order 
derivatives of a function can also be used to decide the nature of stationary 
points. The next theorem shows us how the second derivative is used in this.  
 

Theorem 5 (The Second Derivative Test): Let I be an interval, and c be an 

interior point of .I Suppose R→If : is differentiable on ,I and .0)( =′ cf  

 
i) If ,0)( <′′ cf then f has a local maximum at .c  

ii) If ,0)( >′′ cf then f has a local minimum at .c  

 

Proof: Since )(cf ′′ exists, it implies that f and f ′ exist and are continuous in 

a neighbourhood, ),( δ+δ− cc of ,c where ,0>δ and .),( Icc ⊆δ+δ−  
 

i) Since fcf ′<′′ ,0)( is strictly decreasing at .cx = Thus, ,,0 1 δ<δ>δ∃ i  

such that ),,()()( 1δ+∈∀′<′ ccxcfxf and [.,])()( 1 ccxcfxf δ−∈∀′>′  

Since ,0)( =′ cf this means )(xf ′ is negative in [,,] 1δ+cc and positive in 

[.,] 1 cc δ− In other words, f ′ changes sign from positive to negative in 

passing through .c Therefore, by the first derivative test, Theorem 4, we 

conclude that f has a local maximum at .c  

 
ii) The proof of this is on exactly similar lines. We leave it to you as an 

exercise. See E10).  
 

Note: The Theorems 3, 4 and 5 illustrates that the first and second 
derivatives, when they exists, help us identify the local minima and maxima of 
a function.  
 
Here are a few examples to illustrate the use, and the limitations of           
Theorem 5. 
 
Example 10: Examine the following functions for local extrema.  
 

i) ].2,0[),cos1(sin)( π∈+= xxxxf  
 

ii) }.1,0{\,
1

14
)( R∈

−
−= x

xx
xf  

 

iii) .0,
1

)( >







= x

x
xf

x

 

 

Solution: i)  xxxxf 2sin)cos1(cos)( −+=′  

     xx 2coscos +=  
 

.2coscos02coscos0)( xxxxxf −=⇒=+⇒=′∴  

  .
3

π
=⇒ x  

 

Now ,2sin2sin)( xxxf −−=′′ and  
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3

2sin2
3

sin
3

π
−

π
−=







 π
′′f  

  .0
2

33

2

32

2

3
<

−
=−−=  

 

So, f has a local maximum at .
3

π
 

 

ii) 0
)1(

)1(4

)1(

14
)(

22

22

22
=

−

+−−
=

−
+

−
=′

xx

xx

xx
xf  

 04830)1(4 222 =+−⇒=−−⇒ xxxx   

 .0)2)(23( =−−⇒ xx  

 
3

2
=⇒ x  or .2=x  

 

33 )1(

28
)(

−
−=′′

xx
xf  

0121)2( <−=−=′′f and  

.0815427)3/2( >=+=′′f  
 

Hence f has a local maximum at ,2 and a local minimum at .3/2  
 

iii) Let .
1

x

x
y 








= Then .

1
log nx

x
nxy ll −=








=  

 1log
1

−−=′⋅∴ xy
y

 

 ).log1( xyy +−=′∴  

 Now 0)( =′=′ yxf if 0)log1( =+− xy if 1log −=x that is, if .
1

e
x =  

 

 Since ),log1( xyy +−=′  

 .
1

)log1(
x

yxyy ⋅−+′−=′′  

 .0
1

1

1 /1
<⋅−=









−

=







′′∴

e
ee

e

e
f

e
y  

 So, has a local maximum at .
1

e
 

*** 
Example 11: Examine the nature of the stationary point 0=x for function 

43 )(,)( xxgxxf == and .,)( 4
R∈−= xxxh  

 

Solution: It is easy to check that 0)0()0(,0)0()0( =′′=′=′′=′ ggff and 

.0)0()0( =′′=′ hh  

 

Theorem 5 cannot be used here. We now look at the graphs of these function 
given in Fig. 4 a), b) and c), below: 
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(a) Graph of f             (b)      Graph of g                   (c)    Graph of h  

Fig. 4 

Isn’t it clear that 0=x is neither a local maximum, nor a minimum for .f  

 

0=x is a local (and global) minimum for ,g and it is local (and global) 

maximum for .h  
*** 

This example shows that Theorem 5 is of no help if the second derivative is 
zero. We now state without proof, a general theorem, that uses higher 
derivatives of a function to classify its stationary points.  
 

