
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Volume-I 
GROUP THEORY 
 

 

Course Introduction            3 
 

 

BLOCK 1              5 
Introduction to Groups 
 

 

BLOCK 2          143 
Normal Subgroups and Group Homomorphisms 
 
 

Indira Gandhi National Open University 
School of Sciences 

BMTC-134 
ALGEBRA 



 

2 

Unitised Course Outline 
 
Volume I  Group Theory 
Block 1  Introduction to Groups 
Unit 1: Some Preliminaries 
Unit 2: Groups 
Unit 3: Subgroups 
Unit 4: Cyclic Groups 

Block 2  Normal Subgroups and Group Homomorphisms 
Unit 5: Lagrange’s Theorem 
Unit 6: Normal Subgroups 
Unit 7: Quotient Groups 
Unit 8: Group Homomorphisms 
Unit 9: Permutation Groups 
 
Volume II  Ring Theory  
Block 3  Introduction to Rings 
Unit 10: Rings 
Unit 11: Subrings 
Unit 12: Ideals 
Unit 13: Ring Homomorphisms 

Block 4  Integral Domains 
Unit 14: Integral Domains and Fields 
Unit 15: Polynomials Rings 
Unit 16: Roots and Factors of Polynomials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
January, 2021 

© Indira Gandhi National Open University  

ISBN-8]- 

All right reserved. No part of this work may be reproduced in any form, by mimeograph or any other 
means, without permission in writing from the Indira Gandhi National Open University. 

Further information on the Indira Gandhi National Open University courses, may be obtained from the 
University’s office at Maidan Garhi, New Delhi-110 068 and IGNOU website www.ignou.ac.in. 

Printed and published on behalf of the Indira Gandhi National Open University, New Delhi by                
Prof. Sujatha Varma, School of Sciences. 



 

3

COURSE INTRODUCTION 
 
Algebra is a word that you are familiar with. You may also know that it is derived from 
the Arabic word ‘Al-jabr’. Classically, algebra was concerned with obtaining solutions of 
equations. Then came ‘modern algebra’, a term used to describe detailed 
investigations within classical algebra. In Block 1 of the course, Calculus, you have 
studied some of the concepts of modern algebra – sets and operations on them, 
functions, a binary operation on a set, an algebraic way of studying plane geometry, 
properties of complex numbers, what a polynomial over R  is, and solutions of some 
polynomial equations. In this course, we shall build on this learning, and take you much 
further. 
  
In this course, we will focus on ‘abstract algebra’, a generalisation of modern algebra. 
In abstract algebra we study algebraic systems that are defined by axioms alone. 
These axioms normally evolve from concrete situations. In this course, comprising 
four blocks, you will study three basic algebraic systems, namely, groups, rings and 
fields.  
 
In Block 1, you will study what a group is, and several examples and properties of this 
algebraic system. You will study different kinds of groups, with so many differences, 
and so many similarities! Here you will also study what a subgroup is. The set of 
integers forms a particular kind of group called a cyclic group. Such a group has many 
special properties. This is why we will give it special attention in this block. 
 
In Block 2, the focus is on a particular type of group, called a quotient group. Such a 
group necessitates a particular kind of subgroup, as you will see. You will study such 
subgroups in some detail too. The real importance of a quotient group shows up in a 
type of function from one group to another that satisfies the property of ‘preserving’ the 
operation of the domain group. The importance of such functions, and their relationship 
with quotient groups, will be thoroughly discussed in this block too. Finally, you will 
study sets of bijections from a set to itself, as a detailed case study of the different 
aspects and properties of groups that you studied in Blocks 1 and 2. 
 
In Block 3, we move the focus to another, but related, algebraic system. This is called a 
ring. In this block, you will study what a ring is, along with many of its properties. Here 
you will also study about subrings, and special subrings that allow us to define quotient 
rings. Finally, in this block, you will study about a special kind of function from one ring 
to another. As you go through this block, you will see how similar concepts related to 
rings are to those you studied about groups in the first two blocks. 
 
In Block 4, the focus is on rings that satisfy certain special properties. In particular, you 
will study another important algebraic system, which is a ring, and yet more than a ring. 
This is the concept of a field. You will see that the set of real numbers forms a field, as 
does the set of complex numbers. We go on, in this block, to discuss the properties of 
the set of polynomials over ,R  over ,C  or over any field.  
 
You may wonder why you should study this course. As you study the blocks, you will 
realise that your way of thinking is changing. You will see how the methods of abstract 
algebra allow us to deal with several similar algebraic systems by just dealing with one 
representative system. This helps us to think at a macro level about systems, be 
precise and concise and to understand the structure of several groups or rings more 
quickly. 
 
There are several practical applications of what you will study in this course. Let us 
start with some applications of group theory. This theory is used by physicists and 
chemists in crystallography, spectroscopy, general relativity, solid state physics and the 
modern theory of elementary particles. In fact, using group theory, scientists predicted 
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the existence of the Omega minus particles, which were actually identified in 1964, 
much after the prediction. 
 
Now let us look at some applications of rings and fields. Polynomial rings and matrix 
rings are used in quantum mechanics. Field theory is being used to construct efficient 
error detecting and correcting codes in the area of data communications. Of course, 
finite fields are very useful in statistics too. 
 
Now, a few words about the way you should study the material! We have presented 
this course with the assumption that you have already studied the courses 
‘Calculus’ and ‘Real Analysis. Do not simply read the material in these blocks. You 
must actually interact with every line, idea, example and question in it. As you know, 
whenever we introduce concepts, we give you a lot of concrete examples to help you 
understand it. We also include a host of exercises to help you strengthen your 
understanding of the concepts and processes concerned. You must solve every 
exercise as you come to it, to benefit from it.  
 
Now, a word about the layout of a block. In each block, you will first find a block 
introduction, followed by a list of symbols that are used in the block. And then come the 
units of the block. Every unit starts with an introduction, where we also list the precise 
learning objectives of the unit. Each unit has been divided into sections. Since the 
material in the different units is heavily interlinked, we will be doing a lot of cross-
referencing. For this purpose we will be using the notation Sec. x.y.  to mean Section 
y of Unit x. As in your earlier mathematics courses, you will find the examples, 
exercises and important equations numbered sequentially throughout a unit. 
Further, the exercises in each unit are interspersed within the text. They are meant to 
help you check your progress. The solutions, or solution outlines, or answers to the 
exercises in a unit are given at the end of the unit. After you finish studying a unit, 
please go back to the objectives of the unit (given in the introduction of the unit), 
and see if you are confident that you have achieved them. 
 
As part of the tutorial component, at the end of every block you will find several 
miscellaneous exercises for you to do. These are based on all the units you would 
have studied uptil that point. Further, we will send you an assignment. It is meant to be 
a teaching aid, apart from an assessment aid. Your academic counsellor, at the study 
centre, will assess this, and return it to you with suitable detailed remarks. 
 
You may also like to view our video programme, “Groups of Symmetries”, available in 
the IGNOU Youtube archives. In it we have tried to concretise the idea of a symmetry 
of an object, which you will deal with throughout the first two blocks of this course.  
 
Now a word about the cover. The painting in it is by a well-known artist. It depicts you, 
and your peers, moving through the beautiful forest that is Algebra, looking for the 
beautiful algebraic concepts and processes. 
 
If you feel like reading more than what this course contains, you may like to consult 
the following books: 
i) A First Course in Abstract Algebra, by J. B. Fraleigh, Pearson. 

ii) Contemporary Abstract Algebra, by J. A. Gallian, Narosa. 

iii) Abstract Algebra, by Hodge, Schlicker and Sundstrom, CRC Press. 
 
For any query related to this course you can contact us at directorsos@ignou.ac.in.  
 

Wishing you a happy learning experience!  
 

The Course Team  
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BLOCK INTRODUCTION 
 
A group is an algebraic system consisting of a set, along with one binary operation 
defined on it. Groups have been studied by mathematicians for over two hundred 
years. Throughout the nineteenth century, group theory was a study of permutations 
and substitutions. It slowly evolved into its present abstract form. 
 
Group theory, in its present form, helps in analysing basic mathematical structures. 
Mathematicians working in a variety of branches of mathematics borrow methods and 
tools from group theory to make progress in their own field. Not only mathematicians, 
but chemists and physicists also use group theory to analyse the structures of 
molecules and crystals, or to study the “solid circuits” of sophisticated electronics. It 
was a group of algebraic transformations, devised by a Dutch physicist, Lorentz, which 
Einstein used for analysing Special Relativity. It is the basics of this interesting and 
useful theory that we want to introduce you to in this block, and in Block 2.  
 
In this block, we will build on your earlier understanding of algebraic objects. Recall that 
in Block 1 of your first semester course you have studied about sets, functions, 
complex numbers and polynomials over .R  Further, in Block 1 of your third semester 
course, you have studied different methods of proof. Now you should do a quick 
revision of those units before going further. 
 
This block comprises four units. In Unit 1, we will summarise some of the basic ideas 
concerning properties of divisibility of integers. Then we will introduce you to partitions, 
and discuss their connect with equivalence relations. Finally, we will introduce you to 
two new algebraic objects, matrices and permutations. We will also discuss a few basic 
properties of these objects. 
 
You will begin the study of group theory in Unit 2. In this unit you will see what a group 
is, and you will study some basic properties of this algebraic system. You will also 
discover that a lot of familiar sets, like the sets of integers and rational numbers, are 
groups with respect to addition. Here, we will also introduce you to some groups that 
you will come across off and on, throughout the course, like the group of integers 
modulo ,n  permutation groups, dihedral groups, matrix groups, the group formed by 
the nth roots of unity, and a group formed by combining two or more groups in an 
interesting way. 
 
In Unit 3, you will study subsets of groups that are groups in their own right. They are, 
appropriately, called subgroups. Here you will study properties of subgroups, including 
the way subgroups behave when set operations are applied on them. 
 
In Unit 4, the last unit of this block, we will focus on a particular kind of group. This is 
called a cyclic group, for reasons that will become clear to you when you study about 
them. The set of integers is a typical cyclic group, as you will see. While studying these 
groups the concept of an order of an element of the underlying set of a group comes 
into play. You will study this concept in this unit too. Further, you will study a 
generalisation of the idea of a cyclic subgroup also in this unit. 
 
In the next block, you will go a little deeper into group theory, and you will need 
everything that you learn in this block. So go through this block carefully. Try every 
exercise as you come to it, and go further only after solving it. 
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NOTATIONS AND SYMBOLS (used in Block 1) 
 
Please review the notations and symbols given in Block 1 of the courses, Calculus 
and Real Analysis. 
 

a(ba    )b  a  divides a(b  does not divide )b  
)b,a(  the greatest common divisor of a  and b   
]b,a[  the least common multiple of a  and b   

)n(modba ≡  a  is congruent to b  modulo n  
))S(()S( nnm MM ×  the set of all nm×  matrices ( nn×  matrices) over a set S  

)0(0 nm×  the zero matrix of appropriate order (of order )nm×  

nI  the identity matrix of order nn×  
),G( ∗  the group G  w.r.t. the operation ∗  

)G(o  the order of a group G  

nS  the symmetry group on n  symbols 

n2D  the dihedral group of order n2  
1S  the unit circle 

8Q  the group of quaternions 

4K  the Klein 4-group 

nZ  the group of integers modulo n  

nU  the group of nth roots of unity 
)xxx( r21 K  a cycle of length r  

tA  the transpose of the matrix A  
||A),Adet(  the determinant of a square matrix A  

∗S  },0{\S  where S  is a set containing 0  
)(GLn R  the general linear group of degree n  over R  
)(SLn R  the special linear group of degree n  over R  

)S(℘  the set of subsets of a set S  
BAΔ  )A\B()B\A( ∪  

21 GG ×  the external direct product of the groups 1G  and 2G  
≤  is a subgroup of 
/ , <≤  is a proper subgroup of  
</  is not a subgroup of  

)G(Z  the centre of the group G  
>< x  the cyclic group generated by an element x  
>< S  the group generated by the set S  
)x(o  the order of an element x  

w.r.t with respect to  
s.t such that  
iff if and only if 
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1.1 INTRODUCTION 
 
In this unit, the aim is to help you become familiar with some mathematical 
concepts that you will use off and on in this course. We shall help you recall 
some aspects of integers that you have studied earlier. We shall also 
introduce you to the ideas of ‘matrix’ and ‘permutation’.  
 
In this unit, and in the rest of this course, we will often refer to what you have 
studied about functions and binary operations in Block 1 of the first semester 
course, Calculus. We will also often refer to Units 1 and 2 of the third semester 
course ‘Real Analysis’, directly and indirectly. So please keep these materials 
handy while you are studying this course. 
 
This unit really begins with Sec.1.2. Here we will discuss various concepts and 
algorithms related to the divisibility of integers. In particular, you will be 
studying the Euclidean algorithm for finding the greatest common divisor of 
two non-zero integers. 
 
You have studied what an equivalence relation is in Calculus. In Sec.1.3, we 
will take that understanding further, and relate it to the concept of a partition of 
a set.  
 
In Sec.1.4, we will discuss a concept that you may be familiar with from your 
studies in school. This is the concept of a matrix over a non-empty set. We will 
actually focus on matrices over ,C  or a subset of .C  Here you will also study 
some operations on the set of matrices over C  (or a subset of ).C  
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Finally, in Sec.1.5, we will introduce you to the concept of a permutation of the 
elements of a set. In particular, we shall discuss the symmetries of a regular 
planar figure. 
 
We have given below the precise learning expectations around which this unit 
has been created. If you study the unit carefully, and try your best to solve 
every exercise as you come to it, you will be able to meet these expectations. 
Take your own time for doing this, but do it yourself. 
 
Objectives 
After studying this unit, you should be able to:  

• state, prove and apply the division algorithm for ;Z  

• prove, and use, the theorem that the g.c.d of ,0a,b,a ≠∈Z  is of the 
form ,nbma +  for some ;n,m Z∈  

• prove, and apply, the Fundamental Theorem of Arithmetic; 

• apply the Euclidean algorithm to find the g.c.d. of any two non-zero 
integers; 

• prove, and apply, the statement that any partition of a non-empty set S  
defines an equivalence relation on ,S  and its converse; 

• define, and give examples of, matrices over a set and operations on 
them; 

• define, and give examples of, permutations of a set and their 
composition. 

 

1.2 DIVISIBILITY IN Z  
 
You have studied, and worked with, integers through most of your schooling, 
and later. In this section we shall focus on one of the fundamental ideas that 
you would be quite familiar with, namely, the divisibility of integers. For 
example, what are the divisors of ?30  Why do we say 5  divides ,30  and 7  
doesn’t, in ?Z  Again, does 0  divide every integer? Think about the answers 
to these questions, while considering the following definition.  
 
Definition: Let .0a,b,a ≠∈Z  We say that a  divides b  if there exists an 
integer c  such that .acb =   We write this as ,ba  and read it as ‘a  is a 
divisor (or factor) of b ’, or that  ‘b  is divisible by a ’, or that ‘b  is a 
multiple of a ’.  
If a  does not divide ,b  we write this as  a   .b  
 
For example, 305  since there is an integer, ,6  such that .6530 ×=  
Again, 7   30  since there is no integer x  s.t. .x730 =  
 
Here, you must consider the following important comment about divisors. 
 
Remark 1: For ,0a,b,a ≠∈Z  if ,ba  then Z∈∃ c  s.t. .bac =  This c  is 
unique. This is because if bac =  and bad =  for ,d,c Z∈  then .adac =  Since 

,0a ≠  this gives us .dc =  (Actually, you will study more about this in Block 3.) 
 
This leads us to our next comment. 
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Remark 2: Coming to ,0  note that ,z0z0 Z∈∀=⋅  so it seems that .00  
However, as ),1(010 −=⋅  for example, and ,11 −≠  by Remark 1 we face a 

contradiction. Hence, division by 0  is considered meaningless, and 0
0  is 

undefined, as you may already know. 
 
We give some properties of divisibility of integers in the following exercise. 
You would already be familiar with some of them. Here is your chance to 
prove them.  
 
 
E1) Let c,b,a  be non-zero integers. Prove that  

 i) .aa,a1,0a ±±  

 ii) .bcacba ⇒  

 iii) ba  and .cacb ⇒  

 iv) ba  and .baab ±=⇔  

 v) ac  and .y,x)byax(cbc Z∈∀+⇒  
 
 
Before going further, we will remind you of some equivalent statements which 
you have studied in Unit 2 of the course ‘Real Analysis’, in some detail. For 
this, you need to recall the following definition. 
 
Definition: Let S  be a non-empty subset of .Z  An element Sa∈  is called a 
least element (or a minimum element) of S  if .Sbba ∈∀≤   
 
For example, N  has a least element, namely, .1  But Z  has no least element.  
In fact, many subsets of ,Z  like },,3,2,1{,2 K−−−Z  etc., don’t have least 
elements. 
 
Now we state an axiom of the integers that we will often use, explicitly and 
implicitly, namely, the well-ordering principle. It tells us of some sets that have 
a least element. 
 
Well-ordering Principle: Every non-empty subset of N  has a least element.  
 
In fact, this principle is equivalent to ‘Every non-empty subset of {0}∪N  
has a least element’. 
 
As you may recall from ‘Real Analysis’, this principle is actually equivalent to 
the principle of mathematical induction, which you have studied in detail in 
Block 1 of that course. Let us state the principle here. 
 
Theorem 1 (Principle of Mathematical Induction): Let N⊆S  such that  
i) ,S1∈  and  

ii) whenever ,Sk∈  then .S1k ∈+  
Then .S N=  
 
This theorem is further equivalent to the following result. 
 
Theorem 2 (Extended Principle of Induction): Let N⊆S  such that  

We will sometimes use 
PMI as an abbreviation of 
the ‘Principle of 
Mathematical Induction’. 
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i) ,Sn0 ∈  and  

ii) whenever .S1k,Sk ∈+∈   
Then }.nnn{S 0≥∈= N  
 
The fourth equivalent statement that you have studied in ‘Real Analysis’ is:  
 
Theorem 3 (The Strong Form of the Principle of Induction): Let N⊆S  
such that  

i) ,Sn0 ∈  and  

ii) whenever ,kmnSm 0 <≤∀∈  then .Sk∈  

Then }.nnn{S 0≥∈= N  
 
We will not prove the equivalence of the well-ordering principle with Theorems 
1, 2 and 3 in this course, since the proof is slightly technical. However, we 
shall rewrite Theorems 2 and 3 in the equivalent forms that we will normally 
use. 
 
Theorem 2′  (Extended Principle of Mathematical Induction, PMI): Let 

)n(P  be a predicate about a positive integer n  such that  

i) )n(P 0  is a true statement for some ,n0 N∈  and  

ii) whenever )k(P  is true for some ,nk,k 0≥∈N  then )1k(P +  is true. 
Then, )n(P  is true for all N∈n  such that .nn 0≥  
 
Theorem 3′  (The Strong Form of the PMI): Let )n(P  be a predicate about a 
positive integer n  such that  

i) )n(P 0  is a true statement for some ,n0 N∈  and  

ii) whenever )m(P  is true for all positive integers m  s.t. ,kmn0 <≤  then 
)k(P  is true. 

Then )n(P  is true for all N∈n  such that .nn 0≥  
 
The equivalent statements given above are very useful for proving several  
results in Analysis, as you have seen. You will see the same in the case of 
algebra. We will now use it to prove the division algorithm for .Z  You have 
used this algorithm countless times. For instance, if you were asked to find the 
number of weeks in 365  days, you would say .52  Why? Possibly because 

.1)527(365 +×=   
Of course, you could also have noted that ,65)507(365 +×=  but then 65  is 
greater than ,7  so there are some more weeks in the remainding 65  days.  
The algorithm tells us how to come to a unique remainder which has no more 
‘weeks left in it’. 
 
Theorem 4 (Division Algorithm): Let .0b,b,a >∈Z  Then there exist unique 
integers r,q  such that ,rqba +=  where .br0 <≤  
 
Proof: We will first prove that q  and r  exist. Then we will show that they are 
unique. To prove their existence, we will consider three different situations: 

.0a,0a,0a <>=  

In Block 4 you will study 
a version of this 
algorithm for 
polynomials. 

Recall from Unit 2, ‘Real 
Analysis’, that ‘a predicate’ 
is a sentence ),n(P  where 

)n(P  may be true for some 
values of ,n N∈  and false 
for some values of .n  
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Case 1 0)(a = : Take .0r,0q ==  Then .rqba +=  
 
Case 2 0)(a > : We shall use Theorem 2′  in this case. 
For ,n N∈  let )n(P  be the predicate that rqbn +=  for some 

.br0,r,q <≤∈Z  We want to see if )n(P  is true .n N∈∀   
So let us see if )1(P  is true. 
If ,1b =  we can take ,0r,1q ==  and thus, .01.11 +=  
If ,1b >  then take ,1r,0q ==  i.e., .1b.01 +=  
So, in every case of )1(P,1b ≥  is true. 
Now suppose )1k(P −  is true for some ,2k,k ≥∈N  i.e.,  

11 rbq)1k( +=−  for some .br0,r,q 111 <≤∈Z    
),1r(bqk 11 ++=⇒  where ,1br1 −≤  i.e., .b1r1 ≤+  

Therefore, 
⎩
⎨
⎧

=+++
<+++

=
.b1rif,0b)1q(
b)1r(if),1r(bq

k
11

111  

This shows that )k(P  is true.   
Hence, by Theorem 2′ , )n(P  is true, for any .n N∈  That is, for 

,rqba,0a +=>  for some .br0,r,q <≤∈Z  
 
Case 3 0)(a < : Here .0)a( >−  Therefore, by Case 2, we can write  

,rbq)a( ′+′=−  for some br0,r,q <′≤∈′′ Z  

⎩
⎨
⎧

<′<′−+−′−
=′′−

=⇒
.br0if),rb(b)1q(

0rif,b)q(
a  

Thus, ,rqba +=  for some ,r,q Z∈  where .br0 <≤  
 
So you have seen that ZZ ∈∃∈∀ r,q,a  s.t. .rqba +=  
 
Now let us prove the uniqueness of q  and .r  Suppose Z∈′′ r,q  such that 

rqba +=  and ,rbqa ′+′=  where ,br0 <≤  and .br0 <′≤   
Then ).qq(brr −′=′−  Thus, ).rr(b ′−  But .brr <′−  Thus, the only possibility 
is ,0rr =′−  i.e., ,rr ′=  and then .qq ′=   
So we have proved the uniqueness of q  and .r  
 
As we had noted earlier, you would have used the algorithm above quite a bit 
in your earlier work with integers. For example, to divide 62  by ,6  you would 
write .2)106(62 +×=  
 
Also, if you were dividing )25(−  by ,3  you would get ,23)9()25( +−=−  where 

.2r,9q =−=  Here note that r  has to be positive. Therefore, taking 
13)8()25( −−=−  would not be the outcome of the division algorithm. 

 
This example leads us to an important remark here. 
 
Remark 3: The division algorithm has been proved only for a positive divisor 

.b  What happens if ?0b ≤  As seen in Remark 2, .0b ≠   
If ,0b <  consider a  and ).0(b >−   
Then .br0,r)b(qa −<≤+−=  
  ,br0,rb)q( <≤+−=  since .bb −=  
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Thus, in its most general form, the division algorithm says that given 
∃0,b,ba, ≠∈Z  unique Z∈rq,  s.t. .br0r,qba <≤+=   

 
Also consider the following comment regarding terminology. 
 
Remark 4: In the expression ,rqba +=  where q,br0 <≤  is called the 
quotient and r  is called the remainder obtained when a  is divided by .b  
 
You will find the division algorithm used often while studying certain groups. 
Try solving some related exercises to get used to applying it. 
 
 
E2) Apply the division algorithm on the pairs 30,75  and .30,75 −−  
 
E3) Prove that if Z∈a  s.t. 3   ,a  then the remainder on dividing 2a  by 3  is 

.1  
 
E4) Let Z∈b,a  such that ).ba(3 22 +  Show that a3  and .b3  
 (Hint: Use E3.) 
 
 
Let us now return to discussing divisors and multiples. Consider the following 
definitions. 
 
Definitions: Let .b,a ∗∈Z  

i) An integer c  is called a common divisor of a  and b  if ac  and .bc  

ii) An integer m  is called a common multiple of a  and b  if ma  and 

.mb  
 
For example, 2 is a common divisor of 2  and ,4  and ,4  as well as ,8  are 
common multiples of 2  and .4  Also, from E1(i), you know that 1 and 1−  are 
common divisors of a  and ,b  for any .b,a Z∈  Thus, a pair of integers does 
have more than one common divisor and common multiple. This leads us to 
the following definitions. 
 
Definition: An integer d  is called a greatest common divisor (g.c.d, in 
short) of two non-zero integers a  and b  if  

i) ad and ,bd  and  

ii) whenever Z∈c  such that ac  and ,bc  then .dc  
 
Note that if d  and d′  are two g.c.ds of a  and ,b  then (ii) of the definition 
above says that dd ′  and .dd′  Thus, dd ′±=  (see E1).  
But then only one of them is positive.   
This unique positive g.c.d.  is denoted by ).( ba,  
 
In the same vein, consider the following definition. 
 
Definition: An integer l  is called a least common multiple (l.c.m, in short) of 

∗∈Zb,a  if  

Recall that 
}.0{\ZZ =∗  
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i) la  and ,b l  and  

ii) whenever Z∈m  s.t. ma  and ,mb  then .ml  
 
As in the case of the g.c.d, you can show that there is a unique positive 
l.c.m. of a  and ,b  denoted by .b],[a  
 
For instance, 1)5,3( =  and .4)20,8( =−  Also 15]5,3[ =  and .40]20,8[ =−  
 
Consider a related remark here. 
 
Remark 5: Some mathematicians also define the g.c.d of ,b,a Z∈  where only 
one of them needs to be non-zero. If ,0b ≠  then ,b)b,0( =  as b  is the 
greatest positive divisor of both 0  and .b  However, we shall continue to 
discuss the g.c.d. of two non-zero integers. If you choose, you can verify that 
all the results about )b,a(  that we prove here will also work if only one of the 
integers b,a  is non-zero. 
 

Does )b,a(  exist for any pair of non-zero integers a  and ?b  It does, as the 
following theorem tells us. 
 
Theorem 5: Any two non-zero integers a  and b  have a greatest common 
divisor. Further, ,nbma)b,a( +=  for some .n,m Z∈  
 
Proof: Let }.0)ybxa(,y,xybxa{S >+∈+= Z  

Since ,Sba,0ba 2222 ∈+>+  i.e., .S «≠  Hence, by the well-ordering 
principle, S  has a least element, say nbmad +=  for some .n,m Z∈  You will 
see that ).b,a(d =  
 
As .0d,Sd >∈  So, by the division algorithm we can write  

,rqda +=  for some .dr0,r,q <≤∈Z  
Thus, .b)qn(a)qm1()nbma(qaqdar −+−=+−=−=   …(1) 
Now, if ,0r ≠  then (1) shows that ,Sr∈  which contradicts the minimality of d  
in .S   
Thus, ,0r =  i.e., ,qda =  i.e., .ad   

You can similarly show that .bd   
Thus, d  is a common divisor of a  and .b  
 
Now, let c  be an integer such that ac  and .bc  

Then cbb,caa 11 ==  for some .b,a 11 Z∈  
But then .c)nbma(cnbcmanbmad 1111 +=+=+=    
Thus, .dc  
So we have shown that d  is a g.c.d of a  and .b  Since ,0d >  it is the unique 
positive g.c.d, ).b,a(  
 
As an example of what Theorem 5 tells us, consider 7−  and .9  You know that 
they have no common factor apart from 1 and .1−  So .1)9,7( =−  Also, by hit 
and trial, you can see that .9)3()7)(4(1 −+−−=  
Pairs of integers like 7−  and ,9  whose g.c.d is ,1  have a special name. 



 

16 

 

 
Block 1                                                                                                 Introduction to Groups

Definition: If two non-zero integers a  and b  are such that ,1)b,a( =  then 
they are called relatively prime (or coprime) to each other. 
 
By this definition, and using Theorem 5, we can say that  
a  and b  are coprime to each other iff there exist Z∈nm,  such that 

.nbma1 +=  
 
Coprime integers have a very useful property that we shall now state and 
prove. 
 
Theorem 6: If ∗∈Zb,a  such that ,1)b,a( =  and if Z∈c  s.t. ,acb  then .cb  
 
Proof: As you know from Theorem 5, Z∈∃ n,m  such that .nbma1 +=   
Then .nbcmac)nbma(c1.cc +=+==  
Now, acb  and .bcb   ),nbcmac(b +∴  by E1(v).   

Thus, .cb  
 
Before going further, consider the following remark about the l.c.m. 
 

Remark 6: Given ]b,a[,b,a ∗∈Z  always exists. In fact, ,
)b,a(

ab]b,a[ =  

which we shall not prove here. Beyond this, we shall not discuss the l.c.m any 
further. 
 
Theorem 6 is the basis for proving the Fundamental Theorem of Arithmetic, as 
you will soon see. For now, let us recall some related definitions. 
 
Definitions: A natural number )1(p ≠  is called a prime if its only divisors are 
1 and .p  If a natural number )1(n ≠  is not a prime, then it is called a 
composite number. 
 
Thus, 101,17,5  are primes, and 4  and 100  are composite numbers. Of 
course, as you know, 1 is neither a prime nor a composite number. 
 
Try solving the following exercises now. 
 
 
E5) Find Z∈n,m  s.t. ,nbma)b,a( +=  where  

 i) ;21b,7a ==  

 ii) ;271b,5a −=−=  

 iii) cb,ca =−=  for .c ∗∈Z   
 
E6) Find the relationship, if any, between )b,a(),b,a(),b,a( −−−  for 

.b,a ∗∈Z  
 
E7) If p  is a prime and ,abp  then show that ap  or .bp  (This is an 

alternative definition for a prime number.) 
 
E8) Prove the strong form of Euclid’s Lemma: If p  is a prime and 

Z∈n21 a,,a,a K  such that ,aaap n21 K  then iap  for some .n,,1i K=  
 (Hint: Use PMI.) 
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E9) Prove that in Theorem 4, ).r,b()b,a( =  
 

 
Now consider the number .50  As you know, we can write ,55250 ××=  as a 
product of primes. In fact, we can always express any natural number as a 
product of primes. This is what the unique prime factorisation theorem, also 
called the Fundamental Theorem of Arithmetic, tells us. As we have 
mentioned earlier, we shall now prove it using Theorem 6. 
 
Theorem 7 (Fundamental Theorem of Arithmetic): Every integer 1n >  can 
be written as ,pppn m21 K=  where m1 p,,p K  are prime numbers. Further, 
this representation is unique, except for the order in which the prime factors 
occur. 
 
Proof: There are two parts to the representation in the theorem – existence, 
and uniqueness. We will first prove the existence of such a factorisation, using 
the principle of mathematical induction.   
Let )n(P  be the predicate that 1n +  is a product of one or more primes, for 

.n N∈    
)1(P  is true, because 2  is a prime number itself. 

Now let us assume that )m(P  is true for all positive integers km < .  We want 
to show that )k(P  is true.   
If 1k +  is a prime, )k(P  is true.   
If 1k +  is not a prime, then we can write ,mm1k 21=+  where 1km1 1 +<<  
and .1km1 2 +<<  But then )1m(P 1−  and )1m(P 2−  are both true. Thus, 

,qqqm,pppm s212r211 KK ==  where s21r21 q,,q,q,p,,p,p KK  are 
primes, not necessarily distinct.  
Thus, ,qqqppp1k s21r21 KK=+  i.e., )k(P  is true.  
Hence, by Theorem ,3′  )n(P  is true for every .n N∈  
 
Now let us show that the factorisation is unique. 
Let ,qqqpppn s21t21 KK ==  where s21t21 q,,q,q,p,,p,p KK  are primes.  
We will use induction on .t  
If ,1t =  then .qqqp s211 K=  But 1p  is a prime. Thus, its only factors are 1 and 
itself.  Thus, 1s =  and .qp 11 =  
Now suppose ,1t >  and the uniqueness holds for a product of 1t −  primes.  
Now ,qqqp s211 K  and hence, by E8, i1 qp for some .s,,1i K=  By re-ordering 

s1 q,,q K  if necessary, we can assume that .qp 11   

But both 1p  and 1q  are primes.  Therefore, .qp 11 =   
But then .qqpp s2t2 KK =   
So, by induction, 1s1t −=−  and t2 p,,p K  are the same as ,q,,q s2 K  in 
some order. 
Hence, we have proved the uniqueness of the factorisation. 
 
The theorem above is fundamental, as it tells us that any positive integer is 
built up from prime numbers. Thus, prime numbers are the elements that 
‘combine’ to make all the natural numbers, and hence, all the non-zero 
integers. 
 
The primes that occur in the factorisation of a number may be repeated, just 
as 5  is repeated in the factorisation .55250 ××=  By collecting the same 
primes together, we get the following corollary to Theorem 7. 
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Corollary 1: Any natural number n  can be uniquely written as 
,pppn r21 m

r
m
2

m
1 K=  where for ,r,,2,1i K=  each N∈im   and each ip  is a 

prime with .ppp1 r21 <<<< K  
 
As an application of Theorem 7, we give the following important theorem, due 
to the ancient Greek mathematician, Euclid, mentioned earlier. 
 
Theorem 8: There are infinitely many primes. 
 
Proof: We shall prove this by contradiction. So, let us assume that the set P  
of prime numbers is finite, say }.p,,p,p{P n21 K=  Consider the natural 
number  

.1)ppp(m n21 += K  
Now, suppose some .mpi  Then ),pppm(p n21i K−  i.e., a,1pi  contradiction. 

Therefore, ip   .n,,1im K=∀   
But, since ,1m >  Theorem 7 says that m  must have a prime factor. So we 
reach a contradiction.  
Therefore, our assumption that the set of primes is finite must be wrong. 
Hence, there must be infinitely many primes. 
 
Try solving the following exercises now. 
 
 
E10) Prove that if p  is a prime number and Z∈a  such that  

 i) p   ,a  then ;1)a,p( =  

 ii) ,ap 2  then .ap  
 
E11) Prove that p  is irrational for any prime .p  

 (Hint: Suppose p  is rational. Then ,
b
ap =  where ∗∈Zb,a  and we 

can assume that .1)b,a( =  Now use the properties of prime numbers 
that we have just discussed.) 

 
E12) Prove that for all ,m,n N∈  if ,n m/1 Z∉  then .n m/1 Q∉  
 
E13) Prove Corollary 1. 
 
E14) Use the Fundamental Theorem of Arithmetic to prove that if ,y N∈  then 

there is an odd natural number x  such that ,x2y r=  for some non-
negative integer .r  

 

 
You have seen that every integer is uniquely written as a product of prime 
powers. So, as you know from your earlier studies, you can use this 
representation to find the g.c.d of any two integers.  
 
For instance, for finding the g.c.d of 175  and ,2205−  we write both in the form 
given in Corollary 1.  
So ).753(2205,75175 22 ⋅⋅−=−⋅=   
Then you can obtain their g.c.d as the product of the maximum power of each 
prime dividing both the integers – in this case it is .3575 11 =⋅  

A corollary to a theorem 
is a result that is a 
consequence of the 
theorem. 
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As you can see, this requires us to be able to factorise both the integers as a 
product of primes. This is not easy when the numbers get very large. An 
algorithm was developed to make matters easier, by the ancient Greeks. It 
appears to have been first given by the ancient Greek mathematician Euclid, 
in his ‘Elements’, comprising 13  books, written around 300  B.C. Hence this 
algorithm is named after Euclid. It is based on successive applications of the 
division algorithm.  
To help you see how the Euclidean algorithm works, consider an example.  
 
Example 1: Find ).135,246(−  Also find Z∈n,m  s.t. 

).135,246()135(n)246(m −=+−  
 
Solution: From E6, you know that ).135,246()135,246( =−   
By the division algorithm for 246  and ,135  we get  

.1111135246 +⋅=        …(2) 
Now apply the division algorithm to 135  and the remainder in (2), i.e., ,111  to 
get  

.241111135 +⋅=        …(3) 
Now apply the division algorithm to 111 and ,24  to get  

.15424111 +⋅=        …(4) 
Next, .911524 +⋅=        …(5) 
Next, .61915 +⋅=        …(6) 
Next, .3169 +⋅=        …(7) 
Next, .0236 +⋅=        …(8) 
Once the remainder is zero, we stop. 
 
Now, from E9, you know that  

.3)0,3()3,6()6,9()9,15()15,24()24,111()111,135()135,246( ========  
Thus, .3)135,246( =−  
Note that each step of the Euclidean algorithm reduces the problem of finding 
the g.c.d of two integers to one of finding the g.c.d of two integers smaller in 
magnitude. 
 
Also, in the context of Theorem 5, note that (7) gives  

),915(9693 −−=−=  using (6). 
   1592 −⋅=  
  ,15324215)1524(2 ⋅−⋅=−−=  using (5). 
  ,11132414)244111(3242 ⋅−⋅=⋅−−⋅=  using (4). 
  ,11117135141113)111135(14 ⋅−⋅=⋅−−=  using (3). 
  ),24617()13531()135246(1713514 ⋅−⋅=−−⋅=  using (2). 
Thus, 13531246)17(3 ⋅+⋅−=  
  .13531)246(17 ⋅+−⋅=  
Thus, in the context of Theorem 5, .31n,17m ==  

*** 
 
In the example above, you can see how the algorithm facilitates us to find 

Z∈n,m  s.t. ).b,a(nbma =+  Otherwise, we simply have to use a hit-and-
trial method to find these integers, as we did in the earlier examples. 
 
Let us formally write down the Euclidean algorithm now. 
 
Euclidean Algorithm: For any two positive integers a  and 1n10 q,,q,q,b +∃ K  
and n10 r,,r,r K  s.t. 

Fig.1: Euclid 
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.br0,rbqa 000 <<+=  
.rr0,rqrb 01110 <<+=  
.rr0,rqrr 122210 <<+=  

           MM  
.rr0,rqrr 1nnnn1n2n −−− <<+=  

.0qrr 1nn1n += +−  
Then .r)b,a( n=   
 
Proof: As you have shown in E9, .r)r,r()r,r()r,b()b,a( nn1n100 ===== −L   
 
The algorithm above is the basis for solving different kinds of algebraic 
equations. It is used for securing internet communication and in coding theory. 
 
Why don’t you apply the algorithm yourself now? 
 
 
E15) Apply the Euclidean algorithm to find )b,a(  for  

 i) ,12345b,54321a ==  and  

 ii) .880b,61880a −=−=  
 Also find Z∈n,m  s.t. ,nbma)b,a( +=  in each case.  
 
 
We shall curtail our discussion on divisibility in Z  for now. However, we shall 
now consider one way of gathering the elements of Z  as mutually disjoint 
subsets, based on the divisibility of pairs of integers. 
 

1.3 PARTITIONS AND EQUIVALENCE  
 RELATIONS 
 
In Block 1 of Calculus, you studied relations, and, in particular, equivalence 
relations. Let us recall the definitions concerned. 
 
Definitions: Let S  be a non-empty set. 

i) A relation on S  is a subset R  of .SS×  We also denote the relation R  
by ∼, defined by ‘ b~a  iff R)b,a( ∈ ’.  
Here we sometimes write b~a  as .aRb  

ii) A relation R  on S  is called reflexive if ,SaR)a,a( ∈∀∈  i.e., 
.Saa~a ∈∀  

iii) A relation R  on S  is called symmetric if ,R)a,b(R)b,a( ∈⇒∈  i.e., 
a~bb~a ⇒  for .Sb,a ∈  

iv) A relation R  on S  is called transitive if  

R)b,a( ∈  and ,R)c,a(R)c,b( ∈⇒∈  i.e.,  
c~ac~b,b~a ⇒  for .Sc,b,a ∈  

v) A relation R  on S  is called an equivalence relation if it is reflexive, 
symmetric and transitive. 

