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BLOCK INTRODUCTION

In the previous block you studied the differentiation of real-valued functions. In
this unit we study the notion of integrability of a real-valued function.

You already know from the Calculus course BMTC-131 that there are
essentially two ways of describing the operation of integration. One way is to
view it as the inverse operation of differentiation. The other way is to treat it as a
limit of a sum. Here we first discuss the second method. We will follow a similar
procedure studied in the calculus course. For a given real-valued function
defined a closed bounded interval [a,b],we form a sum known as Riemann

sums using portions of [a,b]. If the limit of these sums exist when the partition
becomes finer and finer, then that limit is called Riemann integral.

You recall that in the calculus course we introduced the notions of upper sums
and lower sums of a bounded function f on aninvterval [a,b]. These are

sometimes referred to as Darboux sums. Here we will study that if a function is
integrable, then both the limits give the same value as integral. As compared to
the method of integration discussed in the Calculus course, the method
discussed in this block has the advantage that it extends to the complex-valued
functions.

The material covered in this block is divided into three units. In unit 1 we
introduce the notion of Riemann integral of a function defined on a closed and
bounded interval [a,b]. We begin with the definition of portion of [a,b], norm of

a partition related concepts. Using these concepts we define Riemann sums for
a function defined [a,b]. The limit of Rimann sums of a function as the norm of

the partion tends to 0 is, if it exists, is called the Riemann integral. We also
discuss the Riemann integrability of certain standard functions. After that we
shall discuss a criteria to decide integrability of a function known as Cauchy
criteria for integrability.

In the next unit, Unit 15, we shall consider the algebra of integrable functions. In
the previous unit you have seen that there are some integrable functions as well
as some non-integrable functions also. Here you will study that the set of all
Riemann integrable functions, denoted by R[a,b]is closed under addition and

multiplication by real numbers, and that integral of a sum equals the sum of the
integrals. You will also see that the difference, product and quotient of two
integrable functions is also integrable. Then we shall establish the integrability
of several important class of functions: step function, continuous functions and
monotone functions. The notion of integral as a limit of sums allows us to
compute the integral in some cases. Nevertheless, it is not convenient for large
class of function. We do require the process of differentiation to compute the
integrals for certain class of functions. What is the relationship between the
notions of differentiability and integrability? In the case of continuous functions,
this relationship is expressed in the form of an important theorem called the
Fundamental Theorem of Calculus, which is the main content of Unit 16. In this
unit we shall have two additional theorems known as Mean-value Theorems of
integrability which is analogous to the Mean-values Theorems of differentiability.
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Notations and Symbols (used in Block 5)
(Also see the notations used in Volume 1)

Jf(x)dx Riemann integral function of f

R(a,b) Class of Riemann integrable function
P(la,b)) set of partitions on [a,b]

t, tags in a partition of (a,b)



UNIT 1 4

THE RIEMANN INTEGRAL

Structure Page No.
14.1  Introduction 127
Objectives
14.2 Partitions and Tagged Partitions 128
14.3 Riemann Integration 132
14.4  Cauchy Criterion for Integration 139
14.5 Summary 146
14.6  Solutions/Answers 146

14.1 INTRODUCTION

You have learnt from Block 4 of the Calculus Course BMTC-131 that the
indefinite integral Ig(x) dx of a real-valued function g defined on some interval

[a,b]is the function G for which G’(x) = g(x). Then the definite intergral
b
'[g(x) dxis defined as the real number G(b) —G(a). This idea is highly useful

in computing the area of many geometric objects in the plane, by identifying
them as regions enclosed by graphs of appropriate functions. Later the work of
Mathematician and Physicist J. Fourier (1768-1830) on analytical theory of
heat conduction led to the beautiful theory on definite integrals. The first of
which was due to the famous German mathematician G.F.Bernhard Riemann
(1826 - 1866) and the second was due to the French mathematician Henri L.
Lebesgue (1875-1941). In this unit we shall introduce you to Riemann Theory
of Integration.

In Section 14.2 we familiarize you with some preliminaries required for defining
Riemann intergrals. We define the notions of partitions, tag points and the
corresponding tagged partitions of an interval [a,b]and use these notions to

define the Riemann sums of a function defined on|a, b].

In Section 14.3 we define the Riemann integral of a function defined on[a,b] as

the limit of Riemann sums. Some examples of Riemann integrable functions are
discussed.

In Section 14.4 a criterion for checking the Riemann integrability of a given
function is considered. We state and prove a theorem known as Cauchy
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criterion for Riemann integrability. You will learn that this criteria generates a
class of functions which are not Riemann integrable. In this unit we have also
discussed the connection between the theory of integration established by
Riemann sums and the theory developed using the upper sums and lower sums
explained in Block 5 of the Calculus Course. The latter integral is historically
known as Darboux integral due to the Mathematician (Darboux). We observe
that the value of the integral remains the same, no matter how one evaluate the
integral.

Objectives

After working through this unit you should be able to

e explain the concept of partition, norm of a partition and tagged partition;
e define and compute the Riemann sums for a function;

e check the Riemann integrability of functions using Riemann sums;

e state, prove and apply the Cauchy Criterion for Riemann Integrabiltiy;

e state the connection between Riemann integral and Darboux integral.

14.2 PARTITIONS AND TAGGED PARTITIONS

In this section, we discuss some preliminary concepts which are required to

define an integral of a real valued function, defined on an interval [a,b].

Recall that in the Calculus course you have learnt that an integral represents an

area of the region between a graph y = f(x), xe€ [a,b]and x -axis and the lines

x=aand x=b. (See Fig. 1). For instance consider the function

f(x)=4x —12x" +9x+1, xe [0,1]for which the integral of f(x)is given by

the area of the shaded region,Ashowln in Fig. 1.
P3

3
P P
P, A7+
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Fig. 1

3
Suppose we are in need of evaluating the definite integral Ig(x)dx where the
0

function g:[0,3] > Ris defined by

2, for0<x<l1
g(x)=
3, forl<x<3.

Note that g is not continuous at x =1. From the Calculus course you have
learnt that

jjg(x)dx:j;g(x)dﬁfg(x)dx:Ezdx+f3dx: 2%(1-0)+3x(3-1)=8



Uit 1 e T NE. RIEMANN Integral
On the other hand, the graph of the function g, given in Fig. 2, suggests that

this value of the integral is the sum of the areas of the rectangles of heights 2

and 3 on the subintervals [0,1]and (1,3]respectively (of the domain of g,

namely, the interval [0,3])which is given by 1x2+2x3=8.

3| ( .
20—o
1_
| | |
1 2 3

Fig. 2: Graph of g

This motivates the basic idea of the Riemann theory of the definite integral of a
real valued real function. Note that, the splitting of the integral into two parts, as
above, is a result of partitioning the base of the interval[0, 3] into two

subintervals [0,1]and [1,3]. For convenience, we denote this partition as the
set P=][0, 1, 3]. This leads to the following definitions.

Definition 1: A partition of a closed and bounded interval I =[a,b]inRis
defined as a finite, ordered set P =(x,, x,,...,X, ,,X,) of points in I such that

a=xy<x <..<x,,<x,=b.
Obviously, the points of P divides I into subintervals
I =[xy, x 1.1, =[x, x%,1,..1, =[x, x,]

of non-overlapping interiors (i.e. intersecting only at some end points.)
The typical closed subinterval [x,_,,x.]is called the i-th subinterval of the
partition P.

Definition 2: The length of the i-th subinterval [x _,, x,]is the difference
x; — x,_, and we denote this by

Ax, =x,—x,_, ((=12,.,n)

In situations where no confusion arises, we may denote, for convenience, the
partition P by {[x, ,,x, ]}, and the subinterval [x,_,,x;]by its length Ax,
itself.

The following figure explain this (See Fig. 3).

k—AX—K—AX,—] k- ax k=ax—|

| |
| |

Fig 3: Partition, subintervals, lengths of different subintervals

When all the subintervals are of equal length, the partition is called a standard
partition. 129
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Definition 3: For the partition 7P, of an interval [a,b]given by
P={a=x,,x,....x, =b},we define the norm (or mesh) of P is denoted and
defined by

"73” =max{x, — Xy, X, — X5..0n X, — X, , }.

Obviously, the norm of a partition is the length of the largest subinterval into
which the partition divides[a, b].

We make some remarks here.

Remark 1: Clearly, the norm is a real valued function of the partition (i.e.,
| [|: { set of all partitions on [a,b]} — R}.. However, many partitions can have

the same norm. For instance, P, =(1,2,3,7)and P, =(1,5,7) are different
partitions of [1,7]having the same norm 4.

Now, we are going to build a theory to calculate the integral (i.e., the area which
it represents) for some functions. Let us consider the function given in Fig. 4.
The partitions are giving the base of the rectangles but we still need to
determine the heights of the rectangles for calculating the area. Now, for the
function given in Fig. 4 we need to determine the height. This has to be a value

that the function takes (assumes) within the intervals of partition. Let 7,,1,,....7,
be points within the intervals of partition (see Fig. 4).

\ / \//

\ %

%o T%1\%2 A %3\2‘ D A % A
4

t1 t2 t3 t5 t6
Fig. 4:

Now, if you carefully observe Fig. 4, you will see the shaded region does not
represent the exact area which we need to calculate to find the integral in
general. So, at this stage, the sum of areas of the rectangles with subintervals

[x,_,,x;]as their bases and the values f(;)as height is called a Riemann sum
(instead of calling it integral).

Points ¢ selected from each subinterval I, =[x, ,, x;],is called a tag of the
subinterval I.. For a given partition P, a set P consisting of ordered pairs
(1,,t,) of subintervals and their corresponding tags is called a tagged partition
of I.Thus, atagged partition of / is the setP = {U,t):t.el =[x_,x],

i=1,2,...,n}. (Carefully note the cap over P which indicates that a tag has

been chosen for each subinterval.) The tags can be chosen arbitrarily. One can
choose the tags to be the left endpoints, or the midpoints of the subintervals, etc

(See Fig. 4 (a)). Note that an endpoint x;of a subinterval [x,_,,x;]can be used
as a tag for both the consecutive subintervals [x,_;,x;] and [x,;,x,,]. Since a



Unit 14 The Riemann Integral

point can be chosen from a subinterval in infinitely many ways, each tag can be
chosen in infinitely many ways. Consequently, each partition can be tagged in
infinitely many ways.

We make a remark here.

Remark 2: Since the length of a subinterval [x,_,,x;]does not depend on the

choice of any of its tag,, the norm of a tagged partition P is defined as the
norm of the corresponding ordinary partition P .

We formally make a definition now.

Definition 4: The Riemann sum of a function f :[a,b] — R corresponding to a
tagged partition P= {([x,_,,x,1,t,)}, of [a,b] isthe number S(f;p)defined
by

SUPY= Y FE) 05— )

The idea behind defining the Riemann sums will be clear to you in the next
section. At present let us have a close look at the computation of Riemann sums
given by Eqgn. (1).

We now consider some examples to give you some practice for dealing with
partitions and finding norms,.

