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BLOCK INTRODUCTION 
 
In Block 2, you were introduced to the notion of sequences of real numbers and their 
convergence. In Block 3, infinite series of real numbers and their convergence was 
considered. In this Block, we want to discuss sequences and series whose terms are 
functions defined on a subset of Real number. Such sequences and series are known 
as sequences or series of real functions. This Block is divided into two units.  
 
Unit 17 covers sequences of functions. A sequence of functions is almost a 
straightforward generalization of a sequence of real numbers. We consider here the 
most basic form of convergence of a sequence of functions, called pointwise 
convergence. Then we go on to define a stronger form of convergence called uniform 
convergence. Whenever a sequence of functions is convergent, its limit is a function 
called limit function. The question arises whether the properties of continuity, 
differentiability, integrability of the individual functions in a sequence or series of 
functions are preserved by the limit function. We shall show that these properties are 
preserved by the uniform convergence and not by the pointwise convergence.  
 
In Unit 18 we discuss the convergence of series of functions in terms of convergence of 
its sequence of partial sums. Since the sequence of functions can either converge 
pointwise or uniformly (or not at all), we can define pointwise convergence and uniform 
convergence of a series of functions. Next, we discuss a useful result known as the 
Wierstrass M-Test, which gives straightforward conditions that can determine if a series 
of functions is uniformly convergent. We close this unit with a brief introduction to 
power series.  
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NOTATIONS AND SYMBOLS (used in Block 6) 
(Also see the notations used in Calculus and Differential Equations) 
 

N∈nnf )(   a sequence of functions 

ff
n

→   f is the (pointwise) limit of 
N∈nnf )(  

∑ nf   a series of functions  

∑ −
n

n cxa )(  a power series about cx =  

ffn =∑   f is the sum of the series ∑ nf  
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UNIT 17 

SEQUENCESEQUENCESEQUENCESEQUENCESSSS    OF FUNCTIONSOF FUNCTIONSOF FUNCTIONSOF FUNCTIONS            

Structure             Page No 
 

17.1 Introduction              183      
Objectives 

17.2 Pointwise Convergence             184    

17.3 Uniform Convergence             189 

17.4 Some Theorems              195  

17.5 Summary              199 

17.6 Solutions/Answers             199 
 

17.1 INTRODUCTION 
 
You are familiar with sequences of real numbers in Block 2. You have studied 
their convergence characteristics. In this unit we are going to introduce you to 
sequences of functions which is a straight forward generalisation of sequences 
of real numbers. Once you are familiar with the idea, we shall talk about the 
convergence of these sequences also. We shall be using the concepts 
discussed in Block 2 to study the sequences of functions. So, it will be a good 
idea to go back and revise the definitions and major theorems of units of    
Block 2. 
 

In Sec. 17.2 we start our discussion on sequences of functions as a 
generalisation to the concept of sequence of real numbers. We shall 
familiarise you with examples of sequences of functions and explain how it is 
related to sequences of real numbers. We shall then explain the convergence 
of these sequences by introducing the term point wise convergence.  
 

In Sec. 17.3 we shall define another type of convergence of sequence of 
functions known as uniform convergence. We shall explain how it is different 
from point-wise convergence.  
 

In Sec. 17.4 we discuss what properties such as continuity are preserved by 
uniform convergence. We shall present two theorems.    
 

Objectives  
 

After studying this unit, you should be able to  
 

• define the pointwise limit of a sequence of functions; 

• decide whether a given sequence of functions is pointwise convergent or 
not; 
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• define the uniform limit of a sequence of functions; 

• show that the uniform limit of a sequence of contiuous/ differentiable/ 
integrable functions is contiuous/differentiable/integrable. 

 

17.2 POINTWISE CONVERGENCE 
 
In this section we consider a generalisation of sequences of real numbers, 
namely, sequences of real-valued functions, i.e. it is a sequence each of 
whose terms is a real valued function. We discuss the basic form of the 
convergence of these sequences known as pointwise convergence.  
 
To understand the sequences of functions, we consider a geometric sequence 
with which you are already familiar.  
 

Let .R∈x For each ,N∈n  let us consider a function 
n

f defined on R by 

.)( n

n
xxf =  

 

Then for each ,n
n

f is a function and these functions share a common domain, 

in this case it is .R Note that  ,)(,)( 2

21 xxfxxf ==  ,...)(,...,)( 3

3

n

n
xxfxxf ==  

Thus we have a sequence of functions given by ,...,...,, 21 n
fff which we 

denote by .)(
N∈nnf  

 

Note that here for each ,N∈n there is a function 
n

f defined on .R  

 

Suppose we fix ,R∈x say .0=x Then we have 

,...0)0(,0)0(,0)0( 321 === fff Thus we get the sequence ,...)0...,0,0,0( of real 

numbers. Similarly when we put ,
2

1
=x then we get the sequence 

...
8

1
,

4

1
,

2

1
and for ,1=x we get the constant sequence, ( ),.....1,1,1 . 

 
Hence by evaluating the functions in the given sequence at each point of the 
domain, we get sequences of real numbers. We can also talk about the 
convergence of the given sequence of functions. The definition of 
convergence is closely linked to the convergence of the sequences of real 
numbers generated. Before we write the definition, we give some examples to 
make you familiar with the idea of sequences of functions. 
 

Example 1: For the given sequence of functions on ,R find the sequence 

N∈nn xf ))(( of real numbers corresponding to the values given against it.  
 

i) 
3

1
,0,1,)( == x

n

x
xf

n
 

ii) 
2

1
,2,1,

!
)( −== x

n

x
xf

n

n
. 

 

Solution: Let us try one by one.  

i) For ,....
1

)(...
3

1
)(,

2

1
)(,1)(,1 321

n
xfxfxfxfx

n
=====  

Hence we get the sequence 
N∈










nn

1
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For ,0=x the sequence is .)0(
N∈n  

 

For ,...
3

1
)(,...,

9

1
)(,

6

1
)(,

3

1
)(,

3

1
321

n
xfxfxfxfx

n
=====  

Therefore the sequence is .
3

1

N∈










nn
 

 

ii) For ...
!

1
)(.....

!3

1
)(,

!2

1
)(,1)(,1 321

n
xfxfxfxfx

n
=====  

Therefore the sequence is 

N∈










n
n!

1
 

For ,2
2

4

!2

)2(
)(,2)(,2

2

21 ==
−

=−=−= xfxfx  

!

)2(
)(,...

3

4

32

8)1(

!3

)2(
)(

33

3
n

xfxf
n

n

−
=

−
=

×

×−
=

−
=  

Hence the sequence is 

N∈








 −

n

n

n!

)2(
 

 

For ,
8

1

24

1
)(,

!2

1
)(,

2

1
21 =

×

=== xf
n

xfx  

...
!2

1
)(...

48

1

68

1

!32

1
)(

33
n

xfxf
nn

==

×

=

×

=  

Therefore sequence is .
!2

1

N∈










n

n
n

 

*** 
You can solve this exercise now.  
 

 

E1) Write the functions, 321 ,, fff  in each of the sequences given below. 

Also find the sequences of real numbers obtained by evaluating the 
functions in the sequence at any two points of your choice from the 
given domain. 

  

i) ( ) ( ) [ ]2,0,1, =+=
∈

Anxxff nnn where
N

 

ii) ( ) ( ) [.2,0],
1

2,
2

=+=
∈

A
nx

xff
nnn

where
N

 

 

 
You have realized that when a sequence of functions is given, by evaluating 
each of the functions at a given point of the domain, we get a sequence of real 
numbers. We can then decide whether this sequence is convergent or 
divergent.  
 

Let us go back to the example of the sequence of functions ,)( n

n
xxf =  

discussed at the beginning.  
 

Here at ,0=x ( ) nf
n

∀= ,00 . Therefore, ( )( ) .00lim =
∞→

n
n

f  

Similarly at ,1=x ( ) nf
n

∀= ,11 . Therefore, ( )( ) .11lim =
∞→

n
n

f  
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If 10 << x , then ( ) 0→=
n

n
xxf , as ∞→n .  (You can write the sequence for 

2/1=x , as an example, and see that it tends to zero.) 

 

So, if we define a function, [ ] ( )





=

<≤

=→

1,1

10,0
,1,0:

x

x
xfRf , then we can 

say that ( )
n

f  converges pointwise to f on [ ]1,0  for each point of ].1,0[  

 
In this case we say that the sequence of functions is pointwise convergent in 
the domain. Here is the precise definition. 
 

Definition: Let ( )
N∈nnf be a sequence of real valued functions defined on a 

subset A  of .R  We say that the sequence, ( )
N∈nnf  converges pointwise to 

a function, f  on A , if, for each ,Ax ∈ the sequence, ( )( )
N∈nn xf  converges to 

( )xf . 

 

In this case, the function f  is called the pointwise limit of ( )
N∈nnf on ,A and 

we write
n

n
ff

∞→

= lim on ,A or, ff
n

→  on .A  

 
Let us try to understand this definition through some more examples. 
 
Example 2: Find the pointwise limit of the following sequences of functions, if 
they exist. 
 

i) ,)(
N∈nnf where ,[,0:] R→∞

n
f is given by ( )

n

x
xf

n
= . 

ii) ,)(
N∈nnf where ,[,0[: R→∞

n
f is given by ( )

nn
x

xf
+

=

1

1
.  

 
Solution: i) In this case it is easy to see that for any fixed 

( ) 0[,,0] →=∞∈

n

x
xfx

n
. Therefore, the pointwise limit of this sequence of 

functions is the zero function, ,[,0:] R→∞f given by ( ) [.,0]0 ∞∈∀= xxf  

 

ii)  Here, ( ) nf
n

∀=

+

= ,1
01

1
0 . Therefore, ( ) 10 →

n
f .  

 If ,10 << x then ( ) ,1→xf
n

since, in this case, .0→
n

x  

 If  ,1=x  then ( ) nf
n

∀=

+

=

2

1

11

1
1 , and therefore, ( )

2

1
1 →

n
f as .∞→n  

 If ,1>x  then ,∞→
n

x and therefore, ( ) 0
1

1
→

+

=
nn

x
xf as .∞→n   

 Thus, if we define the function ( )











>

=

<≤

=→∞

1,0

1,
2

1

10,1

,[,0[:

x

x

x

xff byR , 

then ( )
N∈nnf  converges pointwise to  f  on [.,0[ ∞  

*** 
Now, to understand the convergence more, we look at the graphs of the 
functions given in the sequence.  
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For instance, let us look at the graphs of the functions [ ] ( )
n

nn
xxff =→ ,1,0: R  

for some values of n . (See Fig. 1). 

 
Fig. 1 

 

All these graphs pass through the origin and also through the point ( )1,1 . As n  

increases, the graph seems to sag more and more between these two points. 
The limit is shown in red, where the graph coincides with the x -axis for 

,10 <≤ x and also contains the point ( )1,1 . 

Next we shall look the graphs of the functions ( )
n

x
xf

n
=  for some values of 

n .(See Fig. 2). 