 
Let us consider an example. 
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Example 2: Consider the relation ~ on ,C  given by ‘ b~a  iff |||| ba = ’. Here 
}.ba)b,a({R |||| =×∈= CC  Check whether or not R  is an equivalence 

relation on .C   
 
Solution: Since ~,aaa |||| C∈∀=  is reflexive.  
For ,b,a C∈  if ,ba |||| =  then .ab |||| =  Hence, ~ is symmetric.  
For ,c,b,a C∈  if |||| ba =  and ,cb |||| =  then .ca |||| =  Hence, ~ is transitive.  
Thus, ~ is an equivalence relation on ,C  i.e., R  is an equivalence relation on 

.C  
*** 

 
In Example 2, for a fixed ,z C∈  look at the subset of ,C  

}.z{]z[ |||| =α∈α= C  So, ]z[  is the infinite set consisting of all the points 

lying on the circle shown in Fig.2. From Fig.2, you can see that if ,zz |||| 1≠  
then ;]z[]z[ 1 «=∩  and if ,zz |||| 1=  then ].z[]z[ 1=  
Also, ].z[

z C
C

∈
∪=  In this union, all those elements with the same modulus 

collapse into one subset. And each such subset is disjoint from the others.  
 
The set ]z[  is a particular case of what we shall now define. 
 
Definition: Given an equivalence relation R on a set ,S  

}R)b,a(Sb{ ∈∈=[a]  is called the equivalence class of .Sa∈   
 
Note that ]a[  is a subset of .S  Further, ]a[b∈  iff ],b[]a[ =  since R  is an 
equivalence relation.  
Thus, for ]b[]a[,Sb,a =∈  or .]b[]a[ «=∩   
Also, for any ].z[z,Sz ∈∈   
So we can write S  as a union of disjoint equivalence classes. 
 
Let us consider some more examples of equivalence relations and the 
corresponding classes. 
 
Example 3: Consider the relation }.m,a)m5a,a({R Z∈+=  In other words, 

R)b,a( ∈  iff )ba(5 −  in .Z  Show that R  is an equivalence relation, and find 
two distinct elements in the equivalence class of .1  
 
Solution: Since .aR)a,a(),aa(5 Z∈∀∈−  Hence, R  is reflexive. 

Next, )ba(5R)b,a( −⇒∈  
    Z∈∃⇒ c  s.t. c5)ba( =−  
    )c(5)ab( −=−⇒  

  )ab(5 −⇒  
  .R)a,b( ∈⇒  

Hence, R  is symmetric. 
 
Finally, let )b,a(  and )c,b(  be in .R  Then Z∈∃ n,m  s.t. m5)ba( =−  and  

.n5)cb( =−  Thus, ),nm(5)cb()ba()ca( +=−+−=−  i.e., ).ca(5 −  
Hence, ,R)c,a( ∈  so that R  is transitive. 

Fig.2: The circle with 
centre 0)O(0,  and 
radius ,||z  where 

.C∈z  

O 

||z  
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Thus, R  is an equivalence relation.  
 

m5)1a(a{}R)1,a(a{]1[ =−∈=∈∈= ZZ  for some }m Z∈  

    }.m1m5{ Z∈+=  
Hence, to get two distinct elements in ],1[  we consider two distinct values of 

,m Z∈  say .1,0m =  Then we get two distinct elements 6,1  in ].1[  

*** 
 
Let us generalise Example 3 now. 
 
Example 4: Let .n N∈  Define R  to be the relation on Z  given by ‘ aRb  iff 

)ba(n − ’. Show that R  is an equivalence relation on .Z  How many distinct 
equivalence classes of R  is Z  a union of, and why? 
 
Solution: You can show that R  is an equivalence relation along the lines 
given in Example 3. 
 
To find the equivalence classes, let us use the division algorithm. Given any 

q,a ∃∈Z  and r  in Z  s.t. 
.nr0,rnqa <≤+=        …(9) 

Now, for each ,1n,,1,0i −= K },mimn{]i[ Z∈+=  as in Example 3. 
Also, from (9), ]r[]a[ =  for some .nr0,r <≤  Hence, ]1n[,],1[],0[ −K  are all 
the classes. 
Further, if ]j[]i[ =  for some j  s.t. ,nj0 <≤  then for some ,m,m Z∈′    

).ij(nij)mm(njnmimn −⇒−=′−⇒+′=+   

But .nji <−   

Thus, )ij(n −  is only possible if ,0ij =−  i.e., .ji =  And then, .mm ′=  
Hence, ]1n[,],1[],0[ −K  are n  distinct classes, and these are all the classes.  
Hence, ],1n[]1[]0[ −∪∪∪= KZ  a union of n  disjoint equivalence classes. 

*** 
 
The equivalence relation in Example 4 is called ‘congruence modulo n ’.  
We write n)(modba ≡  (read as ‘a  is congruent to b  modulo n ’) if 

]b[]a[ =  in Example 4, i.e., if ).ba(n −  

Here the set of all the equivalence classes is denoted by .nZ  
Thus, ]}.1n[,],1[],0{[n −= KZ  
 
The examples above lead us to the following definition. 
 
Definition: A partition of a non-empty set S  is a collection of disjoint non-
empty subsets ,Ii,Si ∈  of S  s.t. ,SS iIi∈

∪=  where I  is an indexing set.  

The subsets iS  are called the cells of the partition. 
Thus, if S  is partitioned into the cells ,Si  then each element of S  lies in one 
and only one cell.  
 
There can be infinitely many cells in a partition, or finitely many cells. For 
instance, in Example 4, Z  is partitioned into n  classes. Here the cells are 

].1n[,],1[],0[ −K  But in Example 2, C  is partitioned into infinitely many cells, 
each cell being an infinite set. 

Note that nZ  is a set of 
sets, since ]i[  is a set for 
each }.0{i ∪∈N  
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Let us now prove a result relating partitions with equivalence relations. 
 
Theorem 9: A partition of a non-empty set S  defines an equivalence relation 
on .S  Conversely, an equivalence relation on S  defines a partition on .S  
 
Proof: Firstly, let }IiS{ i ∈  be the set of cells of a partition of ,S  where I  is an 
indexing set. 
For ,Sb,a ∈  define a  relation R  on S  by  ‘ aRb  iff a  and b  lie in the same 
cell of the partition’.  
Thus, ,aRa  since a  lies in the same cell as itself. So R  is reflexive.  
Next, if ,aRb  then a  and b  lie in a cell. Hence, b  and a  lie in one cell. Thus, 

,bRa  i.e., R  is symmetric.  
Finally, if aRb  and ,bRc  then a  and b  lie in one cell, say ,Si  and b  and c  lie 
in one cell, .Sj  Since b  lies in .SS,SS jiji «≠∩∩  Thus, .ji =  Thus, both a  

and c  lie in .Si  Hence, ,aRc  i.e., R  is transitive.  
Hence, R  is an equivalence relation. 
  
For the converse, consider an equivalence relation R  on .S  Suppose 

«≠∩ ]b[]a[  for some .Sb,a ∈  
Let ].b[]a[x ∩∈  Then xRa  and ,xRb  so that aRx  and .xRb  Hence ,aRb  
i.e., ].b[]a[ =  
Thus, all the equivalence classes are disjoint or identical. 
Also, for any ].a[a,Sa ∈∈   
Hence, the equivalence classes form a partition of .S  
 
For example, the equivalence relation in Example 2 partitions C  into infinitely 
many cells, which are concentric circles in 2R  with their centres at ),0,0(  as 
you saw in Fig.2. 
 
Now you can look at some other relations to see if they give partitions of the 
sets concerned or not.  
 
 
E16) Check whether the following relations are equivalence relations on ∗Z  or 

not. 

 i) nRm  iff ,0nm >   

 ii) nRm  iff n  and m  have the same number of digits in the base ten 
notation.  

 For those R  that are equivalence relations, obtain the corresponding 
partitions of .∗Z  

 
E17) Show that ‘ ARB  iff BA ⇒ ’ is a reflexive and transitive relation on the 

set of all true mathematical statements, but is not symmetric. 
 
E18) Find all the cells of the partitions of ,Z  corresponding to ‘congruence 

modulo 8 ’ and ‘congruence modulo 1’.  
 
 
Let us now look at another algebraic object, which is of much interest in 
algebra. We will often use these objects as examples in this course. 
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1.4 INTRODUCING MATRICES 
 
In your previous studies in mathematics, you have studied ways of looking for 
common solutions of several linear equations like: 

⎭
⎬
⎫

−=+
=+

5y2x3
5y3x2

       …(I) 

These two equations, taken together, can also be represented by arranging 
the coefficients of the variables x  and ,y  and the constant term, in rows and 
columns, as below: 

523eqn2nd
532eqn1st

termconstantyoftcoefficienxoftcoefficien

−

↓↓↓
 

 
In this way we get a rectangular array with its entries being numbers, as 
below.  

⎥
⎦

⎤
⎢
⎣

⎡
− 523
532

  

You will later see why we can rewrite the linear system (I) as below, using this 
array. 

.
5

5
y
x

23
32

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 

As you will see in the 5th semester course, such arrangements are very 
helpful in finding solutions of certain linear systems. These are systems in 
which the number of variables are very large, and the coefficients involved are 
not easy to calculate by hand. 
 
The set of such rectangular arrays have considerable importance in algebra. 
Therefore, we are introducing them to you. You will be studying some of their 
basic properties in this section. Later you will study more about them. 
 
Historically, these arrays gained algebraic importance in the 19th century, in 
England. The mathematicians, James Sylvester and Arthur Cayley, first 
applied them to study systems of linear equations. 
 
So, let us begin with defining these objects. 
 
Definitions: Let S  be a non-empty set.  

i)  A rectangular array of mn  elements from ,S  arranged in m  horizontal 
rows and n  vertical columns, enclosed in square brackets, is called 
an nm×  matrix, or a matrix of order ,nm×  over .S  

ii) An nn×  matrix over S  is called a square matrix of order n  over .S  

iii) A n1×  matrix over S  is called a row vector over ;S  and an 1n×  matrix 
over S  is called a column vector over .S   

The set of all nm×  matrices over a set S  is denoted by ,(S)nm×M  and the set 
of all nn×  matrices over S  is denoted by .(S)nM  
 

For example, ⎥
⎦

⎤
⎢
⎣

⎡
23
32

 is a square matrix of order 2  over .Z   

Fig.3: J. J. Sylvester 
           (1814-1897) 

 

‘Matrices’ is the plural of 
‘matrix’. 
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⎥
⎦

⎤
⎢
⎣

⎡
y
x

 and ⎥
⎦

⎤
⎢
⎣

⎡
− 5
5

 are in ),(12 RM ×  assuming that .y,x R∈  These are also 

examples of column vectors over .R  

The nm×  matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mn2m1m

n22221

n11211

aaa

aaa
aaa

K

MMM

K

K

 is denoted by ,nmij][a ×  or simply ,][aij   

if m  and n  don’t need to be stressed.  
Here ija  is the element in the ith row and the jth column, i.e., ija  is the th)j,i(  
element of the matrix.  
 
If ]a[A ij=  is a square matrix of order ,n  the elements nn2211 a,,a,a K  are 
called the diagonal elements of ,A  and the diagonal of A  is the ordered set 

},a,,a,a{ nn2211 K  i.e., the elements are in the given order.  

For example, the diagonal of ⎥
⎦

⎤
⎢
⎣

⎡
=

43
21

A  is },4,1{  not }.1,4{  Here ,3a12 =  

and .2a 21 =   
 
You will often work with ),(nm CM ×  the set of all nm×  matrices whose entries 
are complex numbers. 
Note that ),()()()( nmnmnmnm CMRMQMZM ×××× ⊆⊆⊆  since 

.CRQZ ⊆⊆⊆  
 
Let us now look at a real life (simplified!) situation in which a matrix can arise. 
 
Example 5: There are 5  male and 3  female members on the History faculty 
of a certain college, 4  female and 3  male members on the Mathematics 
faculty and 7  females on the Computer Science faculty of the college. Present 
this information as a matrix. 
 
Solution: One way of presenting the information given is as the following 

23×  matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

70
43
35

ScienceComputer
sMathematic

History
FemaleMale

 

 

Another possibility is the following 32×  matrix. 

⎥
⎦

⎤
⎢
⎣

⎡
035
743

Male
Female

SciencesMathematicHistory
Computer

 

Either of these representations immediately tells us how many faculty 
members there are in the disciplines given, and how many of them are 
female/male. 

*** 
 

There are several real-life problems that mathematics helps to solve using 
matrices. You will study some in the 5th semester course. For now, you can 
get used to matrices by solving the following exercises. 
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E19) Let 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

700
054
321

A  and .
0230
5145
2352

B
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=  Give the  

 i) th)3,2(  elements of A  and ,B   

 ii) third row of ,A  

 iii) diagonals of the square matrices among A  and ,B  

 iv) first column of ,B  

 v) fourth row of .B  
 
E20) Give an element of ).(\)( 2424 ZMQM ××  
 
E21) Give a matrix over C  whose diagonal is },1,,i,e{ −π  and whose 

th)j,i(  element is 1 for ji >  and 0  for ,ji <  where .4,3,2,1j,i =  
 
 
Now, let us see when two matrices are the same. Why don’t you write down 
two different 22×  matrices over ?R  Did the th)j,i(  entry of one matrix differ 
from the th)j,i(  entry of the other for some i  and ?j  If not, then these 
matrices are not different. They are equal. For example, the two 11×  matrices 

]2[  and ]2[  are equal. But ],2[]2[ −≠  according to the following definition. 
 
Definition: Two matrices are called equal if  
i) they have the same order, that is, they have the same number of rows 

as well as the same number of columns, and  

ii) their elements, at all the corresponding positions, are the same. 
 
The following example will clarify what we mean by equal matrices.  
 

Example 6: If ,
3z
yx

32
01

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
 then what are the values of y,x  and ?z  

 
Solution: Firstly, note that both matrices are of the same order, namely, .22×   
Now, for these matrices to be equal the th)j,i(  elements of both must be 
equal .j,i∀  Therefore, we must have .2z,0y,1x ===  

*** 
 
Try solving some exercises now. 
 
 
E22) Can a matrix over R  be equal to a matrix over ?N  Why, or why not? 
 

E23) Are ]43[  and ⎥
⎦

⎤
⎢
⎣

⎡
4
3

 equal? Why? 

 

E24) Is [ ]?101
101
101

−=⎥
⎦

⎤
⎢
⎣

⎡
−
−

 Why? 
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Let us now consider some operations on matrices over .C  
 
Transpose 

First, consider a matrix, say ).(
25.00
152

A 32 RM ×∈⎥
⎦

⎤
⎢
⎣

⎡ −
=   

Now look at ).(
21
5.05

02
B 23 RM ×∈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=  

Do you see any connection between A  and ?B  Consider the 1st row of A  
and the 1st column of .B  Aren’t they the same? Similarly, the 2nd row of A  is 
the 2nd column of .B  In fact, B  is the transpose of ,A  as the following 
definition will tell you. 
 
Definition: Let S  be a non-empty set. The transpose of a matrix 

)S(]a[A nmij ×∈= M  is the mn×  matrix whose rows are the columns of A  in 

the same sequence, and is denoted by .tA  Thus, ).S(]a[A mnij
t

×∈= M  
 

For example, if ,
00i3
0023

A ⎥
⎦

⎤
⎢
⎣

⎡
+π

=  then .

00
00

i32
3

At

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+
π

=  Note that 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+
π

≠

00
00
2i3
3

At  here because the sequence of rows of A  has to be 

maintained in writing the columns of .At  
 

Also, note that .A
00i3
0023

)A( tt =⎥
⎦

⎤
⎢
⎣

⎡
+π

=  

 
From the definition, you can see that, as in the example above, ,A)(A tt =  for 
any matrix .A  
 
Now, consider the following comment about ‘transpose’. 
 
Remark 7: Note that t

mnnm A)A(f:)()(:f =→ ×× CMCM  is a well-defined  
function. This is because if ,BA =  then the ith row of A  is the ith row of  

.m,,1iB K=∀  Hence, the ith column of tA  is the ith column of 
.m,,1iBt K=∀  Hence, .BA tt =  

 
Let us now consider a binary operation on the set of nm×  matrices over .C   
 
Addition of Matrices 

Let us consider ⎥
⎦

⎤
⎢
⎣

⎡
π

−
7.0i
112

 and ⎥
⎦

⎤
⎢
⎣

⎡
− 210

5.052
 in ).(32 CM ×  Is there a 

natural way of adding or subtracting them? What if we add the elements in  
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the corresponding places of both? So  

⎥
⎦

⎤
⎢
⎣

⎡
+−+π
+−++

=⎥
⎦

⎤
⎢
⎣

⎡
−

+⎥
⎦

⎤
⎢
⎣

⎡
π

−
27.01i0
5.015122

210
5.052

7.0i
112

 

             .
27.01i

5.064
⎥
⎦

⎤
⎢
⎣

⎡
+−π

−
=  

In fact, this is the way matrix addition and subtraction are defined in general, 
as you will now see. 
 
Definition: For ]a[A ij=  and ]b[B ij=  in BA +× ),(nm CM  is defined to be the 

matrix ),(nm CM ×∈+ ]b[a ijij  and BA −  is defined to be the matrix 

).(nm CM ×∈− ]b[a ijij  
 
Note that addition and subtraction, as defined, are binary operations on 

).(nm CM ×  
 
Consider an important comment here. 
 
Remark 8: In the given definition, note that only two matrices of the same 

order can be added or subtracted. For example, [ ]53
1
2

+⎥
⎦

⎤
⎢
⎣

⎡
 is not defined 

since ⎥
⎦

⎤
⎢
⎣

⎡
1
2

 is a 12×  matrix and [ ]53  is a 21×  matrix. 

 
Let us look at some detailed illustrations of the operations you have studied so 
far. 
 
Example 7: Find ,AB,BA,AB,BA −−++  where 

).(
4

32
32

B,
01
i2.0
5.1i

A 23 CM ×∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

π
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=   

Also decide whether ABBA +=+  and ABBA −=−  or not. 
 
Solution: By the definition, 

,
41

i32.02
5.13i2

AB,
41

3i22.0
35.12i

BA
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−π
+−+−

+−
=+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

π+−
−−
++−

=+  

.
41

i32.02
5.13i2

AB,
41

3i22.0
35.12i

BA
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+π
−−−−

−+
=−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−π−−
++
−−−

=−  

Note that all the corresponding entries of BA +  and AB+  are the same. 
Hence, .ABBA +=+  
Since the th)1,1(  entries of BA −  and AB−  are not the same, 

.ABBA −≠−  
*** 

This definition holds true for 
matrices over any set S on 
which addition and 
subtraction are binary 
operations. 
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Example 8: Let ⎥
⎦

⎤
⎢
⎣

⎡
−

=
i5i3

512
A  and ).(

890
712

B 32 CM ×∈⎥
⎦

⎤
⎢
⎣

⎡
−

−
=  Find  

BA,B,A tt +  and .)BA( t+  Is ?BA)BA( ttt +=+  Why? 
 
Solution: Firstly, BA +  is defined, since A  and B  have the same order. 

Here .
i58i93

1220
BA ⎥

⎦

⎤
⎢
⎣

⎡
+−+−

=+  

Now .
i5812

i92
30

)BA(,
87

91
02

B,
i55
i1
32

A ttt

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−
+
−

=+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=  

Also, .
i5812

i92
30

BA tt

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−
+
−

=+  

Looking at the corresponding entries of t)BA( +  and ,BA tt +  you can see 
that .BA)BA( ttt +=+  

*** 
 
Example 9: If ),(A 32 RM ×∈  is tAA +  defined? Under what conditions on m  

and n  is tAA −  defined for an nm×  matrix A  over ?R  
 
Solution: Since A  is a 32×  matrix, tA  is a 23×  matrix. Hence A  and tA  
have different orders. Hence, tAA +  is not defined. 
Next, since A  is an nm×  matrix and tA  is an mn ×  matrix, tAA −  is only 
defined when ,nm =  i.e., if A  is a square matrix. 

*** 
 
What you have seen in the examples above is true for any two matrices. Let 
us state the result formally. 
 
Theorem 10: Let ).(B,A nm CM ×∈  Then  

i) ,ABBA +=+  

ii) .BA)BA( ttt +=+  
 
Proof: We shall prove (ii) here, and leave (i) for you as an exercise (see E27). 
 
ii) Let ]a[A ij=  and ].b[B ij=  Then ].ba[BA ijij +=+  

Therefore, ]c[)BA( ij
t =+ , where  

=ijc  the th)j,i(  element of t)BA( +  
  =  the th)i,j(  element of BA +  
  jiji ba +=  

    =  sum of the th)i,j(  elements of A  and of B  
    =  sum of the th)j,i(  elements of tA  and of tB  
    th)j,i(=  element of .BA tt +  
Thus, .BA)BA( tt +=+  

  
Why don’t you solve some exercises now? 
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E25) Find the sum of  

 i) ⎥
⎦

⎤
⎢
⎣

⎡
10
01

 and ⎥
⎦

⎤
⎢
⎣

⎡
−

−
10

01
 in ),(2 ZM  

 ii) nmijnmij ]a[]a[ ×× −+  in ),(nm CM ×  

 iii) 0+×nmij ]a[  in ),(nm CM ×  where 0  is the nm×  matrix whose 
every entry is .0   

 
E26) Verify Theorem 10(ii) for B,A  in Example 7. 
 
E27) Let ),S(C,B,A nm×∈M  where «≠⊆ S,S C  and ''+  is a binary 

operation on .S  Check whether or not 

 i) ,ABBA +=+  

 ii) .C)BA()CB(A ++=++  
 
E28) Prove that  

i) ,A)A( tt =  for any ).(A nm CM ×∈  

ii) ttt AA)AA( +=+  and ,)AA()AA( ttt −−=−  for every  
 ).(A n CM∈  

 

 
As you know from Block 1, Calculus, E27(i) says that addition of matrices is a 
commutative operation, and (ii) says that addition of matrices is an 
associative operation on .S  In Unit 2, you will be using these properties. 
 
Let us now define two different kinds of multiplication on matrices – scalar 
multiplication and matrix multiplication. 
 
Scalar Multiplication 

Consider the matrix .
753
252

A ⎥
⎦

⎤
⎢
⎣

⎡
=  Now A2  is the same as 

.
14106
4104

AA ⎥
⎦

⎤
⎢
⎣

⎡
=+  In this way, ,nA  for any ,n N∈  is the same as adding 

A  to itself n  times. So it makes sense to say that  

,
n2n5n3
n7n5n2

nA ⎥
⎦

⎤
⎢
⎣

⎡
=  where .n N∈  

Generalising this process, we have the following definition. 
 
Definition: For any C∈α  and ),(]a[A nmij CM ×∈=  the product of α  and A  

is defined to be the scalar product, ].a[ ijα=αA  
 
Note that if ]a)1[(A)1(],a[A ijij −=−=−= A  

                         ].a[ ij−=  
 
As an example of scalar multiplication, consider the scalar product of 

C∈+ i32  and ).(
i0

5i
2 CM∈⎥

⎦

⎤
⎢
⎣

⎡
−

  

This definition holds true if 
C  is replaced by QZ,  or 

.R  
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⎥
⎦

⎤
⎢
⎣

⎡
−++

++
=⎥

⎦

⎤
⎢
⎣

⎡
−

+
)i()i32(0)i32(

5)i32(i)i32(
i0

5i
)i32(  

    ,
i230
i1510i23
⎥
⎦

⎤
⎢
⎣

⎡
−
++−

=  since .1i2 −=  

 
Consider the following comment now, regarding this kind of multiplication. 
 
Remark 9: The multiplication defined above is called ‘scalar’ multiplication 
because the elements of the set to which the entries of the matrix belong, in 
this case ,C  are called scalars. Here the multiplication is a function 

).()(: nmnm CMCMC ×× →×•  Thus, scalar multiplication is not a binary 
operation on ).(nm CM ×  
Let us now consider some examples. Side by side you will study some 
elementary properties that relate the operations on matrices that you have 
studied so far. 
 

Example 10: Let ).(
85
51

3/13.0
B,

05.0
17

12
A 23 QM ×∈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=   

Find ,B5,A5  )BA(5),BA(5 −+  and .A5 t   
Is ?B5A5)BA(5 −=−  Is ?A5)A5( tt =  Give reasons for your answers. 
 

Solution: .
011

5.072
At

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=  

.
05.2
535

510

05)5.0(5
)1(575

1525
A5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×−×
−××
××

=  Similarly, .
4025
255

3/55.1
B5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=  

Also, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=+

85.5
48

3/23.2
BA  and .

85.4
66
3/47.1

BA
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=−  

So, ,
405.22
3030

3/205.8
)BA(5,

405.27
2040

3/105.11
)BA(5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=+  

,
055

5.23510
)A5(,

405.22
3030

3/205.8
B5A5 t

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=−  

.
055

5.23510
05)1(515

)5.0(57525
A5 t

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
×−××
−×××

=  

Looking at corresponding entries in the matrices, we find  
B5A5)BA(5 −=−  and .A5)A5( tt =  

*** 
 
What you see in the example above is not just true for these B,A  and .5=α  
It is true in all cases, as the following theorem tells us. 
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Theorem 11: Let )(B,A nm CM ×∈  and ., C∈βα  Then  

i) ,BA)BA( α+α=+α  

ii) ,BA)BA( α−α=−α  

iii) .A)A( tt α=α  

iv) ).A(A)( βα=αβ  
 
Proof: We shall prove (i), and ask you to complete the proof of this theorem 
(see E29). 
i) Let ].b[B],a[A ijij ==  Then 

]ba[)]ba([]ba[)BA( ijijijijijij α+α=+α=+α=+α  

              ]b[]a[]b[]a[ ijijijij α+α=α+α=  
   .BA α+α=  
 Hence, (i) is proved.  
 
Solve the following exercises now. 
 
 

E29) Prove Theorem 11(ii), (iii) and (iv). 
 

E30) If  ,B3A2C)5.0( −=  where ⎥
⎦

⎤
⎢
⎣

⎡

−
=

2121
2121A  and 

,
)3cos()3sin(
)3sin()3cos(

B ⎥
⎦

⎤
⎢
⎣

⎡
ππ−
ππ

=  find .C  

 
E31) Let ~ be defined on )(nm CM ×  by B~A'  iff C5BA =−  for some 

)'.(C nm ZM ×∈  Check whether or not ~ is an equivalence relation on 
).(nm CM ×  If it is, find ].[0  Otherwise define an equivalence relation on 
).(nm RM ×  

 

 
Now let us look at how to multiply two matrices.  
 
Matrix Multiplication 

Consider ⎥
⎦

⎤
⎢
⎣

⎡
=

253
752

A  and ⎥
⎦

⎤
⎢
⎣

⎡
−

=
113

001
B  in ).(32 CM ×  A natural way to 

multiply them seems to be elementwise, as in addition. However, you will be 
surprised to know that the way matrix multiplication is usually defined, these 
matrices cannot be multiplied. You would definitely wonder why.  
 
The way matrix multiplication is defined is linked with the fact that each matrix 
is a function, as you will study in the fifth semester course ‘Linear Algebra’. In 
this scenario, multiplying two matrices corresponds to the composition of these 
two functions. Therefore, the usual matrix multiplication is not defined 
elementwise, but as you will soon see. This way of multiplying matrices 
appears to have been formulated by French mathematician Jacques Philippe 
Marie Binet (1786-1856) in 1812. 
 
So let us see how two matrices are multiplied.  

Consider ]531[A −=  and .
1
2
0

B
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=  
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Then .11)1)(5()2)(3()0)(1(
1
2
0

]531[AB =++−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=   

So we can multiply a row vector with a column vector, both having the same 
number of entries, in this way. We use this multiplication to find the product 
of two matrices that satisfy a constraint, as you will see. 
 

Consider ⎥
⎦

⎤
⎢
⎣

⎡
=

253
752

A  and .
72
i0

1
B

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ π−
=  So A  is a 3×2  matrix and B  is 

a 2×3  matrix. Their matrix product AB  will be a 22×  matrix. Let’s see how 
we get it. 
 
The 1)th(1,  element of AB  is the product of the 1st row of A  and the 1st 
column of ;B  the 2)th(1,  element is the product of the 1st row of A  and the 
2nd column of ;B  the 1)th(2,  element is the product of the 2nd row of A  
and the 1st column of ;B  and the 2)th(2,  element is the product of the 2nd 
row of A  and the 2nd column of .B  So 

[ ] [ ]

[ ] [ ]
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ π−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ π−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

7
i253

2
0
1

253

7
i752

2
0
1

752

A  

   .
i53147
i524916

)7(2)i(5)(3)2(2)0(5)1(3
)7(7)i(5)(2)2(7)0(5)1(2

⎥
⎦

⎤
⎢
⎣

⎡
+π−
+π−

=⎥
⎦

⎤
⎢
⎣

⎡
++π−++
++π−++

=  

Note that AB  is defined only if the number of elements in each row of A  
equals the number of elements in each column of .B  This means that the 
number of columns of A  must equal the number of rows of .B  
Then, the number of rows in =AB  number of rows in ,A  and  
the number of columns in =AB  number of columns in .B  
 
More generally, consider the following definition. 
 
Definition: If )(]a[A nmij CM ×∈=  and ),(]b[B snjk CM ×∈=  then the operation 
of matrix multiplication is defined to be  

:)()()(: smsnnm CMCMCM ×××• →×  ],c[AB)B,A( ik==•  where 

.ba

b

b
b

]aaa[c
n

1j
jkij

nk

k2

k1

in2i1iik ∑
=

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅=
M

K  

 
There are a couple of important observations that you should note again. 
 
Remark 10: i) Two matrices A  and B  cannot be multiplied unless the  
number of columns in A  equals the number of rows in .B  
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ii) Note that by this definition any two nm×  matrices )nm( ≠  cannot be 
multiplied. Thus, matrix multiplication is not a binary operation on  

),(nm CM ×  unless .nm =  
 
Let us consider some examples in detail. 
 

Example 11: Is the product of 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

057
11
23

A  and ⎥
⎦

⎤
⎢
⎣

⎡−
=

50
31

B  defined? If 

yes, find it. Also find ,BA  if it exists. 
 
Solution: Since A  is a 23×  matrix and B  is a 22×  matrix, AB  is defined, 
and is a 23×  matrix. However, AB  does not exist, since the number of  
columns in ,32B ≠=  the number of rows in .A  

[ ] [ ]

[ ] [ ]

[ ] [ ] ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡−
−

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡−
−

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡−

=

5
3

057
0
1

057

5
3

11
0
1

11

5
3

23
0
1

23

AB  

      

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎟
⎠
⎞

⎜
⎝
⎛−+−⎟

⎠
⎞

⎜
⎝
⎛−

+−+−−

++−

=

)5(0)3(
5
7)0(0)1(

5
7

)5(1)3)(1()0(1)1)(1(

)5(2)3(3)0(2)1(3

 

      

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

5
21

5
7

21
193

 

*** 
 
Example 12: If A  and B  are an nm×  matrix and an sn ×  matrix, 
respectively, over ,C under what conditions on n,m  and s  will both AB  and 
BA  be defined? And then, is ?BAAB =  Why, or why not? 
 
Solution: AB  will always be defined since the number of columns in A  
equals the number of rows in .B  Also AB  is an sm×  matrix. 
BA  will only be defined if .ms =  And, in this case, AB  and BA  will be 

mm×  and nn ×  matrices, respectively. 
Hence, for ,BAAB =  it would mean that first both have to be of the same 
order, i.e., .nm =  
However, even with ,nm =  they may not be equal. 

For instance, if ⎥
⎦

⎤
⎢
⎣

⎡ −
=

02
11

A  and ,
01
01

B ⎥
⎦

⎤
⎢
⎣

⎡
=  then  
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⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
++
−+−+

=
02
00

)0(0)0(2)1(0)1(2
)0)(1()0(1)1)(1()1(1

AB  and  

.
11
11

)0(0)1(1)2(0)1(1
)0(0)1(1)2(0)1(1

BA ⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
+−+
+−+

=   

Hence, .BAAB ≠  
Thus, in general, BAAB ≠  for ).(B,A n CM∈  

*** 
 
Let us now consider some properties of matrix multiplication, through some 
examples. 
 

Example 13: Let ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

213
012

A  and .
140
020
041

B
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=  Are AB  and ttAB   

defined? If so, find a relationship, if any, between t)AB(  and .AB tt  Otherwise 
check if tBAAB =  or not. 
 
Solution: You should verify that both AB  and ttAB  are defined. Also  
 

⎥
⎦

⎤
⎢
⎣

⎡
−++−++−−++
+−++−+−+−+

=
)1)(2()0(1)0(3)4)(2()2(1)4(3)0)(2()0(1)1(3
)1(0)0)(1()0(2)4(0)2)(1()4(2)0(0)0)(1()1(2

AB  

      ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

2183
0102

 

Hence, .
20

1810
32

)AB( t

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−=  

Next, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
424
001

Bt  and .
20

11
32

At

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=  

Check that .
20

1810
32

AB tt

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−=  

Thus, .AB)AB( ttt =  
*** 

 

Example 14: Let 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

1
3
2

B,
2

2
4

A  and [ ].21C −=  Are BCAC +  and 

C)BA( +  defined? If yes, find them and the relationship between them. If 
either of them is not defined, explain why. 
 
Solution: Here B,A  and BA +  are 13×  matrices, and C  is a 21×  matrix. 
Hence BC,AC  and C)BA( +  are defined, and are 23×  matrices. 
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Now .
21
63
42

BC,
42

42
84

)2)(2()1)(2(
)2(2)1(2
)2(4)1(4

AC
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−
−

=  

,
1

5
6

1)2(
32
24

BA
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−
+
+

=+  so that .
21

105
126

C)BA(
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=+  

Also .
21

105
126

21
63
42

42
42
84

BCAC
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=+  

Thus, .C)BA(BCAC +=+  

*** 
 

Example 15: Let 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−
=⎥

⎦

⎤
⎢
⎣

⎡
π

−
=

i31
i
2

B,
025.0
17i

A  and [ ].1001C −=  

Show that C)AB(  and )BC(A  are defined, and are equal. 
 
Solution: Here, note that AB  is a 12×  matrix, ),(BC 43 CM ×∈  and hence  

)(C)AB( 42 CM ×∈  and ).()BC(A 42 CM ×∈  Thus, C)AB(  and )BC(A  are both 
defined and have the same order. Now, 

⎥
⎦

⎤
⎢
⎣

⎡
π+−

+−
=⎥

⎦

⎤
⎢
⎣

⎡
π+−
+−+−

=
i5.0

i21
i5.0

)i31(i7i2
AB  and .

i3100)i31(
i00i
2002

BC
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−

−
=  

Therefore, ⎥
⎦

⎤
⎢
⎣

⎡
π+−π−

+−−
=

i5.000i5.0
i2100i21

C)AB(  and 

.
i5.000i5.0

i2100i21
)BC(A ⎥

⎦

⎤
⎢
⎣

⎡
π+−π−

+−−
=  

Thus, ).BC(AC)AB( =  
*** 

 
Example 16: For A  and B  in Example 13, show that 

.)B(A)AB(B)A( C∈α∀α=α=α  
 

Solution: Here ,
40

020
04

B,
23
02

A
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

αα
α
α−α

=α⎥
⎦

⎤
⎢
⎣

⎡
α−αα

α−α
=α  

.
2183
0102

)AB( ⎥
⎦

⎤
⎢
⎣

⎡
α−α−α

α−α
=α  

Also, .
2183
0102

140
020
041

23
02

B)A( ⎥
⎦

⎤
⎢
⎣

⎡
α−α−α

α−α
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎦

⎤
⎢
⎣

⎡
α−αα

α−α
=α  
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Similarly, .
2183
0102

40
020
04

213
012

)B(A ⎥
⎦

⎤
⎢
⎣

⎡
α−α−α

α−α
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

αα
α
α−α

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=α  

Thus, ).B(A)AB(B)A( α=α=α  

*** 
 

Example 17: Show that if ⎥
⎦

⎤
⎢
⎣

⎡
+

=
021
i3

A  and ,
10
01

I ⎥
⎦

⎤
⎢
⎣

⎡
=  then .AIAAI ==  

 
Solution: You can check that AAI =  and .AIA =  

*** 
  
The Examples 13-17 are actually particular cases of properties that are more 
generally true, which we will now state. However, we will not prove them, only 
because the proofs can get quite messy. You will be using these properties 
frequently in the other units of this course. 
 
P1  (Associative Law): If C,B,A  are pn,nm ××  and qp×  matrices, 

respectively, over ,C  then ).BC(AC)AB( =  

P2 (Distributive Law): If A  is an nm×  matrix and C,B  are pn ×  
matrices over ,C  then .ACAB)CB(A +=+  

P3 (Multiplicative Identity): Let  nI  be the nn×  matrix 

,

1000
0100

0100
0010
0001

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

K

K

MOMM

L

L

L

 i.e., ],a[I ijn =  where 
⎩
⎨
⎧

≠
=

=
.ji,0
ji,1

aij   

Then AAIn =  and ,AAIm =  for every nm×  matrix A  over .C  

P4 If ,C∈α  and B,A  are nm×  and pn ×  matrices over ,C  respectively, 
then ).B(AB)A()AB( α=α=α  

P5  If B,A  are pn,nm ××  matrices over ,C  respectively, then 
.AB)AB( ttt =   

 
Why don’t you use these properties to solve the following exercises now?  
 
 
E32) Find AC,AB  and ,BC  if they are defined, where 

tAB,
203
459

A =⎥
⎦

⎤
⎢
⎣

⎡
−

−
=  and .

1i
i1
33

C
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=  

 
E33) Show that ,BBAABA)BA( 222 +++=+  for any two nn ×  matrices A  

and .B  
 
E34) The inventory of two textbook titles at each of three bookshops in a city 

Though the properties    
P1- P5 have seen given for 
matrices over ,C  they are 
valid for matrices over 

RQZ ,,  and .n,n NZ ∈  
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 is given by .
07
415

129
A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=  Here, the rows of A  pertain to the different   

shops and the columns of A  denote the number of each textbook title 
available in the shop. The wholesale costs (in `) of the books are given 
by [ ] .1200700C

t
=  Find ,AC  and interpret it in the given context. 

 
E35) Consider the system of linear equations, 
 05z4y3x7 =−++  

 6y3x2 =+  

 19y4z =−  

 Write it in the form ,BAX =  where A  is a 33×  matrix and X  and B  
are 13×  matrices. 

 (Hint: Take .
z
y
x

X
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= )  

 

 
Just as you have defined matrices over ,C  we can define them over any set. 

For instance, ),(
401
032

632 ZM ×∈⎥
⎦

⎤
⎢
⎣

⎡
 where all its entries are from .6Z  

Similarly, ).(
612

573
32 ZM ×∈⎥

⎦

⎤
⎢
⎣

⎡
−

−
 However, if we want to add matrices in  

),S(nm×M  where S  is a set, according to the definition we can only do so if +  
is a  binary operation on .S  Similarly, if we want to multiply matrices in 

),S(mM  then +  and · should be binary operations on .S  
 
So, for example, if ),(B,A n2 ZM∈  then BA +  and BA ⋅  are defined, where 
the elements are added and multiplied in .nZ  
 
Thus, all the definitions in this section are true for matrices over a non-
empty set ,S  where +  and · are binary operations on .S  All theorems will 
also be true for matrices over ,S  provided S  satisfies certain conditions that 
you will study in Unit 2. 
 
We shall end our introductory discussion on matrices here. Let us now 
consider another type of algebraic object, crucial for studying groups. 
 

1.5 INTRODUCING PERMUTATIONS 
 
Let us begin this discussion with looking at the word ‘symmetry’. You must 
have heard this word many times in the context of beauty in nature, or in 
design. Here we shall consider symmetries of some two-dimensional objects 
in a plane. 
 
Consider a flat object, say an equilateral triangle made of plastic, lying on a 
table. If you rotate it about its centroid, or flip it, or push it to another part of the 
table, does its shape or size change? No, they are not affected. This is why 
these actions on the triangle are examples of rigid body motions, a term we 
now define. 

A centroid of a triangle is 
the intersection of its three 
medians. 
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Definition: A rigid body motion of an object X  is an action on X  that does 
not change its shape or size. 
 