Theorem 6: Let I  be an interval. Let ,Ic ∈ and let .2≥n Suppose that the 

derivatives )(,....,, nfff ′′′ exist and are continuous in a neighbourhood of 

 ,c and that ,0)(...)()( )1( ===′′=′ − cfcfcf n but .0)()( ≠cf n  

 

i) If n is even and ,0)()( >cf n then f has a local minimum at .c  

ii) If n is even and ,0)()( <cf n then f has a local maximum at .c  

iii) If n is odd, then f has neither a local minimum nor a local                  

maximum at .c  
 
We are not including the proof of this theorem. But it can be easily proved by 
using Taylor’s Theorem. You may note that the second derivative test, 

Theorem 5, is a special case of this theorem, when .2=n  
 
In the next example we use Theorem 6 to find the extreme points.  
 

Example 12: Examine the function 45 )1()3()( +−= xxxf for extreme values.  

 

Solution: )79()1()3()( 34 −+−=′ xxxxf  

 

So the stationary points of f are 9/7,1− and 3. 

 

Now, ),1149()1()3(8)( 223 +−+−=′′ xxxxxf therefore,  

 

,0)3()1( =′′=−′′ ff and  

 







+×−















 −
=′′ 1

9

7
14

9

49

9

16

9

20
8)9/7(

23

f  
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  .0
9

40

9

16

9

20
8

23

>






 −
















−=  

9

7
=∴ x is a local minimum. 

 

)1374921)(1()3(24)( 232 ++−+−=′′′ xxxxxxf  

 

Again, .0)3()1( =′′=−′′′ ff  

 

]1374921()3(

)79863)(1()3(

)1374921)(1)(3(2[24)(

232

22

23)4(

++−−+

+−+−+

++−+−=

xxxx

xxxx

xxxxxxf

 

 

Thus, 0)3()4( =f and .0)64(16.24)1()4( <−=−f  

 

Hence f has a local maximum at .1−=x  

 

Now, )1374921)(1(2[24)( 23)5( ++−+= xxxxxf  

   )1149)(13)(3(14 2 +−−−+ xxxx  

   )]79)(1()3(14 2 −+−+ xxx  

 

So .0)3()5( ≠f  

 

Since the first non-zero derivative at 3=x  is of odd order 5, f has neither a 

maximum, nor a minimum at .3=x  

*** 

You must have learnt from the course Calculus that the absolute or global 

maximum (or minimum) value of a function, defined on the interval ],,[ ba is the 

greatest (or smallest) value taken by the function in that interval. Thus a 
maximum (or minimum) is always a local maximum (or minimum) value. A 
function can have more than one local maximum (or local minimum) value. 
Among these values there can only be one value which is maximum and same 
is the cae with minimum. Therefore if the function is differerentiable at all 
interior points of the interval, we first find all the stationary points of the 

function, say, .,...,, 21 kccc Then we look at the values 

).(),(),...,(),(),( 21 bfcfcfcfaf k The greatest among these is the absolute 

maximum value of the function, and the least is the absolute minimum value of 
the function. The following example will make this clear.  
 
Example 12: Find the absolute maximum and minimum values of the function 

16623)( 234 ++−−= xxxxxf on ].2,0[  
 

Solution: We first find the stationary points.  
 

.612612)( 23 +−−=′ xxxxf  
 

So 01220)( 23 =+−−⇒=′ xxxxf or 0)12)(1)(1( =−+− xxx  
 

That is, 
2

1
,1−=x or .1  
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].2,0[1∉− So the stationary points of f in ]2,0[ are 
2

1
=x and .1=x  

Now 2)1(,
16

39

2

1
,1)0( ==








= fff and .21)2( =f  

 

So, the absolute maximum value is 21and absolute minimum value is .1  

*** 

You should now try your hand at the following exercises.  
 

 

E8) If ,: R→If has a local minimum at ,d show that ,0)( =′ df if it exists.  