 
Fig. 2 

 

These are all straight lines originating at the point ( ).0,0  You can also see that 

as n  increases, the slope of the line decreases. Finally, as ,∞→n we get a 

line with slope .0  This is the limit of the sequence of functions. In the graph 
you can see it in red. 
 
All the functions in all the sequences given in examples above are continuous 
on their domains. But what about the limits of these sequences? The limit 

function for n

n
xxf =)( is discontinuous at 1. Whereas the limit of function for 

n

x
xf

n
=)(  is continuous on ].1,0[ Also note that the limit function for the 

sequence of functions in part (ii) in Example 2 is discontinuous. Indeed the 

limit function f is  

 

 











>

=

<≤

=

1,0

1,
2

1

10,1

)(

xif

xif

xif

xf  

 
So, the pointwise limit of a sequence of continuous functions need not 
be continuous. 
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functions at each point of the domain.  
 

We rewrite the pointwise convergence in the following way also. 
 

Definition: A sequence of functions ( )
N∈nnf converges pointwise to f on its 

domain, if for a given ,0>ε for every x  in the domain, there exists a natural 

number, ( ),, xN ε  such that  
 

( ) ( ) ( ) ε<−⇒ε≥ xfxfxNn n, . 

 

The number, ( )xN ,ε  depends on ,ε and also on .x  That is, for a given ,0>ε  

the same natural number may not work for all x  in the domain. We shall 
illustrate this with an example.  
 

Let us consider the function ...2,1],1,0[)( =∈= nxxxf
n

n . We know that 

N∈nnf )( converges to the function f given by  
 





=

∈

=

1,1

[1,0[,0
)(

x

x
xf  

Let us select some ],1,0[∈x say .
2

1
=x Since )()( xfxfn → for every ,x we 

 get that .0
2

1

2

1
=








→








ffn  

 
Now we apply the definition with .001.=ε Then for this 0>ε there exists an 









ε

2

1
,N such that .

2

1
,001.

2

1








ε≥∀<








Nn

n

Then N should be at least 10. 

Suppose we select some other ],1,0[∈x say .
10

9
=x Then we have 

.0
10

9

10

9
=








→







ffn Now, for 001.=ε there exists 








ε

10

9
,N such that 

001.
10

9
<








n

for all 







ε≥

10

9
,Nn  Then N should be at least 66. If we select 

any other ,x then N could be some other number. This shows that N varies 

according to the choice of .x  
 
Now the question arises, are there cases where we can find a common value 

of ,N for all x ? The answer is yes. It leads us to a stronger convergence 

criteria, called uniform convergence. We shall present this in the next section. 
 
Before that, it is very important to try some exercises on your own. Once you 
have completely understood pointwise convergence, you will be ready for the 
uniform convergence. 
 
Here are some exercises.  
 

 

E2) Find the pointwise limits of the sequences of functions, ( )
N∈nnf  on the 

given domains, where nf is given as follows:  
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 i) R∈= x
n

x
xfn ,)(   ii) ]1,0[,

sin
)( ∈= x

n

nx
xfn  

 

 iii) R∈

+

= x
xn

xn
xfn ,

1
)(

22
 iv) ]1,1[),sin()( −∈+= xnx

n

x
xxfn  

 

E3) If ( ) ( ) ,cos
n

n xxf π= show that ( )
N∈nnf  converges pointwise on [,1,0[ but 

not on [ ].1,0  

 

E4) If ( )
[ ]



 −∈

=

therwise,,0

,if,1

o

nnx
xfn   

  

 then show that ( )
N∈nnf  converges pointwise on .R  

  

 (Draw the graphs of 321 ,, fff  to understand the sequence.) 

 

 
Now we are ready to discuss uniform convergence.  
 

17.3 UNIFORM CONVERGENCE 
 

In this section we shall introduce you to a stronger form of convergence for 
sequence of functions.  
 

Let us start with a sequence of functions ( ) ,
N∈nnf each with domain D. In the 

last section we noted that for a given sequence of functions, we get a number 
of sequences of real numbers, one for each point in the domain. If all these 
sequences of real numbers are convergent, then their limits define the 
pointwise limit of the given sequence of functions. We have expressed this 
using symbolic language towards the end of last section. A sequence of 

functions  ( )
N∈nnf  converges pointwise to f on its domain, if for a given 

,0>ε for every x  in the domain, there exists a natural number, ( ),, xN ε such 

that  
 

( ) ( ) ( ) ., ε<−⇒ε≥ xfxfxNn n   

 

We had also observed that ( )xN ,ε  depends not only on ,ε but also on ,x  for 

instance, in the case of .)( n

n xxf =  This implies that even though 

( )( ) ( )xfxfn →  for every ,x the ‘speed’ of convergence of each sequence may 

not be the same, For instance, 0
3

1
→

n
faster than .0

2

1
→

n
 

 

But there are cases, where this is the same. That is, ( )xN ,ε depends only on 

,ε and not on .x For example, if you take the sequence in E2) ii), we see that 

each of the sequences, 
N∈










nn

nxsin
 is dominated by the sequence .

1

N∈










nn
 

For a given 0>ε  then we choose  ,
1

0
ε

>n then .
11

0
1

0

0 ε<<=−⇒≥

nnn
nn  

This same 0n works for the sequences for all .x  
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Here is the definition: 
 

Definition: A sequence ( )
N∈nnf of real valued functions defined on a set S  is 

said to converge uniformly to a function f  on ,S if for every ,0>ε there 

exists a natural number 0n such that ( ) ( ) ε<−⇒≥ xfxfnn n0  for every 

.Sx ∈  
 

The number 0n here depends only on ,ε and not on .x It is the same for all 

.Sx ∈  
 

In this case we say that ( )
N∈nnf is uniformly convergent to f on .S  

 
(Do you see a similarity between this and pointwise continuity which we have 
discussed in Unit 10, Block-3). 
 

From the definition it is obvious that if a sequence of functions is uniformly 
convergent, then it is also pointwise convergent. And we have also 
observed that every pointwise convergent sequence need not be uniformly 
convergent as discussed in the earlier section. We now present a few 
examples to bring out this point. In each of these cases we shall first get the 
pointwise limit of the given sequence of functions, and then find out if the 
sequence uniformly converges to that limit or not. 
 

Before we come to the examples, let us see what it means to say that a given 
sequence is not uniformly convergent.   
 

Remark 1: The negation of the statement given in the definition of uniform 

convergence is that there exists an 0>ε such that for every ,N∈n there exists 

an knk ≥ and an Sxk ∈ such that  

 

ε≥− )()( kkn xfxf
k

                … (1) 

 

This shows that there exists an 0>ε such that for each kn we get 
knf and  

Sxk ∈ satisfying (1). Here 
N∈knk

f )( is a subsequence of the given sequence 

N∈knf )( and 
N∈knk

x )( is sequence in .S  

 

More precisely when a sequence is not uniformly convergent, we get a 

subsequence 
N∈knk

f )( of the given sequence, ( ) ,
N∈nnf and a sequence 

( )
N∈kkx in the domain, such that , ( ) ( ) ε≥− kkn xfxf

k
 for some .0>ε  

 
Example 3: Examine the sequences given in Example 2 for uniform 
convergence. 
 

Solution: i)  [ ] ( ) .,1,0: n

nn
xxff =→ R  We have seen that the pointwise limit of 

this sequence is the function, [ ] ( )





=

<≤

=→

1,1

10,0
,1,0:

x

x
xff R . 

If we take 
4

1
=ε , then taking ,knk = and ,

2

1
/1 k

k
x 








= we get a subsequence 

( )
N∈knk

f of the given sequence and a sequence ( )
N∈kkx in the domain, such 
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that,  

 

( ) ( )

.
2

1
0

2

1

2

1

2

1
11

ε>=−=
























−
























=−

kk

kkkn
ffxfxf

k

 

 
Therefore, by Remark 1, the sequence of functions is not uniformly 
convergent. 
 

ii)  ( ) .,[,0:]
n

x
xff nn =→∞ R  We have seen that the pointwise  limit of this 

sequence is the function, R→∞[,0:]f such that [.,0]0)( ∞∈∀= xxf  

 

 Here, if we take ,
2

1
=ε then taking ,knk = and ,kxk = we get a 

subsequence ( )
N∈knk

f  of the given sequence and a sequence ( )
N∈kkx in 

the domain, such that , ( ) ( ) .1 ε>=− kkn xfxf
k

 Therefore, by Remark 1, 

the sequence of functions is not uniformly convergent. 
 

iii)  ( )
nnn

x
xff

+

=→∞

1

1
,[,0[: R . We have seen that the pointwise limit of 

this sequence is the function, ( )











>

=

<≤

=→∞

.1,0

1,
2

1

10,1

,[,0[:

x

x

x

xff R  

 If we take ,
4

1
=ε then taking ,knk = and ,2 /1 k

k
x = we get a subsequence 

( )
N∈knk

f of the given sequence and a sequence ( )
N∈kkx in the domain, such 

that , ( ) ( )

( )
ε>=−

+

=−

3

1
0

21

1
/1 kkkkn xfxf

k
. Therefore, by Remark 1, the 

sequence of functions is not uniformly convergent. 
 

iv)  [ ] ( )
n

n

nn
x

x
xff

+

=→

1
,1,0: R . We have seen that the pointwise limit of this 

sequence is the function, [ ] ( )








=

<≤

=→

.1,
2

1

10,0

,1,0:
x

x

xff R  

 Again, if we take ,
4

1
=ε then taking ,knk = and ,1

2

1
/1

<=
kk

x  we get a 

subsequence ( )
N∈knk

f of the given sequence and a sequence ( )
N∈kkx  in 

the domain, such that, ( ) ( ) ε>=

+

=−









+










=−

3

1

2

1
1

2/1
0

2

1
1

2

1

/1

/1

k

k

k

k

kkn
xfxf

k
. 

Therefore, by Remark 1, the sequence of functions is not uniformly 
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Thus, all the sequences in this example are pointwise convergent, but not 
uniformly convergent.  

*** 
In the next example we give some sequences which are uniformly convergent. 
 

Example 4: Show that the following sequences ( )
N∈nnf are uniformly 

convergent on their domains. 
 

i) ( )
nx

x
xff

nn
+

=→∞

1
,[,0[: R  

ii) [ ] ( )
2

sin
,1,0:

n

nx
xff

nn
=→ R  

 

Solution: i) Here you can easily check that ( )
N∈nnf is pointwise convergent to 

the function ( ) 0,[,0[: =→∞ xff R . Now, for any 

( )
nnx

x
xfx

n

1

1
[,,0[ ≤

+

=∞∈ , and the sequence 
N∈










nn

1
 tends to zero. 

 

Therefore, for a given ,0>ε we can choose ,0n such that  

.
1

0 ε<⇒≥

n
nn   

Then, for every  ( ) ,
1

1
[,,0[ ε<≤

+

=∞∈

nnx

x
xfx

n
 whenever 0nn ≥ . 

