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BLOCK INTRODUCTION 
 
In the previous block you studied the differentiation of real-valued functions. In 
this unit we study the notion of integrability of a real-valued function.  
 
You already know from the Calculus course BMTC-131 that there are 
essentially two ways of describing the operation of integration. One way is to 
view it as the inverse operation of differentiation. The other way is to treat it as a 
limit of a sum. Here we first discuss the second method. We will follow a similar 
procedure studied in the calculus course. For a given real-valued function 
defined a closed bounded interval ],,[ ba we form a sum known as Riemann 

sums using portions of ].,[ ba  If the limit of these sums exist when the partition 

becomes finer and finer, then that limit is called Riemann integral.  
 
You recall that in the calculus course we introduced the notions of upper sums 
and lower sums of a bounded function f on an invterval ].,[ ba  These are 

sometimes referred to as Darboux sums. Here we will study that if a function is 
integrable, then both the limits give the same value as integral. As compared to 
the method of integration discussed in the Calculus course, the method 
discussed in this block has the advantage that it extends to the complex-valued 
functions.  
 
The material covered in this block is divided into three units. In unit 1 we 
introduce the notion of Riemann integral of a function defined on a closed and 
bounded interval ].,[ ba We begin with the definition of portion of  ],,[ ba  norm of 

a partition related concepts. Using these concepts we define Riemann sums for 
a function defined ].,[ ba  The limit of Rimann sums of a function as the norm of 

the partion tends to 0 is, if it exists, is called the Riemann integral. We also 
discuss the Riemann integrability of certain standard functions. After that we 
shall discuss a criteria to decide integrability of a function known as Cauchy 
criteria for integrability.  
 
In the next unit, Unit 15, we shall consider the algebra of integrable functions. In 
the previous unit you have seen that there are some integrable functions as well 
as some non-integrable functions also. Here you will study that the set of all 
Riemann integrable functions, denoted by ],[ baR is closed under addition and 

multiplication by real numbers, and that integral of a sum equals the sum of the 
integrals. You will also see that the difference, product and quotient of two 
integrable functions is also integrable. Then we shall establish the integrability 
of several important class of functions: step function, continuous functions and 
monotone functions. The notion of integral as a limit of sums allows us to 
compute the integral in some cases. Nevertheless, it is not convenient for large 
class of function. We do require the process of differentiation to compute the 
integrals for certain class of functions. What is the relationship between the 
notions of differentiability and integrability? In the case of continuous functions, 
this relationship is expressed in the form of an important theorem called the 
Fundamental Theorem of Calculus, which is the main content of Unit 16. In this 
unit we shall have two additional theorems known as Mean-value Theorems of 
integrability which is analogous to the Mean-values Theorems of differentiability.  
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Notations and Symbols (used in Block 5) 
(Also see the notations used in Volume I) 
 

∫ dxxf )(  Riemann integral function of f  

),( baR  Class of Riemann integrable function 

]),([ baP  set of partitions on ],[ ba  

i
t   tags in a partition of ),( ba  
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UNIT 14                                                        

THE RIEMANN INTEGRAL      

Structure            Page No. 
 

14.1 Introduction           127  
 Objectives 

14.2 Partitions and Tagged Partitions        128 

14.3 Riemann Integration          132 

14.4 Cauchy Criterion for Integration        139 

14.5 Summary           146 

14.6 Solutions/Answers          146  

                

14.1 INTRODUCTION 
 
You have learnt from Block 4 of the Calculus Course BMTC-131 that the 

indefinite integral ∫ dxxg )( of a real-valued function g defined on some interval 

],[ ba is the function G for which ).()( xgxG =′  Then the definite intergral 

∫
b

a

dxxg )( is defined as the real number ).()( aGbG −  This idea is highly useful 

in computing the area of many geometric objects in the plane, by identifying 
them as regions enclosed by graphs of appropriate functions. Later the work of 
Mathematician and Physicist J. Fourier (1768-1830) on analytical theory of 
heat conduction led to the beautiful theory on definite integrals. The first of 
which was due to the famous German mathematician G.F.Bernhard Riemann 
(1826 - 1866) and the second was due to the French mathematician Henri L. 
Lebesgue (1875-1941). In this unit we shall introduce you to Riemann Theory 
of Integration. 
 
In Section 14.2 we familiarize you with some preliminaries required for defining 
Riemann intergrals. We define the notions of partitions, tag points and the 

corresponding tagged partitions of an interval ],[ ba and use these notions to 

define the Riemann sums of a function defined on ],[ ba . 

 

In Section 14.3 we define the Riemann integral of a function defined on ],[ ba  as 

the limit of Riemann sums. Some examples of Riemann integrable functions are 
discussed.  
 
In Section 14.4 a criterion for checking the Riemann integrability of a given 
function is considered. We state and prove a theorem known as Cauchy 
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                                                        criterion for Riemann integrability. You will learn that this criteria generates a 

class of functions which are not Riemann integrable. In this unit we have also 
discussed the connection between the theory of integration established by 
Riemann sums and the theory developed using the upper sums and lower sums 
explained in Block 5 of the Calculus Course. The latter integral is historically 
known as Darboux integral due to the Mathematician (Darboux). We observe 
that the value of the integral remains the same, no matter how one evaluate the 
integral.  
 

Objectives 
 
After working through this unit you should be able to   
 

• explain the concept of partition, norm of a partition and tagged partition; 

• define and compute the Riemann sums for a function; 

• check the Riemann integrability of functions using Riemann sums; 

• state, prove and apply the Cauchy Criterion for Riemann Integrabiltiy; 

• state the connection between Riemann integral and Darboux integral.   
 

14.2 PARTITIONS AND TAGGED PARTITIONS 
 
In this section, we discuss some preliminary concepts which are required to 

define an integral of a real valued function, defined on an interval ].,[ ba  

Recall that in the Calculus course you have learnt that an integral represents an 

area of the region between a graph ],[),( baxxfy ∈= and x -axis and the lines 

ax = and .bx =  (See Fig. 1). For instance consider the function 

,19124)(
23 ++−= xxxxf  ]1,0[∈x for which the integral of )(xf is given by 

the area of the shaded region, shown in Fig. 1.  

 
 

Fig. 1 

Suppose we are in need of evaluating the definite integral ∫
3

0

)( dxxg  where the 

function R→]3,0[:g is defined by 

  





≤<

≤≤
=

.31,3

10,2
)(

xfor

xfor
xg  

 

Note that g is not continuous at .1=x  From the Calculus course you have 

learnt that 
  

 ∫ ∫ ∫ ∫∫ =−×+−×=+=+=
3

0

3

1

1

2

3

1

1

0
8)13(3)01(232)()()( dxdxdxxgdxxgdxxg   
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On the other hand, the graph of the function ,g given in Fig. 2, suggests that 

this value of the integral is the sum of the areas of the rectangles of heights 2 

and 3 on the subintervals ]1,0[ and ]3,1( respectively (of the domain of g , 

namely, the interval )]3,0[ which is given by .83221 =×+×  

 
 

Fig. 2: Graph of � 
 

This motivates the basic idea of the Riemann theory of the definite integral of a 
real valued real function. Note that, the splitting of the integral into two parts, as 

above, is a result of partitioning the base of the interval ]3,0[ into two 

subintervals ]1,0[ and ]3,1[ . For convenience, we denote this partition as the 

set ].3,1,0[P =  This leads to the following definitions.  
 

Definition 1: A partition of a closed and bounded interval ],[ baI = inR is 

defined as a finite, ordered set ),,...,,( 110 nn xxxx −=P of points in I such that 

  

 bxxxxa nn =<<<<= −110 ... . 

 
Obviously, the points of P divides I into subintervals  

 

 ],[],...,,[],,[ 1212101 nnn xxIxxIxxI −===  

 
of non-overlapping interiors (i.e. intersecting only at some end points.)  

The typical closed subinterval ],[ 1 ii xx − is called the �-th subinterval of the 

partition .P   
 

Definition 2: The length of the �-th subinterval ],[ 1 ii xx − is the difference 

1−− ii xx and we denote this by 
  

  ),...,2,1(1 nixxx iii =−=∆ −   
 

In situations where no confusion arises, we may denote, for convenience, the 

partition P  by n

iii
xx 11 ]},{[ =− and the subinterval ],[ 1 ii xx − by its length ix∆  

itself.  
 

The following figure explain this (See Fig. 3). 
 

 
 

Fig 3: Partition, subintervals, lengths of different subintervals 
 

When all the subintervals are of equal length, the partition is called a standard 
partition.  
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Definition 3: For the partition P , of an interval ],[ ba given by 

},,...,,{ 10 bxxxa n ===P we define the norm (or mesh) of P  is denoted and 

defined by  
 

 }.,...,,max{ 11201 −−−−= nn xxxxxxP  

 
Obviously, the norm of a partition is the length of the largest subinterval into 

which the partition divides ],[ ba . 

 
We make some remarks here. 
 
Remark 1: Clearly, the norm is a real valued function of the partition (i.e.,  

{: set of all partitions on }.]},[ R→ba . However, many partitions can have 

the same norm. For instance, 1P )7,3,2,1(= and )7,5,1(2 =P are different 

partitions of ]7,1[ having the same norm 4 .  

 
Now, we are going to build a theory to calculate the integral (i.e., the area which 
it represents) for some functions. Let us consider the function given in Fig. 4. 
The partitions are giving the base of the rectangles but we still need to 
determine the heights of the rectangles for calculating the area. Now, for the 
function given in Fig. 4 we need to determine the height. This has to be a value 

that the function takes (assumes) within the intervals of partition. Let 621 ,...,, ttt  
be points within the intervals of partition (see Fig. 4). 

 
 

Fig. 4:  

 
Now, if you carefully observe Fig. 4, you will see the shaded region does not 
represent the exact area which we need to calculate to find the integral in 
general. So, at this stage, the sum of areas of the rectangles with subintervals 

],[ 1 ii xx − as their bases and the values )( itf as height is called a Riemann sum 

(instead of calling it integral).  
 

Points it selected from each subinterval ],,[ 1 iii xxI −= is called a tag of the 

subinterval iI . For a given partition P , a set P̂ consisting of ordered pairs 

),( ii tI of subintervals and their corresponding tags is called a tagged partition 

of I . Thus, a tagged partition of I is the set ],,[:),{(ˆ
1 iiiiii xxIttI −=∈=P

},...,2,1 ni = . (Carefully note the cap over P  which indicates that a tag has 

been chosen for each subinterval.) The tags can be chosen arbitrarily. One can 
choose the tags to be the left endpoints, or the midpoints of the subintervals, etc 

(See Fig. 4 (a)). Note that an endpoint ix of a subinterval ],[ 1 ii xx − can be used 

as a tag for both the consecutive subintervals ],[ 1 ii xx −  and ],[ 1+ii xx . Since a 
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point can be chosen from a subinterval in infinitely many ways, each tag can be 
chosen in infinitely many ways. Consequently, each partition can be tagged in 
infinitely many ways. 
 
We make a remark here.   
 

Remark 2: Since the length of a subinterval ],[ 1 ii xx − does not depend on the 

choice of any of its tag it , the norm of a tagged partition P̂  is defined as the 

norm of the corresponding ordinary partitionP .  
 
We formally make a definition now.  
 

Definition 4: The Riemann sum of a function R→],[: baf corresponding to a 

tagged partition =P̂ n

iiii
txx 11 )}],,{([ =− of ],[ ba  is the number )ˆ;( �fS defined 

by 

∑
=

−−=
n

i

iii xxtffS
1

1)()()ˆ;( P                … (1) 

 

The idea behind defining the Riemann sums will be clear to you in the next 
section. At present let us have a close look at the computation of Riemann sums 
given by Eqn. (1).  
 
We now consider some examples to give you some practice for dealing with 
partitions and finding norms,.  
 

Example 1: Find the norm of the partition given below of ].1,0[  









































= 1,

4

3
,

4

3
,

5

3
,

5

3
,

2

1
,

2

1
,0P . 

 

Solution: Here 
20

3

5

3

4

3
,

10

1

2

1

5

3
,

2

1
0

2

1
321 =−=∆=−=∆=−=∆ xxx and 

.
4

1

4

3
14 =−=∆x The norm of the partition is given by 

.
2

1

4

1
,

20

3
,

10

1
,

2

1
max =









=P  

*** 

Example 2: Let ].1,0[,)( ∈= xxxf Let nP be the tagged partition formed by 

the subinterval 






 −
=




 −
=





=











1,

1
,...,,

1
,.....,

3
,

2
,

2
,

1
,

1
,0 321

n

n
I

n

i

n

i
I

nn
I

nn
I

n
I ni

where the 

tags are given by .,...,1, ni
n

i
ti == Calculate the Riemann sum )ˆ,( nfS P . 

 

Solution: Here xxf =)( and 
nn

i

n

i
xni

n

i
t ii

11
,,...,1, =

−
−=∆==  for all 

.,...,2,1 ni =  Therefore, by the definition of Riemann sums, we have  

   







=−= ∑∑

==

−
nn

i
xxtffS

n

i

n

i

iii

1
)()()ˆ;(

11

1P  

  ∑
=

=
n

i

i
n 1

2

1
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2

)1(1
2

+
=

nn

n
 

  .
2

1

n

n +
=  

*** 

You can solve some exercises on your own.  
 

 

E1) Two partitions of the interval ]1,1[− are given by  

 i) 


























−





−−= 1,

2

1
,

2

1
,0,0,

2

1
,

2

1
,11P  

 ii) 
























−








−−= 1,

3

1
,

3

1
,

4

1
,

4

1
,12P  

 Find the norms of the partitions 
1
P and .

2
P  

 

E2) Let 
2

3)( xxf = , calculate the Riemann sums where 

 

 i) }4,2,1,0{ˆ
1 =P with tags at the left end points of the sub interval. 

 ii) }4,3,2,0{ˆ
2 =P with the tags at the right end points of the sub   

interval.  
 

 
You may note that a Riemann sum can only be an approximation to the area 
under the graph. The more narrower we make the rectangle, more close the 
Riemann sums should be to the actual area. So, we want a measure of how 
narrow the rectangles in a partition can be. In the next section, we shall explain 
this. 
  