Example 1: Find the norm of the partition given below of [0,1].
p=1olt LIL31133(3 1.
21275 574 | 4

1 1
Solution: Here Axlzl—O:l,sz 2_7 7,Ax3:§—§=iand
2 2 5 2 10 4 5 20

1
Ax, =1—% :Z.The norm of the partition is given by

[P = ma {liil} 1
2°10°20°4] 2

Example 2: Let f(x)=x,xe€[0,1].Let P, be the tagged partition formed by
the subinterval

Il[o,l}lz[l,z}g—[z 3} ..... , i=[i ’} ,In—[ _l,l}wherethe
n n n n n n n n

,i =1,...,n.Calculate the Riemann sum S(f,P,).

*kk

tags are given by t, = =L
n

. 11
Solution: Here f(x)=xand tizi,izl,...,n,Axi:i—l—:— for all
n n n n

i =1,2,...,n. Therefore, by the definition of Riemann sums, we have
N L 2ifl
S(fsPY=D f1) (%~ x.) =Z—H
i=1 i=1 M\ N
1 &,
=)

131
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*k %

You can solve some exercises on your own.

E1)  Two partitions of the interval [—1,1] are given by

et
2 2 2112

o el
4 4 3] |3

Find the norms of the partitions P,and P,.

E2) Let f(x)=3x, calculate the Riemann sums where

i) 75l ={0,1,2,4} with tags at the left end points of the sub interval.

ii) 752 =1{0,2,3,4}with the tags at the right end points of the sub
interval.

You may note that a Riemann sum can only be an approximation to the area
under the graph. The more narrower we make the rectangle, more close the
Riemann sums should be to the actual area. So, we want a measure of how
narrow the rectangles in a partition can be. In the next section, we shall explain
this.

14.3 RIEMANN INTEGRATION

In this section we shall introduce the concept of Riemann integral of a real
valued function f defined on an interval [a,b], and discuss functions which are

Riemann integrable. In what follows all functions considered will be bounded
functions.

Definition 5: A function f :[a,b] — Ris said to be Riemann integrable on
[a,b] if there exists a number Le R such that corresponding to each € >0

there exists 8, > Osatisfying |S(f;P)—L|<e for every tagged partition P of
[a,b] with H75‘<88.

If such a number L exists for f, itis defined as the Riemann integral of f

over [a,b]. Inthis case, we write L= Ibf or L= Ibf(x) dx . The function fis

called the integrand and aand b are called the bounds of the integral with
‘a’ being the lower bound and 'b 'being the upper bound.

It should be understood that any letter other than x can be used in the

b
expression '[f(x) dx, so long as it does not cause any ambiguity.



Unit 14 The Riemann Integral

Theorem 1:1If f € R[a,b], then the value of the integral is uniquely determined.

Proof: Assume that both L and L” satisfy the required condition in Definition 1
of Riemann integrability of f over [a,b]. Let £>0. Since L  satisfies this

condition, there exists &,,, >0such that

ScrP L)< @)

A

P

required condition, there exists d,,, such that

for all tagged partitions 75l with ‘

<38.,,. Since L”also satisfies the

S(fPy 1)< )

for all tagged partitions 752 with ”752” <3d,,,.

Take 8, =min{3,,,,8,,,}. Clearly &, >0since both &,,,and 3., are
positive.

Let P be any tagged partition of [a,b] with ||75||<8€. Then ||75H<8;/2 as
well as ||75|| <38/ ,,,since 8, <3,,,andd, <3&.,,. Now from (2) and (3), we get

‘S(f;f?) —L" <g/2and ‘S(f;f?) —L"| <¢€/2 . An application of triangle
inequality as can be seen in the second step below gives

L'-L]=|L=5(f;P)+S(f;P)-L]
<|L=s(f;P)|+|s(rsP)-L]
e €
< pail
2 A
=t
Since & > 0is arbitrary, it follows that L' =L”. u

We look at some simple examples to understand the definition of Riemann
integral.

Example 3: Show that every constant function on [a,b] is Riemann integrable
and, find its integral.

Solution: Consider a constant function f defined by f(x)=a for all
x€ [a,b], where a e Ris fixed. Then for any tagged partition

P={(x_..x1.1,)}", of [a,b], we have f(t,)=aforall i=1,...,n and hence

S(FP)=> alx—x,.,)

= (l;[(xn -x, )+(x,_,—x )+(x,_,—x _3)+..+(x— xo)]

=0ol(x, —x,) 133
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Hence, for any € >0, we can choose 0, =1(or any positive real number) so

that if H75 H<88,then
S(f;P)—ob—a) =0<e

Since this is true for every € >0, we conclude, by taking L=o(b—a),that
f € Rla,b]. Further,

[ ) =ab-a).

*%k%

Example 4: Consider our opening example g :[0,3] — R defined by

2, for 0<x<1
g(x)= :
3, for1<x<3

Show that g is Riemann integrable, and find its integral.

Solution: Our earlier experience hints that the Reimann integral of g might
be 8.

Consider any tagged patrtition P of [0,3] with ||75||<1.Let 75l be the subset of

75having its tags in [0,1] where g(x)=2, and let 752 be the subset of P with
its tags in]1,3] where g(x)=3. Then

S(8:P)= Y8 (3~ %)

n n

2 z g()(x, —x,_)+ Zg(t,-)(xi_x,-_l)

1;€[0.1].i=1 t;€]1,3].i=1
Hence S(g:P)=S(g;P)+S(g:P,) o (4)

Let H?ADH <B.Then B < lsince, by assumption, H75 H <1.We claim that the

interval [0,1—] is contained in the union of all subintervals in P with tags

t. € [0,1]. To prove this, let u e [0,1—B]. Obviously, u <1—p. SinceP, is a
subset of P having its tags in [0,1],u lies in some subinterval [x,,x,] with
tag ¢, €[0,1]. Butthen x,, <u obviously. This together with u <1—fimply

that x,_, <1-PBsothat x,, +B<1.But x,—x_, SH?ADH =f. Hence

x, <x_, +B<1,andin such acase, [x,_,x,]c[0,1] so thatthe tag ¢, €[0,1].
Thus each u e [0,1—]lies in some subinterval of P with tag ¢, €[0,1].
Consequently, the interval [0,1—[3] is contained in the union U of all
subintervals in75having their tags ¢, € [0,1]. Hence the claim. Further,
[x._,,x,1c[0,1]]= U c[0,1]c[0,1+f]. Since g(z,) =2 for all the tags
t,€[0,1], we have
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2(1-B) < S(g;P)<2(1+P) ... (5)

A similar argument shows that the union of all subintervals with tags ¢, € (1,3]
contains the interval [1+3,3] of length 2—f3, and is contained in [1—f, 3] of

length 2+ 3. Therefore,
32-P)<S(g;P,)<3(2+B) .. (6)
Adding these inequalities and using equation (6), we obtain
8-5B<S(g;P)=S(g;P)+S(g;:P>)<8+5P
Thus —5B<S(g;P)—8<+5B orequivalently,

‘S(g;f?)—S‘SSB:SHfDH ()

Now, let £ > 0 be given. Choose 9§, to be any positive number less than min
(1,e/5) . (For example, take ., =(1/2)min(l,€/5). Then H75 H<8/5.For all

partitions P of [0,3] withH75H<8£and hence by (7), |S(g;75)—8‘<£.8ince

€ > 0 is arbitrary, we see that g e R[0,3] and J.O3 g =8, as expected.

*kk

From the example above, you must have realized that it is not easy to use the
definition to show that a function is Riemann integrable. In the example, above
the function was a constant in the subpartitions i.e. g(x) =2in [0,1]and

g(x)=3in [1,3]. Therefore, we have concentrated only on the partitions whose

norms go to zero, and did not worry too much about the tags in the partitions.
Sometimes, we employ some tricks that enable us to guess the value of the
integral by considering a particular choice of the tag points.

We shall illustrate this in the following example.

Example 3: Consider the continuous function %:[0,1] — R defined by
1

h(x)=x for xe[0,1]. Show that he R[0,1],and '[h(x)dx:%.
0

This assertion is an immediate consequence of a result which we will prove later
that every continuous function f : [a,b] — R is Riemann integrable.

Solution: Let P ={I,}’_ be any given partition of [0,1]. Choose the tag of the
interval I, =[x,_,, x,]to be the midpoint g, =%(xl._1 +x;). The Riemann sum

S(h;@)corresponding to the tagged partition 0= {(1,,q,)},is calculated as
follows:

S(h:0) = Y h(g) (3~ x.) = 31Q, (5~ %)

135
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LetP = {(I,,1,)}], be an arbitrary tagged partition of [0,1]with H75 H =p.Then
x, —x,_, <Pforall i=1,...,n. Using the same class of intervals in the basic
partition P, form a new tagged partition 0 by choosing the tags ¢;to be the
midpoint of the intervals I.. Since both #,and g;belong to the same interval
I,, we have |t,—q,| < Bfor eachi=1,...,n. Then

Zn:ti(x[ - X))~ Zn:('x[ —X;1)
i=l i-1

< Zn:|t[ _Qi|(xi — %)
i=1

NUERENOE

i — Q)% —x,))

< Bi (x;—x )= B(xn - X,)

-p-0=p=]7|
But, as noted earlier, S(h;Q) :% .
Hence S(h;’ﬁ)—; SHPH .. (8)

Now, for any given €>0, choose 6 =¢. Then for every tagged partition P of

[0,1]with HP H <&, from (8), we obtain <& Hence he R[0,1]and

o1
S(h;P)——
(s P) 5

1 1 1
jh(x)dx:jxdx:'.
0 0 2

Let us see some more examples.

Example 4: Let F :[0,]] - R be defined by F(x)=1for x=
1

F(x) =0elsewhere. Show that F'e R[0,1],and '[f(x)dx =0.
0

1 2 4
Solution: We first note that each of the points g,g,%and gin [0,1] at which

the function F is not 0 can belong to at most two subintervals in a given tagged
partition P Since there are 4 such points, there are at most 8 subintervals in P
only can make non zero contributions to S(F,P).Therefore, for a givene >0,
we choose 9, =¢€/8.

LetPbe a tagged partition of [0,1] withH75 H <9, . If none of the points

% % % % is a tag inP, then F(t;) =0at all the tags and hence S(F; P)=0.

N A 234
Otherwise, let P,be the subset of P with tags different from 525 and
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let P, be the subset of P with tags at these points. Since S(F;P,) =0, we see
that
S(F;P)=S(F:P)+S(F:P)=S(F:P).

Since there are at most 8 terms in the sum S(F;751)and each term is less than
5,.we see that 0< S(F;P)=S(F;P) <88, =¢.Thus Fe R[0,1] and

jF(x)dsz.

*k %

Example 5: Let G:[0,1] - R be defined by G(x) =x,if x :l for some

n

ne Nand G(x)=0elsewherein[0,1].

For a givene > 0, define E, ={x€[0,1]1 G(x) =2 €} . Since there are only finitely

1 e L
manyn € N such that —2¢, E_is a finite set. Let n, be the number of points in
n

€ N
E, . Choose d =——. Consider any tagged partition P of [0,1]such that

2n,

”75” <9,. Let P, be the subset P of with tags outside of E,and let P, be the

subset of P with tags inE, . Then, as in Example (7), we have

0<S(G;P)=S(G;P) < (2n,)3, =¢.