 

This shows that 
N∈nnf )( is uniformly convergent to the zero function. 

 
ii) We are going to apply a similar argument here. You can check that this 
  sequence of functions converges pointwise to the function,  
 

 [ ] ( ) 0,1,0: =→ xff R . 

Now, for every [ ] ( )
22

1sin
,1,0

nn

nx
xfx n ≤=∈ , and the sequence 

N∈










nn2

1
 

tends to zero. 
 

Therefore, for a given ,0>ε we can choose ,0n such that  

ε<⇒≥
20

1

n
nn .  

Then, for every [ ] ( ) ,
1sin

,1,0
22

ε<≤=∈

nn

nx
xfx n whenever 0nn ≥ . 

So 
N∈nnf )( is uniformly convergent to the function, [ ] ( ) 0,1,0: =→ xff R . 

 
*** 

In both the cases in the Example 4 each of the functions, 
n

f , was a bounded 

function, and their bounds formed a convergent sequence. 
 
We now introduce the concept of uniform norm for bounded functions. 
 

Definition: A function, ,: R→Sg where ,R⊆S is said to be bounded, if the 
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set ( ) ( ){ }SxxgSg ∈= |  is a bounded subset of .R If g is bounded, then  

( ){ }Sxxgg ∈= sup  is called the norm of .g  

 

You would agree that ( ) ε≤⇔ε≤ xgg for all .Sx ∈  

 
The following theorem gives us a criterion for uniform convergence. 
 

Theorem 1: A sequence of bounded functions, ( ) ,
N∈nnf defined on 

R⊆S converges uniformly on S  to a function ,: R→Sf if and only if, 

0→− ffn . 

 

Proof: We start with the ‘if part’. First let us suppose that ( )
N∈nnf converges 

uniformly to .f  This means that if for every ,0>ε there exists a natural 

number, ,0n such that 

( ) ( )
2

0

ε
<−⇒≥ xfxfnn n  for every .Sx ∈  

This implies that ( ) ( ){ } ε<
ε

≤∈−=−

2
sup Sxxfxfff

nn
 for all .0nn ≥  

That is, 0→− ffn . 

 
Now we prove the ‘only if’ part. 
 

We suppose that 0→− ffn as .∞→n  Then for every ,0>ε there exists a 

natural number, ,0n such that  ε<−⇒≥ ffnn n0 . 

 

Now, ( ) ( ){ } ( ) ( ) ε<−⇒ε<∈−=− xfxfSxxfxfff nnn sup  for every 

,Sx∈  which means that ( )
N∈nnf converges uniformly to .f  

 

In Block 2 you have learned that there is a strong relationship between 
convergence of sequences and sequences being Cauchy. Here we shall 
discuss a concept analogous to Cauchy sequences for a sequence of 
functions.  
We shall make a definition. 
 

Definition: A sequence of functions, ( )
N∈nnf defined on a set ,S is uniformly 

Cauchy, if ,,0 0 N∈∃>ε∀ n such that ( ) ( ) ,, 0 ε<−⇒≥ xfxfnmn mn  for every 

.Sx ∈  
 

Next we shall prove a theorem which gives a useful characterisation of uniform 
convergence in terms of Cauchy sequences.  
 

Theorem 2 (Cauchy Criterion): If ( )
N∈nnf is sequence of real-valued 

functions defined on a set ,S  then ( )
N∈nnf is uniformly convergent on ,S if and 

only if it is uniformly Cauchy. 
 

Proof: We start with ‘if’ part.  
 

Suppose ( )
N∈nnf is uniformly convergent to .f Then, given  ,,0 0n∃>ε  such 

that ( ) ( )
2

0

ε
<−⇒≥ xfxfnn

n
 for every .Sx ∈  Then 
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( ) ( ) ( ) ( ) ( ) ( ) ε=
ε

+
ε

<−+−≤−⇒≥

22
, 0 xfxfxfxfxfxfnmn

mnmn
. 

 

Therefore, ( )
N∈nnf is uniformly Cauchy. 

 

Only if part 
 

Conversely, suppose ( )
N∈nnf is uniformly Cauchy. Then for every ,Sx∈  

( )( )
N∈nn xf  is a Cauchy sequence of real numbers, and therefore, is 

convergent. We define ( ) ( ),lim xfxf n
n ∞→

= .Sx ∈   

 

We now show that ( )
N∈nnf converges uniformly to f on .S  

Given ,,0 0n∃>ε such that ( ) ( )
2

, 0

ε
<−⇒≥ xfxfnmn

mn
, for every .Sx ∈  

We fix ,n and take the limit as ∞→m  
 

( ) ( ) ( ) ( )xfxfxfxf nmn
m

−=−
∞→

lim .  

Therefore, ( ) ( ) ε<
ε

≤−⇒≥

2
0 xfxfnn

n
, for every .Sx ∈  

 

This means that ( )
N∈nnf is uniformly convergent. 

 
Sometimes we come across sequences of functions, which are not uniformly 
convergent on the given domain, but which may be uniformly convergent on a 
restricted domain. You can see one such sequence in the next example. 
 

Example 5: Show that the sequence ( ) ,
N∈nnf where 

( ) ,,[,0[:
nx

x
xff

nn
+

=→∞ R is not uniformly convergent on ,[,0] ∞ but is 

uniformly convergent on [ ].5,0  
 

Solution: For a fixed ,x  ( ) 0→

+

=

nx

x
xf

n
 as .∞→n Therefore, the  

pointwise limit of the given sequence is the zero function, defined by 

( ) .0,[,0[: =→∞ xff R  

 

If we take ,
4

1
=ε  then taking ,knk = and ,kxk = we get a subsequence 

( )
N∈knk

f  of the given sequence and a sequence ( )
N∈kkx in the domain, such 

that, ( ) ( )
2

1
=

+

=−

kk

k
xfxf

knk
. Therefore, by Remark 1, 

N∈nnf )( is not 

uniformly convergent. 
 

Now, if we restrict the domain to [ ],5,0 then 

[ ]
nn

x
nx

x
fff nn

5

5

5
5,0|sup ≤

+

=









∈

+

==− .  

 

And therefore, 0→− ffn  on [ ].5,0 Then, by Theorem 1, we conclude that  

( )
N∈nnf  is uniformly convergent on [ ]5,0 . 
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In this case do you realise that the sequence will be uniformly convergent on  

[ ],,0 a  where  ?
+

∈Ra  

*** 
We now give one more example of this type. 
 

Example 6: We have shown in Example 3 iv), that the sequence of functions, 

( ) ,
N∈nnf where [ ] ( )

n

n

nn
x

x
xff

+

=→

1
,1,0: R , is not uniformly convergent on 

[ ]1,0 . Show that if ,10 << b then the sequence is uniformly convergent on 

[ ].,0 b  

 
Solution: We have seen in Example 3 (iv), that the pointwise limit of this 

sequence is [ ] ( )








=

<≤

=→

1,
2

1

10,0

,1,0:
x

x

xff R . 

Now, if [ ],,0 bx ∈ then the pointwise limit on this restricted domain is  

[ ] ( ) .0,,0: =→ xfbf R   
 

Then, [ ]
n

n

n

nn
bbx

x

x
fff ≤









∈

+

==− ,0|
1

sup   

 

Since ,10 << b therefore, 0→
n

b which implies .0→− ffn  Thus, we can 

conclude that is uniformly convergent on [ ]b,0 . 

*** 

Now it’s time you do some exercises. 
 
 

E5) Show that the sequence ( ) ,
N∈nnf where ( )

nx

nx
xff

nn
+

=→∞

1
,[,0[: R , is 

not uniformly convergent on [,,0[ ∞ but is uniformly convergent on 

[,,[ ∞a  where .0>a  

E6)  Show that the sequence ( ) ,
N∈nnf where ( )

nx

nx
xff

nn
+

=→∞

1

sin
,[,0[: R , is 

not uniformly convergent on [,,0[ ∞ but is uniformly convergent on 

[,,[ ∞a where .0>a  

E7)  Show that the sequence ( ) ,
N∈nnf where ( ) ,

1
,:

n
xxff

nn
+=→ RR is 

uniformly convergent on .R  

E8)  Is the convergence of ( ) ,
N∈nnf where [ ] ( )

nx
xff

nn
+

=→

1

1
,1,0: R  

uniform? Justify your answer. 
 

 
We have observed earlier that a pointwise limit of a sequence of continuous 
functions need not be continuous. But many of the properties of functions are 
preserved under uniform convergence. We deal with this in the next section. 
 

17.4 SOME THEOREMS ON CONSEQUENCES 
OF UNIFORM CONVERGENCE 

 

In this section we shall see that some properties of functions in a sequence 
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exists. 
 
We shall start with the property of “boundedness”. 
 

Theorem 3: If ( )
N∈nnf is a sequence of uniformly bounded real valued 

functions converging uniformly to a function f on a set ,S then f is also 

bounded on .S  
 

Proof: Since ( )
N∈nnf converges uniformly to ,f for ,1=ε there exists ,0 N∈n  

such that ( ) ( ) 10 <−⇒≥ xfxfnn n  for every .Sx ∈  Then 

( ) ( ) ( ) ( )xfxfxfxf nn 00
+−≤ ,1 M+≤ where M is an upper bound of 

0n
f on 

.S  
 
Therefore, we have proved that f  is bounded on .S  

 
Next we shall consider the property of “Continuity”. 
 

Theorem 4: If ( )
N∈nnf is a sequence of continuous functions converging 

uniformly to a function f on a set ,S then f is also continuous on .S  

 

Proof: Let .Sp ∈  We shall first prove that f is continuous at .p  

Since  ( )
N∈nnf converges uniformly to ,f for every ,,0 0n∃>ε such that 

( ) ( )
3

0

ε
<−⇒≥ xfxfnn n  for every .Sx ∈  

 

Since 
0n

f is continuous at ,p for the above said ,0,0 >δ∃>ε  such that  

 

( ) ( )pfxfpxSx −⇒δ<−∈ ,  

                            ( ) ( ) ( ) ( ) ( ) ( )pfpfpfxfxfxf nnnn −+−+−≤
0000

 

                            

ε=

ε
+

ε
+

ε
<

333  

 
This means that f  is continuous at .p Since p was any arbitrary point of 

,S f is continuous on .S  
 

We shall make a remark now.  
 

Remark 2: Actually what we have proved in the theorem above is that the limit 

function f is continuous. That is  

 

 )()(lim pfxf
px

=
→

 

This together with the fact that )()(lim xfxf
n

n
=

∞→

uniformly implies that 

( ) ( ) ( )xfpfxf n
pxn

n
n

n
npx →∞→∞→∞→→

== limlimlimlimlim . 

 

This amounts to interchanging the order in which the limits are taken. Thus, 
uniform convergence allows us to interchange the order in which the 
limits are taken. 

