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BLOCK INTRODUCTION

In Block 2, you were introduced to the notion of sequences of real numbers and their
convergence. In Block 3, infinite series of real numbers and their convergence was
considered. In this Block, we want to discuss sequences and series whose terms are
functions defined on a subset of Real number. Such sequences and series are known
as sequences or series of real functions. This Block is divided into two units.

Unit 17 covers sequences of functions. A sequence of functions is almost a
straightforward generalization of a sequence of real numbers. We consider here the
most basic form of convergence of a sequence of functions, called pointwise
convergence. Then we go on to define a stronger form of convergence called uniform
convergence. Whenever a sequence of functions is convergent, its limit is a function
called limit function. The question arises whether the properties of continuity,
differentiability, integrability of the individual functions in a sequence or series of
functions are preserved by the limit function. We shall show that these properties are
preserved by the uniform convergence and not by the pointwise convergence.

In Unit 18 we discuss the convergence of series of functions in terms of convergence of

its sequence of partial sums. Since the sequence of functions can either converge
pointwise or uniformly (or not at all), we can define pointwise convergence and uniform
convergence of a series of functions. Next, we discuss a useful result known as the

Wierstrass M-Test, which gives straightforward conditions that can determine if a series

of functions is uniformly convergent. We close this unit with a brief introduction to
power series.
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NOTATIONS AND SYMBOLS (used in Block 6)

(Also see the notations used in Calculus and Differential Equations)

(f\) nen a sequence of functions

fLi—=>f f is the (pointwise) limit of (f,),.x
> f a series of functions

Zan (x=0o)" a power series about x=c

Y f.=f [ is the sum of the series Y f,
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SEQUENCES OF FUNCTIONS

Structure Page No
17.1 Introduction 183
Objectives
17.2 Pointwise Convergence 184
17.3 Uniform Convergence 189
17.4 Some Theorems 195
17.5 Summary 199
17.6 Solutions/Answers 199

17.1 INTRODUCTION

You are familiar with sequences of real numbers in Block 2. You have studied
their convergence characteristics. In this unit we are going to introduce you to
sequences of functions which is a straight forward generalisation of sequences
of real numbers. Once you are familiar with the idea, we shall talk about the
convergence of these sequences also. We shall be using the concepts
discussed in Block 2 to study the sequences of functions. So, it will be a good
idea to go back and revise the definitions and major theorems of units of

Block 2.

In Sec. 17.2 we start our discussion on sequences of functions as a
generalisation to the concept of sequence of real numbers. We shall
familiarise you with examples of sequences of functions and explain how it is
related to sequences of real numbers. We shall then explain the convergence
of these sequences by introducing the term point wise convergence.

In Sec. 17.3 we shall define another type of convergence of sequence of
functions known as uniform convergence. We shall explain how it is different
from point-wise convergence.

In Sec. 17.4 we discuss what properties such as continuity are preserved by
uniform convergence. We shall present two theorems.

Objectives
After studying this unit, you should be able to

e define the pointwise limit of a sequence of functions;

¢ decide whether a given sequence of functions is pointwise convergent or 183
not;
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e define the uniform limit of a sequence of functions;

e show that the uniform limit of a sequence of contiuous/ differentiable/
integrable functions is contiuous/differentiable/integrable.

17.2 POINTWISE CONVERGENCE

In this section we consider a generalisation of sequences of real numbers,
namely, sequences of real-valued functions, i.e. it is a sequence each of
whose terms is a real valued function. We discuss the basic form of the
convergence of these sequences known as pointwise convergence.

To understand the sequences of functions, we consider a geometric sequence
with which you are already familiar.

Let xe R.For each ne N, let us consider a function f, defined on R by

f, ) =x".

Then for each n, f is afunction and these functions share a common domain,
in this case itis R.Note that f,(x) =x, f,(x) =x>, fi(x)=x",...,f,(x)=x",...
Thus we have a sequence of functions given by f,, f,...., f,,...which we
denote by (f,),cx-

Note that here for each ne N, there is a function f, defined on R.

Suppose we fixxe R, say x =0.Then we have
£,(0)=0, £,(0) =0, £;(0) =0,...Thus we get the sequence (0,0,0...,0,...) of real

¥ 1
numbers. Similarly when we put x = E,then we get the sequence

b

,%...and for x =1, we get the constant sequence, (LL1,.....).

D | —
N

Hence by evaluating the functions in the given sequence at each point of the
domain, we get sequences of real numbers. We can also talk about the
convergence of the given sequence of functions. The definition of
convergence is closely linked to the convergence of the sequences of real
numbers generated. Before we write the definition, we give some examples to
make you familiar with the idea of sequences of functions.

Example 1: For the given sequence of functions on R, find the sequence
(f,(x)),y Of real numbers corresponding to the values given against it.

) f=S,x=101
n 3
i) =" x=1-21
" nl’" 7 T2

Solution: Let us try one by one.

i) Forx=Lf(x)=1f,(x) :l,f3(x) =l...fn(x) :l,....
2 3 n

1
Hence we get the sequence [—j
n neN
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For x =0, the sequence is (0),.y-

1 1 1 1 1
For x—g,fl(x) —g,fz(x) —g,f3(x) —5,...,fn(x) =3

Therefore the sequence is [Lj .
3]’1 neN

i) Forx=1f(x)=1f,(x) =%,f3(x) :3l ..... f()=—

Therefore the sequence is (i'}
n: neN

_ _ _(D) _4_
For x=-2, /(0 =-2 f,()="""~=_=2,
(=2’ _(=D'x8 -4 _(=2)
f3( )_ ' 2)(3 - 3 ""fn(x)_ n'

) _2 n
Hence the sequence is (( ') j
n: neN

Forx—— [ =5 £, (0 =
L
X6

L
4%

S (%)

il

1
8 b
1

f3( )_ 3':

1
48 T

Therefore sequence is (

You can solve this exercise now.

E1)  Write the functions, f,, f,, f; in each of the sequences given below.

Also find the sequences of real numbers obtained by evaluating the
functions in the sequence at any two points of your choice from the
given domain.

i) (f,) _ywhere f,(x)=1+nx, A=[0,2]

i) (f,),.y>where f,(x)= 2+L2,A:]o,2[.
nx

You have realized that when a sequence of functions is given, by evaluating
each of the functions at a given point of the domain, we get a sequence of real
numbers. We can then decide whether this sequence is convergent or
divergent.

Let us go back to the example of the sequence of functions f, (x) = x"
discussed at the beginning.

Here at x=0, f,(0)=0,Vn. Therefore, lim(f,(0))=0.
Similarly at x=1, f,(1)=1,Vn. Therefore, lim(f,(1))=1.

n—oo

185



BlOCK 6 e Sequences and Series of Functions

If 0<x<I1,then £, (x)=x"—0,as n—o. (You can write the sequence for
x=1/2, as an example, and see that it tends to zero.)

. . . 0, 0<x<l1
So, if we define a function, f :[O,l]aR,f(x): { . then we can
, X=

say that (fn) converges pointwise to f on [O,l] for each point of [0,1].

In this case we say that the sequence of functions is pointwise convergent in
the domain. Here is the precise definition.

Definition: Let (f,) . be a sequence of real valued functions defined on a

subset A of R. We say that the sequence, (f,)

neN

Ly CONverges pointwise to

a function, f onA, if, for each xe A, the sequence, (f,(x)),., converges to

flx).

In this case, the function f is called the pointwise limit of (f,) _.on A,and
we write f =lim f on A,or, f, — f on A.

Let us try to understand this definition through some more examples.

Example 2: Find the pointwise limit of the following sequences of functions, if
they exist.

) (f.),.x.where £, :]0,00[— R,is given by £, (x)==.
n

iy (f,),.n.Where f,:[0,00[— R,is given by fn(x):1 ! —
+x

Solution: i) In this case it is easy to see that for any fixed

xe]0,o[, f,(x)== — 0. Therefore, the pointwise limit of this sequence of
n

functions is the zero function, f :]0,0[— R, given by f(x)=0 V x&]0,00].

i) Here, fn(0)=ﬁ=l,Vn- Therefore, f,(0)—1.
+

If 0<x<1,then f,(x)— 1 since, in this case, x" — 0.
1

1
If x=1, then fn(l):—:an,and therefore, f,(1) = —as n — .
1+1 2 2

If x>1, then x" — 0, and therefore, f,(x)= —0as n— oo,

n

1+ x
1, 0<x<l1

Thus, if we define the function f :[0,e0[— R,by f(x)= 1

, X

S o=

x>1

then (fn )neN converges pointwise to  f on [0, oo[.