Thus, a rigid body motion of an object in a plane is a bijective function 

22:f RR →  such that the distance between )x(f  and )y(f  is the same as 
the distance between x  and  .y,xy 2R∈∀  
 
Now, let us go back to the equilateral triangle on the table. Draw its outline on 
the table. If you push the triangle cm5  along the table, its position will have 
clearly changed from its original position. Similarly, try rotating the triangle 
about its centroid through o90  on the table. Again, you will see that its position 
will not exactly cover the outline drawn on the table. It will change. But try 
rotating it about its centroid through .120o  What do you find? Has its position 
changed? No, it hasn’t. This action is an example of what we now define.  
 
Definition: A symmetry of an object in the plane is a rigid body motion that 
does not change the position of the object in the plane. 
 
Thus, a symmetry of an object X  in a plane is a bijection f  from 2R  to 2R  
such that .X)X(f =  So, a symmetry cannot be any rigid body motion that 
displaces the object. For example, a translation will not be a symmetry. 
 
A symmetry of the planar object can only be one of the following: 

i) Reflection: Taking the mirror image of all points of the object X  about a 
line of symmetry (e.g., an angle bisector of the equilateral triangle). 

ii) Rotation: Rotating the object X  in the plane through a certain angle in 
the anti-clockwise direction, about a centre point in the plane, such that 
the position of X  is not changed after the rotation (e.g., rotating the 
equilateral triangle through o120  about its centroid).  

 
Let us look at some examples in detail. 
 
Example 18: Obtain ,D6  the set of symmetries of an equilateral triangle. 
 
Solution: Consider the triangle with vertices 3,2,1  (as in Fig.4). Let ir  denote 
the reflection about the bisector of the angle at the vertex .i  See Fig.5 as an 
example.  
 
 
 
 
 
 
 
 

 
Fig.5: The reflection in the angle bisector of Vertex 2.  

 
So, we can say 2r  is a function from }3,2,1{  to }3,2,1{  that takes 1 to ,3  2  
to 2  and 3  to .1  
Let 120R  denote the rotation of the triangle about its centroid through o120  in 
the anti-clockwise direction (see Fig.6). 
 

Fig.4: An equilateral 
triangle. 

1

O
2 3

1 

2 3 12

3

2r  
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Fig.6: An anti-clockwise rotation through o120  about O,  its centroid. 
 
So 120R  is the function from }3,2,1{  to }32,1{  that takes 1 to 2,2  to 3  and 
3  to .1  
Let us represent these bijective functions from }3,2,1{  to }3,2,1{  in the 
following two-row format: 

,
)3(r)2(r)1(r

321
r

222
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  i.e., ,

123
321

r2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  and .

132
321

R120 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

The identity function is also a symmetry, leaving the triangle ‘unmoved’, given 

by .
321
321

I ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   

Then you should verify that all the possible symmetries of the equilateral 

triangle are ,
231
321

r,I 1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  ,

312
321

r,
123
321

r 32 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

.
213
321

R,
132
321

R 240120 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Thus, }.R,R,r,r,r,I{D 2401203216 =  
Now, see what happens if we apply 1r  twice to the triangle.  
Then 2)3(r)2(r,1)1(r)1(rr)1(r 1

2
1111

2
1 ===== o  and .3)2(r)3(r 1

2
1 ==   

Thus, .Ir 2
1 =   

Similarly, you should check that ,IR,RR,Ir,Ir 3
120240

2
120

2
3

2
2 ====  

,r
123
321

Rr 21201 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=o  and so on. 

*** 
 
Example 19: Give an example of an object that has  
(i) no non-trivial rotation symmetry,  (ii) exactly two reflection symmetries. 
 
Solution: i) Consider the letter A (see Fig.7(i)). There is no point about which 

the rotation of this through any angle between o0  and o360  will give you 
the letter in the same position. 

 
ii) Consider a rectangle with unequal sides (as in Fig.7(ii)). You should 

verify that the only reflection symmetries it has are about the lines joining 
the mid-points of opposite sides. 

*** 
 
Try solving some exercises now. 
 
 
E36) Write all the symmetries, in the two-row format, of 

i)  a square,  ii)  an isosceles triangle. 

In Unit 2 you will see that 

6D  is the dihedral group 
of order 6. 

(i) 

(ii) 
Fig.7 

1

2 3 1 2 

3 

120R  

O
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E37) Find all the symmetries of the letters N  and .B  
 

 
Generalising from what you have just studied, a symmetry of a regular 
polygon with n  vertices is a bijective function from }n,,2,1{ K  to }.n,,2,1{ K  
The set of all these symmetries is denoted by .2nD You will study more about 
these in later units. 
 
So far you have studied a certain kind of bijective function. Let us move to a 
more general setting. 
 
Definitions: Let X  be a non-empty set.  

i) A bijection from X  to X  is called a permutation of .X  We denote the 
set of all permutations of X  by .S(X)  

ii) If },n,,2,1{X K=  then )X(S  is denoted by ,nS  and each element of 

nS  is called a permutation on n  symbols. 
 
Thus, a symmetry of an object is a permutation. But there are many more. For 

example, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1342
4321

 in ,S4  that is, the function 

.1)4(f,3)3(f,4)2(f,2)1(f:}4,3,2,1{}4,3,2,1{:f ====→  However, this 
is not in the set you found in E36(i).  
 
Suppose we want to construct an element f  in .Sn  How do we do this? We 
can start by choosing ).1(f   Now, )1(f  can be any one of the n  symbols 

.n,,2,1 K  Having chosen ),1(f  we can choose )2(f  from the set 
)},1(f{\}n,,2,1{ K since f  is injective. Thus, )2(f  can be chosen in )1n( −  

ways. Inductively, after choosing )i(f , we can choose )1i(f +  in )in( −  ways. 
Thus, f  can be chosen in !n)n21( =××× K   ways, i.e., nS  contains n!  
elements. 
 
As in the case of a symmetry, we can represent nSf ∈  in a 2-line format by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)n(f)2(f)1(f

n21
K

K
. 

 

For example, take ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1342
4321

f  in .S4  The elements in the top row can 

be placed in any order as long as the corresponding elements in the bottom  

row are changed in the same way. 

Thus, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1324
4312

 also represents the same function f  above. However, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1342
4213

 is not the same as f  because, for example, this function takes  

3  to ,2  while .3)3(f =  
Now, let us look at the symmetry 3r  of Example 18. You saw that ,3)3(r3 =  
that is, 3r  fixes ,3  according to the following definition. 
 
Definition: A permutation f  of a set X  is said to fix Xx∈  if ,x)x(f =  and 
move x  if .x)x(f ≠  
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Thus, in Example 18, 1r  fixes 2r,1  fixes 2  and 3r  fixes .3  Note that 120R  does 
not fix any element and I  fixes every element.   
 
Now, in Example 18, you saw that one of the symmetries was 

,
132
321

R120 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  i.e., 120R  takes 1 to 2,2  to 3,3  to .1  Thus, 120R  is an 

example of a permutation we shall now define. 
 
Definition: A permutation nSf ∈  is called a cycle of length r  (or an r-cycle),  

,r N∈  if there are r1 x,,x K  in }n,,2,1{X K=  such that 1ii x)x(f +=  for  
,x)x(f,1ri1 1r =−≤≤  and f  fixes t  for r1 x,,xt K≠ .  In this case, f  is 

written as .)xx(x r21 K  
 
For example, by ,S)10542(f 10∈=  we mean f  is a permutation of 

}10,,2,1{ K  such that  2)10(f,10)5(f,5)4(f,4)2(f ====  and j)j(f =  for 
}.10,5,4,2{\}10,,2,1{j K∈  

Thus, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

29876105341
10987654321

f  is a cycle of length .4   

Isn’t )10542(  a more elegant and short way of representing ,f  
compared to the 2-line format?  

As another example, consider .
31452
54321
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 This is the cycle 

)43521(  in ,S5  of length .5  
Note that, in the notation of a cycle, we don’t mention the elements that are left 
fixed by the permutation.  
 
Now, what is a cycle of length ?1  Consider .S)2( 7∈   
This maps 2  to ,2  and 7,6,5,4,3,1  are fixed. So, all the 7  symbols of 

}7,,2,1{ K  are fixed by ).2(  Thus, .I)2( =  In the same way any  -cycle is the 
identity function. 
 
In this context, consider the following observation.     
 
Remark 11: The reason a cycle gets its name is because of the way each 
element moves to the next, and the last element moves to the first element in 
the cycle. See Fig.8 for a visual interpretation. 
 
Try solving some exercises now. 
 

 
E38) Which of the symmetries in Example 18 are cycles? Is ?SD 36 =  Give 

reasons for your answers. 
 
E39) Give a 3-cycle in ,S7  and its two-line representation. 
 

 
Now, from the course ‘Calculus’, recall how we calculate the composition of 
two permutations, that is, the composition of two bijections. Consider the 
following example in 5S . 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=βα

21435
54321

13452
54321
oo  

Fig.8: A visual 
representation of the cycle 

).xx(x 521 K  

1x  
3x  

4x  

2x  

5x  

1 
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        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
αβαβαβαβαβ

=
)5()4()3()2()1(

54321
 

        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ααααα

=
)2()1()4()3()5(

54321
 

        ),42(
52341
54321

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  since 3,1  and 5  are left fixed here. 

So βα o  is a cycle of length .2  
Consider the following comment in this context.  
 
Remark 12: Note that if α  and β  are bijections of ,X  then βα o  is also a 
bijection of ,X  as you know from the course, ‘Calculus’. 
 
Do this exercise now. 
 
 

E40) Write )231(=α  and )142(=β  in 4S  in the 2-line format. Also check 
if βα o  is a cycle. Further, is αα=α o2  a cycle? Is 2β  a cycle? Is 

?αβ=βα oo  Give reasons for your answers. 
 

 
With this we come to the end of this introduction to permutations. You will 
study these objects in Unit 2 also, and, in great detail, in Unit 9. 
 
Let us now see what we have discussed in this unit. 
  

1.6  SUMMARY 
 
In this unit, you have studied the concepts and processes given pointwise 
below. 
 
1. For ab,b,a ∗∈∈ ZZ  iff Z∈∃ c  s.t. .bca =  
 
2. The proof, and applications of, the Division Algorithm: Let 

.0b,b,a >∈Z  Then there exist unique integers r,q  such that 
,rqba +=  where .br0 <≤  

 
3. i) The g.c.d  of any two elements ∗∈Zb,a  is nbma)b,a( +=  for 

some .n,m Z∈  (In fact, )0,a(  is also defined for ,0a ≠  and 
.)a)0,a( =  

 ii) The l.c.m of any two elements ∗∈Zb,a  is .
)b,a(

ab]b,a[ =  

 

4. The Euclidean algorithm for finding .b,a),b,a( ∗∈Z  
 
5. The proof, and the applications of, the Fundamental Theorem of 

Arithmetic: Every integer 1n >  can be written as ,pppn n21 K=  where 

n1 p,,p K  are prime numbers. Further, this representation is unique, 
except for the order in which the prime factors occur. 

 
6. A partition of a non-empty set S  defines an equivalence relation on .S  

Conversely, an equivalence relation on S  defines a partition on .S  
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7. Examples, and basic terminology, pertaining to matrices. 
 
8. Operations of the transpose of a matrix, addition and subtraction of two 

matrices in ),(nm CM ×  scalar multiplication in ),(nm CM ×  multiplication of 
an nm×  matrix and an rn×  matrix. 

 
9. The definition, and examples, of a symmetry of an object in a plane. 
 
10. The definition, and examples, of a permutation of any set .X  
 

11. !.nSn =  
 
12. The definition, and examples, of a cycle of length .r,r N∈    
 
We shall now give the solutions to the exercises in the unit. Only look at them, 
once you have solved the exercises on your own. These have been given so 
that you can check them against your solutions to see how far you are on the 
right track. In particular, our solutions may help you present the argument 
concerned in a mathematically well-reasoned way. In some cases we have 
presented only the answer, or very brief solutions. 
 

1.7  SOLUTIONS / ANSWERS  
 

E1) i) Since .0a,00a =⋅  

  Since aa1 =⋅  and ,a)a)(1( =−−  a)1(±  and .a)a(±  
 

 ii) ,adbba =⇒  for some .d Z∈  
       d)ac(c)ad(bc ==⇒  
       .bcac⇒  
 

 iii) ,bec,adb ==  for some ,e,d Z∈  
  .adec =∴  .ca∴  
 

 iv) ,adbba =⇒  for some Z∈d  

  ,beaab =⇒  for some .e Z∈  
  ,1deadea =⇒=∴  since .0a ≠  
  .1e ±=∴  
  .ba ±=∴  
 
  Conversely, if ,ba ±=  then from (i), ba  and .ab  
 

 v) ac  and ceb,cdabc ==⇒  for some .e,d Z∈  
  ∴ for any ),eydx(cbyax,y,x +=+∈Z  and .eydx Z∈+  
  ).byax(c +∴  
 
E2) .15)]30(3[)75(,15)302(75 +−×=−+×=  
 
E3) Let .3r0,rq3a <<+=  So 1r =  or .2  
 If ,1r =  then .1)q2q3(31q6q9a 222 ++=++=  
 If ,2r =  then ,1q313q12q94q12q9a 222 +′=+++=++=  where 

.1q4q3q 2 ++=′  
 Thus, in both cases the remainder on dividing 2a  by 3  is .1  
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E4) Let ,c3ba 22 =+  for some .c Z∈     …(10) 
 Now, suppose .a3  Then ,a3 2  say ,m3a2 =  for some .m Z∈  

 So, by (10), ),mc(3b2 −=  that is .b3 2  

 So, by E3, .b3  

 Similarly, if ,b3  then .a3   
 Now suppose 3   a  and 3   .b  Then by E3,  
 ,1q3a2 +=  and ,1q3b2 +′=  for some .q,q Z∈′  
 So ,2)qq(3ba 22 +′+=+  i.e., 3    ),ba( 22 +  a contradiction.  
 Hence, a3  or .b3  But, if 3  divides either of them, you have already 

seen that 3  divides the other. 
 Hence, a3)ba(3 22 ⇒+  and .b3  
 
E5) i) Here .210717)b,a( ⋅+⋅==  Thus, 1m =  and .0n =  
 

 ii) Since 5  is a prime, and 5    .1)271,5(,271 =−−   
  Also .154)5()271( −−=−  So ).1)(271()5(541 −−+−=  
  So 1n,54m −==  here. 
 

 iii) Here .c)c,c()b,a( ||=−=  
  If .c1)c(0c)b,a(,0c ⋅+−==>  
  If .c0)c(1c)b,a(,0c ⋅+−=−=<  
 
E6) Let ).b,a(d =  
 Now, let )b,a(h −=  and ).b,a(k −−=  
 Since ).a(d,ad −  So .hd  

 Also .ah)a(h ⇒−  So .dh  Thus, .dh ±=  
 But .0d,0h >>  So .dh =  
 Similarly, show that .hk =  
 Thus, .khd ==  
 
E7) Suppose p   .a  Then .1)a,p( =  ∴ by Theorem 6, .bp  
 
E8) Let )n(P  be the predicate that  
 in21 apaaap ⇒K  for some .n,,2,1i K=  
 Verify that )1(P  is true. 
 Suppose )1m(P −  is true for some .2m ≥  
 Now, let .aaap m21 K  Then .a)aa(p m1m1 −K  

 By E7, )aaa(p 1m21 −K  or .ap m  

 If ,aaap 1m21 −K  then iap  for some 1m,,1i −= K (since )1m(P −  is 
true). 

 iap∴  for some .m,,1i K=   
 )m(P∴  is true. 
 )n(P∴  is true .n N∈∀  
 
E9) You have Z∈> r,q,0b  s.t. .rbqa +=  
 Now, let .d)b,a( =  Then ad  and .bd  ),bqa(d −∴  i.e., .rd   
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 Also, if bc  and ,rc  then ),rbq(c +  i.e., .ac  So .dc  
 Hence, ).r,b(d =  
 

E10) i) Let .d)a,p( =  Then .pd  So 1d =  or .pd =  

  Since ad  and p   .pd,a ≠  .1d =∴  
 

 ii) Now, if ,pppa r21 m
r

m
2

m
1 K=  then .pppa r21 m2

r
m2

2
m2

1
2 K=  

  So i
2 ppap =⇒  for some .r,,1i K=  So .ap  

 

E11) Suppose, to the contrary, .p Q∈  

 Then ,
b
ap =  where 0b,a ≠  and .1)b,a( =  

 Then .appbap
b
a 222

2

2

⇒=⇔=  

 So, by E10(ii), ,ap  say ,apc =  for some .c Z∈   

 Then .pbacp 2222 ==  
 So .bpc 22 =  Hence, .bp  

 So ),b,a(p  i.e., ,1p  a contradiction. 

 Hence, .p Q∉  
 
E12) We shall prove the contrapositive (see Sec.1.3, Unit 1, Real Analysis) of 

the given statement, i.e, if ,n m/1 Q∈  then Z∈m/1n  for .m,n N∈  

 So, let ,
b
an m/1 =  where 1)b,a( =  and .1b ≠  

 Then ,
b
an m

m

=  i.e., .anb mm =  

 Let p  be a prime s.t. .bp m  Then, as in E10(ii), .bp  

 Also .apapbp mm ⇒⇒  

 So ,1)b,a(p =  a contradiction. 
 Thus, .1b =  
 Hence, .n m/1 Z∈  
 

E13) By Theorem 7, ,1t,pppn t21 ≥= K  where the spi  may not all be distinct. 
 Now, by re-ordering the spi  if necessary, let 1p  be the least of all the 

.spi  
 Let .pppp 1mi2i1i1 1111 −+++ ==== L  

 Since ,j,ipppp ijji ∀=  we can gather these spm i1  together and write 

them as .p 1m
1  

 Now look at .m
p
n

1m
1

=  Again choose the least among all the spi  that m  

is factored as. Put this as .p2  Note that .pp1 21 <<  Now gather all the 
spm i2  which are equal to 2p  to get .ppppm s1jj

m
2

2 K+=  

 So ,pppppn s1jj
m
2

m
1

21 K+=  where ).1js(mmt 21 +−++=  
 Continuing in this way, we get  
 .tmmm,pp1,pppn r21r1

m
r

m
2

m
1

r21 =+++<<<= LKK  
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E14) .ppp1,m,1r,pppy r21i
m
r

m
2

m
1

r21 <<<<∈≥= KK N  
 If y  is even, then .y2  So .2p1 =  Call .rm1 =  

 Then ,x2y r=  where r2 m
r

m
2 ppx K=  is odd since 2   .x  

 If y  is not even, then ,y2y r=  where .0r =  
 Hence the result. 
 
E15) i) 4941)12345(454321 +=      …(11) 
  2463)4941(212345 +=      …(12) 
  15)2463(24941 +=      …(13) 
  3)15(1642463 +=      …(14) 
  .0)3(515 +=  
  .3)12345,54321( =∴  
 
  Next, ),15(16424633 −=  from (14). 
          )],2463(24941[1642463 −−=  from (13). 
          )4941(164)2463(329 −=  
          ),4941(164)]4941(212345[329 −−=  from (12). 
          )4941822()12345329( ⋅−⋅=  
          )]12345(454321)[822()12345329( −−+⋅=  
          ].54321)822[()123453617( ⋅−+⋅=  
  Thus, .3617n,822m =−=   
 
 ii) First, ).880,61880()880,61880( =−−  
  Now, 280)880(7061880 +=     …(15) 
           40)280(3880 +=     …(16) 
           0)40(7280 +=  
  40)880,61880( =∴  
 
  Next, ),280(388040 −=  from (16). 
            )],880(7061880[3880 −−=  from (15). 
                )880211(]61880)3[( ⋅+⋅−=  
  Hence, .211n,3m =−=  
 
E16) i) You should verify that R  is reflexive and symmetric. 

 R  is also transitive because if nRm  and ,mRp  then 
0m)np(0)mp)(nm(0mp,0nm 2 >⇒>⇒>>   

                          ,0np >⇒  since .0m2 >  
                          .nRp⇒  
 Here }.0nmm{]n[ >∈= Z  
 If ,0n <  then ]n[  is the set of negative integers. So ].1[]n[ −=  
 Also any ∗∈Zn  is in ]1[  or ].1[−  
 Hence, ].1[]1[ −∪=∗Z  
 
ii) You should show that R is an equivalence relation. 
 Also, here ,]100[]10[]1[ K∪∪∪=∗Z  an infinite union.  
 This is because there are integers with m  digits, for each .m N∈  

And any such integer is equivalent to .10 1m−  
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E17) From Unit 1 of the course ‘Real Analysis’, you know that 'qp' ⇒  
denotes that ‘if p  is true, then q  is true’. 

 Clearly, if A  is true, then A  is true. So .AA ⇒  
 Thus, ''⇒  is reflexive. 
 Next, if BA ⇒  and ,CB⇒  then B  is true whenever A  is true, and C  

is true whenever B  is true. Hence, C  is true, whenever A  is true, i.e., 
.CA ⇒  

 Thus, ''⇒  is transitive. 
  
 Now consider  
 ,ba:A =  where ,b,a C∈  
 ,ba:B |||| =  where .b,a C∈  
 Then ,BA ⇒  but AB⇒/ (for example, ,1|||| =ω  where ω  is a complex 

cube root of unity, but 1≠ω ). 
 Thus, ''⇒  is not symmetric. 
 
E18) As in Example 4, you can find them to be ],7[,],1[],0[ K  corresponding 

to ).8(mod≡  
 
 Now if ),1(modba ≡  then ).ba(1 −  Hence, nba +=  for some .n Z∈  

 Thus, }.nna{]a[ Z∈+=  

 Hence, ],0[=Z  since }.nn{]0[ Z∈=  
 Thus, there is only one cell in this case. 
 
E19) i) They are the elements in the 2th row and the 3th column.  
  Thus, they are 0  and ,1  respectively. 

 ii) ].700[  

 iii) Only A  is a square matrix. Its diagonal is }.7,5,1{   

 iv) .
0
5
2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 

 v) It does not exist, since B  has only 3  rows. 
 
E20) There are infinitely many such elements. Note that it is a 24×  matrix 

with entries from ,Q  of which at least one entry should not be in .Z  

 For example, .

00
025.0
43

21

A

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−

=  This is not in ),(24 ZM ×  since .25.0 Z∉   

 However, all the entries of A  are in .Q  
 
E21) Since the diagonal has 4  elements, the matrix has to be a 44×  matrix. 

From the given properties, we see that the matrix is .

1111
011
00i1
000e

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
π
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E22) Since ,RN ⊆  every matrix over N  is a matrix over .R  Hence, if 

),(A n RM∈  with ,n,,1j,iaij K=∀∈N  then ).(]a[A nij NM∈=  
 

E23) Since ]43[  is of order 21×  and ⎥
⎦

⎤
⎢
⎣

⎡
4
3

 is of order ,12×  they have 

different orders. Hence, they are not equal. 
 
E24) No, since they have different orders. 
 

E25) i) .
00
00

)1(100
00)1(1

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−++
+−+

 

 
 ii) ,]0[ nm 0=×  the nm×  matrix with all entries .0  
 
 iii) .]a[]0a[ nmijnmij ×× =+  
 

E26) ,
433

22B,
0i5.1
12.0i

A tt
⎥
⎦

⎤
⎢
⎣

⎡

−
π−

=⎥
⎦

⎤
⎢
⎣

⎡ −−
=  

 .
43i35.1

122.02i)BA( t
⎥
⎦

⎤
⎢
⎣

⎡

−+
π+−−+−

=+  

 Now ,)BA(
43i35.1

122.02iBA ttt +=⎥
⎦

⎤
⎢
⎣

⎡

−+
π+−−+−

=+  as each entry 

in the corresponding position is the same. 
 
E27) Let ].c[C],b[B],a[A ijijij ===  

 i) ],ab[]ba[BA ijijijij +=+=+  since +  is commutative in .S  
        .AB+=   

 ii) ],c)ba[()]cb(a[)CB(A ijijijijijij ++=++=++  since +  is  
                   associative in .S  

      .C)BA( ++=  
 
E28) i) Let ].c[)A(],a[A ij

tt
ij ==   

  Firstly, note that if A  is of order ,nm×  then tA  is of order .mn ×  
Hence, tt )A(  is of order .nm×  

  Next, for ,n,,1j;m,,1i KK ==  
  th)j,i(cij =  entry of tt )A(  

                       th)i,j(=  entry of tA  
                       th)j,i(=  entry of .A  
                       .a ij=  

  Hence, .A)A( tt =  
 

 ii) ,)A(A)AA( ttttt +=+  by Theorem 10(ii). 
                 ,AAt +=  by (i) above. 
             ,AA t+=  by E27(i). 
  Similarly, you should show that .)AA()AA( ttt −−=−  
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E29) ii) Let ].b[B],a[A ijij ==  

  Then ].ba[BA ijij −=−  

  So ]ba[)]ba([]ba[)BA( ijijijijijij α−α=−α=−α=−α  

        ]b[]a[ ijij α−α=  

        ]b[]a[ ijij α−α=  
        .BA α−α=  
 

 iii) Let .]a[A nmij ×=  Then .]a[A nmij ×α=α  

 The th)j,i(  entry of t)A(α  
 =  the th)i,j(  entry of Aα  
 jiaα=      

 α= (the th)j,i(  entry of ).At  
  This is true for every m,,1i K=  and .n,,1j K=  
  Hence, .A)A( tt α=α  
 

 iv) Let ].a[A ij=  Then )]a([]a)[(]a)[(A)( ijijij βα=αβ=αβ=αβ   

  ).A(]a[ ij βα=βα=  
 

E30) ⎥
⎦

⎤
⎢
⎣

⎡
−

=
11
11

A2  and .
2323

2323
2123
23213B3 ⎥

⎦

⎤
⎢
⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡

−
=  

 So .
321

132
2
1

2
32

2
1

2
1

2
32

B3A2 ⎥
⎦

⎤
⎢
⎣

⎡

−
−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−

=−  

 Thus, .
321

132C ⎥
⎦

⎤
⎢
⎣

⎡

−
−−

=  

 
E31) You should show why ~ is reflexive, symmetric and transitive. Note that 

the entries of C  are from .Z  
 Then C5A)(A{][ nm =−∈= × 00 CM  for some )}(C nm ZM ×∈  

     )}.(CC5{ nm ZM ×∈=  
 
E32) Since A  is a 32×  matrix, and B  and C  are 23×  matrices, AB  and 

AC  are defined, but BC  is not defined. 

 Here ,
1335
35122

24
05
39

203
459

AB ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=  and  

 ⎥
⎦

⎤
⎢
⎣

⎡

−+−
++−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

332i29
i5394i432

1i
i1
33

203
459

AC  

 

E33) Since ).(BA),(B,A nn CMCM ∈+∈  Hence, 2)BA( +  is defined. Now  
 ),BA(B)BA(A)BA)(BA()BA( 2 +++=++=+  using .2P  
       ,BBBAABAA ⋅+++⋅=  using .2P  
       .BBAABA 22 +++=  
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E34) Here .
1200
700

C ⎥
⎦

⎤
⎢
⎣

⎡
=  Hence, [ ] ,900,4300,15700,20AC

t
=  which 

represents the money invested by each shop for both the unsold titles. 
 
E35) Let us rewrite the given equations as  
 5z4y3x7 =++  
 6z0y32 =⋅++  
 19zy4x0 =+−⋅  
 Now if you look at the linear system )I(  at the beginning of Sec.1.4, you 

will see how to write this in the required form. 

 Take .
19
6
5

B,
z
y
x

X,
140
032
437

A
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=  

 Then check that the equations are given by the equivalent matrix 
equation .BAX =  

 
E36) i) As we have done with an equilateral triangle, take a square. Draw 

its outline on a table. Number its vertices in the anti-clockwise 
direction, as in Fig.9.  

  Now see how many lines of symmetry it has – for example, the line 
joining opposite vertices, or a line joining the mid-points of 
opposite sides, is a line of symmetry. Check if there can be any 
more. 

  Again, rotate this square about its centre (which is the intersection 
of its diagonals) through o90  in the anti-clockwise direction. You 
will get a symmetry. What are the other rotational symmetries?  

  In the following chart we give all the symmetries. 
 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

4321
4321

I  

   

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

4123
4321

r1  

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2341
4321

r2  

   
  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

3412
4321

r3  

   
   

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1234
4321

r4  

   
   

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1432
4321

R90  

 
 

1 1 44

332 2

I

Fig.9: A square, and its 4 
lines of reflection 
symmetry. 

1 

2 3 

4 

1 2 34

432 1

3r  

1 4 34

232 1

90R  

1 3 44

132 2

1r  

1 1 24

332 4

2r  

1 4 14

232 3

4r  
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  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2143
4321

R180  

   

 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3214
4321

R 270  

  
  
 You can take the composition of any of these, and find that it will 

be one of these only. For example, .R
2143
4321

rr 18021 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=o  

 
ii) An isosceles triangle has only one line of symmetry (see Fig.10), 

and no non-trivial rotation. Thus, this set has only two elements, I  

and .
231
321
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
E37) Verify that N  has no reflection symmetry. 
 It has two rotation symmetries, IR 0 =  and .R180  
  
 B  has the trivial rotation symmetry, ,I  and a reflection symmetry about 

the horizontal line shown in Fig.11. Thus, N,B  and an isosceles triangle 
have the same number of symmetries. 

 
E38) Every element of ,D6  apart from ,I  is a cycle. 
 )21(r),31(r),32(r 321 ===  are 2-cycles. 
 )231(R),321(R 240120 ==  are 3-cycles. 
 
 Also note that 3S  consists of 6  permutations of }.3,2,1{  All these are in 

.D6  Hence, .DS 63 =  
 
E39) You can pick any, for example, ).531(  

 .
7614523
7654321

)531( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 

E40) .
1342
4321

,
4213
4321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=β⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=α  

 ),342(
3241
4321

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=βα o  a 3-cycle. 

 You should check that )321(2 =α  and ).241(2 =β  

 Further, ).431(
1423
4321

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=αβ o  

 Since 1)1( =βα o  and .,3)1( αβ≠βα=αβ ooo  

Fig.11 

1 

2 3 

Fig.10: An isosceles triangle. 

1 3 2 4

1 32 4 

180R  

1 2 1 4

4 32 3 

270R  

B 
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  UNIT 2                                  

           GROUPS 

Structure       Page Nos. 
 
2.1 Introduction                53  

Objectives 
2.2 What is a Group?               54 
2.3 Elementary Properties of Groups             63 
2.4 Some Important Groups              70 

Integers Modulo n 
Symmetric Groups 
Dihedral Groups 
Matrix Groups 
Roots of Unity 
Direct Product 

2.5 Summary                84 
2.6 Solutions / Answers               84  

          

2.1 INTRODUCTION 
 
In the courses you have studied so far, you have worked with many sets, as 
well as with binary operations on some sets. In this unit, you will study sets 
with binary operations defined on them that follow certain rules. These rules 
place an algebraic structure on the sets concerned. We call such an algebraic 
system a group. 
 
The theory of groups is one of the oldest branches of abstract algebra. It has 
many applications in mathematics and in the other sciences. Group theory has 
helped in developing physics, chemistry and computer science, and, of 
course, mathematics! Its own roots go back to the work of the eighteenth 
century mathematicians Lagrange, Ruffini and Galois. With this unit, you will 
begin the study of this theory.   
 
In Sec.2.2, you will study the definition of a group, and some examples of 
groups. Here you will also see the wide variety of groups – finite, infinite, 
commutative, non-commutative. In this section, you will also study about the 
tables of the binary operations involved in finite groups.    
 
In Sec.2.3, we will discuss details of some basic properties that the elements 
of any group satisfy.   
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Finally, in Sec.2.4, you will be introduced to six types of well known, and often 
used, groups.  
 
In future units we will be developing group theory further. Study this unit well, 
so that your foundation for the rest of the course is strong. Doing so, will help 
you achieve the learning expectations of studying this unit, which we are now 
going to list. 
 
Objectives 
After studying this unit, you should be able to:  

• define, and give examples of, groups; 

• define, and give examples of, abelian and non-abelian groups; 

• explain the difference between a finite and an infinite group; 

• prove, and use, some basic properties of all groups; 

• describe, and use, elementary group properties of the group of integers  
modulo ,n  symmetric groups, dihedral groups, groups of matrices over a 
group, the group of the nth roots of unity (for )n N∈  and the direct 
product of any two groups. 

 

2.2 WHAT IS A GROUP? 
 
In Calculus, you studied about sets and about binary operations. In this 
section, you will study a certain type of algebraic system consisting of a set 
with a binary operation. To understand what this system is, consider ,Z  and 
the binary operation ‘+ ’ on it. You have often used the following properties of 
integers:  

i) ,c,b,a)cb(ac)ba( Z∈∀++=++  

ii) ,aa0a0a Z∈∀+==+  

iii) Given ,a Z∈  we have Z∈− )a(  such that .0)a(a =−+  
 
It is these three properties that make ),( +Z  a group, as you will now see.  
 
Definition: Let G  be a non-empty set and ∗  be a binary operation on .G   
The pair ),G( ∗  is called a group if  

)1G   ∗ is associative, i.e., .Gc,b,a)cb(ac)ba( ∈∀∗∗=∗∗   

)2G   G contains an element e  such that  .Gaaeaea ∈∀∗==∗  (Here e  is 
called an identity element of G  for ).∗    

)3G   for every element a  in ,G  there is an element b  in G  such that  
.abeba ∗==∗  (Here b  is called an inverse of a in G  with respect to 

).∗  
 
You have seen that ),( +Z  is a group. Let us look at another example. 
 
Example 1: Show that ),( +R  is a group, but ),( ⋅R  is not. 
 
Solution: You know that +  is an associative binary operation on .R   An 
identity element with respect to +  is ,0  and an inverse of R∈r  w.r.t. +  is  

).r(−  Thus, ),( +R  satisfies 2G,1G  and .3G  Therefore, it is a group. 
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Now, you know that multiplication in R  is an associative binary operation and 

R∈1  is a multiplicative identity.  But does every element in R  have a 
multiplicative inverse? For instance, does 0  have an inverse with respect to ·? 
No, since there is no real number r  such that .10r =⋅  Hence, ),( ⋅R  does not 
satisfy .3G  
Therefore, ),( ⋅R  is not a group. 

*** 
 
Consider the following related observation. 
 
Remark 1: ),G( ∗  is called a semigroup if ∗  satisfies the property .1G  Thus, 
every group is a semigroup. Thus, ),( ⋅R  is a semigroup, since it satisfies 

.1G  So, this is an example of a semigroup that is not a group. 
 
Doing the following exercise will give you some more examples of groups. 
 
 
E1) Check whether or not ),(),,( ⋅+ ∗RQ  and ),( −C  are groups. 
 
E2) Is the set of 2-cycles in 3S  a group w.r.t. the composition of functions? 

Why, or why not? 
 
 
You have seen that to show that ),G( ∗  is a group, you need to show that G  
satisfies 2G,1G  and .3G  For ,2G  you have to show that there is an Ge∈  s.t. 

aea =∗  and  .aae =∗  Similarly, for 3G  you need to show that given 
GbGa ∈∃∈  s.t. eba =∗  and .eab =∗  However, as you will now see, it is 

sufficient to show that ∗  satisfies the following axioms. 
 

∗′)1G  is associative (which is the same as ),1G  
Ge)2G ∈∃′  such that ,Gaaea ∈∀=∗  

)3G ′  Given Gb,Ga ∈∃∈  such that .eba =∗  
 
What we are saying is that the two sets of axioms 3G,2G,1G  and 

3G,2G,1G ′′′  are equivalent. That is, to show that ),G( ∗  is a group, we only 
need to prove that aea =∗  and that an inverse b  of any Ga∈  only needs to 
satisfy .eba =∗  We do not need to show both aea =∗  and ,aae =∗  or 

eba =∗  and .eab =∗  
 
In fact, 2G,1G  and 3G  (taken together) are also equivalent to the following 
axioms: 

∗′′ )1G  is associative, 
Ge)2G ∈∃′′  such that ,Gaaae ∈∀=∗  

)3G ′′  Given Gb,Ga ∈∃∈  such that .eab =∗  
 
Of course, as you can see, if ),G( ∗  satisfies 2G,1G  and 3G , then it certainly 
satisfies 2G,1G ′′  and .3G ′  Theorem ,1  below, tells us that if ),G( ∗  satisfies 

,3G,2G,1G ′′′  then it satisfies 2G,1G  and .3G  Once Theorem 1 is proved, 
you have the equivalence of  3G,2G,1G  and .3G,2G,1G ′′′  
(A theorem on the same lines holds for showing the equivalence of 

3G,2G,1G  and .)3G,2G,1G ′′′′′′   

Recall that },0{\SS =∗   
for any set S  containing .0  
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Theorem 1: Let ),G( ∗  satisfy 2G,1G ′′  and .3G ′  Then .Gaaae ∈∀=∗   
Also, given Ga∈ , if Gb∈∃  such that ,eba =∗  then .eab =∗   Thus, ),G( ∗  
satisfies 2G,1G  and .3G                                              
 
To prove this theorem, let us first prove the following result that we will need. 
 
Lemma 1: Let ),G( ∗  satisfy 2G,1G ′′  and .3G ′  If Ga∈∃  such that 

,aaa =∗  then .ea =  
 
Proof: By ,3G ′  we know that Gb∈∃  such that .eba =∗  
Now .ebab)aa( =∗=∗∗  
Also, .aea)ba(a =∗=∗∗    
Therefore, by ,1G ′  .ea =  
 
Now we will use this lemma to prove Theorem 1. 
 
Proof of Theorem 1: 1G  holds since 1G  and 1G ′  are the same axiom.   
 
We will next prove that 3G  is true. For this, let .Ga∈  By Gb,3G ∈∃′  such 
that .eba =∗  Now,  

,a))ba(b()ab()ab( ∗∗∗=∗∗∗  by .1G  
                            ,aba)eb( ∗=∗∗=  by .2G ′   
Therefore, by Lemma 1, .eab =∗   Therefore, 3G  is true. 
 
Now, we will show that 2G  holds. So, let .Ga∈   
Then, by ,2G ′  .aea =∗    
Since 3G  holds, Gb∈∃  such that .eabba =∗=∗    
Then .aea)ab(aa)ba(ae =∗=∗∗=∗∗=∗  
That is, 2G  also holds. 
 
Thus, ),G( ∗  satisfies 2G,1G  and .3G  
 
So, you have seen that the 3  sets of axioms ;3G,2G,1G;3G,2G,1G ′′′  

3G,2G,1G ′′′′′′  are equivalent. Consider the following important remarks in this 
context. 
 
Remark 2: i) Have you noticed the order in which the axioms 2G,1G  and 

,3G  or ,3G,2G,1G ′′′  are given? The order of 2G  and 3G  is important 
because 3G  makes no sense unless 2G  is stated first. The same goes 
for 2G ′  and ,3G ′  or 2G ′′  and .3G ′′  

 
ii) Note that if ),S( ∗  satisfies 2G,1G ′′  and ,3G ′′  or 2G,1G ′′′  and ,3G ′  it 

need not be a group.  
For instance, consider },b,a{}b,a{}b,a{: →×∗  defined by 

}.b,a{Sy,xxyx =∈∀=∗   
Then ∗  is a well-defined binary operation on .S  You can check that it 
satisfies .1G ′   
Also, ,aaa =∗  .bab =∗  So, we can take a  to be an identity, .e  Thus, 

2G ′  is also satisfied. 
Next, .aba,aaa =∗=∗  So 3G ′′  is satisfied.  
However, the definition of a group, requires aab =∗  also, which is not 
true.  

A lemma is a proved 
statement that is needed to 
prove a theorem. 
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Hence, ),S( ∗  is not a group. 
 
 So, for the equivalence of axioms, we must have all 3  of the same set 

of axioms being satisfied.  
  
Now, you know that ),G( ∗  has an identity because of 2G  (or ).2G ′  For 
instance, ),( +Z  has an identity .0  Can ),( +Z  have another additive identity? 
This is what the next result is about. 
 