A sequence 
N∈nnf )( is 

uniformly bounded on 

set ,S if there is some 

0>M such that 

nMfn ∀≤ and 

.Sx ∈∀  
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So, we have seen that if a sequence of continuous functions is uniformly 
convergent, then its limit is also continuous.  
 

Using this theorem we can see that the convergence in Example i), iii) and iv)              
cannot be uniform. Because in each of these cases we have a sequence of 
continuous functions, whose limit is not continuous. 
 

So, we have proved that continuity is preserved under uniform convergence. 
Now what about differentiability and integrability? 
 

If differentiation was preserved by uniform convergence, then we should have  
 

 ( ) ).()()(lim)(lim)(lim xfxf
dx

d
xf

dx

d
xf

dx

d
xf n

n
n

n
n

n
′===








=′

∞→∞→∞→

 

 

But the following example shows that this is not true. 
 

Example 7: Let 
21

)(
xn

x
xf

n
+

= on .R  Show that the sequence 

N∈nnf )( convergence to 0)( =xf uniformly on ,R but 
N∈

′
nnf )( does not 

converge to f ′ uniformly. 
 

Solution: It is easy to see that the maximum and minimum values of 
n

f are 

n2

1
and ,

2

1

n
− respectively. That is .

2

1
)(

2

1
R∈∀≤≤− x

n
xf

n
n  Thus for 

,0>ε we take 








ε

=
20

4

1
n so that .,)(0 R∈∀ε<⇒≥ xxfnn n  Therefore, 

( )
N∈nn xf )( is uniformly convergent to the zero function.  

 

We differentiate 
n

f and find  

422

2

22

2

21

1

)1(

1
)(

xnxn

xn

nx

nx
xfn

++

−
=

+

−
=′  

 

If ,0≠x then 0)( →′ xf
n

while if ,0=x then .11)0( →=′
n

f  Thus  

 




=

≠

=′
∞→ .0if1

0if0
)(lim

x

x
xfn

n
 

 

The following figure gives an idea how 1)0( →′
n

f as ∞→n . But for 

,0≠x 0)( →′ xf
n

as .∞→n You may note that for ,0≠x the slope (for 

example for 6=x in the figure) of the function (i.e. the inclination with the     

x -axis) is approaching to 0 where as for ,0=x the slope approaches one i.e. 

the inclination is more towards y -axis.  

 
 

Fig. 3 
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This shows that )(lim xf
n

n
′

∞→

is not equal to 0)( =′ xf for all .x That means 

)(xf
n
′ does not even converge to 0)( =′ xf pointwise. Obviously, then the 

convergence is not uniform.  
*** 

Remark 3: The example above shows that the uniform convergence of 

N∈nnf )( to f and the differentiability of the members of the sequence is not 

enough to deduce that 
N∈

′
nnf )( converge to ,f ′ even pointwise. 

 

Actually, the uniform limit of a sequence of differentiable functions need not be 
differentiable. But the uniform limit of a sequence of integrable functions is 
integrable.  
 

In the case of a sequence of differentiable functions, if we put some additional 
condition, then the uniform limit does become differentiable. 
 

We present these facts in the following theorems. We are not going to prove 
these theorems here. 
  

Theorem 5: Let ( )
N∈nnf be a sequence of functions defined and differentiable 

on a bounded interval, ,I of .R  Suppose the sequence ( )( )
N∈nn xf 0 converges 

for some .0 Ix ∈ Suppose further, that the sequence 
N∈






 ′

n
nf converges 

uniformly to a function, g on .I  Then ( )
N∈nnf  converges uniformly to a 

function f on ,I  such that f is differentiable on ,I and .gf =′  

 

The next theorem shows that the definition integral is preserved by uniform 
convergence. 
 

Theorem 6: Let ( )
N∈nnf  be a sequence of functions defined and integrable on 

an interval, [ ],,ba of  .R Suppose ( )
N∈nnf  converges uniformly to a 

function f on [ ].,ba Then f is integrable on [ ],,ba and ∫∫
∞→

=

b

a

n
n

b

a

ff lim . 

 

The Theorem above is very useful in showing that the convergence is not 
uniform as the next example shows: 
 

Example 8: Consider the sequence 
N∈nnf )( where )(xf

n
is given by  

 

 ]1,0[,,)(
2

∈∈=
−

xnnxexf
nx

n N  

 

Show that 
N∈nnf )( is not uniformly convergent on ]1,0[ . 

 

Solution: Let 0>ε be given. Then given ],1,0[∈x  

 

 
22

xnnx enxen −−

≤                 … (2) 

 

Since 0
2

→
− xn

ne as ,∞→n there exists 0N such that ε<
−

2
xnne for 

.0Nn ≥ This together with the inequality (2) gives us  

 

 .0

2

Nnexn xn
≥∀ε<

−
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This shows that the sequence 0)())(( =→ xfxf
n

pointwise. Also we have 

∫ =

1

0

.0)(xf Therefore if the convergence is uniform by Theorem 6  

 ∫ =
∞→

1

0

.0)(lim dxxfn
n

 

 

But [ ] ).1(
2

1

2

1
)(

1

0

1

0

2
nxn

n eedxxf
−−

−=−=∫ Therefore 

∫ =≠=
∞→

1

0

.0)(
2

1
)(lim dxxfdxxfn

n
This is not possible. Hence the convergence is 

not uniform. 
*** 

You can try this exercise now. 
 

 

E9) Show that the sequence 
N∈nnf )( where  

 















≤≤

≤≤+−

≤≤

=

1
2

,0

21
,2

1
0,

)(
2

2

x
n

n
x

n
nxn

n
xxn

xfn
 

 

 does not converge to 0)( =xf uniformly in ].1,0[  
 
 

 

That brings us to the end of this unit. 
 
 

17.5  SUMMARY  
 

1. In this unit we have introduced sequences of functions.  
 

2. We have defined two types of convergence: pointwise and uniform. 
 

3. We have noted that if a sequence of functions is uniformly convergent, 
then it is also pointwise convergent, but the converse is not true. 

 

4. We have proved that the properties of boundedness, continuity, 
integrability are preserved under uniform convergence. Differentiabillity 
requires some more restrictions. 

 

17.6 SOLUTIONS/ANSWERS 
 

E1) i) nxfnxfxnxf 31)(,21)(,1)( 321 +=+=+=  
 

  The sequence corresponding to the function 1f at 1=x is ,....)4,3,2(  

   

  The sequence corresponding to the function 2f at 1=x is ,....)7,5,3(  

 

The sequence corresponding to the function )(3 xf at 1=x is 

,....)10,7,4(  
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The sequence corresponding to the function ,, 21 ff and 3f at 

0=x is .)1(
N∈n  

 

 ii) 
232221

3

1
2)(,

2

1
2)(,

1
2)(

x
xf

x
xf

x
xf +=+=+=  

 

  Take 1=x  
 

Then, the sequence corresponding to 1f is given by ,3)1(1 =f  

...
1

2)(...,,
9

19
)3(,

4

9

4

1
2)2(

2111 ++===+=

n
nfff  

 

That is 







,...

9

19
,

4

9
,3  

 

The sequence corresponding to )(2 xf at 1=x is given by  

,
8

17
)2(,

2

5

2

1
2)1( 22 ==+= ff  

,...
18

37

18

1
2)3(2 =+=f  

 

∴The sequence is 







,...

18

37
,

8

17
,

2

5
 

Similarly 
12

25

12

1
2)2(,

3

7

3

1
2)1( 33 =+==+= ff  

27

55
)3(3 =f  









,...

27

55
,

12

25
,

3

7
 

 

 

E2) i) Here .)(
n

x
xf

n
= Then for each 0)(, →=∈

n

x
xfx

n
R as .∞→n  

Then if we take f such that ,0)( R∈∀= xxf we get that 

)()( xfxf
n

→ pointwise for every .R∈x  
 

 

 ii) Here .
sin

)(
n

nx
xf

n
= Also for each ,R∈x 1)(sin ≤nx and 0

1
→

n
as 

.0→n  Therefore 0)( →xf
n

as ∞→n [Refer Theorem ? Unit 5 

Block 2) since 
N∈nn xf ))(( is a product of bounded function and a 

sequence converges to 0. 
 
 

 iii) Here 

















+

=

















+

=

+

=

2

2

2

2

222 1

1

11
)(

x
n

x

n
x

n

x

n

n

xn

nx
xfn

 

  Then if ,0≠x then 00)(
2

=⋅→

x

x
xf

n
as .∞→n  

  If ,0=x then 0)0( =
n

f for all .n Therefore 0)0( →
n

f as .∞→n  

   

 If we take f such that ,0)( R∈∀= xxf then we get that 

)()( xfxf
n

→ pointwise for all .R∈x  
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 iv) Let [.1,1] −∈x We note that )sin(nx is bounded and that 0→

n

x
as 

.∞→n Thus, as the product of a bounded sequence and one that 

converges to 0, we have .0)sin( →nx
n

x
[Refer Theorem ? Unit 5, 

Block 2]. Therefore 
  

   xxnx
n

x
xxf

n
=+→+= 0)sin()(  

   

  Thus if we take the function f such that ,)( R∈∀= xxxf then we 

get that [.1,1])()( −∈∀→ xxfxf
n

 
 

E3) Here .)(cos)( nxxf π=  

 

 When ).1(cos,1 −=π=x Then we know that the sequence n)1(− is not 

convergent.  
 

 When ,10 << x then xπcos is positive and .1cos <π x Therefore 
nx)(cosπ converges.  

 

E4) Here, 


 −∈

=

otherwise,0

],[if,1
)(

nnx
xfn

 

  

 Now, as .],[, R→−∞→ nnn  
  

 Assume 1)( =xf for all .R∈x  
  

 Now, for 0>f and for R∈x if you choose [ ] 1+= xN (i.e. 