14.3 RIEMANN INTEGRATION 
 

In this section we shall introduce the concept of Riemann integral of a real 

valued function f defined on an interval ],,[ ba and discuss functions which are 

Riemann integrable. In what follows all functions considered will be bounded 
functions. 
 

Definition 5: A function R→],[: baf is said to be Riemann integrable on 

],[ ba  if there exists a number R∈L  such that corresponding to each 0>ε  

there exists 0>δε satisfying ε<− LfS );( P  for every tagged partition P̂  of 

],[ ba  with εδ<P̂ . 

 

If such a number L  exists for f , it is defined as the Riemann integral of f  

over ],[ ba . In this case, we write ∫=
b

a
fL or ∫=

b

a
dxxfL )( . The function f is 

called the integrand and a and b are called the bounds of the integral with 

‘a’ being the lower bound and ''b being the upper bound.  

 
It should be understood that any letter other than x  can be used in the 

expression ∫
b

a

dxxf )( , so long as it does not cause any ambiguity.  
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Theorem 1: If ],[ baRf ∈ , then the value of the integral is uniquely determined.  

 

Proof: Assume that both L′ and L ′′ satisfy the required condition in Definition 1 

of Riemann integrability of f over ],[ ba . Let 0>ε . Since L′  satisfies this 

condition, there exists 02/ >δ′
ε such that  

 

 
2

)ˆ;( 1

ε
<− LfS P             … (2) 

 

for all tagged partitions 
1P̂  with .ˆ

2/1 εδ′<P  Since L ′′ also satisfies the 

required condition, there exists 2/εδ ′′  such that 

 

 
2

)ˆ;( 2

ε
<− LfS P              … (3) 

 

for all tagged partitions 2P̂ with .ˆ
2/2 εδ′<P    

 

Take },{min 2/2/ εεε δ′′δ′=δ . Clearly 0>δε since both 2/εδ′ and 2/εδ′′  are 

positive.   
 

Let P̂  be any tagged partition of ],[ ba  with .ˆ
εδ<P  Then 2/

ˆ
εδ′<P  as 

well as ,ˆ
2/εδ′′<P since 2/εε δ′≤δ and 2/εε δ′′≤δ . Now from (2) and (3), we get 

2/)ˆ;( ε<′− LfS P and 2/)ˆ;( ε<′′− LfS P . An application of triangle 

inequality as can be seen in the second step below gives  
 

  LfSfSLLL ′′−+−′=′′−′ )ˆ;()ˆ;( PP  

   LfSfSL ′′−+−′≤ )ˆ;()ˆ;( PP  

22

ε
+

ε
<  

ε=  

 

Since 0>ε is arbitrary, it follows that LL ′′=′ .    

 
We look at some simple examples to understand the definition of Riemann 
integral.  
 

Example 3: Show that every constant function on ],[ ba  is Riemann integrable 

and, find its integral.   
 

Solution: Consider a constant function f defined by α=)(xf  for all 

],[ bax ∈ , where R∈α is fixed. Then for any tagged partition               

=P̂ n

iiii
txx 11 )}],,{([ =− of ],[ ba , we have α=)( itf for all ni ,...,1=  and hence  

 ∑
=

−−α=
n

i

ii xxfS
1

1)()ˆ;( P  

   [ ])(...)()()( 0132211 xxxxxxxx nnnnnn −++−+−+−α= −−−−−  

   )( 0xxn −α=  
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   )( ab −α= . 

 

Hence, for any 0>ε , we can choose 1=δε (or any positive real number) so 

that if ,ˆ
εδ<P then  

  ε<=−α− 0)()ˆ;( abfS P  

 

Since this is true for every 0>ε , we conclude, by taking ),( abL −α= that 

],[ baRf ∈ . Further,  

  ∫ −α=
b

a

abxdxf )()()( . 

*** 

Example 4: Consider our opening example R→]3,0[:g defined by  

  




≤<

≤≤
=

31,3

10,2
)(

xfor

xfor
xg . 

 
Show that g is Riemann integrable, and find its integral. 

 
Solution: Our earlier experience hints that the Reimann integral of g might  

be 8.   
 

Consider any tagged partition P̂  of [0,3] with .1ˆ <P Let 1P̂  be the subset of 

P̂ having its tags in ]1,0[  where 2)( =xg , and let 2P̂ be the subset of P̂ with 

its tags in ]3,1]  where 3)( =xg . Then  

∑
=

−−=
n

i

iii xxtggS
1

1)()()ˆ;( P   

 ∑ ∑
=∈ =∈

−− −+−=
n

it

n

it

iiiiii

i i

xxtgxxtg
1],1,0[ 1],3,1]

11 )()()()(  

 

Hence )ˆ;()ˆ;()ˆ;( 21 PPP gSgSgS +=           … (4)  

 

Let .ˆ β<P Then 1<β since, by assumption, .1ˆ <P We claim that the 

interval ]1,0[ β−  is contained in the union of all subintervals in P̂ with tags 

]1,0[∈it . To prove this, let ]1,0[ β−∈u . Obviously, β−≤ 1u . Since 1P̂  is a 

subset of P̂ having its tags in u],1,0[  lies in some subinterval ],[ 1 ii xx −  with 

tag ]1,0[∈it . But then uxi ≤−1 obviously. This together with β−≤ 1u imply 

that β−≤− 11ix so that 11 ≤β+−ix . But β=≤− − P̂1ii xx . Hence 

11 ≤β+< −ii xx , and in such a case, ]1,0[],[ 1 ⊂− ii xx  so that the tag ]1,0[∈it . 

Thus each ]1,0[ β−∈u lies in some subinterval of P̂  with tag ]1,0[∈it . 

Consequently, the interval ]1,0[ β−  is contained in the union U  of all 

subintervals in P̂ having their tags ]1,0[∈it . Hence the claim. Further, 

]1,0[]1,0[]1,0[],[ 1 β+⊂⊂⇒⊂− Uxx ii . Since 2)( =itg  for all the tags 

]1,0[∈it , we have  
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 )1(2)ˆ;()1(2 1 β+≤≤β− PgS            … (5) 

 

A similar argument shows that the union of all subintervals with tags ]3,1(∈it  

contains the interval ]3,1[ β+  of length ,2 β−  and is contained in ]3,1[ β− of 

length β+2 . Therefore, 

 

 )2(3)ˆ;()2(3 2 β+≤≤β− PgS            … (6) 

 
Adding these inequalities and using equation (6), we obtain  

 

 β+≤+=≤β− 58)ˆ;()ˆ;()ˆ;(58 21 PPP gSgSgS  
 

Thus β+≤−≤β− 58)ˆ;(5 PgS  or equivalently,  

  

PP ˆ558)ˆ;( =β≤−gS              … (7) 

 

Now, let 0>ε be given. Choose εδ to be any positive number less than min 

)5/,1( ε . (For example, take )2/1(=δε min )5/,1( ε . Then .5/ˆ ε<P For all 

partitions P̂ of ]3,0[  with εδ<P̂ and hence by )7( , .8)ˆ;( ε<−PgS Since 

0>ε is arbitrary, we see that ]3,0[Rg ∈  and ∫ =
3

0
8g , as expected.  

*** 

From the example above, you must have realized that it is not easy to use the 
definition to show that a function is Riemann integrable. In the example, above 

the function was a constant in the subpartitions i.e. 2)( =xg in ]1,0[ and 

3)( =xg in ].3,1[ Therefore, we have concentrated only on the partitions whose 

norms go to zero, and did not worry too much about the tags in the partitions. 
Sometimes, we employ some tricks that enable us to guess the value of the 
integral by considering a particular choice of the tag points. 
 
We shall illustrate this in the following example.  
 

Example 3: Consider the continuous function R→]1,0[:h defined by 

xxh =)(  for ]1,0[∈x . Show that ],1,0[Rh∈ and .
2

1
)(

1

0

∫ =dxxh  

This assertion is an immediate consequence of a result which we will prove later 

that every continuous function R→],[: baf  is Riemann integrable.  

 

Solution: Let n

ii
I 1}{ ==P be any given partition of ]1,0[ . Choose the tag of the 

interval ],[ 1 iii xxI −= to be the midpoint )(
2

1
1 iii xxq += − . The Riemann sum 

)ˆ;( QhS corresponding to the tagged partition 
n

iii qI 1)},{(ˆ
==Q is calculated as 

follows:  

 ∑∑
=

−−

=

−=−=
n

i

iiiii

n

i

i xxxxqhhS
1

11

1

)()()()ˆ;( QQ  
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  ∑ ∑
= =

−−− −=−=−+=
n

i

n

i

iiiiii xxxxxx
1

22

1

2

1

2

11 )01(
2

1
)(

2

1
)()(

2

1
 

  
2

1
=  

Let n

iii tI 1)},{(ˆ
−=P  be an arbitrary tagged partition of ]1,0[ with .ˆ β=P Then 

β≤− −1ii xx for all ni ,...,1= . Using the same class of intervals in the basic 

partition P , form a new tagged partition Q̂  by choosing the tags iq to be the 

midpoint of the intervals iI . Since both it and iq belong to the same interval 

,iI  we have β<− ii qt for each ni ,...,1= . Then  
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∑ ∑
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=
−

= −
−−

−−≤−−=
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1

1

1

1
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)())((

)()()ˆ;()ˆ;(

QQ
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 )()( 0

1

1 xxxx n

n

i

ii −β=−β≤ ∑
=

−  

 .ˆ)01( P=β=−β=     

But, as noted earlier, 
2

1
)ˆ;( =QhS .  

Hence PP ˆ
2

1
)ˆ;( ≤−hS             … (8)  

Now, for any given ,0>ε  choose ε=δ . Then for every tagged partition P̂  of 

]1,0[ with ,ˆ δ<P from (8), we obtain .
2

1
)ˆ;( ε<−PhS  Hence ]1,0[Rh∈ and 

∫ ∫ ==
1

0

1

0
2

1
)( dxxdxxh . 

*** 
Let us see some more examples. 

Example 4: Let R→]1,0[:F be defined by 1)( =xF for 
5

4
,

5

3
,

5

2
,

5

1
=x and 

0)( =xF elsewhere. Show that ],1,0[RF ∈ and .0)(

1

0

=∫ dxxf  

Solution: We first note that each of the points 
5

3
,

5

2
,

5

1
and 

5

4
in ]1,0[ at which 

the function F is not 0 can belong to at most two subintervals in a given tagged 

partition P̂ . Since there are 4 such points, there are at most 8 subintervals in P̂

only can make non zero contributions to ).ˆ;( PFS Therefore, for a given 0>ε , 

we choose 8/ε=δε .  

 

Let P̂ be a tagged partition of ]1,0[ with εδ<P̂ . If none of the points 

5

4
,

5

3
,

5

2
,

5

1
 is a tag in ,P̂ then 0)( =itF at all the tags and hence 0)ˆ;( =PFS . 

Otherwise, let 0P̂ be the subset of P̂ with tags different from 
5

4
,

5

3
,

5

2
,

5

1
 and 
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let
1P̂ be the subset of P̂ with tags at these points. Since ,0)ˆ;( 0 =PFS we see 

that  

).ˆ:()ˆ:()ˆ:()ˆ;( 110 PPPP FSFSFSFS =+=  

Since there are at most 8 terms in the sum )ˆ;( 1PFS and each term is less than 

,εδ we see that ε=δ<=≤ ε8)ˆ;()ˆ;(0 1PP FSFS . Thus ]1,0[RF ∈  and 

∫ =
1

0

0)( dxxF .  

*** 

Example 5: Let R→]1,0[:G be defined by ,)( xxG = if 
n

x
1

=  for some 

N∈n and 0)( =xG elsewhere in ]1,0[ .  

 

For a given 0>ε , define })(|]1,0[{ ε≥∈=ε xGxE . Since there are only finitely 

many N∈n such that εε≥ E
n

,
1

is a finite set. Let εn be the number of points in 

εE . Choose
ε

ε
=δ

n2
. Consider any tagged partition P̂ of ]1,0[ such that 

εδ<P̂ . Let 0P̂ be the subset P̂ of with tags outside of εE and let
1P̂ be the 

subset of P̂ with tags in εE . Then, as in Example (7), we have  

 

 .)2()ˆ;()ˆ;(0 1 ε=δ<=≤ εεnGSGS PP  

Since 0>ε is arbitrary, we conclude that ]1,0[RG ∈ and ∫ =
1

0

0G . 

*** 

So far we have considered examples which show that certain standard 
functions are Riemann integrable and what are its integrals. Infact the definition 
of the Riemann integral allows us to compute the value of the integral, if it exists, 
as a limit of Riemann sums. 
 

We shall prove a theorem which is useful for computing the integral if a function 

f is Riemann integrable.  
 

Theorem 2: Let R→= ],0[ bf be Riemann integrable. Then for any sequence 

of partitions }{ nP of ],[ ba with 0ˆlim
0

=
→

n
n
P and for any associated sequence of 

of tags },{ nt we have  

 .)()ˆ;(lim ∫=
∞→

b

a

n
n

dxxffS P  

Proof: Let { }∞

=1
ˆ

nnP be a sequence of partitions of ],[ ba with ,0ˆlim =
∞→

n
n
P let 

∞

=1
}{

nn
t be an associated sequence of tagged sets and let .0>ε Since f is 

Riemann integrable, there exists 0>δ such that for all the partitions of ],[ ba

with δ<P and associated tagged set T we have 

 

 ε<− ∫
b

a

dxxffS )()ˆ,( P            … (9) 
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Also we are given that .0ˆlim =
∞→

n
n
P This implies that given ,0>δ there exists 

N∈N such that δ<nP for all N≥n . This together with the inequality given in 

(9) shows that for all ,N≥n  

 

 ε<− ∫
b

a

n dxxffS )()ˆ,( P  

Hence we get that ∫=
∞→

b

a

n
n

dxxffS .)()ˆ,(lim P  

 
We shall now give an example to illustrate the theorem above. 
 