*k %

Now, to understand the convergence more, we look at the graphs of the
186 functions given in the sequence.
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For instance, let us look at the graphs of the functions f, : [0,1] ->R, f (x)=x"
for some values of n. (See Fig. 1).
A

1+

f2
f3

e

Fig. 1

All these graphs pass through the origin and also through the point (1,1). As n
increases, the graph seems to sag more and more between these two points.

The limit is shown in red, where the graph coincides with the x -axis for

0< x <1,and also contains the point (1,1).

Next we shall look the graphs of the functions f, (x)= % for some values of
n

n .(See Fig. 2).

fa

f2
fs

>,
>

Fig. 2

These are all straight lines originating at the point (0,0). You can also see that
as n increases, the slope of the line decreases. Finally, as n — «, we get a

line with slope 0. This is the limit of the sequence of functions. In the graph
you can see it in red.

All the functions in all the sequences given in examples above are continuous
on their domains. But what about the limits of these sequences? The limit

function for f, (x) = x"is discontinuous at 1. Whereas the limit of function for

f,(x)= X is continuous on [0,1].Also note that the limit function for the
n

sequence of functions in part (i) in Example 2 is discontinuous. Indeed the
limit function fis

, if 0<x<l

JO=35, i x=1

N | =

0, if x>1

So, the pointwise limit of a sequence of continuous functions need not
be continuous.

187
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So far we have considered the pointwise convergence of the sequence of
functions at each point of the domain.

We rewrite the pointwise convergence in the following way also.

Definition: A sequence of functions (fn) converges pointwise to f on its

neN
domain, if for a given € >0, for every x in the domain, there exists a natural
number, N(g, x), such that

nZN(E,x):>

f,(x)-f(x)<e.

The number, N(g,x) depends on €, and also on x. That is, for a given € >0,

the same natural number may not work for all x in the domain. We shall
illustrate this with an example.

Let us consider the function f (x)=x" xe€[0,1],n=1,2.... We know that
(f,).x CONverges to the function f given by

0, xel[0,1

f(x)={1’ o

Let us select some xe [0,1], say xzé.Since f,(x) = f(x)for every x,we

get that f"(%j - f@j =0.

Now we apply the definition with € =.001. Then for this € > 0 there exists an
l n
2

Suppose we select some other xe [0,1],say x = 190.Then we have

N[e, ; j such that

<.001Vn2 N(e,;}ThenN should be at least 10.

10 10

)

any other x,then N could be some other number. This shows that N varies
according to the choice of x.

fn[ 2 j - f(gj =0.Now, for € =.001 there exists N(e, %j such that

<.001forall n= N(e,lgoj Then N should be at least 66. If we select

Now the question arises, are there cases where we can find a common value
of N,forall x? The answer is yes. It leads us to a stronger convergence
criteria, called uniform convergence. We shall present this in the next section.

Before that, it is very important to try some exercises on your own. Once you
have completely understood pointwise convergence, you will be ready for the
uniform convergence.

Here are some exercises.

E2) Find the pointwise limits of the sequences of functions, (fn) on the

neN
given domains, where f is given as follows:
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) f,(x)=—,xeR i) f,(0)= ,x€[0,1]
i) f,()=—==—,xeR iv)  f.(x)=x+sin(nx), xe [-11]
1+n n

E3) If f,(x)=(cosmx)", show that (f,),_, converges pointwise on [0,1[,but
not on [0,1].

1, if xel[-nn]

0, otherwise,

E4) Iff, (x)={

then show that (f, )neN converges pointwise on R.

(Draw the graphs of f|, f,, f; to understand the sequence.)

Now we are ready to discuss uniform convergence.

17.3 UNIFORM CONVERGENCE

In this section we shall introduce you to a stronger form of convergence for
sequence of functions.

Let us start with a sequence of functions (f,) _.,each with domain D. In the

neN?

last section we noted that for a given sequence of functions, we get a number
of sequences of real numbers, one for each point in the domain. If all these
sequences of real numbers are convergent, then their limits define the
pointwise limit of the given sequence of functions. We have expressed this
using symbolic language towards the end of last section. A sequence of

functions (f,),_, converges pointwise to f on its domain, if for a given

€ >0, for every x in the domain, there exists a natural number, N(g, x), such
that

nZN(e,x):>

f,(x) - f(x) <.

We had also observed that N(g, x) depends not only on €, but also on x, for
instance, in the case of f, (x)=x". This implies that even though
(f.,(x)) = f(x) for every x,the ‘speed’ of convergence of each sequence may

not be the same, For instance, 3% — O faster than % — 0.

But there are cases, where this is the same. That is, N(g, x)depends only on
€, and not on x. For example, if you take the sequence in E2) ii), we see that

each of the sequences, (sm
n

nx} is dominated by the sequence [lJ .
neN neN

n

L

n

=—<—X<E&
n n,

. 1 1 1
For a given € >0 then we choose n, >—,then n=2n, = ‘
€

This same n,works for the sequences for all x. 189



Block 6

190

Sequences and Series of Functions

This type of convergence is called uniform convergence.
Here is the definition:

Definition: A sequence (f,) . of real valued functions defined on a set § is

neN
said to converge uniformly to a function f on S, if for every € >0, there
exists a natural number n such that n=n, = |fn (x)- f(x] < ¢ forevery

xeS.

The number n,here depends only on €, and not on x.lt is the same for all
xeS.

In this case we say that (f,),_, is uniformly convergentto f on .

(Do you see a similarity between this and pointwise continuity which we have
discussed in Unit 10, Block-3).

From the definition it is obvious that if a sequence of functions is uniformly
convergent, then it is also pointwise convergent. And we have also
observed that every pointwise convergent sequence need not be uniformly
convergent as discussed in the earlier section. We now present a few
examples to bring out this point. In each of these cases we shall first get the
pointwise limit of the given sequence of functions, and then find out if the
sequence uniformly converges to that limit or not.

Before we come to the examples, let us see what it means to say that a given
sequence is not uniformly convergent.

Remark 1: The negation of the statement given in the definition of uniform
convergence is that there exists an € > 0 such that for every ne N, there exists

an n, 2kand an x, € S such that

f )= fx)| 2 e ()

This shows that there exists an € > 0 such that for each n, we get f, and
x, € § satisfying (1). Here (f,, ),y is @ subsequence of the given sequence
(f)rew @nd (x, ),y is sequence in S.

More precisely when a sequence is not uniformly convergent, we get a
subsequence (f, ),y of the given sequence, (fn )neN,and a sequence

(x, )ey in the domain, such that ,|£, (x,)— f(x, )‘ > ¢ for some &> 0.

Example 3: Examine the sequences given in Example 2 for uniform
convergence.

Solution: i) f,:[0,l]] > R, f,(x)=x". We have seen that the pointwise limit of
0,0<x<1

this sequence is the function, f:[0,]] > R, f(x)= {1 |
» X=

1 1/k
If we take 8=Z, then taking n, =k,and x, :(%J ,We get a subsequence

(fnk )keN of the given sequence and a sequence (x, )keN in the domain, such



Unit 17 Sequence of Functions

Therefore, by Remark 1, the sequence of functions is not uniformly
convergent.

i) £ :10,00[—> R, f.(x)=2. We have seen that the pointwise limit of this
n

sequence is the function, f :]0,oo[— Rsuchthat f(x)=0 V x€]0,co].

1
Here, if we take S:E,then taking n, =k,and x, =k,we geta

subsequence (fnk )keN of the given sequence and a sequence (xk )keN in

£ ()= £(x, )| =1>¢. Therefore, by Remark 1,
the sequence of functions is not uniformly convergent.

the domain, such that ,

i) f, :[0,0[> R, f,(x)= ! — . We have seen that the pointwise limit of

1+x
1, 0<x<l1
1
this sequence is the function, f :[0,0[— R, f(x)= o P |
0, x>1

1

If we take € =—,then taking n, =k,and x, =2"*, we get a subsequence
4

(f”k )keN of the given sequence and a sequence (x, ),_ in the domain, such

A
1+ (27 f
sequence of functions is not uniformly convergent.

that , -0

£ )= £ ) =

= % > ¢ . Therefore, by Remark 1, the

iv) £ :[01] >R, 7 (x)= 1x— We have seen that the pointwise limit of this
+ X

0, 0<x<l1
sequence is the function, f: [0,1]—> ]R,f(x)= 1 |

—, x=1.

2

1
Again, if we take S:Z,then taking n, =k,and x, =2%< 1, we geta

subsequence (fnk )keN of the given sequence and a sequence (Xk )keN in

>E.