[ ] )NNx ,−∈ then 1)( =xf
n

for all .Nn > So, ε<=− 0)()( xfxfn for 

.Nn >  
  

 Therefore, )(xf
n

pointwise converges to )(xf for all .R∈x  

 

E5) Note that for a given [,0] ∞∈x  

 .1
1

lim
1

lim)(lim =

+

=

+

=
∞→∞→∞→

x
n

x

nx

nx
xf

nn
n

n
 

 Also, .0)0(lim =
∞→

n
n

f Thus ( )
N∈nnf converges pointwise to the function 

[,0[: ∞f defined by  
 

   




=

∞∈

=

.0if,0

[,0]if,1
)(

x

x
xf  

 If 
N∈nnf )( were to converges uniformly to ,f then for ,

4

1
=ε we must get 

some N∈0n such that  

   
4

1
)()( <− xfxf

n
for all [,0[ ∞∈x and .0nn ≥  

 

 However for 0nn = and ,
1

0n
x = the above inequality becomes 
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    ,
4

1

2

1
.,.,

4

1
1

1
1

1

0

0

0

0

<<−

⋅+

⋅

ei

n
n

n
n

 

 

 which is false. Therefore, 
N∈nnf )( does not converge uniformly to f on 

[.,0[ ∞  

  

 Now consider the domain [,,[ ∞a for .0>a In this case, 

R→∞[,[: af defined by 1)( =xf is the pointwise limit of .)(
N∈nnf Let 

0>ε be given. Then  

 

   
nxnx

nx
xfxfn

+

=−

+

=−

1

1
1

1
)()(  

  
nx

1
≤  

  )(
1

ax
an

≥≤ Q  

  

 Now if we take N∈0n in such a way that ,
1

.,.,
1

0

0 ε

>ε<

a
nei

an
then we 

have ε<− )()( xfxfn for all 0nn ≥ and [.,[ ∞∈ ax This implies that 

N∈nnf )( converges uniformly on [.,[ ∞a   

 

E6) Note that for all [,0] ∞∈x  

 

  .
1

1

1

sin

nxnx

nx

+

≤

+

 

 We know that .0
1

1
lim =

+∞→ nxn
Therefore ,0)(lim =

∞→

xf
n

n
for [.,0] ∞∈x  Also 

.0)0(lim =
∞→

n
n

f Thus 
N∈nnf )( converges pointwise to the limit 

R→∞[,0[:f defined by .0)( =xf  Assume, if possible, that 

N∈nnf )( converges uniformly to .f Then for every ,0>ε we must get 

some N∈0n such that  

 

  ε<− )()( xfxfn for all 0nn ≥ and [.,0[ ∞∈x  

 

 Taking 0nn = and 
02n

x
π

= the above inequality reduces 

   

  ,

2
1

2
sin

ε<
π

+

π

i.e., .
3

2
ε<

π+

 

  

 But ε is any positive real number. Therefore, we have arrived at a 

contradiction. Thus, 
N∈nnf )( does not converge uniformly on [.,0[ ∞  
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 Now, let the domain be [,,[ ∞a for some .0>a Then the pointwise limit is 

the same. Now take .0>ε So,  
 

  
nxnx

nx
xfxfn

+

≤

+

=−

1

1

1

sin
)()(  

   
nx

1
≤  

   
na

1
≤  

  

 So, if we take N∈0n such that ,
1

0

ε<

an
i.e., if we choose N∈0n such 

that ,
1

0
ε

>

a
n then ε<− )()( xfxfn for all 0nn ≥ and [.,[ ∞∈ ax  

Therefore, 
N∈nnf )( converges uniformly on [.,[ ∞a  

 

E7) Let RR→:f be define .)( xxf = Then 

).(
1

lim)(lim xfx
n

xxf
n

n
n

==







+=

∞→∞→

 Thus f is the pointwise limit of 

.)(
N∈nnf  Now, let 0>ε be arbitrary. Then .

11
)()(

n
x

n
xxfxfn =−+=−  

 

 Choose .
1

0
ε

>n Then ε<− )()( xfxfn for all 0nn ≥ and .R∈x  

Therefore, 
N∈nnf )( converges uniformly on .R  

 

E8) We have for ],1,0]∈x ,0
1

1
lim)(lim =

+

=
∞→∞→ nx

xf
n

n
n

and .0)0(lim =
∞→

n
n

f  

 

 Thus R→]1,0[:f defined by  
 

  




=

∈

=

0if,1

]1,0]if,0
)(

x

x
xf    

 

     is the pointwise limit of .)(
N∈nnf Assume, if possible, that 

N∈nnf )( converges uniformly to f on ].1,0[ Then for every 0>ε we have 

some N∈0n such that  
 

  ε<− )()( xfxfn for all 0nn ≥ and ].1,0[∈n  
 

 Take 0nn = and .
1

0n
x = Then the above inequality reduces to  

  ,0
1

1

1

0

0

ε<−

⋅+

n
n

i.e., ,
2

1
ε<  

 which does not hold for all positive real numbers .ε Therefore, 
N∈nnf )(  

does not converge uniformly on ].1,0[  
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E9) From the definition of ,
n

f we observe that 
N∈nnf )( converges to 

0)( =xf for all ].1,0[∈x Also, it follows that each 
n

f and f are 

continuous on ].1,0[ Also 

 ∫ ∫∫ ∫ ++−+=

1

0

1

/2

/1

0

/2

/1

22
0)2()( dxdxnxndxxndxxf

n

n n

n

n
 

  02
22

/2

/1

/2

/1

2
2

/1

0

2
2

++−=
n

n

n

n

n

nx
x

n
x

xn  

  12
2

1
2

2

1
=+





−−=  

 

 But ∫ =

1

0

0)( dxxf  

 ∫∫ ≠∴
∞→

1

0

1

0

)()(lim dxxfdxxfn
n

 

 
 Hence by Theorem 10, the sequence is not convergent. 
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UNIT 18 

SERIESERIESERIESERIESSSS    OFOFOFOF    FUNCTIONSFUNCTIONSFUNCTIONSFUNCTIONS            

Structure             Page No 

18.1 Introduction                205       
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18.2 Convergence of Series of Functions              206 

18.3 Power Series                212 

18.4 Summary                218 

18.5 Solutions/Answers               218 
 

18.1 INTRODUCTION 
 
In the previous unit we have introduced sequences of functions, and 
discussed the concepts like pointwise and uniform convergence of such 
sequences. The next step follows naturally now. We take up the study of 
series of functions. If you take a quick look at the unit on series of real 
numbers, you will have an idea of how we are going to proceed in this unit.  
 
Here we shall first define in Section 18.2 the concept of a series of functions, 
and then discuss the convergence or divergence of such series. These 
concepts are defined with the help of convergence or divergence of 
sequences. Next, in Section 18, we shall discuss about power series, and 
shall study some of their properties. 
 

Objectives  
 
After studying this unit, you should be able to  
 

• define partial sums for a given series of functions; 

• decide if the given series is pointwise convergent; 

• describe the concept of uniform convergence (of a series of functions), and 
distinguish it from the pointwise convergence; 

• show how uniform convergence establishes the continuity of the limit of a 
series of continuous functions; 

• discuss the termwise integration and differentiation of uniformly convergent 
series of functions; 

• define a power series, and discuss its convergence. 
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18.2 CONVERGENCE OF SERIES OF 
FUNCTIONS 

 
In this section, we shall introduce the concept of series of functions. You are 
already familiar with the series of real numbers. Recall that the sum of two 

real valued functions f  and g  defined on a subset S  of R  is the function 

R→+ Sgf :  defined by ).()()()( xgxfxgf +=+  

 
This operation naturally extends to any finite number of functions. That is, if 

nffff ,.....,,, 321 are functions from S  to ,R  then R→++++ Sffff n :...321  

is defined by 

 ).(...)()()()()...( 321321 xfxfxfxfxffff nn ++++=++++  

 
Now look at the following definition. 
 

Definition: If ),.....,,,( 321 fff  is a sequence of functions defined on a subset 

S  of ,R  then the expression ...,321 +++ fff or ∑
∞

=1n

nf  
is called a series of 

functions. 
 
Note that this expression may not be a function. This is because it involves 
taking a sum of infinitely many functions. We decide about the convergence of 
such a series by considering the sequence of its partial sums.  
 

Definition: Let 
N∈nn

f )(  be a sequence of real valued functions defined on a 

subset S  of .R  We form the sequence of partial sums, 
N∈nn

s )(  of the series 

,
1

∑
∞

=n

nf
 
where, ,....,, 321321211 fffsffsfs ++=+==  

i) If ,)(
N∈nn

s
 
converges to f  pointwise on ,S  we say that ∑

∞

=1n

nf  is 

pointwise convergent to f  on .S  

ii) If ,)(
N∈nn

s
 
converges uniformly to f  on ,S  we say that ∑

∞

=1n

nf  is 

uniformly convergent to f  on .S  

iii) If 
N∈nn

s )(  does not converge, then we say that ∑
∞

=1n

nf  
is divergent. 

 
So, you see, the convergence or divergence of a series of functions is defined 
in terms of the convergence or divergence of the associated sequence of 
partial sums. As a result, we can easily carry over the results on sequences of 
functions to series of functions. But before that, here are a few examples. 
 

Example 1: Find if the series of functions, ,∑ nf  is pointwise convergent, 

where  

i) NR ∈∈= nxxxf n

n
,,)(  

ii) ( ) [ ] K,2,1,0,1,0,1)( =∈−= nxxxxf
n

n .  
 

Solution: i) Note that ∑∑
∞

=

∞

=

=

11

)(
n

n

n

n xxf

 

is the geometric series with common 
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ratio, .x  We know that this series is convergent for ,1|| <x  and divergent for 

.1|| ≥x  And if ,1|| <x
 
the sum of the series is .

1 x

x

−

 

So, the given series of functions converges pointwise on [1,1] −  to the 

function, .
1

)(,[1,1:]
x

x
xff

−

=→− R  

 

ii) Here .)1()1()(
000

∑∑∑
∞

=

∞

=

∞

=

−=−=

n

n

n

n

n

n xxxxxf  

 

Now, ,0)0( =nf  and .,0)1( nfn ∀=  Therefore, both the series ,)0(
0

∑
∞

=n

nf  

and ∑
∞

=0

)0(
n

nf  converge to 0. When ,10 << x then we have 110 <−< x .  

Now, ∑
∞

=

−

0

)1(
n

n
x

 
is a geometric series, with common ratio .1 x− Threfore, 

it converges to 
( ) xx

1

11

1
=

−−

. Consequently, ∑
∞

=0

)(
n

n xf  converges to 1 

for all .10 << x  
 

Thus, the given series of functions converges pointwise to the function 

R→]1,0[:f defined by 

 ( )









=

<<

=

=

1if,0

.10if,1

0if,0

x

x

x

xf  

***  

In both the series in the example above, we have used our knowledge of the 
sum of a geometric series to decide the pointwise convergence of the given 
series, rather than the definition. 
 
Now are these series uniformly convergent? 
 
To find out, we make use of the theorems we have proved in Unit 17. Consider 

part (i), first. Each of the functions, [1,1],)( −∈= xxxf n

n  is bounded. So, the 

partial sums, which are finite sums of these functions, are also bounded. But 
the pointwise limit of the sequence of partial sums, that is, 

( ) ,
1

1
,[1,1:]

x
xff

−

=→− R

 
is not bounded on [.1,1]−  So, applying Theorem 

4 of Unit 17, we find that the convergence cannot be uniform. 
 
In part (ii) the given functions are all continuous on the given domain. So, the 
sequence of partial sums also consists of continuous functions. But as you can 
see, the pointwise limit is not continuous. So, applying Theorem 5 of Unit 17, 
we conclude that the convergence is not uniform. 
 
Using similar arguments we prove the next two theorems. 
 