Example 6: If xxf =)( is Riemann integrable on ],1,0[ then show that 

.
2

1
1

0

=∫ dxx  

Solution: Let us consider the partition








== ni
n

i
n ,...,1,0:P and tags 

.,...,1,








= ni
n

i
Then we have 

 

 
2

2

2

2
)ˆ,(

n

nn
fS n

+
=P  

 

2

1

2
lim)ˆ,(lim

2

2

=
+

=∴
∞→∞→ n

nn
fS

n
n

n
P  

 

Hence by Theorem 3 
2

1
1

0

=∫ dxx  

 
[You recall that according to the integration formula, you already know that 

.
2

1

2

1

0

21

0

==∫
x

dxx  

*** 

Remark 3: Remember that the theorem will help you to compute the value of 

the Riemann integral of a function if only if we assume that f  is Riemann 

integrable.  
 
Why don’t you try some exercises now.  
 

 

E3) Show that the function R→]2,0[:f defined by  

 

   




≤≤

<≤
=

.21if,1

,10if,2
)(

x

x
xf  

   

 is Riemann integrable on ]2,0[  and evaluate its integral. 

 

E4) If the function 
2)( xxf = is Riemann integrable, then show that 
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.
3

1
1

0

2 =∫ dxx  

 

E5) Let 








∈

∈

=
irrationalis]1,0[if

1

rationalis]1,0[if0

)(
x

x

x

xg  

Explain why ].1,0[Rg ∉ However, show that there exists a sequence 

)ˆ( nP of tagged partitions of ]1,0[ such that 0ˆ →nP and )ˆ;(lim n
n

fS P

exists.  
 

 

By now you must have realised that unlike continuity and differentiability, it is not 
easy to check the Riemann integrability of a function. We need to look for a 
criterion to prove that a function is Riemann integrable. In the next section we 
shall consider this.  
 

14.4 CRITERIA FOR RIEMANN INTEGRABILITY 
 

In this section we shall discuss two criteria for Riemann integrability. These 
criteria will help us to decide on the existence of Riemann integrability of a given 
function. It does not tell us the value of the integral. We shall first prove a 
theorem which is powerful tool for showing the existence.  
 
It is reasonable to try to check the Riemann integrability of a given function 
without guessing the value of its integral which may or may not exist. The 
following theorem on the Cauchy Criterion is a powerful tool in this context.  
 

Theorem 3 (Cauchy Criterion for Integrability): A function R→],[: baf

belongs to ],[ baR if and only if for every 0>ε there exists 0>ηε such that if 

P̂ and Q̂ are any tagged partitions of ],[ ba with εη<P̂ and ,ˆ
εη<Q then 

ε<− )ˆ:()ˆ;( QP fSfS . 

 

Proof: Assume that ],[ baf R∈ with integral .L  Let 0>ε be given. Since 

],,[ baf R∈ there exists 0>ηε such that  

 

 
2

)ˆ;(
ε

<− LfS P  

 

for every tagged partition P̂ of ],[ ba with εη<P̂ . 

 

Hence if P̂ and Q̂ are any two tagged partitions of ],[ ba with εη<P̂ and 

,ˆ
εη<Q then 2/)ˆ;( ε<− LfS P as well as .2/)ˆ;( ε<− LfS Q Therefore 

.2/2/

)ˆ;()ˆ;(

)ˆ;()ˆ;()ˆ;()ˆ;(

ε=ε+ε<

−+−≤

−+−≤−

QP

QPQP

fSLLfS

fSLLfSfSfS

 

 

Conversely, assume that a given function R→],[: baf has the property that 



 

 

140

Block 5                                                    Integrability of Functions
                                                        

for every 0>ε there exists a corresponding 0>ηε such that whenever p̂ and 

Q̂ are tagged partitions of ],[ ba with εη<P̂ and ,ˆ
εη<Q then  

.)ˆ:()ˆ;( ε<− QP fSfS Then by choosing n/1=ε for each ,N∈n we select 

0>δn such that for any two tagged partitions P̂ and Q̂ with norms less than 

,nδ we have  

 

 ./1)ˆ;()ˆ;( nfSfS <− QP  

 

The choice of nδ can be done in such a way that 1+δ≥δ nn for all .N∈n For 

otherwise, we replace nδ by }.,...,min{ 1 nn δδ=δ′ Now, for each ,N∈n  

choose a tagged partition P̂ with .ˆ
nn δ<P Clearly, if nm > then 

.ˆ
nmm δ≤δ<P Hence both mP̂ and nP̂ have norms less than ,nδ so that  

 

 
n

fSfS mn

1ˆ;()ˆ;( <− PP           … (10) 

 

for all .nm >  

 

Consequently, the sequence ∞
=1))ˆ;(( mmfS P is a Cauchy sequence in .R

Therefore, by Cauchy Convergence Criterion for sequence this sequence 

converges in .R Take ).ˆ;(lim mm fSA P= Fixing N∈n and passing to the limit 

in (10) as ,∞→m we obtain 
 

  
n

AfS n

1
)ˆ;( <−P  

 

for N∈n . 
 

We claim that ],[ baRf ∈ and A  is the Riemann integral of .f For this, 

consider any .0>ε Choose N∈K satisfying 
ε

>
2

K so that .
2

/1
ε

<K  

If Q̂ is any tagged partition with ,ˆ
kδ<Q then ,/1)ˆ;()ˆ;( KfSfS K <− PQ  

since .ˆ
KK δ<P Consequently, 

 

 

.
22

11

)ˆ;()ˆ;()ˆ;()ˆ;(

ε=
ε

+
ε

<+≤

−+−≤−

KK

AfSfSfSAfS kK PPQQ

 

 

Since 0>ε is arbitrary, we obtain ],[ baRf ∈ with integral .A This completes 

the proof. 
 

The example below illustrates the Cauchy Criterion.  
 

Example 7: Let R→]3,0[:g be defined by  

 

 




≤<

≤≤
=

.31for,3

,10for,2
)(

x

x
xg     
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Using Cauchy criterion show that dxxg∫
3

0

)( exists. 

 

Solution: We have seen that ].3,0[Rg ∈  Also, if P̂ is any tagged partition of 

]3,0[ with ,ˆ δ<P then as we have seen in Example 4, 

 

 δ+≤≤δ− 58)ˆ;(58 PgS           … (11) 
 

Hence if Q̂ is another tagged partition of ]3,0[ with ,ˆ δ<Q then  

 

 δ+≤≤δ− 58)ˆ;(58 QgS  

 
and consequently,  
 

 δ+−≤−≤δ−− 58)ˆ;(58 QgS           … (12) 

 
Adding the inequalities (11) and (12), we obtain  
 

 δ≤−≤δ− 10)ˆ;()ˆ;(10 QP gSgS  

 

Interchanging P̂ and Q̂ in the above, we obtain  

 

 δ≤−≤δ− 10)ˆ;()ˆ;(10 PQ gSgS  

 

and hence  
 

 .10)ˆ;()ˆ;( δ≤− QP gSgS  

 

Thus, by choosing 20/ε=δ=ηε corresponding to any given ,0>ε we see 

that the Cauchy Criterion is satisfied for .g  

*** 

Since the Cauchy Criterion is necessary and sufficient for the Riemann 
integrability of a function, it can be used for concluding that if a given function is 
Riemann integrable or not. The following example yields a function which is not 
Riemann integrable.  
 

Example 8: Let R→]1,0[:f be the Dirichlet function, defined by  

 

 




∈

∈
=

irrationalis]1,0[if0

rationalis]1,0[if1
)(

x

x
xf  

 

Using Cauchy criterion show that f is not Riemann integrals.  

 

Solution: Let .
2

1
0 =ε If P̂ is any partition of ]1,0[  all of whose tags are rational 

numbers then ,1)ˆ;( =PfS while if Q̂ is any tagged partition of ]1,0[ all of 

whose tags are irrational numbers then .0)ˆ;( =QfS Note that it is always 

possible to choose such tagged partitions P̂ and Q̂ with δ<P̂ as well as 
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δ<Q̂ for any choice of .0>δ But, in all such cases, we obtain 

0
2

1
1)ˆ;()ˆ;( ε=>=− QP fSfS (Note that the choice of 0ε can be any real 

number in )).1,0( Thus the Cauchy Criterion is not satisfied by .f Hence the 

Dirichlet function f is not Riemann integrable.  

*** 

Thus we have established a criterion for checking the existence of Riemann 
integrability.  
 
Next we shall prove result which will be used to establish the Riemann 
integrability of some important classes of functions.  
 

Theorem (Squeeze Theorem) 4: Let R→],[: baf . Then ],[ baRf ∈ if and 

only if for every 0>ε there exist functions εα and εω in ],[ baR with 

  

 ε<α−ω∫ εε

b

a

)(            … (13) 

 

such that for all ],[ bax ∈ , 

 

 )()()( xxfx εε ω≤≤α            … (14) 

 

Proof: If ],[ baRf ∈ , then for any given 0>ε , it is enough to choose 

f=ω=α εε so that both (13) and (14) follow obviously.  

To see the converse, let 0>ε and choose ],[, baR∈ωα εε , satisfying (13) and 

(14). Since ],,[, baR∈ωα εε there exists 0>δε such that if P̂  is any tagged 

partition with εδ<P̂ then  

 

 ε<α−α ∫ εε

b

a

S );( P as well as ε<ω−ω ∫ εε

b

a

S );( P  

 
From these inequalities, it follows that  
 

 ∫ εε α<ε−α
b

a

S );( P and ∫ ε+ω<ω εε

b

a

S );( P  

 

In view of inequality (13), we have  
 

 );();();( PPP εε ω≤≤α SfSS . 

 

Hence  

 ∫ ∫ ε+ω<<ε−α εε

a

b

b

a

fS );( P  

If Q̂ is another tagged partition with ,ˆ
εδ<Q then we also have  

∫ ∫ ε+ω<<ε−α εε

b

a

b

a

fS );( Q  
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Subtracting these two inequalities, we obtain 
  

 ∫ ∫ ε+α−ω<−<ε−ω−α εεεε

b

a

b

a

fSfS 2)();();(2)( QP  

 

and consequently,  

 ∫ ε+α−ω<− εε

b

a

fSfS 2)();();( QP  

But by (3), we have ∫ ε<α−ω εε

b

a

)( . Hence ε<− 3);();( QP fSfS . Since 

0>ε is arbitrary, the Cauchy Criterion implies that ],[ baRf ∈ . This completes 

the proof. 
 
By now you must have realized that the complexity involved in working with the 
Riemann sums is due to the condition that for a given 0>ε we need to work 
with different partitions and associated tagged points. 
 
The following theorem shows that every Riemann integrable function is 
bounded. 
 
Before that we state an important property of Riemann integrability. 
 

Theorem 5 (Bounded Theorem): If ],[ baRf ∈ , then f is bounded on ].,[ ba  

 

Proof: Assume that ],[ baf R∈ is a unbounded function with integral .L Then 

for the choice ,1=ε there exists 0
1

>δ such that 1)ˆ;( <− LfS P for every 

tagged partition P̂ of ],[ ba with .ˆ
1δ<P Since the triangle inequality yields 

( ) ( ) yxyx −≤− for all ,, R∈yx this implies that  

 

  1)ˆ;( +< LfS P           … (15) 

 

Let [ ]{ }n

nii xx
11, =−=Q be a partition of ],[ ba with .1δ<Q Since f is not 

bounded on ],,[ ba there is at least one subinterval in ,Q say [ ],,1 kk xx − on which 

f is not bounded. If there is no such subinterval in ,Q then f is bounded on 

each subinterval ],[ 1 ii xx − by ,iM and hence it is bounded on ],[ ba itself by 

}.,...,max{ 1 nMM  

 

Now, we tag the partition Q as follows: Choose ii xt = for all .ki ≠ Since f is 

not bounded on ],,[ 1 kk xx − there is some ],[ 1 kk xxx −∈ such that Mxf >)(

where 







−++×−= ∑

≠
−−

ki

iiikk
xxtfLxxM ))((1))/(1( 11 . Choose xtk = for 

completing the tagging of Q . Then  

 

 ∑
≠

−− −++>−
kt

iiikkk
xxtfLxxtf ))((1))(( 11  

and consequently,  
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 ,1))(())(()ˆ;( 11 +>−−−≥ ∑
≠

+− LxxtfxxtffS
ki

iiikkk
Q  

 

using the inequality ( )yxyx −≥− for all ,, R∈yx as mentioned in the 

beginning. This is contradicts to the inequality in )5,1( for the tagged partition 

Q̂ and hence f is not Riemann integrable on ].,[ ba  

 
In fact, we have proved the following.  
 
Corollary 1: An unbounded function cannot be Riemann integrable.  
 
The Boundedness theorem says that every Riemann integrable function is 
necessarily bounded.  
 
Let us now briefly recall the theory of integration you learnt in the Calculus 
course.  
 

We begin with a bounded function define on ].,[ ba  

 

Let R→],[: baf be bounded and let { }n

iii xx
11,

ˆ
=−=P be a partition of ].,[ ba  

For ,,...,2,1 ni = define  

 

 ]},[:)(sup{ 1 iii xxxxfM −∈= and  

 ]}.,[:)(inf{ 1 iii xxxxfm −∈=  

 

Define the upper sum ),( fU P and the lower sum ),( fL P of f corresponding 

to the partition P by   
 

 ∑
=

−−=
n

i

iii xxMfU
1

1)(),(P and          … (16) 

 ∑
=

−−=
n

i

iii xxmfL
1

1),(),(P           … (17) 

The upper and lower Riemann integrals of f denoted by ∫
b

a

dxxf )( and 

∫
b

a

dxxf )( respectively are defined by 

 Upper interval ),(inf)( fUdxxf

b

a

P== ∫ and  

 Lower interval ),(sup)( fLdxxf

b

a

P== ∫  

where the infimum and the supremum are taken over all possible partitions P of 

].,[ ba If the upper and lower integrals are equal, then the function f is Riemann 

integrable over ],[ ba and the common value is defined as the Riemann integral 

of .f  
 

Theorem 6: Let R→],[: baf be bounded and let },...,{ 0 bxxa n ===P be a 

partition of ].,[ ba Then for all associated set of tagged points },,...,{ ni ttT =  
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inequalities ).ˆ,()ˆ;()ˆ,( PPP fUfSfL ≤≤  

 

Proof: The inequality follows from the fact that if ],[ 1 iii xxt −∈ for all 

},,..,2,1{ ni ∈ then iii Mtfm ≤≤ )( for all }.,...,2,1{ ni ∈ Hence  

 

i

n

i

iii

n

i

ii xMxtfxm ∑∑
==

∆≤∆≤∆
11

)(  

 

Hence the result.   
 