Theorem 2: Let ),G( ∗  be a group. Then G  has a unique identity w.r.t. ,∗  
and each element in G  has a unique inverse w.r.t. .∗  
 
Proof: Suppose e  and e′  are two identities of G  w.r.t. .∗   
Then, since e  is an identity,  

.eee ′=′∗         …(1) 
Since e′  is an identity,  

.eee =′∗         …(2) 
(1) and (2) tell us that .ee ′=   
Thus, G  has a unique identity e  w.r.t. .∗  
 
Now, let ,Ga∈  and let Gc,b ∈  be inverses of a w.r.t. .∗  So, 

.aceca,abeba ∗==∗∗==∗   
Then )ca(bebb ∗∗=∗=  
            cec)ab( ∗=∗∗=  
            .c=  
Hence, a  has a unique inverse w.r.t. .∗  
 
Because of Theorem 2, we can say the identity of ,G  instead of an identity of 

,G  and the inverse of each .Ga∈   
 
Let us now consider an example of the use of Theorem 1. 
 
Example 2: Check whether or not )),(( 3 +RM  is a group. 
 
Solution: Firstly, note that )(3 RM  is closed w.r.t. ,+  i.e., +  is a binary 
operation on ),(3 RM  since ).(B,A)(BA 33 RMRM ∈∀∈+  
Secondly, from Sec.1.4, Unit 1, you know that +  is associative, so that 1G ′  is 
true. 
Thirdly, for any ,AA),(A 3 =+∈ 0RM  where 0  is the 33×  matrix with all its 
entries being .0  Thus, 2G ′  holds. 
Finally, given )(]a[B),(]a[A 3ij3ij RMRM ∈−=∃∈=  such that .BA 0=+  
So, 3G ′  holds too. 
Hence, by Theorem 1, )),(( 3 +RM  is a group. 

*** 
 
On the same lines as in Example 2, you can show that )),(( n +RM  is a 
group .N∈∀ n   
 
Why don’t you try solving some exercises now?  
 
 

E3) Check whether or not each of the following is a group: 
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i) ),),(( 32 +× CM     ii) ),),(( 3 ⋅CM     iii) ),,( ⋅∗Q    iv) ).,( * ⋅Z   
 
E4) Let +R  and −R  denote the set of positive real numbers and the set of 

negative real numbers, respectively. Check whether or not ),( ÷+R  and 
),( ⋅−R  are groups. 

 

 
So far you have seen examples of groups G  in which the set G  is infinite. So, 
are the underlying sets of all groups infinite? This is not so. We shall discuss 
some examples of groups with the underlying sets being finite. For this, you 
need to know what an operation table is. 
 
Operation Table 
Let S  be a finite set and ∗  be a binary operation on .S  We can represent the 
binary operation by a square table, called an operation table, or a Cayley 
table. The Cayley table is named after the famous British mathematician 
Arthur Cayley (1821-1895). They were first given in a research article by 
Cayley in 1854.  
 
To write this table, we first list the elements of S  vertically as well as 
horizontally, in the same order. Then we write ba ∗  in the table at the 
intersection of the row headed by a  and the column headed by .b  
For example, if }1,0,1{S −=  and the binary operation is multiplication, 
denoted by ·, then the operation · can be represented by Table 1. 
 

Table 1 

· 1−  0 1 

1−  
)1()1( −⋅−  

1=  
0)1( ⋅−  

0=  
1)1( ⋅−  

1−=  

0  
)1(0 −⋅  

0=  
00 ⋅  
0=  

10 ⋅  
0=  

1 
)1(1 −⋅  

1−=  
01⋅  
0=  

11⋅  
1=  

 
Conversely, if we are given a table, we can define a binary operation on .S  For 
example, we can define the operation ∗  on }3,2,1{S =  by Table 2. 
 

Table 2 

1323
2132
3211
321∗

 

 
From Table 2, you can see that all the entries are from .S  Hence ∗  is a binary 
operation on .S  
Further, the table tells us that, 221 =∗  and .232 =∗  
Also, 312 =∗  and ,2112.221 ∗≠∗∴=∗  that is, ∗  is not commutative in this 
example. 
Again, 1333)12( =∗=∗∗  and .232)31(2 =∗=∗∗  

).31(23)12( ∗∗≠∗∗∴  Therefore, ∗  is not associative in this case. 

Fig. 1: Arthur Cayley 
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See how much information a mere table can give! 
 
In Table 2 you have seen that ∗  is a binary operation which is not 
commutative. Actually, by looking at an operation table, you can immediately 
decide if ∗  is commutative or not. Let’s see how. Consider the table below, for 
a binary operation ∗′  on }.3,2,1{  
 

Table 3 

3213
2132
1321
321∗′

 

 
If you look at the entries of Table 3, you will see that they are symmetric about 
the diagonal starting from the upper left entry of the table and ending at the 

bottom right entry of the table, i.e., .
3

1
2

  

This symmetry shows that ,2332,2112 ∗′=∗′∗′=∗′  etc.  
So, if this symmetry is not there in an operation table, the operation will not be 
commutative. For example, this symmetry is missing in Table 2. 
 
Why don’t you try solving a small exercise now? 
 
 
E5) Complete the following table for the operation ∗  on }3,2,1,0{S =  so 

that ∗  is closed on S  and ∗  is commutative on .S  

     

203
102

321
32100
3210∗

 

 
 
Let us now consider some finite sets, and see if operations can be defined on 
them so that they form groups. Look at the following example. 
 
Example 3: Consider the set }a,a,a,a{G 4321=  on which an operation · is 
defined by the Cayley table given below: 

 
       Table 4 

· 1a  2a  3a  4a  

1a  1a  2a  3a  4a  

2a  2a  1a  4a  3a  

3a  3a  4a  1a  2a  

4a  4a  3a  2a  1a  

The group in Example 3 is 
called the Klein 4-group, 
named after the 
mathematician, Felix 
Klein. 



 

 

60 

 
Block 1                                                                                                 Introduction to Groups

Check whether or not ),G( ⋅  is a group. 
 
Solution: By looking at the entries in Table 4, we get the following information: 

i) All the entries are in .G  Hence, · is a binary operation on .G  

ii) ,aaaa)aa( 432321 =⋅=⋅⋅  and  
.aaa)aa(a 441321 =⋅=⋅⋅  

 Thus, ).aa(aa)aa( 321321 ⋅⋅=⋅⋅  
 Similarly, you should check that 

.4,3,2,1k,j,i)aa(aa)aa( kjikji =∀⋅⋅=⋅⋅   
Thus, · is associative. 

iii) Since 1ii1 a,4,3,2,1iaaa =∀=⋅  is the identity w.r.t. ·. 

iv) Since ,aaa,aaa,aaa,aaa 144133122111 =⋅=⋅=⋅=⋅  every element of 
G  has an inverse w.r.t. ·. In fact, each element is its own inverse in this 
case. 

Hence, ),G( ⋅  is a group. 
*** 

 
In the table of Example 3, note that no element is repeated in a row or in a 
column. The following comment is related to this.  
 
Remark 3: The Cayley table of the operation of a group ),G( ∗  cannot have 
the same element repeated in a row or a column. This is because for 

caba,Gc,b,a ∗=∗∈  (in the row corresponding to )a  iff ,cb =  as you will 
see in Theorem 3 later. 
Similarly, bcba ∗=∗  (in the column corresponding to )b  iff .ca =  
 
Now consider another example where G  is finite. 
 
Example 4: Let .1i},i,1{G −=±±=  Check whether or not G  is a group 
w.r.t. multiplication. 
 
Solution: The Cayley table for multiplication in G  is:  
 

Table 5 
 

           

11iii
11iii
ii111
ii111
ii11

−−−
−−
−−−

−−
−−•

 

 
This table shows us that · is a binary operation on .G   
Since · is associative in ,C  and ,CG ⊆  · is associative in .G   
The table also shows us that .Gaa1a ∈∀=⋅  Therefore, 1 is the identity 
element w.r.t. ·.  
Finally, since 1 is in each row, the table shows us that ),G( ⋅  satisfies .3G ′    
Therefore, ),G( ⋅  is a group. 

*** 
 

In Example 4, note that 
},x,x,x,1{G 32=  

where .ix =  
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From Examples 3 and 4 you can see how we can use Theorem 1 to decrease 
the amount of checking we have to do to prove that an algebraic system is a 
group. 
 
Consider a remark about these two examples now. 
 
Remark 4: Note that the groups in both, Example 3 and Example 4, have 4 
elements. But if you replace 4321 a,a,a,a  of Example 3, by ,i,i,1,1 −−  in any 
order, in Table 4, you will find the Cayley tables will not be the same. From 
Table 4, you find that Gaea2 ∈∀=  in Example 3. Table 5 shows that 1i2 ≠  
in Example 4. So the Cayley tables are essentially different. This shows that 
the algebraic structures of the two groups are different.  
 
Now, as you have seen, the underlying set of a group can be finite or infinite. 
In this context, we have the following definitions. 
 
Definitions: Let ),G( ∗  be a group. 
i) If G is a finite set consisting of n  elements, then ),G( ∗  is called a finite 

group of order .n  Here we write ,no(G) =  where )G(o  denotes ‘the 
order of '.G   

 
ii) If G  is an infinite set, then ),G( ∗  is called an infinite group. 
 
iii) If ∗  is commutative on ,G  i.e., ,Gb,aabba ∈∀∗=∗  then ),G( ∗  is 

called a commutative group, or an abelian group.   
 
iv) If ),G( ∗  is not an abelian group, it is called a non-abelian group, or a 

non-commutative group. 
 
Thus, the group in Example 4 is a finite abelian group of order 4.  The groups 
in Examples 1 and 2 are infinite abelian groups.  
 
Now let us look at an example of a non-abelian group.   
 
Example 5: Let G  be the set of all 22×  real matrices with non-zero 

determinant, that is, .0bcad,d,c,b,a
dc
ba

G
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≠−∈⎥
⎦

⎤
⎢
⎣

⎡
= R  

Show that ),G( ⋅  is a non-abelian group, where · is matrix multiplication. 
 
Solution: First, we will show that · is a binary operation. From Sec.1.4, Unit 1, 
you know that if BA,GB,A ⋅∈  is a 22×  matrix.  
Also, you can check that  

,0)B(det)A(det)BAdet( ≠⋅=⋅  since .0Bdet,0Adet ≠≠  
Hence, .GB,AGBA ∈∀∈⋅  
From Unit 1, you also know that matrix multiplication is associative and 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

I  is the multiplicative identity. Note that ,1)Idet( =  and hence .GI∈    

Now, for ⎥
⎦

⎤
⎢
⎣

⎡
=

dc
ba

A  in ,G  the matrix 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−
−

−=

bcad
a

bcad
c

bcad
b

bcad
d

B  is such that  

Fig. 2: Abelian groups are 
named after the gifted 
young Norwegian 
mathematician Niels 
Henrik Abel (1802-1829). 

)B(det)A(det)ABdet( =  

If ⎥⎦
⎤

⎢⎣
⎡

=
dc
ba

A , then 

bcad −  is called the 
determinant of A, 
and is written as   
det A, or .|A|  
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,0
bcad

1Bdet ≠
−

=  and ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

AB .  Thus, .AB 1−=   

Thus, ),G( ⋅  is a group.   
 
Next, let us see why G  is non-abelian. Since, for example, 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
34
12

01
10

43
21

 and ,
21
43

43
21

01
10

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 

we see that ),G( ⋅  is not commutative. 
*** 

 
The infinite non-abelian group in Example 5 is usually denoted by ,)(GL2 R  
and is called the general linear group of degree 2  over .R  We will be using 
this group off and on for examples throughout the course. 
 
Now let us consider an example related to functions. 
 
Example 6: Consider the set ,  of all functions from R  to .R  Check 
whether or not  is a group with respect to pointwise addition, i.e., for 

.x)x(f)x(f)x)(ff(::)ff(,f,f 21212121 RRR ∈∀+=+→+∈  
 
Solution: Firstly, ,I∈  where .x)x(I::I =→RR  Hence, .«≠  
Next, for 2121 ff,f,f +∈  is also a function from R  to .R  Hence, +  is a 
binary operation on .  
Thirdly, for ∈321 f,f,f  and ,r R∈  

)r(f)r)(ff()r](f)ff[( 321321 ++=++       

   ))r(f)r(f()r(f)r(f))r(f)r(f( 321321 ++=++=  
   ).r)](ff(f[ 321 ++=   

Hence, +  is associative in .  
Fourthly, 0  is the additive identity of ,  where .0)x(:: =→ 00 RR  
Finally, given ,f,f ∈−∃∈  where ).x(f)x)(f(::)f( −=−→− RR  Then 

.)f(f 0=−+  
Hence, ),( +  satisfies all the axioms for being a group. 
Note that  is an abelian group, since .f,fffff 211221 ∈∀+=+  

*** 
 
And now, another example of an abelian group. 
 
Example 7: Consider the set ,T  of all translations of ,2R  that is, 

),by,ax()y,x(f:f{T b,a
22

b,a ++=→= RR  for some }.b,a R∈  

Note that each element b,af  in T  is represented by a point )b,a(  in .2R   
Show that T  is an abelian group w.r.t. the composition of functions. 
 
Solution: Let us first see if o  is a binary operation on .T   
For R∈d,c,b,a  and ,)y,x( 2R∈  

)bdy,acx()dy,cx(f)y,x(ff b,ad,cb,a ++++=++=o  
           ),dby,cax( ++++=  since +  is commutative in .R  
            ).y,x(f db,ca ++=   
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.Tfff db,cad,cb,a ∈=∴ ++o       …(3)  

Since R∈+ ca  and .Tff,db d,cb,a ∈∈+ oR     
Thus, o  is a binary operation on .T  
 
Next, ,Tfff b,a0,0b,a ∈=o  using (3). 

Therefore, 0,0f  is the identity element w.r.t. .o  
 
Also, ,fff 0,0b,ab,a =−−o  for ,Tf b,a ∈  using (3). 

Therefore, b,af −−  is the inverse of Tf b,a ∈  w.r.t. .o  
 
Thus, ),T( o  satisfies 2G,1G ′′  and 3G ′ , and hence is a group. 
 
Note that Tf,fffff d,cb,ab,ad,cd,cb,a ∈∀= oo .  Therefore, ),T( o  is abelian. 

*** 
 
Try the following exercises now.   
 
 
E6) Which of the following statements are true? Give reasons for your 

answers. 

 i) ),( * ⋅C  is an abelian group. 

 ii) ),( * ⋅R  is a finite group. 

 iii) ),( O +Z  is a group, where OZ  is the set of odd integers. 

 iv) ),( ⋅Q  is a semigroup. 

 v) ),( ∗+Q  is a group, where +Q  is the set of positive rationals, and 
∗  is defined on ++ ×QQ  by .ab2ba =∗  

 
E7) Show that ),G( ∗  is a non-abelian group, where 

}0a,b,a)b,a({G ≠∈= R  and ∗  is defined on GG×  by 
)dbc,ac()d,c()b,a( +=∗ . 

 
E8) Give an example of the table of a binary operation ∗  on a finite set G  

which shows that ),G( ∗  cannot be a group. Justify your example. 
 
 
We will now look at some basic properties that elements of any group satisfy. 
 

2.3 ELEMENTARY PROPERTIES OF GROUPS 
 
In this section we shall discuss some elementary properties that group 
elements satisfy.  But first, note some conventions we will be following. 
 
Remark 5: Henceforth, for convenience, we will denote a group ),G( ∗  by G  
only, if there is no confusion about the operation concerned.  
We will also denote ba∗  by ,ab  for ,Gb,a ∈  and say that we are 
multiplying a  and .b   
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And finally, we will denote the group identity by ,e  and the inverse of 
Ga∈  by .1a−  

 
Now let us consider some simple properties of a group. You know that 
whenever caba =  or acab =  for c,b,a  in *R , we can conclude that ,cb =  
i.e., we can cancel .a  This fact is true for any group, as you will now see. 
 
Theorem 3: For c,b,a  in a group ,G  

i) .cbacab =⇒=  (This is known as the left cancellation law.) 

ii) .cbcaba =⇒=  (This is known as the right cancellation law.) 
 
Proof: We will prove (i) and leave you to prove (ii) (see E9). 

i) Let .acab =   
 Now, by Gd,3G ∈∃  s.t. .eda =     …(4) 
 Multiplying both sides of (4) on the left by ,d  we get )ac(d)ab(d =  
 ,c)da(b)da( =⇒  using .1G  
 eceb =⇒  
 cb =⇒ . 
Remember that by multiplying, we mean we are performing the operation ,∗  
w.r.t. which G  is a group. 
 
Before going further, go back to Remark 3 for a moment. You should see why 
Theorem 3 shows what is noted there. 
 
Now, let’s go further. Consider any element n  of .Z  You know that 

.n)n( =−−  You also know that )n()m()nm( −+−=+−  for .n,m Z∈  
Similarly, for Q∈2  you know that .2)2( 11 =−−   
More generally, consider the following properties of the inverse of an element 
of any group. 
 
Theorem 4: Let G  be a group.  Then  

i) a)a( 11 =−−  for every ,Ga∈  

ii) 111 ab)ab( −−− =  for all .Gb,a ∈  
 
Proof: i) For .Ga,Ga 1 ∈∈ −  Let .b)a( 11 =−− By the definition of inverse, 

.b)a(e)a(b 11 −− ==       …(5) 
 But, by definition,  
 .eaaaa 11 == −−        …(6) 
 Since the inverse of an element is unique (Theorem 2), we see from (5) 

and (6) that  ,ab =  that is, .a)a( 11 =−−  
 

ii) For .Gab,Gb,a ∈∈  Therefore, ,G)ab( 1 ∈−  such that   
 .e)ab)(ab( 1 =−        …(7) 
 However, ,a)b)ab(()ab)(ab( 1111 −−−− =  by associativity. 
             ),a)bb(a( 11 −−=  by associativity.  
             ,a)ae( 1−=  since .ebb 1 =−  
             ,aa 1−=  since .aae =  
             ,e=  since .eaa 1 =−  
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 Thus, .e)ab)(ab( 11 =−−       …(8) 
Thus, by (7) and (8), and by the uniqueness of the inverse, we get 

111 ab)ab( −−− = . 
 
Note that, for a group Gb,aba)ab(,G 111 ∈∀= −−−  only if G  is abelian. For 
instance, consider the following example. 
 
Example 8: Show that 111 )AB(BA −−− ≠  for some )(GLB,A 2 R∈  (see 
Example 5). 
 

Solution: Consider .
01
11

B,
10
12

A ⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=  

Then .
01
21

AB ⎥
⎦

⎤
⎢
⎣

⎡
−

=   

Also .
11
10

B,
10

2121
A 11

⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ −
= −−  So .

11
121

BA 11
⎥
⎦

⎤
⎢
⎣

⎡ −−
=−−  

Thus, .
10
01

121
123

)BA)(AB( 11
⎥
⎦

⎤
⎢
⎣

⎡
≠⎥

⎦

⎤
⎢
⎣

⎡
=−−  

Thus, .)AB(BA 111 −−− ≠  
*** 

 
Try doing some exercises now. 
 
 
E9) Prove (ii) of Theorem 3. 
 
E10) Let }a,a,a{G 321=  be a commutative group with respect to .∗  

Complete the Cayley table below. 

     

3

132

1

321

a
aaa

a
aaa∗

 

 
E11) If in a group ,G  there exists an element g  such that ggx =  for all 

,Gx∈  then show that }.e{G =  
 
E12) For c,b,a  in a group .cabcab,G =⇒=  Is this true or false? Give 

reasons for your answer. 
 
E13) Let n21 a,,a,a K  be in a group .G  Find .)aaa( 1

n21
−K  

 
E14) Let xx2 =  for each x  in a group .G  Show that G  is abelian. Is the 

converse true? Why, or why not? 
 
E15) Let ex2 =  for each x  in a group .G  Show that G  is abelian. Is the 

converse true?  
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Let us now prove another property of groups. 
 
Theorem 5: For elements b,a  in a group ,G  the equations bax =  and 

bya =  have unique solutions in .G  
 
Proof: You will first see why bax =  has a solution in ,G  and then you will see 
why the solution is unique. 
For ,Gb,a ∈  consider .Gba 1 ∈−   
Then .bebb)aa()ba(a 11 === −−   
Thus, ba 1−  satisfies the equation bax = , i.e., bax =  has a solution in .G  
 
Next, to see uniqueness, suppose 21 x,x  are two solutions of bax =  in .G  
Then .axbax 21 ==   By the left cancellation law, we get .xx 21 =    
Thus, ba 1−  is the unique solution in .G  
 
Similarly, using the right cancellation law, you should prove that 1ba−  is the 
unique solution of bya =  in .G  
 
Let us look at what Theorem 5 tells us in some particular cases. 
 

Example 9: Consider ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

40
51

B,
21
32

A  in ).(GL2 R Find X  and Y  s.t. 

BAX =  and .BYA =  
 
Solution: From Theorem 5, you know that .BAX 1−=  Now,  

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=−

21
32

A 1  (see Example 5). 

.X
31
22

40
51

21
32

BA 1 =⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=∴ −  

Verify that BAX =  for this .X  
 
Similarly, you should find .BAY 1−=  

*** 
 
In the next example, we consider an unusual group. 
 
Example 10: Let S  be a non-empty set.  Consider ),S(℘  the set of all subsets 
of ,S  with the binary operation of symmetric difference Δ , given by 

).S(B,A)A\B()B\A(BA ℘∈∀∪=Δ  
Check whether or not )),S(( Δ℘  and )),S(( ∩℘  are groups. If they are, are 
they abelian groups?  
Further, is there a unique solution for the equations BAY =Δ  and 

?)S(B,ABAY ℘∈∀=∩  Why, or why not? 
 
Solution: Let us first consider ).),S(( Δ℘ Δ  is an associative binary operation 
on ).S(℘  You can check this by using the properties of the set operations that 
you studied in Block 1 of the course, Calculus, namely,  

),S(B,ABA)BA(,BA)BA(,BAB\A ccccccc ℘∈∀∩=∪∪=∩∩=  
and that ∪  and ∩  are commutative and associative.   

You would be familiar 
with ),S(℘  from Unit 2 
of Calculus. 



 

 

67

 
Unit 2                                                                                                  Groups
Δ  is also commutative since  

)B\A()A\B()A\B()B\A(BA ∪=∪=Δ  
          ).S(B,AAB ℘∈∀Δ=  
 

Here, «  is the identity element w.r.t. Δ  since ).S(AAA ℘∈∀=Δ«  
 

Further, any element is its own inverse, since ).S(AAA ℘∈∀=Δ «  
 

Thus, )),S(( Δ℘  is an abelian group. 
 
Let us now consider ).),S(( ∩℘  As you know, ∩  is an associative binary 
operation on ).S(℘  Also, ),S(AASA ℘∈∀=∩  so that S  is the identity 
w.r.t. .∩  However, given a proper subset A  of ,S  there is no )S(B ℘∈  s.t. 

.SBA =∩   
Thus, )),S(( ∩℘  is not a group.  
Note that SAY =∩  does not have a solution for .SA),S(A ≠℘∈   
 
For B,A in )),S(( Δ℘  we want to solve .BAY =Δ   But we know that A  is its 
own inverse.  So, by Theorem 5, ABABY 1 Δ=Δ= −  is the unique solution.  
What we have also proved here is that BA)AB( =ΔΔ  for any B,A  in ).S(℘  

*** 
 
Try solving the following exercises now. 
 
 
E16) Is ),( −Z  a group?  Can you obtain a unique solution for 

?b,a,bxa Z∈∀=−  What conclusion do you draw from this about the 
converse of Theorem 5? 

 
E17) If G  is a semigroup, but not a group, will bax =  have a solution for all 

?Gb,a ∈  Why, or why not? 
 
 
And now let us discuss the repeated operation of an element of a group on 
itself. For example, consider ).,(n +∈ Z  Then .,n3n)nn(,n2nn K=++=+  
Similarly, consider repeated addition on the inverse of ,n  that is, on .n−  

.),n(3)n()]n()n[(),n(2)n()n( K−=−+−+−−=−+−  In this context, consider 
the following definition. 
 
Definition: Let G  be a group.  For ,Ga∈  we define Z∈∀ nan  as follows: 

i) .ea0 =  

ii) ,aaa 1nn ⋅= −  if .0n >  

iii) ,)a(a )n(1n −−=  if .0n <  
Here n  is called the exponent (or index) of the integral power na  of .a  
 
Thus, by definition, aaa,aaa,aa 2321 ⋅=⋅== , and so on; and 

,)a(a,)a(a 313212 −−−− ==  and so on. 
 
Remark 6: When the binary operation is addition, na  becomes .na  For 
example, for any ,a Z∈  the definition above says 
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i) ,0na =  if ;0n =  

ii) n(aaana +++= L  times), if ;0n >  

iii) n()a()a()a(na −−++−+−= L  times), if 0n < . 
 
Let us now prove some laws of indices (the plural of ‘index’) for group 
elements. 
 
Theorem 6: Let G  be a group.  For Ga∈  and ,n,m Z∈  

i) ,)a(a)a( n1n1n −−− ==  

ii) ,aaa nmnm +=⋅  

iii) .a)a( mnnm =  
 
Proof: We will prove (i) and (ii), and leave the proof of (iii) to you (see E18). 
i) If ,0n = ;eaa;ee)a()a( 0n1101n ===== −−−−  and .e)a()a( 01n1 == −−  
 So, in this case (i) is true. 
 
 Now suppose .0n >  Since ,eaa 1 =−  we see that  
 n1n )aa(ee −==  
   n()aa()aa)(aa( 111 −−−= K  times) 
   ,)a(a n1n −=  since a  and 1a−  commute. 
 .)a()a( n11n −− =∴  
 Also, ,a)a( nn1 −− =  by (iii) of the definition, since .0)n( <−  
 nn11n a)a()a( −−− ==∴  when .0n >  
 
 If ,0n <  then 0)n( >−  and  
 1)n(1n ]a[)a( −−−− =  
         ,])a[( 11n −−−=  by the case 0n >  
         ,a n−=  since .Gxx)x( 11 ∈∀=−−  
 Also, )n(1n1 )a()a( −−−− =  
        ,])a[( n11 −−−=  by the case .0n >  
        ,a n−=  since .a)a( 11 =−−  
 So, in this case too, 
 .)a(a)a( n1n1n −−− ==  
 
ii) First, suppose .0m =  Then .nnm =+  Hence,  
 ,aaaa n0nnm ⋅==+  since .ea0 =  
         .aa nm ⋅=  
 Similarly, if ,0n =  then .aaa nmnm ⋅=+    
   
  Now suppose 0m ≠  and .0n ≠  Let us consider 4 situations. 
 
 Case 1 0(m >  and 0)n > : Let us prove the result in this case by 

induction on .n  
 Let )n(P  be the predicate that ,aaa nmnm +=⋅  where m  is given. 
 If ,1n =  then ,aaa 1mm +=⋅  by definition. 
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 Thus, )1(P  is a true statement. 
 Now assume that )k(P  is true, i.e., kmkm aaa +=⋅  for some .1k ≥  
 Then ,aaa)aa()aa(aaa kmkmkm1km ⋅=⋅=⋅=⋅ ++  since )k(P  is true. 
           .a )1k(m ++=    
 Thus, )1k(P +  is true.  
 Hence, by the principle of induction, (i) holds for all 0m >  and 0n > . 
 
 Case 2 0(m <  and 0)n < : Here 0)m( >−  and .0)n( >−  Thus, by  

Case 1, .aaaa )nm()mn(mn +−+−−− ==⋅   
 Taking inverses of both the sides, and using (i), we get 

.aa)a()a()aa(]a[a nm1n1m1mn1)nm(nm ⋅=⋅=⋅== −−−−−−−−+−+  
 
 Case 3 0n0,(m <>  such that 0)nm ≥+ : Here .0)n( >−  So, by 

Case1, .aaa mnnm =⋅ −+    
 Multiplying both sides on the right by ,)a(a 1nn −−=  by (i), we get 

.aaa nmnm ⋅=+  
 
 Case 4 0n0,(m <>  such that 0)nm <+ : By Case 2, .aaa nnmm =⋅ +−   

Multiplying both sides on the left by ,)a(a 1mm −−=  we get .aaa nmnm ⋅=+  
 
 You should prove the cases when 0m <  and 0n >  on the same lines 

as done in Cases 3 and 4.   
 
Hence, nmnm aaa ⋅=+  for all Ga∈  and .n,m Z∈  

 
The proof of Theorem 6 will be complete once you solve E18. 
 
 
You will be applying Theorem 6 very often, through and through the course. 
Let us consider what it says in a particular case. 
 
Example 11: Let ),S(A ℘∈  where .S «≠  Find .nAn Z∈∀  
 
Solution: Here the operation is .Δ  Also, you know that .AAA2 «=Δ=  
So .AA 1 =−   
Now, if ,m,m2n Z∈=  then .)A(A mm2n «« ===  
If ,m,1m2n Z∈+=  then .AAAAA m2n =Δ=Δ= «  
Thus, «=nA  or ,A  depending on whether n  is even or odd. 

*** 
 
Solve the following exercises now. 
 
 
E18) Prove (iii) of Theorem 6. 
 (Hint: Prove, by induction on ,n  for the case .0n >  Then prove for 

.)0n <  
 
E19) Let G  be an abelian group. Prove that  

i) Z∈∀= mabab mm  and  ;Gb,a ∈∀  
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ii) .mba)ab( mmm Z∈∀=  
 
 
We will now discuss some groups in detail. You will be working with these 
groups off and on throughout this course. 
 

2.4 SOME IMPORTANT GROUPS 
 
In this section, we shall introduce you to six types of groups one-by-one. Study 
these carefully as we will use them as examples (and counterexamples!) very 
often throughout this course. 
These types are:  
the group of integers modulo ,n  symmetric groups, dihedral groups, matrix 
groups, the groups formed by the nth roots of unity )n( Z∈  and the direct 
product of groups. 
 
2.4.1 Integers Modulo n 
Consider the set of integers, ,Z  and .n N∈  In Unit 1 you studied that the 
relation of ‘congruence modulo n’ (i.e., the relation ,R  given by aRb  iff n  
divides )ba −  is an equivalence relation. Thus, from Unit 1 you know that this 
gives a partition of Z  into disjoint equivalence classes, called congruence 
classes modulo n.  We denote the equivalence class containing r  by ,r  or 

].r[  
Thus, (modn)}.rmm{r ≡= Z∈  
So an integer m  belongs to r  for some ,nr0,r <≤  iff ),n(modrm ≡  i.e., iff 

),rm(n −  i.e., iff ,knrm =−  for some .k Z∈  

.}kknr{r Z∈+=∴  
You have also seen in Unit 1, that all the congruence classes modulo n of Z  
are .1n,,1,0 −K   

Further, U
1n

0i

i
−

=

=Z  (a disjoint union).   

Let }.1n,,2,1,0{n −= KZ  

We define the operation +  on nZ  by .baba +=+  
Is this operation well-defined?  To answer this, we have to see whether  ba =  
and dc =  in nZ  implies .dbca +=+  
Now, )n(modba ≡  and ).n(moddc ≡  Hence, there exist integers 1k  and 2k  
such that nkba 1=−  and .nkdc 2=−  But then 

.n)kk()dc()ba()db()ca( 21 +=−+−=+−+  

.dbca +=+∴  
Thus, +  is a well-defined binary operation on .nZ  
 

Note that rca =+  for some ,1n,,0r −= K  since .ica
1n

0i
U
−

=

=∈+ Z  

For example, in ,1532,4 ==+Z  since 532 =+  and ).4(mod15 ≡   

Also in ,83107,11 =−=−Z  since .01138 ==+  
 
To improve your understanding of addition in nZ , do the following exercise. 

Note that 
−
i  is a subset of ,Z  

not an element of  .i, ZZ ∈∀   
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E20) Fill up the following operation table for +  on .5Z  
  

+ 0  1  2  3  4  

0       

1       

2       

3       

4       

 
 
Now, let us show that ),( n +Z  is a commutative group, for .n N∈  

i) c)ba(c)ba()cb(a)cb(a)cb(a ++=++=++=++=++  
 ,c,b,ac)ba( nZ∈∀++=  i.e., addition is associative in .nZ  

ii) ,aa0a nZ∈∀=+  i.e., 0  is the identity for addition. 

iii) For nn an,a ZZ ∈−∃∈  such that .0nana ==−+  
 Thus, every element a  in nZ  has an inverse with respect to addition. 

iv) ,b,aababbaba nZ∈∀+=+=+=+  i.e., addition is commutative in 
.nZ  

 
The properties (i) to (iv) above show that ),( n +Z  is an abelian group of 
order .n  
 
Can we define multiplication also on nZ  in a similar way? Let’s see. 
 
Let us define multiplication on nZ  by .abba =⋅   
You should prove that this is a well-defined binary operation on .nZ   
Also, ,c,b,a)cb(ac)ba( nZ∈∀=  and .b,aabba nZ∈∀=    
Thus, multiplication in nZ  is an associative and commutative binary operation. 
You should verify that nZ  also has a multiplicative identity, namely, .1           
But ),( n ⋅Z  is not a group.  Why? For the same reason that ),( ⋅Z  is not a 
group. Not every element of nZ  has a multiplicative inverse. For example, 0  
does not have a multiplicative inverse since .r0r0 nZ∈∀=⋅  
 
But, suppose we consider the non-zero elements of nZ , that is, ).,( *

n ⋅Z  Is this 
a group?  Well, }3,2,1{*

4 =Z  is not a group because · is not even a binary 
operation on ,*

4Z  since .022 *
4Z∉=⋅  However, ),( *

p ⋅Z  is an abelian group 
for any prime ,p  as you will now show for .5p =  
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E21) Show that ),( 5 ⋅∗Z  is an abelian group. 
 (Hint: Draw the Cayley table.) 
 
E22) i) What is the multiplicative inverse of each element of ?11

∗Z  
 
 ii) What is the multiplicative inverse of any element of ,p

∗Z  where p  
is a prime? 

  (Hint: Note that for ,r p
∗∈Z  the g.c.d .)1)p,r( =  

 
 iii) Show that ),( p ⋅∗Z  an abelian group, where p  is a prime. 
 
 
Let us now discuss the symmetric group. 
 
2.4.2 Symmetric Groups 
We will now look at a group whole elements are permutations of a set, a 
concept you have been introduced to in Sec.1.5, Unit .1  In Unit 9 you will 
study this group in more detail. 
 
Let us begin with an example. 
 
Example 12: Let B  be the set of all bijections from R  to .R  Show that B  is a 
group w.r.t. the composition of functions. 
 
Solution: ,B «≠  since x)x(I::I =→ RR  is in .B  
Next, from Calculus you know that if f  and g  are in ,B  then so is .gf o  Thus, 
o  is closed in .B  
 
You also know that .Bh,g,f)hg(fh)gf( ∈∀= oooo  Thus, o  is associative 
over .B  
 
Since I,BffIf ∈∀=o  is the identity w.r.t. .o  
 
Also, given f,Bf ∈  is a bijection from R  to .R  Hence, as you know, there is 

Bg∈  s.t. .Igf =o  
 
Hence, ),B( o  is a group. 

*** 
 
In the example above, B  is the set of permutations of .R  More generally, if 
X  is a non-empty set, )X(S  is the set of all permutations of .X   
From your Calculus course, you know that if α  and β  are 1-to-1 functions 
from X  to ,X  then so is .βα o   
Thus, the composition of functions is a binary operation on the set ).X(S   
This binary operation is associative in general, as you know from the course, 
Calculus; hence, o  is associative in ).X(S    

,IX  the identity map, is the identity in )X(S  because 
).X(SfffIIf XX ∈∀== oo  
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You also know that if XX:f →  is bijective, then XX:g →∃  s.t. 

.Ifggf X== oo  So g  is also bijective, and we denote g  by .f 1−  
So if ).X(Sf),X(Sf 1∈∈ −  
 
Let us put together what we have just said about ).),X(S( o  

i) o  is a binary operation on ),X(S  

ii) o  is associative,  

iii) XI  is the identity element,  

iv) )X(Sf 1∈−  is the inverse of ,f  for any ).X(Sf∈  

Thus, )),X(S( o  is a group.  It is called the permutation group on X.  
 
Now, from Unit 1, you also know that if the set X  is finite, say 

},n,,3,2,1{X K=  then we denote )X(S  by .nS   
 
Definition: The group ),S( n o  is called the symmetric group on n  symbols, 
where .n N∈  
 
From Unit 1, you know that .n!)o(Sn =   
 

Now, consider .S
2413
4321

f 4∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  What will 1f −  look like in the two-line 

format? Since ,Iffff 11 == −− oo  we know that .4,,1ii)i(ff 1 K=∀=−  
So )4(f3),1(f2),3(f)1(ff1 1111 −−−− ====  and ).2(f4 1−=  Thus, 

,
4321
2413

3142
4321

f 1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−  i.e., 1f −  is got by interchanging the top 

and bottom rows of !f  This is true in general – the 2-row representation of 
1f −  in nS  is obtained by interchanging the rows of the 2-row 

representation of .nSf∈  This is because each nSf∈  is a bijection.   
 
So, for instance, if ),321(f =  what is ?f 1−  

Remember, the 3-cycle )321(  is the function given by .
132
321

f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  So 

),312(
321
132

f 1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−  again a 3-cycle!  

 
Doing the following exercises will give you some practice in computing the 
product and inverse of elements in nS .  
  
 

E23) If f  is the cycle )31(  in ,S5  write 1f −  in the 2-row format. Also check if 
1f −  is a cycle or not. 

 
E24) In Sec.1.5, Unit 1, you have obtained all 6  elements of .S3  Write down 

the Cayley table for ).,S( 3 o  Hence obtain the inverse of each element of 
.S3  

 



 

 

74 

 
Block 1                                                                                                 Introduction to Groups

E25) Write the inverses of )21(  and )542(  in .S5  Also, show that 

.)542()21()]542()21[( 111 −−− ≠ oo  (This again shows that in Theorem 
4, we can’t write .)ba)ab( 111 −−− =  

 

 
As we said at the beginning of this sub-section, we shall discuss ),S( n o  in 
detail in Unit 9. For now let us discuss certain groups related to these groups. 
 
2.4.3 Dihedral Groups 
In Sec.1.5, Unit 1, you studied the set of symmetries of some regular 
polygons. As you know, each symmetry of a regular polygon of n  sides is a 
permutation on n  symbols. You have also seen, in E38 of Unit 1, that ),S( 3 o  
is the same as the group of symmetries of a regular 3-gon, that is, an 
equilateral triangle. However, 4S  is not ,D8  the set of symmetries of a square. 
This is because, for instance, 8D  has 8  elements, while 4S  has )24(!4 =  
elements.  
In fact, nS  is not the set of symmetries of a regular n-gon for .3n ≠  But the set 
of symmetries of a regular n-gon is a subset of ,Sn  and is a group w.r.t. .o  To 
see this, let us look at the set in E36 of Unit 1 again, in detail.  
 
Example 13: Show that the set ,S  of symmetries of a square forms a group 
w.r.t. .o  
  
Solution: Consider Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3: 1r  is the reflection about the diagonal through the vertices 1 and 3; 90R  is 

the rotation about the centre of the square, through ,o90  in the anti-
clockwise direction. 

 
Let us write down all the symmetries of the square in the 2-row format, with 
reference to the numbering of the vertices in Fig.3. These are: 

,
2341
4321

r,
4321
4321

I 1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ,

3412
4321

r,
4123
4321

r 32 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

,
1432
4321

R,
1234
4321

r 904 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

.
3214
4321

R,
2143
4321

R 270180 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

1

11

1

2

2

2 

2 

3 

3 

3

3

4

4

4

4

1r  

90R  
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Now, to make the operation table, consider ,rr 32 o  say. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

)3(r)4(r)1(r)2(r
4321

)4(rr)3(rr)2(rr)1(rr
4321

rr
222232323232

32 o  

         .R
1432
4321

90=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   

Similarly, you should carry out the other compositions, and check that the 
table is: 

180902134270270

902703412180180

27018012439090

1321809027044

2411802709033

4132709018022

3249027018011

270180904321

270180904321

RRIrrrrRR
RIRrrrrRR

IRRrrRrRR
rrrIRRRrr
rrrRIRRrr
rrrRRIRrr
rrrRRRIrr

RRRrrrrII
RRRrrrrIo

 

  
Now, by looking at the table, you can see that  

i) o  is a binary operation on .S  

ii) SI∈∃  s.t. .SxxIx ∈∀=o  

iii) For each Sy,Sx ∈∃∈  s.t. .Iyx =o  
 
Also, since composition of functions is associative in general, it is associative 
here too. 
 