Theorem 1: If for every ,N∈n   nf  is a real-valued, bounded function defined 

on a subset S  of ,R  and if the series ∑
∞

=1n

nf
 
converges uniformly to 

,: R→Sf  then f  is bounded on .S  
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Proof: Since nf  is bounded for every ,N∈n  the partial sum,  

nn ffffs ++++= ...321   is also bounded on .S  Since ∑
∞

=1n

nf  converges 

uniformly to f  on ,S  the sequence of partial sums 
N∈nn

s )(  also converges 

uniformly to f  on .S  Therefore, by Theorem 3 of Unit 17, f  is bounded on 

.S  
 

Theorem 2: If nf  is a real-valued, continuous function defined on a subset S  

of ,R for every ,N∈n  and if the series ∑
∞

=1n

nf  converges uniformly to 

,: R→Sf  then f  is continuous on .S  

 

Proof: Since nf  is continuous for every ,N∈n  the partial sum,  

nn ffffs ++++= ...321   is also continuous on .S  Since ∑
∞

=1n

nf  converges 

uniformly to f  on ,S  the sequence of partial sums 
N∈nn

s )(  also converges 

uniformly to f  on .S  Therefore, by Theorem 4 of Unit 17, f is continuous on 

.S  

 

Remark 1: If ,)(
N∈nns  the sequence of partial sums of a series ∑

∞

=1n

nf  

converges uniformly to ,: R→Sf  then using Remark 2 of Unit 17, we can 

say that ).(limlim)(lim)(limlim xspsxs
n

pxn
n

n
n

npx →∞→∞→∞→→

==  

So, if a series ∑
∞

=1n

nf converges uniformly to ,f then we can write, 

).(lim)()(lim
11 1

xfpfxf n

n
px

n n

nn
px

∑∑ ∑
∞

=

→

∞

=

∞

=

→

==  

 

Thus, if the given series is uniformly convergent, we can take the limit term by 
term. 
 

We now state two theorems dealing with differentiation and integration of a 
uniformly convergent series. As in the case of Theorems 1 and 2, the proofs of 
these theorems depend upon the corresponding theorems in Unit 17. 
 

Theorem 3 (Termwise differentiation): Let 
N∈nn

f )(  be a sequence of 

functions defined and differentiable on a closed and bounded interval, ,I  of 

.R  Suppose the series ( )0xfn∑  converges for some .0 Ix ∈  Suppose further, 

that the series ∑ ′
n

f  converges uniformly on .I  Then ∑ nf converges 

uniformly to a function f  on I  such that f  is differentiable on ,I  and 

.∑ ′=′
nff  

 
Theorem 4 (Termwise integration): Suppose the real-valued functions, 

,, N∈nf
n  are integrable on an interval, [ ],,ba and suppose the series ∑ nf

converges uniformly to a function, ,f on [ ]ba, . Then f is integrable on [ ]ba, , 

and .)()(
1

∑∫∫
∞

=

=

n

b

a

n

b

a

dxxfdxxf  
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We now discuss a simple test, which helps us decide whether a given series 
of functions is uniformly convergent or not. This test was devised by 
Weierstrass, and is called Weierstrass M-test. It is based on the knowledge of 
convergent series of numbers, which you have studied in Block 3. 
 

Theorem 5 (Weierstrass’ M-Test): Suppose ∑ nf  
is a series of functions 

defined on a set .R⊆S  If ∑ nu  is a convergent series of positive real 

numbers, such that 
nn

uxf ≤|)(|
 
for all ,, N∈∈ nSx  then ∑ nf  

is uniformly 

convergent on .S  
 

Proof: Since ∑ nu  is convergent, its sequence of partial sums, ,)(
N∈nn

s   

where ,...21 nn
uuus +++=  is convergent. Hence,  

N∈nn
s )(  is cauchy. 

Therefore, for a given ,0>ε there exists ,0 N∈n
 
such that  

ε<−⇒≥> mn ssnmn 0  

                 
....21 ε<+++⇒

++ nmm uuu  

 

Now, since ( ) ,nn uxf ≤  we have  

 

 ( ) ( ) ( ) .,,,...... 2121 N∈∈∀+++≤+++
++++

mnSxuuuxfxfxf nmmnmm  

 
Therefore, 
 

⇒≥> 0nmn ( ) ( ) ( ) ε<+++
++

xfxfxf nmm ...21  
for all .Sx∈  

 

This means that the sequence of partial sums of ∑ nf  
is uniformly Cauchy 

and hence uniformly convergent. (See Theorem 2 of Unit 17.) This means that 

∑ nf  
is uniformly convergent. 

 

Here are a few examples to illustrate how these theorems can be applied. 
 

Example 2: Let ( )
!

sin

n

nx
xfn =  for π≤≤ x0 .Show that the series ∑

∞

=1n

nf  

converges uniformly on [ ]π,0 . If ( ) ( )∑
∞

=

=

1n

n xfxf , evaluate ( )∫
π

0

dxxf . 

 

Solution: Since ,1|sin| ≤nx  we have 
!

1

!

sin

nn

nx
≤

 

for all [ ]π∈ ,0x  and .N∈n  

Also, recall that ∑
∞

=1 !

1

n n  
converges. Therefore, by Weierstrass’ M-test, we 

conclude that ∑
∞

=1n

nf converges uniformly to a limit .f  Uniform continuity allows 

the use of term by term integration by Theorem 4. 
 

Therefore,  
 

∑ ∫∑∫∑∫∫
∞

=

∞

=

∞

=

===

1 01 01 00

sin
!

1

!

sin
)()(

nnn

n nxdx
n

dx
n

nx
dxxfdxxf

ππππ
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                   ∑
∞

=

−−=

1

])1(1[
!

1

n

n

nn
 

               ....
5!5

1

3!3

1
12 








+++=  

***  

Example 3: If ( )

( )
,10,

1
2

2

≤≤

+

= x
x

x
xf

nn
show that ∑ nf is pointwise 

convergent on [ ]1,0 . Is it uniformly convergent on [ ]1,0 ? 
 

Solution: First, let  us consider the case .0=x  We have 0)0( =
n

f  for all 

.N∈n  Therefore, ∑
∞

=1

)0(
n

nf  converges to .0  Now let .10 ≤< x  Then 

.1
1

1
0

2
<

+

<

x
 Therefore, 1

1
))((

2

21

<

+

=

x

x
xf

n

n
n  for all .N∈n  

Consequently, by the Root Test ∑
∞

=1

)(
n

n xf  converges for each x  in ].1,0]  That 

is, ∑
∞

=1n

nf  is pointwise convergent. 

 

The sequence of partial sums of the series is ,)(
N∈nn

s  where 

  ∑
=

=

n

k

kn xfxs
1

)()(  

        








+

++

+

+

+

=
nxxx

x
)1(

1

)1(

1

)1(

1
2222

2
L  

        

)1(

1
1

)1(

1
1

)1(

1

2

22

2

x

xx
x

n

+

−










+

−

+

=  

        ,
)1(

1
1

2 n
x+

−=  for ].1,0]∈x  

 

Now 1)(lim =
∞→

xsn
n

 for all ].1,0]∈x  Therefore, the pointwise limit of the series 

is the function R→]1,0[:f  defined by 
  

  




≠

=

=

.0if,1

0fi,0
)(

x

x
xf  

 

The series is not uniformly convergent, because each n
f  is continuous on 

[ ]1,0  , but f is not. 

***  

Example 4: Show that the series ∑ 2

4
)(sin

n

xn
 is uniformly convergent on 

[.,0[ ∞   

Solution: Here ( ) ,
1)(sin

22

4

nn

xn
xfn ≤=

 

for all [,0[ ∞∈x  and all .N∈n  We 
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 know that the series of real numbers ∑ 2

1

n  
is convergent. Therefore, by 

Weierstrass’ M-test, we conclude that the given series of functions is uniformly 

convergent on [.,0[ ∞  

***  

Example 5: Find the derivative of ,],0[,
1

1
23

R⊆∈

+
∑

∞

=

bx
xnn

if possible. 

 

Solution: Here, ( ) ,
11

323 nxn
xfn ≤

+

= and ∑
∞

=1
3

1

n n
 is a convergent series of 

real numbers. Therefore, the given series is uniformly convergent on[ ]b,0 . 

Now, ( )

( )
,

2
223 xn

x
xfn

+

−
=′

 

and .
)(

2
)(

1
223

1

∑∑
∞

=

∞

=
+

−
=′

nn

n
xn

x
xf  Note that 

 ( )

( )
,

22
6223 n

b

xn

x
xf

n
≤

+

−
=′  for all ],0[ bx ∈  and .N∈n  

We know that the series ∑
∞

=1
6

1
2

n n
b  is convergent. So, by the Weierstrass’ M-

test we can say that ∑
∞

=

′

1

)(
n

n xf  is uniformly convergent on[ ]b,0 . 

 
Now, applying Theorem 3 of Unit 17, we know that this series can be 
differentiated term by term. So, if  

,
1

)(
1

23∑
∞

=
+

=

n xn
xf  then .

)(

1
2)(

1
223∑

∞

=
+

−=′

n xn
xxf  

 
***  

You should be able to try these exercises now. 
   

 

E1) Let ( ) ,
cos

3
n

nx
xfn = for [ ]1,0∈x  and .N∈n  Let 

( ) ( ) [ ].1,0,
1

∈=∑
∞

=

xxfxf
n

n  Show that ∑
∞

=1

,
n

nf  and ∑
∞

=

′

1n

nf  are uniformly 

convergent on [ ].1,0  Hence, find ( )xf ′ . 

E2) Show that 
( )

[ ]∑
∞

=

∈

+1

10,0,
n

x
nxn

x
 is pointwise convergent on its 

domain. If ( ) =xf
( )

,
1

∑
∞

=
+n nxn

x
 then show that f  is differentiable on 

[ ].10,0  Also find ( )xf ′ . 

E3) Show that ∑
∞

=
+1

33

2

n xn

nx
 is uniformly convergent on [ ]a,0  for any .0>a  

E4) Show that ∑
∞

=
+1 1

1

n
n

x
 converges uniformly on [.,2[ ∞  Also show that the 

series does not converge in [.1,0[  
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power series. 
 

18.3  POWER SERIES 
 
Power series form an important class of series of functions. They can be used 
to define and study the properties of many well known functions such as sine, 
conine or natural logarithm. So, let us start with the definition. 
 

Definition: A series of functions, ∑
∞

=0n

nf  is called a power series, if  

,....,3,2,1,0,,)()( =∈−= nxcxaxf
n

nn
R where c  is any real number. 

 

Note that though the functions, ,...3,2,1,0, =nf
n  are defined on R  the series 

may not converge for all .R∈x For example, take the power series, .
0

∑
∞

=n

n
x  We 

know that this is a geometric series, and converges if and only if .1|| <x  On 

the other hand, the power series, ∑
∞

=0 !n

n

n

x
 converges for all .R∈x  You can 

easily check this by using the Ratio Test that you have learnt in Unit 7. 

Using Cauchy’s nth Root Test, we can say that the series ∑
∞

=0n

n

n xa

 

converges, 

if ,1suplim
1

<xa n
n  

and diverges if .1suplim
1

>xa n
n  

 
So, we have the following definition. 
 