Remark 4: The above theorem says that the Riemann integration which we 
have defined in this unit will give the same value as the one that are obtained by 
considering the upper sum and the lower sum that is obtained by the process 
illustrated in the Calculus course. Note that the latter process assumes that the 
function is bounded.  
 
The origin of the theory of integration claims that integral defined by considering 
the lower sums and upper sums is due to the Mathematician Gaston Darboux.  
 
The integrals considered by Darboux sums(upper sums and lower sums) are 
called Darboux integral. Infact a function is Darboux-integrable if and only if it 
is Riemann integrable and the values of the two integrals, if they exist are equal.  
 
Let us now go back to Theorem 5 above which says that if the Riemann sums 
are squeezed between upper sums and lower sums can get arbitrarily close to 

each other, then f in Riemann integrable. The only way this cannot happen is 

when the function oscillates too much, that is, if the function is highly 
discontinuous. The following is an example of a function which is not Riemann 
integrable. The function is called Dirichlet function.  
 

Example 9: The Dirichlet function f defined by  
 

 




∩∈

−∈
=

1][0,,1

]1,0[,0
)(

Q

Q

x

x
xf

for

for
  

 

is not Riemann integrable.  
 

Solution: You can easily calculated that for any partition 1),ˆ(,ˆ =fU PP and 

0),ˆ( =fL P .  

 

∴The function is not Darboux integrable and therefore not Riemann integrable. 
 

*** 
You can try these exercises now. 
 

 

E6) Suppose that R→],[: baf and that 0)( =xf except for a finite 

number of points ncc ,...,1 in ].,[ ba Prove that ],[ baf R∈ and that 

.0=∫
b

a

f  

 

 

This brings to the end of this unit. Let us summarize now the points discussed in 
this unit.  
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14.5 SUMMARY 
 

In this unit we have covered the following points: 
  

1. We have explained the concept of Riemann integral of a real-valued 

function f defined on an interval ].,[ ba  

2. We have discussed the computation of Riemann integral of some known 
functions.  

3. We have given the Cauchy criterion of Riemann integrability.  

4. We have explained the connection between Riemann integral and Darboux 
integral of a function.  
 

14.6  SOLUTIONS AND ANSWERS  
 
E1)  Hints/Answers 
  

  a) 21 =P  b) 22 =P  c)  4.13 =P   

  c) 24 =P  

 

E2)  Hints/Answers  

  a) 98102.21.11.0 222 =++=++  

 b) 37 

 c) 13 

 d) 33   
 

E3)  Consider any tagged partition P̂ of ]2,0[ with .1ˆ <P Let 
1P̂ be the 

subset of P̂ having its tags in [1,0[ where 2)( =xf and 
2P̂ be the 

subset of P̂ with its tags in ]2,1[ where .1)( =xf Then  

   ∑
=

−−=
n

i

iii xxtffS
1

1))(()ˆ;( P  

    ∑ ∑
=∈ =∈

−− −+−=
n

it

n

it

iiiiii

i i

xxtfxxtf
1[,1,0[ 1],2,1[

11 ))(()()(  

  

Hence )ˆ,()ˆ,()ˆ,( 21 PPP fSfSfS +=  
  

Let .ˆ β<P Then ,1<β since by the assumption, .1ˆ <P  

  

We claim that the interval )1,0[ β− is contained in the union of 

subintervals in P̂ with tags [.1,0[∈it  
  

To prove this, let ].1,0[ β−∈u Obviously, .1 β−≤u Since 
1P̂ is a subset 

of P̂ having its tags in u[,1,0[ lies in some subinterval ],[ 1 ii xx − with tag 

[.1,0[∈it Then .1 uxi ≤−  This together with β−≤ 1u imply that 

,11 β−≤−ix so that .11 ≤β+−ix But .ˆ
1 β=≤− − Pii xx Hence 

,11 ≤β+< −ii xx and in such a case ],1,0[],[ 1 <− ii xx so that the tag 

[.1,0[∈it  
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Thus each ]1,0[ β−∈u lies in some subinterval of P̂ with tag [.1,0[∈it  
Consequently, the interval ]1,0[ β− is contained in the union of all 

subintervals in P̂ having their tags [.1,0[∈it Hence the claim. 

Further, let ,uv = then ],[ 1 ii xxv −∈ with tag [1,0[∈it for some .i Then 

11 <−ix and .ixv ≤ Also, .ˆ
1 β=≤− − Pii xx  

 

So, β+≤≤ −1ii xxv  

 β+<1  [since ]11 <−ix  

]1,0[ β+∈∴v  

 

Thus ]1,0[ β+⊂U . 
 

Since 2)( =itf for all the tags [,1,0[∈it we have 

  

)1(2)ˆ,(12 β+≤≤β−≤ PfS    … (18) 
 

A similar argument shows that the union of all subintervals with tags 

]2,1[∈it contains the interval ]2,1[ β+ of length β−1 and is contained 

in ]2,1[ β− of length .1 β−  
 

Therefore  
 

)1(1)ˆ,()1(1 2 β+×≤≤β−× PfS         … (19) 

 
Adding the inequalities (18) and (19), we get  
 

)ˆ,()ˆ,()ˆ,()1(3 21 PPP fSfSfS +=≤β−  

  )1(3 β+≤  
 

Thus β≤−≤β− 33)ˆ,(3 PfS or equivalently  

 PP ˆ333)ˆ,( =β≤−fS  

 

Now let 0>ε be given. Choose εδ to be any positive number less than 

min .
3

,1 






 ε
Hence for all partitions P̂ of ]2,0[ with ,ˆ

εδ<P  

 ε≤− 3)ˆ,( PfS  

 

Therefore by the definition of Riemann integrability, )(xf is integrable 

and ∫ =
2

0

.3)( dxxf  

E4) Let }{ nP where 








== ni
n

i
n ,...,1,0,P be a sequence of partitions and 

 








= ni
n

i
,...,1, be the associated sequence of tags  

 

 Now, i

n

i

in xtffS ∆=∑
=

)(),(
1

P  



 

 

148

Block 5                                                    Integrability of Functions
                                                        

   ∑
=









=

n

i nn

i

1

2
1

[As 
n

xi

1
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   ∑
=

=
n

i

i
n 1

2

3
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26

)12)(1(

n

nn ++
=












∑

++
=

= 6

)12()1(

1

2 nnnn

i
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Therefore, 
26

)12)(1(
lim),(lim

n

nn
fS

n
n

n

++
=

∞→∞→
P  

    
















+








+=

∞→ nnn

1
2

1
1

6

1
lim  

    
3

1
2

6

1
=×=  

E5) Hint: Same as Example 

Here there are n points niii ,...,, 21 where f is not zero, each of which 

can belong to the subintervals in a given tagged partition. Choose 

n2

ε
=δε (proceed same as in the example to get the desired result). 

      
E6)  Hints/Answers 

  If ],,[ 1 ii xxu −∈ then uxi ≤−1 so that P̂11 +≤≤≤ −iii xxtc  and hence 

P̂1 −c uxi ≤≤ −1 . Also ixu ≤ so that P̂−ix 21 ctx ii ≤≤≤ − and hence 

.ˆ
2 P+≤≤ cxu i   
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15.3 Continuity and Monotonicity         152 

15.4 Summary           161 

15.5 Solutions/Answers          161 
                

15.1 INTRODUCTION 
 
In the last unit you have learnt the definition and some basic facts about 
Riemann integrability. You studied that certain standard functions like constant 
function, identity function and polynomial function etc are integrable on any 

interval ].,[ ba  We want to know about the integrability of many more functions. 

In this unit we discuss some properties of Riemann integrals. This will help us 

indentify some more functions in ],[ baR . You will see that ],[ baR  includes all 

continuous functions.  
 
In Sections 15.2 you will study that the sum and difference of two integrable 
functions are integrable. So also is multiplication of an integrable function by a 
fixed real number (called a scalar multiplication). 
 
In Section 15.3 we discuss the Riemann integrability of continuous functions, 
monotone functions and step functions. Lastly we discuss another useful 
theorem known as additivity Theorem. 
 

Objectives 
 
After reading this unit you should be able to  
 
• check the Riemann integrability of large number of functions that are 

expressed as the sum of simple functions; 

• identify a step function and find its integral 

• apply the result that both the class of continuous functions and the class of 
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                                                        monotonone functions are included in the class of Riemann integrable 

functions. 
 

15.2 Basic Properties (or Algebra) of Riemann 
Integrable functions 

 

In this section we state and prove some basic results on algebra of Riemann 
integrable functions.  
 

The following theorem tells us that when the basis algebraic operations, namely 
sum and multiplication by a constant, are applied on Riemann integrable 
functions, the resulting functions are also Riemann integrable. 
 

Theorem 1: Suppose that f and g are in ],[ baR . Then the following holds: 

i) The function kf  is in ],[ baR  and for each ,k R∈  and ∫∫ =
b

a

b

a

fkfk  

ii) The function gf + is in ],b,a[R  and .∫∫∫ +=+
b

a

b

a

b

a

gfgf  

Proof: We shall first prove (i)  
 

Let n
iiii txx 11 )}],,{([ˆ
=−=P

 
be any tagged partition of ],[ ba . Then  

 

 )ˆ;( PkfS ∑ ∑
= =

−− −⋅=−=
n

i

n

i

iiiiii xxtfkxxtkf
1 1

11 )()()()()(  

        )ˆ;()()(

1
1 P∑

=
− =−=

n

i

iii fkSxxtfk          … (1) 

 

Let 0>ε be given. If ,0=k then by Eqn. (1), 0)ˆ;( =PkfS
 for every tagged 

partition P̂  of ],[ ba . So, in this case, kf  is Riemann integrable, and 

∫ ∫==
b

a

b

a

fkfk 0 . Now, assume that 0≠k . Since ],[ baRf ∈ , corresponding 

to ,
|| k

ε

 

there exists δ
 

such that for every tagged partition P̂  of ],[ ba  with

δ<P̂  we have  

  

 
||

ˆ;(
k

ffS

b

a

ε
<− ∫P             … (2) 

 

Using the triangle inequality, Eqn. (1) and (2), we obtain 
  

 ∫∫ −+−=−

b

a

b

a

fkfkSfkSkfSfkkfS )ˆ;()ˆ;()ˆ;()ˆ;( PPPP  

        ∫−+−≤

b

a

fkfkSfkSkfS )ˆ;()ˆ;()ˆ;( PPP  

         ε<−= ∫
b

a

ffSk )ˆ;( P  
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This is true for every tagged partition P̂  of ],[ ba  with δ<|ˆ| P . Hence (i) 

follows.  
 

To prove (ii), we note that  
 

∑ ∑
= =

−− −+=−+=+
n

i

n

i

iiiiiii xxtgtfxxtgfgfS

1 1
11 )())()(()()()()ˆ;( P  

       ∑ ∑
= =

−− −+−=
n

i

n

i

iiiiii xxtgxxtf

1 1
11 )()()()(  

       )ˆ;()ˆ;( PP gSfS += . 
 

for every tagged partition P̂  of ],[ ba . 
 

Let 0>ε . As in the proof of the uniqueness Theorem 3 in unit 14, we obtain a 

number 0>δε such that if P̂  is any tagged partition with ,ˆ
εδ<P  then both  

 

 2/)ˆ;( ε<− ∫
b

a

ffS P

 

and 
2

)ˆ;(
ε

<− ∫
b

a

ggS P         … (3) 

 

Hence   
  

 ∫ ∫∫∫ −−+=













+−+

b

a

b

a

b

a

b

a

gfgSfSgfgfS )ˆ;()ˆ;()ˆ;( PPP  

 ε
εε

=+<−+−≤ ∫∫ 22
)ˆ;()ˆ;(

b

a

b

a

ggSffS PP  

 

Since 0>ε is arbitrary, we conclude that ],[ baRgf ∈+  and that its integral is 

the sum of the integrals of f  and g .   

 

Corollary 1: If 
nff ,...,1

 are in ],[ baR and if R∈nkk ,...,1
, then the linear 

combination ∑
=

=
n

i

ii fkf
1

belongs to ],[ baR  and  

  
∫ ∫∑

=

=
b

a

b

a

i

n

i

i
fkf

1             
 

We leave the proof of this as an exercise for you to try, (see E1). 
 

Next we shall prove another theorem. 
 

Theorem 2: Suppose that f  and g are in ],[ baR  such that )()( xgxf ≤  

for all ],[ bax∈ , then .∫∫ ≤
b

a

b

a

gf  

Proof: Since )()( xgxf ≤  for all ],[ bax∈ , we note that )()( ii tgtf ≤
 
for all 

the tags 
it  

of any given tagged partition P̂  of ],[ ba . Then 
 

∑ ∑
= =

−− =−≤−=
n

i

n

i

iiiiii gSxxtgxxtffS

1 1
11 )ˆ;()()()()()ˆ;( PP        … (4) 

 

Let 0>ε . As in the proof of the uniqueness Theorem 3 in unit 14, we obtain a 
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number 0>δε  
such that if P̂  is any tagged partition with ,ˆ

εδ<P
 
then 

both 
2

)ˆ;(
ε

<− ∫
b

a

ffS P

 

and .
2

)ˆ;(
ε

<− ∫
b

a

ggS P  These respectively yield  

 ∫ <−

b

a

fSf )ˆ;(
2

P
ε

 

and .
2

)ˆ;( ∫ +<

b

a

ggS
ε

P  

From Eqn. (4), we have ),ˆ;()ˆ;( PP gSfS ≤  so that ∫∫ ε+≤
b

a

b

a

gf . But since 

0>ε  is arbitrary, we conclude that  
 

 ∫∫ ≤
b

a

b

a

gf . 