 
E9) Use the first derivative test to find the relative extremes of the function 

given by  
 

i) ,,10840152410)( 3456
R∈∀+−+−= xxxxxxf  

ii) .,42)( 24
R∈−+= xxxxf   

 
E10) Prove Theorem 5 ii). 
 

E11) Find the local maximum and minimum points of the function f defined 

by  

i)  ],0[,3sin
3

1
2sin

2

1
sin)( π∈++= xxxxxf  

ii) .0,
1

2)(
2

≠+= x
x

xxf   

E12) Determine whether 0=x is a relative extremum of the following 
functions:  

  

 i) 2)( 3 += xxf  ii) xxxg −= sin)(  

 iii) 
6

sin)(
3

x
xxh +=  iv) 

2
1cos)(

2
x

xxk +−=  

E13) Find the absolute maximum and minimum values of 

11224)( 234 ++−−= xxxxxf in the interval ].5,2[−  
  

 

That brings us to end of the unit. Let us briefly recall what we have covered in 
it.  
 

13.4 SUMMARY 
 

In this unit we have  
 

i) introduced the notion of higher order derivatives of a function,  

ii) proved Taylor’s theorem, 

iii) stated Maclaurin’s theorem, which is a special case of Taylor’s theorem,  

iv) defined relative (or local) maximum and minimum and stationary points of 
a function,  

v) proved that if the derivative of a function exists at its local extremum point, 
it has to be zero, 

vi) observed that the condition in v) is necessary, and not sufficient.  

vii) proved the first derivative test to find the local extrema of a function, and 
noted that the condition is a sufficient one.  



 

118 

 

Block 4                                                        Continuity and Differentiability of Functions
                                                        viii) proved the second derivative test to find the local extremum of a function, 

ix) stated a general test using the higher order derivatives to find the local 
extrema of a function.  

 

13.5 SOLUTIONS AND ANSWERS 
 

E1) ).sin()( baxxh +=  

 Let ).2/sin()(: )( π++= nbaxaxhP nn

n  

  

 Then )cos()()(: )1(

1 baxaxhxhP +==′  

    ).2/sin( π++= baxa  

So 1P is true. 
 

Suppose kP is true.  
 

Therefore, ).2/sin()()( π++= kbaxaxh kk  

)2/cos(.)()( )()1( π++==∴ + kbaxaaxh
dx

d
xh kkk  

 )2/2/sin(1 π+π++= + kbaxak  

 ).2/)1(sin(1 π+++= + kbaxak  

1+∴ kP is true.  
 

Hence by induction, nP is true for all .N∈n  

 

E2) )2/cos(sin)(cos)1( π+=−=′= axaaxaxfaxf  

  )cos(cos)(
22

π+=−=′′ axaaxaxf  

  )2/3cos(sin)(
33)3(

π+== axaaxaxf  
 

So, in general, ),2/cos()(
)(

π+= naxaxf
nn

which can be proved by 

Induction as in E1). 
 

E3) 
bax

a
xfbaxxf

+
=′⋅+= )()log()(  

 
3

3
)3(

2

2

)(

2
)(

)(
)(

bax

a
xf

bax

a
xf

+
=

+

−
=′′  

 ,
)(

)!1()1(
)(

1
)(

n

nn
n

bax

an
xf

+

−−
=∴

−

to be proved by induction.  

 

E4) 0)0(0,sin)( === faxxf  

 1)0(,cos)( =′=′ fxxf  

 0)0(,sin)( =′′−=′′ fxxf  

 1)0(,cos)(
)3()3( −=−= fxxf  

 1)0(0)0()0(
)5()6()4( === fff        

 

 ,)(
!7

)(sin )7(
7

6 cf
x

xPx =− where .10 << c  

  
5040

1

!7

1
)sin(

!7

7

=≤−= c
x
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E5) Let 1)0(.0,1,1)( ==−>+= faxxxf  

 
2

1
)0(,

12

1
)( =′

+
=′ f

x
xf  

4/1)0(,
)1(4

1
)(

2/3
−=′′

+

−
=′′ f

x
xf  

)0(
!2

)0()0()(
2

f
x

fxfxf ′′+′+≈  








 −
+







+≈

4

1

!2

)2.0(

2

1
2.012.1

2

 

  
2

01.0
1.01 −+=  

  095.1=  
 

 






 −
+







+≈+=

4

1

!2

1

2

1
11112  

   375.1= . 
 

