
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Volume-II 
RING THEORY 
 

 

BLOCK 3               7 
Introduction to Rings 
 

 

BLOCK 4           121 
Integral Domains 
 
 

Indira Gandhi National Open University 
School of Sciences 

BMTC-134 
ALGEBRA 



 

2 

Unitised Course Outline 
 
Volume I  Group Theory 
Block 1  Introduction to Groups 
Unit 1: Some Preliminaries 
Unit 2: Groups 
Unit 3: Subgroups 
Unit 4: Cyclic Groups 

Block 2  Normal Subgroups and Group Homomorphisms 
Unit 5: Lagrange’s Theorem 
Unit 6: Normal Subgroups 
Unit 7: Quotient Groups 
Unit 8: Group Homomorphisms 
Unit 9: Permutation Groups 
 
Volume II  Ring Theory  
Block 3  Introduction to Rings 
Unit 10: Rings 
Unit 11: Subrings 
Unit 12: Ideals 
Unit 13: Ring Homomorphisms 

Block 4  Integral Domains 
Unit 14: Integral Domains and Fields 
Unit 15: Polynomials Rings 
Unit 16: Roots and Factors of Polynomials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
March, 2021 

© Indira Gandhi National Open University  

ISBN-8]- 

All right reserved. No part of this work may be reproduced in any form, by mimeograph or any other 
means, without permission in writing from the Indira Gandhi National Open University. 

Further information on the Indira Gandhi National Open University courses, may be obtained from the 
University’s office at Maidan Garhi, New Delhi-110 068 and IGNOU website www.ignou.ac.in. 

Printed and published on behalf of the Indira Gandhi National Open University, New Delhi by                
Prof. Sujatha Varma, School of Sciences. 



 

3

  
 
 
 
 
 
 
 
 
 
 
 
 
Block 
 
 
 
 

INTRODUCTION TO RINGS 
 

Block Introduction             5      
Notations and Symbols            6 
UNIT 10               7 

Rings                 
UNIT 11             35 

Subrings               
UNIT 12             51 

Ideals              
UNIT 13             81 

Ring Homomorphisms            
 

Miscellaneous Examples and Exercises     114 
 

      
 
 

Indira Gandhi National Open University 
School of Sciences 

BMTC-134  
ALGEBRA 

3

 



 

4 

Course Design Committee* 

 
Prof. Rashmi Bhardwaj      Prof. Meena Sahai 
G.G.S. Indraprastha University, Delhi   University of Lucknow 

Dr. Sunita Gupta      Dr. Sachi Srivastava 
University of Delhi     University of Delhi 

Prof. Amber Habib     Prof. Jugal Verma    
Shiv Nadar University     I.I.T., Mumbai  
Gautam Buddha Nagar      

Prof. S. A. Katre       
University of Pune      

Prof. V. Krishna Kumar    
NISER, Bhubaneswar    

Dr. Amit Kulshreshtha      
IISER, Mohali       

Prof. Aparna Mehra       
I.I.T., Delhi        

Prof. Rahul Roy       
Indian Statistical Institute, Delhi       
 
* The Committee met in August, 2016. The course design is based on the recommendations of the 

Programme Expert Committee and the UGC-CBCS template. 
       

Block Preparation Team       

Prof. Parvin Sinclair (Editor and Writer) 
School of Sciences 
IGNOU 

 
Course Coordinator:  Prof. Parvin Sinclair  
 
Acknowledgement:  
i) To Prof. Parvati Shastri, Mumbai University, and Dr. Indrakshi Dutta, Jesus and Mary 

College, University of Delhi, for their detailed comments. 
ii) To Sh. S. S. Chauhan, for the CRC, of this block. 
iii) Some material of the earlier IGNOU undergraduate course, Abstract Algebra (MTE-06), 

has been used in this block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Faculty members 
School of Sciences, IGNOU 
Prof. M. S. Nathawat (Director) 
Dr. Deepika 
Mr. Pawan Kumar 
Prof. Poornima Mital 
Prof. Parvin Sinclair 
Prof. Sujatha Varma 
Dr. S. Venkataraman 

 

 
 



 

5

BLOCK INTRODUCTION 
 
In the first two blocks of this course, you studied various aspects of group theory. In the 
four units of this block, we will introduce you to another algebraic structure. It consists 
of a set along with two binary operations defined on it. We will call such a system a 
ring if it satisfies certain axioms that you will find in Unit 10. 
 
The notion of a ring is due to the mathematicians Richard Dedekind (1831-1916) and 
Leopold Kronecker (1823-1891). Kronecker called such a system an ‘order’. The 
mathematician, David Hilbert introduced the term ‘ring’ in 1897 for this algebraic 
system. The current definition of an abstract ring appears to be due to the ‘mother of 
algebra’, Emmy Noether, who used it extensively in her paper published in 1921. 
 
As you go through the block, you will see that a ring is an abelian group with some 
extra properties. You will realise that we can very naturally generalise many of the 
concepts of group theory to ring theory. Thus, whatever you have studied about groups 
will help you to study this block, and the next one. 
 
Your study of ring theory will follow the path that we used for introducing you to group 
theory. We will start by defining different types of rings. Then we shall introduce you to 
subrings (the analogue of subgroups) and ideals (an analogue of normal subgroups). 
As in Unit 7, this will lead to quotient rings, the analogue of quotient groups. In the last 
unit of this block, we shall discuss ring homomorphisms and isomorphisms. You will 
discover that the extremely useful isomorphism theorems for groups can be carried 
over to ring isomorphisms. This helps us greatly in analysing the structure of rings. 
 
As in the previous blocks, we shall help you to digest the material by exposing you to 
plenty of examples and exercises. The exercises are as important as the rest of the 
material in the unit. So please attempt each exercise as and when you come to it, and 
move further only after solving it. 
 
As in the earlier blocks, you will find an additional set of examples and exercises at the 
end of the block. These miscellaneous problems cover the material in this block mainly, 
and assume a knowledge of the previous blocks too. The reason for giving you these 
problems is to give you more of an opportunity to exercise your mind on basic ring 
theory. You would enjoy doing them too! 
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NOTATIONS AND SYMBOLS (used in Block 3) 
 
The list is further to those given in Blocks 1 and 2. 
 

),,R( ⋅+  a ring R  w.r.t. the operations of +  and · 
]b,a[C  the ring of continuous functions from ]b,a[  to R  

AEnd  the ring of endomorphisms of a group A  
)R(U  the group of units of a ring R  

H  the ring of real quaternions   
)R(C  the centre of the ring R  
>< a  the principal ideal generated by a  

>< n1 a,,a K  the ideal generated by n21 a,,a,a K  
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UNIT 10                                  

                                                     RINGS 

Structure    Page Nos. 
 
10.1 Introduction              7 
 Objectives 
10.2 What is a Ring?              8 
10.3 Elementary Properties           16 
10.4 Rings with Identity           19 
10.5 Summary            26 
10.6 Solutions / Answers           27  
 

10.1 INTRODUCTION 
 
In this course so far, you have studied about a variety of groups and their 
properties. Some groups also have other binary operations defined on them. 
For instance, ),( +C  is a group, with multiplication also being a binary 
operation on .C  With this unit, you will start the study of such sets, with two 
binary operations defined on them, each satisfying certain properties. QZ,  
and R  are examples of such an algebraic system, as you will see. 
 
Now, you know that both addition and multiplication are binary operations on 

.R  Further, you have seen that R  is an abelian group under addition, though 
it is not a group with respect to multiplication. However, multiplication is 
associative in .R  Also, addition and multiplication are related by the 
distributive laws, i.e.,  

,acab)cb(a +=+  and bcacc)ba( +=+  for all real numbers b,a  and .c  
 

We generalise these very properties of the binary operations on R  to define 
an algebraic system called a ring, in Sec.10.2. This definition is due to the 
famous algebraist Emmy Noether, also called ‘the mother of algebra’. 
 
In Sec.10.3, you shall study several properties of rings that follow directly from 
the definition.  
 
Throughout these sections, you will be considering several examples of rings. 
However, in Sec.10.4, we shall specifically focus on some generic rings, like 
matrix rings and polynomial rings. Of course, in the next block, you will study 
polynomial rings in detail. 

Fig.1: Emmy Noether 
           (1882-1935) 
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As the contents suggest, this unit lays the foundation for the rest of this 
course. So study it carefully, including attempting every exercise as you come 
to it. This will help you ensure that you have attained the following learning 
objectives of this unit. 
 
Objectives 
After studying this unit, you should be able to:  

• define, and give examples, of rings; 

• derive some elementary properties of rings from the defining axioms of a 
ring; 

• decide whether or not a ring is commutative, and/or has identity. 
 

10.2 WHAT IS A RING? 
 
You are familiar with ,Z  the set of integers. You also know that it is a group 
with respect to addition. Is it a group with respect to multiplication too? No, but 
it is a semigroup with respect to multiplication, since multiplication is 
associative. Also, multiplication distributives over addition in .Z  These 
properties of addition and multiplication of integers allow us to say that the 
system ),,( ⋅+Z  is a ring, according to the following definition. 
 
Definition: An algebraic system ),,,R( ⋅+  where R  is a non-empty set with 
two binary operations defined on it, usually called addition (denoted by +) and 
multiplication (denoted by ·), is called a ring if the following axioms are 
satisfied: 

abba)1R +=+  for all b,a  in ,R  i.e., addition is commutative. 
)cb(ac)ba()2R ++=++  for all c,b,a  in ,R  i.e., addition in R  is  

        associative. 
)3R  There exists an element (denoted by 0) of R  such that  

        a0a0a +==+  for all a  in ,R  i.e., R  has an additive identity. 
)4R  For each a  in ,R  there exists x  in R  such that ,ax0xa +==+  

         i.e., every element of R  has an additive inverse. 
)cb(ac)ba()5R ⋅⋅=⋅⋅  for all c,b,a  in ,R  i.e., multiplication in R  is  

        associative. 
)6R (Distributive Laws): For all c,b,a  in ,R  

       caba)cb(a ⋅+⋅=+⋅  (left distributive law), and  
       cbcac)ba( ⋅+⋅=⋅+  (right distributive law).  
        i.e., multiplication distributes over addition from the left as well as the  
        right.  
 
Now, look carefully at the axioms .4R-1R  What do they tell us about ?),R( +  
Don’t they say that ),R( +  is an abelian group? So, from Unit 2, you know that 
the additive identity, ,0  is unique, and each element a  of R  has a unique 
additive inverse (denoted by a− ). We call the element 0  the zero element of 
the ring. 
 