 

Now look at the following corollary. 
 

Corollary 2: If ],[ baRf ∈  and Mxf ≤)(  for all ],[ bax ∈ , then 

 ).( abMf

b

a

−≤∫   

 

We leave the proof of this as an exercise for you to try, see E2). 
 

Here are some exercises for you.  
 

 

E1)  Prove Corollary 1 
 

E2)  Prove Corollary 2 
 

E3)  If f  and g  are two integrable functions, then how that the product 

fg  is integrable. 
 

 

In the next section we shall consider the integrability of certain clause of 
functions.  
 

15.3  CLASSES OF RIEMANN INTEGRABLE 
FUNCTIONS 

 

In this section we discuss the relationship of Riemann integrability with 
continuous and monotone functions. 
 

We shall first discuss the Riemann integral of a step function. Let us now look at 
the definition of a step function.  
  

Definition: A function R→ϕ ],[: ba  is called a step function if it has only a 

finite number of distinct values, each being assumed on one or more 

subintervals of ],[ ba .  
 

For instance, assume that R→ϕ ],[: ba  is a step function and 
nkkk ,...,, 21
 

are the distinct values assumed byϕ on the subintervals ),,[ 101 ddI =

),,[ 212 ddI = ],[),..,,[ 1323 nnn ddIddI −==
 
respectively, where

bdddda n =<<<<= ...210
. Define R→ϕ ],[: ba

j
 by 
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∉

∈
=

j

j

j
Ix

Ix
x

if

if

0

1
)(ϕ . 

 

Then each 
j

ϕ  is a step function and is called an “elementary step function" 

and every step function ϕ  can be expressed as a linear combination of 

elementary step functions 
j

ϕ  as .

1

∑
=

=
n

j

jjk ϕϕ   

 

We shall illustrate this with an example. 
 

Example 1: Let R→−ϕ ]3,1[:  be defined by 
  

  









≤≤

<≤−

<≤−

=

.32,1

,21,1

,11,2

)(

x

x

x

x

for

for

for

ϕ  

Show that ϕ  is a step function and ϕ  can be expressed as .∑ ϕ=ϕ jjk  

 

Solution: We note that ϕ  is a function which assumes only 3 values, namely 

1,1−  and 2 . Take ].3,2[[,2,1[[,1,1[ 321 ==−= III  Clearly, for all ]3,1[−∈x , 
 

 ))(1())(1())(2()( 321 xxxx ϕ×+ϕ×−+ϕ×=ϕ  
 

where 21, ϕϕ
 
and 3ϕ

 
are elementary step functions corresponding to 21, II  

and 3I  respectively. .   

Thus ∑
=

ϕ=ϕ×+ϕ×−+ϕ×=ϕ
3

1

321 )1()1()2(
j

jj
k where 1,2 21 −== kk and 

13 =k .  

*** 
Next we shall prove a theorem.  
 

Theorem 3: Suppose that dc ≤  are points in ],[ ba . If R→ϕ ],[: ba  is the 

step function defined by  

 




∉

∈
=

],[,0

],[,
)(

dcx

dcx
x

if

ifα
ϕ  

then ],[ baR∈ϕ  and that ∫ −α=ϕ
b

a

cd )( .  

Proof: We first assume that 0>α . The Riemann sum )ˆ,( PϕS corresponding 

to a tagged partition ( ){ }n

iiii txx
11 ],,[ˆ

=−=P is given by  

∑ = −−ϕ=ϕ
n

i iii xxtS
1 1)()()ˆ,( P . 

For 0>ε , choose .
3

,
3

min






 −

=
cd

α

ε
δε  If P̂  is any tagged partition of 

],[ ba  such that εδ<P̂ , then ,4/ˆ αε<P  so that the union of subintervals 

of the form ],[ 1 ii xx −  in P̂ with tags in ],[ dc contains the interval 

],[ εε δ−δ+ dc  and is contained in ],[ εε δ+δ− dc . Therefore 

 

  )2()ˆ;()2( εε δαϕδα +−≤≤−− cdScd P  
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 εε αδαϕαδα 2)()ˆ;(2)( +−≤≤−− cdScd P , 
 

Consequently,  
 

 εαδαδαϕ εε =<≤−− 32)()ˆ,( cdS P  

 

for all tagged partitions P̂  of ],[ ba  such that .ˆ
εδ<P  Hence ],[ baR∈ϕ  

and that ∫ −α=ϕ
b

a

cd )( . If 0=α , then the function 0=ϕ  so that ],[ baR∈ϕ  

and ∫ −α=ϕ
b

a

cd )(

 

obviuosly. If ,0<α then we write ,β−=α where 

0>α=β . In this case, the function R→ϕ ],[: ba  defined by  

 

 




∉

∈β
=ϕ

].,[0

],[
)(

dcxif

dcxif
x  

 

is Riemann integrable on ],[ ba and that )( cd

b

a

−β=ϕ∫ . But ϕ⋅−=ϕ 1 .  

Hence ],[ baR∈ϕ  and ∫ ∫∫ −α=−β−=ϕ−=ϕ⋅−=ϕ
b

a

b

a

b

a

cdcd )()(.1.11 . 

 

Using Theorem 1 we can easily establish the following theorem.  
 

Theorem 4:  If � is a subinterval of ],[ ba  having endpoints dc <  and if 

R→ϕ ],[: baJ
 defined by 

  

 



∉

∈
=ϕ

.0

1
)(

Jxif

Jxif
xJ

 

Then ],[ baRJ ∈ϕ
 
and ∫ −=ϕ

b

a

J cd . 

The theorem follows by taking 1=α in Theorem 1.  
 

The next theorem shows that the step functions are Riemann integrable.  
 

Theorem 5: If R→ϕ ],[: ba is a step function, then ],[ baR∈ϕ .  

 

Proof: Since R→ϕ ],[: ba  is a step function, it will assume only finite number 

of distinct values, say 
mkkk ,...,, 21  

on some subintervals 
mj

JJJ ,...,, 2

respectively with each 
j

J having endpoints 
jj

dc < . As seen earlier, ϕ can be 

expressed in the form ∑
=

ϕ=ϕ
m

j

Jj j
k

1

 as a linear combination of elementary step 

functions 
jJϕ . Then by Theorem 2, each ],[ ba

jJ R∈ϕ  and consequently, 

each ],[. baRk
jJj ∈ϕ , by Theorem 1 of previous section. Again by Theorem 1 

of previous section, it follows that ∑
=

∈ϕ
m

j

Jj
baRk

j

1

],[. . Thus ],[ baR∈ϕ . Also,  
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  ∫ ∑∫ 









ϕ=ϕ

=

b

a

m

j

Jj

b

a

j
k

1

 

 ∑ ∫
=











ϕ=

n

j

b

a

Jj j
k

1

, using part (ii) of Theorem 1 of previous section 

 ∑ ∫
=











ϕ=

n

j

b

a

Jj j
k

1

, using Part (i) of Theorem 2 of previous section.  

 ∑
=

−=
n

j

jjj cdk
1

),( by Theorem 2. 

 
Now we will show that the continuous function are Riemann integrable.  
 

Theorem 6: If R→],[: baf  is continuous on ],[ ba , then ],[ baRf ∈ .  

 

Proof: Since the function f  is a continuous function on a closed and bounded 

interval, it follows that f  is uniformly continuous on ],[ ba . [Please see 

Theorem? in Unit? Block 4]. Therefore, given 0>ε there exists 0>δε  
such 

that whenever ],[, bavu ∈ with εδ<− vu , then we have  
 

 
ab

vfuf
−

ε
<− )()( . 

 

Again since f is continuous, then f attains its maximum and minimum values 

on each partition P̂
 
of ].,[ ba  

 

Let n
iiI 1}{ˆ
==P

 
be a partition of ],[ ba  such that .ˆ

εδ<P  Let 
iu
 
and 

iv
 
be 

points of 
iI  where f  attains its minimum and maximum values respectively, 

on 
iI . Let εα be the step function defined by  

 

 




∈

−=∈
=

−

−

],[)(

1,...,1),[)(
)(

1

1

nnn

iii

xxxuf

nixxxuf
x

for

for
εα  

 

Let εω be defined similarly using the points 
iv  instead of the 

iu . i.e.,  

 




∈

−=∈
=

−

−

],[)(

)1,...,1(),[)(
)(

1

1

nnn

iii

xxxvf

nixxxvf
x

for

for
εω  

 

Obviously, for all ],[ bax ∈ , we obtain 
 

 )()()( xxfx εε ω≤≤α . 

 

Consequently,  

 ∑∫
=

−−−=−≤
n

i

iiii

b

a

xxufvf

1

1)())()((()(0 εε αω  

        )( 1
1

−
=

−








−
<∑ ii

n

i

xx
ab

ε
 

        ∑
=

−−








−

ε
=

n

i

ii xx
ab 1

1)(  
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        ε=−








−

ε
= )( ab

ab
. 

 

Hence by the Squeeze Theorem (Theorem 7 of Unit 14), ],[ baRf ∈ .   
 

Next we shall consider the Riemann Integrability of Monotone Functions. The 
following theorem shows that monotone functions are Riemann integrable 
though they are not necessarily continuous.  
 

Theorem 7: If R→],[: baf  is monotone on ],[ ba , then ],[ baRf ∈ .  
 

Proof: Suppose that f is increasing on the interval baba <],,[ . If 0>ε  is 

given, we choose N∈q such that  
 

 
abq

afbf
h

−

ε
<

−
=

)()(
            … (5) 

 

Let ,)( khafyk += for qk ,...1,0= .   
 

Take [),([ 1
1

kkk yyfA −
−=

 
for 1,...,1,0 −= qk  and ]),([ 1

1

qqq yyfA −
−= .  

These sets }{ kA are pair wise disjoint and have union ],[ ba . 
 

The Characterization Theorem implies that each 
kA is either (i) empty, (ii) 

contains a single point, or (iii) is a nondegenerate interval (not necessarily 

closed) in ],[ ba . We discard the sets for which (i) holds and relabel the 

remaining ones. If we adjoin the endpoints to the remaining intervals }{ kA , we 

obtain closed intervals. These relabeled intervals q

kk
A 1}{ = are pairwise disjoint, 

satisfy U
q

k kAba
1

],[
=

= and that ],[)( 1 kk yyxf −∈ for 
kAx ∈ . We now define 

step functions εα and εω on ],[ ba by setting  

 

 1)( −ε =α kyx and 
kyx =ωε )(  

 

for 
kAx ∈ . It is clear that 

 

 
)()()( xxfx εε ω≤≤α

  
 

for ],[ bax ∈  and that  

 ∫ ∑
=

−−εε −−=α−ω
b

a

q

k

kkkk xxyy
1

11 )()()(  

 ,)()(
1

1∑
=

− ε<−⋅=−⋅=
q

k

kk abhxxh by Eqn. (5). 

 

Since 0>ε is arbitrary, the Squeeze Theorem (Theorem 4) implies that 

],[ baRf ∈ .   
 

By now you must have realised that the squeeze theorem is very important for 
proving many other important theorems. Thus we have learnt that the class of 
Riemann integrable function include continuous functions, monotone functions 
and step functions. The following theorem is also useful when we discuss 
Riemann integrability on the union of closed intervals.  
 

Theorem 8 (Additivity Theorem): Let R→],[: baf and let [.,] bac∈  Then 
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],[ baRf ∈  if and only if its restrictions to ],[ ca  and ],[ bc  are both Riemann 

integrable. In this case ∫∫∫ +=
b

c

c

a

b

a

fff . 

The proof of the theorem is omitted.  
 

Proof: )(⇐ Suppose that the restriction 1f of f  to ],[ ca and the restriction 

2f  of f to ],[ bc  are Riemann integrable functions with Riemann integrals 1L   

and 2L  respectively. Then, given 0>ε there exists 0>δ′ such that for any 

tagged partition P1  of ],[ ca  with ,1 δ ′<P  we have 

 
3

);( 111
ε

<− LPfS             … (6)  

 

Also for the same 0>ε , there exists 0>δ ′′  such that for any tagged partition 

2P̂  of ],[ bc  with P̂ ,δ′′<  we have 

 
3

)ˆ;( 222
ε

<− LfS P             … (7) 

Let M be a bound for f . Define .
6

,,min






 ′′′=

M

ε
δδδε  For any tagged 

partition Q̂  of ],[ ba  with ,ˆ
εδ<Q

 
we have to prove that 

 

 ε<+− )()ˆ;( 21 LLfS Q            … (8) 

 

We shall consider two cases here.  
 

Case (i): If c  is a partition point of ,Q̂  we split Q̂  into a partition 1Q̂  of 

],[ ca  and a partition 2Q̂  of ],[ bc . Then 
 

 )ˆ;()ˆ;()ˆ;( 21 QQQ2 fSfSfS +=  
 

Since δ ′<1Q̂ and δ ′′<2Q̂ , using Eqns. 5 and 6, we see that 

 

 )()ˆ;()ˆ;()()ˆ;( 212121 LLfSfSLLfS +−+=+− QQQ  

 2211 )ˆ;(())ˆ;(( LfSLfS −+−= QQ  

 ))ˆ;(())ˆ;(( 2211 LfSLfS −+−≤ QQ  

 ε
εεε

<=+<
3

2

33
      

 

Hence we have proved (8) in this case.  
 

Case (ii): If c  is not a partition point in ,)},{ˆ
1

m
jjj tI ==Q  there exists mk ≤  

such that ).,( 1 kk xxc −∈  Let 1Q  be the tagged partition of ],[ ca  defined by 

  )}],,([),,(),...,,{( 111111 ccxtItI kkk −−−=Q  

 

and 2Q  be the tagged partition of ],[ bc  defined by 
 

 )},(),...,,(),],,{([ 112 mmkkk tItIcxc ++=Q  

 

A straightforward calculation yields  
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∑
=

−−=
m

j

jjj xxtffS

1

1)()();( Q  

     ∑ ∑
−

= +=
−−− −+−+−=

1

1 1

111 )()()()()()(
k

j

m

kj

jjjjjjkkk xxtfxxtfxxtf  

     )()();();()()( 1211 −− −⋅−++−= kkkkk xxcffSfSxxtf QQ  

     );();()())()(( 211 QfSQfSxxcftf kkk ++−⋅−= − . 
 