Definition: For the power series ,
0

∑
∞

=n

n

n xa  we set .suplim
1

n
na=ρ  Note that 

ρ  may be finite or infinite. The radius of convergence, ,R  of the given series 

is defined as 
 

  .

0if,

0if,
1

if,0













=∞

∞<<

∞=

=

ρ

ρ

ρ

ρ

R  

 

The interval, [,] RR−  is called the interval of convergence of the series. 

 
This definition is justified by the following theorem. 
 

Theorem 6 (Cauchy-Hadamard Theorem): If R  is the radius of convergence  

of the power series ∑
∞

=0n

n

n xa  then it is absolutely convergent if ,|| Rx <  and is  

divergent if .|| Rx >   

Proof: Recall that using the Cauchy’s Root Test the series ∑
∞

=0n

n

n xa converges 

if ,1suplim
1

<xa n
n  and diverges if 1suplim

1

>xa n
n . That is, it converges 
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absolutely for 1<ρ x , and diverges for .1>xρ  

 

If R<0 ,∞< then we can say that it converges absolutely for ,|| Rx <  and 

diverges for .|| Rx <   

 

If ,0=R then ,∞=ρ and 1>ρ x  for all x . Hence, in this case, the series 

diverges for all .x  Finally if ,∞=R then ,0=ρ and 10 <=ρ x  for all x . So, in 

this case, the series converges absolutely for all x . 

 
Remark 2: i) Cauchy-Hadamard Theorem tells us that a power series is 

convergent if ,|| Rx <
 
and is divergent if .|| Rx <  What happens at ?|| Rx =  

 
There is no unique answer to it. 

For example, the radius of convergence of the series,∑ n
x is 1. This series is 

divergent at .1|| =x  We also have 1=R  for the series ,
1

1

∑
∞

=n

n
x

n
 since 

.1)(suplim

1

=
nn  This series converges for ,1−=x  but diverges for .1=x  

 

The series ∑
∞

=1
2

1

n

n
x

n  
also has the same radius of convergence, 1. This series 

converges for both ,1=x and .1−=x  

  
So, the behavior of a power series at the end points of its interval of 
convergence varies from one series to another. 
 

ii) The radius of convergence R  of a power series ∑ n

n xa
 
is also given by  

,lim
1+

∞→

n

n

n a

a
 provided the limit exists. You may have come across this while 

studying infinite series in Unit 7. You will soon see that sometimes it is 

easier to calculate R using this formula. 
 
Now we shall see why a power series is uniformly convergent on any closed 
interval contained in its interval of convergence.  
 
Theorem 7: If 0>R  is the radius of convergence of the power series, 

,
1

∑
∞

=n

n

n xa  and if ,0 Rc <<  then ∑
∞

=1n

n

n xa  converges uniformly in [ ]cc,− . 

 

Proof: Let .Rbc <<  By Cauchy-Hadamard Theorem we know that ∑ n

n xa is 

absolutely convergent for all x  such that .|| Rx <  Therefore, ∑ n

nba

converges absolutely. This implies .0|| →
n

n ba  So, for ,1=ε  there exists 

N∈0n  such that 10 <⇒≥
n

nbann .  

 

Now, if we take [ ]ccx ,−∈ , and 0nn ≥ , then 

nnn

n

n

n

n
b

c

b

x

b

x
baxa ≤<= . 

In the examples and 
exercises in this unit 
we shall consider only 
those power series, 

where the limit of n
na

1

 
exists. So, you don’t 
have to worry about 
the calculation of 
limsup. 
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We have 1<

b

c
. Therefore, ∑ 








n

b

c
converges.  

Now, using Weierstrass’ M-test, we conclude that ∑
∞

=0n

n

n xa

 

converges 

uniformly on [ ]cc,− .  

 
If we have a power series whose radius of convergence is zero, then the 

series converges only for ,0=x and hence there is no question of testing for 

uniform convergence. So, the statement of Theorem 7 is trivially true for 

.0=R  
 
Remark 3:  A power series is uniformly convergent on any closed and 

bounded interval contained in its interval of convergence. Because, if [ ]qp,  is 

a closed and bounded interval within the interval of convergence of a given 

power series with the radius of converges ,R  then we can find [,0] Rc ∈  such 

that  
 

[ ] [ ] [.,],, RRccqp −⊂−⊆  

 
 Then Theorem 7 tells us that the power series is uniformly convergent on 

[ ]cc,− . So, it is also uniformly convergent on [ ]qp, . 

 
We are now going to see how the Theorems 2, 3, and 4 can be interpreted for 
a power series. Let us take these one by one. 
 
Theorem 8: The limit of a power series is continuous on its interval of 

convergence. That is, if ∑
∞

=

=

0

)(
n

n

n xaxf  for all [,,] RRx −∈  then f  is 

continuous on [.,] RR−  

 

Proof: Suppose [.,]
0

RRx −∈  Then there is some 0>ε  such that 

[.,]],[
00

RRxx −⊆+− εε  Then by Remark 3, the series ∑
∞

=0n

n

n xa  is uniformly 

convergent on ].,[
00

εε +− xx  Since n
x  is continuous on R  for all ,N∈n  nx   

is continuous on ],[
00

εε +− xx  for all .N∈n  Therefore, by Theorem 2, f  is 

continuous on ],,[
00

εε +− xx  and hence on .
0

x  Since 
0

x  is arbitrary, f  is 

continuous on [.,] RR−  

 
Theorem 9: A power series can be integrated term by term on any closed and 
bounded interval contained in its interval of convergence. 
 
Proof: By Remark 3, a power series is uniformly convergent on any closed 
and bounded interval in its interval of convergence. Then by Theorem 4 it 
follows that the series can be integrated term by term. 
 
Next we are going to show that a power series can be differentiated term by 
term in its interval of convergence. You know that to enable term by term 
differentiation of a series of functions, the series has to follow some additional 
criterion, apart from uniform convergence. And,  we will show that a power 
series satisfies that additional criterion also. 
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Before we state the theorem, recall that .1lim

1

=
∞→

n

n
n   

 

Theorem 10: A power series can be differentiated term by term in its interval 
of convergence.  

Proof: Consider the series, ( ) =∑
∞

=

xf
n

n

0

.
0

∑
∞

=n

n

n xa  Suppose the radius of 

convergence of this series is .R  Now, the series, ( ) ∑∑
∞

=

−

∞

=

=′

1

1

1 n

n

n

n

n xnaxf  also 

has the radius of convergence .R  This is because 1lim

1

=
∞→

n

n
n  and so, 

 

 .suplim||suplimlim)|(|suplim
1111









=




















=

∞→

n
n

n
n

n

n

n
n

aanna  

 

Pick any real number c  such that .0 Rc <<  Then ∑
∞

=0n

n

n xa  converges 

uniformly on ],,[ cc−  and hence ∑
∞

=0

0

n

n

n xa  converges for some ].,[
0

ccx −∈  

Now the series ∑ ∑
∞

=

∞

=

−

=′

0 0

1
)(

n n

n

nn xnaxf  converges uniformly in ].,[ cc−  Hence, 

by Theorem 3, it follows that ∑
∞

=0n

n

n xa  can be differentiated term by term in 

].,[ cc−  Since c  is arbitrary, ∑
∞

=0n

n

n xa  can be differentiated term by term in 

[.,] RR−  
 

If ( )xfxa
n

n

n =∑
∞

=0

 in its interval of convergence, then by applying Theorem 10 

again and again, we can get successive derivatives of ).(xf  These will be 

given by ( ) .
!)(

!
)( ∑

∞

=

−

−

=

kn

kn

n

k xa
kn

n
xf  

 
All these series have the same radius of convergence, .R  
 

For ,0=x we get ( )
( )

k

k akf !0 = . This means 

 
( )

( )
,

!

0

k

f
a

k

k = and 
( )

( )
∑∑ =

n
n

n

n x
n

f
xa

!

0
in [.,] RR−  

 
But this is what we call the Maclaurin’s  series of .f  Isn’t it? 

 
Instead of starting with a power series, if we are given a real function, ,f  

which has derivatives of all orders at ,0=x we can write the Maclaurin’s series 

for f  as
( )

( )
.

!

0
∑ n

n

x
n

f
 This is a power series. If this series converges to f  in 

some interval, [,,] RR−  we say that f  is analytic at .0=x  So, the property,  
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“ f  is analytic at 0=x ” is stronger than the property,  “ f  is differentiable at 

0=x ”. 
 
We now give some examples, which will illustrate the concepts discussed in 
this section. 

Example 6: Find the radius of convergence of the power series, ,
0

∑
∞

=n

n

n xa  

where 

i) ,n

n
na

−

=  ii) .
!)2(

)!(
2

n

n
an =  

Solution: i) We need to find ,suplim
1

n
na=ρ  where 

( ) .

111
nnn

n
n

nna

−

−

==   

 
Let us find the limit of this as ,∞→n  if it exists. We can do this by using 

logarithmic differentiation. Let .

1

nnb

−

=  Then n
n

b ln
1

ln
−

= . This has an 
∞

∞

 

form as ∞→n . So, by L’Hospital’s Rule we can write 

.0
2

1
lim

2

1

1

lim
ln

limlnlim =
−

=








 −

=
−

=
∞→∞→∞→∞→ n

n

n

n

n
b

nnnn
 

Therefore,  

.1lim 0
==

∞→

eb
n

 Hence, the radius of convergence is .1
1

==

ρ

R  

 

ii) Here the formula for na  has factorials. In such cases, it is better to use the 

formula given in Remark 2 ii) to calculate .R  Thus, 

 

.lim
1+

∞→

=

n

n

n a

a
R   

   

( )

( )

( )( )

( )( )

( )( )

( )
22

2

1

1222
lim

!1

!12

!2

!
lim

+

++
=

+

+
=

∞→∞→ n

nn

n

n

n

n

nn
  

  .4
1

1

1
2

2
2

lim
2

=









+









+








+

=
∞→

n

nn

n
 

 
***  

Example 7: By integrating the series for ,1,
1

1
<

+

x
x

find the series for 

( )x+1ln . 

 
Solution: We write the given function as a geometric series. 

( )∑
∞

=

−=+−+−=

+ 0

32
1...1

1

1

n

nn
xxxx

x
. 
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This power series converges uniformly in [.1,1]−  So, by Theorem 9, we can 

integrate it term by term. Thus we get 
 

( ) .
1

)1()1()1(
1

1
1ln

0

1

00

∑∑∫∫ ∫∑
∞

=

+∞

=

∞

=
+

−=−=−=

+

=+

n

n
n

n

nn

n

nn

n

x
dxxdxxdx

x
x  

So, ( ) ...
32

1ln
32

−+−=+
xx

xx   

***  

Example 8: By integrating the power series, ∑
∞

=

+

0

1

!n

n

n

x
 term by term over [ ]1,0 , 

show that 
( )

∑
∞

=

=

+1 2

1

2!

1

n nn
.  

 

Solution: The radius of convergence of this power series is .∞  You can easily 
check this by using the formula given in Remark 2 ii). 
 