Now, what does Unit 2 tell you about what the axiom 5R  says? Doesn’t it tell 
us that that ),R( ⋅  is a semigroup? Hence, we can abbreviate 6R-1R  in the 
definition of a ring as follows: 
 
Definition: An algebraic system ),,R( ⋅+  is called a ring if:  

The name ‘ring’ was 
given to this algebraic 
system by the famous 
mathematician, David 
Hilbert, in 1897. 
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)1R ′  ),R( +  is an abelian group, 
)2R ′  ),R( ⋅  is a semigroup, and  
)3R ′  for all c,b,a  in ,R  

 ,caba)cb(a ⋅+⋅=+⋅  and .cbcac)ba( ⋅+⋅=⋅+   
 
Note that 1R ′  above requires R  to be a non-empty set and ''+  to be a binary 
operation on .R  Similarly, 2R ′  requires ‘ ’  to be a binary operation on .R  
 
Before going further we would like to make a remark about notational 
conventions.  
 
Remark 1: Recall that in the case of groups, we decided to use only the 
notation G  for ),,G( ∗  for convenience. Here too, in future, we shall use only 
the notation R  for ,),(R, •+  for convenience, if +  and · are understood. We 
shall, also, usually denote the product of two elements a  and b  of R  by ab  
instead of .ba ⋅  
 
Let us look at some examples of rings now. You have already seen that Z  is 
a ring. Our brief discussion in Sec.10.1 shows why ),,( ⋅+R  is a ring. What 
about the sets Q  and ?C  Do ),,( ⋅+Q  and ),,( ⋅+C  satisfy the axioms 

6R-1R  (or ?)3R-1R ′′  You should check that they do. Therefore, these 
systems are rings. 
 
Now, a word of caution! 
 
Remark 2: Note that though a ring R  has two operations defined on it, their 
order is important. Thus, if ),,R( ⋅+  is a ring, it does not mean that ),,R( +⋅  is 
a ring. For instance, ),,( ⋅+Z  is a ring, but ),,( +⋅Z  is not because, for 
example, ),( ⋅Z  does not satisfy .1R ′  (Why?) 
 
Let us now look at some examples that actually provide us with infinitely many 
examples of rings. 
 
Example 1: Show that ),,n( ⋅+Z  is a ring, where .n Z∈  
 
Solution: From Block 1, you know that }mnm{n ZZ ∈=  is an abelian group 
with respect to addition. Thus, Zn  satisfies .1R ′  
You also know that multiplication in Zn  is associative. Thus, Zn  satisfies 

.2R ′   
Finally, multiplication distributes over addition from the right as well as the left 
in .nZ  Thus, Zn  satisfies .3R ′   
Hence, Zn  is a ring w.r.t the usual addition and multiplication of integers. 

*** 
 
Example 2: Show that ),,( n ⋅+Z  is a ring, for .n N∈  
 
Solution: You already know that ),( n +Z  is an abelian group, and that 
multiplication is associative in .nZ  Thus, nZ  satisfies 1R ′  and .2R ′   
Now, for any ,c,b,a nZ∈  

.cabacabacaba)cb(a)cb(a ⋅+⋅=⋅+⋅=⋅+⋅=+⋅=+⋅  
Thus, .caba)cb(a ⋅+⋅=+⋅  
Similarly, .c,b,acbcac)ba( nZ∈∀⋅+⋅=⋅+  

. 



 

 

10 

Block 3                                                                                           Introduction to Rings
Hence, nZ  satisfies .3R ′  
 
So, ),,( n ⋅+Z  satisfies the axioms ,3R-1R ′′  or 1R - .6R  Therefore, it is a ring. 

   *** 
 
Example 3: Consider the set  

minm{i]i[ +=+= ZZZ  and n  are integers}, where .1i2 −=  
We define ‘+ ’ and ‘ ’ in ZZ i+  to be the usual addition and multiplication of 
complex numbers.  Thus, for inm +  and its +  in ,iZZ +  

),tn(i)sm()its()inm( +++=+++  and  
).nsmt(i)ntms()its()inm( ++−=+⋅+  

Prove that ZZ i+  is a ring w.r.t this addition and multiplication. (This ring is 
called the ring of Gaussian integers, after the mathematician Carl Friedrich 
Gauss.) 
 
Solution: You should prove that ),i( ++ ZZ  is a subgroup of ).,( +C  Thus, 
the axioms 1R - 4R  (or )1R ′  are satisfied.  
 
You also know that multiplication is associative in .C  Hence, it is so in ].i[Z  
This shows that 5R  (or )2R ′  is also satisfied. 
 
Finally, since the right and left distributive laws hold in ,C  they also hold for 

].i[Z   
Thus, ),,i( ⋅++ ZZ  is a ring. 

*** 
 
In Example 3, note how we have used the properties of the binary operations 
in C  to prove them for a subset, ],i[Z  on which these operations are closed. 
 
In the examples above, you can see that nZ  is finite, while Zn  is infinite. This 
leads us to the following definition, which should not surprise you. 
 
Definition: A ring ),,R( ⋅+  is called finite if R  is a finite set, and is called 
infinite otherwise. 
 
Are there any finite rings, apart from ?nZ  Consider the following examples. 
 
Example 4: Check whether or not )( 43 ZM  is a finite ring w.r.t. the usual 
matrix addition and multiplication.  
 
Solution: Firstly, in Unit 2, you have seen that )),(( n3 +ZM  is an abelian 
group for .1n ≥   
 
Further, you have seen in Unit ,1  that matrix multiplication is associative. 
 
Next, let ]c[C],b[B],a[A ijijij ===  be any three elements of ).( 43 ZM  

Then ],d[)]cb[(]a[)CB(A kjijijk =+⋅=+⋅ l  where j,i,,k l  vary over ,3,2,1  

and )cb(a)cb(a)cb(ad j3j33kj2j22kj1j11kkj +++++=  

            )cacaca()bababa( j33kj22kj11kj33kj22kj11k +++++=  
            =  sum of the th)j,k(  elements of AB  and .AC  

. 
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Hence, .ACAB)CB(A +=+  
Similarly, you should prove that ).(C,B,ABCACC)BA( 43 ZM∈∀+=+  
Thus, the distributive laws are satisfied. 
 
Hence, ),),(( 43 ⋅+ZM  is a ring. 
 
Finally, each element of )( 43 ZM  has 9  entries, each of which is an element 

of .4Z  Hence, each of these entries has 4  possibilities, .3,2,1,0  Thus, the 
total number of elements in )( 43 ZM  is .49  Hence, )( 43 ZM  is a finite ring. 

*** 
 
The next example is related to Example 10 of Unit 2. The operations that we 
consider in it are not the usual addition and multiplication. 
 
Example 5: Let X  be a non-empty set, )X(℘  be the collection of all subsets 
of ,X  and Δ  denote the symmetric difference operation. Show that 

),),X(( ∩Δ℘  is a ring. 
 
Solution: For any two subsets A  and B  of ).A\B()B\A(BA,X ∪=Δ     
In Example 10 of Unit 2, you studied that )),X(( Δ℘  is an abelian group.  
You also know that ∩  is associative.  
Now let us see if ∩  distributes over .Δ    
Let ).X(C,B,A ℘∈  Then  

)]B\C()C\B[(A)CB(A ∪∩=Δ∩     
 )],B\C(A[)]C\B(A[ ∩∪∩=  since ∩  distributes over .∪  
 )],BA(\)CA[()]CA(\)BA[( ∩∩∪∩∩=  since ∩  distributes  

                                                                  over complementation. 
 ).CA()BA( ∩Δ∩=     

So, the left distributive law holds.  
Similarly, you should check that the right distributive law holds also. 
Therefore, ),),X(( ∩Δ℘  is a ring. 
 
Now, if X  is finite, say ,10X =  then .2)X( 10=℘  So ),),X(( ∩Δ℘  is a finite 
ring. However, if X  is infinite, then ),),X(( ∩Δ℘  is an infinite ring. 

*** 
 
Now, that you have studied several examples of rings, let us look at 6R  of the 
definition of a ring. In that axiom, we have written two equations. Why do both 
have to be checked? If ,caba)cb(a ⋅+⋅=+⋅  doesn’t it follow that 

?cbcac)ba( ⋅+⋅=⋅+  That is, does the fact that the left distributive law holds 
imply that the right distributive law holds? Consider the following remark about 
this. 
 
Remark 3: So far you have seen examples of several rings. Are both the 
operations defined on the ring commutative? What about in Example 4? For 

instance, is ?
000
000
111

000
111
000

000
111
000

000
000
111

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

 Not so.  
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Thus, multiplication in )( 43 ZM  is not commutative. In fact, more generally, 
multiplication over )(n CM  is not commutative, for .2n ≥  So, we can’t 
assume that if the left distributive law holds, then the right distributive law 
holds in this case. We need to check the validity of both the laws separately. 
(You will study about sets of matrices being non-commutative in general in 
more detail in the course, ‘Linear Algebra’.) 
 
Remark 3 leads us to the following definition. 
 
Definitions: 1) Two elements a  and ,b  in a ring ),,,R( ⋅+  are said to 

commute with each other w.r.t. multiplication if .abba ⋅=⋅  

2) A ring ),,R( ⋅+  is called a commutative ring if · is commutative over 
,R  i.e., if abba ⋅=⋅  for all .Rb,a ∈  

 
Thus, a ring R  is commutative iff a  and b  commute with each other  w.r.t. 
multiplication, .Rb,a ∈∀  
 
For example, QZ,  and R  are commutative rings, while )(n CM  is not, for 

.2n ≥  Consider another example, in some detail. 
 
Example 6: Show that ),),X(( ∩Δ℘  is a commutative ring, where X  is a 
non-empty set. 
 
Solution: In Example 5, you have studied why ),),X(( ∩Δ℘  is a ring. 
Now, from Calculus, you know that ).X(B,AABBA ℘∈∀∩=∩  
Thus, ∩  is commutative.  
Hence, ),),X(( ∩Δ℘  is a commutative ring. 

*** 
 
Now consider the following remark, that adds to the point made in Remark 3. 
 
Remark 4: Let R  be a set with the binary operations +  and · defined on it. 
Suppose · is commutative on .R  Then, to check whether 6R  holds or not for 

),,,R( ⋅+  it is enough to check one distributive law only. Why? Well, if 
,Rc,b,acaba)cb(a ∈∀⋅+⋅=+⋅  then 

.Rc,b,acbcabcac)ba(cc)ba( ∈∀⋅+⋅=⋅+⋅=+⋅=⋅+   
So, in this case, the other distributive law will hold also. 
 
Try the following exercises now. 
 
 

E1) Write out the Cayley tables for addition and multiplication in ,6
∗Z  the set 

of non-zero elements of .6Z  Looking at these tables, decide whether 

),,( 6 ⋅+∗Z  is a ring or not. 
 