(&)
fnk('xk)_f(-xk)(: 2——0 :ﬁzl

k 1 3
1+[‘1”‘j 1+5
2

Therefore, by Remark 1, the sequence of functions is not uniformly 191

the domain, such that,
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convergent.

Thus, all the sequences in this example are pointwise convergent, but not
uniformly convergent.

*kk

In the next example we give some sequences which are uniformly convergent.

Example 4: Show that the following sequences (f,), _, are uniformly

convergent on their domains.

) £ :[0,0[> R, £, (x)= lfnx

_ sinnx

iy £ :[01] >R, £ (x)= e

Solution: i) Here you can easily check that (f, )neN is pointwise convergent to

the function f :[0,eo[— R, f(x)=0. Now, for any

£l =——< 1 andthe sequence (lj tends to zero.
n neN

1+ nx n

x € [0, 0o,

Therefore, for a given € >0, we can choose n,, such that

n

nzn,=|—|<&

f,,(x)|— il Sl<£,whenevern2n0.

l+nx n

Then, for every xe [0,00[,

This shows that (f,),.y iS uniformly convergent to the zero function.

i)  We are going to apply a similar argument here. You can check that this
sequence of functions converges pointwise to the function,

f:l01] >R, f(x)=0.

1 1
<—, and the sequence (Zj
n /e

sin nx
2
n

f,(x) =

Now, for every xe [0,1],
tends to zero.

Therefore, for a given € > 0, we can choose n,, such that

nzn, =|—|<€.
n

sin nx
2
n

f,(x) =

S0 (f,),.y is uniformly convergent to the function, f : [0,1]] > R, f(x)=0.

Then, for every xe [0,1],

1
<— <g,whenever n2>n,.
n

*kk

In both the cases in the Example 4 each of the functions, f, , was a bounded
function, and their bounds formed a convergent sequence.

We now introduce the concept of uniform norm for bounded functions.

Definition: A function, g:S — R,where S c R,is said to be bounded, if the
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set g(S)={g(x)I xe S} is a bounded subset of R.If g is bounded, then
HE sup{|g(x)| xe S} is called the norm of g.

You would agree that |g|| <& < |g(x) <eforall xe S.

The following theorem gives us a criterion for uniform convergence.

Theorem 1: A sequence of bounded functions, (fn) defined on

neN?

S < Rconverges uniformly on § to a function f:S — R, if and only if,

f,—f|—o.

Proof: We start with the ‘if part’. First let us suppose that (f,), _, converges

uniformly to f. This means that if for every € > 0, there exists a natural
number, n,,such that

nn, = fn(x)—f(x)|<§ forevery xe §.
This implies that | £, — f|| = sup{|/, (x)- f(x)||xe S}s%<£ forall n>n,.
Thatis, ||f, — f| = 0.

Now we prove the ‘only if’ part.

We suppose that

f, = f| = 0as n— oo Then for every &> 0,there exists a

f.—f]<e.

natural number, n,,such that n=>n, =

£, = fll=supl|£,(x)= £ (x)||xe St<e=|f,(x)~ f(x) <& for every

xe S, which means that (f,) _, converges uniformly to f. u

Now,

In Block 2 you have learned that there is a strong relationship between
convergence of sequences and sequences being Cauchy. Here we shall
discuss a concept analogous to Cauchy sequences for a sequence of
functions.

We shall make a definition.

Definition: A sequence of functions, (f, ), _, defined on a set S, is uniformly

Cauchy, if Ve > 0,3n, € N,such that n,m2n, = |f,(x)— £, (x) <&, for every

xeS.

Next we shall prove a theorem which gives a useful characterisation of uniform
convergence in terms of Cauchy sequences.

Theorem 2 (Cauchy Criterion): If (f,) _. is sequence of real-valued

neN

functions defined on a set S, then (f,) . is uniformly convergent on S, if and

neN
only if it is uniformly Cauchy.

Proof: We start with ‘if’ part.

Suppose (f, ),y is uniformly convergentto f.Then, given €>0,3n,, such

that n=>n, =

fn(x)—f(x)|<§ for every xe S. Then 193
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<|f, ()= f(x)+

Therefore, (f,),.y is uniformly Cauchy.
Only if part

Conversely, suppose (f,) _ is uniformly Cauchy. Then for every xe S,

neN

(f,(x)),.y is a Cauchy sequence of real numbers, and therefore, is
convergent. We define f(x)= lim f,(x), xe S.

We now show that (fn )neN converges uniformly to f on S.

Given €>0,dn,,such that n,m2n, =

f,,(x)—fm(x)|<§, for every xe S.

We fix n, and take the limit as m — oo

lim

m-—o0

1,0 £, =1, () ().

Therefore, n2n, =

f,,(X)—f(x)|S§<£ , for every xe S.

This means that (f,), _, is uniformly convergent. u

Sometimes we come across sequences of functions, which are not uniformly
convergent on the given domain, but which may be uniformly convergent on a
restricted domain. You can see one such sequence in the next example.

Example 5: Show that the sequence (f,) ., where

neN?
£, :[0,0[= R, £, (x)= ~ Y is not uniformly convergent on 10, o[, but is
x+n

uniformly convergent on [0,5].

Solution: For a fixed x, f.(x)=—>——0 as n —> . Therefore, the
x+n

n

pointwise limit of the given sequence is the zero function, defined by
f:10,00[= R, f(x)=0.

1
If we take 8=Z, then taking n, = k,and x, = k,we get a subsequence

(fnk )keN of the given sequence and a sequence (x, )keN in the domain, such

£, (x)—- f(x)( = ﬁ = % . Therefore, by Remark 1, (f,),.x s not

uniformly convergent.

that,

Now, if we restrict the domain to [O,S],then

fn_f”: fa =Sup{ al Ixe[O,S]}: 5 gz_
xX+n

5+n n

And therefore,

f, = f| = 0 on [0,5]. Then, by Theorem 1, we conclude that

(f,)._y is uniformly convergent on [0,5].
194
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In this case do you realise that the sequence will be uniformly convergent on
[0,a] where aeR*?

*kk

We now give one more example of this type.

Example 6: We have shown in Example 3 iv), that the sequence of functions,

(f.) _x-where f,:[01] >R, f,(x)= 1j —, is not uniformly convergent on
X

[0,1]. Show that if 0 <b <1,then the sequence is uniformly convergent on
[0,8].

Solution: We have seen in Example 3 (iv), that the pointwise limit of this

0, 0<x<l1
sequenceis f: [0,1]—> R, f(x)=11 .

=, x=

2

Now, if xe [O,b], then the pointwise limit on this restricted domain is
f:l0,6] > R, f(x)=0.

:sup{ a Ixe[O,b]}Sb”
1 xl‘l

Then, |

fu= =]

f;1

+

Since 0<b < 1,therefore, b" — Owhich implies

f, = f|| = 0. Thus, we can
conclude that is uniformly convergent on [O,b].

* k%

Now it’s time you do some exercises.

E5) Show that the sequence (f, ), where £, :[0,0[— R, £, (x) = lfx , is
nx
not uniformly convergent on [0, e[, but is uniformly convergent on
[a,oo[, where a>0.
sinnx
E6) Show that the sequence (f,) _.,where f, :[0,0[— R, f,(x)= 1 ,is
+ nx

not uniformly convergent on [0, oo[, but is uniformly convergent on
[a,o[, where a > 0.

E7) Show that the sequence (f,)

neN?

where f, :R—>R,f”(x):x+l,is
n

uniformly convergent on R.
1

1+ nx

E8) s the convergence of (f,) _..where £, :[01]] > R, f,(x)=

neN?

uniform? Justify your answer.

We have observed earlier that a pointwise limit of a sequence of continuous
functions need not be continuous. But many of the properties of functions are
preserved under uniform convergence. We deal with this in the next section.

17.4 SOME THEOREMS ON CONSEQUENCES
OF UNIFORM CONVERGENCE

In this section we shall see that some properties of functions in a sequence

195
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A sequence (f,),.niS

uniformly bounded on
set S, if there is some

M > 0 such that
fl<sM VYnand

VxeS.
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are carried over to the uniform limit of the sequence, of course, if the limit
exists.

We shall start with the property of “boundedness”.

Theorem 3: If (f,)

functions converging uniformly to a function f on a set §,then f is also
bounded on S.

<y IS @ sequence of uniformly bounded real valued

Proof: Since (f,)
such that n2n, =|f,(x)- f(x) <1 for every xe S. Then

£ (x) < ‘f(x)—fnn (xj+‘fnn (x)( <1+ M ,where M is an upper bound of f, on
S.

x COnverges uniformly to f,for € =1, there exists n,e N,

Therefore, we have proved that f is bounded on S. [ |
Next we shall consider the property of “Continuity”.