E6) Let .0)0(.0,sin)( === faxxf  

 1)0(,cos)( =′=′ fxxf  

 0)0(,sin)( =′′−=′′ fxxf  

 1)0(,cos)(
)3()3(

−=−= fxxf  

 0)0(sin)(
)4()4(

== fxxf  

 1)0(cos)(
)5()5(

== fxxf  

 Now ),(
!3

)0(
!2

)0()0()(
32

cf
x

f
x

fxfxf ′′′+′′+′+= where .0 xc <<  

 
!3

)cos(
!3

sin
33 x

xc
x

xx −≥−=∴ if ,0≥x 1cos ≤c  

  ,
!5!3

53 xx
x +−≤ for ,0≥x since .1cos ≤c  

 .0,
!5!3

sin
!3

533

≥+−≤≤−∴ x
xx

xx
x

x  

 

 Now suppose 0<x .Then ,0>−= xy and we have  

 
!5!3

sin
!3

533 yy
yy

y
y +−≤≤−  

 

 
!5!3

)sin(
!3

533 xx
xx

x
x +−−≤−≤+−∴  

 

 
!3

sin
!5!3

353 x
xx

xx
x −≤≤+−  

E7) i) Let 






 π
=

π
==

−−

4
tan)(.

4
tan)(

11
afaxxf  

   

16
1

1

4
,

1

1
)(

22 π
+

=






 π
′

+
=′ f

x
xf  
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2

2
22

16
12

4
,

)1(

2
)(








 π
+

π−
=







 π
′′

+

−
=′′ f

x

x
xf  

  So, by Taylor’s theorem,  
 

  ...
)16/1(4

)4/(

16/1

)4/(

4
tantan

22

2

2

11 +
π+

π−π
−

π+

π−
+






 π
= −− xx

x  

 

 ii) Let 2/1)(.4/,cos)( =π== afaxxf  

   2/1)(,sin)( −=′−=′ afxxf  

   2/1)(,cos)( −=′′−=′′ afxxf  

   ....2/1)(,sin)( )3()3( == afxxf  

 

  ...
2!3

)4/(

22

)4/(

2

)4/(

2

1
cos

32 π−
+

π−
−

π−
−=∴

xxx
x  

    











+







 π
−+







 π
−−







 π
−−= .....

4!3

1

4!2

1

4
1

2

1
32

xxx  

 

E8) f has a local minimum at .d Therefore, 01 >δ∃ such that 

.[,,])()( 11 dxddxdfxf ≠δ+δ−∈∀>  That is, 

.[,,]0)()( 11 dxddxdfxf ≠δ+δ−∈∀>−  
  

 Now, if [,,] 1 ddx δ−∈ then ,0
)()(

<
−

−

dx

dfxf
since .0<− dx Therefore, 

0
)()(

lim ≤
−

−
−→ dx

dfxf

dx
. 

 

 If [,,] 1δ+∈ ddx then .0
)()(

>
−

−

dx

dfxf
Therefore, .0

)()(
lim ≥

−

−
+→ dx

dfxf

dx
 

Since 
dx

dfxf
df

dx −

−
=′

→

)()(
lim)( exists, 

.0
)()(

lim
)()(

lim =
−

−
=

−

−
+− →→ dx

dfxf

dx

dfxf

dxdx
 .0)( =′ df  

 

E9) i) .10840152410)( 3456 +−+−= xxxxxf  

 

  

).2()1(60

]22[60

1206012060)(

222

232

2345

−+=

−+−=

−+−=′∴

xxx

xxxx

xxxxxf

 

  0)( =′∴ xf  for 0=x and .2  

 

  If .02,0 <−< xx Therefore .0)( <′ xf  

  .0)(0220 <′⇒<−⇒<< xfxx  

 

  )(xf ′∴ does not change sign at .0=x  

 

  Hence f does not have a local extremum at .0=x  
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  0)(,2 <′< xfx and if .0)(,2 >′> xfx  