E2) Show that }0{  is a ring with respect to the usual addition and 

multiplication. (This is called the trivial ring.) 
 Further, show that the only singleton that is a ring is }.0{  
 

E3) Show that the set }q,pq2p{2]2[ QQQQ ∈+=+=  is a 

commutative ring with respect to addition and multiplication of real 
numbers. 
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E4) Let .b,a
b0
0a

R
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= R  Show that R  is a ring with respect to matrix 

addition and multiplication. Is R  a commutative ring? Why, or why not? 
 

E5) Let .numbers real areb,a
0b
0a

R
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
=  Prove that R  is a ring under 

matrix addition and multiplication. Is R  a commutative ring? Why? 
 
E6) Which of the following are rings? Give reasons for your answers. 

  i) ),,),X(( ∩∪℘  where X  is a non-empty set, 

 ii) ),,,( +⋅∗R  

 iii) ),(32 RM ×  w.r.t. matrix addition and multiplication. 
 
E7) Let ),,R( ⋅+  be a ring, where }.c,b,a{R =  Complete the Cayley tables 

below, explaining your reasoning behind each new entry. 
 

  

bc
cb

aa
cba+

 

c
ab

a
cba⋅

 

 
E8) Check whether or not ,,( ⊕Z ) is a ring, where  

)n,m(d.c.g)n,m( =⊕  and .n,m)n,m(m.c.l)n,m( Z∈∀=  
 

 
Let us now look at rings whose elements are functions that you have studied 
in the course, Calculus. 
 
Example 7: Consider 1],C[0,  the set of all continuous real-valued functions 
defined on the closed interval ].1,0[  For f  and g  in ]1,0[C  and ],1,0[x∈  we 
define gf +  and gf ⋅  by  

)x(g)x(f)x)(gf( +=+  (i.e., pointwise addition), and  
)x(g)x(f)x)(gf( ⋅=⋅  (i.e., pointwise multiplication).  

Show that ]1,0[C  is a ring with respect to +  and ·. 
 
Solution: From Calculus, you know that if f  and ],1,0[Cg∈  then both gf +  
and gf ⋅  are in ].1,0[C  
Next, using the fact that addition in R  is associative and commutative, you 
should check that ]1,0[C  satisfies 1R  and .2R   
The additive identity of ]1,0[C  is .0)x(:]1,0[: =→ 00 R   
The additive inverse of ]1,0[Cf ∈  is ),f(−  where ].1,0[x)x(f)x)(f( ∈∀−=−   
Thus, )],1,0[C( +  is an abelian group. 
 
Again, you should use the fact that multiplication in R  is associative, to verify 
that multiplication in ]1,0[C  satisfies .5R  
 
Now let us see if the axiom 6R  holds. 

]1,0[C  is called the ring 
 of continuous functions 
on .1][0,  
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To prove ,hfgf)hg(f ⋅+⋅=+⋅  we consider )x))(hg(f( +⋅  for ].1,0[x∈  
Now )x)(hg)(x(f)x))(hg(f( +=+⋅  
             ))x(h)x(g)(x(f +=  
             ),x(h)x(f)x(g)x(f +=  since · distributes over +  in .R
             )x)(hf()x)(gf( ⋅+⋅=  
             )x)(hfgf( ⋅+⋅=  
Hence, .hfgf)hg(f ⋅+⋅=+⋅  
Since multiplication is commutative in ,R  it is commutative in ].1,0[C  Hence, 
by Remark 4, the other distributive law also holds. Thus, 6R  holds for ].1,0[C   
 
Therefore, ),],1,0[C( ⋅+  is a ring. 

*** 
 
The next example shows us one way of defining a ring from a given abelian 
group. 
 
Example 8: Let ),A( +  be an abelian group. Consider ,AEnd  the set of all 
endomorphisms of .A  For ,AEndg,f ∈  and ,Aa∈  define gf +  and gf ⋅  by 

⎪⎭

⎪
⎬
⎫

==⋅

+=+

)).a(g(f)a(gf)a)(gf(

and),a(g)a(f)a)(gf(

o
    …(1) 

Show that ),,AEnd( ⋅+  is a ring. (This ring is called the endomorphism ring 
of .)A  
 
Solution: From Unit 8, you know that 

}.Ab,a)b(f)a(f)ba(fAA:f{AEnd ∈∀+=+→=  
Let us first check that +  and ·, as defined in (1), are binary operations on 

.AEnd  
For all ,Ab,a ∈  

)ba(g)ba(f)ba)(gf( +++=++  
   )),b(g)a(g())b(f)a(f( +++=  since .AEndg,f ∈  
   ))b(g)b(f())a(g)a(f( +++=  
   ),b)(gf()a)(gf( +++=  and  

))ba(g(f)ba)(gf( +=+⋅  
  )),b(g)a(g(f +=  since .AEndg∈  
  )),b(g(f))a(g(f +=  since .AEndf ∈  
  ).b)(gf()a)(gf( ⋅+⋅=  
Thus, gf +  and gf ⋅  are in .AEnd  
 
Now let us see if ),,AEnd( ⋅+  satisfies .6R-1R  
Since addition in the abelian group A  is associative and commutative, so is 
addition in .AEnd   
The zero endomomorphism on A  is the zero element of .AEnd   

)f(−  is the additive inverse of ,AEndf ∈  where .Aa)a(f)a)(f( ∈∀−=−   
Thus, ),AEnd( +  is an abelian group. 
 
You also know that the composition of functions is an associative operation in 
general, and hence, it is so in .AEnd  
 
Finally, to check ,6R  we look at )hg(f +⋅  for any .AEndh,g,f ∈   
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For any ,Aa∈  

))a)(hg((f)a)](hg(f[ +=+⋅  
    ))a(h)a(g(f +=  
    )),a(h(f))a(g(f +=  since .AEndf ∈  
    )a)(hf()a)(gf( ⋅+⋅=  
    ).a)(hfgf( ⋅+⋅=  

.hfgf)hg(f ⋅+⋅=+⋅∴  
You should similarly prove that .hghfh)gf( ⋅+⋅=⋅+   
Here note that · in AEnd  is not commutative, since gf o  need not be equal 
to fg o  for .AEndg,f ∈  
 
Thus, 6R-1R  are true for .AEnd  
Hence, ),,AEnd( ⋅+  is a ring. 

*** 
 

You should solve the following exercises now. 
 
 

E9) Let X  be a non-empty set and ),,R( ⋅+  be a ring. Let )R,X(Map  be 
the set of all functions from X  to ,R  that is,  

 }.RX:ff{)R,X(Map →=  
 Define +  and · in )R,X(Map  by pointwise addition and multiplication. 

Show that ),),R,X(Map( ⋅+  is a ring.  
Under what conditions on X  and R  will )R,X(Map  be a commutative 
ring? 

 
E10) You know that ),,( ⋅+R  is a ring. Now, check whether or not ,,( ⊕R ) 

is a ring, where ⊕  and  are defined by  

,1baba ++=⊕  and a babab ++⋅=  for all .b,a R∈   
(Here +  and · denote the usual addition and multiplication of real 
numbers.) 

 
E11) Let R  be a ring. Prove that )R(2M  is a ring with respect to matrix 

addition and multiplication. (In fact, )R(nM  is a ring .n N∈∀ ) 
 

 
Now, in Unit 2 you have seen that the Cartesian product of groups forms a 
group called their direct product. Let us see if this happens with the Cartesian 
product of rings. 
 
Example 9: Let ),,A( ⋅+  and ,B(  , ) be two rings. Show that their 
Cartesian product, ,BA×  is a ring with respect to ⊕  and ,∗  defined by 

b,aa()b,a()b,a( ′+=′′⊕ ),b′  and  
b,aa()b,a()b,a( ′⋅=′′∗ ),b′   

for all )b,a(),b,a( ′′  in .BA×  
[The ring ),,BA( ∗⊕×  is called the external direct product (or simply, the 
direct product) of the rings ),,A( ⋅+  and ,B( , ).] 
 
Solution: In Unit 2, you have seen that ),BA( ⊕×  is a group. Further, this is 
an abelian group since ),A( +  and ,B( ) are abelian groups. 

E10 tells us that a given 
set can be an underlying 
set of many different 
rings. 
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Since the multiplications in A  and B  are associative, ∗  is associative in 

.BA×   
 
Again, using the fact that 6R  holds for A  and ,B  you should prove that 6R  
holds for .BA×   
 
Thus, ),,BA( ∗⊕×  is a ring. 

*** 
 
If you have understood the example above, you will be able to solve the 
following exercises. 
 
 
E12) Write down the addition and multiplication tables for the direct product 

.32 ZZ ×  Hence decide if this ring is commutative or not. 
 
E13) Show that 2R  and 3C  are rings. 
 
 
Generalising from E13, you can see why nR  and nC  are rings .2n ≥∀  
 
By now you would be familiar with several examples of rings. So let us begin 
discussing some basic properties of rings. 
 

10.3 ELEMENTARY PROPERTIES 
 
In this section, we will prove, and apply, some basic properties of rings. These 
properties are immediate consequences of the definition of a ring. As we go 
along, you must not forget that for any ring ),R(,R +  is an abelian group. 
Hence, the notation and the results obtained for groups in the earlier units of 
this course are applicable to the abelian group ),R( +  too. In particular, note 
that 

i) the additive identity, ,0  is unique, and the additive inverse of any 
element Ra∈ is );a(−  

ii) ;Raa)a( ∈∀=−−  

iii) the cancellation law holds for addition, i.e., 
;bacbca,Rc,b,a =⇒+=+∈∀  

iv) .Rb,a)b(aba ∈∀−+=−  
 
We will use the facts above, off and on, while proving some basic results in 
this section. 
 
So let us begin with some properties which follow from the axiom ,6R  mainly. 
You know that, for any ,00m,n,m =⋅∈Z  and .n)m(mn)n(m −=−=−   
The following theorem tells us that these properties, and some others, hold 
true for any ring .R  
 
Theorem 1: Let R  be a ring. Then, for any ,Rc,b,a ∈  

i) ,a000a ⋅==⋅  

ii) ),ab(b)a()b(a −=−=−  
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iii) ,ab)b)(a( =−−  

iv) acab)cb(a −=−  and .cabaa)cb( −=−  
 
Proof: i) Now, 000 =+  
 ,0a)00(a ⋅=+⇒  for any .Ra∈  
 ,0a)0a()0a( ⋅=⋅+⋅⇒  applying the left distributive law. 
                  ,00a +⋅=  since 0  is the additive identity. 
 ,00a =⋅⇒  by the cancellation law for ).,R( +  
 Using the right distributive law, you should similarly show that .0a0 =⋅  

(Note that here we cannot assume ,0aa0 ⋅=⋅  since R  may not be a 
commutative ring.) 