1
Since € > 0is arbitrary, we conclude that G € R[0,1]and '[G =0.
0

*kk

So far we have considered examples which show that certain standard
functions are Riemann integrable and what are its integrals. Infact the definition
of the Riemann integral allows us to compute the value of the integral, if it exists,
as a limit of Riemann sums.

We shall prove a theorem which is useful for computing the integral if a function
[ is Riemann integrable.

Theorem 2: Let f =[0,b] — R be Riemann integrable. Then for any sequence
of partitions{P, }of [a,b]with lim‘

—0

A

P ||l=0and for any associated sequence of

of tags{z,},we have
b
lim S(f:P,) = [ f ().

75,1 =0, let

Proof: Let {75,1 }::1 be a sequence of partitions of [a,b]with lim

n—>oo!

{t }_ be an associated sequence of tagged sets and let € > 0.Since fis
Riemann integrable, there exists 6 > 0 such that for all the partitions of [a,b]
with [P| < dand associated tagged set T we have

<€ ... (9)

S(f,P)= [ f(x)dx

137
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A

P,

Also we are given that lim = 0. This implies that given & > 0, there exists

N € N such that |73n <dforall n>N. This together with the inequality given in
(9) shows that forall n >N,

<€

S(f P = f(ndx

b
Hence we get that lim S(f,P,) = j f(x)dx. m

We shall now give an example to illustrate the theorem above.
Example 6: If f(x)=xis Riemann integrable on [0,1],then show that

j'xdxzé.

0

Solution: Let us consider the partition P, = {l :1=0,1,..., n} and tags
n

{l,i =1,..., n} Then we have

n
A n’+2n
S(f,P)=
f.P) e
tim S(f B = lim "t L
“n—m g £ n—oo 27[2 2

1
Hence by Theorem 3 '[xdx :;
0

[You recall that according to the integration formula, you already know that
2 1

0 d _xt 1
'[x x—? =5

0 0
*kk

Remark 3: Remember that the theorem will help you to compute the value of
the Riemann integral of a function if only if we assume that f is Riemann
integrable.

Why don’t you try some exercises now.

E3) Show that the function f :[0,2]— R defined by

2,if 0<x<l,

f(x):{L if 1<x<2.

is Riemann integrable on [0,2] and evaluate its integral.

E4)  If the function f(x)=x"is Riemann integrable, then show that
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0 if xe[0,1] is rational

E5 Let g(x)=
) 8(x) llf x € [0,1]is irrational
X

Explain why g ¢ R[0.,1].However, show that there exists a sequence
(75n) of tagged partitions of [0,1] such that H?ADHH —0and lim S(f;f?n)

exists.

By now you must have realised that unlike continuity and differentiability, it is not
easy to check the Riemann integrability of a function. We need to look for a
criterion to prove that a function is Riemann integrable. In the next section we
shall consider this.

14.4 CRITERIA FOR RIEMANN INTEGRABILITY

In this section we shall discuss two criteria for Riemann integrability. These
criteria will help us to decide on the existence of Riemann integrability of a given
function. It does not tell us the value of the integral. We shall first prove a
theorem which is powerful tool for showing the existence.

It is reasonable to try to check the Riemann integrability of a given function

without guessing the value of its integral which may or may not exist. The
following theorem on the Cauchy Criterion is a powerful tool in this context.

Theorem 3 (Cauchy Criterion for Integrability): A function f:[a,p] >R
belongs to R[a,b]if and only if for every € > 0 there exists 1, >0such that if

Pand Qare any tagged partitions of [a,b]with H7A3H<n8 and HQH<ng,then
S(f:P)-S(f:Q)|<e.
Proof: Assume that f € R[a,b]with integral L. Let € > 0 be given. Since
f € Rla,b], there exists 1, >0such that
A €
scriP)-1 <>
2
for every tagged partition Pof [a,b]with H75H <.

Hence if Pand O are any two tagged partitions of [a,b]with“75H<n£and
HQH<n£,then ‘S(f;f?)—L‘<8/2as well as ‘S(f;@)—L‘<8/2.Therefore
S P =S(£:0)|<[S(fiP)~ L+ L=S(£;0)
<|S(FP) - L) +[L-5(£:0)
<g/2+el/2==e

Conversely, assume that a given function f :[a,b] — R has the property that 139
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for every € > 0 there exists a corresponding 1M, >0such that whenever pand

A

Q
‘S(f;75)—S(f :Q)‘ < &.Then by choosing € =1/nfor each ne N, we select

O are tagged partitions of [a,b]with H?A?H <m.and <m,.then

8, > Osuch that for any two tagged partitions Pand O with norms less than
d,,we have

S P)-S(f:0)|<1/n

The choice of §,can be done in such a way that 8, 29, forall ne N.For

n+l

otherwise, we replace 8 by & =min{J,....,8, }.Now, for each ne N,

choose a tagged partition P with H?ADHH <9,.Clearly, if m> nthen

H?AD,”H <8, <3,.Hence both P, and P, have norms less than §,,so that

NN

<l ... (10)
n

for all m > n.

oo

Consequently, the sequence (S(f;73m))m=1is a Cauchy sequence inR.
Therefore, by Cauchy Convergence Criterion for sequence this sequence
converges inR.Take A=1lim,, S(f;75m). Fixing n e N and passing to the limit
in (10) as m — oo, we obtain

S(fiP - A<t
n

for ne N.
We claim that f € R[a,b]and A is the Riemann integral of f.For this,

consider any € > 0.Choose K e Nsatisfying K > %so that 1/K < %
€

If Ois any tagged partition with HQH <&, then ‘S( £:0)-S(f:P)

<1/K,

since ‘75,( < d,.Consequently,

s(£:Q)- 4 <[s(1:Q)- s P0)
1 1 & ¢

<—+—<—+—=¢
K K 2 2

+[s¢rPo-A

Since € > 0is arbitrary, we obtain f € R[a,b]with integral A.This completes
the proof. [ |

The example below illustrates the Cauchy Criterion.

Example 7: Let g :[0,3] - Rbe defined by

(1) = 2, for 0<x<]1,
§H= 3, for 1<x<3.
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3
Using Cauchy criterion show that jg(x)dx exists.
0

Solution: We have seen that ge R[0,3]. Also, if Pis any tagged partition of

[0,3] with Hf?H < 9, then as we have seen in Example 4,

8—58<S(g;P)<8+55 . (1)

Hence if O is another tagged partition of [0,3] with HQH <9, then

8-58<S(g;0)<8+58
and consequently,

—8-58<-5(g;:0)<-8+58 ... (12)
Adding the inequalities (11) and (12), we obtain

—108< S(g;P)—S(g:0) <108
Interchanging Pand Qin the above, we obtain

~108<S(g;9)—S(g;P) <108
and hence

S(g;P)—S(g:9)| <108.

Thus, by choosing M, =0 =¢&/20corresponding to any given € > 0,we see
that the Cauchy Criterion is satisfied for g.

* %%

Since the Cauchy Criterion is necessary and sufficient for the Riemann
integrability of a function, it can be used for concluding that if a given function is
Riemann integrable or not. The following example yields a function which is not
Riemann integrable.

Example 8: Let f :[0,1] — R be the Dirichlet function, defined by

1 if x€[0,1]is rational

0if xe[0,1]is irrational

J(x) ={
Using Cauchy criterion show that f is not Riemann integrals.

Solution: Let ¢, = % If Pis any partition of [0,1] all of whose tags are rational

numbers then S(f;75)=1, while if Qis any tagged partition of [0,1]all of
whose tags are irrational numbers then S(f;Q) =0.Note that it is always

possible to choose such tagged partitions Pand O with H?ADH < das well as 141
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HQH < d for any choice of & > 0.But, in all such cases, we obtain

- A 1
‘S(f;P) -S(f;9) :1>§=£0 (Note that the choice of €,can be any real

number in (0,1)). Thus the Cauchy Criterion is not satisfied by f.Hence the
Dirichlet function f is not Riemann integrable.

*k %

Thus we have established a criterion for checking the existence of Riemann
integrability.

Next we shall prove result which will be used to establish the Riemann
integrability of some important classes of functions.

Theorem (Squeeze Theorem) 4: Let f :[a,b] > R.Then f e R[a,b]if and
only if for every € > 0 there exist functions o, and ®.in R[a,b]with

j(cog—ocg)<e ... (13)

such that for all xe [a,b],
o, ()< f(x)<m,(x) ... (14)

Proof: If f e Rl[a,b], then for any given € >0, it is enough to choose

o, =, = f so that both (13) and (14) follow obviously.

To see the converse, let € > 0and choose «,,®, € R[a,b], satisfying (13) and
(14). Since a.,®, € R[a,b],there exists O, > Osuch that if P is any tagged

partition with 75” < §,then

b
S(ocg;P)—joc£ <eas well as <eg

a

S((;)E;P)—joa£

From these inequalities, it follows that
b b
.[ocg —e<S(a,;P)and S(w,;P) <jw£ +€

In view of inequality (13), we have
S(o;P)SS(f;P)<S(w,;P).
Hence

a b
ja£—£<S(f;P)<jm£+e
b a
If Q is another tagged partition with HQH < 9,,then we also have

jocg—e<S(f;Q)<joag+e
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Subtracting these two inequalities, we obtain

[ —0)-26<5(£P)-S(£:9) <[ (@, -a,) +2¢

and consequently,

[S(f3P) = S(fF:Q) < [ (@, —ar,) + 26

b
But by (3), we have j(mg—a£)<e. Hence |S(f;P)-S(f;Q)|<3¢. Since

€ > 0 is arbitrary, the Cauchy Criterion implies that f € R[a,b]. This completes
the proof. [ |

By now you must have realized that the complexity involved in working with the
Riemann sums is due to the condition that for a given € > 0 we need to work
with different partitions and associated tagged points.

The following theorem shows that every Riemann integrable function is
bounded.

Before that we state an important property of Riemann integrability.

Theorem 5 (Bounded Theorem): If f € R[a,b], then fis boundedon [a,b].

Proof: Assume that f € R[a,b]is a unbounded function with integral L.Then

for the choice € =1,there exists 8, > Osuch that ‘S(f;f?) —L‘ <1for every
tagged partition Pof [a,b]with H75 H < §,. Since the triangle inequality yields
N X |)—q y H <|x—y|forall x,ye R,this implies that

‘S(f;f?)‘<|4+1 .. (15)

Let Q={lx_,,x]}'_ be a partition of [a,b]with [Q]<§,.Since |f|is not
bounded on [a,b],there is at least one subinterval in Q, say [xk_l,xk ] on which
| f|is not bounded. If there is no such subinterval in Q,then |f]is bounded on

each subinterval [x,_,x;]by M., and hence it is bounded on [a,b]itself by
max{M,,...M,}.

Now, we tag the partition Q as follows: Choose 7, = x; for all i # k.Since |f|is

not bounded on [x,_,, x, ], there is some xe€[x,_,x,]such that |f(x)|>M

where M =(1/(x, —xk_l))x[|L|+1+

z f(t[ )(x[ - xi_1)

i#k

j. Choose ¢, = xfor

completing the tagging of Q. Then

|Fa (e, —x )| > | L+ 1+ ) (x —x)

t#k
and consequently, 143




Block 5

144

Integrability of Functions

[5(£:0)| 2| f )05 %)) - >|1]+1,

z JE)(x = x)

i#k

using the inequality |x— y|> ‘ (| x|=|y| )‘for all x,ye R,as mentioned in the
beginning. This is contradicts to the inequality in (1,5) for the tagged partition
O and hence [ is not Riemann integrable on [a,b]. [ |

In fact, we have proved the following.
Corollary 1: An unbounded function cannot be Riemann integrable.