Theorem 4: If (f,)
uniformly to a function f on a set S, then f is also continuous on S.

L x IS @ sequence of continuous functions converging

Proof: Let pe §. We shall first prove that f is continuous at p.
Since (f,),.y converges uniformly to f, for every € > 0,3n,,such that

n=n, =| fn(x)—f(x)|<§ for every xe S.

Since f, is continuous at p, for the above said € > 0,36 > 0, such that

x—p|<8=|r(x)-f(p)]
<| @)= £, @)|+] £, &)= £, (p)|+

xe S,

£, (p)= £(p)]

€ € €
<—+—+-
3 33
=€

This means that f is continuous at p.Since p was any arbitrary point of
S, fis continuous on S. [ |

We shall make a remark now.

Remark 2: Actually what we have proved in the theorem above is that the limit
function f is continuous. That is

lim f(x) = f(p)
This together with the fact that lim f, (x) = f(x) uniformly implies that
limlim £, (x)=1lim £, (p) = limlim £, (x).
X—>p n—oo n—yoo n—o x—p
This amounts to interchanging the order in which the limits are taken. Thus,

uniform convergence allows us to interchange the order in which the
limits are taken.
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So, we have seen that if a sequence of continuous functions is uniformly
convergent, then its limit is also continuous.

Using this theorem we can see that the convergence in Example i), iii) and iv)
cannot be uniform. Because in each of these cases we have a sequence of
continuous functions, whose limit is not continuous.

So, we have proved that continuity is preserved under uniform convergence.
Now what about differentiability and integrability?

If differentiation was preserved by uniform convergence, then we should have
o . (d d .. d ,
lim f (x) =lim —fn(x)) =—(hm fn(x))z—f(x) = f'(x).
n—ee e\ dx dx “noe dx

But the following example shows that this is not true.

Example 7: Let f (x) = 1 on R. Show that the sequence

+nx’

(f.),.n CONvergence to f(x) =0uniformly on R, but (f,),.ydoes not
converge to f~ uniformly.

Solution: It is easy to see that the maximum and minimum values of f, are

1 1 1 1
—~=and ——~=,respectively. That is — <f,(x)<
P 2n 2n

24n 24n
€>0,we take n, = {Zl—z} sothat n=2n, = fn(x)| <¢g,Vxe R. Therefore,
€

V xe R. Thus for

(fn (x)neN)iS uniformly convergent to the zero function.

We differentiate f, and find
1-nx* _ l-nx*
(1+nx*)?* 142nx*+n’x*

£ (x) =

If x#0,then f/(x) = Owhile if x=0,then f/(0)=1-—1. Thus

lim f7(x) = 0 if x#0
st I i x=0.

The following figure gives an idea how f.(0) —las n — . But for

x#0, f/(x) > 0as n— . You may note that for x # 0, the slope (for

example for x = 6in the figure) of the function (i.e. the inclination with the
x -axis) is approaching to 0 where as for x =0, the slope approaches one i.e.
the inclination is more towards y -axis.

SN

f2

Fig. 3 197
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This shows that lim f(x)is not equal to f’(x) =0 for all x. That means

f,(x) does not even converge to f’(x) =0 pointwise. Obviously, then the
convergence is not uniform.

*kk

Remark 3: The example above shows that the uniform convergence of
(f.).n10 f and the differentiability of the members of the sequence is not

enough to deduce that (f,),.yconverge to f~, even pointwise.

Actually, the uniform limit of a sequence of differentiable functions need not be
differentiable. But the uniform limit of a sequence of integrable functions is
integrable.

In the case of a sequence of differentiable functions, if we put some additional
condition, then the uniform limit does become differentiable.

We present these facts in the following theorems. We are not going to prove
these theorems here.
Theorem 5: Let (f,) _, be a sequence of functions defined and differentiable

on a bounded interval, I,of R. Suppose the sequence (f, (xo)) converges

neN

for some x, € I.Suppose further, that the sequence [fn j converges
neN

uniformly to a function, g on 1. Then (f,),_, converges uniformly to a

function f on I, such that f is differentiable on 7,and "= g.

The next theorem shows that the definition integral is preserved by uniform
convergence.

Theorem 6: Let (f,)
an interval, [a,b], of R.Suppose (f,)

.y be asequence of functions defined and integrable on

.y converges uniformly to a

b b
function f on [a,b]. Then f is integrable on [a,b], and'[f =hmij .

The Theorem above is very useful in showing that the convergence is not
uniform as the next example shows:

Example 8: Consider the sequence (f,),.yWhere f (x)is given by
f,(x) = nxe ™™ ,ne N, xe [0,1]
Show that (f,),.yis not uniformly convergent on [0,1].

Solution: Let € > 0 be given. Then given x e [0,1],

2
—nx

<ne"™ .. (2

‘n xe

X

Since ne™™ —0as n — o, there exists N, such that ‘ne"”’ < efor

n 2 N,.This together with the inequality (2) gives us

‘n xe "

<t VnzN,.
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This shows that the sequence (f,(x)) — f(x)=0pointwise. Also we have

1
.[f(x) = (0. Therefore if the convergence is uniform by Theorem 6
0

lim [ £,(0dx=0.
0

1
1 > 1
But J.fn(x)dxza[— e ]:) :E(l—e‘”).Therefore
0

1
lim f, (x)dx = % * I f(x)dx =0.This is not possible. Hence the convergence is
n—o0 0

not uniform.

*kk

You can try this exercise now.

E9)  Show that the sequence (f,), .y Where

n’x, 0<x<—
n
1 2
f,(x)=1-n’x+2n, —<x<—
n n
0, %SxSI
n

does not converge to f(x) =0 uniformly in [0,1].

That brings us to the end of this unit.

17.5 SUMMARY

1. In this unit we have introduced sequences of functions.
2. We have defined two types of convergence: pointwise and uniform.

3. We have noted that if a sequence of functions is uniformly convergent,
then it is also pointwise convergent, but the converse is not true.

4. We have proved that the properties of boundedness, continuity,
integrability are preserved under uniform convergence. Differentiabillity
requires some more restrictions.

17.6 SOLUTIONS/ANSWERS

E1) i) f)=1+x, f,(x)=1+2n, f,(x)=1+3n

The sequence corresponding to the function f,at x=1is (2,3,4,....)
The sequence corresponding to the function f,at x=1is (3,5,7,....)

The sequence corresponding to the function f;(x)at x=1is

4,7,10,....) 199
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E2)

i)

The sequence corresponding to the function f,, f,, and f;at
x=0is (1),x-

1 1 1
[i0)=2+—,£L0)=2+—,f,(0)=2+——

X 2x 3x
Take x=1

Then, the sequence corresponding to f, is given by f,(1) =3,

_op 1?2 _19 P
fl(z)_2+4_4,f1(3) 9,...,f1(n) 2+n2+...

That is (32£j
49

The sequence corresponding to f,(x) at x =1is given by
1 5 17
D=2+—==, ,2)=—,
A0 5=72 (2 2

1 37
D=2+—=—,...
H0) T T

. (5 17 37
.. The sequence is | —,—,—,...
2 8 18
1 7 1 25
Similarl D=2+—=—, £L(Q)=2+—="=
y f3(D 373 15(2) D12

_ss
$4)= 27

Here f”(x):f.Then for each xe ]R,fn(x):ﬁ—>0as n—> oo,
n n

Then if we take f suchthat f(x) =0V xe R, we get that
f,(x) = f(x)pointwise for every xe R.

sin nx

Here f (x)= .Also for each xe R,

sin (nx)| < land 1 —0as
n

n — 0. Therefore f (x) — 0as n — o [Refer Theorem ? Unit 5
Block 2) since (f,(x)),.y is @ product of bounded function and a
sequence converges to 0.

1
Here fn(x):1 e _n 1x X

2.2 2
+nx n 2 n 2

72+.X' 72+.X'
n n

Then if x #0,then f (x) —>0-12=0as n—> oo,
X
If x=0,then f (0)=0forall n.Therefore f (0) = 0as n— oo.

If we take f suchthat f(x)=0 V xe R,then we get that
f,(x) = f(x)pointwise for all xe R.
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iv) Let xe]—1,1[. We note that sin(nx)is bounded and that SN Oas
n
n — oo, Thus, as the product of a bounded sequence and one that
converges to 0, we have ﬁsin(nx) — 0.[Refer Theorem ? Unit 5,
n

Block 2]. Therefore
£.(x) = x+Zsin(nx) > x+0=x
n
Thus if we take the function f such that f(x)=x V xe€ R,then we
getthat f (x) = f(x) V xe]-L1[.