 Thus, a000a ⋅==⋅  for all .Ra∈  
 
ii) For ,Rb,a ∈   

,0a0 ⋅=  from (i) above. 
    )),b(b(a −+=  as ).b(b0 −+=  
   ),b(aab −+=  by distributivity. 
 Now, 0)]ab([ab =−+  and .0)b(aab =−+   

But, as you know, the additive inverse of an element is unique. 
 Hence, we get ).b(a)]ab([ −=−  
 In the same manner, using the fact that ,0)a(a =−+  you should show 

that .b)a()]ab([ −=−  
 Thus, )ab(b)a()b(a −=−=−  for all .Rb,a ∈  
 
iii) For ,Rb,a ∈  
 )),b(a()b)(a( −−=−−  from (ii) above. 
       )],ab([−−=  from (ii) above. 
       ,ab=  since x)x( =−−  for .Rx∈  
 
iv) For ,Rc,b,a ∈  
 ))c(b(a)cb(a −+=−  
     ),c(aab −+=  by distributivity. 
     )),ac((ab −+=  from (ii) above. 
     .acab −=  
 

You should similarly prove that .cabaa)cb( −=−  
 
You can use these properties to solve some exercises now. 
 
 
E14) Prove that the only ring R  in which the two operations are equal (i.e., 

)Rb,aabba ∈∀=+  is the trivial ring. 
 
E15) Let R  be a ring. For ,Ra,,a,a n21 ∈K  where ,n N∈  define 

,a)aa()aaa( n1n1n21 +++=+++ −LL  i.e., recursively.  
Now, using the principle of induction, prove that if ,Rb,,b,a n1 ∈K  
where ,n N∈  then ,ababab)bbb(a n21n21 +++=+++ LL  and 

.abababa)bbb( n21n21 +++=+++ LL  
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Let us extend what you have done in E15. We shall look at the sum and the 
product of three or more elements of a ring. We define them recursively, as we 
did in the case of groups (see Unit 2). 
 
Definitions: If ,2k,k ≥∈N  is such that the sum of k  elements in a ring R  is 
defined, we define the sum of 1)(k +  elements 1k21 a,,a,a +K  in ,R  taken in 
that order, as  

.a)aa(aa 1kk11k1 ++ +++=++ LL  
 

In the same way, if ,2k,k ≥∈N  is such that the product of k  elements in R  
is defined, we define the product of 1)(k +  elements 1k21 a,,a,a +K  (taken in 
that order) as  

.a)aaa(aaa 1kk211k21 ++ ⋅⋅=⋅ KK  
 
As we did for groups in Unit 2, you can obtain laws of indices (LIs) for rings 
also with respect to both +  and ·. In fact, you should prove the following 
results for any ring .R  
 
LI 1) If m  and n  are positive integers and ,Ra∈  then  
 ,aaa nmnm +=⋅  and .a)a( mnnm =  
 
LI 2) For Z∈n,m  and ,Rb,a ∈    
 i) ,manaa)mn( +=+  
 ii) ),na(m)ma(na)nm( ==  
 iii) ,nbna)ba(n +=+  
 iv) ),mb(ab)ma()ab(m ==  and  
 v) .b)mna()ab(mn)nb)(ma( ==  
 
LI 3) (Generalised distributive law): For ,n,m N∈  if 

,Rb,,b,a,,a,a n1m21 ∈KK  then  
 )bb)(aa( n1m1 ++++ LL  
 ,babababababa nm1mn212n111 +++++++++= LLLL   
 and the order of addition can be changed since addition is commutative 

in .R  
 
Try solving some related exercises now. 
 
 
E16) If R  is a ring and Rb,a ∈  such that ,baab =  then use induction on 

N∈n  to derive the binomial expansion 
 ,babCbaCbaCa)ba( n1n

1n
nkkn

k
n1n

1
nnn ++++++=+ −

−
−− LL  where 

.
!)kn(!k

!nCk
n

−
=  

 
E17) Prove LI 1, i.e., ,n,m,Raaaa nmnm N∈∈∀=⋅ +  where R  is a ring. Is 

this true for m  and n  with ?0n,m ≤  Why, or why not? 
 
E18) Prove LI 2(v), that is, if R  is a ring, then 
        .Rb,a,n,m)ab(mn)nb)(ma( ∈∈∀= Z  
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There are several other properties of rings that we will be discussing 
throughout this block. For now, let us look closely at some rings, which are 
classified according to the properties of the multiplication defined on them. 
 

10.4 RINGS WITH IDENTITY 
 
The definition of a ring guarantees that the binary operation, multiplication, is 
associative. We also know that · and +  satisfy the distributive laws. Nothing 
more is said about the properties of multiplication. If we place restrictions on 
this operation, we get several types of rings. For instance, you know that if 
multiplication is commutative, we get a commutative ring. Let us see what 
happens if we insist that ),R( ⋅  should satisfy 2G  (of Sec.2.2, Unit 2). 
 
Definition: A ring ),,R( ⋅+  is called a ring with identity (or a ring with unity) 
if R  has an identity element with respect to multiplication, i.e., if there exists 
an element e  in R  such that aeaae ==  for all .Ra∈  
 
Can you think of such a ring? Aren’t QZ,  and R  examples of a ring with 
identity? The element 1 serves the purpose of an identity in each case. 
 
Looking at all these examples, you may be wondering if every ring is a ring 
with unity. Consider the following example now. 
 
Example 10: Show that the ring Z5  is not a ring with identity. 
 
Solution: We shall prove this by contradiction. Suppose Z5  has identity, .e  
Then ,n5e =  for some .n Z∈   
Now ,5n555e5 =⋅⇒=  which is not possible since .n Z∈   
Hence, we reach a contradiction.  
Thus, Z5  is not a ring with identity. 

*** 
 
Why don’t you solve some quickies before we go to our next definition? 
 
 
E19) Prove that if a ring R  has an identity element with respect to 

multiplication, then this identity is unique. (We usually denote this 
unique identity element in R  by the symbol .)1  

 
E20) Check whether Zn  is a ring with identity or not, where }.1{\n N∈  
 
 
Because of E19, we now can say the identity of a ring, when it exists.  
 
Now, consider .Z  You have seen that Z  is a ring with identity and is 
commutative. Thus, Z  is an example of a type of ring we shall now define. 
Again, this nomenclature would not surprise you. 
 
Definition: A ring ),,R( ⋅+  is called a commutative ring with identity (or 
unity), if it is a commutative ring and has the multiplicative identity. 
 
Thus, the rings RQZ ,,  and C  are all commutative rings with unity. The 
integer 1 is the unity, i.e., the multiplicative identity, in all these rings. Let us 
look at one example in detail. 
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Example 11: Show that }b,a5ba{]5[S ZZ ∈+==  is a ring w.r.t. the 

addition and multiplication defined as follows: 
),db(5)ca()5dc()5ba( +++=+++  and 

).bcad(5)bd5ac()5dc()5ba( +++=+⋅+  
Further, is S  commutative? Does S  have identity? Give reasons for your 
answers. 
 
Solution: As in the case of Gaussian integers, you should check that both 
addition and multiplication are binary operations on ,S  and are the same 
operations as in ).,,( ⋅+R  
 

Next, using the fact that Z  satisfies 1R  and ,2R  you should prove that S  
satisfies 1R  and .2R  
Further, S0∈  is the additive identity, and )b(5)a( −+−  is the additive 

inverse of .b5a +   
Thus, ),S( +  is an abelian group.  
 
Also, since multiplication is associative and commutative in ,R  it is associative 
and commutative in .S  
 
Finally, for ,S5nm,5dc,5ba ∈+++  

)]5nm()5dc)[(5ba( ++++  

)]nd(5)mc)[(5ba( ++++=  

)]mc(b)nd(a[5)nd(b5)mc(a +++++++=  

)]bman(5bn5am[)]bcad(5bd5ac[ +++++++=  

).5nm)(5ba()5dc)(5ba( +++++=  
Thus, the left distributive law holds.  
Since multiplication in S  is commutative, the right distributive law also holds. 
 
Thus, ),,S( ⋅+  is a commutative ring. 
 
Finally, S1∈  s.t. for .5ba1)5ba(,S)5ba( +=⋅+∈+   
Hence, S  is a commutative ring with identity, .1  

*** 
 
What you have seen in Example 11 is true more generally, i.e., 

ZZZ n]n[ +=  is a commutative ring with identity for any integer n  which 
is not a square. [Of course, if n  is a square, say ,m,mn 2 Z∈=  then 

.mn ±=  So ,m]n[ ZZZZ =+=  in these cases.]  
Thus, ]2[],2[],5[ −− ZZZ  are all commutative rings with identity. 
 
We can also find commutative rings which are not rings with identity. For 
example, the ring in Example 10 is commutative, but it has no multiplicative 
identity. What about the converse? That is, if R  is with identity, must it be 
commutative? Let’s see.  
 
Example 12: Is every ring with identity commutative? Why, or why not? 
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Solution: Consider ).(2 RM  Since 

⎥
⎦

⎤
⎢
⎣

⎡
∈∀⎥

⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
10
01

),(AA
10
01

A
10
01

A 2 RM  is the unity of ).(2 RM  

However, if ⎥
⎦

⎤
⎢
⎣

⎡
=

02
01

A  and ,
20
10

B ⎥
⎦

⎤
⎢
⎣

⎡
=  then  

,
20
10

20
10

02
01

AB ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=  and  

.
04
02

02
01

20
10

BA ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=  

Thus, .BAAB ≠  
Thus, )(2 RM  is not commutative. 

*** 
 
Now, let us look at the ring you studied in Example 9. How does this behave 
regarding commutativity and multiplicative identity? Let’s see. 
 
Example 13: Let A  and B  be rings. Show that  

i) BA×  is commutative if and only if both the rings A  and B  are 
commutative, 

ii) BA×  has unity if and only if both A  and B  have unity. 
 
Solution: For convenience we will denote the operations in all three rings, 

B,A  and ,BA×  by +  and ·.  
i) Let )b,a(  and .BA)b,a( ×∈′′  Then  

)b,a()b,a()b,a()b,a( ⋅′′=′′⋅  
 )bb,aa()bb,aa( ⋅′⋅′=′⋅′⋅⇔  
 aaaa ⋅′=′⋅⇔  and .bbbb ⋅′=′⋅  
 Thus, BA×  is commutative iff both A  and B  are commutative rings. 
 
ii) You should, similarly, show that BA×  is with unity iff A  and B  are both 

with unity. If A  and B  has identities 1e  and ,e2  respectively, then the 
identity of BA×  is ).e,e( 21  

*** 
 
Why don’t you solve an exercise now? 
 
 
E21) Which of the rings in Examples 2-8 are rings with unity? Give reasons for 

your answers. 
 