 

  f ′∴ changes sign from ve− to ve+ while passing through 

.2=x Hence f has a local minimum at .2=x  

 

ii) )1(444)(42)( 2324 +=+=′⇒−+= xxxxxfxxxf  

  0)( =′ xf if ,0=x and changes sign from ve− to ve+ while passing 

through .0=x Hence f has a local minimum at .0=x  

 

E10) To prove: If ,0)( >′′ cf then f has a local minimum at ,c when .0)( =′ cf  
 

Now, f and f ′ exist and are continuous in a neighbourhood 

.),(,0),,( Icccc ⊆δ+δ−>δδ+δ−  Since fcf ′>′′ ,0)( is strictly 

increasing at ,c and ,,0 11 δ<δ>δ∃ such that 

),()()( 1 ccxcfxf δ−∈∀′<′ and ).,()()( 1δ+∈∀′>′ ccxcfxf Since 

,0)( =′ cf we have )(xf ′ is negative ),,( 1 ccx δ−∈∀ and )(xf ′ is 

positive ).,( 1δ+∀ ccx So f ′ changes sign from negative to positive in 

passing through .c  
 

Therefore, by the first derivative test, we conclude that f has a local 

minimum at .c  
 

E11) i) ].,0[,3sin
3

1
2sin

2

1
sin)( π∈++= xxxxxf  

  03cos2coscos)( =++=′∴ xxxxf  

  02coscos22cos =+⇒ xxx    

  0)cos21(2cos =+⇒ xx  

  
4

3
,

3

2
,

4

πππ
=⇒ x  

 

  xxxxf 3sin32sin2sin)( −−−=′′  

  0
2

3

2

1

4
<−−=







 π
′′f  

  00
2

32

2

3

3

2
>−+

−
=







 π
′′f  

  .0
2

3
2

2

1

4

3
<−+

−
=







 π
′′f  

  f∴ has local maximum at 
4

π
and ,

4

3π
and local minimum at .

4

2π
 

 

 ii) 
2

1
2)(

x
xxf +=  

  10
1

12
2

2)(
33

=⇒=







−=−=′ x

xx
xf  

  0)1(
6

)(
4

>=′′⇒=′′ f
x

xf  

 

  Hence f has a local minimum at .1=x  

 

E12) i) 0)0(3)(2)( 23 =′⇒=′⇒+= fxxfxxf  










=

+

xx

xx

cos2cos2

3cos2cos
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                                                          .0)0(6)( =′′⇒=′′ fxxf  

  .0)0(6)( ≠′′′⇒=′′′ fxf  

  0=∴ x is not a local extremum.  

 

 ii) 0)0(1cos)(sin)( =′⇒−=′⇒−= gxxgxxxg  

  .0)0(sin)( =′′⇒−=′′ gxxg  

  .01)0(cos)( ≠=′′′⇒=′′′ gxxg  

   

  So g has no local extremum at 0=x . 

 iii) .
6

sin)(
3

x
xxh +=  

  .01)0(
2

cos)(
2

≠=′⇒+=′ h
x

xxh  

  0=∴ x is not a local extremum 

 

 iv) 
2

1cos)(
2

x
xxk +−=  

  0)0(sin)( =′⇒+−=′ kxxxk  

 

  0)0(1cos)( =′′⇒+−=′′ kxxk  

 

  0)0(sin)( =′′′⇒=′′′ kxxk  

 

  .01)0(cos)( )4()4( ≠=⇒= kxxk  

 

  Since 4 is even, k has a local minimum at .0=x  
 

E13) ].5,2[,11224)( 234 −∈++−−= xxxxxxf  

  

 0330124124)( 2323 =+−−⇒=+−−=′ xxxxxxxf  

   

  0)1)(3)(1( =+−−⇒ xxx  

  .3,1,1−=⇒ x  

 
 We look for absolute max. and min. values among 

).5(),3(),1(),1(),2( fffff −−  

 

 .136)5(,8)3(,8)1(,8)1(,17)2( =−==−=−=− fffff  

 

 f∴ has a global or absolute maximum at ,5=x and a global minimum 

at 1− and .3   
 
 
 
 
 
 
 
 
 
 