The Boundedness theorem says that every Riemann integrable function is
necessarily bounded.

Let us now briefly recall the theory of integration you learnt in the Calculus
course.

We begin with a bounded function define on [a,b].

Let f :[a,b] — Rbe bounded and let 7 ={|x_,.x|}" be a partition of [a,b].
For i=1,2,...,n,define

M, =sup{f(x):xe[x_,x,]}and

m, =inf{f(x):xe[x_,x]}.

Define the upper sum U(P, f) and the lower sum L(P, f)of f corresponding
to the partition P by

U(P,f):zn:Ml.(x[—xH)and ... (16)
L(P, f) :imi(xi 1) ... (17)

b
The upper and lower Riemann integrals of f denoted by If(x)dx and

b
_[ f(x)dx respectively are defined by
. ;
Upper interval = j f(x)dx=inf U(P, f)and

b
Lower interval= _[f(x) dx=sup L(P, f)

where the infimum and the supremum are taken over all possible partitions P of
[a,b].If the upper and lower integrals are equal, then the function fis Riemann

integrable over [a,b]and the common value is defined as the Riemann integral
of f.

Theorem 6: Let f :[a,b] —> Rbe bounded and let P={a=x,,....x, =b}be a
partition of [a,b]. Then for all associated set of tagged points T ={t,,...,Z, },
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inequalities L(f,P)< S(f;P)<U(f,P).

Proof: The inequality follows from the fact that if 7, € [x,_,,x;]for all
ie{l,2,...,n},then m < f(t,) <M forall ie{l,2,..,n}.Hence

Zn:miAxi Sznlf(ti)Axi <M, Ax,

i=1 i=1
Hence the result. [ |

Remark 4: The above theorem says that the Riemann integration which we
have defined in this unit will give the same value as the one that are obtained by
considering the upper sum and the lower sum that is obtained by the process
illustrated in the Calculus course. Note that the latter process assumes that the
function is bounded.

The origin of the theory of integration claims that integral defined by considering
the lower sums and upper sums is due to the Mathematician Gaston Darboux.

The integrals considered by Darboux sums(upper sums and lower sums) are
called Darboux integral. Infact a function is Darboux-integrable if and only if it
is Riemann integrable and the values of the two integrals, if they exist are equal.

Let us now go back to Theorem 5 above which says that if the Riemann sums
are squeezed between upper sums and lower sums can get arbitrarily close to
each other, then fin Riemann integrable. The only way this cannot happen is

when the function oscillates too much, that is, if the function is highly
discontinuous. The following is an example of a function which is not Riemann
integrable. The function is called Dirichlet function.

Example 9: The Dirichlet function f defined by

0, for xe[0,1]1-Q

f(x):{l, for xe QN [0,1]

is not Riemann integrable.

Solution: You can easily calculated that for any partition P, U(75,f) =1land
L(P,f)=0.

.. The function is not Darboux integrable and therefore not Riemann integrable.

*kk

You can try these exercises now.

E6) Supposethat f :[a,b] > Randthat f(x)=0except for a finite
number of points c¢,,...,c,in [a,b].Prove that f € R[a,b]and that

jfz&

This brings to the end of this unit. Let us summarize now the points discussed in
this unit.

145
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14.5 SUMMARY
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In this unit we have covered the following points:

1.

We have explained the concept of Riemann integral of a real-valued
function f defined on an interval [a,b].

We have discussed the computation of Riemann integral of some known
functions.

We have given the Cauchy criterion of Riemann integrability.

We have explained the connection between Riemann integral and Darboux
integral of a function.

14.6 SOLUTIONS AND ANSWERS

E1)

E2)

E3)

Hints/Answers

alpl=2 b |pl=2 o [P|-14
o | 7=2

Hints/Answers

) 0%1+1%21+2°2=0+1+8=9
) 37
) 13
) 33

o O T Qo

Consider any tagged partition P of [0,2] with H75H<1.Let 75l be the

subset of 75having its tags in [0,1[ where f(x)=2and 752 be the
subset of P with its tags in [L,2]where f(x)=1.Then

SCFP)= Y £ =50

n

= Z J@)(x—x_)+ Zn:f(ti)(xi_xi_l)

t;e[0,1[,i=1 tell,2],i=1

Hence S(f,P)=S(f,P)+S(f.P,)

Let H?A?H <B.Then B<1,since by the assumption, H?A?H <lI.

We claim that the interval [0,1—f3)is contained in the union of
subintervals in P with tags ¢, €[0,1[.

To prove this, let u e [0,1—B].Obviously, u <1—B.Since P,is a subset
of P having its tags in [0,1[, ulies in some subinterval [x,_,,x ]with tag
t,€[0,1[.Then x,_, <u. This together with u <1—imply that

x_, <1-B,sothat x,_, +B<1.But x,—x,_, < H?A?H =.Hence

x, <x,_,+B<1,and in such acase [x,_,,x;]<[0,1],so that the tag
t,€[0,1[.
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E4)

Thus each u e [0,1—]lies in some subinterval of P with tag ,€[0,1].
Consequently, the interval [0,1—f3]is contained in the union of all
subintervals in 75having their tags 7, € [0,1[. Hence the claim.

Further, let v=u,then ve [x,_,x;]with tag 7, € [0,1[for some i.Then

x,_, <land v<x.Also, x,—x,_, < HPH =B.

i-1 —

So, v<ux, <x_, +P
<1+B [since x,_, <]
~vel0,1+p]

Thus U c[0,1+].
Since f(z,)=2for all the tags ¢, €[0,1[,we have

2<1-B<S(f,P)<2 (1+P) ... (18)

A similar argument shows that the union of all subintervals with tags
t, € [1,2] contains the interval [1+3,2]of length 1—f and is contained

in [1—-f,2]of length 1—-p.
Therefore
1x(1-B) < S(f,P,) <1x(1+P) ... (19)

Adding the inequalities (18) and (19), we get

31-B) < S(f,P)=S(f,P)+S(f,P,)
< 3(1+B)

Thus —3B < S(f,P)—3<3Bor equivalently
Is(f,P)-3<3p=3|P|
Now let & >0be given. Choose 9, to be any positive number less than
min (1%} Hence for all partitions P of [0,2]with Hf?H <9,,
(s, P)-3l<e
Therefore by the definition of Riemann integrability, f(x)is integrable

2
and j f(x)dx=3.
0
Let {P, }where P, = {i,i = O,l,...,n} be a sequence of partitions and
n

{i,i = 1,...,n} be the associated sequence of tags
n

Now, S(f,Pn)=Zn:f(f,-)Axi
i=1 147
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E5)

E6)

=\ n
1%y
n i=1
n
_ (n+l)(22n+l) since 3i% = n(n+1)(2n+1)
6n i=1 6
Therefore, lim S(f,P,) = lim D22+ D 12(22” 1)
n—oo n—oo n
im0 20
n—e n n
L, L

=—X 2 =
6
Hint: Same as Example

Here there are npoints i,i,,....i, where f is not zero, each of which
can belong to the subintervals in a given tagged partition. Choose

o, = 2£ (proceed same as in the example to get the desired result).
n

Hints/Answers
If uelx_,x].then x_ <usothat ¢, <t <x <x_, +HPH and hence

A

¢ _||75H <x_, <u.Also u<xsothat x,—||P

<x,_, <t, <c,and hence

A

usx, <c,+|P
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15.1 INTRODUCTION

In the last unit you have learnt the definition and some basic facts about
Riemann integrability. You studied that certain standard functions like constant
function, identity function and polynomial function etc are integrable on any
interval [a,b]. We want to know about the integrability of many more functions.
In this unit we discuss some properties of Riemann integrals. This will help us
indentify some more functions in R[a,b]. You will see that R[a,b] includes all

continuous functions.

In Sections 15.2 you will study that the sum and difference of two integrable
functions are integrable. So also is multiplication of an integrable function by a
fixed real number (called a scalar multiplication).

In Section 15.3 we discuss the Riemann integrability of continuous functions,
monotone functions and step functions. Lastly we discuss another useful
theorem known as additivity Theorem.

Objectives
After reading this unit you should be able to

¢ check the Riemann integrability of large number of functions that are
expressed as the sum of simple functions;
¢ identify a step function and find its integral

e apply the result that both the class of continuous functions and the class of

149
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monotonone functions are included in the class of Riemann integrable
functions.

15.2 Basic Properties (or Algebra) of Riemann
Integrable functions

In this section we state and prove some basic results on algebra of Riemann
integrable functions.

The following theorem tells us that when the basis algebraic operations, namely
sum and multiplication by a constant, are applied on Riemann integrable
functions, the resulting functions are also Riemann integrable.

Theorem 1: Suppose that f and g are in R[a,b]. Then the following holds:

b b
) The function kf isin R[a,b] and foreach ke R, and j kf=k j f

b b b
i) Thefunction f+gisin Rla,bl, and [f+g=[f+[s.
Proof: We shall first prove (i)

Let P ={([x;_1,x;1.1,)}"; be any tagged partition of [a,b]. Then
SKFP) =3 (k) (1) (= x) = Dok £(2) (3, = x,)

=k ft;) (x; —x;_) =kS(f{P) (1)

i=1

Let £ > 0be given. If k=0,then by Eqn. (1),S(kf;75) =0 for every tagged

partition? of [a,b]. So, in this case, kf is Riemann integrable, and

b b
Ik T = k'[f . Now, assume that k # 0. Since f € R|a,b], corresponding

£ . . .
to T there exists & such that for every tagged partition P of [a,b] with

H75H <0 we have

£
<m .. (2

b
S(HP-[f

a
Using the triangle inequality, Eqn. (1) and (2), we obtain

b b
SUf s PY =k [ f|=|SUfs PY=kS(f3 PY+kS(f3 P) =k [ f

<|sckrs Py - ks (i) +

b
KS(f;P)—k| f

= |« <e

b
S(P) -[f
150 a
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This is true for every tagged partition P of [a,b] with 1P1< 8. Hence (i)
follows.

To prove (ii), we note that

S(f+&P) =2 (f +&) ) (5 —xi) = 2 (f () + (1) (3 = xi—p)

=1 =1
=3 F) (x5 —xi_)+ D gt) (6 = x;_1)
=1 =1
=S(f;P)+S(g;P).

for every tagged partition75 of [a,b].

Let € > 0. As in the proof of the uniqueness Theorem 3 in unit 14, we obtain a
number &, > 0such that if P is any tagged partition with Hf?H < d,, then both

b b
e Ay £
S(f:P) £f<g/2 and |S(g:P) ;[g<2 .. (3)
Hence
p b b | A b b
S(f+g;73)—[jf+jg}=S(f;73)+S(g;P)—If—fg
E 8
<|S(f;P)- jf S(g:P)- jg<2 S=e

Since ¢ > 0is arbitrary, we conclude that f + g€ R[a,b] and thatits integral is
the sum of the integrals of f and g. ]

Corollary 1: If f,,.., f, are in Rla,b]and if k,..k, € R, then the linear

n

combination f ="k, f; belongsto Rla,b] and

w .
[r= 2k [ £
We leave the proof of this as an exercise for you to try, (see E1).
Next we shall prove another theorem.
Theorem 2: Suppose that f and g arein R[a,b] suchthat f(x)< g(x)
forall xe[a,b], then jff Sjg.