 
Now, can the trivial ring be a ring with identity? It seems not, because 10 ≠  in 

,Z  in our minds.  
But, .000 =⋅   
So, 0  is also the multiplicative identity for this ring.  
Thus, the trivial ring is a ring with identity in which the additive and 
multiplicative identities coincide.  
But, if R  is not the trivial ring, we have the following result. 
 
Theorem 2: Let R  be a ring with identity .1  If },0{R ≠  then the elements 0  
and 1 are distinct. 

We say a ring R has unity 
if it is with unity. 
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Proof: Since Ra},0{R ∈∃≠  s.t. .0a ≠   
Now suppose .10 =   
Then ,00a1aa =⋅=⋅=  by Theorem 1.  
i.e., ,0a =  a contradiction.  
Thus, our supposition must be wrong.  
Hence, .10 ≠  
 
Now for some related exercises for you! 
 
 
E22) Check whether or not the ring in E10 is a commutative ring with identity. 
 

E23) Check whether or not 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Rx

xx
xx

X  is a commutative ring with 

unity, with respect to the usual matrix addition and multiplication. 
 
E24) Let R  be a non-trivial Boolean ring (i.e., ).Raaa2 ∈∀=  Show that 

.Raaa ∈∀−=  Hence show that R  must be commutative. 
 
 
Now let us consider an important example of a non-commutative ring with 
identity. This is the ring of real quaternions. It was first described by the Irish 
mathematician, William Rowan Hamilton (1805 1865). This ring plays an 
important role in geometry, number theory and the study of mechanics. Later, 
in Remark 5, we shall consider the relationship of this ring with the group of 
quaternions, ,Q8  that you studied in the earlier units. 
 
Example 14: Let },d,c,b,adkcjbia{ RH ∈+++=  where k,j,i  are 

symbols that satisfy .ikjki,kjijk,jikij,kj1i 222 −==−==−====−=  
 

We define addition and multiplication in H  by  
)kdjciba()dkcjbia( 1111 +++++++  

,k)dd(j)cc(i)bb()aa( 1111 +++++++=  and  
+−−−=+++⋅+++ )ddccbbaa()kdjciba()dkcjbia( 11111111  

.k)dacbbcad(j)dbcabdac(i)dccdbaab( 111111111111 +−++++−+−++  
(This multiplication may seem complicated. But it is not so. It is simply 
performed as you have done for polynomials in Calculus, keeping the 
relationship between j,i  and k  in mind.) 
 
Show that H  is a non-commutative ring with identity. 
 
Solution: You should prove that  

i) ),( +H  is an abelian group in which the additive identity is 
,k0j0i000 +++=  

ii) multiplication in H  is associative, (this may get a bit messy, but don’t get 
put off by that!) 

iii) the distributive laws hold, and  

iv) k0j0i011 +++=  is the unity in .H  
 
Thus, H  is a ring with unity. 

Fig.2: W. R. Hamilton 

 

 

-

The elements of H  are also 
called real Hamiltonians, 
after the creator of .H   
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Would you agree that H  is not a commutative ring? You would, if you 
remember that ,jiij ≠  for example. 

*** 
 
Consider the following important comment about quaternions now. 
 
Remark 5: In E29, Unit 2, you were introduced to ,Q8  the group of 
quaternions. Over there, if we put Ck,Bj,Ai ===  and ,I1=  then you can 
see that k,j,i  satisfy the same relations as .C,B,A  
So }k,j,i,1{Q8 ±±±±=  is a subset of ,H  where k,j,i  satisfy the relations 
given in Example 14.  
In fact, ,jiQ8 ><×><=  as you have seen in Block 2. 
On the other hand, the group H  is .kji RRRR +++  
Thus, the group of quaternions is not the group ).,( +H  
Further, H</8Q  either, since 8Q  is a group w.r.t. multiplication, while H  is a 
group w.r.t. addition. 
 
Now, let us consider an interesting aspect about rings with unity. Some 
elements in such rings are invertible w.r.t. multiplication. For instance, 
consider .Z  Here .1)1()1(,111 =−⋅−=⋅  Thus, both 1 and )1(−  are invertible. 
However, no other element of Z  is invertible because if Z∈x  s.t. 1xy =  for 
some ,y Z∈  then 1x =  or .1−  
On the other hand, R  is a ring with unity in which every element of ∗R  is 
invertible. 
 
These examples lead us to a definition. 
 
Definition: Let ),,R( ⋅+  be a ring with identity. An element r  of R  is called a 
unit if there is an Rs∈  s.t. .sr1rs ==  In this case, s  is called an inverse of 
.r  (Note that s  is also a unit in this case!) 

 
What the definition above says is that a unit is an invertible element of a ring 
with unity. For example, the identity is a unit in every ring with identity, since 

.111 =⋅  Similarly, every non-zero element of C  is a unit. So there can be 
several units in a ring with unity. Consider the following comment in this 
regard. 
 
Remark 6: Note the difference between ‘unit’ and ‘unity’. A unit is any 
invertible element, while the unity is unique, and is the multiplicative identity in 
the ring concerned. Thus, in a ring with identity, the unity is a unit, but there 
can be many units apart from the unity. 
 
Now, just as an additive inverse is unique, can we expect a multiplicative 
inverse of a unit to be unique? Let’s see. 
 
Theorem 3: If r  is a unit in ,R  a ring with identity, then there is a unique 

Rs∈  s.t. ,1rs =  i.e., r  has a unique inverse in .R  
 
The proof is just as in Theorem 2, Unit 2. We leave it to you to prove (see 
E25). 
 
You have seen that the set of units in a ring with identity can be finite or 
infinite. In fact, it has more properties, as the following theorem tells us. 
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Theorem 4: Let R  be a ring with identity. The set of units in R  is a group 
with respect to multiplication. (This group is called the group of units of ,R  
and is denoted by .)U(R)  
 
Proof: First, since .)R(U),R(U1 «≠∈  
 
Next, if ),R(Ur,r 21 ∈  then Rs,s 21 ∈∃  s.t. .1rssr,1rssr 22221111 ====  
Hence, .1srs1rs)sr(r)ss)(rr( 111112211221 ==⋅⋅==  
Thus, multiplication is closed in ).R(U  
 
Also, )R(U1∈  is the identity. 
 
Further, for any ),R(Ur∈  the unique )R(Us∈  s.t. sr1rs ==  is the inverse of 

.R   
 
Hence, )),R(U( ⋅  is a group. 
 
Let us consider some examples. 
 
Example 15: Find ),R(U  where R  is  

i)  ],i[Z     ii)  ].1,0[C  
 
Solution: i) iba +  is a unit in ]i[Z  iff ]i[idc Z∈+∃  such that 

,1)idc)(iba( =++  i.e., ,1)bcad(i)bdac( =++−  
 i.e., .0bcad,1bdac =+=−     …(2) 
 Now, if ,0a =  then (2) implies 1bd −=  and ,0bc =   
 so that 0c =  and .}1,1{)(Ud,b −=∈ Z  
 Hence, .1b0a ±=⇒=      …(3) 
  
 If ,0a ≠  then   
 ),bdac(a1aa −=⋅=  by (2). 
   ,c)ba(badca 222 +=−=  since (2) gives .bcad −=  

 So .a)ba( 22 +  

 This is possible only if 0b =  and ,aa ||2 =  since .aa2 ≥  

 0ad =∴  and .0aa2 ≠±=  Thus, ,0d =  so that ,1ac =  by (2). 
 Thus, ,1a ±=  so that .1c ±=  
 So 1a0a ±=⇒≠  and .0b =    …(4) 
 
 From (3), we get ]).i[(Ui Z∈±  
 From (4), we get ]).i[(U1 Z∈±  
 These are the only possibilities. 
 Hence, }.i,1{])i[(U ±±=Z  
 
ii) ])1,0[C(Uf ∈   
 ]1,0[Cg∈∃⇔  s.t. ]1,0[x1)x(g)x(f ∈∀=  
 ].1,0[x0)x(f ∈∀≠⇔  
 Hence, ]}.1,0[x0)x(f]1,0[Cf{])1,0[C(U ∈∀≠∈=  

*** 
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Example 16: Let ]x[R  be the set of polynomials with coefficients in R  (refer 
to Block 1, Calculus). Show that ),],x[( ⋅+R  is a commutative ring with 
identity. Also find ]).x[(U R  
 
Solution: Firstly, for )x(f  and )x(g  in ],x[R  recall from Calculus that 

s
s10

r
r10 xbxbb)x(g,xaxaa)x(f +++=+++= LL  for some non-negative 

integers r  and ,s  and .s,,1j,r,,1ib,a ji KK ==∀∈R  
Now, either sr ≤  or .sr ≥  Without loss of generality, we can assume .sr ≥  
Then 

],x[xaxax)ba(x)ba()ba()x(g)x(f r
r

1s
1s

s
ss1100 R∈+++++++++=+ +

+ LL

 and .]x[xbaxbax)baba(ba)x(g)x(f sr
sr

k

kji
ji100100 R∈++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++= +

=+
∑ LL  

Thus, +  and · are binary operations on ].x[R  
You should prove that )],x[( +R  is an abelian group, with additive identity 0  

and the additive inverse of ∑
=

m

0i

i
ixa  being ∑

=

−
m

0i

i
i .x)a(  

 
Next, you should show that multiplication is associative in ].x[R  (This can get 
a bit messy, but try it for polynomials upto degree 3  first, to get a hang of what 
is happening.) 
 
Finally, let us prove that the distributive laws are satisfied. Let 

∑∑
==

==
s

0j

j
j

r

0i

i
i xb)x(g,xa)x(f  and .xc)x(h

t

0k

k
k∑

=

=  Also, let us assume ,st ≤  

without loss of generality, and put .0ccc s2t1t ==== ++ L  

Then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
=+ ∑∑

==

s

0j

j
jj

r

0i

i
i x)cb(xa))x(h)x(g)(x(f  

k
sr

0k kji
jji x)cb(a∑ ∑

+

= =+
⎥
⎦

⎤
⎢
⎣

⎡
+=  

k
sr

0k kji
jiji x)caba(∑ ∑

+

= =+
⎥
⎦

⎤
⎢
⎣

⎡
+=  

∑ ∑∑ ∑
+

= =+

+

= =+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

sr

0k

k

kji
ji

sr

0k

k

kji
ji xcaxba  

).x(h)x(f)x(g)x(f +=  

Thus, the left distributive law holds for ].x[R  
 
Note that since R  is a commutative ring, )x(f)x(g)x(g)x(f =  

].x[)x(g),x(f R∈∀  Thus, multiplication in ]x[R  is commutative. Hence, the 
right distributive law also holds for ].x[R                                            
 
Hence, ]x[R  is a commutative ring. 
 