Hence  
 

 )())()(();();();( 121 −−⋅−=−− kkk xxcftffSfSfS QQQ  
 

so that  
 

 )))()(();();();( 121 −−⋅−≤−− kkk xxcftffSfSfS QQQ  

     εδ⋅+≤ )))()(( cftf k  

     
3

6/.2
ε

=ε≤ MM .         … (9) 

Since δδε ′<<1Q  and δδε ′′<<2Q , we have  

 

 
3

);( 11
ε

<− LfS Q
 
as well as 

3
);( 22

ε
<− LfS Q . 

 

Hence 21);( LLfS −−Q  

    212121 );();();();();( LLfSfSfSfSfS −−++−−= QQQQQ  

    221121 );();();();();( LfSLfSfSfSfS −+−+−−≤ QQQQQ  

 ε=
ε

+
ε

+
ε

<
333

. 

 

Thus we have proved (8) in this case.    
 

Since 0>ε  is arbitrary, ],[ baRf ∈  and also, 

 ∫∫∫ +=+=
b

c

c

a

b

a

ffLLf 21  

)(⇒ Conversely, we assume that ].,[ baRf ∈  Given ,0>ε  choose 0>εη  

satisfying the Cauchy Criterion 1. Let 1f  be the restriction of f  to ],[ ca  and 

let 11
ˆ,ˆ QP  be tagged partitions of ],[ ca  with εη<1P̂  and .ˆ

1 εη<Qia  

By adding same additional partition points and tags from ],[ bc , we can extend 

both 
1P̂  and 

1Q̂  to tagged partitions P̂ and Q̂  and Q̂ of ],[ ba  satisfying 

εη<P̂ and .ˆ
εη<Q  Since the same additional points and tags in ],[ bc  are 

used for both P̂  andQ̂  we obtain 
 

  ).;();();();( 1111 QPQP fSfSfSfS −=−  
 

Then ε<−=− );();();();( 1111 QPQP fSfSfSfS
 
since by Cauchy 

Condition 1, ],,[ baRf ∈ εη<P̂
 
and εη<Q̂

 
together yield 

.);();( ε<− QP fSfS   



 

 

 

159

Unit 15                            Properties of Riemann Integral Functions  
 

Therefore again, by the Cauchy criteria, ].,[1 caRf ∈  In the same way, the 

restriction 
2

f  of f  to ],[ bc  is in ],[ bcR . The equality (7) now follows from 

the first part of the theorem. This completes the proof. 
 

We shall now make some corollaries. 
 

Corollary 3: If ],[ baRf ∈ , and if ],[],[ badc ⊆ , then the restriction of f to 

],[ dc is in ],[ dcR . 
 

Proof: Since ],[ baRf ∈  and ],[ bac∈ , it follows from Theorem 8 that its 

restriction to ],[ bc is in ],[ bcR . But if ],[ bcd ∈ , then another application of 

Theorem 8 shows that the restriction of f  to ],[ dc is in ],[ dcR . This 

completes the proof. 
 

In fact we have the following result the proof of which is omitted.  
 

Corollary 4: If ],[ baRf ∈  and if bccca m =<<<= ...10
, then the 

restrictions of f  to each of the subintervals ],[ 1 ii cc − are Riemann integrable 

and  
 

 .

1
1

∫ ∑∫
= −

=
b

a

m

i

c

c

i

i

ff  

 

Before we state another property, we make a definition.  
 

Definition: If ],[ baRf ∈  and if ],[, ba∈βα  with β<α , we define 

 ,∫ ∫−=

α

β

β

α

ff  and, .0∫ =
α

α

f  

 

Theorem 9: If ],[ baRf ∈  and if γβα ,,  are any numbers in ],[ ba , then 
 

 ,∫ ∫ ∫+=

β

α

γ

α

β

γ

fff             … (10) 

 

for any permutations of βα, and ,γ in the sense that the existence of any two of 

these integrals implies the existence of the third integral and the equality (10).  
 

Proof: If any two of the numbers γβα ,, are equal, then Eqn. (10) holds. Thus 

we may suppose that all the three of these numbers are distinct. For the sake of 
symmetry, we introduce the expression  
 

 .),,( ∫∫∫ ++=

α

γ

γ

β

β

α

γβα fffL  

First, verify that Eqn. (10) holds if and only if 0),,( =γβαL . Therefore, to 

establish the assertion, we need to show that 0=L  for all six permutations of 

the arguments ,,βα and γ . We note that the Additivity Theorem 7 implies that 

0),,( =γβαL when γ<β<α . But it is easily seen that both ),,( αγβL and 

),,( βαγL are equal to ),,( γβαL . Moreover, the numbers 
  

 ),,,(),,,( βγαγαβ LL and ),,( αβγL  
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are all equal to ),,( γβα− L . Therefore, L  vanishes for all possible 

configurations of these three points. This completes the proof.  
 

Before ending this unit, we give an example of a function that is discontinuous at 
every rational number and is not monotone, but is Riemann integrable.  
 

Example 2: Consider the Thomae’s function R→]1,0[:h  where 
 

  








=∈∈=

∈

=
.1),(,,],1,0[f,

1

irrationalis]1,0[if,0

)(
nmnm

n

m
x

n

x

xh
Ni

 

 

Show that ].1,0[Rh ∈  
 

Solution: We note that h  is discontinuous at every rational number and is not 

a monotonic function. Let 0>ε . Then the set 








≥∈=
2

)(:]1,0[
ε

ε xhxE

 

is 

finite. Let εn be the number of elements in .εE  Choose .
4 ε

ε
ε

δ
n

=  Consider 

a tagged partition P̂  of ]1,0[  with .ˆ
εδ<P  Let P̂  be the subset of P̂  

having tags in εE  and 2P̂  be the subset of P̂  having tags elsewhere in 

].1,0[  We observe that 1P̂  has at most εn2
 
intervals and the sum of the 

lengths of these intervals is less than .
2

2
ε

δεε =n  Also 1)(0 ≤< ith   for 

every tag it  in .ˆ
1P  The sum of the lengths of the subintervals in 2P̂  is less 

than or equal to 1 and 
2

)(
ε

<ith  for every tag it  
in .ˆ

2P  Therefore we have 

  .1
2

21)ˆ;()ˆ;()ˆ;( 21 ε
ε

δεε =⋅







+⋅<+= nPhShShS PPP  

Since 0>ε  is arbitrary, we infer that ]1,0[Rh∈  with integral 0. 

***  
You can try some exercises now. 
 

 

E4)  Consider the function h  defined by  

 

   




∈

∈+
=

.irrationalis]1,0[if,0

,rationalis]1,0[if,1
)(

x

xx
xh  

   
  Show that h  is not Riemann integrable.  
 

E5)  If );( PfS  is any Riemann sum of ,],[: R→baf  show that there 

exists a step function R→],[: baϕ  such that ).;( PfS

b

a

=∫ϕ   

E6)  We have shown in Unit 10, Block 4 that the function R→[1,0:]f

defined by 
x

xf
1

)( =
 
is continuous, but not uniformly continuous. Does 

this contradict Theorem 4? Justify your answer. 
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With this we come to an end of this unit. 
Let us summarise the points we have discussed in this unit.  
 

15.5 SUMMARY 
 

In this unit we have covered the following points.  
 

1. We have shown that if f and g are in ],,[ baR then ].,[ baRgf ∈+  Also 

for any function ],,[ baRf ∈ for any .R∈  

2. We have proved that the step functions, continuous functions and monotone 
functions are Riemann integrable.  

3. We have stated and proved additivity theorem. 
 

15.6 SOLUTIONS AND ANSWER 
 

E1) Since sf i ' are in ],[ baR for ,,...,1 ni = then using theorem 1, we have 

].,[ baRfk ii ∈  

  

 Now, we will use mathematical induction theory. Let )(np be the 

statement that i

n

i

i fk∑
=1

belongs to ],[ baR for any .N∈n  

 So, )1(p is true as ].,[ baRfk ii ∈  

 Now, let )1( −mp its true & .
1

1

∑
−

=

=
m

i

ii fkg  

 So, g & 
mm fk both are integrable.  

 Therefore, using property (ii) of theorem 1. We have ∑
=

=+
m

i

iimm fkfkg
1

 

belongs to ].,[ baR Therefore, )(mp is true.  

 So, by mathematical induction, )(np is true for all .n  

 

E2) Let Mxg −=)(
1

for all ],[ bax ∈ and Mxg =)(
2

for all ].,[ bax∈  
  

 Given that Mxf ≤)( for all ],[ bax ∈  

   MxfM ≤≤−⇒ )(  

   )()()(
21

xgxfxg ≤≤⇒  
  

 Therefore, from theorem 2, we have  

     ∫∫ ∫ ≤≤
b

a

b

a

b

a

ngnfng )()()( 21  

   ∫∫∫ ≤≤−⇒
b

a

b

a

b

a

MxfM )()(  

   ∫ −≤≤−−⇒
b

a

abMnfabM )()()(  

   )( abMf

b

a

−≤⇒ ∫  

E3)  Notice that .
2

1

2

1
)(

2

1 222
gfgffg −−+= Now, since f & g are 
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integrable. So, if you can only show that 
2

f is integrable whenever f is 

integrable then your work is done.  
 

E4)  Let np be the partition of ]1,0[ defined by ),,...,,,( 210 nn xxxxp = where 

nr
n

r
xr ≤≤= 0, . Let us choose 

r
α in ],[

1 rr
xx − by 

rr
x=α for 

nr ,..2,1=  

  Then )..(
1

)),(,( 21 nxxx
n

pS nn ++++=αλ  

    







+

+++
= n

n

n

n

...211
 

  Let us choose 
r

β in ],[ 1 nn xx − by 
n

x
rr

5

1
−=β  

  Then ]0...00[
1

)),(,( +++=β
n

phS n  

     0=      

  Let us consider the sequence of partitions .0lim,
1

),( ==
→∞

n
n

nn p
n

pp  

  0))),(,(lim,
2

3
)),(,(lim =β=α

→∞→∞
n

n
n

n
phSphS  

   

  Since for two different choices of intermediate points ,
r

ξ the Riemann 

sums )),(,(
r

PhS ξ converges to different limits, f is not integrable on 

].1,0[   
 

E5)  Let [ ]( ){ }n

iiii txx
11 ,,ˆ

=−=P  

  So, ∑
=

−−=
n

i

iii xxtffs
1

1))(()ˆ,( P  

  Let φ be a step function such that  

  













=∈

∈

=∈

=φ

− ],[,

],[,

],[,

)(

1

212

101

bxxxf

xxxf

xxaxf

x

nnx

M
 

  ∫ ∫∫∫
=

=

−

+++=φ
1

0 1

2

1

...21

x

xa

x

x

n

x

x

b

a

bn

n

fff  

  )(...)()( 11122011 −−++−+−= nn xxfxxfxxf  

  ∑
=

−−=
n

i

iii xxtf
1

1)()(  

  )ˆ,( PfS=  

 

E6)  This does not contradict theorem 9, as the does domain f is an open 

interval.  
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UNIT 16                                                        

IMPORATANT THEOREMS     

Structure            Page No. 
 

16.1 Introduction       163  
 Objectives 

16.2 Fundamental Theorem of Calculus    164  

16.3 Mean Value Theorem for Integrals    170  

16.4 Summary       175 

16.5 Solutions/Answers      176 
  

16.1 INTRODUCTION 
 
In the previous two units we discussed how to evaluate the integral of a function 
as a limit of Riemann sums. Some important classes of Riemann integrable 
functions were also discussed. You have observed that the evaluation of an 
integral is a tedious work. In this unit we look at some powerful and easier 
techniques for evaluating the definite integral in certain situations. This is done 
by introducing the idea of primitive of a function.   
 

You have already studied that if a function R→],[: baF is such that 

)()( xfxF =′ for all ],,[ bax ∈ then F  is called an antiderivative or a 

primitive of f on ],[ ba [Refer Block-5 Calculus course BMTC-131]. There you 

have learnt that whenever f has an antiderivative F , then all the functions 

R∈+ ccF ,  are also antiderivatives of f . However, the theory of Riemann 

integral is independent of the concept of the antiderivative. In this unit, we will 
explore the connection between the notions of derivative and integral.  
 
The relationship between integral and derivative is established by an important 
theorem known as fundamental theorem of calculus which is due to two famous 
mathematicians cum physicists Sir Issac Newton and Gottfried Wilhelm Leibniz.  
In Sec 16.2 we first define the term “Primitive” of a function. Then we state and 
prove the fundamental theorem of calculus. We shall state and prove two forms 
of this theorem. We explain how the theorem helps to evaluate a definite 
integral for continuous function without using the Riemann sums.  
 
In Sec. 16.3 we state and prove mean value theorem for integrals. We illustrate 
the theorem with examples.  
 
In Sec. 16.4, we shall explain a method of checking convergence and 
divergence of an infinite series by associating the terms of the series to the 
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                                                        values of a function f where f is a monotonic, decreasing and integrable 

function defined over an interval ].,[ ba We introduce improper integrals and 

state and prove an integral test for checking the convergence of a series. 
 

Objectives 
 
After studying this unit, you should be able to: 
 
• find the primitive of certain standard functions, 

• state, prove and apply the fundamental theorem of Calculus for integrals 
and explain its importance,  

• state and prove the mean value theorems for integrals and explain their 
importance, 

• use Cauchy integral test to check the convergence of a series.   
 

16.2 FUNDAMENTAL THEOREM OF CALCULUS 
 
In this section we shall discuss one of the important theorems in Calculus 
known as ‘Fundamental Theorem of Calculus. This theorem gives the 
connection between derivative and integral. 
 