Hence, ),S( o  is a group. 
 
Also, note that .RR,RR 3

90270
2
90180 ==  Further, if r  denotes ,r1  then 

904
3
903

2
902 rRr,rRr,rRr ===  and ,rRrR 3

9090 =  where we are using 
multiplication to denote the composition of functions, as per Remark 5. 
  
Similar relationships will hold if we take 2rr =  instead of ,r1  or ,rr 3=  or .rr 4=  

Hence, we can write },rR,rR,rR,r,R,R,R,I{S 3
90

2
9090

3
90

2
9090=  where 

4
90

2 RIr ==  and .rRrR 3
9090 =  

***     
 
The group in the example above is a particular case of what we shall now 
define. 
 
Definition: The group of symmetries of a regular n-gon is called the dihedral 
group of order ,2n  for .3n ≥  It is denoted by .2nD  (Some authors also 
denote this by .)Dn  
 
From Example 13 above, and Example 18, of Unit 1, you may have 
understood why .n2)D(o n2 =  Let us look at the reason, first using an example 
of .5n =  

The term ‘dihedral’ 
comes from the Greek 
words ‘di’, meaning 
‘two’, and ‘hedron’, 
meaning ‘surface’. 
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Let us name the vertices of the regular pentagon ,5,,2,1 K  where 2  is 
adjacent to 3,1  to 5,,2 K  to ,4  and 1 to ,5  moving along the edges of the 
pentagon in the anti-clockwise direction. 
 
Each symmetry will send a vertex to a vertex. So 1 can be sent to any one of 
5  vertices. For example in Fig.4, we show the symmetry obtained on rotating 

it about its centre through 
o

⎟
⎠
⎞

⎜
⎝
⎛

5
360

 in the anti-clockwise direction. Here we 

send 1 to .2  
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.4: The rotation symmetry of a regular pentagon through .o
o

72
5

360
=⎟

⎠
⎞

⎜
⎝
⎛  

 
Once the image of 1 is fixed, 2  has to go to an adjacent vertex. So there are 
only 2  choices for .2  Once the image of 2  is also fixed, then the images of 
the vertices 5,4,3  are determined. Thus, there can be 1025 =×  symmetries 
of a regular pentagon. 
 
In the same way, there are at most 2n  symmetries of a regular n-gon. 
 
Also, generalising from what you have seen in Example 13, if the n-gon 

rotates about its centre through 
o

⎟
⎠
⎞

⎜
⎝
⎛

n
360

 in the anti-clockwise direction, we get 

a symmetry. In fact, we have n  distinct rotational symmetries – through o0  

(which is the same as not moving at all), through ,
n

360 o

⎟
⎠
⎞

⎜
⎝
⎛  through ,

n
3602

o

⎟
⎠
⎞

⎜
⎝
⎛  

through ,
n

3603
o

⎟
⎠
⎞

⎜
⎝
⎛  and so on, up to .

n
360)1n(

o

⎟
⎠
⎞

⎜
⎝
⎛−  

 
Don’t forget! The polygon also has n  distinct reflection symmetries. To see 

how, consider Example 13 to see what happens when n  is even. There are 2
n  

symmetries about the lines joining the mid-points of opposite edges, and there 

are 2
n  symmetries about the lines joining opposite vertices.  

 
To understand why there are n  reflection symmetries when n  is odd, 
consider the case of the pentagon in Fig.5. The n  reflection symmetries are 
about the lines joining each vertex to the mid-point of the edge opposite it. 
 

1 

2 

3

4

5

1 3

5 4

2 

1 3 

5 4 

2 

Fig.5: The 5 lines of 
symmetry corresponding 
to the 5 reflection 
symmetries of a regular 
pentagon. 
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Thus, a regular n-gon has n  rotational symmetries and n  reflection 
symmetries for all .3n ≥  Hence, .n2)D(o n2 =  
 

If we denote the rotational symmetry through 
o

⎟
⎠
⎞

⎜
⎝
⎛

n
360

 of the regular n-gon by 

,R  then the rotation through 
o

⎟
⎠
⎞

⎜
⎝
⎛

n
3602  is got by applying R  twice, that is, it is 

.R2  Similarly, the other rotational symmetries are ,R,,R,R 1n43 −K  and we 
have ,I  the rotational symmetry through ,0o  when the n-gon dos not move at 
all. 
 
Next, consider any reflection symmetry of the n-gon, say the one about the 
line through its vertex ,1  and call it .r  Then taking the mirror image of the 
mirror image of the n-gon about this line will give us the original position of the 
n-gon. Thus, .Ir2 =  This is true for any of the reflection symmetries. 
 
Finally, just as in Example 13, we have 

},rR,,rR,rR,r,R,,R,R,I{D 1n21n2
n2

−−= KK  where IR,Ir n2 ==  and 
.rRrR 1n−=  

 
Try solving some exercises now. 
 
 
E26) Give an element of 4S  that is not an element of .D8  
 
E27) Create the Cayley table for ).,D( 10 o  
 
E28) Is n2D  an abelian group ?3n ≥∀  Give reasons for your answer. 
 
 
We will now discuss another important category of groups. You have been 
introduced to this in Unit 1, and in some earlier examples of this unit. 
 
2.4.4 Matrix Groups 
In Sec.1.4, Unit 1, you studied about matrices and some operations on them. 
In Example 2 and Example 5, you have seen how some sets of matrices form 
a group w.r.t. matrix addition or multiplication. Now, go through those portions 
again before going further. We will build on what you have studied there for 
taking the discussion in this sub-section further. 
 
Let us begin with an example. 
 
Example 14: Show that )),(( nm +× CM  is an abelian group. 
Solution: In Unit 1, you have seen that ,+  given by 

,]ba[]b[]a[ nmijijnmijnmij ××× +=+  where C∈ijij b,a  for ,n,,1j,m,,1i KK ==   

is a well-defined binary operation on ).(nm CM ×  
You have also seen that +  is associative and commutative. 
Next, for any ,AA),(A nm =+∈ × 0CM   where 0  is the nm×  matrix with all 
its entries being .0  
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Finally, given ),(]a[A nmij CM ×∈=  there is )(]a[)A( nmij CM ×∈−=−  such that 
.)A(A 0=−+  

Hence, )),(( nm +× CM  is an abelian group. 

*** 
 
Example 15: Show that )),(( n ⋅CM  is a semigroup, but not a group, where 

.2n ≥  Is ),)(( n ⋅∗CM  a group? 
 
Solution: From Unit 1, you know that · is a well-defined associative binary 
operation on ).(n CM  Thus, )),(( n ⋅CM  is a semigroup. 
In E3 you have noted why )),(( 3 ⋅CM  is not a group. In the same way you can 
see that )),(( n ⋅CM  is not a group for any .n N∈  
 
In fact, for each ,2n ≥  there are infinitely many matrices in )(n CM  that have 
no multiplicative inverse. For example, for ,2n =  consider  

0≠⎥
⎦

⎤
⎢
⎣

⎡
=

00
0a

A  and  .)(
bb
bb

B 2
1413

1211 ∗∈⎥
⎦

⎤
⎢
⎣

⎡
= CM  

Then ,I
10
01

00
abab

bb
bb

00
0a

AB 2
1211

1413

1211 =⎥
⎦

⎤
⎢
⎣

⎡
≠⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=  

since the th)2,2(  entry of AB  is 0  and that of 2I  is .1   
Thus, ),)(( 2 ⋅∗CM  is not a group. 
Similarly, you can show that ),)(( n ⋅∗CM  is not a group for any .2n ≥  

*** 
 
Example 16: Show that )( 823 ZM ×  is a finite abelian group w.r.t. matrix 
addition. What is the order of this group? 
 

Solution: .f,,b,a
fe
dc
ba

)( 8823
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=× ZZM K  

As in Example 14, you should check that addition is a well-defined associative 
binary operation, using what you have studied in Sec.2.4.1. 

Here 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00
00

0  and the additive inverse of 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

fe
dc
ba

 is .
f8e8
d8c8
b8a8

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

 

Hence, )),(( 823 +× ZM  is a group. 
But, why is it finite? Each matrix here has 6  entries. Each entry is one of the 
elements of ,8Z  i.e., .7,6,5,4,3,2,1,0  So each entry has 8  possibilities. 
Note that two different entries of a matrix can be the same element of .8Z  

Thus, the total number of elements in )( 823 ZM ×  is .86  

Thus, this group is finite, of order .86  
 
Finally, you should show that this group is abelian, using the fact that ),( 8 +Z  
is abelian. 

*** 
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Why don’t you solve some exercises now? 
  
 

E29) Let ⎥
⎦

⎤
⎢
⎣

⎡
−

=
01
10

A  and ⎥
⎦

⎤
⎢
⎣

⎡
=

0i
i0

B  be in ),(2 CM  where .1i −=  Show 

that .BAAB,IB,IA 44 −===  Also draw up the Cayley table for 
multiplication in }.BA,BA,AB,B,A,A,A,I{Q 3232

8 =  Hence show that 
),Q( 8 ⋅  is a group. Is it abelian? What is ?)Q(o 8  

 (This group is called the group of quaternions.) 
 
E30) If multiplication in ∗

× )(nm CM  is defined by ],ba[]b[]a[ ijijijij ⋅=⋅  check 

whether or not ),)(( nm ⋅∗
× CM  is a group. 

 
 
In this sub-section you have studied several sets of matrices which form 
groups. These are examples of matrix groups. You will study more about 
them in the course ‘Linear Algebra’. For now, we shall stop our discussion on 
groups of matrices for now, and introduce you to another group. The 
underlying set of this group is a subset of .∗C  
 
2.4.5 Roots of Unity 
In Block 1 of the course Calculus, you studied about how to find the 3rd, 4th, 
5th… roots of any complex number. In particular, you know that 1 has n  
distinct nth roots in .n NC ∈∀  You also know that these lie along the 
circumference of a circle in the plane, with centre at the origin and radius 1 
unit.  

Next, you know that 1 is the identity of C  w.r.t. multiplication. We call this 
identity unity for reasons that you will study in Block 3.  

Thus, the nth roots of unity are the nth roots of .1  
 
Let us now see an example of how the set of nth roots of unity forms a group. 
 
Example 17: Show that the set ,U4  of all the 4th roots of unity, forms a group 
w.r.t. multiplication. 
 
Solution: From Block 1 of the course, Calculus, you know that the polar form 
of 1 is .k)k20sin(i)k20cos()0sini0(cos Z∈∀π++π+=+   
Hence, the polar form of the 4th roots of unity is 

2
ksini

2
kcos)]k20sin(i)k20[cos( 4/1 π

+
π

=π++π+  for .3,2,1,0k =  

Thus, }.i,1,i,1{U4 −−=   
So ),U( 4 ⋅  is the group discussed in Example 4. 

*** 
 
In the example above, did you notice that },i,i,i,i{U 432

4 =  since ?1i −=  
We will refer again to this in Unit 4. 
 
Let us now generalise what you have seen in Example 17. For this purpose, 
let us briefly recall what the nth roots of unity are. From Block 1 of Calculus, 
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you know that the polar form of a non-zero complex number C∈z  is 
),sini(cosrz θ+θ=  where ||zr =  and θ  is an argument of .z   

Moreover, if 1θ  is an argument of ,z1  and 2θ  that of 2z , then 21 θ+θ  is an 
argument of .zz 21   Using these facts, let us now find the nth roots of ,1  where 

.n N∈  
 
If )sini(cosrz θ+θ=  is an nth root of ,1  then .1zn =  
Thus, by De Moivre’s theorem,  

),nsinin(cosrz1 nn θ+θ==  that is,  
)nsinin(cosr)k20sin(i)k20cos( n θ+θ=π++π+  for .k Z∈  …(9) 

Equating the modulus of both the sides of (9), we get ,1rn =  i.e., ,1r =  since 
the modulus is a real number. 
On comparing the arguments of both sides of (9), we see that )k(k20 Z∈π+  
and θn  are arguments of the same complex number. Thus, θn  can take any 
one of the values .k,k2 Z∈π  Does this mean that as k  ranges over ,Z  and 

θ  ranges over ,n
k2π  we get distinct nth roots of ?1  Let us find out.   

 

Now, n
m2sinin

m2cosn
k2sinin

k2cos π+π=π+π  if and only if 

t2n
m2

n
k2 π=π−π  for some Z∈t .  

This will happen iff ntmk += , i.e., ).n(modmk ≡  Thus,  
corresponding to each r  in ,nZ  we get an nth root of unity, 

nr0,n
r2sinin

r2cosz <≤π+π= ; and these are all the nth roots of unity. 

 
For example, if 6n = , we get the six 6th roots of 1 as 43210 z,z,z,z,z  and 5z , 

where .5,4,3,2,1,0j,6
j2sini6

j2cosz j =
π

+
π

=  In Fig.6 you can see that all 

these lie on the unit circle (i.e., the circle of radius one with centre )0,0( ).  
They form the vertices of a regular hexagon. 
 
 

 
  
 
 
 
 
 
 
 
  

 
 
 

  
 
 

Fig.6: The 6th roots of unity, .z,,z 50 K  

O 

Y 

X 

5z  4z  

0z  3z  

2z  
1z  

O 
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Now, let n
2sinin

2cos π+π=ζ .  Then all the nth roots of 1 are 

1n2 ,,,,1 −ζζζ K , since n
j2sinin

j2cosj π
+

π
=ζ  for 1nj0 −≤≤  (using De  

Moivre’s theorem). We denote the set of the nth roots of unity by .nU  
Thus, .}ζ,,ζζ,{1,U 1n2

n
−= K  Note that .Un C⊆    

 
By solving the following exercises, you will prove an interesting property 
relating all the nth roots of .1  This property is often used when working with 
the nth roots of unity. 
 
 

E31) If 1n >  and n
2sinin

2cos π+π=ζ , then show that 

.01 1n32 =ζ++ζ+ζ+ζ+ −L  
 

E32) Show that )},1(,,1{U3 ω+−ω=  where .
2

3i1+−
=ω  

 
 
Now we are in a position to generalise Example 17. 
 
Example 18: Show that nU  is a finite abelian group w.r.t. multiplication.  
 
Solution: As you have seen above, the nth roots of unity are given by 

,n
k2sinin

k2coszk
π+π=  for .1n,,1,0k −= K  

Hence, nU  has n  elements in it. 

Now, ⎟
⎠
⎞

⎜
⎝
⎛ π

+
π

⎟
⎠
⎞

⎜
⎝
⎛ π

+
π

= n
m2sinin

m2cosn
r2sinin

r2coszz mr   

     n
)mr(2sinin

)mr(2cos π+
+

π+
=  

     ,n
j2sinin

j2cos π
+

π
=  where ),n(modj)mr( ≡+  for some j  s.t.       

,1nj0 −≤≤  using the division algorithm. 
Hence, multiplication is a binary operation on .Un  
 
Since multiplication is associative over ,C  and ,Un C⊆  multiplication is 
associative over .Un  
 
The multiplicative identity is .0sini0cos1 +=  

The multiplicative inverse of rz  is ,z rn−  since .1n
n2sinin

n2coszz rnr =
π

+
π

=−  

 
Finally, since multiplication in C  is commutative, the same holds true for 
multiplication in .Un  
 
Thus, ),U( n ⋅  is a finite abelian group. Note that n.)o(Un =  

***  

ζ  is the Greek letter ‘zeta’. 
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Try solving a related exercise now. 
 
 

E33) Draw the Cayley table for multiplication for the set .U6  Hence decide if 
),U( 6 ⋅  is the same as ).,D( 6 o  

 

 
So far you have considered several different types of groups. Now we shall 
consider a group made up of two or more groups. 
 
2.4.6 Direct Products 
In this sub-section we will discuss a very important method of constructing 
new groups by using given groups as building blocks. For example, in your 
previous courses you have come across the set ,RR×  i.e., .2R  This is the 
Cartesian product of R  with itself, as you know. 
 
You also know that for ,)b,a(),y,x( RR×∈   

),yb,xa()b,a()y,x( =⋅  and ).by,ax()b,a()y,x( ++=+   
In fact, ),( +×RR  is a group, with identity ),0,0(  and the inverse of )b,a(  is 

).b,a( −−  On the same lines, given any two groups, we can construct a group 
using their respective binary operations. Let’s see how. 
 
Let ),G( 11 ∗  and ),G( 22 ∗  be two groups. Consider the Cartesian product, ,G  
of 1G  and 2G  (which you studied in Block 1 of the course ‘Calculus’). So 

}.Gy,Gx)y,x({GGG 2121 ∈∈=×=  

Can we define a binary operation on G  by using the operations on 1G  and 
?G2  Let us try the obvious method, namely, componentwise.   

That is, we define the operation ∗  on G  by 
.Gd,b,Gc,a)db,ca()d,c()b,a( 2121 ∈∈∀∗∗=∗  

 
∗  is well-defined: Let )d,c()d,c(),b,a()b,a( ′′=′′=  in .G   
Then .dd,cc,bb,aa ′=′=′=′=  Therefore,  

)db,ca()d,c()b,a( 21 ∗∗=∗  
                     )db,ca( 21 ′∗′′∗′=  
                          ).d,c()b,a( ′′∗′′=   
Thus, ∗  is well-defined. 
 
∗  is closed on :G For ,G)d,c()b,a(,G)d,c(),b,a( ∈∗∈  since 11 Gca ∈∗  
and .Gdb 22 ∈∗  Thus, ∗  is a binary operation on .G  
 
To prove that ),G( ∗  is a group, you need to solve the following exercise. 
 
 

E34) Show that the binary operation ∗  on 21 GGG ×=  is associative. Find 
the identity element, and the inverse of any element )y,x(  in ,G      
w.r.t. .∗  

 

 
So, you have shown that 21 GGG ×=  is a group with respect to .∗  We call G  
the external direct product of ),G( 11 ∗  and ).,G( 22 ∗  (In the next block, you 
shall study about the ‘internal direct product’.) 
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For example, ),( 2 +R  is the external direct product of ),( +R  with itself. 
 
Another example is the direct product ),,(),( ⋅×+ ∗RZ  on which the operation 
is given by ).xy,nm()y,n()x,m( +=∗  
 
We can also define the external direct product of 3, 4 or more groups on the 
same lines, as follows. 
 
Definition: Let ),G(,),,G(),,G( nn2211 ∗∗∗ K  be n  groups. Their external 
direct product is the group ),G( ∗ , where n21 GGGG ×××= K  and 

,Gy,x)yx,,yx,yx()y,,y,y()x,,x,x( iiinnn222111n21n21 ∈∀∗∗∗=∗ KKK  
 .n,,1i K=  
 
Thus, nR  is the external direct product of n  copies of R  and nC  is the 
external direct product of n  copies of ,C  for .n N∈  
 
We would like to make a remark about notation and terminology now. 
 
Remark 7: Henceforth, we will usually assume that all the operations 

n1 ,,, ∗∗∗ K  are multiplication, unless mentioned otherwise, in line with 
Remark 5. Thus, the operation on n21 GGGG ×××= K  will be given by 

.Gb,a)ba,,ba,ba()b,,b()a,,a( iiinn2211n1n1 ∈∀=⋅ KKK  
Further, instead of saying that G  is the ‘external direct product’, we shall just 
say ‘direct product’. 
 
Now try solving the following exercises. 
 
 

E35) Show that 21 GG ×  is abelian iff both the groups 1G  and 2G  are abelian. 
 
E36) If 21 GG ×  is infinite, must 1G  and 2G  be infinite? If 21 GG ×  is finite, 

must 1G  and 2G  be finite? Give reasons for your answers. 
 
E37) Draw the Cayley table for ).,SU( 33 ∗×   What is ?)SU(o 33 ×  
 

 
With this we come to the end of this introduction to groups. The discussion on 
various aspects of groups will, of course, continue throughout this course. For 
now let us consider a brief overview of what you have studied in this unit. 
 

2.5 SUMMARY 
 
In this unit, you have studied the following points. 
 
1. The axioms that define a group, and some examples of this algebraic 

object. 
 
2. In a group ),,G( ∗  the identity w.r.t. ∗  and the inverse of every element 

w.r.t. ∗  are unique. 
 
3. The right and left cancellation laws hold in a group. 
 
4. The definition, and examples, of abelian and non-abelian groups, of 

finite and infinite groups, and the order of a finite group. 
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5. 111 ab)ab( −−− =  for b,a  in a group .G  
 
6. The laws of indices for elements of a group. 
 
7. An introduction to the group of integers modulo ),n(n N∈  the symmetric 

groups, the dihedral groups, matrix groups, the group of the nth roots of 
unity, for ,n N∈  and the direct product of groups. 

 

2.6 SOLUTIONS / ANSWERS 
 
E1) First check that +  is a binary operation on .Q  Then, as in Example 1, 

show that ),( +Q  satisfies .3G,2G,1G   
 
 In Example 1, you have seen that ),( ⋅R  satisfies 1G  and .2G  Hence, 

),( ⋅∗R  also satisfies 1G  and .2G   

Now, for any ∗∗ ∈∈ RR r
1,r  s.t. .rr

11r
1r ⋅⎟

⎠
⎞

⎜
⎝
⎛==⎟

⎠
⎞

⎜
⎝
⎛⋅   

Hence, ),( ⋅∗R  satisfies 3G  also.  
Thus, ),( ⋅∗R  is a group.  
 
Similarly, check that subtraction is a binary operation on .C  Then check 
whether it is associative. For example, is ?)43(24)32( −−=−−  

 Since 1G  is not satisfied, ),( −C  is not a group. 
 
E2) From Unit 1, you know that the set of 2-cycles in 3S  is 

)}.32(),31(),21{(S =  Note that ),12()21( =  and so on. So the 
question is whether ),S( o  is a group. 

 Now, .S)231(
123
321

312
321

)31()21( ∉=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= oo  

 So o  is not a binary operation on .S  
 Hence, ),S( o  is not a group. 
 
E3) i) From Sec.1.4, Unit 1, you know that +  is closed on ).(32 CM ×   
  You also know that +  is associative over ).(32 CM ×  

  Now, you should check that ⎥
⎦

⎤
⎢
⎣

⎡
=

000
000

0  is the identity w.r.t. .+   

  Also, for )(]a[A),(]a[A 32ij32ij CMCM ×× ∈−=−∈=  s.t. 
.)A(A 0=−+  

  Thus, )),(( 32 +× CM  is a group. 
 
 ii) From Sec.1.4, Unit 1, you know that · is an associative binary 

operation on ).(3 CM   

  Also 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

I  is the identity w.r.t. ·.  

  However, not every element has an inverse.  
  e.g., for ),(3 CM∈0  there is no )(A 3 CM∈  s.t. ,IA =⋅0  since  
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  ).(AA 3 CM∈∀=⋅ 00  
  Thus, )),(( 3 ⋅CM  is not a group. 
 
 iii) You should show that ),( ⋅∗Q  is a group, on the same lines as for 

),( ⋅∗R  in E1. 
 
 iv) Does 2  have an inverse w.r.t. · in ?∗Z  No. 
  Hence, ),( ⋅∗Z  is not a group. 
 

E4) For .
b
a,b,a ++ ∈∈ RR  Hence, ÷  is a binary operation on .+R  However, 

show that it does not satisfy .1G  Hence, ),( ÷+R  is not a group. 
 
 Show that · is not a binary operation on .−R  Hence, ),( ⋅−R  is not a 

group. 
 
E5) ∗'  is closed on 'S  tells us that all entries of the table have to be from .S  
 ∗'  is commutative on 'S  tells us that the table’s entries have to be 

symmetric about the diagonal. 
 Thus, since the first row is ),3210(  the first column has to be the 

same, ,

3
2
1
0

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

 and so on. Hence, the table is as below. 

     

21033
10322
03211
32100
3210∗

 

 
E6) i) Show that ),( ⋅∗C  is a group, along the lines of E3(iii). 
  Then explain why it is abelian. 
 
 ii) Since ∗R  is not finite, this is false. 
 
 iii) This is false since +  is not a binary operation on .OZ  
 
 iv) Explain why this is true, as in Example 1. 
 
 v) Check that ∗  is closed on ,+Q  it is associative, its identity is 

+∈Q2
1  and the inverse of a  is .a4

1 +∈Q  

 
E7) First check that ∗  is a binary operation on .G  
 Next, for ,G)f,e(),d,c(),b,a( ∈  

)fe)dbc(,ace()f,e()dbc,ac()f,e())d,c()b,a(( ++=∗+=∗∗  
            ))fde(bce,ace( ++=   
            )).f,e()d,c(()b,a( ∗∗=  
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 Thus, ∗  satisfies .1G ′  
 
 .G)b,a()b,a()0,1()b,a( ∈∀=∗  
 Thus, 2G ′  holds. 
 
 For ).0,1()ba,a()b,a(,G)b,a( 11 =−∗∈ −−  
 Therefore, 3G ′  holds. 
 
 Therefore, ),G( ∗  is a group. 
 
E8) Consider the table below: 

        

2313
2132
1321
321∗

 

 Here }.3,2,1{G =  From the operation table of ,∗  you can see that all 
the entries in the table are from .G  Hence, ∗  is a binary operation on 

.G  However, there is no element in G  that is the identity w.r.t. .∗  Thus, 
2G ′  is not satisfied by ).,G( ∗  Hence, ),G( ∗  is not a group. 

 
E9) As in the proof of (i), .ead =  
 Then .cbcadbadcaba =⇒=⇒=  
 
E10) Since G  is a group, it has an identity e  w.r.t. .∗  By the given entries, 

you know that 222 aaa ≠∗  and .aaa 232 ≠∗  Hence, .ea,ea 32 ≠≠  
Therefore, .ea1 =  

 
 Next, by Remark 3, each element occurs once and only once in each 

row and column of the table. 
 
 Finally, since ),G( ∗  is commutative, the table is symmetric with respect 

to the diagonal from 11 aa ∗  to .aa 33∗  
 Using the points above, you can see that the table is    

    

2133

1322

3211

321

aaaa
aaaa
aaaa
aaa∗

 

  
E11) Take any element of ,G  say .a  Then, by the given condition, 

.gegga ==  By the left cancellation law, this gives .ea =   
 Since a  was an arbitrary element of ,G  this shows that }.e{G =  
 

E12) Consider ⎥
⎦

⎤
⎢
⎣

⎡
=

10
11

A  and ⎥
⎦

⎤
⎢
⎣

⎡
=

11
10

B  in ).(GL2 R  Now .
11
21

AB ⎥
⎦

⎤
⎢
⎣

⎡
=  

 Also ⎥
⎦

⎤
⎢
⎣

⎡ −
=

21
10

C  is such that .
11
21

BC ⎥
⎦

⎤
⎢
⎣

⎡
=  

 So ,BCAB =  but CA ≠  as, for example, their th)1,1(  elements differ. 
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E13) )aaaa)(aaa( 1
1

1
2

1
1n

1
nn21

−−−
−

− KK  
 1

1
1

1n
1

nn1n21 aa)aa(aaa −−
−

−
−= KK  

 1
1

1
1n1n21 aa)e(aaa −−
−−= KK  

 1
1

1
1n1n21 a)aa(aa −−
−−= KK  

 M  
 .e=  
 Hence, .aaaa)aaa( 1

1
1

2
1

1n
1

n
1

n21
−−−

−
−− = KK  

 
E14) Let .Gy,x ∈   
 Then .xyxy)xy(xy 2 ==  
 Thus, ,xyxyyx 22 =  since .yy,xx 22 ==  
 ,yxxy =⇒  cancelling x  from the left and y  from the right. 
 Hence, G  is abelian. 
 
 To see whether the converse is true, consider ).,( +Z  This is abelian, 

but xxx ≠+  for any non-zero .x Z∈  Hence, the converse is not true. 
 
E15) For ,xxex,Gx 12 −=⇒=∈  multiplying both sides by .x 1−  
 Now, for .Gxy,Gy,Gx ∈∈∈   
 So .yxxy)xy(xy 111 === −−−  
 Thus, G  is abelian. 
 
 You could use ),( +Z  to show why the converse is false. 
 
E16) Since subtraction is not associative, ),( −Z  is not a group. However, 

bxa =−  has a unique solution ba −  in .Z  Hence, the converse of 
Theorem 5 is not true. 

 
E17) No, for example, take ).,( ⋅∗Z  It is a semigroup but not a group. Also 

3x2 =  has no solution in .∗Z  
 
E18) When .ae)a(,0n 0m0m ⋅===  So the statement is true. 
 
 Now, let .0n >  We will apply induction on .n   
 For ,1n =  the statement is true, since .aa)a( m1m1m == ⋅  
  
 Now, assume that it is true for ,1k −  that is, ,a)a( )1k(m)1k(m −− =  for some 

.2k ≥  
 Then, ,a)a()a()a( m)1k(m)11k(mkm ⋅== −+−  by (ii) of Theorem 6. 
      ,aa m)1k(m ⋅= −  since it is true for ).1k( −  
      ,a )11k(m +−=  by (ii) of Theorem 6. 
      .amk=  
 So, (iii) is true for .k  Hence, it is true 0n >∀  and .m Z∈∀  
 
 Now, let .0n <  Then .0)n( >−  
 ,])a[()a( 1nmnm −−=∴  by (i) of Theorem 6. 
            ,]a[ 1)n(m −−=  by the case .0n >  
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            1mn ]a[ −−=  
            ,amn=  by (i) of Theorem 6. 
 Thus, ,n,m Z∈∀  (iii) holds. 
 
E19) i) Since .Gb,Gb m ∈∈  So ,abab mm =  as G  is abelian. 
 
 ii) If .eb,ea,e)ab(,0m mmm ====  Hence, .ba)ab( mmm =  
  If ,0m >  use induction on m  to prove it. 
  If ,0m <  then ,ba)ab( mmm −−− ⋅=  since .0)m( >−   
  mmm b)ab(a −− =⇒  
  mmm )ab(ba −=⇒  
  mmm )ab(ab =⇒  
  ,)ab(ba mmm =⇒  since G  is abelian. 
 
E20) Note that +  is a binary operation over .5Z  
 Hence, the table must have entries from 5Z  only. Thus, it is as below: 

    

321044
210433
104322
043211
432100
43210+

 

 
 Did you notice that the entries are symmetric about the diagonal from 

00 +  to ?44 +  What does this tell you about the operation? 
 
E21) From the discussion before the exercises, you know that · is an abelian 

associative binary operation on ,5
∗Z  with identity .1  Thus, the table is as 

below: 

     

12344
24133
31422
43211
4321⋅

 

 The Cayley table above shows that for each ∗∗ ∈∃∈ 55 s,r ZZ  s.t. 

.1sr =⋅  Hence, ),( 5 ⋅∗Z  is an abelian group. 
 
E22) i) You can form the Cayley table of multiplication over ∗

11Z  and obtain 
the inverses as follows. 

  ,87,59,95,34,43,26,62,11 11111111 ======== −−−−−−−−
 

  .1010,78
11 ==
−−  

 
 ii) For 1ptrs1)p,r(,r p =+⇒=∈ ∗Z  for some .t,s Z∈  

  .sr)p(mod1sr 1 =⇒≡⇒ −  
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  Since p

1p

0i
m,is ZZ ∈∃∪=∈

−

=
 s.t. ).1p(m0,ms −≤≤=  

  However, since 0s,1sr ≠=  in .pZ  Hence, ,0m ≠  i.e., 
).1p(m0 −≤<  

  For example, 11 1 =−  since .10p11 =⋅+⋅  (Here .)0t =  

  Again ,1p)1p( 1 −=− −  since ).p(mod1)1p( 2 ≡−  (Note that 
.)1)p2(p)1p)(1p( =−+−−  

 
 iii) Multiplication is closed on :p

∗Z  For p,s,r p
∗∈Z  r  and p  .s  

Since p  is a prime, p  .rs  Thus, .srrs p
∗∈= Z  

 
  Multiplication is associative and commutative over ,∗pZ  since it 

is so over .pZ  

  1  is the multiplicative identity, as discussed earlier. 
 
  Every element has an inverse w.r.t. multiplication, as shown in 

(ii) above. 
   
  Thus, ),( p ⋅∗Z  is an abelian group. 
 

E23) .
54123
54321

)31(f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==  

 So .f
54123
54321

54321
54123

f 1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−  

 Thus, 1f −  is a cycle also. 
 
E24) )}.231(),321(),32(),31(),21(,I{S3 =  
 The Cayley table is  

  

)321(I)31()21()32()231()231(
I)231()21()32()31()321()321(

)21()31(I)321()231()32()32(
)32()21()231(I)321()31()31(
)31()32()321()231(I)21()21(
)231()321()32()31()21(II
)231()321()32()31()21(Io

  

 
 From the table, we see that ),31()31(),21()21(,II 111 === −−−   
 ).321()231(),231()321(),32()32( 111 === −−−  
  
E25) Check that )21()21( 1 =−  and ).452()542( 1 =−  
 Now ).1542()542()21( =o  
 You should check that ).2451()]542()21[( 1 =−o  
 Also ),2451()1452()452()21()542()21( 11 ≠==−− oo  since, for 

example, )1452(  maps 2  to 5  and )2451(  maps 2  to .1  
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E26) Consider .S)321( 4∈  This does not lie in 8D  since if you move the 
vertices 2,1  and 3  of the square, then you have to move vertex 4  also. 
But )321(  leaves 4  fixed and moves the other 3  elements. 

 
E27) },rR,rR,rR,rR,R,R,R,R,r,I{D 432432

10 = where IR,Ir 52 ==  and 

.rRrR 4=  

  

IRRRrRrRrRrRrRrR
RIRRrRrRrrRRrRrR
RRIRrRrrRrRRrRrR
RRRIrrRrRrRRrRrR
rrRrRrRRRRIrRRR

rRrrRrRRRIRrRRR
rRrRrrRRIRRrRRR
rRrRrRrIRRRrRRR
RRRRrRrRrRrRIrr
rRrRrRrRRRRRrII
rRrRrRrRRRRRrI

4323244

4324233

2443322

324324

4323244

4324233

2443322

324324

432432

432432

432432o

 

 
E28) No. For example, from the operation table in Example 13, you can see 

that 190901 rRRr oo ≠  in ,D8  since .rr 34 ≠  

 In general, RrrRrR 1n ≠= −  unless .2n =  
 

E29) Since .I
10
01

A,
10

01
A 42 =⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
=  

 Similarly, check that IB,AB 422 ==  and ,BAABBA 3=−=  since  
 .AAAA)I(A 32 =⋅=−=−  
 Thus, the table for ),Q( 8 ⋅  is as below: 

  

23233

23322

2323

3223

23233

32322

3232

3232

3232

AAIABABBABABA
AAAIBABABBABA
IAAABABABABAB

AIAAABBABABB
BAABBBAAAIAA

ABBBABAAIAAA
BBABAABIAAAA

BABAABBAAAII
BABAABBAAAI•

 

Since 8Q,ABBA ≠  is not abelian. 
Also, 8Q  has 8  elements. Hence, .8)Q(o 8 =  

 
E30) Elementwise multiplication is a well-defined operation on .)(nm

∗
× CM  

However, it is not closed on ,)(nm
∗

× CM  because, for example, 

,)(
00
10

B,
00
01

A 2
∗∈⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= CM but  
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 .)(
0000
1001

BA 2
∗∉=⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅
⋅⋅

=⋅ CM0  

 Hence, ),)(( nm ⋅∗
× CM  is not a group. 

 
E31) Note that )1)(1(10 1n2n −ζ++ζ+ζ+ζ−=ζ−= L  in .C  

 Also 1n
2sinin

2cos ≠
π

+
π

=ζ  since .1n >  

 Hence, .01 1n2 =ζ++ζ+ζ+ −L  
 

E32) The cube roots of unity are ,3
4sini3

4cos,3
2sini3

2cos,1 π+ππ+π       

i.e., ,,,1 2ωω  where .2
3i1

2
3i2

1
3

2sini3
2cos +−

=+−=π+π=ω  

 By E31, .01 2 =ω+ω+  .2
3i1)1(2 −−

=ω+−=ω∴  

 

E33) },,,,,,1{U 5432
6 ζζζζζ=  where .3sini3cos6

2sini6
2cos π+π=π+π=ζ  

 So the table for ),U( 6 ⋅  is as below: 

  

43255

32544

25433

54322

5432

5432

5432

1
1

1
1

1
11
1

ζζζζζζ
ζζζζζζ
ζζζζζζ
ζζζζζζ

ζζζζζζ
ζζζζζ
ζζζζζ•

 

 Now, you know that .SD 36 =  In E24 you have given the Cayley table of 
this group. If you compare the tables, you can see that the one above 
corresponds to a commutative operation, while the one in E24 does not. 

  
Hence, ),U( 6 ⋅  and ),D( 6 o  are different in structure. 

 
E34) ∗  is associative: Let .G)b,a(),b,a(),b,a( 332211 ∈  
 Use the fact that 1∗  and 2∗  are associative to prove that  
 )),b,a()b,a(()b,a()b,a())b,a()b,a(( 332211332211 ∗∗=∗∗  i.e., ∗  is 

associative. 
 The identity element w.r.t. :∗   The identity w.r.t. ∗  is ),e,e( 21  where 

1e  and 2e  are the identities in 1G  and ,G2  respectively. This is because 
.G)b,a()b,a()eb,ea()e,e()b,a( 221121 ∈∀=∗∗=∗  

 The inverse w.r.t. :∗  You should check that the inverse of G)y,x( ∈  is 
),y,x( 11 −−  where .eyy,exx 2

1
21

1
1 =∗=∗ −−  

 
E35) First let us assume 21 GG ×  is abelian. 
 Now, for any ,Gd,b,Gc,a 21 ∈∈   
 ),b,a)(d,c()d,c)(b,a( =  i.e., ).db,ca()bd,ac( =  
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 Thus, caac =  and .dbbd =  
 Hence, 1G  and 2G  are abelian. 
  
 You should prove the converse. For this, you can move in the reverse 

direction along the path of the argument above. 
 
E36) Consider )},0({ +  and ).,( +Z  Then }m)m,0({}0{ ZZ ∈=×  is infinite, 

but }0{  is finite. Hence, 21 GG ×  being infinite does not require both 1G  
and 2G  to be infinite. 

 If either of 1G  or 2G  is infinite, then 21 GG ×  is infinite. 
 Hence, 21 GG ×  being finite requires both to be finite. 
 
E37) .}Sy,Ux)y,x({SU 3333 ∈∈=×  

 Now },,1{U 2
3 ωω=  (see E32). 

 Also 3S  is as in E24. 

 So ,1863SU 33 =×=×  i.e., .18)SU(o 33 =×  
 We will start you off on the table. You should complete it. 

  

KMMM

K

K

K

)I,())21(,())21(,(
))21(,()I,1()I,1(
))21(,()I,1(

2ωωω
ω
ω•
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  UNIT 3                                  

               SUBGROUPS 

Structure       Page Nos. 
 
3.1 Introduction                93   
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3.2 What is a Subgroup?               94 
3.3 Subgroup Tests                96 
3.4 Set Operations on Subgroups            103 
3.5 Summary              107 
3.6 Solutions / Answers             108        
 

3.1 INTRODUCTION 
 
You have studied the algebraic structures of integers, rational numbers, real 
numbers, and finally, complex numbers. You would have noticed that, not only 
is ,CRQZ ⊆⊆⊆  but the operations of addition in each of these sets 
coincide. Similarly, the multiplication in these sets coincide. Further, all these 
subsets are groups with respect to the same addition. In this unit, the focus is 
on such subsets of groups. 
 
In Sec.3.2, you will see that subsets of a group ),,G( ∗  that are groups with 
respect to ∗  (in their own right!), are appropriately named subgroups of .G  In 
this section, you will also study several examples of subgroups of different 
kinds. 
  