E3) Here f(x)=(cosmx)".

When x =1,cost = (—1). Then we know that the sequence (—1)"is not
convergent.

When 0 < x <1,then cosTx is positive and cosmx < 1. Therefore
(cosmx)" converges.

1, if xe[-n,n]

E4) Here, =
) Ju) {O, otherwise

Now, as n — oo,[-n,n] — R.

Assume f(x)=1forall xe R.

Now, for f >0and for xe R if you choose N = [|x| ]+1(i.e.

xe[-N,N])then f,(x)=1forall n>N.So, |f,(x)— f(x)|=0<efor
n>N.

Therefore, f,(x) pointwise converges to f(x)for all xe R.

E5) Note that for a given xe]0,00[

lim £, (x) = lim —~— = lim —— =1.
n—yoo n—>oo1+nx n—>ool

+Xx
n

Also, lim £,(0)=0.Thus (f,)
f 110, oo defined by

.y converges pointwise to the function

I, 1if xe]0,00[

f(x):{o, if x=0.

. 1
If (f,),.y Were to converges uniformly to f,then for € = Z,we must get

some n, € Nsuch that

fn(x)—f(x)|<%for all xe[0,00[and n>n,.

1 , .
However for n =n,and x =—,the above inequality becomes 201
n,
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which is false. Therefore, (f,),.ydoes not converge uniformly to f on
[0, cof.

Now consider the domain [a, o[, for a > 0. In this case,
f :la,o[— Rdefined by f(x)=1is the pointwise limit of (f,),.x-Let
€ > 0be given. Then

fn(X)—f(X)|=|1f);x—1

<— (sx=a)

. . 1 ) 1
Now if we take n, € Nin such a way that — <¢€,i.e.,n, > —,then we
ny,a ae

have

f,(x)— f(x)| <eforall n=ny and xe [a,co[. This implies that

(f,)) ..y CONverges uniformly on [a, o9].
E6) Note that for all x€]0, oo

|sinnx|< 1
|1+nx|_ 1+nx

We know that lim
n—e ] +nx

lim f, (0)=0.Thus (f,),.yconverges pointwise to the limit

f :[0,0[— R defined by f(x)=0. Assume, if possible, that
(f,).n converges uniformly to f.Then for every € >0, we must get
some n, € Nsuch that

=0. Therefore lim f (x) =0,for x€]0,oo[. Also

f,(x) = f(x)| <eforall n=n,and xe [0,

Taking n=n,and x = zithe above inequality reduces
n

But €is any positive real number. Therefore, we have arrived at a

02 contradiction. Thus, (f,),.ydoes not converge uniformly on [0, oo[.
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Now, let the domain be [a, o[, for some a > 0. Then the pointwise limit is
the same. Now take € > 0. So,

3 _|sinnx| 1
Ju() f(x)|_|1+nx| > 1+nx

<L

nx

<

na

: 1 o
So, if we take n, € Nsuch that — <¢,i.e., if we choose n, € Nsuch
nya

that n, > i, then |f, (x)— f(x)| < eforall n>n,and xe[a,od.
ae

Therefore, (f,),.yconverges uniformly on [a, .

E7) Let f:R — Rbe define f(x)=x.Then

Iim f (x)= h'm(x+lj =x= f(x). Thus f is the pointwise limit of
n—oo n—oo n

(f.)nen- Now, let &> 0be arbitrary. Then | £, (x) — f(x)| =

1
B —
n

Choose n, > l.Then
€

f,(x)— f(x)|<eforall n>n,and xe R.

Therefore, (f,),.yconverges uniformly on R.

E8) We have for x€]0,1], lim f (x) =lm

n=e ]+ nx

=0,and lim f, (0)=0.

Thus f:[0,1] — R defined by

0, if xe]0,1]

f(x):{L it x=0

is the pointwise limit of (f,),.y.Assume, if possible, that
(f.,).x cOnverges uniformly to f on [0,1]. Then for every € > 0we have
some n, € N such that

f,(x) = f(x)| <eforall n>nyand nel0,1].

Take n=n,and x = L.Then the above inequality reduces to

I+n, - —
iy

which does not hold for all positive real numbers €. Therefore, (f,),cn
does not converge uniformly on [0,1]. 203
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E9)

From the definition of f, ,we observe that (f,),.yconverges to

f(x)=0for all xe[0,1].Also, it follows that each f and f are
continuous on [0,1].Also

1 1/n 2/n 1
[ f,0dx= [n’xdx+ [(=n’x+2m)dx+ [0dx
0 0 1/n 2/n
1/n ) 2/n
2/
=n’x— —n’Z- +2nx 1/: +0
0 1/n

But .I[f(x)dx =0
thij. S, (x)dx # jf(x)dx

Hence by Theorem 10, the sequence is not convergent.
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18.1 INTRODUCTION

In the previous unit we have introduced sequences of functions, and
discussed the concepts like pointwise and uniform convergence of such
sequences. The next step follows naturally now. We take up the study of
series of functions. If you take a quick look at the unit on series of real
numbers, you will have an idea of how we are going to proceed in this unit.

Here we shall first define in Section 18.2 the concept of a series of functions,
and then discuss the convergence or divergence of such series. These
concepts are defined with the help of convergence or divergence of
sequences. Next, in Section 18, we shall discuss about power series, and
shall study some of their properties.

Objectives
After studying this unit, you should be able to

e define partial sums for a given series of functions;
e decide if the given series is pointwise convergent;

e describe the concept of uniform convergence (of a series of functions), and
distinguish it from the pointwise convergence;

e show how uniform convergence establishes the continuity of the limit of a
series of continuous functions;

e discuss the termwise integration and differentiation of uniformly convergent
series of functions;

e define a power series, and discuss its convergence.

205
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18.2 CONVERGENCE OF SERIES OF
FUNCTIONS

In this section, we shall introduce the concept of series of functions. You are
already familiar with the series of real numbers. Recall that the sum of two
real valued functions f and g defined on a subset S of R is the function

f+g:5 =R definedby (f +g) (x)=f(x)+g(x).

This operation naturally extends to any finite number of functions. That is, if
fis o fooeeen f, @re functions from S to R, then fi+f,+f;+..+f,:S—>R

is defined by
(fithHhtfittf) O=fi0)+fL(x0)+ f[(0)+...+ f,(x).

Now look at the following definition.
Definition: If (f}, f,. f;......,) is a sequence of functions defined on a subset

S of R, then the expression f, + f, + f; +...,0r z f, is called a series of

n=l

functions.

Note that this expression may not be a function. This is because it involves
taking a sum of infinitely many functions. We decide about the convergence of
such a series by considering the sequence of its partial sums.

Definition: Let (f,),.y be a sequence of real valued functions defined on a
subset S of R. We form the sequence of partial sums, (s, )  of the series

D f.. where, s, = fi.5, = fi + fru8, = fi + fo ¥ fy
n=l

i) If (s,),.y,» CONvergesto f pointwise onS, we say that z f, is

n=1

pointwise convergentto f on S.

i) If (s,),.y, cOnverges uniformly to f on S, we say that z f, is

n=1

uniformly convergentto f on S.

iy If (s,),.n does not converge, then we say that z f, is divergent.

n=l

So, you see, the convergence or divergence of a series of functions is defined
in terms of the convergence or divergence of the associated sequence of
partial sums. As a result, we can easily carry over the results on sequences of
functions to series of functions. But before that, here are a few examples.

Example 1: Find if the series of functions, an, is pointwise convergent,
where

) f,(x)=x",xeR,neN

iy f.(x)=x(1-x)",xe01]n=0,1,2,....

Solution: i) Note that Z f,(x)= an is the geometric series with common

n=l n=1
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ratio, x. We know that this series is convergent for | x| <1, and divergent for
Ix1>1. And if | x| <1, the sum of the series is li

—X
So, the given series of functions converges pointwise on ]—1,1[ to the

function, f:1-1,1[— R, f(x) = li
— X

iy  Here ifn(x)zix(l—x)”=xi(1—x)”.

Now, f,(0)=0, and f, (1) =0, Vn. Therefore, both the series Z £, (0),

n=0

and an(O) converge to 0. When 0 < x <1,then we have 0<1—-x<1.

n=0

Now, Z(l—x)” is a geometric series, with common ratio 1— x. Threfore,
n=0

1 oo
it converges to =—. Consequently, an(x) converges to 1

—(I—X) X n=0
forall 0<x<1.