Before we discuss the theorem we shall recall the definition of term ‘primitive’ of 
a function which you have studied in the 1st semester Calculus course, Block 5 
of BMTC-131. 
 
We start with the definition. 
 

Definition 1: Let f  be a function defined on an interval ].,[ baI = Then a 

function F is a primitive of f on I if F is differentiable on I and fF =′ for  

all .Ix ∈  
 

For example it follows from the formulas of integration that if ,)( 3
xxf = then the 

function 
4

)(
4

x
xF = is the primitive of the function .f  

 

Let us consider another function R→− ]1,1[:f defined by  

 

 




<≤

<≤−
=

10if1

01if0
)(

x

x
xf  

 

This function is not the derivative of any function .]1,1[: R→−F Indeed if f is 

the derivative of a function R→− ]1,1[:F then by the intermediate value 

property of derivatives. f must have an intermediate value property. But 

clearly, the function f given above does not have the intermediate value 

property. Hence f cannot be the derivative of any function .]1,1[: R→−F   

 

However if R→− ]1,1[:f is continuous, then f is the derivative of a function 

.]1,1[: R→−F  This leads us to following general theorem. 

 

However if f is continuous, then we have the following theorem. 
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Theorem 1: Let f be integrable on ].,[ ba  Define a function F on ],[ ba  as 

∫ ∈∀=
x

a

baxdttfxF ].,[,)()(  

Then F is continuous on ].,[ ba Furthermore, if f is continuous at a point 
0

x of 

],,[ ba then F is differentiable at 
0

x and ).()(
00

xfxF =′  

 

Proof: Since f is integrable on ],,[ ba it is bounded. In other words, there 

exists a positive number M such that ].,[,)( baxMxf ∈∀≤  

 

Let 0>ε be any number. Choose ,],,[, yxbayx <∈ such that .
M

yx
ε

<−

Then ∫ ∫−=−
y

a

x

a

dttfdttfxFyF )()()()(  

 ∫ ∫ ∫−+=
x

a

y

x

x

a

dttfdttfdttf )()()(  

 ∫=
y

x

dttf )(  

 ∫≤
y

x

dttf )(  

 ∫ ε<−=≤
y

x

xyMMdt )(  

 

Similarly we can discuss the case when .xy < This shows that F is continuous 

on ].,[ ba Infact this proves the uniform continuity of .F  

 

Now, suppose f is continuous at a point 
0

x of ].,[ ba  

 

We can choose some suitable 0≠h such that ].,[
0

bahx ∈+  

Then ∫ ∫
+

−=−+
hx

a

x

a

dttfdttfxFhxF
0 0

)()()()( 00   

∫ ∫ ∫
+

−+=
0 0

0

0

)()()(

x

a

hx

x

x

a

dttfdttfdttf  

Thus ∫
+

=−+

hx

x

dttfxFhxF
0

0

)()()( 00            … (1) 

 

Now ∫ ∫
+ +

−=−
−+

hx

x

hx

x

dtxf
h

dttf
h

xf
h

xFhxF

0

0

0

)(
1

)(
1

)(
)()(

00
00  

.)]()([
1 0

0

0∫
+

−=
hx

x

dtxftf
h

 

 

Since f is continuous at ,
0

x given a number ∃>ε ,0  a number 0>δ such 
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that ,2/)()( 0 ε<− xfxf whenever δ<− 0xx and ].,[ bax ∈ So, if ,δ<h then 

,2/)()(( 0 ε<− xftf for ],,[
00

hxxt +∈ and consequently 

.
2

)]()([
0

0

0 hdtxftf

hx

x

ε
≤−∫

+

Therefore ,
2

)(
)()(

0
00 ε<

ε
≤−

−+
xf

h

xFhxF
if 

.δ<h  

 

Therefore, ),(
)()(

lim 0
00

0
xf

h

xFhxF

h
=

−+

→
i.e., ).()(

00
xfxF =′  

 

Which shows that F is differentiable at 
0

x and )()(
00

xfxF =′ from    

Theorem 1, you can easily deduce the following theorem: 
 

Theorem 2: Let R→],[: baf be a continuous function. Let R→],[: baF be 

a function defined by  
 

 ∫ ∈=
x

a

baxdttfxF ].,[,)()(  

 

Then .),()( bxaxfxF ≤≤=′  

 
This is the first result which links the concepts of integral and derivative. It says 

that, if f is continuous on ],[ ba then there is a function F on ],[ ba such that 

].,[),()( baxxfxF ∈∀=′  

 

You have seen that if R→],[: baf is continuous, then f has a primitive F . Is 

such a function F unique? Clearly the answer is ‘no’. 
 

Infact, for any given function ,f a primitive of f is not unique. For example, the 

functions xx 1sin −→ and ]1,1[,cos 1 −∈−→ − xxx are both primitives of the 

function .
1

1

2x
x

−
→  Indeed, ).cos(

2
sin

11
xx

−− −+
π

=  

 
However, two primitives of a given function are related they can only differ by a 
constant. That means we have the following proposition.  
 

Proposition 1: Let 1F and 2F be primitives of a function f on an interval 

].,[ baI = Then there exists some constant c such that  

 

 ,)()( 12 cxFxF +=  for some .Ix ∈  

 

Proof: Let 1F and 2F be two primitives of f on ,I then )()(1 xfxF =′ and 

,),()(2 IxxfxF ∈=′ so that .),()( 12 IxxFxF ∈′=′ Therefore it follows that there 

exists some constant c such that .)()( 12 cxFxF +=  

 
Now we shall state an important theorem which gives the connection between 

primitives of a function and the integral of f on an interval .I The theorem is 

known as the fundamental theorem of calculus. 
 
Theorem 3 (Extension of the First form of Fundamental Theorem of 
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Calculus): If f is continuous at every point of ],[ ba  and F is any 

antiderivative of f on ],[ ba , then  

 ∫ −=
b

a

aFbFdxxf )()()(  

 

Proof: Since f  is assumed to be continuous on ],[ ba , we have ],[ baf R∈ . 

Let 0>ε be given. Then there exists 0>δε such that  

 ε<− ∫
b

a

ffS );( P             … (2) 

for every tagged partition P̂ with .ˆ
εδ<P If nixx

ii
,...,1],,[

1
=− are the 

subintervals corresponding to ,P̂ then 

  

 ∑
=

− −=−
n

i

ii aFbFxFxF
1

1 )()())()(( . 

 

But, the Mean value Theorem applied to F on ],[
1 ii

xx −  implies that there 

exists ),(
1 iii

xxu −∈ for ni ,...,1=  such that  

 

 )()()()(
11 −− −⋅′=−

iiiii
xxuFxFxF . 

 
Substituting these in the previous sum yields 
  

 ∑ ∑
= =

−− −′=−=−
n

i

n

i

iiiii xxuFxFxFaFbF
1 1

11 )()())()(()()( . 

 

Let 
u
P̂ denote the tagged partition n

iiii uxx 11 )}],,{([ =− . Then εδ<uP̂ since 

.ˆ
εδ<uP Also, ∑ ∑

= =
−− −′=−=

n

i

n

i

iiiiiiu xxuFxxuffS
1 1

11 )()()()()ˆ;( P  since 

)()(
ii

ufuF =′ . Consequently, )ˆ;()()(
u

fSaFbF P=− . Substituting this in 

(12), we obtain 
  

 ε<−− ∫
b

a

faFbF )()( . 

Since 0>ε is arbitrary, we conclude that ∫ −=
b

a

aFbFdxxf )()()( . 

 
Remark 1: The assertion of the Fundamental Theorem of Calculus holds even if 

there are some exceptional points c  where )(cF ′ does not exist, or where it 

does not equal to )(cf .  
 

Example 1: Evaluate ∫
b

a

dxx . 

 

Solution: Define 
2

2

1
)( xxF = and xxf =)(  for all ],[ bax ∈ . Then 

)()( xfxF =′ for all ],[ bax ∈ . Since f  is continuous, we have ],[ baRf ∈ . 
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Therefore the Fundamental Theorem 2 (with =E ø, implies that  

 )(
2

1
)()(

22
abaFbFdxx

b

a

−=−=∫ . 

*** 

Example 2: Use Fundamental Theorem to evaluate the integral ∫
1

0

.2 dx
x  

 

Solution: Define .
2ln

2
)(

x

xF = Then .2)( x
xF =′ Also since x

xf 2)( = is 

continuous on ],1,0[ it is Riemann integrable in ].1,0[ Therefore by the 

fundamental theorem (Theorem 3).  
 

 ∫ −=
1

0

)0()1(2 FFdx
x  

  .
2ln

1

2ln

1

2ln

2

eee

=−=  

 
*** 

We next show that the derivative of a differentiable function need not be 
integrable. 
 

Example 3: Let R→]1,0[:F be defined by 

  

 




=

∈
=

.0for0

],1,0(for)/1cos(
)(

22

x

xxx
xF  

 

Show that F ′exists, but F ′ is not Riemann integrable.  
 

Solution: For all ],1,0(∈x we have 

 

 )./1sin()/2()/1cos(2)( 22
xxxxxF +=′   

 
Further, 

 .0
1

coslim

1
cos

lim
0

)0()(
lim)0(

20

2

2

00
=








⋅=










=
−

−
=′

→→→ x
x

x

x
x

x

FxF
F

xxx
  

 
Thus � is differentiable at every point of [0,1].  
 

Since the first term )/1cos(2)( 2

1
xxxf = in F ′  is continuous on [0,1], it 

belongs to ]1,0[R . However, the second term )/1sin()/2()( 2

2
xxxf = in F ′ is 

not bounded, so it does not belong to ]1,0[R .  

 

If ],1,0[RF ∈′ then ],1,0[12 RfFf ∈−′= leads to a contradiction. Hence �� is 

not Riemann integrable.  
 
Example 4: Check whether the conclusion of Theorem 2 holds for the function 

xxf sgn)( = on ]1,1[− .  
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Solution: We note that the signum function sgn is defined by  









<−

=

>+

=

0xfor1

0xfor0

0xfor1

)sgn(x  

i.e. 0for,)sgn( ≠= x
x

x
x  

 0for,0 == x  

 

and this function belongs to ]1,1[−R .  

 

We also note that )(xf is not continuous at ,0=x therefore we cannot apply 

Theorem 2. Now let us check whether the conclusion of theorem 2 holds or not.  

Now, if ,0<z  then 
  

 .11.1)()(
1 1

−=−−=−== ∫ ∫
− −

zzdxdxxfzF

z z

 

 

If ,0>z then  

 ∫ ∫ ∫∫ ∫
− −−

++−=+==
z zz

dxdxdxxfdxxffzF
1

0

1 0

0

1 0

).1(.1)()()(  

 11 +=+−= zz  

 

If ,0=z then  

∫
−

=
0

1

)()0( dxxfF  

 ∫
−

−=
0

1

)1( dx  

 1=  

 

Thus, 




=

≠+
=

0,1

0,1
)(

x

xx
xF    

 

But )0(F ′ does not exist. Hence F is not an antiderivative of f on ].1,1[−  

*** 
Here are some exercises for you.  
 
 

E1) Use Fundamental theorem to evaluate the integral .dxx

b

a

n

∫  

 

E2) Let xxG 2)( = for ].,0[ bx ∈ Then G is continuous on ],0[ b and 

x
xG

1
)( =′ for ].,0[ bx ∈ Does there exist a ],,0[ bg ∈ such that 

∫ −=
b

GbGdxxg
0

?)0()()( Justify your answer. 
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16.3 MEAN VALUE THEOREM FOR INTEGRALS 
 
Analogues to the mean value theorem for differentiable functions, there are 
mean value theorems for certain Riemann integrable functions also.  
 

Theorem 3: Let R→],[: baf be continuous. Then ],[ baf R∈ and there 

exists ],[ ba∈ξ such that ∫ −ξ=
b

a

abff ).(.)(   

 

Proof: Since R→],[: baf  is continuous, as observed earlier, f  is bounded 

and Riemann integrable on ].,[ ba  

 

Let ]},[:)(inf{ baxxfm ∈= and ]}.,[:)(sup{ baxxfM ∈= Then 

Mxfm ≤≤ )(  for all ],[ bax ∈  and hence ∫ −≤≤−
b

a

abMfabm ).(.)(.   

Take 
)(

)(

ab

dxxf

r

b

a

−
=
∫

 so that Mrm ≤≤ from the above.  

 

Since f is continuous on ],,[ ba the values m  and M are attained by f on 

].,[ ba  Thus ]),([, bafMm ∈  and since ,Mrm ≤≤  by intermediate value 

theorem, there exists ],[ ba∈ξ such that .)( rf =ξ   
 

Hence 
)(

)(

)(
ab

dxxf

f

b

a

−
=ξ
∫

so that )..()( abff

b

a

−ξ=∫    

 

Example 5: Illustrate the Theorem 3 for the function R→],[: baf be defined 

by .)( xxf =  
 

Solution: We note that f  is continuous, ],[ baf R∈ and  

)(.
22

)(
22

ab
abab

dxxf

b

a

−






 +
=

−
=∫           … (1) 

Let ξ be the mid point of ].,[ ba  Then ],[ ba∈ξ  and .
2

ab +
=ξ    

Further .
2

)(
ab

f
+

=ξ=ξ    

Consequently, from Eqn. (1) we get that ∫ −ξ=
b

a

abfdxxf ).(.)()(  Hence the 

theorem 3 holds for the ,
2

ab +
=ξ the middle point of the interval ].,[ ba  

*** 

Remark 2: Note that the condition that f is continuous is necessary for the 

theorem to hold. For example let us consider the function f defined on ]7,3[ as 

follows: 
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≤≤

<≤
=

75if5

53if2
)(

x

x
xf  

 ∫ ∫ ∫+=
7

3

5

3

7

5

)()()( dxxfdxxfdxxf  

  14104 =+=  
 

But 
4

14
14

4

1
)(

1
7

3

=×=
− ∫ dxxf

ab
 

The number 
4

14
can never be assumed by the function f on any ],[ ba∈ξ due 

to the choice of .f This shows that continuity is a necessary condition for the 

theorem to hold. 
 

You can now try some exercises now.  
 