Therefore, the series can be integrated term by term over any interval. Now, 

∑
∞

=

+

0

1

!n

n

n

x
.

!0

x

n

n

xe
n

x
x == ∑

∞

=

  

 
So,  

 .1
!

1

0

1

0

1

∫∑ ∫ ==

+

dxxedx
n

x x
n

  

 

By Theorem 9, 
 

∑ ∫∫ ∑
∞

=

+∞

=

+

=

0

1

0

11

0 0

1

!! n

n

n

n

dx
n

x
dx

n

x

 

            
( )

∑
∞

=

++++=

+

=

0

....
5!3

1

4!2

1

3

1

2

1

2!

1

n nn
 

 

Therefore, 
( )

∑
∞

=

=

+0

.1
2!

1

n nn
 After subtracting 

2

1
 from both the sides, we get 

.
2

1

)2(!

1

1

∑
∞

=

=

+n nn
 

***  
If you have carefully gone through the examples here, you should be able to 
solve the following exercises now. 
 
 

E5)  Find the radius of convergence of the series, ,∑ n

n xa where  na  is as 

given below. 

i) n
n       ii) 

!

1

n
    iii)  1      iv) 

2

1

n
      v)  

!n

nn

 

E6)  Show that the power series, ∑
∞

=

=

0 !
)(

n

n

n

x
xE  is convergent for each ,R∈x  

and uniformly convergent on [ ]AA,−  for any .
+

∈RA  Further show that 

)()( xExE =′ . (Note that E6 is the exponential function .)x
e  
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E7)  Find the power series expression for .tan
1

x
−  What is the radius of 

convergence of this series? 
 

E8)  Given that the power series, ∑
∞

=0n

n

n xa has radius of convergence, 2, find 

the radius of convergence of 

 i) ∑
∞

=0n

nk

n xa     ii) .∑ kn

n xa  

 

E9) If ,1|| <x show that 
( )

.
12

.
2.....4.2

12.....3.1
sin

0

12
1 ∑

∞ +

−

+

−
=

n

x

n

n
x

n

 

 

 
That brings us to the end of this unit.  
 

18.4  SUMMARY 
 
In this unit we have covered the following points. 
 
1. The concept of pointwise and uniform convergence of series of functions 

are discussed. 
 
2. Some results such as term by term differentiation and integration of 

series o functions were discussed. 
 
3. We have discussed the concept of a power series, and of the radius of 

convergence of a power series. 
 
4.  We have seen how to compute the radius of convergence of some 

power series. 
 

18.5  SOLUTION/ ANSWERS 
 

E1) We know that 
33

1cos
|)(|

nn

nx
xfn ≤=  for all ]1,0[∈x  and .N∈n  The 

series ∑
∞

=1
3

1

n n
 has all positive terms, and is convergent. Therefore, by 

Weierstrass’ M-test, ∑
∞

=1n

nf  is uniformly convergent on ].1,0[  We have 

2

sin
)(

n

xn
xfn

−
=′  for all ],1,0[∈x  and for all .N∈n  Now 

.
1sin

|)(|
22 nn

xn
xfn ≤=′  Again, the series ∑

∞

=1
2

1

n n
 is a convergent series 

of positive terms. Therefore, by Weierstrass’ M-Test, ∑
∞

=

′

1n

nf  is also 

uniformly convergent. Now  
   

  ∑ ∑
∞

=

∞

=

−=′=′

1 1
2

sin
)()(

n n

n
n

nx
xfxf  

                            L−−−−=

9

3sin

4

2sin
sin

xx
x  
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E2) Since nnxx ≥+≥ ,0  which implies 
nnx

11
≤

+

 for all .N∈n  Therefore, 

  
2

10

)( nnxn

x
≤

+

 for all .N∈n  

 Since ∑
∞

=1
2

1

n n
 is a p -series, with ,2=p  it is convergent. So ∑

∞

=1
2

10

n n
 is 

also convergent. Therefore, by Weierstrass’ M-Test, ∑
∞

=
+1 )(n nxn

x
 is 

uniformly convergent, and hence pointwise convergent. 
  

 Now, let ,
)(

)(
nxn

x
xf

n
+

=  for N∈n  and ].10,0[∈n  Clearly, 
n

f  is 

differentiable and .
)(

1
)(

2
nx

xfn
+

=′  Again we can see that ∑
∞

=

′

1n

nf  is 

uniformaly convergent. Thus ∑
∞

=1n

nf  satisfies all the hypotheses of 

Theorem 3. Consequently, ∑
∞

=1n

nf  converges uniformly to a function f  

such that f  is differentiable and for all ],10,0[∈x and  

   

  .
)(

1
)()(

1
2

1

∑∑
∞

=

∞

=
+

=′=′

nn

n
nx

xfxf  

 

E3) For all ],0[ ax ∈  and for all N∈n  we have ,333
nxn ≥+  which implies 

.
11

333
nxn

≤

+

  Also for the same values of x  and ,n  we have 

.22
naxn ≤  This gives us 

 

   .
2

2

33

2

3

2

33

2

n

a

xn

xn

n

na

xn

xn
≤

+

⇒≤

+

 

  

 Since ∑
∞

=1
2

1

n n
 is convergent, ∑

∞

=1
2

2

n n

a
 is also convergent. Therefore, by the 

Weierstrass’ M-Test, ∑
∞

=
+1

33

2

n xn

xn
 is uniformly convergent on ].,0[ a  

 

E4) For all ],2[ ∞∈x  and for all N∈n

nn

nnnn

x
xxx

2

1

1

1
2122 ≤

+

⇒≥+⇒≥⇒≥  

           

            .
2

1

1

1
nnx

≤

+

⇒  

  

 Therefore, by the Weierstrass’ M-Test, ∑
∞

=
+1 1

1

n
nx

 is uniformly convergent 

on [.,2[ ∞  
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 For [,1,0[∈x  ,0lim =
∞→

n

n
x  and hence .1

1

1
lim =

+∞→
n

n x
 This implies 

∑
∞

=
+1 1

1

n
nx

 is not convergent in [.1,0[  

E5) i) Hrere n

n
na =  and so .)1( 1

1

+

+
+=

n

n
na  Now  

   
1

lim
+

∞→

=

n

n

n a

a
R  

      
1)1(

lim
+

∞→ +

=
n

n

n n

n
 

      
n

nn

n

n








+










+

=
∞→∞→ 1

1

1
lim.

1

1
lim  

      0.0 1
==

−

e   













=








+

∞→

.
1

1lim e
n

n

n
Q  

 ii) Here 
!

1

n
a

n
=  and .

!)1(

1
1

+

=
+

n
a

n
 So 

  .)1(lim
!

!)1(
limlim

1

∞=+=
+

==
∞→∞→

+

∞→

n
n

n

a

a
R

nn
n

n

n
 

 iii) .1
1

1
lim ==

∞→n
R  

 iv) .1
1

1lim
)1(

lim

2

2

2

=







+=

+
=

∞→∞→ nn

n
R

nn
 

 v) .
1

1

1
lim

)1(

!)1(

!
lim

1

1

−

∞→
+

∞→

=









+

=

+

+
×= e

n

n

n

n

n
R

n
n

n

n

n
 

 
E6) From E5 (ii) we know that the radius of convergance of this series is .∞  

Therefore, the series converges for all ,R∈x  and is uniformly 

convergent on ],[ AA−  for every .+

∈RA  

 By Theroem 10, we can differentiate ∑
∞

=

=

0 !
)(

n

n

n

x
xE  term by term. That 

is, 







+++++=′ L

!4!3!2
1)(

432
xxx

x
dx

d
xE  

   L++++=

!3!2
1

32
xx

x  

   ).(xE=  

 

E7) To find a power series expression for ,tan 1
x

−  we shall use the fact that 

  .tan
1

1 1

0

2
xdx

x

x

−

=

+
∫  

  
 We know that  
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  L+−+−=+=

+

− 64212

2
1)1(

1

1
xxxx

x
 ,

0

∑
∞

=

=

n

n

n xa  

 where 






−

=

evenisif

oddisif

n

n
a

n
n

,)1(

,0
1  

 The radius of convergence of this series is 

  .11suplim|)1(|suplim||suplim

11

==−==
nn

naR  

  
 Thus the series converges uniformly in any closed and bounded interval 

conained in [.1,1]−  Now, we can integrate the series from 0 to ,x  for 

.1|| <x  Thus, 

  ∫ ∫ +−+−=

+

x x

dxxxxdx
x

0 0

642

2
)1(

1

1
L  

  L+−+−=⇒ −

753
tan

753
1 xxx

xx  

 

E8) i) We are given that .2lim
1

=

+

∞→

n

n

n a

a
 Therefore, the radius of 

convergence of the series ∑
∞

=0n

nk

n xa  is  

   .2limlim
11

k

k

n

n

nk

n

k

n

n a

a

a

a
R =










==

+

∞→

+

∞→

 

 ii) The series ∑
∞

=0n

n

n xa  converges for all R∈x  such that .2|| <x  

Therefore, ∑
∞

=0n

kn

n xa  converges for all R∈x  such that .2|| <
k

x  

This gives ,2|| <
k

x  i.e., .2||

1

kx <  Consequently, the radius of 

convergence of ∑
∞

=0n

kn

n xa  is .2

1

k  

 

E9) We know that .
1

1
)(sin

2

1

x
x

dx

d

−

=
−

 Binomial Theorem tells us that  

 

,
!3

)2()1(

!2

)1(
1)1( 32

L+
−−

+
−

++=+ xxxx
ααααα

α
α  

where ., R∈αx  Replacing x  by 2
x−  and α  by 

2

1
−  in this expression 

we get  
 

 
...

!32

5.3.1

!22

3.1

2

1
1)1( 6

3

4

2

22

1

2
+

⋅

+

⋅

++=−

−

xxxx                        … (1) 

                         n

n
n

x
n

n 2

0 !2

)12(5.3.1
∑

∞

=
⋅

−
=

K
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 Let .
!2

)12(5.3.1

n

n
a

nn
⋅

−
=

K
 Then, using the formula, 

1

lim
+

∞→

=

n

n

n a

a
R , we get 

.1=R  This means that the power series ∑
∞

=0n

n

n xa  converges in [.1,1]−  

Hence, the power series in Eqn. (1) converges in [.1,1]−  

 

 Now integrating both sides in Eq. (1) from 0 to ,1, <xx  we get 

 

xdxxxdx
x

x x

∫ ∫ 







++++=

−0 0

642

2
...

6.4.2

5.3.1

4.2

3.1

!2

1
1

1

1
 

                     ∫∫∫∫ +

⋅⋅

⋅⋅
+

⋅

⋅
++=

xxxx

dxxdxxdxxdx
0

6

0

4

0

2

0
642

531

42

31

!2

1
1 L 

 Thus,  

  
....

76.4.2

5.3.1

54.2

3.1

32

1
sin

753
1

++++=
−

xxx
xx  

  