Proof: Since f(x)<g(x) forall xe[a,b], we note that f(z,) < g(z,) forall
the tags ¢, of any given tagged partition P of [a,b]. Then

S(fP) =3 fu) (5 — x-S Y. (1) (% — x;_1) = S (g5 P) - (4)

i=1 i=1

Let € > 0. As in the proof of the uniqueness Theorem 3 in unit 14, we obtain a 151
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number §, >0 such that if P is any tagged partition with Hf?u <0, then

both < % and < % These respectively yield

R b
SUsP)- | f

R b
S(g:P)-[g

b b
£ A A £
[£=5<S(s:P) and S(g;P)<[g+-.

a
b b
From Eqn. (4), we have S(f;P)<S(g;P), so that _[f S_[g+£. But since

€ >0 is arbitrary, we conclude that

f<|g. |

Qe >
Q

Now look at the following corollary.

Corollary 2: If fe R[a,b] and |f(x)|<M forall xe[a,b], then
b
[ 7
a

We leave the proof of this as an exercise for you to try, see E2).

<M@®b-a).

Here are some exercises for you.

E1)  Prove Corollary 1
E2)  Prove Corollary 2

E3) If f and g are two integrable functions, then how that the product
fg isintegrable.

In the next section we shall consider the integrability of certain clause of
functions.

15.3 CLASSES OF RIEMANN INTEGRABLE
FUNCTIONS

In this section we discuss the relationship of Riemann integrability with
continuous and monotone functions.

We shall first discuss the Riemann integral of a step function. Let us now look at
the definition of a step function.

Definition: A function @:[a,b] > R is called a step function if it has only a
finite number of distinct values, each being assumed on one or more
subintervals of [a,b].

For instance, assume that @:[a,b] >R is a step function and % ,k,,..., k
are the distinct values assumed by ¢ on the subintervals I; =[d.d)),
I, =[dy,dy), I3 =[dy.d3),...1,, =ld,_;.d,] respectively, where

n

a=d,<d <d,<..<d,=b.Define ¢,:[a,b] >R by
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Then each ¢, is a step function and is called an “elementary step function"
and every step function @ can be expressed as a linear combination of

n
elementary step functions @, as ¢= ij¢j.
j=1
We shall illustrate this with an example.
Example 1: Let ¢:[-1,3] > R be defined by

2, for —1<x<1,
o(x)=4-1,for 1<x<2,
I,for 2<x<3.

Show that ¢ is a step function and ¢ can be expressed as @ = ij(pj.

Solution: We note that ¢ is a function which assumes only 3 values, namely
=11 and 2.Take I, =[-1L1[,1, =[L2[,1, =[2,3]. Clearly, forall xe[-L13],

P(x) = (2X 9, (X)) + (=1x 9, (x)) + (I1X@;(x))

where ¢,,¢, and ¢, are elementary step functions corresponding to 1,,1,
and [, respectively. .

3
Thus (p:(2><(p1)+(—1><(p2)+(1><(p3):ij(pj where k, =2,k, =—1and
j=1

ky=1.

* k%

Next we shall prove a theorem.

Theorem 3: Suppose that ¢ <d are pointsin [a,b]. If @:[a,b] >R is the
step function defined by

) a, if xelc,d]
X) =
4 0,if x¢[c,d]

b
then @€ Rla,b] and that [¢=ou(d —c).

Proof: We first assume that a > 0. The Riemann sum S(¢, 75) corresponding

to a tagged partition P ={([x.,.,x 1.7, )Y is given by

S(@P)=2 " o) (x; = x,,).

For £>0, choose &, =min {i d—c
3 3

[a,b] such that Pl< s, , then P < &l4a, so that the union of subintervals
£

}. If P is any tagged partition of

of the form [x_,,x,] in P with tags in [c,d]contains the interval
[c+d,,d —8,] andis contained in [¢—3,,d +d,.]. Therefore

o(d —c—28,) < S(@;P) < a(d — ¢ +25,)

153
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and hence
o(d —c)-2a8, < S(¢; P)< ad — ) + 205,

Consequently,

‘S((p, 75) —a(d- c)‘ <200, <3a0, =€
for all tagged partitions P of [a,b] such that H75H < J;. Hence @€ R[a,b]

b
and that [@=0(d —c). I o=0, then the function =0 so that ¢e R[a,b]

b
and J(p =ou(d —c) obviuosly. If a<0,then we write o =—[3,where
B= |0c| > 0. In this case, the function @:[a,b] > R defined by

_|Bif xele.d]
(p(x)_{o if xele.d).

b
is Riemann integrable on [a,b]and that _[(sz(d—c). But ¢=-1-¢.
b b ’ b
Hence ¢ R[a,b] and _[(p:_[—l-(p:—l.'[(p:—l.ﬁ(d—c):oc(d—c). [ |

Using Theorem 1 we can easily establish the following theorem.

Theorem 4: If ] is a subinterval of [a,b] having endpoints ¢ <d and if
@, :[a,b] > R defined by

1 if xeJ

®, () :{0 if xeJ.

b
Then ¢, € R[a,b] and J.(p., =d-c.

The theorem follows by taking o =1in Theorem 1. |

The next theorem shows that the step functions are Riemann integrable.

Theorem 5: If @:[a,b] — Ris a step function, then @< R[a,b].

Proof: Since ¢:[a,b] - R is a step function, it will assume only finite number
of distinct values, say k,k,.,...,k, on some subintervals J,J,,....J

m

respectively with each J having endpoints ¢, <d;. As seen earlier, ¢ can be

expressed in the form ¢ = ij(pjf as a linear combination of elementary step
j=1
functions 9, . Then by Theorem 2, each 9, € R[a,b] and consequently,

each kj.(pj/_ € R[a,b], by Theorem 1 of previous section. Again by Theorem 1

of previous section, it follows that ij.(pjf € R[a,b]. Thus @€ Rla,b]. Also,

Jj=1



Unit 15 Properties of Riemann Integral Functions

J T

e
= ZUk‘(pJ j using part (ii) of Theorem 1 of previous section

n b
= ijU (pjfj , using Part (i) of Theorem 2 of previous section.

Jj=1 a

=Y k,(d;—c;),by Theorem 2. |
j=1

Now we will show that the continuous function are Riemann integrable.
Theorem 6: If f :[a,b] > R is continuous on [a,b], then f e R[a,b].

Proof: Since the function f is a continuous function on a closed and bounded
interval, it follows that f is uniformly continuous on [a,b]. [Please see
Theorem? in Unit? Block 4]. Therefore, given &> Othere exists §, >0 such

that whenever u,ve [a,blwith [u—v|<3,, then we have
3
|f )= fFO)| <——.
b—a

Again since f is continuous, then f attains its maximum and minimum values

on each partition P of [a,b].

Let P={I;}", be apartition of [a,b] such that H75H<§g. Let u, and v, be

points of I, where f attains its minimum and maximum values respectively,
on I,.Let «,be the step function defined by

f ;) for xe [x;,_1,x;) i=1,...,n—1
fu,)for xe[x,_1,x,]

a'g(x) = {

Let o, be defined similarly using the points v, instead of the u;. i.e.,
fy) for xe[x;_1,x) (i =1..,n=1)

wg(x) =

f,)for xe[x,_1,x,]

Obviously, for all xe€ [a,b], we obtain
o ()< f(x)Sm,.(x).

Consequently,

b n
0< I(wg — Q) :Z((f(vi)_f(ui)) (x; —x_1)
g i=1

i=l 155
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Hence by the Squeeze Theorem (Theorem 7 of Unit 14), f € R[a,b]. [ |

Next we shall consider the Riemann Integrability of Monotone Functions. The
following theorem shows that monotone functions are Riemann integrable
though they are not necessarily continuous.

Theorem 7: If f :[a,b] > R is monotone on [a,b], then f e R[a,b].

Proof: Suppose that fis increasing on the interval [a,b],a<b. If £¢>0 is
given, we choose g€ Nsuch that

Let y, = f(a)+kh,for k=0,,..q.

Take Ay = f '([ye_p, ykD for k=0,1...g—1 and A, =f"'([y,.y,].
These sets {A, }are pair wise disjoint and have union [a,b].

The Characterization Theorem implies that each A, is either (i) empty, (ii)

contains a single point, or (iii) is a nondegenerate interval (not necessarily
closed) in [a,b]. We discard the sets for which (i) holds and relabel the

remaining ones. If we adjoin the endpoints to the remaining intervals {A,}, we
obtain closed intervals. These relabeled intervals {A, }{_ are pairwise disjoint,

satisfy [a,b]=J A, andthat f(x)e[y,.y,]for xe A . We now define

step functions o, and ®,on [a,b]by setting
o, (x)=y._,and ©.(x)=y,

for xe A, . Itis clear that

o (x) < f(x) S0, (x)
for xe[a,b] and that

b q

@ —0)=> =y (5 - x)

a k=1

= Zq:h - (x, —x,;) =h-(b—a) <&, by Eqn. (5).
k=1

Since € > 0is arbitrary, the Squeeze Theorem (Theorem 4) implies that
feR[ab)]. u

By now you must have realised that the squeeze theorem is very important for
proving many other important theorems. Thus we have learnt that the class of
Riemann integrable function include continuous functions, monotone functions
and step functions. The following theorem is also useful when we discuss
Riemann integrability on the union of closed intervals.

156 Theorem 8 (Additivity Theorem): Let f :[a,b] > Rand let c€la,b[. Then
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f € Rla,b] if and only if its restrictions to [a,c] and [c,b] are both Riemann
b c b
integrable. In this case J'f :jf+jf.

The proof of the theorem is omitted.

Proof: (<) Suppose that the restriction f,of f to [a,c]and the restriction
f, of fto [c,b] are Riemann integrable functions with Riemann integrals L,
and L, respectively. Then, given &> 0there exists & >0such that for any

tagged partition P1 of [a,c] with ||771||<§', we have
[SCAsA) L] < .. (6)

Also for the same € > 0, there exists 8" >0 such that for any tagged partition
P, of le,b] with [ <3, we have

. £
SCr2:Pa) = Lo < - (7)
Let M be a bound for |f| Define J, :min{é",(f”,;“/[}. For any tagged

partiton O of [a,b] with ||O] < 5., we have to prove that
E

S(f;Q)—(L1+lQ)‘<e .. (8)
We shall consider two cases here.

Case (i): If ¢ is a partition point of 9, we split O into a partition Q1 of
[a,c] and a partition Qz of [c,b]. Then

S(£:Q,)=S(£:91)+S(f:9,)

Since |10,[ < 8 and [|0,[ < &7, using Eqns. 5 and 6, we see that
1 2

(£ =Ly + )| =[S(£:00)+ S(£:02) ~ (1 + L)
=[(S(f3QD - L) +(S(f:Q2) - Lo
<[(S(f:00 - Lp|+[5(£:82) - L)
£ € 2

<—+-="<eg
3 3 3

Hence we have proved (8) in this case.