Thus, the given series of functions converges pointwise to the function
f:10,1] = R defined by
0,if x=0
flx)=41if 0<x<l.
0,if x=1

*%k%

In both the series in the example above, we have used our knowledge of the
sum of a geometric series to decide the pointwise convergence of the given
series, rather than the definition.

Now are these series uniformly convergent?

To find out, we make use of the theorems we have proved in Unit 17. Consider
part (i), first. Each of the functions, f, (x)=x",xe]-L1[ is bounded. So, the

partial sums, which are finite sums of these functions, are also bounded. But
the pointwise limit of the sequence of partial sums, that is,

fi1-L1[— ]R,f(x):%, is not bounded on ]—1,1[. So, applying Theorem

4 of Unit 17, we find that the convergence cannot be uniform.

In part (ii) the given functions are all continuous on the given domain. So, the
sequence of partial sums also consists of continuous functions. But as you can
see, the pointwise limit is not continuous. So, applying Theorem 5 of Unit 17,
we conclude that the convergence is not uniform.

Using similar arguments we prove the next two theorems.
Theorem 1: If for every ne N, f, is a real-valued, bounded function defined
on a subset § of R, and if the series an converges uniformly to

n=l

f:8 =R, then f isboundedon §. 207
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Proof: Since f, is bounded for every ne N, the partial sum,

s, =f+f,+f,+..+f isalsoboundedon S. Since an converges

n=l
uniformly to f on S, the sequence of partial sums (s, ),y also converges
uniformly to f on §. Therefore, by Theorem 3 of Unit 17, f is bounded on
S. [

Theorem 2: If f, is a real-valued, continuous function defined on a subset §

of R, for every ne N, and if the series an converges uniformly to
n=1

f:S —> R, then f is continuouson S.

Proof: Since f, is continuous for every ne N, the partial sum,

s, =f,+f,+f,+..+f, isalsocontinuouson S. Since an converges

n=l
uniformly to f on S, the sequence of partial sums (s, ),y also converges
uniformly to f on §. Therefore, by Theorem 4 of Unit 17, f is continuous on
S. [

Remark 1: If (s,),_y, the sequence of partial sums of a series an
n=l1

converges uniformly to f : S — R, then using Remark 2 of Unit 17, we can
say that lim lim s, (x) =lim s, (p) = lim lim s, (x).

X—>p n—> n—oo x—p

So, if a series an converges uniformly to f,then we can write,

n=1

im>" £,0=>" /,(p) = lim f, (x).

n=1 n=1 n=1

Thus, if the given series is uniformly convergent, we can take the limit term by
term.

We now state two theorems dealing with differentiation and integration of a
uniformly convergent series. As in the case of Theorems 1 and 2, the proofs of
these theorems depend upon the corresponding theorems in Unit 17.

Theorem 3 (Termwise differentiation): Let (f,),.y be a sequence of
functions defined and differentiable on a closed and bounded interval, I, of
R. Suppose the seriestn (Xo) converges for some x, € I. Suppose further,
that the series an’ converges uniformly on I. Then an converges
uniformly to a function f on I such that f is differentiable on 7, and

f’ = Z fn"

Theorem 4 (Termwise integration): Suppose the real-valued functions,
f,»ne N, are integrable on an interval, [a,b], and suppose the series an
converges uniformly to a function, f,on [a,b]. Then fis integrable on [a,b],

b w b
and [ f(dx=)" [ f,(x)dx.

n=l 4
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We now discuss a simple test, which helps us decide whether a given series
of functions is uniformly convergent or not. This test was devised by
Weierstrass, and is called Weierstrass M-test. It is based on the knowledge of
convergent series of numbers, which you have studied in Block 3.

Theorem 5 (Weierstrass’ M-Test): Suppose Z f, is a series of functions
defined onaset S c R. If Z”n is a convergent series of positive real

numbers, such that | f, (x)| <u, forall xe S,ne N, then an is uniformly
convergenton S.

Proof: Since Z”n is convergent, its sequence of partial sums, (s,), x>
where s, =u, +u, +...+u,, is convergent. Hence, (s,),.y is cauchy.
Therefore, for a given € > 0, there exists n, € N, such that

n>mz2n, = |s —s|<€

+..tu, <€

|um+1 m+2

Now, since |f, (x)| <u,, we have

+u

m+] m+2

Fua O Frpia () 4ot £, () <

Therefore,

n>mz2n, =

f;11+1(x)+fm+2(x)+...+ f‘n(X)|<£ fOI’ a” Xe S

This means that the sequence of partial sums of an is uniformly Cauchy
and hence uniformly convergent. (See Theorem 2 of Unit 17.) This means that
an is uniformly convergent. u

Here are a few examples to illustrate how these theorems can be applied.

sin nx

Example 2: Let f,(x)= for 0 < x <7.Show that the series an

n=l

n!

converges uniformly on [0,7]. If f(x Zf , evaluate .[f(x)dx

0

. . 1
Solution: Since |sin nx| <1, we have L S—' for all xe [O,R] and ne N.
n.

1
Also, recall that Z— converges. Therefore, by Weierstrass’ M-test, we
n=l1 n

conclude that an converges uniformly to a limit f. Uniform continuity allows
n=1

the use of term by term integration by Theorem 4.
Therefore,

.[f(x)dx Zj.f (x)dx Zj-smnx :w i!.([sinnxdx

n=l n=l ( . =1
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] 1 R
=3 -]
“~n'n
=2 1+L+L+...
313 515
x2
Example 3: If f,(x)=———,0<x<1,showthat ), is pointwise

(1+x277

convergent on [0,1]. Is it uniformly convergent on [0,1]?
Solution: First, let us consider the case x=0. We have f, (0)=0 for all

ne N. Therefore, an (0) convergesto 0. Now let 0 < x<1. Then
n=1
1 xZ/n
<1. Therefore, (f, (x))" :1
+

0< <1 forall ne N.

1+ x* x2

Consequently, by the Root Test Zf”(x) converges for each x in ]0,1]. That

n=l

is, >_ f, is pointwise convergent.

n=1

The sequence of partial sums of the series is (s,),.y. Where
5,(0) =2 fi(x)
k=1

{ 1 1 1 }
=x -+ b ———
A+x%)  (1+x%) 1+ x%)"

g f
, A+x)| 1+
=X

IR
(1+x%)
:1—(112)”, for XG]O,I].
+Xx

Now lim s, (x) =1 for all xe]0,1]. Therefore, the pointwise limit of the series

is the function f :[0,1] > R defined by

0, if x=0

f(x):{L if x#0.

The series is not uniformly convergent, because each f, is continuous on
[0.1] , but fis not.

*k %

4x)

Example 4: Show that the series 2% is uniformly convergent on
n

[0, 0ol

sin (n*x)
2

siz, forall xe [0, and all ne N. We
n

Solution: Here |f, (x) =
n
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know that the series of real numbers Ziz is convergent. Therefore, by
n

Weierstrass’ M-test, we conclude that the given series of functions is uniformly
convergent on [0, co].

*k %k

Example 5: Find the derivative of z

- x€ [0,b] C R, if possible.
o’ 4 x

1
X)) =

g )I n+x

real numbers. Therefore, the given series is uniformly convergent on[O,b].

Now, f/(x)= ( )2, and Zf (x) —Z . Note that
n

Solution: Here,

2

1 =1, ,
<—,and Z—S is a convergent series of
n

n=l1

—2x
(n3 +x2)

sz—lg, forall xe[0,b] and ne N.

flx) =

We know that the series 2bzi6 is convergent. So, by the Weierstrass’ M-

n=l1

test we can say that Z £, (x) is uniformly convergent on [O,b].

n=l1

Now, applying Theorem 3 of Unit 17, we know that this series can be
differentiated term by term. So, if

@)=Y~ then ()= 23—

3 2\2°
n=l n=l1 (I’l + X )
*kk

You should be able to try these exercises now.

cosnx

E1) Let f.(x)= ,for xe [0,1] and ne N. Let

= ifn (x),xe [0,11 Show that ifn, and ifn' are uniformly
n=l1

n=1 n=l1

convergent on [0,1] Hence, find f'(x).

E2)  Show that z ( " ) Xe [0,10] is pointwise convergent on its
n

n= l

domain. If f(x): iﬁ then show that f is differentiable on
n

[0,10] Also find f'zx).

2

E3)  Show that z

is uniformly convergent on [O,a] forany a > 0.
~n’+x

3

E4)  Show that Z

n= l + x
series does not converge in[0,1[.

converges uniformly on [2,co[. Also show that the
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We now turn our attention to a special type of series of functions, namely, the
power series.