In Sec.3.3, you will study conditions on a subset of a group that will ensure 
that it is a subgroup of the group. You will also get several opportunities to 
apply these conditions. 
 
Finally, in Sec.3.4, you will be looking at answers to questions like: Is the 
union of two subgroups a subgroup? Is the intersection of two subgroups a 
subgroup? Here we will also define the product of two subgroups of a group, 
and discuss whether or not it is a subgroup also.  
 
Do study this unit carefully because it consists of basic concepts which will be 
used again and again in the rest of the course. Make sure that you assess 
yourself regarding having achieved the following expected learning outcomes 
of this unit. One way of doing so, as we have said in the courses of other 
semesters too, is to do every exercise on your own, as you come to it. 
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Objectives 
After studying this unit, you should be able to:  

• define, and give examples of, a subgroup of a group; 

• check if the conditions for a subset of a given group to be a subgroup 
are satisfied or not; 

• prove, and apply, results regarding the intersection, union and product of 
subgroups. 

 

3.2 WHAT IS A SUBGROUP? 
 
As you know, .RZ ⊆  Also ),( +Z  and ),( +R  are groups w.r.t. the operation 
+  defined in the same way. This tells us that ),( +Z  is a subgroup of ),,( +R  
as you will now see. 
 
Definition: Let ),G( ∗  be a group.  A non-empty subset H  of G  is called a 
subgroup of G  if 

i) ,Hb,aHba ∈∀∈∗  i.e., ∗  is a binary operation on ,H  and 

ii) ),H( ∗  is a group. 

If ),H( ∗  is a subgroup of ),,G( ∗  we denote this fact, in symbols, by 
.)(G,)(H, ∗∗ ≤  

 
For example, ),( +Z  is a subgroup of all 3  groups, ),(),,( ++ RQ  and ).,( +C   
 
Consider a couple of comments about this concept now. 
 
Remark 1: Re (ii) of the definition above, the associativity of ∗  already holds, 
since it holds for ,G  and .GH ⊆  So what (ii) really requires is that H  must 
satisfy 2G ′  and 3G ′  (or 2G  and )3G  of Unit 2.  
 
Remark 2: In the definition of a subgroup, note that it is important that both H  
and G  are groups w.r.t. the same operation. For example, ,* QQ ⊆  and 

),( ⋅∗Q  is a group. So, is ?QQ ≤∗  No, because Q  is a group w.r.t. addition 
and *Q  is not a group w.r.t. .+  (Why?)   
 
Now, from the definition, you can verify that ).,(),( +≤+ ZZ  In the same way, 
you can see why )(G,)(G, ∗≤∗  for any group .G  This leads us to the 
following definition. 
 
Definition: Let ),G( ∗  be a group and ),G(),H( ∗≤∗  such that 

/
GH .⊆  Then 

H  is called a proper subgroup of .G  We denote this by ,GH <  or / G.H ≤  
 
We would like to make an important remark about notation here. 
 
Remark 3: If ),H( ∗  is a subgroup of ),,G( ∗  we shall just say that H  is a 
subgroup of ,G  provided there is no confusion about the binary operations 
concerned.  We will also denote this fact by .GH ≤  
 If H  is not a subgroup of ,G  we will denote it by .GH </  
 
Let us consider some examples in detail. 
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Example 1: Check whether or not OZ  and EZ  are subgroups of ),,( +Z  

where }n1n2{O ZZ ∈+=  and },nn2{E ZZ ∈=  i.e., OZ  and EZ  are the sets 
of odd integers and even integers, respectively. 
 
Solution: First, we note that OZ  and EZ  are non-empty proper subsets of .Z   
Now, consider +  on .OZ  In E6, Unit 2, you have seen that +  is not a binary 
operation on .OZ  Hence, .O ZZ </  
 
Now, regarding ,EZ  for any ).mn(2m2n2,m,n +=+∈Z  
Hence, +  is a binary operation on .EZ   
Since +  is associative over ,Z  it is associative over .EZ  
Further, E0 Z∈  is the identity w.r.t. .+  
Next, for n2a,a E =∈Z  for some .n Z∈  Hence, .)n(2a EZ∈−=−  
Thus, by the definition, EZ  is a group w.r.t. the same operation that makes Z  
a group. Hence, .E ZZ ≤  

*** 
 
Example 2: Show that )(3 QM  is a proper subgroup of )(3 CM  (see 
Sec.2.4.4, Unit 2). 
 
Solution: Firstly, «≠)(3 QM  and / 33 ).()( CMQM ⊆  (Why?) 

Next, you know, from Unit 2, that )(3 QM  is a group w.r.t. the same operation 
of +  which makes )(3 CM  a group.  
Hence, it is a proper subgroup of ).(3 CM  

*** 
 
Example 3: Show that .nn ZZZ ∈∀≤  
 
Solution: Note that .},n2,n,0{n ZZ ⊆±±= K  
Now, for any nry,nmx,ny,x ==∈ Z  for some .r,m Z∈  
So, ,n)rm(nnrnmyx Z∈+=+=+  since .rm Z∈+  
Thus, +  is closed on .nZ  
 
Next, +  is associative in ,nZ  since it is associative in .Z  
 
Also, Zn0∈  is the additive identity, as it is the identity for .Z  
 
Finally, the additive inverse of Znnm∈  is .n)m(nnm Z∈−=−  
 
Thus, ),n( +Z  is a group. 
Hence, .n ZZ ≤  

*** 
 
Try solving some exercises now. 
 
 
E1) For each of the following, check whether or not ,GH ≤  where the 

operation is .+  

 i) ;G,H CR ==  
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 ii) },,I,I{H 33 0−=  where ,
100
010
001

I3

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=  and );(G 3 ZM=  

 iii) ;G},nn5{H ZZ =∈=  

 iv) ZZ == G,H n  (see Sec.2.4.1, Unit 2); 

 v) )(G),(H nmnm CMRM ×× ==  (see Sec.2.4.4, Unit 2). 
 

E2) Make the Cayley tables for 82Z  and .8Z  Hence decide if 882 ZZ ≤  or 
not. What is the relationship between the two Cayley tables? 

 
E3) Prove that a subgroup of an abelian group is abelian. 
 
 
Here is an important remark about finite subgroups and the corresponding 
Cayley tables. 
 
Remark 4: While working on E2, you would have realised that if G  is finite, 
and ,GH ≤  then the Cayley table for ),H( ∗  will be a sub-table of the Cayley 
table for ).,G( ∗  
 
With this, let us end our introductory discussion on subgroups. We now move 
on to look at some conditions on a subset of a group, that decide whether it is 
a subgroup or not. These conditions will make it easier for us to give 
examples, and non-examples, of subgroups. 
 

3.3 SUBGROUP TESTS 
 
While doing E1, you would have checked four conditions in each case – 
whether ∗  is binary on ,H  and 3G,2G,1G ′′′  of Unit 2. Is there a shorter way 
to decide on whether a subset is a subgroup or not? It turns out that there is. 
Here is a result which appears to cut down our work a bit. 
 
Theorem 1: A non-empty subset H  of a group ),G( ∗  is a subgroup of G  if 
and only if 

i) ∗  is a binary operation on ;H  

ii) ,He∈  where e  is the identity w.r.t. ∗  in ;G  

iii) ,Hh∈∀  the inverse of h  in H  is the same as the inverse of h  in .G  
 
Proof: First let us prove that if ,GH ≤  then these 3  conditions hold. 
 
Now, if ,GH ≤  then the condition (i) is true, by definition of a subgroup. 
 
Regarding (ii), if ),H( ∗  is a subgroup of ),,G( ∗  can the identity element in 

),H( ∗  be different from the identity element in ),G( ∗ ? In all the examples you 
have studied so far, they are the same. But is this only a coincidence? Let us 
see.   
If h  is the identity of ),,H( ∗  then for any .aah,Ha =∗∈    
However, .GHa ⊆∈  Thus, ,aae =∗  where e is the identity in G  w.r.t. .∗    
Therefore, aeah ∗=∗  in .G  
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By right cancellation in ),,G( ∗  we get .eh =  
Thus, whenever ),H( ∗  is a subgroup of .He),,G( ∈∗    
 
Regarding (iii), let .Hh∈  Can its inverse in ),H( ∗  be different from its inverse 
in ?),G( ∗  Let’s see.  
Let x  be the inverse in ,H  and y  be the inverse in ,G  of .Hh∈  
Since 1hy −=  in ehy,G =  in .G  
Also ,ehx =  by (ii).  
Hence, ,hyhx =  i.e., .hyx 1−==  Hence, ,Hh 1 ∈−  and (iii) holds. 
 
Now, let us prove the converse, i.e., if (i), (ii) and (iii) hold, then .GH ≤  
Firstly, by (i), ∗  is a binary operation on .H  
Secondly, since ∗  is associative on ,G  and the operation is the same on ,H  
it remains associative on .H  Thus, H  satisfies 1G ′  (of Sec.2.2, Unit 2). 
(ii) and (iii) say that ),H( ∗  satisfies 2G ′  and 3G ′  (of Sec.2.2, Unit 2). 
Thus, ),H( ∗  is a group.  
Since ).,G(),H(,GH ∗≤∗⊆  
 
The three conditions in the test above, can be actually abbreviated further to 
only one condition. Consider the criterion given in the following result. 
 
Theorem 2 (The Subgroup Test): Let H  be a non-empty subset of a group 

.G  Then the following are equivalent: 

i) H  is a subgroup of .G  

ii) Whenever .Hab,Hb,a 1∈∈ −  
 
Proof: To prove that the statements (i) and (ii) are equivalent, we need to 
prove that )ii()i( ⇒  and ).i()ii( ⇒  
 

:(ii)(i)⇒  Let us assume that .GH ≤  Then, for any ,Hb,a,Hb,a 1 ∈∈ −  by 
Theorem 1(iii). 
Hence, ,Hab 1 ∈−  by Theorem 1(i). 
 

:(i)(ii)⇒  Since .Ha,H ∈∃≠ «  But then, ,Heaa 1 ∈=−  by (ii). 
Again, for any ,Ha∈  since ,He∈  we get ,Haea 11 ∈= −−  by (ii). 
Finally, if ,Hb,a ∈  then .Hb,a 1 ∈−  Thus, ,Hab)b(a 11 ∈=−−  i.e., H  is closed 
w.r.t. the binary operation of .G  
Therefore, by Theorem 1, H is a subgroup of .G  
 
The necessary and sufficient criterion in Theorem 2 makes it easy for us to 
give examples of subgroups now. Let us re-look the situation in Example 1 to 
see how Theorem 2 is helpful. 
 
Example 4: Check whether or not the set of even integers, ,EZ  is a subgroup 
of .Z  
 

Solution: Firstly, .E «≠Z  
Next, for n2a,b,a E =∈Z  and m2b =  for some .m,n Z∈  Thus 

.)mn(2m2n2)b(a EZ∈−=−=−+  
Hence by Theorem 2, .E ZZ ≤  

*** 

Note that in the case of 
addition the condition in 
Theorem 2(ii) becomes 

.Hb,aHba ∈∀∈−  

Note that .2E ZZ =  
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Through Examples 1 and 4 you can see how the subgroup test simplifies life 
for us! Let us look at a few more examples. 
 
Example 5: Consider the group ).,( * ⋅C  Show that }1zz{S || =∈= C  is a 

subgroup of .*C  (S  is called the unit circle in the plane, and is usually 
denoted by ).1S  
 
Solution: Firstly, ,S «≠  since .S1∈   

Also, for any ,Sz,z 21 ∈  .1
z
1zzzzz

2
1

1
21

1
21 === −−  

Hence, .Szz 1
21 ∈−   

Therefore, by Theorem 2, .S *C≤  

*** 
 
Example 6: Show that ,C  the set of continuous functions from R  to ,R  is a 
subgroup of the group  of all functions from R  to R  w.r.t. pointwise 
addition (see Example 6, Unit 2). 
 
Solution: From Calculus, you know that x)x(I::I =→RR  is a continuous 
function. Hence, .CI∈  Thus, .C «≠  
Next, if f  is continuous over ,R  then you know from Calculus that )f(−  is 
continuous over .R  
Finally, if ,Cg,f ∈  then gf −  is also continuous over .R  Hence, .Cgf ∈−  
Thus, by Theorem 2, .C ≤  

*** 
 
Example 7: Consider ),(G 32 CM ×=  the group of all 32×  matrices over .C  

Show that 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Cc,b,a

c00
ba0

S  is a subgroup of ).,G( +  

 
Solution: Since «.≠∈ S,S0   

Also, for ,S
f00
ed0

,
c00
ba0

∈⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 

,S
fc00
ebda0

f00
ed0

c00
ba0

∈⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
 since .fc,eb,da C∈−−−  

Therefore, by Theorem 2, .GS ≤  
*** 

 
Example 8: Consider },0)A(det)(A{)(GL 22 ≠∈= RMR  given in Example 
5, Unit 2.  

i) Show that }1)Adet()(GLA{)(SL 22 =∈= RR  is a subgroup of 

).),(GL( 2 ⋅R  

ii) Consider }.2)Adet()(GLA{H 2 =∈= R  Is ?)(GLH 2 R≤  Why? 
 

Solution: i) The 22×  identity matrix is in ),(SL2 R  since .1
10
01

det =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
  

Fig.1: The dotted circle 
is the unit circle, .1S  

1 

)(SL2 R  is called the 
special linear group of 
degree 2 over .R  
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 Therefore, .)(SL2 «≠R  
Now, for ),(SLB,A 2 R∈  

,1
)Bdet(

1)Adet()Bdet()Adet()ABdet( 11 === −−  since 1)Adet( =  and 

.1)Bdet( =  
 ).(SLAB 2

1 R∈∴ −  
 ).(GL)(SL 22 RR ≤∴  
 

ii) Since the determinant of ⎥
⎦

⎤
⎢
⎣

⎡
10
02

 is .H
10
02

,2 ∈⎥
⎦

⎤
⎢
⎣

⎡
 .H «≠∴  

 However, for any HA,HA 1 ∉∈ −  since .
2
1

)Adet(
1)A(det 1 ==−  

 Hence ).(GLH 2 R</  

*** 
 
Now, in E3 you have shown that every subgroup of an abelian group is 
abelian. The question is: Is every subgroup of a non-abelian group non-
abelian? This is not so. Consider the following example. 
 

Example 9: Let .b,a
b0
0a

AD
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
== ∗R  Show that )(GLD 2 R≤  and D  

is abelian. Recall, from Unit 2, that )(GL2 R  is non-abelian. 
 

Solution: Since .D,D
10
01

I «≠∈⎥
⎦

⎤
⎢
⎣

⎡
=   

Also, .DAAAI ∈∀=  Hence, I  is the identity w.r.t. multiplication. 

Next, for ⎥
⎦

⎤
⎢
⎣

⎡
β

α
=⎥

⎦

⎤
⎢
⎣

⎡
=

0
0

B,
b0
0a

A  in ,D  

,D
b0
0a

AB ∈⎥
⎦

⎤
⎢
⎣

⎡
β

α
=  since .,,b,a ∗∈βα R  

Also if ,
b0
0a

A,
b0
0a

A 1

1
1

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

−

−
−  since ,

10
01

bb0
0aa

AA 1

1
1

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

−

−
−  the 

identity. Thus, .DA 1 ∈−  
Thus, by Theorem 1, ).(GLD 2 R≤  
 

Next, for any ⎥
⎦

⎤
⎢
⎣

⎡
β

α
=⎥

⎦

⎤
⎢
⎣

⎡
=

0
0

B,
b0
0a

A  in ,D  

.BA
b0

0a
b0
0a

AB =⎥
⎦

⎤
⎢
⎣

⎡
β

α
=⎥

⎦

⎤
⎢
⎣

⎡
β

α
=  

 
Thus, D  is an abelian group. 

*** 
 
Now consider the direct product of two groups, that you studied in Sec.2.4.6, 
Unit 2. Can you think of what its subgroups could be? An obvious one is given 
below. 
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Example 10: Consider ,GG 21 ×  the direct product of the groups 1G  and .G2  
Show that ,GG}e{G 2121 ×≤×  where 2e  is the identity of .G2  
 
Solution: Firstly, }.Ga)e,a({}e{G 1221 ∈=×  Since .}e{G,G 211 «« ≠×≠  

Next, let }.e{G)e,b(),e,a( 2122 ×∈  Then },e{G)e,b()e,b( 212
11

2 ×∈= −−  
since ),e,e()e,bb()e,b)(e,b( 212

1
2

1
2 == −−  where 1e  is the identity of .G1   

So },e{G)e,ab()e,b)(e,a()e,b)(e,a( 212
1

2
1

2
1

22 ×∈== −−−  since .Gab 1
1 ∈−  

Hence, by Theorem 2, .GG}e{G 2121 ×≤×  

*** 
 
Now consider a couple of slightly different examples. 
 
Example 11: Let X  be a set and Y  be a non-empty subset of .X  In Example 
10 of Unit 2, you studied that )),X(( Δ℘  is a group. Show that ).X()Y( ℘≤℘  
 
Solution: Since .)Y(,Y «« ≠℘≠  
Now, for any .XYA),Y(A ⊆⊆℘∈  So ).X(A ℘∈  Thus, ).X()Y( ℘⊆℘  
Also, for any ,AA),X(A 1 =℘∈ −  since .AA «=Δ  
So, for .YBAAB),Y(B,A 1 ⊆Δ=℘∈ −  Thus, ).Y(AB 1 ℘∈−  
Hence, by Theorem ,2  ).X()Y( ℘≤℘  

*** 
 

Example 12: Check whether or not }b,a3ba{]3[ ZZ ∈+=  is a subgroup 

of .R  
 
Solution: Firstly, show why «≠]3[Z  and .]3[ RZ ⊆  

Next, for 3ba +=α  and 3dc +=β  in ],3[Z  

].3[3)db()ca( Z∈−+−=β−α   

Hence, .]3[ RZ ≤  
*** 

 
Try solving the following exercises now.  
 
 
E4) Show that, for any group }e{,G  and G  are subgroups of .G  
 ( }e{  is called the trivial subgroup of .G ) 
 
E5) If G  is a finite group and ,GH ≤  what are the maximum and minimum 

values that )H(o  can have? 
 
E6) Let 1G  and 2G  be two groups. Let .GK,GH 21 ≤≤  Show that 

.GGKH 21 ×≤×  
 
E7) Show that ),,(),U( n ⋅≤⋅ ∗C  where nU  is the group of the nth roots of 

unity. 
 
E8) Show that the infinite group ∗C  has a finite subgroup of order ,n  for 

every .n N∈  
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E9) Give an example, with justification, of  

 i) a proper non-trivial subgroup of ),(23 ZM ×  

 ii) a proper subset of )(23 CM ×  which is not a subgroup, 

 iii) a subgroup of R  which is not a subgroup of .Q  
 
E10) i) Let G  be a group, H  be a subgroup of G  and K  be a subgroup  
  of .H  Must K  be a subgroup of ?G  Give reasons for your 

answer. 

 ii) Let G  be a group and .GH ≤  If GK ≤  s.t. ,KH ⊆  is ?KH ≤  
Why, or why not?  

 
E11) Show that the subset of (of Example 6), consisting of functions that 

are differentiable over ,R  is a subgroup of .  
 

E12) Check whether or not .]6[ RZ ≤  
 

 
Let us now discuss an important subgroup of any group. You will use this 
subgroup off and on throughout the course. So, let us define the underlying 
set of this subgroup. 
 
Definition: The centre of a group ,G  denoted by ,Z(G)  is the set of those 
elements of G  that commute with every element of .G  Thus, 

.G}xgxxgGg{Z(G) ∈∀=∈=  
 
For example, if G  is abelian, then ,G)G(Z =  since each Gg∈  commutes 
with every .Gx∈  
 
We will now look at why G)G(Z ≤  for every group .G   
 
Theorem 3: The centre of a group G  is a subgroup of .G  
 
Proof: Since ).G(Ze,Ggeggge ∈∈∀⋅==⋅  Hence, .)G(Z «≠   
Next, )G(Za∈  

Gxxaax ∈∀=⇒  
Gxxaaaxa 11 ∈∀=⇒ −−  

,Gxxaax 1 ∈∀=⇒ −  since .xexaxa 1 ==−  
,Gxxaxa 11 ∈∀=⇒ −−  multiplying both sides on the right by .a 1−  

).G(Za 1∈⇒ −  
 
Also, for any )G(Zb,a ∈  and for any ,Gx∈  

),xb(a)bx(ax)ab( ==  since ).G(Zb∈  
         ,b)xa(b)ax( ==  since ).G(Za∈  
           ).ab(x=  

).G(Zab∈∴  
Thus, by Theorem ,1  )G(Z  is a subgroup of .G  
 
Note that to prove Theorem 3, we needed to prove each condition of Theorem 
1. Using Theorem 2 in this case would not help in cutting down the process. 

E10(i) says that the 
relation ‘is a subgroup 
of’ is transitive. 

The letter ,Z  which 
denotes the centre, 
comes from the German 
word for centre, 
‘zentrum’. 
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Let us consider some examples about the centre of a group. 
 

Example 13: Check whether or not ),G(Z
20
01
∈⎥
⎦

⎤
⎢
⎣

⎡
 where ).(GLG 2 R=  

 

Solution: For any ,
d2c
b2a

20
01

dc
ba

,G
dc
ba

A ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
∈⎥
⎦

⎤
⎢
⎣

⎡
=  and  

.
d2c2
ba

dc
ba

20
01

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
  

Hence, ⎥
⎦

⎤
⎢
⎣

⎡
20
01

 commutes with A  only if ,c0b ==  i.e, only if A  is a diagonal 

matrix. So ⎥
⎦

⎤
⎢
⎣

⎡
20
01

 does not commute with every A  in .G   

Thus, ).G(Z
20
01
∉⎥
⎦

⎤
⎢
⎣

⎡
 

*** 
 
Example 14: Find )Q(Z 8  (see E29, Unit 2). 
 
Solution: Consider the Cayley table that you drew up while solving E29, Unit 
2. If any element x  of 8Q  is in ),Q(Z 8  it must commute with every element of 

.Q8  So, the column headed by x  should have elements in exactly the same 
order as the row headed by x  in the Cayley table. This only happens if Ix =  
and ).I(Ax 2 −==   
Hence, }.I,I{)Q(Z 8 −=  

*** 
 
Solving the following exercises will give you some practice in obtaining the 
centre of a group. 
 
 

E13) i) Find )S(Z 3  and ).D(Z 8  
  (Hint: Write the operation tables for 3S  and .D8 ) 

 ii) By looking at the Cayley table of a finite group ),,G( ∗  how can 
you decide which element of G  is in ?)G(Z  

 
E14) Is )G(Z  an abelian group? Why, or why not? 
 
E15) Prove that ),G(Z)G(Z)GG(Z 2121 ×=×  where 1G  and 2G  are groups. 
 

 
So far you have applied a couple of criteria for checking whether a subset is a 
subgroup or not. When G  is a finite group we have a simpler criterion than the 
one given in Theorem 2 to decide whether a subset of G  is a subgroup or not. 
In fact, it says that if G  is finite, then only (i) of Theorem 1 suffices to decide 
whether a subset of G  is a subgroup or not. 
 
Theorem 4 (Subgroup Test for Finite Groups): Let ),G( ∗  be a finite group. 
A non-empty subset H  of G  is a subgroup of G  if and only if H  is closed 
w.r.t. .∗  
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Proof: If ,GH ≤  then H  is closed w.r.t. ,∗  by definition. 
Let us prove the converse.  
Since .HaH ∈∃≠ «,  Then .H},a,,a,a{A n2 ⊆= KK  
Since G  is finite, so is .H  Hence, A  must be finite. 
Hence, nm aa =  for some .nm,n,m ≠∈N     …(1) 
Suppose .nm >  Then .eaaaaa nnnmnm =⋅=⋅= −−−  
Thus, .He∈  
Again, (1) tells us that .aaeaaa 111nm1nm −−−−−− =⋅=⋅=  
Thus, .Ha 1∈−  
Thus, by Theorem 1, .GH ≤  
On exactly the same lines, you can show that  GH ≤  if mn >  in (1). 
 
Let us consider an application of Theorem 4 to see how simple it makes life for 
us! 
 

Example 15: Check whether or not }15,10,5,0{S =  and }12,6,0{T =  are 
subgroups of .20Z  
 
Solution: You can check that the sum of any two elements of S  is in .S  
Hence, by Theorem 4, .S 20Z≤  

Next, .T18126 ∉=+  Hence, .T 20Z</  

*** 
 
Why don’t you apply Theorem 4 in some cases now? 
 
 

E16) Consider the Cayley table of 8D  in Example 13 of Unit 2. Hence decide 

whether }R,R,R,I{ 3
90

2
9090  is a subgroup of 8D  or not. 

 
E17) Check if )}21(,I{H =  and )}231(),321(,I{K =  are subgroups of 3S  

or not (see Sec.2.4.2, Unit 2). 
 
E18) Give an example to show that the criterion in Theorem 4 does not work 

for infinite groups. 
 
E19) Let ζ  be a 10th root of unity. Check whether or not },,,1{ 842 ζζζ  is a 

subgroup of .U10  
 

 
Let us now discuss some operations on subgroups. 
 

3.4  SET OPERATIONS ON SUBGROUPS 
 
We will now discuss the behaviour of subgroups under the set operations of 
intersection, union and product. Let us, first, consider the intersection of any 
two subgroups of a group. 
 
Consider any .n,m Z∈  Then .n,m ZZZZ ≤≤  It turns out that ZZZ ≤∩ nm  
also, as you will now see. 
 
Theorem 5: If H  and K  are two subgroups of a group ,G  then KH∩  is 
also a subgroup of .G  
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Proof: Since He∈  and ,Ke∈  where e  is the identity of .KHe,G ∩∈  
Thus, .KH «≠∩  
Now, let .KHb,a ∩∈   
Since ,Hb,a ∈  and .Hab,GH 1 ∈≤ −   
Similarly, since ,Kb,a ∈  and .Kab,GK 1 ∈≤ −   
Thus, .KHab 1 ∩∈−  
Hence, by Theorem 2, KH∩  is a subgroup of .G  
 
The whole argument of Theorem 5 remains valid if we take a family of 
subgroups instead of just two subgroups.  Hence, we have the following result. 
 
Theorem 6: If 1ii}H{ ∈  is a family of subgroups of a group ,G  where I  is an 
indexing set, then iIi

H
∈
∩  is also a subgroup of .G  

 
Now, do you think the union of two (or more) subgroups is again a subgroup?  
Consider the two subgroups Z2  and Z3  of .Z  Let .32S ZZ∪=  Now, 

,S22,S33 ⊆∈⊆∈ ZZ  but 231 −=  is neither in Z2  nor in .3Z  (Why?) 
Hence, .S1∉  Thus, S  is not a subgroup of .),( +Z  
 
Thus, if A  and B  are subgroups of BA∪,G  need not be a subgroup of 

.G  But, if BA ⊆  (or ),AB ⊆  then BBA =∪  (or ,ABA =∪  respectively) is 
a subgroup of .G  E21 says that this is the only situation in which BA∪  is a 
subgroup of .G  You need to prove it, as well as solve the other exercises 
given below. 
 
 
E20) Take ),(G 32 CM ×=  and let S  be the subgroup in Example 7. Let  

.c,b,a
000
cba

T
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= C  Show that ,GT ≤  and find .TS∩   

Also give two distinct non-trivial elements of this subgroup of ,G  with 
justification. 

 
E21) Let A  and B  be two subgroups of a group .G  Prove that BA∪  is a 

subgroup of G  iff BA ⊆  or .AB⊆  
 (Hint: Suppose BA ⊆/  and .AB⊆/  Take B\Aa∈  and .A\Bb∈   

Then show that .BAab ∪∉  Hence, .GBA </∪  Note that proving this 
amounts to proving that BAGBA ⊆⇒≤∪  or .)AB ⊆  

 
E22) You know that if G  is a group and ,GB,GA ≤≤  then .GBA ≤∩  Is 

A\GAc =  also a subgroup of ?G  Is )A\B()B\A(BA ∪=Δ  a 
subgroup of ,G  for any group ?G  Give reasons for your answers. 

 
 
Let us now see what we mean by the product of two subsets of a group .G  
 
Definition: Let G  be a group and B,A  be non-empty subsets of .G  
The product of A  and B  is the set B}.bA,aab{AB ∈∈=  
 

Note that the order of the elements in AB  is important. The elements in AB  
are of the form ,xy  where Ax∈  and .By∈  Of course, if G  is abelian then 

.yxxy =  But if G  is not abelian yx  may not be in .AB  
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Now, if ,GK,GH ≤≤  is ?GHK ≤  Let us consider some examples that may 
help us answer this question. 
 
Example 16: Show that ,6)3)(2( ZZZZ ≤=  but ,SHK 3</  where 

)}21(,I{H =  and )}.31(,I{K =  
 
Solution: }n,m)n3)(m2({)3)(2( ZZZ ∈=  

                    .6}n,mmn6{ ZZ ⊆∈=    …(2) 
Also, if ,6r Z∈  then s6r =  for some .s Z∈   
So, ).3)(2()s3)(12(r ZZ∈⋅=  
Thus, ).3)(2(6 ZZZ ⊆       …(3) 
From (2) and (3), we find  .6)3)(2( ZZZ =  
Thus, in this case the product of the two subgroups Z2  and Z3  of Z  is a 
subgroup Z6  of .Z   
 
Now, consider )},231(),321(),32(),31(),21(,I{S3 =  and its subgroups 

)}21(,I{H =  and )}.31(,I{K =  
)}31()21(,I)21(),31(I,II{HK oooo=  

       )}.231(),21(),31(,I{=  
Now, ,HK)21(),31( ∈  but .HK)321()21()31( ∉=o  
Hence, HK  is not a subgroup of .S3  

*** 
 
So, the product of two subgroups need not be a subgroup. Now the question  
is – when will the product of two subgroups be a subgroup?  The following 
theorem answers this question. 
 
Theorem 7: Let H  and K  be subgroups of a group .G  Then HK  is a 
subgroup of G  if and only if .KHHK =  
 
Proof: Firstly, assume that .GHK ≤  We will show that .KHHK =   
Let .HKhk∈  Then ,HK)hk( 1 ∈−  since .GHK ≤  
i.e., .HKhk 11 ∈−−   
Therefore, 11

11 khhk =−−  for some .Kk,Hh 11 ∈∈  But then 
.KHhk)kh()hk(hk 1

1
1

1
1

11
111 ∈=== −−−−−−   

Thus, .KHHK ⊆        …(4) 
Now, let .KHkh∈  Then .HKkh)kh( 111 ∈= −−−   But .GHK ≤   
Therefore, ,HK))kh(( 11 ∈−−  that is, .HKkh∈   
Thus, .HKKH ⊆        …(5) 
Putting (4) and (5) together, we see that .KHHK =  
 
Conversely, assume that .KHHK =  We will prove that .GHK ≤   
Since .HK,HKee 2 «≠∈=   
Now, let .HKb,a ∈  Then hka =  and 11khb =  for some Hh,h 1 ∈  and 

.Kk,k 1 ∈  
Then ].h)kk[(h)hk)(hk(ab 1

1
1

1
1

1
1

1
1 −−−−− ==     …(6) 

Now, .HKKHh)kk( 1
1

1
1 =∈−−  Therefore, HKkh 22 ∈∃  such that 

.khh)kk( 22
1

1
1

1 =−−        …(7) 



 

 

106 

 

Block 1                                                                                                 Introduction to Groups

Then, from (6) and (7), ,HKk)hh()kh(hab 2222
1 ∈==−  since .Hhh2 ∈  

Thus, by Theorem 2, .GHK ≤  
 
Warning: In Theorem 7, note that KHHK =  does not mean that 

Hhkhhk ∈∀=  and .Kk∈  
 
The following result is a nice corollary to Theorem 7. 
 
Corollary 1: If H  and K  are subgroups of an abelian group ,G  then HK  is 
a subgroup of .G  
 
We give you a chance to prove this (see E23), while solving the following 
exercises. 
 
 
E23) Prove Corollary 1. 
 

E24) If 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Cb,a

b0
0a

S  and ,a,a,a
a0
aa

T 321
3

21

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= C  show that 

S  and T  are subgroups of ).(2 CM  Also check whether TS,TS ∪∩  
and ST  are subgroups of )(2 CM  or not. 

 
E25) Prove that a subset H  of a group ),G( ∗  is a subgroup iff .HHH 1 =−  
 
 
You have just seen that if H  and K  are subgroups of a group ,G  then 

GHK ≤  only under some conditions.  
Now assume G  is finite and .GHK ≤  Is ?)K(o)H(o)HK(o =   

Take, for example, ),24,18,12,6,0{H,G 30 == Z  }.28,,6,4,2,0{K K=   
Then .15)K(o,5)H(o ==  So ).G(o75)K(o)H(o >=   
Is this possible, since ?GHK ⊆  No. So, )HK(o  need not be ).K(o)H(o   
So, can we write )HK(o  in terms of )H(o  and ?)K(o  The answer is in the 
following theorem. 
 
Theorem 8: Let G  be a finite group, and GK,GH ≤≤  such that .GHK ≤  

Then .
)KH(o
)K(o)H(o)HK(o

∩
=  

 
Proof: Firstly, ),K(o)H(o)HK(o ≤  since }.Kk,Hhhk{HK ∈∈=   
But, to obtain ),HK(o  we need to know if HKhk∈  is repeated, and if so, how 
many times. So, we want to know under what conditions ,khhk ′′=  where 

Hh,h ∈′  and .kk,hh,Kk,k ′≠′≠∈′  
Now, ,xkkhhkhhk 11 =′=′⇒′′= −−  say. 
Since Hhhx 1 ∈′= −  and .KHx,Kkkx 1 ∩∈∈′= −  
Also, .xkk,hxh 1 =′=′ −  
So ),xk)(hx(hk 1−=  where .KHx ∩∈  
Further, for any ),yk)(hy(hk,KHy 1−=∩∈  with .Kyk,Hhy 1 ∈∈−  
Thus, each HKhk∈  is repeated exactly )KH(o ∩  times in .HK  
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Hence, .
)KH(o
)K(o)H(o)HK(o

∩
=  

 
If we go back to the example before the theorem, namely, ,G 30Z=  then, 

3030 2K,6H ZZ ==  and ,HKH =∩  since .KH ⊆  So, by Theorem 8, 

.15)K(o
)H(o

)K(o)H(o
)KH(o
)K(o)H(o)HK(o ===

∩
=  

 
Consider another example, one related to .Sn  
 
Example 17: Let )}231(),321(,I{H =  and )}.21(,I{K =  Check whether or 
not .SHK 3≤  If it is, find ).HK(o  If ,SHK 3</  then find ).KH(o ∩  
 
Solution: You should verify that .KHHK =  Hence, .SHK 3≤  
Now .2)K(o,3)H(o ==  Also, ,1)KH(o =∩  since I  is the only common 
element.  

Thus, ).S(o6
)KH(o
)K(o)H(o)HK(o 3==

∩
=  

Note that 3SHK ≤  and both have the same order. 
Hence, 3SHK =  in this case.  

*** 
 
Try solving some exercises now. 
 
 
E26) Consider .D10  Check whether 10DHK ≤  or not, where )D(ZH 10=  and 

}.Rxx,x,x,x,1{K 72
432 ==  

 If it is a subgroup, find ).HK(o  
 If / ,DHK 10<  find ).KH(o ∩  
 
E27) Check whether or not ,SAB 4≤  where )}41(,I{A =  and )}.21(,I{B =  

If it is, find ).AB(o  If ,SAB 4</  find 4SC ≤  s.t. .SAC 4≤  
 
 
With this we end our discussion on operations on subgroups, and we end this 
unit. Of course, you will be studying more about subgroups in the other units 
of this block and the next one. Now let us do a quick point-by-point overview of 
what you have studied in this unit. 
 

3.5  SUMMARY 
 
In this unit, you have studied the following points. 
 
1. The definition, and examples, of a subgroup of a group. 
 
2. A non-empty subset H  of a group ),G( ∗  is a subgroup of G  iff 

  i) ∗  is a binary operation on ;H  

  ii) ,He∈  where e  is the identity w.r.t. ∗  in ;G  

  iii) ,Hh∈∀  the inverse of h  in H  is the same as the inverse of h  in 
.G  
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3. A non-empty subset ,H  of ),,G( ∗  is a subgroup of ),G( ∗  iff 

.Hb,aHba 1 ∈∀∈∗ −  
 
4. The definition, and examples, of the centre of a group ).G(Z,G  Further, 

)G(Z  is an abelian subgroup of .G  
 
5. Let  ),G( ∗  be a finite group. A non-empty subset H  of G  is a subgroup 

of G  iff H  is closed w.r.t. .∗  
 
6. If H  and K  are subgroups of a group ,G  then  

 i) ;GKH ≤∩  

 ii) GKH ≤∪  iff KH ⊆  or ;HK ⊆  

 iii) G}Kk,Hhhk{HK ≤∈∈=  iff .KHHK =  
 
7. If G  is a finite group, H  and K  are subgroups of G  such that ,GHK ≤  

then .
)KH(o
)K(o)H(o)HK(o

∩
=  

 

3.6  SOLUTIONS / ANSWERS 
 
E1) i) As you know, ),( +R  is a group and .CR ⊆  Hence 

).,(),( +≤+ CR  
 
 ii) ).),((G 3 += ZM  Since 3333 I2II,HI =+∈  should be in H  if 

.GH ≤  But .HI2 3 ∉  Hence, +  is not a binary operation on .H  So 

.GH </  
 
 iii) Here .5H Z=  Show that ,GH ≤  as in Example 3. 
 
 iv) Since the elements of H  are subsets of ,Z  and not elements of 

.GH, ⊄Z  Hence, there is no question of H  being a subgroup of 
.G  

 
 v) Argue as in (i) above. 
 
E2) }.6,4,2,0{2 8 =Z  

  Table for 82Z          Table for 8Z  

654321077
543210766
432107655
321076544
210765433
107654322
076543211
765432100
76543210+

  42066
20644
06422
64200
6420+
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 Use the table of 82Z  to see why it is a group. 

 Note that the table of 82Z  is the subtable of the table for ,8Z  

corresponding to the elements .6,4,2,0  You can see this by taking 
only the elements in the bigger table that correspond to the rows headed 
by 6,4,2,0  and the columns headed by .6,4,2,0  

 Hence, .2 88 ZZ ≤  
 
E3) Let ,GH ≤  where G  is abelian. Let .Hb,a ∈  Then .Gb,a ∈  
 So .baab =  Hence, H  is abelian. 
 
E4) Since GG ⊆  and G  is a group w.r.t. the same operation as .GG,G ≤  
 Since G}e{ ⊆  and the only element in }e{  is }.e{eee,e 1 ∈=⋅ −   
 Hence, .G}e{ ≤  
 
E5) Let .n)G(o =  Since ,GG ≤  the maximum value of )H(o  is when 

,GH =  i.e., .n  So N∈)H(o  s.t. .n)H(o ≤  
 Also ,G}e{ ≤  and .1})e({o =  So 1 is the minimum value )H(o  can take. 
 
E6) Since K,H  are subgroups of ,G  they are non-empty.  
 Hence, .KH «≠×   
 Also, for ).k,h()k,h(,KH)k,h( 111 −−− =×∈  
 So, for ,KH)d,c(),b,a( ×∈  

)d,c)(b,a()d,c)(b,a( 111 −−− = ,KH)bd,ac( 11 ×∈= −−  since 
HacHc,a 1 ∈⇒∈ −  and .KbdKd,b 1 ∈⇒∈ −  

 Thus, .GGKH 21 ×≤×  
 

E7) In Sec.2.4.5, you have seen that ∗⊆ CnU  and ),U( n ⋅  is a group. Hence, 
).,C(),U( n ⋅≤⋅ ∗  

 

E8) From E7, .nUn NC ∈∀≤ ∗  Also .n)U(o n =  Hence the result. 
 