Case (ii): If ¢ is not a partition point in Q ={Ij,tj)}']”:1, there exists k <m
such that ce (x;_1,x;). Let Qp be the tagged partition of [a,c] defined by
Q1 ={U1, 10y U1, tg—1)s ([xg—1, ], 0)}

and Q, be the tagged partition of [c,b] defined by
QZ = {([C’ xk ],C), (Ik-i-l,tk-i-l),“', (Im,tm)}

A straightforward calculation yields

157
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S(f:Q) =D ft)(xj—xj-1)

j=1
= P (=3 )+ D) (=, )+ D) ()

= ftg) (g = x_) +S(f2Q)D+S(f:Q0) — fe) (xg — x—1)
=(f@)—f©)-(x —x)+S(f:0)+S(f:0,)-
Hence
S(f;Q)=S(f:Q1)—S(f:Q2)=(f(tx)— f () (xp — xp—1)
so that
IS(F:Q) = S(f:21) = S(f: Q)| <[(f (1) = £ ()| |xx = x¢—1)]
<(f@+ )-8,
<OIM.e/6M =§. . (9)

Since [Qi| <8 <& and |Q,] < e <", we have

|S(f§Ql)_L1|<§ as well as |S(f;Qz)—l/z|<§'

Hence [S(f;Q)— L —Ly)|
=|S(f:Q)=S(f;Q) - S(f:92)+S(f:Q1)+5(f:Q2)— L — L
<IS(f:Q) = S(f3:Q1) = S(f:Q0)|+|S(f: Q1) — Li| +[S(£3:Q7) — Ly

Thus we have proved (8) in this case.

Since € >0 is arbitrary, f € R[a,b] and also,

b c b

[r=n+L=[r+[rs

a a C
(=) Conversely, we assume that f € R[a,b]. Given £ >0, choose 7, >0
satisfying the Cauchy Criterion 1. Let f, be the restriction of f to [a,c] and
< 7.

By adding same additional partition points and tags from [c,b], we can extend
both P, and Ql to tagged partitons Pand Q and Qof [a,b] satisfying

A A

P Q
used for both 2 andQ we obtain

S(fisPD)=S(1:20) =S(fsP)=S(f:Q).

let 751, Q1 be tagged partitions of [a,c] with H751H<778 and Hai Ql

<, and <1,. Since the same additional points and tags in [c,b] are

Then [S(f1:P)—S(f1:Q1)| =|S(f:P)=S(f:Q)|< € since by Cauchy
Condition 1, f € R[a,b],
IS(f;P)=S(f:Q)<e.

75H<778 and HQH<7]€ together yield
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Therefore again, by the Cauchy criteria, f; € R[a,c]. Inthe same way, the

restriction f, of f to [c,b] isin R[c,b]. The equality (7) now follows from
the first part of the theorem. This completes the proof. [ ]

We shall now make some corollaries.

Corollary 3: If fe R[a,b], and if [c,d]Z[a,b], then the restriction of f to
[c,d]isin R|c,d].

Proof: Since f € Rla,b] and ce[a,b], it follows from Theorem 8 that its
restriction to [c,b]is in R[c,b]. Butif d e [c,b], then another application of
Theorem 8 shows that the restriction of f to [c,d]isin R[c,d]. This

completes the proof. [ |
In fact we have the following result the proof of which is omitted.

Corollary 4: If fe R[a,b] andif a=c¢,<¢ <..<c, =b,thenthe
restrictions of f to each of the subintervals [c;

.,»¢;]are Riemann integrable
and

m

b
(=30 s

Before we state another property, we make a definition.

Definition: If f € R[a,b] andif o,pe[a,b] with a.<[3, we define

a B a
_[fz—_[f, and, jf:O.
B o o

Theorem 9: If f € R[a,b] and if o,f,y are any numbers in [a,b], then
B v B
[r=[r+]F ... (10)
o o y

for any permutations of a,3and v, in the sense that the existence of any two of
these integrals implies the existence of the third integral and the equality (10).

Proof: If any two of the numbers «,[3,Yare equal, then Eqgn. (10) holds. Thus

we may suppose that all the three of these numbers are distinct. For the sake of
symmetry, we introduce the expression

B v a
LaBy=[f+[f+]f.
a By
First, verify that Eqn. (10) holds if and only if L(a.,,y) =0. Therefore, to
establish the assertion, we need to show that L =0 for all six permutations of
the arguments ,[3,and y. We note that the Additivity Theorem 7 implies that

L(o,B,y) =0when a<PB<7.Butitis easily seen that both L(j,y, o) and
L(},0.,P) are equal to L(ct,[3,y) . Moreover, the numbers

L(B,a,y),L(a,Y,p),and L(7Y,B, )
159
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are all equal to — L(a.,3,7). Therefore, L vanishes for all possible
configurations of these three points. This completes the proof. |

Before ending this unit, we give an example of a function that is discontinuous at
every rational number and is not monotone, but is Riemann integrable.

Example 2: Consider the Thomae’s function /:[0,1] > R where
0, if x e [0,1]isirrational
h(x)=141 .

Zif x="c[0,1],m,ne N,(m,n) =1.
n n

Show that ke R[0,1].
Solution: We note that % is discontinuous at every rational number and is not

a monotonic function. Let €>0. Then the set E, = {xe [0,1]:h(x) 2> g} is

finite. Let n.be the number of elements in E.. Choose J, :4i. Consider
Ne

a tagged partition 7 of [0,1] with H75H<§8. Let P be the subset of P

having tags in E, and 752 be the subset of P having tags elsewhere in

[0,1]. We observe that P; has at most 2n, intervals and the sum of the
lengths of these intervals is less than 2n.d, :g. Also 0<h(t;) <1 for
every tag #; in P;. The sum of the lengths of the subintervals in P, is less

than or equal to 1 and h(ti)<§ for every tag ¢; in 752. Therefore we have

S P)| = S0 P + S PPy <1200, +(‘§J-1 e

Since £ >0 is arbitrary, we infer that A€ R[0,1] with integral 0.

* k%

You can try some exercises now.

E4)  Consider the function 4 defined by

x+1,if xe[0,1] is rational,
h(x) =

0 ,if xe[0,1] isirrational.

Show that # is not Riemann integrable.

E5) If S(f;P) is any Riemann sum of f:[a,b] >R, show that there
b
exists a step function @:[a,b] - R such that I¢:S(f;P).

a

E6) We have shown in Unit 10, Block 4 that the function f:]0, ][> R

1 . ,
defined by f(x)=— is continuous, but not uniformly continuous. Does
X

this contradict Theorem 47 Justify your answer.
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With this we come to an end of this unit.
Let us summarise the points we have discussed in this unit.

15.5 SUMMARY

In this unit we have covered the following points.

1. We have shown thatif fand garein R[a,b],then f + g€ R[a,b]. Also
for any function f € R[a,b], for anye R.

2. We have proved that the step functions, continuous functions and monotone
functions are Riemann integrable.

3. We have stated and proved additivity theorem.

15.6 SOLUTIONS AND ANSWER

E1) Since f/'sarein R[a,b]for i=1,...,n,then using theorem 1, we have
k.f, € Rla,b].
Now, we will use mathematical induction theory. Let p(n)be the
statement that ikif,. belongs to R[a,b]forany ne N.
So, p(l)is true l:s. k.f. € Rla,b].
Now, let p(m—1)its true & g = mz_ikifl..
So, g& k, f,bothare integrablel?1
Therefore, using property (ii) of theorem 1. We have g +k, f, = ikifi
=

belongs to R[a,b].Therefore, p(m)is true.
So, by mathematical induction, p (n)is true for all n.

E2) Let g,(x)=-M forall xe[a,b]land g,(x)=M forall xe[a,b].

Given that |f(x)| <M forall xela,b]
>-M< f(x)£M
=g ()< fx)<g,(x)

Therefore, from theorem 2, we have

[am<]fon<fgm
:}(—M)S}f(x)SjM

= -M(b-a)< jf(n) <M(b-a)

[r

a

= <SMb-a)

1 1 1 .
E3) Noticethat fg=—(f+g)° —— f>——g°.Now, since f& gare
2 2 2 161
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integrable. So, if you can only show that f’is integrable whenever fis
integrable then your work is done.

E4) Let p, be the partition of [0,1]defined by p, =(x,,x,,x,,...,X,), where
X, :L,OS r<n.Letuschoose o, in [x ,x ]by o, =x, for
n

r=12,.n

Then S(A,(p,,Q)) =l(x1 +x,+..+x,+n)
n

1(1+2+...+n J
= | =" "4

n n
1
Let us choose f3,in [x,,,x,]1by B, =x ———
B | B Ton
1
Then S(h,(p,,B))=—[0+0+...4+0]
n
=0
Let us consider the sequence of partitions (p,).|p, :l,h'm p,1=0.
n n—»c0
) 3 .
’llliroloS(ha(pn’a))zaallills(ha(pn)’ﬁ)):o

Since for two different choices of intermediate points &_, the Riemann
sums S(h,(P,&,)) converges to different limits, f is not integrable on
[0,1].

Es) Let P={(x_.x}7)Y,

So, s(f.P)=> f(t)(x,—x.,)
=l

Let ¢ be a step function such that
fi» xela=x,x]
00x) = :fz, xe[x,x,]
fo weln s =b
.Ifq>: ff ﬁ+fff2+...+xn.[17fn
B e Py Y
= £t ()
=§(f,75)

E6) This does not contradict theorem 9, as the does domain fis an open
interval.
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16.1 INTRODUCTION

In the previous two units we discussed how to evaluate the integral of a function
as a limit of Riemann sums. Some important classes of Riemann integrable
functions were also discussed. You have observed that the evaluation of an
integral is a tedious work. In this unit we look at some powerful and easier
techniques for evaluating the definite integral in certain situations. This is done
by introducing the idea of primitive of a function.

You have already studied that if a function F :[a,b] — Ris such that

F’(x)= f(x)forall xe[a,b],then F is called an antiderivative or a
primitive of f on [a,b][Refer Block-5 Calculus course BMTC-131]. There you
have learnt that whenever f has an antiderivative F', then all the functions

F +c,ce R are also antiderivatives of f . However, the theory of Riemann

integral is independent of the concept of the antiderivative. In this unit, we will
explore the connection between the notions of derivative and integral.

The relationship between integral and derivative is established by an important
theorem known as fundamental theorem of calculus which is due to two famous
mathematicians cum physicists Sir Issac Newton and Gottfried Wilhelm Leibniz.
In Sec 16.2 we first define the term “Primitive” of a function. Then we state and
prove the fundamental theorem of calculus. We shall state and prove two forms
of this theorem. We explain how the theorem helps to evaluate a definite
integral for continuous function without using the Riemann sums.

In Sec. 16.3 we state and prove mean value theorem for integrals. We illustrate
the theorem with examples.

In Sec. 16.4, we shall explain a method of checking convergence and
divergence of an infinite series by associating the terms of the series to the
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values of a function f where f is a monotonic, decreasing and integrable
function defined over an interval [a,b].We introduce improper integrals and
state and prove an integral test for checking the convergence of a series.

Objectives
After studying this unit, you should be able to:

e find the primitive of certain standard functions,

e state, prove and apply the fundamental theorem of Calculus for integrals
and explain its importance,

e state and prove the mean value theorems for integrals and explain their
importance,

e use Cauchy integral test to check the convergence of a series.