Also, the constant polynomial ]x[1 R∈  is the unity of ],x[R  since 

].x[)x(f)x(f)x(f1 R∈∀=⋅   
Hence, ]x[R  has unity. 
 

You will study 
polynomial rings in 
detail in Block 4. 
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Now, if ]x[)x(f R∈  is a unit, then ]x[)x(g R∈∃  such that .1)x(g)x(f =  So 

.01deg)x(gdeg)x(fdeg ==+     …(5) 
But .0)x(gdeg,0)x(fdeg ≥≥  
So, (5) tells us that ).x(gdeg0)x(fdeg ==  
Thus, .)x(g,)x(f ∗∗ ∈∈ RR  
Thus, .)(U])x[(U ∗== RRR  

*** 
 
You should solve some exercises now. 
  
 
E25) Prove Theorem 3. 
 
E26) Show that ).(GL))((U 22 CCM =   
 (Hint: Use the determinant function.) 
 
E27) Find ]).x[(U Z  
 
E28) If R is a ring with identity, is  

 i) )),R(U( +  a group? 

 ii) )),R(U( ⋅  an abelian group? 
 
E29) Show that if R is a commutative ring with identity and Ra∈  is a unit, 

then .Rrra ∈∀   

Is the converse true? That is, if Ra∈∃  s.t. ,Rrra ∈∀  then must a  be 
a unit? Why, or why not? 

 
E30) Show that the set of all differentiable functions from R  to R  is a ring 

with respect to pointwise addition and multiplication. Is this a ring with 
identity? Is it commutative? Give reasons for your answers. 

 
 
So far, in this unit we have discussed various types of rings. You have seen 
examples of commutative and non-commutative rings, and rings with and 
without identity. We shall continue this discussion in the next unit, where we 
shall focus on the analogue of subgroups, for rings. 
 
Now, let us summarise what you have studied in this unit. 
 

10.5 SUMMARY 
 
In this unit, we discussed the following points. 
 
1. The axioms that define a ring, and some examples of this algebraic 

system. In particular, the example of the external direct product of rings. 
 
2. Some elementary properties of a ring, like  
 ,a000a ⋅==⋅  
 ,b)a()ab()b(a −=−=−  
 ,ab)b)(a( =−−  
 ,acab)cb(a −=−  

In a commutative 
ring R an element a 
divides an element b 
if Rc∈∃  s.t. 

.bca =  This is 
denoted by .ba  
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 ,cabaa)cb( −=−  
 c,b,a∀  in a ring .R  
 
3. The laws of indices for addition and multiplication in a ring, and the 

generalised distributive law. 
 
4. The definition, and examples, of a commutative ring, a ring with unity 

and a commutative ring with unity. 
 
5. The additive and multiplicative identities are distinct in a non-trivial ring 

with identity. 
 
6. The definition, and examples, of a unit in a ring with identity. 
 
7. The set of all the units in a ring R  with identity is a group w.r.t. 

multiplication. This group is denoted by ).R(U  
 

10.6 SOLUTIONS / ANSWERS 
 
E1)  Addition in *

6Z   Multiplication in *
6Z  

        

432105
321054
210543
105432
054321
54321+

  

123455
240244
303033
420422
543211
54321⋅

 

 
 From the tables above, you can see that neither addition nor 

multiplication are binary operations in ,*
6Z  since .0 *

6Z∉  Thus, ),,( *
6 ⋅+Z  

can’t be a ring. 
 
E2) Note that +  and · are binary operations on }.0{  The axioms 1R - 6R  are 

trivially satisfied by ),},0({ ⋅+  as you should verify. 
 

Now, suppose a singleton }a{  is a ring. Then this must contain the 
additive identity .0  But }a{  has only one element. Thus, .0a =   
Hence, }.0{}a{ =  

 
E3) We define addition and multiplication in ]2[Q  by 

),db(2)ca()d2c()b2a( +++=+++  and 

.d,c,b,a)bcad(2)bd2ac()d2c()b2a( Q∈∀+++=+⋅+  
 Since +  is associative and commutative in ,R  the same holds for +  in 

.2QQ +   

Here 0200 ⋅+=  is the additive identity and )b(2)a( −+−  is the 

additive inverse of .b2a +  
Thus, ]2[Q  satisfies 1R ′  (or 4R-1R ). 

(Note that you could also have shown that ]2[Q  satisfies 1R ′  by 
showing it is a subgroup of ).),( +R  
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  Since multiplication in R  is associative, 5R  (or 2R ′ )  holds for 

QQ 2+  also.  
  

Since multiplication distributes over addition in ,R  it does so in 

QQ 2+  as well. Hence, ]2[Q  satisfies 6R  (or 3R ′ ).  
 
Thus, ),,2( ⋅++ QQ  is a ring. 

 
 Further, since · is commutative over ,R  it is commutative over ].2[Q  

Hence, Q ]2[  is a commutative ring. 
 
E4) As you know, +  and · are well-defined binary operations on .R  

 Now, for .R
db0

0ca
d0
0c

b0
0a

,R
d0
0c

,
b0
0a

∈⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
∈⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 

Thus, ).(),R( 2 RM≤+   
Hence, ),R( +  is an abelian group. 

  
Also, ),R( ⋅  is a semigroup, as you know from Unit 1. 

  
From Unit 1, you also know that ),,R( ⋅+  satisfies .6R   
 
Hence, R  is a ring. 

 Now, for any ,R
d0
0c

,
b0
0a

∈⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

 

.
b0
0a

d0
0c

db0
0ca

bd0
0ac

d0
0c

b0
0a

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
  

Hence, R  is commutative. 
 
E5) You should show that +  and · are binary operations on .R   

You should also show that ),,R( ⋅+  satisfies 1R - ,6R  as in E4. 

 However, ,
02
01

04
03

04
03

02
01

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
≠⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 for example.  

Hence, R  is not a commutative ring. 
 
E6) i) ∪  and ∩  are well-defined binary operations on ).X(℘  However, 

for any ,A,XA «≠⊆  there is no XB⊆  such that ,BA «=∪  
the identity with respect to .∪   

  Hence, ),),X(( ∩∪℘  is not a ring. 
 

 ii) Since +  is not a binary operation on ,∗R  this is not a ring. 
 

  iii) As you know from Unit 1, multiplication is not a binary operation on 
).(32 RM ×  Hence, this is not a ring. 

 
E7)  

 
 
 
 bacc

acbb
cbaa
cba+
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Since b,bcbb ≠=+  is not the additive identity. Similarly, c  is not the 
additive identity. Hence, a  is the zero element. Hence, the first row and 
column in the table above are as filled.  
Now, remember that since ),R( +  is a group, each element of R  must 
figure once and only once in each row and column of the table. 
So, since ,bccb +=+  and the only element missing in the second row 
is .bcacb,a +==+  
Thus, the table above is as filled. 
 

aaac
aaab
aaaa
cba•

 

Since abb =⋅  and .bbbab)ba(bb,bba ⋅+⋅=⋅+=⋅=+  Thus, ba ⋅  is 
the zero element, i.e., .a  
Similarly, you should see why ,abc =⋅  using .cbb =+  Hence, the 2nd 
column of the multiplication table above has a  in each cell. 
Now, .abab)ba()bb(aaa =⋅=⋅⋅=⋅⋅=⋅  
Similarly, you should explain why 

.acc,acb,aca,aac,aab =⋅=⋅=⋅=⋅=⋅  
Hence, the table above is as filled. 

 
E8) From Unit 1, you know that Z∈)n,m(  and .n,m]n,m[ ZZ ∈∀∈  

Thus, ⊕  and  are binary operations on .Z  However, ),( ⊕Z  is not a 

group. This is because 0  is the identity; but given ,m ∗∈Z  there is no 
Z∈n  s.t. .0)n,m( =  For example, 0)n,1( ≠  for any .n Z∈  

 
E9) Since R  satisfies 5R,2R,1R  and ,6R  so does ).R,X(Map   

The zero element is .0)x(:RX: =→ 00   
The additive inverse of RX:f →  is ).x(f)x)(f(:RX:)f( −=−→−  

 Thus, ),),R,X(Map( ⋅+  satisfies .6R-1R  Hence, it is a ring. 
 
 For any )R,X(Map,X  will be commutative iff R  is commutative, since 

.Xx)x(f)x(g)x(g)x(f)x)(fg()x)(gf(fggf ∈∀=⇔⋅=⋅⇔⋅=⋅  
 
E10) Firstly, you should verify that ⊕  and  are well-defined binary 

operations on .R   
Next, let us check if ,,( ⊕R  )  satisfies 1R - .6R   
Now, ,c,b,a R∈∀  

 :R1  .ab1ab1baba ⊕=++=++=⊕  

 :R2  1c1bac)1ba(c)ba( ++++=⊕++=⊕⊕  
                   1)1cb(a ++++=  
                            )cb(a ⊕⊕=  

:R3  .a11a)1(a =+−=−⊕   
Thus, )1(−  is the identity with respect to .⊕  

 :R4  .11)2a(a)2a(a −=+−−+=−−⊕   
Thus, 2a −−  is the inverse of a  with respect to .⊕  
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 :R5  a( )b )baab(c ++= c)baab(c)baab(c ++++++=  
                            )cbbc(a)cbbc(a ++++++=  
                                    a= b( ).c  

:R6  a a)cb( =⊕ )1cb(a)1cb(a)1cb( ++++++=++  
                                    1)caac()baab( ++++++=  
                                    a(= a()b ⊕ ).c  

 Since a bb = ,a  the right distributive law also holds.  

Thus, ,,( ⊕R )  is a ring. 
 