18.3 POWER SERIES

Power series form an important class of series of functions. They can be used
to define and study the properties of many well known functions such as sine,
conine or natural logarithm. So, let us start with the definition.

Definition: A series of functions, an is called a power series, if
n=0

f,x)=a, (x-c)',xe R,n=0,1,2,3,....,where c is any real number.

Note that though the functions, f,,n=0,1,2,3,... are defined on R the series

may not converge for all xe R. For example, take the power series, Zx”. We
n=0
know that this is a geometric series, and converges if and only if | x| <1. On

n

the other hand, the power series, zx—' converges for all xe R. You can
n=0 n
easily check this by using the Ratio Test that you have learnt in Unit 7.

Using Cauchy’s nth Root Test, we can say that the series Zanx” converges,
n=0
1 1

if im sup|a”

x| <1, and diverges if lim supla,

x|>1.

So, we have the following definition.

oo 1

Definition: For the power series Za”x”, we set p =lim supla,|+. Note that
n=0

p may be finite or infinite. The radius of convergence, R, of the given series

is defined as

O’if p = oo
1 .
R=<—,if 0<p<oo
P
The interval, ]— R, R|[ is called the interval of convergence of the series.

This definition is justified by the following theorem.

Theorem 6 (Cauchy-Hadamard Theorem): If R is the radius of convergence

of the power series Zanx” then it is absolutely convergent if | x| < R, and is
n=0

divergentif | x| > R.

Proof: Recall that using the Cauchy’s Root Test the series Zanx” converges
n=0
1 1

if lim sup

x| <1, and diverges if lim sup

a, a,|"]x|>1. That is, it converges
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absolutely for p|x| <1, and diverges for p|x|> 1.

If 0 <R < o, then we can say that it converges absolutely for | x| < R, and
diverges for | x| < R.

If R=0,then p =oco,and px| > 1 for all x. Hence, in this case, the series

diverges for all x. Finally if R =<0, then p=0,and p|x| =0<1 forall x. So, in
this case, the series converges absolutely for all x. |

Remark 2: i) Cauchy-Hadamard Theorem tells us that a power series is
convergentif | x| < R, and is divergent if | x| < R. What happens at | x| =R?

There is no unique answer to it.
For example, the radius of convergence of the series, Zx" is 1. This series is

. =1 .
divergent at | x| =1. We also have R =1 for the series Z—x”, since
n=l1
1

limsup (nﬁ) = 1. This series converges for x =—1, but diverges for x=1.

o= 1 . . .
The series Z—zx” also has the same radius of convergence, 1. This series

n=1

converges for bothx=1,and x=—1.

So, the behavior of a power series at the end points of its interval of
convergence varies from one series to another.

ii) The radius of convergence R of a power series Zanx” is also given by

aﬂ

a

lim

n—o0

, provided the limit exists. You may have come across this while

n+l
studying infinite series in Unit 7. You will soon see that sometimes it is
easier to calculate R using this formula.

Now we shall see why a power series is uniformly convergent on any closed
interval contained in its interval of convergence.

Theorem 7: If R >0 is the radius of convergence of the power series,
>a,x", andif 0<c<R, then > a,x" converges uniformly in [-c,c].

n=l1 n=l1

Proof: Let ¢ < b < R. By Cauchy-Hadamard Theorem we know that Zanx” is
absolutely convergent for all x such that | x| < R. Therefore, Zanb”
converges absolutely. This implies 1 a, 5" | — 0. So, for € =1, there exists

n, € N such that nZnO:‘anb” <1.

Now, if we take xe [— c,c], and n2n,, then

n n

<

n

X

b

X

b

c

b

ab"

n
a,x

Series of Functions

In the examples and
exercises in this unit
we shall consider only
those power series,

1

n

where the limit of |an

exists. So, you don’t
have to worry about
the calculation of
limsup.
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c

We have p <1. Therefore, Z[gj converges.

Now, using Weierstrass’ M-test, we conclude that Zanx” converges
n=0

uniformly on [— c,c]. |

If we have a power series whose radius of convergence is zero, then the
series converges only for x =0, and hence there is no question of testing for

uniform convergence. So, the statement of Theorem 7 is trivially true for
R=0.

Remark 3: A power series is uniformly convergent on any closed and
bounded interval contained in its interval of convergence. Because, if [p,q] is
a closed and bounded interval within the interval of convergence of a given
power series with the radius of converges R, then we can find ¢€]0,R[ such
that

[p,q]g [— c,c]c] —R,R|.

Then Theorem 7 tells us that the power series is uniformly convergent on
[— c,c]. So, it is also uniformly convergent on [p,q].

We are now going to see how the Theorems 2, 3, and 4 can be interpreted for
a power series. Let us take these one by one.

Theorem 8: The limit of a power series is continuous on its interval of

convergence. That is, if f(x):Za” x" forall xe |- R,R[, then f is
n=0
continuous on |—R,R].

Proof: Suppose x, € ]—-R,R[. Then there is some & >0 such that

[x, — &, x, + €] <]— R, R[. Then by Remark 3, the series Za”x” is uniformly
n=0

convergent on [x, — &, x, + €]. Since x" is continuous on R forall ne N, x"
is continuous on [x, — &, x, +&] for all ne N. Therefore, by Theorem 2, f is
continuous on [x, — &, x, + €], and hence on x,. Since x, is arbitrary, f is

continuous on |- R, R][. u

Theorem 9: A power series can be integrated term by term on any closed and
bounded interval contained in its interval of convergence.

Proof: By Remark 3, a power series is uniformly convergent on any closed
and bounded interval in its interval of convergence. Then by Theorem 4 it
follows that the series can be integrated term by term. ]

Next we are going to show that a power series can be differentiated term by
term in its interval of convergence. You know that to enable term by term
differentiation of a series of functions, the series has to follow some additional
criterion, apart from uniform convergence. And, we will show that a power
series satisfies that additional criterion also.
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Before we state the theorem, recall that lim nn=1.

n—oo

Theorem 10: A power series can be differentiated term by term in its interval
of convergence.

Proof: Consider the series, »_ f,(x)=Y_a,x". Suppose the radius of

n=0 n=0

convergence of this series is R. Now, the series, an'(x): Znanx”‘1 also
n=l1 n=1
1

has the radius of convergence R. This is because lim n" =1 and so,

n—so0
1
n .

Pick any real number ¢ such that 0 <c < R. Then Zan x" converges
n=0

an

1 1 1
lim sup (I na, I")={limn”J{lim supla, I"J=limsup(

uniformly on [—c,c], and hence Za” x, converges for some x, € [—c,c].
n=0

Now the series Y f/(x) =Y na, x"" converges uniformly in [—c,c]. Hence,
n=0 n=0

by Theorem 3, it follows that Zan x" can be differentiated term by term in
n=0

[-c,c]. Since c is arbitrary, Zan x" can be differentiated term by term in
n=0

I-R,R[. [

If Za”x” = f(x) in its interval of convergence, then by applying Theorem 10
n=0

again and again, we can get successive derivatives of f(x). These will be

oo

givenby f¥(x) =" =]

n! n—k
anx

All these series have the same radius of convergence, R.

For x=0,we get f“)(0)=k!a,. This means

(k) (n)
a, =fT!(O),and Zanx” =ZfT!(O)x” in |—R,R|[.

But this is what we call the Maclaurin’s series of f. Isn’t it?

Instead of starting with a power series, if we are given a real function, f,
which has derivatives of all orders at x =0, we can write the Maclaurin’s series

()

for f asZ—'x”. This is a power series. If this series convergesto f in
n.

some interval, |- R, R[, we say that f is analytic at x=0. So, the property, 515
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“ f is analytic at x=0" is stronger than the property, “ f is differentiable at
x=0"

We now give some examples, which will illustrate the concepts discussed in
this section.

Example 6: Find the radius of convergence of the power series, Zanx”,

n=0
where
! 2
) a=n", i) o =0
(2n)!
1
Solution: i) We need to find p =lim supla,|», where

1

a,n = (n_‘/;)% = n%’l’.