16.2 FUNDAMENTAL THEOREM OF CALCULUS

In this section we shall discuss one of the important theorems in Calculus
known as ‘Fundamental Theorem of Calculus. This theorem gives the
connection between derivative and integral.

Before we discuss the theorem we shall recall the definition of term ‘primitive’ of
a function which you have studied in the 1°' semester Calculus course, Block 5
of BMTC-131.

We start with the definition.

Definition 1: Let f be a function defined on an interval [ =[a,b].Then a
function F is a primitive of fon [if F is differentiable on I and F’'= f for
all xe I

For example it follows from the formulas of integration thatif f(x) = x’,then the
4
function F(x)= %is the primitive of the function f.

Let us consider another function f :[-1,1] — R defined by

0 if -1<x<0

f(x):{1 if 0<x<l

This function is not the derivative of any function F :[-1,1] > R.Indeed if fis
the derivative of a function F :[-1,1] = R then by the intermediate value
property of derivatives. f must have an intermediate value property. But
clearly, the function f given above does not have the intermediate value
property. Hence f cannot be the derivative of any function F:[-1,1] - R.

However if f :[—1,1] = Ris continuous, then f is the derivative of a function
F :[-1L1] - R. This leads us to following general theorem.

However if f is continuous, then we have the following theorem.



Unit 16 Important Theorems

Theorem 1: Let f be integrable on [a,b]. Define a function F on [a,b] as

F(x)=[f@0)dt, ¥ xela,b).

Then F'is continuous on [a,b].Furthermore, if f is continuous at a point x, of
[a,b],then F is differentiable at x,and F’(x,) = f(x,).

Proof: Since f is integrable on [a,b],it is bounded. In other words, there
exists a positive number M such that |f(x)|< M, V xe [a,b].

3
Let &> 0be any number. Choose x,ye [a,b],x < y,such that |x—y|< e

Then |F(y)— F(x)|=|[ f()di—[ f (o) ar

= j‘f(t)dt+j;f(t)dt—j‘f(t)dt

=jrf(t)dt

SI|f(t)|dt
SIMdt:M(y—x)<£

Similarly we can discuss the case when y < x. This shows that F is continuous
on [a,b].Infact this proves the uniform continuity of F.

Now, suppose f is continuous at a point x,of [a,b].

We can choose some suitable # # Osuch that x, +he [a,b].
Xot+h Xp
Then F(x,+h)=F(x)= | f@oydi— | f()di

a

=[fwar+ [ fwydi—[f@ar
Thus F(x,+h)— F(x,) = Ojf(r)dt (1)
|F(x, +h) = F(x,) i B
Now | p f)=p j fydi— j £ (xp)dt
1 Xot+h

=l [Lra =)

X0

Since fis continuous at x,,given a number €>0,3 a number &> 0 such
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that |f(x)— f(x,)|<€/2,whenever |x—x,|<8andxe [a,b].So, if |1 <3, then
((f(6)— f (x| <€/ 2, for te[x,,x,+h] and consequently

Xo+h

IVGEFIEN

X0

|

< E|h|. Therefore |[Flxy + )= F(x,)
2 | h

—f(xo)s§<e,if

<.

F(x,+h)—F(x,)
h

Therefore, Ihm% = f(xy),i.e., F'(x))= f(x,)

Which shows that F is differentiable at x,and F’(x,) = f(x,) from
Theorem 1, you can easily deduce the following theorem: u

Theorem 2: Let f :[a,b] » Rbe a continuous function. Let F :[a,b] > R be
a function defined by

F(x)= j f(t)dt, x e [a,b].

Then F'(x)= f(x),a<x<b.

This is the first result which links the concepts of integral and derivative. It says
that, if f is continuous on [a,b]then there is a function F on [a,b]such that

F'(x)= f(x),V x€a,b].

You have seen thatif f :[a,b] > Ris continuous, then f has a primitive F . Is
such a function F unique? Clearly the answer is ‘no’.

Infact, for any given function f,a primitive of f is not unique. For example, the
functions x —sin”' xand x — —cos™' x, xe [—1,1]are both primitives of the

function x —

. Indeed, sin” x = ;‘ +(=cos™ x).
1—x

However, two primitives of a given function are related they can only differ by a
constant. That means we have the following proposition.

Proposition 1: Let F,and F,be primitives of a function f on an interval
I =[a,b].Then there exists some constant ¢ such that

F,(x)=F,(x)+c, forsome xe I.

Proof: Let F,and F,be two primitives of fon I,then F/(x)= f(x)and
F)(x)= f(x),xe I,so that F,(x) = F/(x),xe I.Therefore it follows that there
exists some constant ¢ such that F,(x)=F,(x) +c. u

Now we shall state an important theorem which gives the connection between
primitives of a function and the integral of f on an interval I.The theorem is
known as the fundamental theorem of calculus.

Theorem 3 (Extension of the First form of Fundamental Theorem of
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Calculus): If fis continuous at every point of [a,b] and F is any
antiderivative of f on [a,b], then

[rde=F®)-F(a)

Proof: Since f is assumed to be continuous on [a,b], we have f e Rla,b].
Let € >0be given. Then there exists d, > 0such that

<g ... (2)

b
S(HP)-[ f
for every tagged partition 7 with H75 H<88.If [x,_,.x]1,i=1,..,nare the

subintervals corresponding to P, then
> (F(x)~F(x_))=F(b)~F(a).
i=1

But, the Mean value Theorem appliedto F on [x_,,x;] implies that there

i—1°7%

exists u, € (x_,,x;)for i=1,...,n such that

F(xi)_F(xi—l):F,(ui)'('xi_xi—l)'

Substituting these in the previous sum yields

n

Fb)~F(a)= Y (F(x)~ F(x,) = . Fu) (5~ x,.).

i=1

Let 75M denote the tagged partition {([x_,, x;].u,)}.,. Then ‘75M

< 9, since

[P <. Als0, S(7:P) =3 ) ~x)= Y Fluw) (=) since
i=1 i=1

F’(u,) = f(u,) . Consequently, F(b)—F(a)= S(f;75u)- Substituting this in
(12), we obtain

<E.

F(b)-F(a)- [ f

b
Since € > 0is arbitrary, we conclude that If(x) dx=F(b)—-F(a). [ |

Remark 1: The assertion of the Fundamental Theorem of Calculus holds even if
there are some exceptional points ¢ where F’(c)does not exist, or where it

does not equal to f(c).

b
Example 1: Evaluate .[xdx.

a

1
Solution: Define F(x):axzand f(x)=x forall xe[a,b]. Then

F’(x)= f(x)forall xe[a,b].Since f is continuous, we have f e R[a,b].
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Therefore the Fundamental Theorem 2 (with E =@, implies that
b

jxdx= F(b)— F(a) =%(b2 —d?).

a
*k %

1
Example 2: Use Fundamental Theorem to evaluate the integral J'z*dx.
0

X

In2
continuous on [0,1], it is Riemann integrable in [0,1]. Therefore by the
fundamental theorem (Theorem 3).

Solution: Define F(x) =

.Then F’(x)=2".Alsosince f(x)=2"is

1
jz*dx = F(I)= F(0)
0

_2 1 1
In2 In2 In2

* %%

We next show that the derivative of a differentiable function need not be
integrable.

Example 3: Let F :[0,1] — R be defined by

Fx) = x*cos(1/x*) for xe (0,1],
for x=0.

Show that F’exists, but F’is not Riemann integrable.
Solution: For all xe (0,1], we have
F'(x) = 2xcos(1/ x*)+ (2/ x)sin(1/ x2).

Further,

F FO xzcos[zj
F ) =lim X =FO X/ — lim x-cos

2 = O
x—0 X — O x—0 X x—0 X

Thus F is differentiable at every point of [0,1].

Since the first term fl(x)=2xcos(1/x2)in F’ is continuous on [0,1], it
belongs to R[0,1]. However, the second term fz(x)=(2/x)sin(1/x2)in F’is
not bounded, so it does not belong to R[0,1].

If F’e R[0,1],then f, = F'— f, € R[0,1],leads to a contradiction. Hence F’ is
not Riemann integrable.

Example 4: Check whether the conclusion of Theorem 2 holds for the function
f(x)=sgnxon [-11].
168
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Solution: We note that the signum function sgn is defined by
+1 for x>0
sgn(x)=4 0 for x=0
-1 for x<0
X
[+

=0, for x=0

i.e. sgn(x)= ,forx#0

and this function belongs to R[-1,1].

We also note that f(x)is not continuous at x =0, therefore we cannot apply

Theorem 2. Now let us check whether the conclusion of theorem 2 holds or not.
Now, if z<0, then

F(z):jf(x)dx:j—1.dx:—z—1:|z|—1.
If z>0,then
z 0 z 0 z
F()=[f=]fdx+ [ f(x)de=[-1.de+[(+1).dx
-1 -1 0 -1 0
=—1+£=|z|+1
If z=0,then

F(0)= j £(x)dx

0

:j(—l)dx
=
=1
{|x|+1, x#0
Thus, F(x)=
1, x=0

But F’(0) does not exist. Hence F is not an antiderivative of f on [-11].

Here are some exercises for you.

b
E1)  Use Fundamental theorem to evaluate the integral Ix” dx.

a

E2) Let G(x):zx/;for x€[0,b].Then G is continuous on [0,b]and

G'(x)= %for x€ [0,b].Does there exista g e [0,b],such that
X

b
[ s(x)dx = G(b) - G(0)? Justity your answer.
0
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In the section we shall discuss Mean value theorem for integrals.

16.3 MEAN VALUE THEOREM FOR INTEGRALS

Analogues to the mean value theorem for differentiable functions, there are
mean value theorems for certain Riemann integrable functions also.

Theorem 3: Let f :[a,b] = Rbe continuous. Then f € R[a,b]and there

exists &e [a,b]such that j f=fE).b-a.

Proof: Since f :[a,b] = R is continuous, as observed earlier, f is bounded
and Riemann integrable on|a,b].

Let m=inf{ f(x): xe€[a,b]}and M =sup{f(x):xe[a,b]}.Then

b
m< f(x)<M forall xe[a,b] and hence m.(b—a)sjf <M.b-a).

'[if(x)dx

Take r= “b.) so that m < r < M from the above.
—da

Since fis continuous on [a,b],the values m and M are attained by f on
[a,b]. Thus m,M € f([a,b]) and since m<r <M, by intermediate value
theorem, there exists &e [a,b]such that f(§)=r.

b
[ £odx \
Hence f(§)=-“——so that Jf = f(&).(b—a). b
(b—a) )
Example 5: lllustrate the Theorem 3 for the function f :[a,b] — R be defined
by f(x)=x.

Solution: We note that f is continuous, f € R[a,b]and

. b*—a® b+a
= = .(b— .. (1
{ﬂww . [ zjw a) (1)
. . b+a
Let & be the mid point of [a,b]. Then e [a,b] and &= =
Further f(a):a:b;“.

b
Consequently, from Eqgn. (1) we get that .[f(x)dx: f(&).(b—a). Hence the

+
theorem 3 holds for the &= bTa, the middle point of the interval [a,b].