E11) Use the fact that ),,R( ⋅+  satisfies ,6R-1R  to show that )R(2M  
satisfies the axioms. For instance, to check ,6R  consider 

⎥
⎦

⎤
⎢
⎣

⎡
++
++

⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡

2121

2121

22

22

11

11

ddcc
bbaa

dc
ba

dc
ba

dc
ba

dc
ba

 

⎥
⎦

⎤
⎢
⎣

⎡
++++++
++++++

=
)dd(d)bb(c)cc(d)aa(c
)dd(b)bb(a)cc(b)aa(a

21212121

21212121   

 ,
ddcbdcca
bdabbcaa

ddcbdcca
bdabbcaa

2222

2222

1111

1111
⎥
⎦

⎤
⎢
⎣

⎡
++
++

+⎥
⎦

⎤
⎢
⎣

⎡
++
++

=  since R  satisfies 1R   

         ⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
=

22

22

11

11

dc
ba

dc
ba

dc
ba

dc
ba

 

  for ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

22

22

11

11

dc
ba

,
dc
ba

,
dc
ba

 in ).R(2M  

 

E12) }.2,1,0{},1,0{ 32 == ZZ  

 )}.2,1(),1,1(),0,1(),2,0(),1,0(),0,0{(32 =×∴ ZZ  
 Note that the first component is ‘mod 2’, and the second component is 

‘mod 3’, in each element of .32 ZZ ×  
 

 Thus, the tables are:  

 

)1,0()0,0()2,0()1,1()0,1()2,1()2,1(
)0,0()2,0()1,0()0,1()2,1()1,1()1,1(
)2,0()1,0()0,0()2,1()1,1()0,1()0,1(
)1,1()0,1()2,1()1,0()0,0()2,0()2,0(
)0,1()2,1()1,1()0,0()2,0()1,0()1,0(
)2,1()1,1()0,1()2,0()1,0()0,0()0,0(
)2,1()1,1()0,1()2,0()1,0()0,0(+

  

 

 

)1,1()2,1()0,1()1,0()2,0()0,0()2,1(
)2,1()1,1()0,1()2,0()1,0()0,0()1,1(
)0,1()0,1()0,1()0,0()0,0()0,0()0,1(
)1,0()2,0()0,0()1,0()2,0()0,0()2,0(
)2,0()1,0()0,0()2,0()1,0()0,0()1,0(
)0,0()0,0()0,0()0,0()0,0()0,0()0,0(
)2,1()1,1()0,1()2,0()1,0()0,0(•

 

and .6R  
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Look at the multiplication table above. The entries in it are symmetric 
about the diagonal of the table from )0,0()0,0( ⋅  to ).2,1()2,1( ⋅  
Thus, 32 ZZ ×  is a commutative ring. 

 
E13) Since ,2 RRR ×=  by Example 9 it is a ring w.r.t component-wise 

addition and multiplication. 
 Similarly, 2C  is a ring. Hence, CCC ×= 23  is a ring. 
 
E14) We know that .Raa0a ∈∀=+   

Since ,0a0a ⋅=+  we find that .Raa0a ∈∀=⋅   
But, by Theorem 1, you know that .00a =⋅   
Thus, ,Ra0a ∈∀=  that is, }.0{R =  

 
E15) Let )n(P  be the following predicate:  

n1n1 abab)bb(a ++=++ LL  for .Rb,,b,a n1 ∈K  
 Now )1(P  is true, since .ab)b(a 11 =  
 Assume that )k(P  is true for some .k N∈   

Now consider  
],b)bb[(a)bbb(a 1kk11kk1 ++ +++=+++ LL  by definition. 

        ,ab)bb(a 1kk1 ++++= L  by .6R  
        ,ab)abab( 1kk1 ++++= L  since )k(P  is true. 
        ,ababab 1kk1 ++++= L  by definition. 
 Thus, )1k(P +  is true. 
 Hence, )n(P  is true for every .n N∈  
 
 You should similarly prove the second equality. 
 
E16) Since ,ba)ba( 111 +=+  the given expansion is true for .1n =   

Assume that the expansion is true for some ,m N∈  i.e.,  
 .babCbaCa)ba( m1m

1m
m1m

1
mmm ++++=+ −

−
− L  

 Now, ⎟
⎠

⎞
⎜
⎝

⎛
+=++=+ ∑

=

−+ k
m

0k

km
k

mm1m baC)ba()ba)(ba()ba(  

 ∑∑
=

+−+−

=

+=
m

0k

1kkm
k

mk1km
m

0k
k

m ,baCbaC  by distributivity. 

 )abCbaCbaCa( m
m

m221m
2

m11m
1

m1m ++++= −+−++ L  
    )babCbaCbaC( 1mm

1m
m21m

1
mm

0
m +

−
− +++++ L  

 1mkk1m
1k

m
k

m11m
0

m
1

m1m bba)CC(ba)CC(a +−+
−

−++ +++++++= LL  

 1mm
m

1mkk1m
k

1m11m
1

1m1m babCbaCbaCa ++−++−+++ ++++++= LL  
 (since ).CCC k

1m
1k

m
k

m +
− =+  

 Thus, the equality is true for 1mn +=  also. 
 Hence, by the principle of induction, it is true for all .n N∈  
 
E17) By definition, m(aaaam K⋅=  times) 
 Now, let us fix an ,m N∈  and let )n(P  be the predicate that 

.n,aaa nmnm N∈=⋅ +  
 Then, )1(P  is true, by definition. 
 Assume that )k(P  is true for some .k N∈  
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 Then, ),aa(aaa km1km ⋅⋅=⋅ +  by definition. 
              ,a)aa( km ⋅⋅=  by .5R  
              ,aa km ⋅= +  since )k(P  is true. 
              ,a )1k(m ++=  by definition. 
 Hence, )1k(P +  is true. 
 Thus, by the PMI, )n(P  is true .n N∈∀  
 
 Since ),R( ⋅  is not a group, 0a  or 1a−  may not exist. For instance, 12−  

does not exist in .Z  Similarly, 1a0 =  does not exist in .2Z  
Hence, ma  and na  need not exist if .0n,m ≤   
Hence, the equality cannot be extended to non-positive integers. 

 
E18) Let .0n,m >  Then  

m(aaama +++= L  times) and n(bbnb ++= L  times).  
So, by applying the generalised law of distributivity, extending E15,  

mn(ab)bb)(aa()nb)(ma( =++++= LL  times) 
      ).ab(mn=      …(6) 

 
 Now, let .0n,0m ><  Then .0m >−  
 Also )m)[(a()a()a()a)(m( −−++−+−=−− L  times] 
 So ),ab)(mn()nb)(a)(m( −−=−−  by Theorem 1 and (6). 
   ),ab)(mn(−−=  by Theorem 1. 
   ).ab)(mn(=  
 Similarly, you should prove the cases 0n,0m <<  and .0n,0m <>  
 
E19) This can be proved as in Theorem 2, Unit 2. 
 
E20) As in Example 10, show that Zn  cannot have identity, for .2n ≥  
 
E21) nZ  has identity ,1  since .aa1a1a nZ∈∀⋅==⋅  
 
 ]i[Z  has identity .0i1+  (Why?) 
 

 )( 43 ZM  has identity ,
100
010
001

I
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=  since ).(AAIAAI 43 ZM∈∀==  

 
 )X(℘  has identity ,X  since .XAAXAXA ⊆∀∩==∩  
 
 ]1,0[C  has identity ,1)x(g:]1,0[:g =→ R  since 

),x(f)x(g)x(f)x)(gf( =⋅=⋅  and ].1,0[x)x(f)x)(fg( ∈∀=⋅   
Note that g  is continuous on ]1,0[  as it is a constant function. 

 
 AEnd  has identity .x)x(I:AA:I AA =→  (Why?) 
 
E22) Since a bb = ,b,aa R∈∀  is commutative.  

Also, a  .aa0 R∈∀=  
 Thus, 0  is the multiplicative identity. (Note that the additive identity here 

is not zero.) 
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 Hence, ,,( ⊕R ) is a commutative ring with identity.   
 
E23) You must first check that +  and · are closed on .X  Then check that X  

satisfies 1R - .6R  

 Note that ⎥
⎦

⎤
⎢
⎣

⎡
00
00

 is the additive identity. 

 Then you should check that BAAB =  for any two elements A  and .B   
 
Thus, the ring is commutative.  

It has identity ,
2/12/1
2/12/1
⎥
⎦

⎤
⎢
⎣

⎡
 which you should prove. 

 
E24) For any .aa,Ra 2 =∈  In particular,  
 a2)a2( 2 =  

,a2a4a2a4 2 =⇒=⇒  since .aa2 =  
 0aa0a2 =+⇒=⇒  
 .aa −=⇒      …(7) 
 
 Now, for any .Rba,Rb,a ∈+∈  
 ba)ba( 2 +=+∴  
 babbaaba 22 +=+++⇒  
 ,babbaaba +=+++⇒  since aa2 =  and .bb2 =  
 ,baab −=⇒  by cancellation. 
 ,baab =⇒  since ,baba =−  by (7). 
 Thus, R  is commutative. 
 
E25) By definition, Rs∈∃  s.t. .sr1rs ==   

Now suppose Rt∈∃  s.t. .tr1rt ==   
Then .tt1t)sr()rt(s1ss =⋅===⋅=  
Thus, the inverse is unique. 

 

E26) As in Example 12, )(2 CM  has identity .
10
01

I ⎥
⎦

⎤
⎢
⎣

⎡
=  

 Now, ))((UA 2 CM∈  iff )(B 2 CM∈∃  s.t. .IAB =   
Then .1)Idet()ABdet( ==  

 Thus, .1)Bdet()Adet( =  
 So ,0)Adet( ≠  i.e., ).(GLA 2 C∈  
 Hence, ).(GL))((U 22 CCM ⊆    …(8) 
 
 Conversely, if ),(GLA 2 C∈  then B∃  s.t. ,BAIAB ==  since 

)),(GL( 2 ⋅C  is a group. 
 Thus, )).((UA 2 CM∈  
 Hence, )).((U)(GL 22 CMC ⊆    …(9) 
 
 By (8) and (9), ).(GL))((U 22 CCM =  
 
E27) As in Example 16, show that if ]),x[(U)x(f Z∈  then Z∈)x(f  and 

Z∈∃ n  s.t. .1n)x(f =⋅  
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 Thus, .1)x(f ±=  
 Hence, }.1{])x[(U ±=Z  
 
E28) i) No. For instance, }1{)(U ±=Z  is not a group w.r.t addition. (Why?) 
 
 ii) )),R(U( ⋅  is a group, by Theorem 4. But it need not be abelian. For 

instance, if ),(R 2 CM=  then ),(GL)R(U 2 C=  which is not 
abelian. 

 
E29) Since Rb),R(Ua ∈∃∈  s.t. .1ab =   
 Then ).br(ar)ab(r1r ==⋅=  
 Thus, .ra  
 

 Conversely, if Ra∈  s.t. ,Rrra ∈∀  then .1a  
 So Rb∈∃  s.t. .1ab =  Thus, ).R(Ua∈  
 
E30) Let f::f{ RR→=  is differentiable}. 
 From Calculus, you know that the sum and product of differentiable 

functions is differentiable. So +  and · are binary operations on . 
 Use the fact that R  satisfies ,6R,5R,2R,1R  to prove that  satisfies 

these axioms too. 
 Next, show that the zero function, ,0  is the additive identity, and 

RR→− :f  is the additive inverse of .f ∈  
 So, ),,( ⋅+  is a ring. 
 
 The constant function 1)x(g::g =→ RR  is in ,  and is the identity. 

(Why?) 
 
 Since R  is a commutative ring, so is . 
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11.1 INTRODUCTION 
 
In this unit, we take the discussion on rings further. Here the focus is on the 
analogue, in ring theory, of what you studied in Unit 3. In other words, the 
discussion here is on various aspects of subrings, a concept that corresponds 
to that of a subgroup of a group. As you have seen, a ring is also a group. So, 
it may not surprise you to know that a subring is also a subgroup. Because of 
this, you will find Unit 3 often being referred to during the discussion on 
subrings. So it may be a good idea for you to quickly revise Unit 3 before 
getting into this unit. 
 