Let us find the limit of this as n — oo, if it exists. We can do this by using

-1

_ -1 0o
logarithmic differentiation. Let b = n'". Then Inb=—=1Inn. This has an —

n oo

form as n — 0. So, by L’'Hospital’s Rule we can write
-1

. . —Inn . (n J .l

limIln b =lim =lim =lim =0.

n—oo n—oo ,/n n—oo 1 n—yoo 2‘”’1
2+/n

Therefore,

limb = ¢ =1. Hence, the radius of convergence is R = 1 =1.
P

n—oo

ii) Here the formula for a, has factorials. In such cases, it is better to use the
formula given in Remark 2 ii) to calculate R. Thus,
an

R =lim

n—oo

a

. () 2(n+1))

) . (2n+2)2n+1)
C e (20) (1)) o (n+1)

oot
.,

Example 7: By integrating the series for %
+x

*k %

x| <1, find the series for
In(1+x).
Solution: We write the given function as a geometric series.

e =1—x+x2—x3+...=g(—l)"x” :

216
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This power series converges uniformly in |—-1,1[. So, by Theorem 9, we can
integrate it term by term. Thus we get

n+1

In(1+ x) j —dr= jZ( )" x" dx Zj( )" x" dx = ( 1=
X2 X3
So, In(l+x)=x—"—+"——...
2 3
o n+l
Example 8: By integrating the power series, Z Y term by term over [0,1],
n=0
show that 3 ;:l
“nln+2) 2

Solution: The radius of convergence of this power series is «. You can easily
check this by using the formula given in Remark 2 ii).

Therefore, the series can be integrated term by term over any interval. Now,

) xn+l ) xn .
S S e
n=0 n’ n=0 n’

So,

'[xe dx=1.
0

By Theorem 9,

I 1
2=
o n=0

n+

22.1[)6 1dx
0

—r- n!
= 1 1 1 1 1
=) ——=—+—+—+—+
~ nl(n+2) 2 3 24 35
Therefore, Z* =1. After subtracting i from both the sides, we get
“nl(n+2) 2
i _1
— ‘(n+2) 2

*k %

If you have carefully gone through the examples here, you should be able to
solve the following exercises now.

E5) Find the radius of convergence of the series, Zanx”,where a, is as
given below.

i) n" ii) l i) 1 iv) iz ) "
n! n n!

E6) Show that the power series,

and uniformly convergent on [— A, A] forany Ae R". Further show that
E’(x) = E(x) . (Note that E6 is the exponential function e*.)

217



Block 6

218

Sequences and Series of Functions

E7) Find the power series expression fortan ' x. What is the radius of
convergence of this series?

E8) Given that the power series, Zan x" has radius of convergence, 2, find
n=0
the radius of convergence of

i) Zaﬁx” i) Zanxk”.
n=0

. 1300 —1) 2
E9) It IxI<1show that sin” x=3 = 2n-1)
o 24.2n 2n+1

That brings us to the end of this unit.

18.4 SUMMARY

In this unit we have covered the following points.

1. The concept of pointwise and uniform convergence of series of functions
are discussed.

2. Some results such as term by term differentiation and integration of
series o functions were discussed.

3.  We have discussed the concept of a power series, and of the radius of
convergence of a power series.

4.  We have seen how to compute the radius of convergence of some
power series.

18.5 SOLUTION/ ANSWERS

|cos nx|
.-
n

E1) Weknowthat! f (x)|= % for all xe[0,1] and ne N. The
n

=1 " .
series 2—3 has all positive terms, and is convergent. Therefore, by

n=1

Weierstrass’ M-test, Z £, is uniformly convergent on [0,1]. We have

n=1

£y =—""% torall xe[0,1], and for all ne N. Now
n
, i 1 , o ] ,
L f, (0] = Sm?x <—-. Again, the series Z—z is a convergent series
n n n=1

of positive terms. Therefore, by Weierstrass’ M-Test, Z f, is also
n=l1

uniformly convergent. Now

oo

F@=3 £l =-3 "

n=1
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E2)

E3)

E4)

Sl for all ne N. Therefore,
X+n n

Since x>0, x+n=n which implies

~* < @forall ne N.
n(x+n) n

. =1, . , - =10
Since Y — isa p -series, with p =2, itis convergent. So Y — is

n=1 n=1
also convergent. Therefore, by Weierstrass’ M-Test, Z— is

~'n(x+n)
uniformly convergent, and hence pointwise convergent.

Now, let f (x) :L, for ne N and ne[0,10]. Clearly, f, is

n(x+n)

. Again we can see that 7 is
rny O nzz:‘f

uniformaly convergent. Thus an satisfies all the hypotheses of

n=1

differentiable and f,(x) =

Theorem 3. Consequently, an converges uniformly to a function f

n=1

such that f is differentiable and for all xe [0,10],and

f(x)= Zf() Z

(+)

For all xe[0,a] and for all ne N we have n’ +x’ >n’, which implies

1 1
3 - <—. Also for the same values of x and n, we have
n +x n

nx” <na’. This gives us

, > 1 - ,
Since Z—z is convergent, Za—z is also convergent. Therefore, by the
n=1 n=1 n

2

Weierstrass’ M-Test, Z

- is uniformly convergent on [0, a].
~nd+x

Forall xe[2,0] andforall ne N
1 1
1+x" 2"

x22=x"22"=1+x" 22"

1
1+ x"

<L

S

Therefore, by the Weierstrass’ M-Test, Z -
n=l1 X

is uniformly convergent
n

on [2,09[.
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E5)

E6)

E7)

For xe[0,]1[, im x" =0, and hence Lim ! =1. This implies

n—>00 n—»00 1+ xn

oo

1 .
E — is not convergent in [0,1[.
—1+x

i)  Hrere a,=n" andso a,,, =(n+1)"". Now

R =lm rt
e an+1
p— nn
n—)oo(n+1)n+l
:ljm[ L jhm L
n—yoo n+1 n—)oo[ 1}"
I+~
n
-1 ) IRy
=0.e =0 clm|1+— | =e.
n—oo n
ii)  Here an:i and a,,, = ! .
n! (n+1)!
!
R =1im |- = tim "D i 4 ) = o
no=la n—so0 n! n—soo
!
i)  R=lm-=1.
n—eo |
2 2
iv) R=nmw=1m{1+l} =1.
n—oo n n—oo n
" !
v R=lim " x DY g b o
e pl o (n+1)" H“’[ 1)"
I+—
n

From E5 (ii) we know that the radius of convergance of this series is co.
Therefore, the series converges for all xe R, and is uniformly

convergent on [—A, A] for every Ae R".

By Theroem 10, we can differentiate E(x) = Z x' term by term. That
n=0
2 3 4
s, ') =L 14 x+ e e X
dx 21 31 4!
2 3
=l4+x+—+—
3!

To find a power series expression for tan ' x, we shall use the fact that

X

dx =tan™ x.

I1+x2

0

We know that
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1 2\-1 2 4 6 N n
=(1+=x =l-x"+x"—-x"+-- =) a x",
=) Z \
0, if nis odd
where a, = 1

(=", if nis even

The radius of convergence of this series is
1 1

R=limsupla, I"=limsup | (1) "= limsup 1 =1.

Thus the series converges uniformly in any closed and bounded interval
conained in ]—1,1[. Now, we can integrate the series from 0 to x, for

x| <1. Thus,

X 1 X
.[ de:.[(l—x2+x4—x6+-~-)dx
o I+ x 0

3 5 7
X X

—tan  x=x—" = ...
3 5 7

E8) i) We are given that lim @y

n—seol ¢y

= 2. Therefore, the radius of

n+l

convergence of the series Za,’j x" is

n=0
_ [ﬁm

k
j o

i)  The series Zan x" converges for all xe R such that | x| < 2.
n=0

a

. a
R =lim —/ 1
= an+1

a

n+l

Therefore, Zan x" converges for all xe R such that | xI* <2.
n=0
L
This gives | x| <2, i.e., | x| <2*. Consequently, the radius of
- 1
convergence of Y a, x is 2.
n=0

d . . 1
E9) We know that —(sin™ x) = .
) dx( ) -
(1+x)0,:1+ax+a(a;'—l)x2+a(a—13)'(a—2)x3+m’

Binomial Theorem tells us that

1 .
where x,xe R. Replacing x by —x* and « by 3 in this expression
we get

-1
(1-x7)?2 =1+lx2+ 1.3 x4+1'3'5 x°
2 22.21 23 .3

- 135 (2n D

n=0

. (1)

M
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al‘l

_135..@n-D) o using the formula, R = lim

"on! n—e0

n

, we get
a

n+l

R =1. This means that the power series Zan x" convergesin ]-1,1].
n=0
Hence, the power series in Eqn. (1) converges in |—1,1[.

Now integrating both sides in Eq. (1) from 0 to x,|x

<1, we get

1 1. 1.3.
1+—x2+—3x4+ 35x6+... dx
2! 2.4 2.4.6

O oy
p—
(3]
IS
=
Il
O C— <

X
23 245 2467