*k %

Remark 2: Note that the condition that f is continuous is necessary for the
theorem to hold. For example let us consider the function f defined on [3,7]as
follows:
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5 if 5<x<7
7 5 7
j F(x)dx = j F(x)dx + j f(x)dx
3 3 5
—4+10=14

14

1 7 1
f(X)dx=—x14=—
! 4 4

b—a

But

14
The number ?can never be assumed by the function f onany &e [a,b]due

to the choice of f.This shows that continuity is a necessary condition for the
theorem to hold.

You can now try some exercises now.

E3) Let fe R[a,bland define F(x)= j ffor xela,b].

a) Evaluate G(x):Jf in terms of F,where cela,b].
b

b) EvaIuateH(x):J.f in terms of F.

a
sin x

c) Evaluate S(x)= Jf in terms of F.

E4) Let f:[0,3] = R be defined by
x for 0<x<1,
f(x)=41 for 1<x<2,
2GS )P 3.

Obtain formulas for F(x) :Jf.
0

1

E5) If £:[01]] >R iscontinuousand [ f = fforall xe[0,1], show that
0

X

f(x)=0forall xe[0,1].

In this section we shall discuss infinite series revisted.

16.4 INFINITE SERIES REVISTED

In this section we apply the techniques of integration learnt in Unit 14 and 15 to
obtain useful information about the convergence of certain type of infinite series
of positive terms.

We introduce a method for determining the convergence and divergence of

certain series of the form Zan,where the terms a,,for each ne N,is such

n=l

n’
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that a, = f(n)where fis a non-negative monotonic, decreasing integrable

function defined on [1,c0]. Before that we extend the concept of integral to an

unbounded interval and to an unbounded function.
We begin with a definition.

Definition 2: If a function f :[a,] — Ris integrable on [a,b]forevery b>a

b
and }}m.[f exists, either as a real number, or as * oo, we denote the limit by

oo b
Ifand call it the improper integral of f over [a,o0).In case }}m.[f is real

a

number, we speak of the improper integral Tf as being convergent; otherwise
divergent. '

Note that when the limit does not exist, the integral symbol does not represent a
real number, for example Tidxis an improper integral with Tidx = oo,

1 1

oo

because lim ldx =lim(In b) = eo. The improper integral is divergent. Where

b—>ool X b—oo
T . . Lol N .
as I—de is an improper integral with dex =1.This is because
1 X 1 X

lim izdx = lim(l —;j =1.The improper integral is convergent.

b—oo 1 X b—oo

Now we state and prove a test known as “integral test” to check the
convergence and divergence of certain series.

Theorem 4 (Cauchy’s Integral Test): Let f be a real valued function with
domain [1, o[ such that

i)  f(x)=0,Vx2=1(fisnon-negative)
i) x<y= f(x)> f(y), (fisamonotonically decreasing function)

i) f(x)be integrable for x >1suchthat f(n)=u,i.e. f(n)is associated
with series D u,.

Then Y. f(n)is convergent if and only if If(x) dxis convergentand Y f(n)
1

is divergent if and only if If(x) dx is divergent.
1

Proof: Since f is a decreasing function on [1, o[, we have
M f(x)S f(n=Dfor n—1<x<nn=23...

Consequently, .’f f(n)dx < .’f f(x)dx < jff(n—l)dx

n-1 n-1 n-1
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ie. f(n)< ff(x)dxsf(n—nfor n=23...

n-1

Thus, > F(k) <Y jf(x)dxsif(k—l),

k=2 -1

But, Z [ £(oydx =] f(x)dxand Zn:f(k—l):if(k).

k=2 p—1 1
Therefore, for n> 2,
n n n-1 n
Du < [fdx<Y wie. s, —u < [ f(x)dx<s, —u, where (s,)denotes
k=2 1 k=1 1
the sequence of partial sums of the series ZMH.Therefore,

u, Ssn—.[f()c)dxéu1
1

It we write 4, =, — [ f(x)dx, we have
1

n+l

An+l - An = (Sn+1 o Sn) _( J‘ f(x)dx - :'1‘ f(X)dXJ

n+l
= u s If(x)dx <0

n

Therefore, A, <A Vn.Thus the sequence (A,)is monotonically decreasing
sequence. Also A, =u, =0V n, therefore the sequence (A))is bounded
below. Consequently (A,)is convergent.

Now s, = A, +J.f(x)dx
1
The convergence of (A,) implies that (s,)and ['[f(X)dxj converge or
1
diverge together. Hence zun and .[f(x)dx converge or diverge together. W
1

Remark 3: You may note that if the conditions of Cauchy’s Integral Test are

satisfied for x> k (a positive integer), then zun and .[f(x)dx converge or
n=k k

diverge together. This can be seen from the following example:

=1
Example 6: Discuss the convergence of the p-series Z—p p > 0by using the
n=l1 n

Integral Test.

1
Solution: Here u, =—
n[’

Let f(x)=—
X
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For p> 0, f is decreasing, positive integrable function. So by Cauchy’s

oo 1 o
Integral Test, 2—p and J. f(x)dx converge or diverge together.
1 n |

jf(x)dx [
IX
log x if p=1
—_ 1-p
Yol o
lI-p
o0 if 0<p<l
[ LS
~1
as X —>

Therefore If(x) dx converges for p >1and diverges for 0 < p <1and hence
1

1
the series Z—converges for p>1landdivergesfor 0< p<1.

n= l
*kk

1
Example 7: Test the convergence of the series Z— where p > 0.
= n(logn)”
Solution: Let f(x) = ;for x> 2.
x(log x)”

If p>0,then fis a positive, decreasing, integrable function on [2,e]. Hence

oo

by Cauchy’s Integral Test, Z

—— and '[ converge or diverge
= n(logn)” > x(log x)”

together.

We have, for p>0
log(log x) —log(log2) if p=1
=1 (ogx)"" —(log2)"”

I-p
oo if p<1
—1(og2)"™
p—1

as x —> oo

!x(log x)" if p#1

if p>1

This shows that If(x) dxconverges if p>1landdivergesif 0< p<I.

oo

1 , .
Therefore the given series Zﬁconverges if p >1and diverges if
ogn

O<p<l.

*k %

2
n

Example 8: Evaluate hm P EE——
ool Qn+r)
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2n n2 1 2n 1
Solution: Let S, = Z :_Z
= (2n+r) n'3 2+£
n
Taken f(x)= 1 where x .
(x+2)° n

By Cauchy’s integral test, we have

R LU L. ¢ dx
n—>hn°l°2 llm~[()c+2)3

=
o 2nt+r)” oy

2

*kk

Here are some exercises.

E7) Discuss the convergence of the series

i ! > 0).

(p
‘= nlogn(loglogn)”
3n
E8 Find lim ) ———-.
) n—yoo ,Z::‘ Bn+ r)?

n

With this we come to an end of this unit.

Let us summarise the points we have discussed in this unit.

16.4 SUMMARY

In this unit we have covered the following points.

1. We have covered the idea of primitive of a function. A function Fis a
primitive of f on an interval I if F is differentiableon Iand F'= f.

2. We have explained how to find the primitive of a function for some standard
function: polynomial functions, trigonometric functions, exponential

functions and so on.

3. We stated and proved the fundamental Theorem of Calculus (Form ) and

the statement.

4. We explained how to use FTC of Calculus to evaluate the integral.

5. We have defined the indefinite integral of a function defined on [a,b]with
respect to the point a.lt is the function F defined by

a

F(z)z.[f(x)dx, Y ze[a,b].

a

6. We stated the second form of the fundamental theorem of calculus which
says that the indefinite F is differentiable at any point where fis

continuous.
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We state and proved the Mean Value Theorem for integrals of continuous
functions. Give the statement here.

We have explained an integral test for testing the convergence of a series
by associating an integral to the series.

16.5 SOLUTIONS/ANSWERS

E1)

E2)

E3)

E4)

Define F(x)=xIn, x—x.Then

F’(x):x+l+1n€x—1
X

=In, x
Since f(x)=1In, xis continuous on [l,e],it is Riemann integrable.
Therefore by the Fundamental Theorem, we have

.[lnexdxz[xlnex—x]f
=(e—e)—(0-1D=1.

Define G(x)= 2\/;for xe€[0,b],then G is continuous on [0,b]and

G'(x) =1/xfor xe[0,b].Since g =G’is not bounded on [0,5], it does
not belong to R[0,»] no matter how we define g(0). Therefore the
Fundamental Theorem 2 does not apply in this case.

a)  F(x)= j f
—If+If
—F(c)+G(x) [As by definition F(c) = J' fand G(x)= J' f1
SGx)=F(x)—-F(c :

b
b) H(x)= J' f=F(b) [As by definition of F(x)]

C) F(sinx) = Sljxf

a

sin x

—If+If
= F(x)+ S(x)
s.8S(x)=F(sin x) — F(x).
Fo=[f

2
% for 0<x<1,

=4x for 1£x<2,
2
% for 2<x<3
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E5)

E6)

E7)

Important Theorems

It is clear that F(x)is not continuous at x=1and

L FO-FQ) _ L x-2
x—2" x=2 =27 x =2
x? 1 ,
. T e
CFW-FQ _ 3 %
x—2* x=2 =20 x =2 x—2" x—=2

—lim S (x+2) = Lx4=2
2 2

x+2*

So, F’(x)does not existat x=2.
Therefore, F(x)is differentiable in the whole interval [0,3]except at

x=12.
x 0<x<l1
F'(x)=41 1l<x<2
x 2<x<3.
F0=[f

:.[f‘i'.[f, cela,b]
= ;(i) (Cc —a)+F.() [From Theorem 6, we have

[ f=r®(c-aywhere, &e[a,c]

Since, f:[0,1] = R s continuous, the antiderivative of f(x) exists. Let
F (x)be the antiderivative of f(x).So, f(x)=F(x)forall xe[0,1].

Now, [ f=[fforall xe[0,1]
0 x

= F(x)-F(0)=F(1)-F(x) [Using Fundamental Theorem of Calculus]
=2F(x)=F1)+ F(0)

F()+ F(0)
2

So, F(x)= forall xe[0,1].

Therefore, F(x)is a constant function for all x< [0,1]

So, F(x)=F’(x)
=0forall xe[0,1].
1

Let f(x)= ,x=23, p>0
J ) xlog x (loglog x)” P

If p>0,then f(x)is a positive, decreasing, integrable function on
[3,o0].Hence by Cauchy’s Integral Test,

> 1 T dx .
Z and I converge or diverge
‘= nlogn(loglogn)” » Xlog x(loglog x)”

together.

We have, for p >0, 177
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E8)

log(loglog x) —log(loglog3) if p=1

( dx
=1 (loglog x)'” — (log(log 3)'”
!xlog x(loglog x)” (loglog ) 1 (log(log 3 if p#1
4
o if p<1
- =p
(log(log 3) if p>1
p—1
This shows that I ! if p>land diverges if
, Xlog x(loglog x)”

O<p<l

oo

Therefore, the given series |
o logn(loglog n)’

conveges if p>1land

divergesif 0< p<1.

3n n 1 3n 1
2 G- n

n 2
r=1 r=1 [3 _I’j
n

.
2where xX=—
3-x) n

By Cauchy’s integral test

Take f(x)=

todx
hmz(3n r)? '([(3 x)?

2

- (3-x)