E9) i) Consider .b,a
00
b0
0a

S
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= Z  Then you should check that 

«≠S  and ).),((S 23 +≤ × ZM  

  Since S,S\)(
11
11
11

23 ZM ×∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 is a proper subgroup. 

  Also, since S},{S 0≠  is a non-trivial subgroup. 
  This is only one such example. Look for others too. 
 

 ii) Consider .
01
01
01

S
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=  Then ).(S 23/

CM ×⊆  

  Since ).(S,S 23 CM ×</∉0  
  There can be many other examples. 
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E10) i) Since «≠≤ K,HK  and .Kb,aKab 1 ∈∀∈−  Therefore, by 
Theorem 2, .GK ≤  

 
 ii) Since H  and K  are groups w.r.t. the same operation as that of 

,G  and .KH,KH ≤⊆  
 
E11) From Calculus, you know that I  is differentiable over .R  Argue as in 

Example 6 to prove that this subset is a subgroup of .G  
 
E12) ,]6[ RZ ⊆≠«  as in Example 12. 

 Let 6ba +=α  and 6dc +=β  be in ].6[Z  

 Then ].6[6)db()ca( Z∈−+−=β−α  

 .]6[ RZ ≤∴  
 
E13) i) Look at the Cayley table in your solution of E24, Unit 2. You will 

find that the only element in 3S  which heads the row with the same 
entries in the same order as the column it heads is .I   

  Hence, }.I{)S(Z 3 =  
 
  Look at the table in Example 13, Unit 2. Which elements head the 

row and the column having the same entries in exactly the same 
order? I  does, but 1r  doesn’t since, for example, .rrrr 1331 oo ≠  

  Similarly, 432 r,r,r  and 90R  don’t. 
  But 180R  does, i.e., .DRR 8180180 ∈σ∀σ=σ oo  
  Again 270R  does not have the same entries in the row and column 

headed by it since, for example, 270R  does not commute with .r1  
  So }.R,I{)D(Z 1808 =  
 
 ii) From Example 13 and (i) above, you may have got an idea. 
  Now )G(Zx∈  iff ,Gggxxg ∈∀=  i.e., iff the entries in the row 

corresponding to x  are in exactly the same order as the entries in 
the column corresponding to .x  

 
E14) Let ).G(Zy,x ∈  
 ,yxxy =  since )G(Zx∈  and .Gy∈  Thus, )G(Z  is abelian. 
 
E15) First, note that both )GG(Z 21 ×  and )G(Z)G(Z 21 ×  are subgroups of 

21 GG ×  (using the definition of )G(Z  and E6).  
 Next, )GG(Z)y,x( 21 ×∈  
 21 GG)b,a()y,x)(b,a()b,a)(y,x( ×∈∀=⇔  
 21 Gb,Ga)by,ax()yb,xa( ∈∈∀=⇔  
 1Gaaxxa ∈∀=⇔  and 2Gbbyyb ∈∀=  
 )G(Zx 1∈⇔  and )G(Zy 2∈  
 )G(Z)G(Z)y,x( 21 ×∈⇔  
 ).G(Z)G(Z)GG(Z 2121 ×=×∴  
 Note that at each step of the proof we have used the two-way 

implication .⇔  This is why we could conclude the equality of the two 
groups by this argument. 
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E16) Take the sub-table of the table containing only the elements in the rows 

and columns corresponding to ,I  ).R(R),R(R,R 3
90270

2
9018090 ==  Use 

these relations, and you will get the table below: 

    

2
9090

3
90

3
90

90
3
90

2
90

2
90

3
90

2
909090

3
90

2
9090

3
90

2
9090

RRIRR
RIRRR

IRRRR
RRRII
RRRIo

  

 This table shows that the given set is closed w.r.t. .o  
 Hence, by Theorem 4, .D}R,R,R,I{ 8

3
90

2
9090 ≤  

 
E17) As in E16, consider the Cayley table of 3S  you used in E13(i). Take the 

sub-tables concerned. Then explain why .SK,SH 33 ≤≤  
 
E18) Consider ).,( +⊆ ZN  
 N  is closed w.r.t. .+  However, ),,(),( +</+ ZN  since .0 N∉   
 (There are other reasons you can also give to show why .ZN </  Why 

don’t you write them down too?) 
 
E19) Since },,,,1{ 842642 ζζζ∉ζ=ζ⋅ζ  this is not closed w.r.t. multiplication. 

Hence, it is not a subgroup of .U10  
 
E20) You should verify that «≠T  and ).,G(T +≤  

 Explain why .,
000

0
TS

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈βα⎥
⎦

⎤
⎢
⎣

⎡ βα
=∩ C  

 Then, for example, by putting 0,1 =β=α  and ,1,0 =β=α  you will get 
two non-zero elements of .TS∩  Explain why they are distinct. 

 
E21) You know that if BA ⊆  or ,AB⊆  then BA∪  is A  or ,B  and hence, 

is a subgroup of .G  
 Conversely, let us assume that BA ⊂/  and ,AB⊂/  and conclude that 

.GBA </∪  
 Since Aa,BA ∈∃⊂/  such that .Ba∉  
 Since Bb,AB ∈∃⊂/  such that .Ab∉  
 Now, if ,Aab∈  then ,cab =  for some .Ac∈  
 Then ,Acab 1 ∈= −  a contradiction. .Aab∉∴   
 Similarly, .Bab∉   
 .BAab ∪∉∴  
 But BAa ∪∈  and .BAb ∪∈  So, .GBA </∪  
 
E22) For example, consider 20S Z≤  given in Example 15. Then 3  and 2  are 

in ,Sc  but .S523 c∉=+  Hence, .S 20
c Z</  

 Since A\BB\A ⊄  and ,B\AA\B ⊄  by definition, ,GBA </Δ  by 
E21. 

 
E23) For any .KHkhhk,HKhk ∈=∈  So .KHHK ⊆  Similarly, .HKKH ⊆  

Hence, .KHHK =  Hence, .GHK ≤  
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E24) As in Example 9, show that ).(S 2 CM≤  
 Similarly, apply Theorem 2, to show that ).(T 2 CM≤  Remember, the 

operation concerned is addition. 
 By Theorem 5, .GTS ≤∩  
 Note that .TS⊆  Hence, .GTTS ≤=∪  

 Now, for S
b0
0a
∈⎥
⎦

⎤
⎢
⎣

⎡
 and ,T

a0
aa

3

21 ∈⎥
⎦

⎤
⎢
⎣

⎡
 .

ba0
aaaa

a0
aa

b0
0a

3

21

3

21
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 

 So .,a,a,a
0

aaaa
ST 21

21

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈α⎥
⎦

⎤
⎢
⎣

⎡
α

= C  

 Also, check that .b,b,b,
bb0
bb

TS 21
2

1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈β⎥
⎦

⎤
⎢
⎣

⎡β
= C  

 Now any element of ST  lies in TS  because ,
)a(a0

aa
0

aaaa
1
221

⎥
⎦

⎤
⎢
⎣

⎡
α

β
=⎥

⎦

⎤
⎢
⎣

⎡
α −  

if .0a ≠  

 If ,0a =  then ,
0

aaaa 21
⎥
⎦

⎤
⎢
⎣

⎡
α

 trivially lies in .TS  

 Thus, .TSST ⊆  Similarly, show that .STTS ⊆  
 Hence, ,TSST =  and ).(ST 2 CM≤  
 
E25) Note that }.Hb,aab{HH 11 ∈= −−  

 If ,GH ≤  then .Hb,aHab 1 ∈∀∈−  Hence, .HHH 1 ⊆−  
 Also, for any .HHheh,Hh 11 −− ∈=∈  Hence, .HHH 1−⊆  
 Thus, .HHH 1 =−  
 
 Conversely, if ,HHH 1 =−  then .Hb,aHab 1 ∈∀∈−  
 Hence, .GH ≤  
 
E26) Since )D(Zzyzzy 10∈∀=  and .xzzx,Dy 10 =∈  Hence, 

.4,3,2izxzx ii =∀=  
 Hence, .KHHK =   
 Thus, .DHK 10≤  
 
 Now, }.I{H =  (Check this by writing the Cayley table for .)D10  

 So .5
1

51
)KH(o
)K(o)H(o)HK(o =

×
=

∩
=  

 
E27) )}.421(),21(),41(,I{AB =  
 But, .AB)241()41()21( ∉=o  .SAB 4</∴   
 Now consider .AC =  
 Then .S)}41(,I{AAC 4

2 ≤==  
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                CYCLIC GROUPS 
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4.5 Summary              132  
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4.1 INTRODUCTION 
 
So far you have studied many examples of groups and subgroups. While 
studying this unit, you will find that some of those are examples of a kind of 
group that this unit is about, i.e., a cyclic group. For example, you will find that 

nZ  and Z  are cyclic groups. In fact, as you will discover in Unit 8, these are 
essentially the only cyclic groups. These groups are important for several 
reasons, one of them being that all abelian groups are built up from these 
cyclic groups. 
 
In Unit 2, you studied about the order of a finite group. In Sec.4.2, we will use 
this concept to introduce you to the idea of the order of an element of a group. 
Then you will study several examples and important properties of the order of 
an element. In this section, we shall also define a cyclic group, and take you 
through many examples of such a group. 
 
In Sec.4.3, you will study many interesting properties of cyclic groups, finite 
and infinite. You will also see why every cyclic group is abelian. Further, in this 
section, you will see why any subgroup of Z  is of the form ,mZ  for some 

.m Z∈  Also, you will study how to obtain all the subgroups of a group like nZ  
or .n,Un N∈  
 
Finally, in Sec.4.4, we will extend the idea of one generator of a cyclic group to 
that of a generating set. You will see that many different sets, with different 
cardinalities, can generate the same group. 
 
Let us now list the specific learning objectives around which this unit is built. 
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Objectives 
After studying this unit, you should be able to:   

• define, and give examples of, the order of an element of a group; 

• prove, and use, the relationship between the order of an element of a 
group and the order of its integral powers; 

• explain what a cyclic group is, and give examples of such a group; 

• prove, and apply, the statement that every subgroup of a cyclic group is 
cyclic; 

• obtain all the subgroups of a finite cyclic group; 

• define, and give examples of, a generating set of a group. 
 

4.2 ORDER OF AN ELEMENT 
 
In Unit 2, you studied about finite and infinite groups. You also know what the 
order of a finite group is. For instance, n2)D(o n2 =  and !n)S(o n =  for .n N∈  
Here we shall look at what the order of an element of a group is. As you will 
see, this is the order of a group that is ‘built up’ by this element. 
 
Recall, from Unit 3, that },m2,m,0{m K±±=Z  is a subgroup of ,Z  for 

.m Z∈  Now, if Z≤H  s.t. ,Hm∈  what do you expect the relationship to be 
between Zm  and ?H  Does it surprise you to know that ?Hm ⊆Z   
You know that if ,Hm∈  then .Hm∈−  Hence, K,m3,m2  and K,m3,m2 −−  
are also in .H  Thus, .Hm ⊆Z   
Hence, Zm  is contained in every subgroup of Z  containing .m  Thus, Zm  is 
the smallest subgroup of Z  containing .m  
 
What you have noted above is not true for Z  alone. It is true for any group, as 
we will now prove.  
 
Theorem 1: Let G  be a group and .Ga∈  Then 

}na{},a,a,a,a,a{A n22110 Z∈== −− K  is the smallest subgroup of G  
containing .a  
 
Proof: First, let us show that .GA ≤  
Since the operation in G  is associative in ,G  it is associative in .A  
Since .Ae,ea 0 ∈=  
For each Aa,Aa nn ∈∃∈ −  s.t. .eaa nn =−  
Hence, by the subgroup criteria in Unit 3, .GA ≤  
 
Next, let H  be any subgroup of G  containing .a  
Since Ha∈  and H  is a group, .nHa n N∈∀∈  
Similarly, since Han ∈  and H  is a group, .nHa n N∈∀∈−  
Also ,He∈  since ,GH ≤  i.e., .Ha0 ∈  
Hence, .HA ⊆  
Thus, A  is contained in every subgroup of G  containing .a  
Hence, A  is the smallest subgroup of G  containing .a  
 
Theorem 1 leads us to the following definitions. 
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Definitions: Let G  be a group, and .Ga∈  

i) The smallest subgroup of G  containing a  is called the cyclic subgroup 
of G  generated by ,a  and is denoted by .>< a  

ii) If ><= aG  for some ,Ga∈  then G  is called a cyclic group. 

iii) a  is called a generator of the group .>< a  

iv) The order of the element a  is defined to be the order of the group 
,>< a  if >< a  is finite.  

If >< a  is infinite, then the order of a  is infinite.  
In either case, the order of a  is denoted by .o(a)  

 
For example, the cyclic subgroup of Z  generated by Z∈0  is },0{  since 

.n00n Z∈∀=⋅  
Thus, .1})0({o)0(o ==  
Similarly, for any group .,G 1o({e})o(e) ==  
 
Also, note that in  .}nn{}n1n{1, ZZZZ =∈=∈⋅=><   
Thus, ,1 ><=Z  that is, Z  is a cyclic group. This also shows that Z∈1  has 
infinite order. 
 
Similarly, for },nn2{2,2 ZZ ∈=><∈  so that 2  has infinite order. In fact, 
any non-zero integer has infinite order. 
 
Let us now look at some more examples of finding the orders of group 
elements. 
 
Example 1: Find the order of  

i) 3  in ,5Z  and  

ii) 3  in .9Z  
 

Solution: In either case }.,33,32,3,0{3 K⋅±⋅±±=><  
 

i) Here 1632 ==⋅  in 5Z  and 2353 =−=−  in ,5Z  as you know from 
Sec.2.4, Unit 2. 
Similarly, ,463)2( =−=−  and so on. 

 You can check that .}4,3,2,1,0{3 5Z==><  

 Thus, 3  generates .5Z  So the order of 3  is .5)(o)3(o 5 == Z  
 Also note that 5Z  is a cyclic group. 
 

ii) Here ,334,033,033,363)2(,632,63 =⋅=⋅−=⋅=−=−=⋅=−  
,6334 =−=⋅−  and so on. 

 As you find all the element of ,3 ><  you will see that the elements 
3n ⋅±  keep returning to being one of }.6,3,0{  

 Thus, here }.6,3,0{3 =><  
 Hence, .3)3(o =  

*** 
 
Now, consider 3  in (i) of Example 1. If you compute ,,32,3 K⋅  you will see  
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that 5)3(o =  is the least positive integer n  such that .03n =⋅  This is true in 
general, as you will now see. 
 
Theorem 2: Let G  be a group and .Gg∈  

i) If )g(o  is finite, then )g(o  is the least positive integer n  such that 
.egn =  (Note that if ),,G(g +∈  then )g(o  is the least positive integer n  

such that .)eng =  

ii) If )g(o  is finite, and Z∈s  s.t. ,egs =  then .s)g(o  

iii) If )g(o  is infinite, then nm gg ≠  if ,nm ≠  where .n,m Z∈  
 

Proof: Note that ),g(o)g(o ><=  where }.,g,g,e{g 21 K±±=><  

i) Here Gg∈  has finite order. So, the set },g,g,e{ 2 K  is finite. Therefore, 
all the powers of g  can’t be distinct. Therefore, sr gg =  for some .sr >  
Then ,eg sr =−  and .sr N∈−   
Thus, the set }egt{T t =∈= N  is non-empty. So, by the well-ordering 
principle (see Sec.1.2, Unit 1), T  has a least element, say .n   
Then .egn =         …(1)  
Let }.g,,g,g,e{A 1n2 −= K   
Then .gA ><⊆       …(2) 
Also, for any ,m ∗∈Z  by the division algorithm ,rqnm +=  for some 

.nr0,r,q <≤∈Z   
Then rrqnm gg)g(g =⋅=  for some ,nr0,r <≤  by (1). 
Hence, .Agm ∈   
Therefore, .Ag ⊆><       …(3) 
By (2) and (3), .}g,,g,e{g 1n−=>< K  
Therefore, ,n)g(o)g(o =><=  the least positive integer s.t. .egn =  

 

ii) Let n)g(o =  and egs =  for  some .s Z∈  By the division algorithm, 
Z∈∃ r,q  s.t. .nr0,rqns <≤+=   

Then .egeggeg rrqns =⇒=⋅⇒=   
But n  is the least positive integer s.t. .egn =  

 Therefore, the only possibility for r  is .0r =   
Then ,qns =  i.e., .sn  

 
iii) Now assume Gg∈  is of infinite order. Let Z∈n,m  s.t. .nm ≠  

Suppose .gg nm =  Then .eg nm =−  Then, as in (i) above, this shows that 
>< g  is a finite group, a contradiction to the hypothesis that g  is of 

infinite order.  
Hence, if ,nm ≠  then .gg nm ≠  

 
So, let us see how Theorem 2 makes life easier for us.  
 
Example 2: Find the order of 3  in .9Z  
 

Solution: In Example 1(ii) you had to calculate 3n ⋅  for several values of 
Z∈n  before you could find a pattern. But now you can see that  

1)g(o =  iff .eg =  



 

 

117

Unit 4                                                                                       Cyclic Groups

.0933,632,331 ==⋅=⋅=⋅   
Hence, using Theorem 2, 3)3(o =  in .9Z  

*** 
 
Example 3: Find the orders of )21(  and )321(  in .S5  
 

Solution: Recall that .I
312
321

)21( ≠⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

Next .I)21()21()21( 2 == o  
.2))21((o =∴  

 
You should similarly show that .3))321((o =  

*** 
 
Consider the following observation connected  to the example above. 
 
Remark 1: In Unit 9, you will see that the order of any cycle of length n  is 

.nn N∈∀  
 
Try doing a set of exercises now. 
 
 
E1) Find the orders of  

 i) 90R  and 180R  in 8D ,  ii) ⎥
⎦

⎤
⎢
⎣

⎡
− 01

10
 in ,Q8  

 iii) 1  in ,10Z     iv) 1  in ,nZ  for any ,n N∈  

 v) ,)5( Z∈−     vi) ).(
54
32

2 ZM∈⎥
⎦

⎤
⎢
⎣

⎡
 

 
E2) Show that  if },e{H,GH ≠≤  then .eH ><≠  
 
E3) Show that ><=>< −1aa  for any a  in a group .G  
 
E4) Show that if G  is a group and ,Ga∈  then  
 GHH{a ≤∩=><  and .}Ha∈  
 
E5) Prove that .n1n NZ ∈∀><=  
 
E6) Find )A(o  for .A),(A 32 0≠∈ × RM  
 

E7) Find ),A(o  where ).(GL
01
r0

A 2 R∈⎥
⎦

⎤
⎢
⎣

⎡
=  

 
E8) Let S  be a non-empty set. Find the order of )S(A ℘∈  (see Example 10, 

Unit 2). 
 
 
Let us now look at some properties of the order of an element. As an example 
of the first property, consider any .x 5Z∈  Now, ),mxm(nxn −+=⋅  for any 

E3 tells us that a cyclic 
subgroup does not have a 
unique generator. 
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.m 5Z∈  Hence, if ),x(or =  then )mxm(or −+=  too. In fact, this is true not 
just for ,5Z  but for any group, as you will now see. 
 
Theorem 3: Let G  be a group. The order of Ga∈  is the same as the order of 

1gag−  for any .Gg∈  
 
Proof: First, note that Gg)gag(gga n11n ∈∀= −−  and .n Z∈  (Why?) 
Now, there are two cases – )a(o  is finite, or )a(o  is infinite. 
 
Case 1: Let )a(o  be finite, say .m  Then m  is the least positive integer s.t. 

.eam =   
So .egggga 11m == −−  Hence, .e)gag( m1 =−   
Hence, )gag(o 1−  is also finite, say .r)gag(o 1 =−   
Then, by Theorem 2(ii),  

.mr  …(4) 

Similarly, since ,egga,e)gag( 1rr1 == −−  i.e., .ea r =   
Hence, .rm  …(5) 
By (4) and (5), .mr ±=  But both r  and m  are positive.  
Hence, .mr =  
Thus, ),a(o)gag(o 1 =−  for any .Gg∈  
 
Case 2: Let )a(o  be infinite. Then ean ≠  for any .n N∈   
Hence, e)gag( n1 ≠−  for any .n N∈   
Thus, )gag(o 1−  is also infinite, the same as ).a(o  
 
Let us look at an immediate application of Theorem 3. You know that 

.S)n21( n∈K  By Remark 1, )).n21((on K=  Hence, by Theorem 3, 
n)n)2(1o( 1 =−σσ K  for any .nm,Sσ m ≥∈  You will be using this result in 

Unit 9 many times. 
 
Now, let us look at another property. You have earlier seen that ,1><=Z  so 
that )1(o  is infinite. In fact, )n(o  is infinite .n ∗∈∀ Z   
This may lead you to wonder if, for any group G  and )g(o)g(o,Gg r=∈  for 

.r Z∈  However, in .12)1(o,12 =Z  But .12)4(o ≠  In fact, ,3)4(o =  as you can 
verify. So, the question arises – is there a relationship between )g(o r  and 

),g(o  when )g(o  is finite? Let’s see. 
 
Theorem 4: Let G  be a group, and .Gg∈  

i) If g  is of infinite order, then mg  is also of infinite order for every .m ∗∈Z  

ii) If ,n)g(o =  then .1n,,1m
)m,n(

n)g(o m −=∀= K  (Recall that )m,n(  is 

the g.c.d of n  and .)m  
 
Proof: i) An element is of infinite order iff all its powers are distinct. We know 

that all the powers of g  are distinct. We have to show that all the powers 
of mg  are distinct, where .m ∗∈Z   

1gag−  is called the  
conjugate of a  by .g   
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If possible, let wmtm )g()g( =  for some .w,t Z∈  Then .gg mwmt =   
But then, by Theorem 2, ,mwmt =  since g  is of infinite order. Hence, 

.wt =   
This shows that the powers of mg  are all distinct, and hence, mg  is of 
infinite order. 

 
ii) Since }.g,,g,e{g,n)g(o 1n−=><= K  Now >< mg  is a subgroup of 

,g ><  and so it must be of finite order.  
Thus, mg  is of finite order.  

Let .t)g(o m =  We will show that .
)m,n(

nt =  

 Now, .e)g(g tmmt ==  
So ,mtn  by Theorem 2(ii).     …(6) 

 Let ).m,n(d =  We can then write ,dmm,dnn 11 ==  where .1)n,m( 11 =  

 Then .
)m,n(

n
d
nn1 ==  

 By (6), .tmndtmdndtmn 11111 ⇒⇒  

 But .1)m,n( 11 =   
Therefore, ,tn1  as you have learnt in Unit 1.   …(7) 

 Also, .ee)g(gg)g( 111111 mmnnmdnmnm =====  
 Thus, by the definition of )g(o m  and Theorem 2, we have  
 .nt 1         …(8) 

 (7) and (8) show that ,
)m,n(

nnt 1 ==  

 i.e., .
)m,n(

n)g(o m =  

 
Using Theorem 4 we know, for example, that )4(o  in 72Z  is 

,18
4

72
)4,72(

72
==  since 72)1(o =  in .72Z  Let us consider another example. 

 
Example 4: Consider },rR,,rR,r,R,,R,1{D 99

20 KK=  with 

10)R(o,2)r(o ==  and .rRrR 1−=  Find )R(o 2  and ).R(o 3  
 

Solution: Since ,10)R(o =  by Theorem 4 5
2

10
)2,10(

10)R(o 2 ===  and  

.10
1

10
)3,10(

10)R(o 3 ===  

*** 
 
Now consider a corollary of Theorem 4. 
 
Corollary 1: If ><= gG  is finite, of order ,n  then  

i) ),g(o)g(o )m,n(m =  for .m N∈  

ii) ><= mgG  iff .1)n,m( =   
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We leave the proof of Corollary 1 to you (see E9). 
 
In the context of Corollary 1(ii), consider the following remark. In this remark 
we stress the point made because of a common error learners make. 
 
Remark 2: In the context of Corollary 1, you can have ><=>< mgg  for 
some ,m Z∈  but .gg m≠  For example, in .30)1(o,30 =Z  Also, by Theorem 

4(ii), .30
)7,30(

30)7(o ==  

So ,71 ><=><  but .71 ≠   

Similarly, 15
)2,30(

30)2(o ==  and ,15)4(o =  but .42 ≠  

 
The next few exercises will give you some practice in using Theorem 4. 
 
 
E9) Prove Corollary 1. 
 
E10) Find the orders of 4,2  and .5 18Z∈  
 
E11) If G  is a finite cyclic group, then show that )x(o  divides .Gx)G(o ∈∀  

In particular, show that .Gxex )G(o ∈∀=  
 
E12) Let .U10 >ζ<=  Find .o 3 >ζ<    
 
E13) Let G  be a group, and Gx∈  be of order 15. Find the orders of 62 x,x  

and .x10  
 
E14) Let G  be a group and let Gx∈  be of order .n  Prove that 

,xx mnm ><=>< −  where .nm0 ≤<  Hence prove that 
).mn,n()m,n( −=  

 
E15) Find the elements of  >< 25  in ,30Z  and of >ζ< 7  in ,U10  where ζ  is a 

generator of .U10  
 
 
The properties you have studied in this section, lead us very naturally to 
consider properties of cyclic groups. This is what we will discuss in the next 
section. 
 

4.3 PROPERTIES OF A CYCLIC GROUP 
 
In Sec.4.2, you studied the definition of a cyclic group. Here we shall look at 
examples of such groups, and some of their properties. 
 
In the previous section, you have seen that ><=><= 3,1 5ZZ  and 

.518 ><=Z  So these are examples of cyclic groups, as you know. Let us 
consider some more examples. 
 
Example 5: Show that nU  is a cyclic group .n N∈∀  
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Solution: In Sec.2.4.5, Unit 2, you have seen that if ,n
2sinin

2cos π+π=ζ  

then )}.1(,,,{U n2
n =ζζζ= K  

Thus, ,Un >ζ<=  where .n)(o =ζ  
*** 

 
Notice that the examples of cyclic groups that you have studied so far are all 
abelian. Can we find non-abelian cyclic groups? This is answered by the 
following theorem. 
 
Theorem 5: A cyclic group is abelian.  
 
Proof: Let ><= aG  be a cyclic group, and let .Gy,x ∈  Then mn ay,ax ==  
for some .n,m Z∈  So  

nmnmmnmn aaaaaaxy ⋅===⋅= ++  
     ,yx=  using Theorem 6, Unit 2.  
Hence, G  is a commutative group.  
 
Because of Theorem 5, you now know that every cyclic subgroup of a group 
is abelian, regardless of whether the group is abelian or not. For example, 
you know that 3S  is not abelian. But >< )21(  and  >< )231(  are abelian 
subgroups of .S3  
 
Now, the question is – are all abelian groups cyclic? The answer is in the 
following examples. 
 
Example 6: Consider the set },ab,b,a,e{K4 =  and the binary operation · on 

4K  given by the table below. 

eababab
aeabbb
babeaa
abbaee
abbae•

 

Show that 4K  is abelian, but not cyclic. (This group is the Klein 4-group, 
which you have already worked with in Example 3, Unit 2.) 
 
Solution: From the table, you can see that the entries are symmetric about 
the diagonal containing all entries as .e  Hence, 4K  is abelian.   
 
If 4K  were cyclic, it would have to be generated by one of b,a,e  or .ab  Now, 

.K}e{e 4≠=><   
Also, from the table, you can see that .K}a,e{a 4≠=><   
Similarly, ,K}b,e{b 4≠=><  and .K}ab,e{ab 4≠=><   
Therefore, 4K  can’t be generated by b,a,e  or .ab  
Thus, 4K  is not cyclic. 

*** 
 
Example 7: Show that Q  is not a cyclic group. 
 

There are abelian 
groups which are not 
cyclic. 

Fig.1: Felix Klein 
(1849-1925) defined 
the Klein 4-group in a 
research paper in 
1884. 
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Solution: We shall prove this by contradiction. So, let us suppose that Q  is 

generated by ,q
p

 where .0q,1)q,p( ≠=   

Now .1q
p Q∈+  So Z∈∃ n  s.t. ,q

pn1q
p

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+  i.e., .qp)1n( =−   

Since ,1)q,p( =  from Theorem 6, Unit 1 you know that ),1n(q −  say 
,1nqr −=  where .r Z∈   

Then qp)1n( =−  gives .1pr =   

This is only possible if 1r,1p ==  or .1r,1p −=−=  In either case, .1n
1

q
p

−=  

Now consider .)1n(3
1 Q∈
−

  

Since ZQ ∈∃>−<= m,1n
1  s.t. .)1n(3

1
1n

1m
−

=⎟
⎠
⎞

⎜
⎝
⎛

−  

This gives ,3
1m =  which is not possible.  

Hence, our assumption that Q  is cyclic must be wrong. 
Thus, Q  is not cyclic. 

*** 
 
So you have seen examples of finite, as well as infinite, abelian groups which 
are not cyclic. Try to solve the following exercises now. 
 
 
E16) Is 8D  cyclic? Why, or why not? 
  
E17) Prove that a non-abelian group must have a proper non-trivial subgroup.  
 
 
Now let us look at another special property of cyclic groups. To understand 
this property, consider .Z  You know that .nn ZZZ ∈∀≤  The question is, 
what are the other subgroups of ?Z  The following theorem answers this. 
 
Theorem 6: Any subgroup of a cyclic group is cyclic. 
Further, if ,xG ><=  and ,GH ≤  then }e{H =  or ,xH n ><=  where n  is the 
least positive integer such that .Hxn∈  
 
Proof: Let ><= xG  be a cyclic group and H  be a subgroup of .G  
If },e{H =  then ,eH ><=  and hence, H  is cyclic. 
 

Suppose }.e{H ≠  Then Z∈∃ n  such that .0n,Hxn ≠∈   
Since H  is a subgroup, .Hx)x( n1n ∈= −−  Therefore, there exists a positive 
integer m  (i.e., n  or n− ) such that .Hxm∈   
Thus, the set }Hxt{S t∈∈= N  is not empty.   
Hence, by the well-ordering principle, S  has a least element, say .k   
We will show that .xH k ><=  
Now, ,Hxk ⊆><  since .Hxk∈      …(9) 
Conversely, let nx  be an arbitrary element in .H  By the division algorithm, 

rmkn +=  for some .1kr0,r,m −≤≤∈Z    
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So ,H)x(xxx mknmknr ∈⋅== −−  since .Hx,x kn ∈   
But k  is the least positive integer such that .Hxk∈   
Therefore, rx  can be in H  only if .0r =   
And then, ,mkn =  and .x)x(x kmkn ><∈=   
Thus, .xH k ><⊆        …(10)  
From (9) and (10), we conclude that ,xH k ><=  that is, H  is cyclic. 
 
Let us consider an example of the use of Theorem 6. 
 
Example 8: Every non-trivial subgroup of Z  is of the form Zm  for some 

.m Z∈  Hence, all the subgroups of Z  are known. 
 
Solution: Let }.0{H,H ≠≤ Z   
Since ,mmH,1 ZZ =><=><=  where m  is the least positive integer in ,H  
by Theorem 6. 

*** 
 
Now, Theorem 6 says that every subgroup of a cyclic group is cyclic.  Are you 
wondering if the converse is true? Well, there are groups whose proper 
subgroups are all cyclic, without the group being cyclic. You will see such 
examples in Unit 5, Block 2. Hence, the converse of Theorem 6 is not true. 
 
Now, in Example 8 you have found that all the distinct subgroups of Z  are 
known. What about other cyclic groups? Well, it turns out that we know exactly 
how many subgroups a finite cyclic group has, and we can list them all! This is 
what the following theorem allows us to do. 
 
Theorem 7: Let G  be a finite cyclic group of order .n  For every positive 
divisor m  of G,n  has a unique subgroup of order .m  Further, these are the 
only subgroups of .G  
 
Proof: Let ,gG ><=  where .n)g(o =  There are actually three statements to 
be proved here:  

i) if GHnm ≤∃  s.t. ;m)H(o =   

ii) if GK,GH ≤≤  s.t. ),K(o)H(o =  then ;KH =  and  

iii) if ,GH ≤  then .n)H(o    
 
We shall first prove (i). So, let ,mrn =  and let .s)g(o r =  Then s  is the least 
positive integer s.t. ,e)g( sr =  i.e., .egrs =   
Since ,n)g(o =  Theorem 2 tells us that .rsn  
So ,rsn ≤  i.e., ,rsmr ≤  i.e.,  

.sm ≤          …(11) 
Now, .eg)g( nmr ==  So, again by Theorem 2 (ii), ,ms  i.e.,  

.ms ≤          …(12) 
From (11) and (12), we find .ms =  

Thus, GgH r ≤><=  of order ,m  i.e., ><= m
n

gH  is of order .m  
 
Now let us prove (ii), i.e., the uniqueness part of the theorem.  
Suppose ><= rgH  and  ><= tgK  are both subgroups of G  of order ,m  
where .mrn =   
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Now .
)t,mr(

mr
)t,n(

n)g(om t ===  So, ).t,mr(r =  

Thus, ,tr  say .v,vrt N∈=   

So .H)g(g vrt ∈=   
Thus, .HK ⊆   
But both these sets have the same number of elements, .m   
Hence, .HK =   
 
Now, for proving (iii), let .GH ≤  Then, by Theorem 6, you know that 

,gH s ><=  where s  is the least positive integer such that .Hgs ∈   
By the division algorithm, Z∈∃ r,q  s.t. .sr0,rqsn <≤+=   
So .gg rqsn =−  
Since egn =  and .Hg,Hg qss ∈∈ −   
Thus, .Hgr ∈  As ,sr <  this is only possible if .0r =  Then .qsn =   
Now, as in the proof of (i) above, you can show that ,q)H(o =  and .nq  Thus, 
H  corresponds to the divisor q  of .n  
 
Now, suppose ><= gG  is a cyclic group, and ><= mgH  and ><= ngK  
are subgroups of .G  When is ?KH ≤  This would happen iff .KH ⊆  So, what 
is the relationship, if any, between m  and ?n  You will actually find the answer 
to this in the proof of Theorem 8. However, first consider the following 
example. 
 
Example 9: In Example 8 you have seen that any subgroup of Z  is of the 
form Zm  for some .m N∈  Let Zm  and Zk  be two subgroups of .Z  Show 
that Zm  is a subgroup of Zk  if and only if .mk  
 

Solution: We need to show that .mkkm ⇔⊆ ZZ   
Now ZZ km ⊆ krmkm =⇒∈⇒ Z  for some Z∈r  
                             .mk⇒  
 

Conversely, suppose .mk  Then, krm =  for some .r Z∈   
Now consider any ,mn Z∈  and let Z∈t  such that .mtn =  
So .k)rt(kt)kr(mtn Z∈===  
Since n  was an arbitrary element of ,mZ  this shows that .km ZZ⊆  
Thus, we have shown that ZZ km ≤  iff .mk  

*** 
 
Generalising from Example 9, consider the following theorem, comprising 
three statements actually! 
 

 
Theorem 8: Let ,gG ><= ><= mgH  and .gK n ><=  

i) KH ≤  iff ;mn  

ii) ,gKH s ><=∩  where s  is the l.c.m of m  and ;n  

iii) GHK ≤  and ,gHK d ><=  where ).n,m(d =  
 [Note that if +  is the operation, then (iii) says ,dKH ><=+  where 

).]n,m(d =  
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Proof: We leave the proof of (i) to you (see E19). 
 
ii) Since ,gKH,GKH s ><=∩≤∩  for some .s N∈   

Since KH∩  is a subgroup of both H  and ,K  by (i) above, sm  and 

.sn  Thus, s  is a common multiple of m  and .n   

Now let t  be any common multiple of m  and .n  Then, by (i), Hgt ≤><  
and .Kgt ≤><  Hence .gKHg st ><=∩≤><  

 .ts∴   
Hence, by definition of the l.c.m in Unit 1, s  is the l.c.m of .n,m  

 
iii) By Theorem 5, G  is abelian. Hence, .GHK ≤  
 Now }.Kk,Hhhk{HK ∈∈=  

 For 1mm )g(h,Kk,Hh =∈∈  and 1nn )g(k =  for some .n,m 11 Z∈  
 So 111 ddnnmm gghk == +  for some ,d1 Z∈  where ).n,m(d =  
 Thus, .gHK d ><⊆       …(13) 
 Also, by Unit 1, you know that nsmrd +=  for some .s,r Z∈  
 So .HK)g()g(gg snrmnsmrd ∈⋅== +  
 Hence, .HKgd ⊆><        …(14) 

By (13) and (14), .gHK d ><=  
 
Now consider an important remark related to a set operation that Theorem 8 is 
silent about.  
 
Remark 3: Theorem 8 does not talk of .KH ∪  In Unit 3, you have seen that 

GKH ≤∪  iff KH ⊆  or .HK ⊆  Thus, in the context of Theorem 8, 
GKH ≤∪  iff mn  or ,nm  by Theorem 8(i). So, for example, 

.1553 Z</><∪><  You should verify this. 
 
Theorems 7 and 8 give us a complete picture of the subgroups of a finite cyclic 
group. Theorem 7 also tells us that the subgroup of order ,m  where ,nm  is 

.gm
n

><  Let us apply this understanding now in some cases. 
 
Example 10: Find all the subgroups of ,U12  the group of the 12th roots of 
unity. 
 
Solution: The positive divisors of 12  are .12,6,4,3,2,1  
Let ,U12 >ζ<=  where ζ  is of order ,12  i.e., ζ  is a primitive th12  root of 
unity. 
Then >ζ<== 12

1 }1{A  is of order .1  

Next, >ζ<=>ζ<= 62
12

2A  is of order .2  Similarly, 

126
2

5
3

4
4

3 UA,A,A,A =>ζ<=>ζ<=>ζ<=>ζ<=  are the subgroups 
of 12U  of orders 6,4,3  and ,12  respectively.  
By Theorem 8, ,AAAA 6421 ≤≤≤  and .AAAA 6531 ≤≤≤   
We show this relationship in a subgroup diagram, in Fig.2. 
 

A generator of nU  is 
called a primitive nth 
root of unity. 
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Fig.2:  A subgroup diagram for .12U  Each line connecting a subgroup H  below 
and K  above it, shows that .KH ≤   

*** 
 
Example 11: Find all the subgroups of ,30Z  and give a subgroup diagram for 

.30Z  
 

Solution: Recall that .130 ><=Z  
Now the positive divisors of 30  are .30,15,10,6,5,3,2,1  
Thus, the subgroups of 30Z  of these  orders are, respectively,  

},0{30 =><  

},15,0{15 =><  

},20,10,0{10 =><  

},24,18,12,6,0{6 =><  

},25,20,15,10,5,0{5 =><  

},27,24,21,18,15,12,9,6,3,0{3 =><  

},28,26,24,22,20,18,16,14,12,10,8,6,4,2,0{2 =><  
.1 30Z=><  

 
Consider the diagrammatic representation of the subgroup structure of ,30Z  

given in Fig.3. This shows, for example, that ><≤>< 36  and .26 ><≤><  

Similarly, ,1530 ><≤><  which is a subgroup of both >< 3  and .5 ><  
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.3: Subgroup diagram for .30Z  

*** 

>< 5  >< 3  >< 2

><= 30}0{  

><15  
><10  

>< 6  

><= 130Z  

>ζ<=12U  

>ζ< 2  >ζ< 3  

>ζ< 6  >ζ< 4  

>ζ<= 12}1{  
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Example 12: Find ><+>< 1815  and ><∩>< 1815  in .Z  
 
Solution: From Theorem 8(iii), ,d1815 ><=><+><  where 

.3)18,15(d ==   
So .31815 ><=><+><  
Similarly, by Theorem 8(ii), ,s1815 ><=><∩><  where  
=s l.c.m of .9018,15 =   

Thus, .901815 ><=><∩><  
*** 

 
Now, why don’t you try the following exercises? 
 
 
E18) Which subgroups of Z  is Z9  a subgroup of? Give reasons for your 

answer. 
 
E19) i) If ><= gG  is finite, ,gK,gH rm ><=><=  for ,r,m Z∈  under 

what conditions on m  and r  is ?KH ≤  Give reasons for your 
answer. 

 
 ii) If ><= gG  is infinite, ,gK,gH nm ><=><=  for some 

,n,m Z∈  prove that KH ≤  iff .mn  
 
E20) Give the subgroup diagram of .12Z  Compare its structure with that of 

12U  in Fig.2. What do you conclude? 
 