E3) Let ],[ baf R∈ and define ∫=
x

a

fxF )( for ].,[ bax ∈   

a) Evaluate ∫=
x

c

fxG )(  in terms of ,F where ].,[ bac ∈   

b) Evaluate ∫=
b

a

fxH )(  in terms of .F   

c) Evaluate ∫=
x

x

fxS

sin

)(  in terms of .F   

E4) Let R→]3,0[:f be defined by  

  









≤≤

<≤

<≤

=

.32for

,21for1

,10for

)(

xx

x

xx

xf  

Obtain formulas for ∫=
x

fxF
0

)( .  

E5) If R→]1,0[:f  is continuous and ∫∫ =
1

0 x

x

ff for all ],1,0[∈x  show that 

0)( =xf for all ].1,0[∈x   

 

 
In this section we shall discuss infinite series revisted. 
 

16.4 INFINITE SERIES REVISTED 
 

In this section we apply the techniques of integration learnt in Unit 14 and 15 to 
obtain useful information about the convergence of certain type of infinite series 
of positive terms.  
 
We introduce a method for determining the convergence and divergence of 

certain series of the form ,
1

∑
∞

=n

na where the terms ,
n

a for each ,N∈n is such 
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that )(nfa
n

= where f is a non-negative monotonic, decreasing integrable 

function defined on ].,1[ ∞  Before that we extend the concept of integral to an 

unbounded interval and to an unbounded function. 
We begin with a definition. 
 

Definition 2: If a function R→∞],[: af is integrable on ],[ ba for every ab >

and ∫∞→

b

a
b

flim exists, either as a real number, or as ,∞± we denote the limit by 

∫
∞

a

f and call it the improper integral of f over ).,[ ∞a In case ∫∞→

b

a
b

flim is real 

number, we speak of the improper integral ∫
∞

a

f as being convergent; otherwise 

divergent.  
 
Note that when the limit does not exist, the integral symbol does not represent a 

real number, for example ∫
∞

1

1
dx

x
is an improper integral with ,

1

1

∞=∫
∞

dx
x

because .)(lnlim
1

lim
1

∞==
∞→

∞

∞→ ∫ bdx
x bb

 The improper integral is divergent. Where 

as ∫
∞

1

2

1
dx

x
is an improper integral with ∫

∞

=
1

2
.1

1
dx

x
This is because 

.1
1

1lim
1

lim
1

2
=








−=∫

∞

∞→∞→ b
dx

x bb
The improper integral is convergent.  

 
Now we state and prove a test known as “integral test” to check the 
convergence and divergence of certain series.  
 

Theorem 4 (Cauchy’s Integral Test): Let f be a real valued function with 

domain [,1[ ∞ such that  

 

i) 1,0)( ≥∀≥ xxf ( f is non-negative) 

ii) ),()( yfxfyx >⇒<  ( f is a monotonically decreasing function) 

iii) )(xf be integrable for 1>x such that 
n

unf =)( i.e. )(nf is associated 

with series .∑ nu  

Then ∑ )(nf is convergent if and only if ∫
∞

1

)( dxxf is convergent and ∑ )(nf

is divergent if and only if ∫
∞

1

)( dxxf is divergent.  

 

Proof: Since f is a decreasing function on [,,1[ ∞ we have 

)1()()( −≤≤ nfxfnf for .....3,2,1 =≤≤− nnxn  

Consequently, ∫ ∫ ∫
− − −

−≤≤
n

n

n

n

n

n

dxnfdxxfdxnf
1 1 1

)1()()(  
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i.e. ∫
−

−≤≤
n

n

nfdxxfnf
1

)1()()( for .....3,2=n  

Thus, ∑ ∑ ∫ ∑
= = − =

−≤≤
n

k

n

k

k

k

n

k

kfdxxfkf
2 2 1 2

),1()()(  

But, ∫∑ ∫
= −

=
nn

k

k

k

dxxfdxxf
12 1

)()( and ∑∑
−

==

=−
1

12

).()1(
n

k

n

k

kfkf  

 

Therefore, for ,2≥n  

∑ ∫ ∑
=

−

=

≤≤
n

k

n n

k

kk udxxfu
2 1

1

1

)( i.e. ∫ −≤≤−
n

nnn usdxxfus
1

1 )( where )(
n

s denotes 

the sequence of partial sums of the series .∑ nu Therefore, 

∫ ≤−≤
n

nn udxxfsu
1

1)(  

If we write ∫−=
n

nn dxxfsA
1

,)( we have  

∫

∫ ∫
+

+

+

++

≤−=











−−−=−

1

1

1

1 1

11

0)(

)()()(

n

n

n

n n

nnnn

dxxfu

dxxfdxxfssAA

 

Therefore, .
1

nAA
nn
∀≤+ Thus the sequence )(

n
A is monotonically decreasing 

sequence. Also ,0 nuA
nn

∀≥≥ therefore the sequence )(
n

A is bounded 

below. Consequently )(
n

A is convergent.  

 

Now ∫+=
n

nn dxxfAs
1

)(  

The convergence of )(
n

A implies that )(
n

s and 









∫
n

dxxf
1

)( converge or 

diverge together. Hence ∑ nu and ∫
∞

1

)( dxxf converge or diverge together.  

 
Remark 3: You may note that if the conditions of Cauchy’s Integral Test are 

satisfied for kx ≥ (a positive integer), then ∑
∞

=kn

nu and ∫
∞

k

dxxf )( converge or 

diverge together. This can be seen from the following example:  
 

Example 6: Discuss the convergence of the p-series ∑
∞

=

>
1

0,
1

n
p

p
n

by using the 

Integral Test.  
 

Solution: Here 
pn

n
u

1
=  

Let 
p

x
xf

1
)( =  
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For fp ,0> is decreasing, positive integrable function. So by Cauchy’s 

Integral Test, ∑
∞

=1

1

n
pn

and ∫
∞

1

)( dxxf converge or diverge together.  

 

∞→









>
−

≤<∞

→









≠
−

−

=

=

=

−

∫∫

x

p
p

p

p
p

x

px

x

dx
dxxf

p

x

p

x

as

1if
1

1

10if

1if
1

1

1iflog

)(

1

11

 

Therefore ∫
∞

1

)( dxxf converges for 1>p and diverges for 10 ≤< p and hence 

the series ∑
∞

=1

1

n
pn

converges for 1>p and diverges for .10 << p  

*** 

Example 7: Test the convergence of the series ∑
∞

=2

,
)(log

1

n
pnn

where .0>p  

Solution: Let 
p

xx
xf

)(log

1
)( = for .2>x  

 

If ,0>p then f is a positive, decreasing, integrable function on ].,2[ ∞ Hence 

by Cauchy’s Integral Test, ∑
∞

=2 )(log

1

n
pnn

and ∫
∞

2
)(log

1
pxx

converge or diverge 

together.  
 

We have, for 0>p  









≠
−

−

=−

= −−∫ 1if
1

)2(log)(log

1if)2log(log)log(log

)(log
11

2
p

p

x

px

xx

dx
pp

x

p
 

 









>
−

≤∞

→ −

1if
1

)2(log

1if

1

p
p

p

p  

  as ∞→x  

This shows that ∫
∞

2

)( dxxf converges if 1>p and diverges if .10 ≤< p

Therefore the given series ∑
∞

=2 )(log

1

n
pnn

converges if 1>p and diverges if  

.10 ≤< p  

*** 

Example 8: Evaluate ∑
=

∞→ +

n

r
n rn

n2

1
3

2

)2(
lim . 
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Solution: Let ∑∑
== 


















+

=
+

=
n

r

n

r

n

n

rnrn

n
S

2

1

3

2

1

2

2

2

11

)2(
 

Taken 
3

)2(

1
)(

+
=

x
xf where 

n

r
x =  

 
By Cauchy’s integral test, we have  

∫∑
+

=
+ ∞→

=
∞→

2

0

3

2

1
3

2

)2(
lim

)2(
lim

x

dx

rn

n

n

n

r
n

 

 

2

0

2)2(

3

+

−
=

x
 

 
16

3−
=  

*** 
Here are some exercises. 
  

 

E7) Discuss the convergence of the series  

 ).0(
)log(loglog

1

3

>∑
∞

=

p
nnnn

p
 

E8) Find ∑
=

∞→ +

n

r
n rn

n3

1
2

)3(
lim . 

 

 

With this we come to an end of this unit. 
 

Let us summarise the points we have discussed in this unit. 
 

16.4 SUMMARY 
 

In this unit we have covered the following points.  
 

1. We have covered the idea of primitive of a function. A function F is a 

primitive of f on an interval I if F is differentiable on I and .fF =′  
 

2. We have explained how to find the primitive of a function for some standard 
function: polynomial functions, trigonometric functions, exponential 
functions and so on.  

 

3. We stated and proved the fundamental Theorem of Calculus (Form I) and 
the statement.  

 

4. We explained how to use FTC of Calculus to evaluate the integral.  
 

5. We have defined the indefinite integral of a function defined on ],[ ba with 

respect to the point .a It is the function F defined by  

].,[,)()( bazdxxfzF

a

a

∈∀= ∫  

6. We stated the second form of the fundamental theorem of calculus which 

says that the indefinite F is differentiable at any point where f is 

continuous.  
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                                                        7. We state and proved the Mean Value Theorem for integrals of continuous 

functions. Give the statement here.  
 

8. We have explained an integral test for testing the convergence of a series 
by associating an integral to the series.  

 

16.5 SOLUTIONS/ANSWERS 
 

E1) Define .ln)( xxxxF
e

−= Then  

 

 

x

x
x

xxF

e

e

ln

1ln
1

)(

=

−++=′
 

Since xxf
e

ln)( = is continuous on ],,1[ e it is Riemann integrable. 

Therefore by the Fundamental Theorem, we have 
 

 ∫ −=
e

e

ee xxxdxx
1

1]ln[ln  

  .1)10()( =−−−= ee  
 
 

E2) Define xxG 2)( = for ],,0[ bx ∈ then G is continuous on ],0[ b and 

xxG 1)( =′ for ].,0[ bx ∈ Since Gg ′= is not bounded on ],,0[ b it does 

not belong to ],0[ bR  no matter how we define ).0(g  Therefore the 

Fundamental Theorem 2 does not apply in this case. 
 

E3) a) ∫=
x

a

fxF )(  

  ∫∫ +=
x

c

c

a

ff  

   )()( xGcF +=  

  )()()( cFxFxG −=∴  
 

 b) )()( bFfxH

b

a

== ∫  [As by definition of )](xF  

 

 c) ∫=
x

a

fxF

sin

)(sin  

    ∫∫ +=
x

x

x

a

ff

sin

 

    )()( xSxF +=  

  ).()(sin)( xFxFxS −=∴  
 

E4) ∫=
x

fxF
0

)(  

  














≤≤

<≤

<≤

=

32
2

,21

,10
2

2

2

xfor
x

xforx

xfor
x

 

[As by definition ∫=
c

a

fcF )( and ])( ∫=
x

c

fxG   
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 It is clear that )(xF is not continuous at 1=x and  

  

 1
2

2
lim

2

)2()(
lim

22
=

−

−
=

−

−
−− →→ x

x

x

FxF

xx
 

 
2

)4(
2

1

lim
2

2
2lim

2

)2()(
lim

2

2

2

22 −

−
=

−

−
=

−

−
+++ →→→ x

x

x

x

x

FxF

xxx
 

         24
2

1
)2(

2

1
lim

2
=×=+=

++
x

x
 

 

 So, )(xF ′ does not exist at .2=x  
  

Therefore, )(xF is differentiable in the whole interval ]3,0[ except at 

2,1=x . 

 









≤<

<<

<≤

=′

.32

211

10

)(

xx

x

xx

xF  

E5) ∫=
a

a fF ()  

 ],[, bacff

c

a c

∈+= ∫ ∫  

 ())).((
c

Facf +−ξ=        

 
 

E6) Since, R→]1,0[:f is continuous, the antiderivative of )(xf exists. Let 

)(xF be the antiderivative of ).(xf So, )()( xFxf = for all ]1,0[∈x . 
 

 Now, ∫ ∫=
x

x

ff
0

1

for all ]1,0[∈x  

 )()1()0()( xFFFxF −=−⇒    

 )0()1()(2 FFxF +=⇒  

 So, 
2

)0()1(
)(

FF
xF

+
= for all ].1,0[∈x   

 

 Therefore, )(xF is a constant function for all ]1,0[∈x  

  

So, )()( xFxF ′=  

  0= for all ].1,0[∈x  
 

E7) Let 0,3,
)log(loglog

1
)( >≥= px

xxx
xf

p
 

  

If ,0>p then )(xf is a positive, decreasing, integrable function on 

].,3[ ∞ Hence by Cauchy’s Integral Test, 
 

 ∑
∞

=3 )log(loglog

1

n
pnnn

and ∫
∞

3
)log(loglog pxxx

dx
converge or diverge 

together.  
 

 We have, for ,0>p  

[From Theorem 6, we have 

))(( acff

c

a

−ξ=∫ where, ],[ ca∈ξ  

[Using Fundamental Theorem of Calculus] 
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 ∫








≠
−

−

=−

= −−

x

pp
p pif

p

x

pifx

xxx

dx

3

11

1
1

)3(log(log)log(log

1)3loglog(log)loglog(log

)log(loglog
 

   









>
−

≤∞

→ −

1
1

)3(log(log

1

1

pif
p

pif

p  

 This shows that ∫
∞

>
3

1
)log(loglog

1
pif

xxx p
and diverges if 

10 ≤< p  

 

 Therefore, the given series ∑
∞

=3 )log(loglog

1

n
pnnn

conveges if 1>p and 

diverges if .10 ≤< p    

 

E8) ∑ ∑
= =









−

=
−

n

r

n

r

n

rnrn

n3

1

3

1
22

3

11

)3(
 

 Take 
2

)3(

1
)(

x
xf

−
= where 

n

r
x =  

 By Cauchy’s integral test 
 

 

)3(

2

)3()3(
lim

3

0

22

x

x

dx

rn

n

n

−
=

−
=

− ∫∑
∞→

 