E21) Find all the subgroups of ,25Z  and give the corresponding subgroup 

diagram. 
 
E22) Show that pZ  has no proper non-trivial subgroup, where p  is a prime. 
 
E23) Find all the subgroups of .2n,n ≥Z  
 
E24) Find generators of ><+>< 64  and ><∩>< 64  in .30Z  
 
E25) Find a generator each of HK  and ,KH∩  where 

>ζ<=>ζ<= 108 K,H  in .U12  
 
E26) Let G  be a cyclic group. Can G  be the union of its proper subgroups? 

Give reasons for your answers. 
 
 
Let us now go back to the point made in Corollary 1(ii). You can see that the 
number of different generators of ,g ><  where ,n)g(o =  is the number of 
elements of >< g  of order .n  By Corollary 1, this is the number of positive 
integers less than n  and relatively prime to .n  This number is given by the 
Euler phi-function, named after the famous Swiss mathematician, Leonhard 
Euler (pronounced oiler). (You have already met him in an earlier unit!). 
 
Definition: The Euler phi-function NN→φ :  is defined as follows: 

,1)1( =φ  and  

Fig.4: Leonhard Euler 
           (1707-1783) 
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=φ )n(  the number of natural numbers less than n  and relatively prime to ,n  
for .2n ≥  
 
For example, 1)2( =φ  and 2)6( =φ  (since the only positive integers less than 
6  and relatively prime to 6  are 1 and ).5  
 
So, the number of distinct generators that the finite group >< g  has is 

,(n)φ  where ).g(on =  
 
Now, this leads us to another question:  how many elements of order d  does 

>< g  have, for each positive divisor d  of ?)g(on =  
You know that the only element of order 1 is ,e  and you know that the number 
of elements in G  of order n  is ).n(φ  What about the other divisors of ?n  
Consider the following result. 
 
Theorem 9: Let ><= gG  be of order ,n  and let d  be a positive divisor of .n  
Then the number of elements of G  of order d  is ).d(φ  
 

Proof: In Theorem 7, you have seen why d
n

g  is of order .d  Let ,md
n =  and let 

.agm =  Consider the unique subgroup ><= aH  of G  of order .d  From 
Theorem 7, and the discussion above, you know that the number of distinct 
generators of H  is ).d(φ  
Hence, the number of distinct elements of G  of order d  is ).d(φ  
 
Let us consider an example of what Theorem 9 tells us. 
 
Example 13: How many elements of order 2 and of order 5  do 1750 U,Z  and 

25U  have? Can you find the elements, if they exist? 
 
Solution: Note that .25)U(o,17)U(o,50)(o 251750 ===Z   

Since 502  and 50,505 Z  has 1)2( =φ  and 4)5( =φ  elements of order 2 and 
5, respectively. Note that ,4)5( =φ  since 5  is a prime, and hence, is relatively 
prime to each of .4,3,2,1  

The element of order 2 in 50Z  is .25   

The elements of order 5  in 50Z  are ,10m ⋅  where .1)5,m( =  

These are ,40,30,20,10  corresponding to ,4,3,2,1m =  respectively.  
 
Next, since 17U  is of order 17 and ,172  17U,175  has no element of order 
2  or of order .5  
 
Finally, since 25U,252  has no element of order .2  Since 25U,255  has 

4)5( =φ  elements of order .5  
These are ,m5ζ  where ,1)5,m( =  i.e., ,,,, 2015105 ζζζζ  where ζ  is a primitive 

th25  root of unity. 
*** 

 
Try solving the following exercises now. 
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E27) Show that  

 i) ,1p)p( −=φ  for any prime ,p  

 ii) ∑φ=
nd

),d(n  (Hint: Use Theorem 7.) 

 iii) ),n()m()mn( φφ≠φ  in general. (In Unit 8 you will see that 
)n()m()mn( φφ=φ  if ,1)n,m( =  for .)n,m N∈  

   
E28) Find all the distinct generators of >< 25  in ,30Z  and of >ζ< 3  in .U10  
 
 
So far, you have spent quite some study time on subgroups of finite cyclic 
groups. What do we know about the subgroups of infinite cyclic groups, apart 
from the fact that they are also cyclic? Let’s see. 
 
Theorem 10: Let ><= gG  be an infinite cyclic group, and .ex,Gx ≠∈  Then 

>< x  is also an infinite cyclic group. 
 
Proof: Firstly, by Theorem 6, you know that ngx =  for some .n N∈  So, by 
Theorem 4(i), )x(o  is infinite. Thus, ><=>< ngx  is infinite. 
 
Let us consider .Z  You know that this is an infinite cyclic group generated by 
1 or ).1(−  Can Z  be generated by any other element? Think about this while 
studying the following example. 
 
Example 14: Show that if >< g  is infinite and ><=>< ggn  for some ,n Z∈  
then 1n =  or .1−  
 
Solution: By E3, you know that for any cyclic group .gg,g 1 ><=><>< −  
Now, let ,ggn ><=><  where g  is of infinite order. Then .gg n >∈<  So 

Z∈∃ m  s.t. .ggnm =  Then, by Theorem 2, .1nm =   
Since ,m,n Z∈  this is possible only when 1n =  or .1−  

*** 
 
From Example 14, you can see that ><= 1Z  or ,1>−<=Z  and these are 
the only possible generators of .Z  
 
Try doing some exercises now. 
 
 

E29) Is the cyclic subgroup ,1><  of the group ∗C  of non-zero complex 
numbers, infinite? Why? 

 
E30) Which of the following statements is true? Give reasons for your 

answers. 

 i) If H  is an infinite cyclic group, and a group G  contains ,H  then 
G  is cyclic. 

 ii) An infinite cyclic group has only one finite subgroup. 

 iii) There is an infinite cyclic group which has 4  distinct generators.  
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Now, let us go back to Example 6 for a moment. You noted that 4K  is not a 
cyclic group. However, it does have a set of generators, as you will now see. 
 

4.4 SET OF GENERATORS 
 
In the previous section, you saw that if g  is an element of a group ,G  then 

>< g  is the smallest subgroup of G  containing .g  Let us see if this idea can 
be extended to a set of two elements of .G  
 
Let }b,a{S =  be a subset of a group .G  Let GH ≤  s.t. .HS⊆  Then 

}ma{ m Z∈  and }nb{ n Z∈  will be subsets of .H  Also, elements of the form 
7332 baba −  will be in .H  (Note that we can’t write 7332 baba −  as 101ba−  since H   

may not be abelian.) 
Now suppose GK ≤  s.t. .KS⊆  Then, as above, ,K}ma{ m ⊆∈Z  

,K}nb{ n ⊆∈Z  and products of the kind 2baba  are also in .K  

Hence, all these sets and elements lie in .KH∩  In fact, they lie in the 
intersection of all the subgroups of G  containing ,S  which is also a subgroup 
of G  containing .S  This leads us to the following definition. 
 
Definition: Let G  be a group. The subgroup of G  generated by b}{a,S =  
is the smallest subgroup of G  containing .S  This subgroup is denoted by 

,>< ba,  or by .>< S  
 
In fact, >< S  is the intersection of all subgroups of G  containing .S   
 
For example, 6D  is generated by },R,r{ 120  where IR,Ir 3

120
2 ==  and 

.rRRr 1
120120 oo −=  

As another example, 4K  (in Example 6) is generated by }.b,a{  
 
Let us generalise what you have just seen for }b,a{S =  to any non-empty set 

.S  
 
Let G  be a group and S  be a non-empty subset of .G   
 

Consider the family ,F  of all subgroups of G  that contain ,S  that is,  
GHH{ ≤=F  and }.HS⊆  

We claim that «.≠F  Why?  Doesn’t F∈G ?   
Next, by Theorem 6 of Unit 3, H

H F∈
∩  is a subgroup of .G  

Note that  
i) ,HS

H F∈
∩⊆  

ii) H
H F∈
∩  is the smallest subgroup of G  containing .S  (Because if K  is a 

subgroup of G  containing ,S  then .K F∈   Therefore, K.H
H

⊆∩
∈F

) 

 
These observations lead us to the following definitions. 
 
Definitions: Let S  be a non-empty subset of a group .G   
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i) The smallest subgroup of G  containing S  is called the subgroup 

generated by the set ,S  and is denoted by .>< S  
Thus, }.HS,GHH{S ⊆≤∩=><  
 

ii) If ,GS =><  then we say that G  is generated by the set ,S  and that S  
is a set of generators of ,G  or a generating set of .G  

 
iii) If the set S  is finite, we say that >< S  is finitely generated. 
 
For example, a cyclic group >< g  is a finitely generated group, as is .b,a ><  
 
Note that if }b,a{  generates ,b,a ><  then }ab,b,a{  also generates >< b,a  
as .b,aab >∈<  So the generating set of a subgroup is not unique. 
 
Before giving more examples, we will give an alternative way of describing 

.S ><   This theorem makes it much easier, than the definition, to obtain 

.S ><   
 
Theorem 11: If S  is a non-empty subset of a group ,G  then 

Saaaa{S i
n
k

n
2

n
1

k21 ∈=>< K  and Z∈in  for .}k,ki1 N∈≤≤  
 
Proof: Let Saaaa{A i

n
k

n
2

n
1

k21 ∈= K  and Z∈in  for .}ki1 ≤≤  

Since ,SSa,,a k1 ><⊆∈K  and >< S  is a subgroup of ><∈ Sa,G in
i  

.k,,1i K=∀  Therefore, ,Saaa k21 n
k

n
2

n
1 ><∈K   

i.e., .SA ><⊆        …(15) 
 
Now, let us see why .AS ⊆><  We will show that A  is a subgroup containing 

.S  Then, by the definition of ,S ><  it will follow that .AS ⊆><  
Since any Sa∈  can be written as .AS,aa 1 ⊆=  
Since .A,S «« ≠≠  
Now let .Ay,x ∈  Then ,aaax k21 n

k
n
2

n
1 K= Sb,a,bbby ji

m
r

m
2

m
1

r21 ∈= K  and 

Z∈ji m,n  for .rj1,ki1 ≤≤≤≤  

Then 1m
r

m
2

m
1

n
k

n
2

n
1

1 )bbb()aaa(xy r21k21 −− = KK  
      ,A)bb()aaa( 1rk21 m

1
m

r
n
k

n
2

n
1 ∈= −− KK  by definition. 

Thus, by Theorem 2, Unit 3, A  is a subgroup of .G   
Thus, A  is a subgroup of G  containing .S   
Hence, .AS ⊆><        …(16) 
From (15) and (16), .AS =><  
 
Note that if ),G( +  is a group generated by ,S  then any element of G  is of the 
form ,ananan rr2211 +++ L  where Sa,,a,a r21 ∈K  and .n,,n,n r21 Z∈K  
Here the ia  can be taken as distinct since G  is abelian. 
 
Let us consider an example. 
 
Example 15: You know that Z  is generated by },1{  or by }.1{−  Show that Z  
is also generated by the set of odd integers .},5,3,1{S K±±±=    
 
Solution: Let .m Z∈  Then s2m r=  where 0r ≥  and .Ss∈  Thus, .Sm ><∈   

Note that in Theorem 11 the  
ia  are not necessarily 

distinct, since G  may not be 
abelian. 
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So .S ><⊆Z  
Of course, ,S Z⊆><  since .S Z⊆  
Thus, .S Z=><  

*** 
From Example 15, you can see that a cyclic group >< g  can be generated by 
a much bigger set too. Thus, ,g,g,gg 32 ><=><  for example, since 

.gg,g 32 >∈<  
 
A remark about notation, here. 
 
Remark 4: If ,SG ><=  and }a,,a,a{S n21 K=  is finite, we usually write 

,a,,a,aG n21 ><= K  leaving out the curly brackets. 
 
Try solving the following exercises now. 
 
 
E31) Show that a subset S  of N  generates Z  iff there exist k1 s,,s K  in S  

and k1 n,,n K  in Z  such that .1snsn kk11 =++L  
  
E32) Show that if S  generates a group G  and ,GTS ⊆⊆  then T  also 

generates .G  
 
E33) Show that ,R,rD n2 ><=  where r  is a reflection and ,RR θ=  where 

,n
360=θ  as discussed in Sec.2.4.3, Unit 2.  

 
E34) If ><= 11 gG  and ,gG 22 ><=  show that 21 GG ×  is not always cyclic. 

Also find a generating set for .GG 21 ×  
 (This is linked with E27(iii).) 
 

 
In Unit 9, you will see that nS  is also finitely generated .n N∈∀   
 
With this we come to the end of our discussion on generators. We also end 
this unit here. Let us now summarise what you have studied in it. 
 

4.5 SUMMARY 
 
In this unit, we have discussed the following points. 
 
1. The order of an element x  of a group ),x(o,G  is the order of the cyclic 

subgroup >< x  of .G  
 
2. If )x(o  is finite, then )x(o  is the least positive integer n  s.t. .exn =  
 
3. If n)x(o =  and exs =  for some ,s Z∈  then .sn  
 
4. If )x(o  is infinite, then nm xx ≠  if .n,m,nm Z∈∀≠  
 
5. ,Gg,x)xgx(o)g(o 1 ∈∀= −  where G  is a group. 
 

In Unit 8 you will see that 

nm ZZ ×  is cyclic if 
.1)n,m( =    
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6. Let G  be a group, and .Gg∈  
 i) If g  is of infinite order, then mg  is also of infinite order for every 

.m ∗∈Z  

 ii) If ,n)g(o =  then .1n,,1m
)m,n(

n)g(o m −=∀= K   

 
7. Examples of finite and infinite cyclic groups. 
 
8. Every cyclic group is abelian. 
 
9. Every subgroup of a cyclic group is cyclic. 
 
10. Let G  be a finite cyclic group of order .n  For every positive divisor m  of 

G,n  has a unique subgroup of order .m  Further, these are the only 
subgroups of .G  

 
11. Let ><= gG  and let ><= mgH  and .gK n ><=  

 i) KH ≤  iff ,mn  

 ii) ,gKH s ><=∩  where s  is the l.c.m of m  and ,n  

 iii) GHK ≤  and ,gHK d ><=  where ).n,m(d =  
 [Note that if +  is the operation, then (iii) says that ,dKH ><=+  where 

).]n,m(d =  
 
12. Let ><= gG  be of order ,n  and let d  be a positive divisor of .n  Then 

the number of elements of G  of order d  is ),d(φ  where φ  is the Euler 
phi-function. 

 
13. The definition, and examples, of a subgroup of a group G  generated by 

.S,GS «≠⊆  This is denoted by .S ><  
 
14. If ,SG ><=  then ><= TG  for any .ST ⊇  In particular, .GG ><=  
 
15. The direct product of cyclic groups need not be cyclic. 
 

4.6 SOLUTIONS / ANSWERS 
 
E1) i) .IRR,IRR,IRR,IR 360

4
90270

3
90180

2
9090 ==≠=≠=≠  

  .IRR,IR 360
2
180180 ==≠  

  Thus, .2)R(o,4)R(o 18090 ==  
 

 ii) Here ,I
10

01
01
10

,I
01
10

A
2

≠⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
−

≠⎥
⎦

⎤
⎢
⎣

⎡
−

=  

.I
10
01

01
10

,I
01
10

01
10 43

=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

≠⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

 

  Thus, .4)A(o =  
 
 iii) Verify that 01n ≠⋅  for }9,,2,1{n K∈  and .010110 ==⋅  
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  Thus, .10)1(o =  
  Note that .110 ><=Z  
 

 iv) For any ,m,1nm0,m nZ∈−<<  and ,01mm ≠⋅=  since n    .m   
  Next, .01nn =⋅=  Thus, .n)1(o =  
 
 v) Since )5(o,n0)5(n −∈∀≠− N  is infinite. 
 

 vi) Let .
54
32

A ⎥
⎦

⎤
⎢
⎣

⎡
=  Then .n

00
00

n5n4
n3n2

nA N∈∀⎥
⎦

⎤
⎢
⎣

⎡
≠⎥

⎦

⎤
⎢
⎣

⎡
=  

  Hence, )A(o  is infinite. 
 
E2) Since ea},e{H ≠∃≠  in .H  Since rea,ea ≠≠  for any .r Z∈   
 .ea ><∉∴  .eH ><≠∴  
 
E3) We will show that ><⊆>< −1aa  and .aa 1 ><⊆>< −  
 Now, any element of >< a  is ,)a(a n1n −−=  for .n Z∈  
 .aa 1n ><∈∴ −  .aa 1 ><⊆>∴< −  
 Similarly, you should show that .aa 1 ><⊆>< −  
 .aa 1 ><=>∴< −  
 
E4) Let GH ≤  s.t. .Ha∈  Then, ,Ha ⊆><  by Theorem 1. 
 Thus, GHH{a ≤∩⊆><  and }.Ha∈  
 Also Ga ≤><  s.t. .aa ><∈  
 So GHH{ ≤∩  and .a}Ha ><⊆∈  

 Hence, GHH{a ≤∩=><  and }.Ha∈  
 
E5) From E1(iv), you know that .n)1(o =  
 So n1 Z≤><  and both have the same order. Hence, .1n ><=Z  
 
E6) Since 0a,A ij ≠≠ 0  for some .3,2,1j,2,1i ==  

 Then .n0naij N∈∀≠  
 Hence, .nnA N∈∀≠ 0  
 Thus, )A(o  is infinite. 
 

E7) I
r0
0r

A,IA 2 =⎥
⎦

⎤
⎢
⎣

⎡
=≠  if .1r =  So 2)A(o =  if .1r =  

 Now, suppose .1r ≠  

 In general, you should verify that ,nIA 1n2 N∈∀≠+  and .
r0
0r

A n

n
n2

⎥
⎦

⎤
⎢
⎣

⎡
=  

 Thus, if r  is a real nth root of unity, then .n2)A(o =  Otherwise, )A(o  is 
infinite. 

 
E8) Here «  is the identity element. 
 If .1)A(o,A == «  
 If .AA,A «« =Δ≠  Hence, .2)A(o =  
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E9) i) Let ).m,n(d =  Then nd  and .md  

  By Theorem 4, .
d
n)g(o m =  

  Also ,d
n

)d,n(
n)g(o)g(o d)m,n( ===  since .nd  

  Hence, ).g(o)g(o )m,n(m =  
 
 ii) ><= mgG  iff n)g(o m =  iff ,1)n,m( =  by Theorem 4(ii). 
 
E10) 18)1(o =  in .18Z  So,  

 .9)2,18(
18)12(o)2(o ==⋅=  

 .92
18

)4,18(
18)4(o ===  (Note that ,224 ⋅=  but ).)2(o)4(o =  

 Also, .181
18

)5,18(
18)5(o ===  (Thus, ><= 518Z  also.) 

 
E11) Let ,gG ><=  where .n)g(o =  Let .Gx∈  Then mgx =  for some 

.nm0,m <≤  
 If ,ex =  then 1)x(o =  and .n1  

 If ,ex ≠  then .)m,n(
n)g(o)x(o m ==  Hence, .n)x(o  Let .r)x(o =   

 Since ,nr  let .rsn =  

 Then .e)x(xxx srrsn)G(o ====  
 

E12) Since .10
)3,10(

10)(o,10)(o 3 ==ζ=ζ  

 

E13) .3)10,15(
15)x(o,53

15
)6,15(

15)x(o,15)2,15(
15)x(o 1062 =======  

 
E14) .n)x(o =  So .exxx nmnm ==⋅ −  
 Thus, .x)x( mn1m −− =  
 Hence,, by E3, .xx mnm ><=>< −  

 Hence, ),x(o)x(o mnm −=  that is, .)mn,n(
n

)m,n(
n

−
=  

 Hence, ).mn,n()m,n( −=  
 
E15) Since ),5,30()25,30( =  from E14, .525 ><=><  Hence, 

}.20,15,10,5,0{25 =><  
 ,U10

7 =>ζ<=>ζ<  since .1)10,7( =  
 
E16) Since 8D  is not abelian, it cannot be cyclic. 
 
E17) Let G  be a non-abelian group. Then }.e{G ≠  



 

 

136 

 
Block 1                                                                                                 Introduction to Groups

 Let .eg,Gg ≠∈  Then }.e{g,Gg ≠><≤><  Also ,gG ><≠  since G  
is non-abelian. 

 Hence, >< g  is a proper non-trivial subgroup of .G  
 

E18) From Example 9, ZZ m9 ≤  iff ,9m  i.e., .9,3,1m =  
 Thus, Z9  is a subgroup of only ZZ 3,  and .9Z  
 
E19) i) We will prove that KH ≤  iff .mr  

  First, if ,KH ≤  then .Kgg rm =><∈  
  By the division algorithm, rqrm ′+=  for some .rr0,r,q <′≤∈′ Z  

So ,K)g(g qrm ∈⋅ −  i.e., .Kgr ∈′   
  But, by Theorem 6, r  is the least positive integer s.t. .Kgr ∈   
  Hence, ,0r =′  i.e., ,qrm =  i.e., .mr  
  
  Conversely, if ,mr  then rsm =  for some .s Z∈  

  So .K)g(g srm ∈=  Hence, ,KH ⊆  i.e., ,KH ≤  by E10, Unit 3. 
 
 ii) As in Example 9, show that if .mn,KH ≤  

  Then show that if .KH,mn ≤  
 
E20) The subgroups of 12Z  are 

.1,2,3,4,6,12}0{ 12Z=><><><><><><=  
 The diagram is as in Fig.5 below. It is structurally the same as the 

diagram in Fig.2, where >ζ< i  is replaced by .i ><  
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5: A subgroup diagram for .12Z  

 
E21) The positive divisors of 25  are .25,5,1  Hence, the subgroups of 25Z  

are .25,5,1 ><><><  
 The corresponding diagram is given in Fig.6. 
  
E22) ,1p ><=Z  where 1  is the congruence class of ).p(mod1  

 So .p)(o p =Z  Since the only divisors of p  are 1 and ,p  by Theorem 7 

the only subgroups of pZ  are >< 1  and .0p ><=><  

 Hence, pZ  has no non-trivial proper subgroup. 
 
E23) By Theorem 6, any subgroup H  is of the form ,m ><  where m  is the 

least positive integer s.t. .Hm∈  

><= 125Z  

>< 5  

}0{25 =><  

Fig.6: A subgroup 
diagram for .25Z  

121 Z=><  

>< 2 >< 3  

>< 6  >< 4

><= 12}0{  
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 Further, by Theorem 7, if r21 m,,m,m K  are the positive divisors of ,n  

then the subgroups are ,H,,H,H r21 K  where .)m
n(H

i
i ><=  

 

E24) ,130 ><=Z  where .30)1(o =  

 The l.c.m of 4  and 6  in 30Z  is 12  and .2)6,4( =  

 So ><=><∩>< 1264  and .264 ><=><+><  
 

E25) ,HK d108 >ζ<=>ζ<>ζ<=  where .2)10,8(d ==  
 ,KH >ζ<=∩ l  where =l l.c.m of .4010,8 =  
 Now 440 ζ=ζ  in .U12  So 
 .KH 4 >ζ<=∩  
 
E26) From Unit 3, you know that if A  and B  are subgroups of G  then 

GBA ≤∪  iff BA ⊆  or .AB⊆  
 Thus, whenever the union of proper subgroups is a subgroup, it can only 

be a proper subgroup. Hence, it can never be .G  
 
E27) i) For any prime m1)p,m(,p ∀=  s.t. ,pm1 <≤  by the 

Fundamental Theorem of Arithmetic. 
  Hence, .1p)p( −=φ  
 

 ii) By Theorem 7, for each >< d/ng,nd  is a unique subgroup of 
order d  of ,g ><  where .n)g(o =  

  Also, the number of generators of >< d/ng  is ).d(φ   
  Further, for each i  s.t. d)g(o,ni1 i =≤≤  for some .nd  

  Hence, ∑φ=
nd

).d(n  

 
 iii) ,2)4( =φ  since 1 and 3  are relatively prime to .4  
  Also .1)2( =φ  
  Hence, ).2()2()22()4( φφ≠×φ=φ  
 

E28) Since ,525 ><=>< .6)25(o =   
 The number of elements in 30Z  of order 6  is .2)6( =φ  

 These are 251⋅  and ,255 ⋅  i.e., 25  and .5  
  

 ,10)(o 3 =ζ  since .1)10,3( =  
 ,4)10( =φ  the numbers being .9,7,3,1  
 Thus, the distinct generators of >ζ< 3  are .,,, 973 ζζζζ  
 

E29) },1{1 =><  since .n11n Z∈∀=  
 Hence, ><1  is finite. 
 
E30) i) False. E.g., ,QZ ≤  but Q  is not cyclic, as you have seen in 

Example 7. 
 
 ii) True. By Theorem 10, }e{  is the only finite subgroup. 
 
 iii) False, see Example 14. 
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E31) First suppose .S ><=Z   

 Since ZZ ∈∃∈ k1 n,,n,1 K  and Ss,,s k1 ∈K  s.t. .sn1
k

1i
ii∑

=

=  

 Conversely, let .Ss,n,snsn1 iikk11 ∈∈++= ZL  
 Then for any .S)snsn(m1mm,m kk11 ><∈++=⋅=∈ LZ  
 So .S ><⊆Z  
 Since .S,S ZZ ⊆><⊆  
 Thus, .S ><=Z  
 
E32) ><= SG  and .TS⊆  So .GTSG ≤><⊆><=  
 Hence, .TG ><=  
 
E33) From Unit 2, you know that any element of n2D  is of the form iR  or 

.1n,,1,0i,rRi −= K  Hence, .DR,rD n2n2 ⊆><⊆   
 Thus, .R,rD n2 ><=  
 
E34) Consider .ZZ×  If it were cyclic, with a generator ),y,x(  then 

)my,mx()0,1( =  and )ny,nx()1,0( =  for some .n,m Z∈  So 
.1ny,0nx,0my,1mx ====  

 0m0my =⇒=  or .0y =  But then 1mx =  and 1ny =  is not possible. 
We reach a contradiction.  

 Hence, ZZ×  is not cyclic. 
  
 Any element of 21 GG ×  is of the form 

,n,n,)g,e()e,g()g,e)(e,g()g,g( 21
n

21
n

21
n
212

n
1

n
2

n
1

212121 Z∈==  where 1e  
and 2e  are the identities of 1G  and ,G2  respectively. 

 Hence, .)g,e(),e,g(GG 212121 ><=×  
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MISCELLANEOUS EXAMPLES AND EXERCISES 
 

“A miscellany is a collection with a natural ordering relation.” 
                    J. E. Littlewood 
                    British mathematician 

 
The few examples and exercises, given below cover the concepts and 
processes you have studied in this block. Studying the examples, and solving 
the exercises, will give you a better understanding of the concepts concerned. 
This will also give you more practice in solving such problems. 
 
Example 1: Which of the following statements are true? Give reasons for your 
answers. 

i) The domain of a binary operation on a set S  is .S  

ii) If ),G( ⋅  is an abelian group, then .Gxex 2 ∈∀=  

iii) If ,m,n N∈  then .nm)m,n(]m,n[ =  
 
Solution: i) False. The domain is .SS×  

ii) False. For instance, Z  is abelian, but .0n0n2 ≠∀≠  

iii) True. Here we use the unique factorisation theorem.  
Let r1 n

r
n
1 ppn K=  and ,ppm r1 m

r
m
1 K=  where 0m,0n ii ≥≥  for .r,,1i K=  

Let )m,nmin(s iii =  and )m,nmax(t iii =  for .r,,1i K=  Then 
r21 s

r
s
2

s
1 ppp)m,n( K=  and .ppp]m,n[ r21 t

r
t
2

t
1 K=  

 (For example, consider 15  and .100  Here 110 53215 ⋅⋅=  and 
.532100 202 ⋅⋅=  So 100 532)100,15( ⋅⋅=  and .532]100,15[ 212 ⋅⋅= ) 

 Also .r,1imnts iiii K=∀+=+  
 Then rr2211 ts

r
ts

2
ts

1 ppp]m,n[)m,n( +++ ⋅= K  
                               rr11 mn

r
mn

1 pp ++= K  
                               )pp()pp( r1r1 m

r
m
1

n
r

n
1 KK=  

                               .nm=  

*** 
 

Example 2: Let ).(GLG 2 Q=  Let .GX∈  Prove that the operation ,∗  defined 
on GG×  by ,ABXXBA 1−=∗  is a binary operation on .G   
Further, is ),G( ∗  a group? Why, or why not? 
 
Solution: First, for .0)Bdet(,0)Adet(,GB,A ≠≠∈  

.0)Xdet()Bdet()Adet()]X[det()ABXXdet( 11 ≠=∴ −−  
Also, all the entries of ABXX 1−  are from .Q  
Thus, .GABXX 1 ∈−  
Thus, ∗  is closed on .G  
 
Next, note that there is no GY∈  s.t. .GAAYA ∈∀=∗  
This is because AYA =∗  iff .XAXAY 11 −−=  
So, for example, if A  does not commute with ,X  then 

XXAXAXYXXYI 1111 −−−− ==∗  
        .IXAAX 11 ≠= −−  
Hence, ),G( ∗  is not a group. 

*** 

 



 

140 

 

Block 1                                                           Essential Preliminary Concepts

Example 3: Prove that if 01
1n

1n
n

n a10a10a10aa ++++= −
− L  is a positive 

integer, then ).9(modaaaa 01nn +++≡ − L  

Hence prove that a  is a multiple of 9  iff ).aaa(9 n10 +++ L  
 
Solution: For 1)1101010)(110(1)110(10,m 2m1mmm +++++−=+−=∈ −− LN  
         1)110(9 1m +++= − L  
Hence, ]a)110(a)110(a)110(a[9a 12

2n
1n

1n
n +++++++++= −

−
− LLL  

                .)aaaa( 011nn +++++ − L  
).9(modaaaa 01nn +++≡∴ − L  

 
Now, )9(mod0aaa)9(mod0aa9 01nn ≡+++⇔≡⇔ − L  

               ).aa(9 0n ++⇔ L  

*** 
 
Example 4: Show that ),( ∗Z  is a group, where 

anm)n,m(:: ++=∗→×∗ ZZZ  for a fixed .a Z∈  
 
Solution: First check that ∗  is a well-defined binary operation on .Z  
Next, check that ,p,n,m)pn(mp)nm( Z∈∀∗∗=∗∗  using the properties 
that +  is associative and commutative in .Z  
Thirdly, check that .mm)a(m)a(m Z∈∀∗−==−∗  
Finally, check that .m)a(m)ma2()ma2(m Z∈∀−=∗−−=−−∗  
Hence, ),( ∗Z  is a group. 

*** 
 
Example 5: Define a relation ~ on R  by ‘ y~x  iff .'yx Z∈−  Check whether 
or not ~ is an equivalence relation on .R  If it is, find ].[π  If ~ is not an 
equivalence relation on ,R  find a subset of R  on which it is an equivalence 
relation. 
 
Solution: Since ~,x0xx RZ ∈∀∈=−  is reflexive. 
Also show why ~ is symmetric and transitive. 
Hence, ~ is an equivalence relation on .R  
Next, }xx{}~xx{][ ZRR ∈π−∈=π∈=π  

               }.nn{ Z∈+π=  

*** 
 
 
Miscellaneous Exercises 
 

E1)  Check whether or not 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Rb,a

ab
ba

A  and 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Ra

00
a0

B  

 are subgroups of ).),(( 2 +RM   
 Is ?)),(GL()(GLA 22 ⋅≤∩ RR  Why, or why not? 
 

E2) Give an example of a proper non-trivial cyclic subgroup of ),),X(( Δ℘  
where }.x,x{X 21=  
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E3) If G  is a group s.t. ,Gy,xyx)xy( 222 ∈∀=  then G  is abelian. Is this 
statement true? Give reasons for your answer. 

 

E4) Show that )],n[( +Z  is a group, where n  is a square-free integer. 
 

E5) Find ),A(o  where ,
11
01

A ⎥
⎦

⎤
⎢
⎣

⎡
=  treating A  as an element of ),( 72 ZM  

and as an element of ).(GL 72 Z  
 
E6) Is 6D  a subgroup of ?D8  Why, or why not? 
 
E7) i) Let G  be an abelian group and }.)g(oGg{T ∞<∈=  Show that 

.GT ≤  T(  is called the torsion subgroup of .)G   

 ii) Find the torsion subgroup of .K4×Z   
 
E8) Which of the following statements are true? Justify your answers. 

 i) If G  is a group and ,n N∈ }Ggg{ n ∈  is a subgroup of .G  

 ii) If G  is a non-abelian group and }n)g(oGg{,n =∈∈N  is a 
subgroup of .G  

 iii) 45Z  has exactly 6  distinct subgroups. 

 iv) If G  is a group and ,Gy,x ∈  of orders n  and ,m  respectively, 
then ],m,n[)xy(o =  the m.c.l  of n  and .m  

 v) If G  is an infinite group s.t. ,Gx∈  with )x(o  being infinite, then 
.xG ><=  

 
E9) Prove that if X  is an infinite set, then the set of permutations, ),X(S  is 

infinite. 
 

E10) i) If ,S)654321( 10∈=σ  then for which N∈n  is nσ  also a 
-6 cycle? 

 ii) Prove that if ),m21( K=σ  then nσ  is a cycle of length m  iff 
.1)m,n( =  Here .n,m N∈  

 
E11) Show that if G  is a non-cyclic group of order ,n  then G  has no element 

of order .n  
 
E12) Write the permutation )75()531()753(  as a product of disjoint cycles. 

Is this permutation even? Give reasons for your answer. 
 
E13) Find the orders of the following elements in the group :),( 36 +Z  

 .13,13,6,5,1,1 −−  
 
E14) Under what conditions on c  will ),( ∗Z  be a group, where ∗  is defined 

by ,cbaabba +++=∗  for a fixed ?c Z∈  
 
E15) Check whether or not )(GL 42 Z  and )(GL 52 Z  are groups w.r.t. matrix  

multiplication.  
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SOLUTIONS / ANSWERS 
 
E1) A  and B  are subgroups of ),),(( 2 +RM  applying the subgroup test. 

.b,a,ba
ab
ba

)(GLA 22
2

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈≠⎥
⎦

⎤
⎢
⎣

⎡
=∩ RR  This is a subgroup of 

),),(GL( 2 ⋅R  by the subgroup test. 
 
E2) For any .,AA)AA(,AA),X(A K=ΔΔ=Δ℘∈ «  

So, «=nA  if n  is even, and AAn =  if n  is odd.  
Thus, }.A,{A «=><   
Hence, if },x{A 1=  then >< A  is a proper non-trivial cyclic subgroup of 

).X(℘  
 
E3) True. Since ,Gy,xxxyyxyxy ∈∀=  by cancellation on the left and on 

the right, we get ,Gy,xxyyx ∈∀=  i.e., G  is abelian. 
 
E4) CZ ⊆]n[  and .]n[ «≠Z  

 Now, if ],n[ndc,nba Z∈++  then  

 ].n[n)db()ca()ndc()nba( Z∈−+−=+−+  

 Hence, .]n[ CZ ≤  Thus, )],n[( +Z  is a group. 
 

E5) For .
nn
0n

11
01

n,n ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
∈N  

 Thus, the least n  for which 0=nA  is .7n =  
 7)A(o =∴  in ).( 72 ZM  
 
 )(GLA 72 Z∈  also, since .01)Adet( ≠=  

 Now, .
01
00

IA ⎥
⎦

⎤
⎢
⎣

⎡
+=  

 So, .n,
0n
00

IAn N∈⎥
⎦

⎤
⎢
⎣

⎡
+=  

 7)A(o =∴  in ),(GL 72 Z  since .017 =⋅  
 
E6) Since 6120 DR ∈  and .DD,DR 868120 ⊄∉  Hence, .DD 86 </  
 
E7) i) Firstly, .Te∈  So .T «≠  
  Next, for .)g(o)g(o,Tg 1 ∞<=∈ −  So .Tg 1 ∈−  
  Finally, if ,Tg,g 21 ∈  then .)g(o)g(o)gg(o 2121 ∞<≤  
  So, .Tgg 21 ∈  
  Thus, .GT ≤  

 ii) Note that .Kb,a))b(o),a(omax())b,a((o 4∈∈∀= Z   
  Also, the only element in Z  with finite order is ;0  and 

.Kx)x(o 4∈∀∞<  Thus, .K}0{}Kx)x,0({T 44 ×=∈=  
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E8) i) This is true if G  is abelian, not otherwise. Look at 3S  and ,3n =  to 
get a counter-example for when G  is non-abelian. 

 
 ii) False. Again, take 3SG =  and ,2n =  for a counter-example. 
 
 iii) True. For each positive divisor of ,45  there is a unique subgroup of 

.45Z  These divisors are .45,15,9,5,3,1  
   
 iv) False. For example, consider .18 ><=Z  

  Then 4)2(o =  and ,2)4(o =  i.e., ].4,4[2)22(o ≠=⋅  
 
 v) False. For example, ,21 ><≠><=Z  but )2(o  is infinite. 
 
E9) Let }.,x,x{X 21 K=  
 Then .i)X(S)xx( 1ii N∈∀∈+  
 Also, )xx()xx( 1jj1ii ++ ≠  unless ,ji =  since )xx( 1ii +  fixes ,x j  or ,x 1j+  

or both, if ;ji ≠  but )xx( 1jj +  moves both jx  and .x 1j+  

 Hence, )X(S  contains the infinitely many transpositions .i),xx( 1ii N∈+  
 Hence, )X(S  is infinite. 
 
E10) i) ),642)(531(2 =σ ),63)(52)(41(3 =σ  
  ),462)(351(4 =σ ),234561(5 =σ  
  ,,I 76 σ=σ=σ  and so on. 
  Thus, nσ  is a -6 cycle only for ,,65,61,5,1n K++=  i.e., 

}.kk65,k61{n N∈++∈  

  Note that nσ  will be a -6 cycle iff ).(o6)(o n σ==σ  

  But ).(o
2

)(o)(o 2 σ≠
σ

=σ  Similarly, .
3

)(o)(o 3 σ
=σ  

  In general, .
)n,6(

6)(o n =σ  

 
 ii) In this case, nσ  is an -m cycle iff .m)(o n =σ  

  Also, .)m,n(
m)(o n =σ  

  nσ∴  is an -m cycle iff ,m)m,n(
m =  i.e., iff .1)m,n( =  

 
E11) You can show the contrapositive of the statement, i.e., prove that if G  

has an element x  of order ,n  then .xG ><=  
 Here, note that Gx ≤><  and both have the same order. 
 
E12) ),1735()75()531()753( =  a -4 cycle.  

Since ),35()75()15()1735( =  a product of 3  transpositions, it is an 
odd permutation. 

 
E13) ,36)1(o =  as 0135 ≠⋅  and ;0136 =⋅ ;36)1(o =−  
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,36)5(o =  as ;6)6(o;1)36,5( == .36)23(o)13(o,36)13(o ==−=  
 
E14) Check that ∗  is a well-defined binary operation on .Z   

Since ),( ∗Z  is a group, ∗  is associative on .Z  
 Hence, show that c  must be .0  
 Then the additive identity must be .0   

However, then no element in ∗Z  has an inverse w.r.t. .∗  (Why?) 
 Thus, for no c  is ),( ∗Z  a group. 
 

E15) .0cbda)(
dc
ba

)(GL 4242
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≠−∈⎥
⎦

⎤
⎢
⎣

⎡
= ZMZ   

Now ).(GL
20
01

42 Z∈⎥
⎦

⎤
⎢
⎣

⎡
 Suppose ⎥

⎦

⎤
⎢
⎣

⎡

dc
ba

 is its inverse. Then 

.
10
01

dc
ba

20
01

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
  

So 1d2 =  in .4Z  Hence, ),d21(4 −  i.e., d21x4 −=  for some .x Z∈  So 
1x4d2 =+  in ,Z  i.e., 1)x2d(2 =+  in ,Z  which is not possible.  

Thus, not every element has an inverse in ).(GL 42 Z  Hence, it is not a 
group w.r.t. matrix multiplication. 

 
 However, )),(GL( 52 ⋅Z  is a group, which you should check. 
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