Our discussion will begin in Sec.11.2. Here we will introduce you to what a 
subring is. Of course, as always, you will study several examples of subrings 
too. 
 
In the next section, Sec.11.3, you will study the criteria for a subset of a ring to 
be a subring. Here we shall use what you studied in Sec.3.3, Unit 3. You will 
also see, in this section, that a subring of a ring has many algebraic properties 
that the ring has. It also can differ from the ring algebraically, in many aspects, 
as you will find. 
 
Finally, in Sec.11.4, you will study about whether the intersection, union, sum 
and Cartesian product of subrings of a ring are subrings or not. Here too, you 
will find a lot of similarity with the results for set operations on subgroups, 
discussed in Unit 3. 
 
We have given below the broad learning expectations around which this unit is 
created. If you study the sections carefully, and do every exercise yourself, 
you would be able to meet these objectives. Only then will you be comfortable 
in understanding the further units of this course. 
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Objectives 
After studying this unit, you should be able to:  

• define, and give examples of, a subring of a ring; 

• check whether a subset of a ring is a subring or not; 

• prove, and apply, the conditions for the intersection, union, sum or 
Cartesian product of subrings of a ring to be a subring; 

• prove that the direct product of subrings is a subring of the direct product 
of the rings concerned. 

 

11.2 WHAT IS A SUBRING? 
 
When you hear the word ‘subring’, what comes to mind? With your experience 
of Block 1 and Unit 10, you would probably think that this is a subset of a ring 
that is a ring itself. If so, then you are right. 
In the previous unit you saw that, not only is ,QZ ⊆  but Z  and Q  are rings 
with respect to the same operations. This shows that Z  is a subring of ,Q  as 
you will now see.  
 
Definition: Let ),,R( ⋅+  be a ring and S  be a non-empty subset of .R  S  is 
called a subring of ,R  if ),,S( ⋅+  is itself a ring, i.e., S  is a ring with respect to 
the operations w.r.t. which R  is a ring. 
 
So, ),,( ⋅+Z  is a subring of ).,,( ⋅+Q  Also, ),,( ⋅+Q  is a subring of ).,,( ⋅+R  
Further, using Example 1, Unit 10, you can see that ,2Z  the set of even 
integers, is a ring with respect to the operations which make Z  a ring. Hence 

),,,2( ⋅+Z  is a subring of ).,,( ⋅+Z  
 
Similarly, from Example 11, Unit 10, you can see that ),],5[( ⋅+Z  and 

),],5[( ⋅+−Z  are subrings of ).,,( ⋅+C  
 
Consider the following remarks regarding this concept. 
 
Remark 1: If ),,S( ⋅+  is a subring of ),,,R( ⋅+  we shall just say that S  is a 
subring of ,R  unless the operations concerned need to be stressed. 
 
Remark 2: Note that the operations of S  and R  have to be the same if S  
is to be a subring of .R  For example, ,,( ⊕R  )  of E10, Unit 10, is not a 

subring of ),,,( ⋅+C  since ⊕  and  are different from +  and ,⋅  respectively. 
 
Before giving more examples, let us analyse the definition of a subring. The 
definition says that a subring of a ring R  is a ring with respect to the 
operations which make R  a ring. Now, the distributive, commutative and 
associative laws for these operations hold good in .R  Therefore, they hold 
good in any subset of R  also. So, to prove that a subset S  of R is a ring we 
don’t need to check all the 6 axioms 1R - 6R (of Unit 10) for .S  It is enough to 
check that 

i) S  is closed under both +  and ·, 

ii) ,S0∈  and 

iii) for each .Sa,Sa ∈−∈  
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If S  satisfies these three conditions, then S  is a subring of .R  So we have the 
following alternative definition for a subring. 
 
Definition: Let S  be a non-empty subset of a ring ).,,R( ⋅+  S  is called a 
subring of R  if  

)1S  S  is closed under +  and ·, i.e., Sba,ba ∈⋅+  whenever ;Sb,a ∈  

)2S  ;S0∈  and  

)3S  for each .Sa,Sa ∈−∈  
 
Note that ,3S-1S  together with Theorem 1 of Unit 3, tells us that a subset S  of 
R  is a subring of R  if ),,R(),S( +≤+  and · is a binary operation on .S  
 
Let us consider some more examples of subrings now. 
 
Example 1: Let R  be a ring. Show that }0{  and R  are subrings of .R  (The 
trivial ring, {0},  is called the trivial subring of .)R  
 
Solution: Since }0{  is closed under +  and ·, and }0{,00 =−  satisfies 3S-1S  
in the definition above. Hence, }0{  is a subring of .R  
 
Since ),,R( ⋅+  is a ring and R,RR ⊆  is a subring of .R  

*** 
 
Example 1 leads us to the following definitions, analogous to those for 
subgroups. 
 
Definitions: Let R  be a ring. A subring S  of R  is called  

i) a proper subring if ;RS ≠  

ii) a non-trivial subring if }.0{S ≠  
 
Let us, now, consider some examples of proper non-trivial subrings. 
 
Example 2: Show that }b,apba{]p[ QQ ∈+=  is a subring of ,R  where 

p  is a square-free integer. 
 
Solution: Firstly, ].p[QQ⊆  Hence, .]p[ «≠Q  
 
Secondly, for ,d,c,b,a Q∈  

],p[)db(p)ca()pdc()pba( Q∈+++=+++  and 

].p[)bcad(p)pbdac()pdc()pba( Q∈+++=+⋅+  

Thus, ]p[Q  satisfies .1S  
 
Next, ],p[p000 Q∈+=  so that ]p[Q  satisfies .2S  
 
Finally, for ]p[p)b()a(],p[pba QQ ∈−+−∈+  s.t. 

.0]p)b()a[()pba( =−+−++  

A non-trivial ring has 
two subrings at least. 
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Thus, ]p[Q  satisfies .3S  
 
Thus, by the definition, ]p[Q  is a subring of .R  

*** 
 
Example 3: Check whether or not ]1,0[C  is a subring of ,  the ring of all 
functions from ]1,0[  to R  under pointwise addition and multiplication. 
 
Solution: From Example 7, Unit 10, you know that ]1,0[C  is a ring under 
pointwise addition and multiplication.  
Also .]1,0[C ⊆  
Hence, ]1,0[C  is a subring of . 

*** 
 
Example 4: Find all the subrings of .Z  
 
Solution: Let S  be a subring of .Z  Then ).,(),S( +≤+ Z   
Hence, from Unit 4, you know that ,nS Z=  for some .n Z∈  
Conversely, from Example 1, Unit 10, you know that Zn  is a subring of 

.n ZZ ∈∀  
Thus, the only subrings of Z  are .n,n ZZ ∈  

*** 
 
Try solving some exercises now. 
 
 

E1) Is ),,( n ⋅+Z  a subring of ,Z  for ?2n ≥  Why, or why not? 
 
E2) Show that ]i[Z  is a subring of .C  
 
E3) Check whether or not )(3 ZM  is a subring of ).(3 QM  
 
E4) Is ],x[Z  the set of polynomials with coefficients in ,Z  a subring of ],x[R  

the ring of real polynomials? Why, or why not? 
 
E5) Give examples to show that the conditions 1S  and ,3S  in the definition of 

a subring, are necessary. Is 2S  necessary? Why, or why not? 
 

 
The definition of ‘subring’ requires you to check three conditions for a subset 
to be a subring. Are all these needed? As you have seen in E5, the 
requirement 2S  follows from 1S  and .3S  So, can the number of conditions be 
cut down? This is what we shall discuss now. 
 

11.3 SUBRING TEST 
 
The conditions ,3S-1S  given in the definition of a subring in the previous  
section, can be improved upon. For this, recall from Unit 3 that for a non-
empty subset S  of a ring ),R(),S(,R +≤+  iff Sba ∈−  whenever .Sb,a ∈  
This observation allows us to cut down the number of conditions for a subset 
to be a subring. Consider the following theorem. 
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Theorem 1 (Subring Test): Let S be a non-empty subset of ).,,R( ⋅+  Then S  
is a subring of R  if and only if 

i) ;Sy,xSyx ∈∀∈−  and  

ii) .Sy,xSxy ∈∀∈  
 
Proof: First, let us assume that S  is a subring of ,R  i.e., S  satisfies .3S-1S  
Now, if ,Sy,x ∈  then ,S)y(,x ∈−  by .3S   
So, ,Syx)y(x ∈−=−+  by ,1S  i.e., (i) is satisfied by .S  
Also, (ii) is satisfied by S  because of .1S  
 
Conversely, assume that (i) and (ii) are satisfied by ,S  and let .Sy,x ∈  
By (i), .S0xx ∈=−  So S  satisfies .2S  
Again, by (i), .Sxx0 ∈−=−  So S  satisfies .3S  
Also, for ,Sy,x ∈ ,S)y(xyx ∈−−=+  by (i). 
Further, by (ii), S  is closed under multiplication. 
Thus, S  satisfies ,1S  and hence, the definition of a subring. 
So, we have proved the theorem. 
 
The criteria in Theorem 1 allow us a neat way of checking whether a subset is 
a subring or not. 
 
Let us look at some examples. 
 
You have already noted that Z  is a subring of .Q  In fact, you can use 

Theorem 1 to check that Z  is a subring of CR,  and n(]n[Z  not a square, 
).n Z∈  Now for some detailed examples! 

 
Example 5: Show that 63Z  is a subring of .6Z  
 
Solution: Firstly, do you agree that ?}3,0{3 6 =Z  Remember that 

},53,.....,13,03{3 6 ⋅⋅⋅=Z  and ,39,06 ==  and so on. 

Now, .3330 =−=−   
Thus, .3y,x3yx 66 ZZ ∈∀∈−  
You should also verify that .3y,x3xy 66 ZZ ∈∀∈   
Thus, by Theorem 1, 63Z  is a subring of .6Z  

*** 
 
Example 6: Consider the ring )X(℘  (given in Example 5 of Unit 10). Show 
that }X,{S «=  is a subring of ).X(℘  
 
Solution: Note that ).X(AAA ℘∈∀=Δ «  AA −=∴  in ).X(℘  
Now, to apply Theorem 1, we first note that S  is non-empty. 
Next, ,SXXX,SXX,S ∈=Δ=Δ∈=Δ∈=Δ ««««««  

.SXX,SXXX,S ∈=∩=∩∈=∩∈=∩ ««««««  
Thus, by Theorem 1, S  is a subring of ).X(℘  

*** 
 
Solving the following exercises will give you some more examples of subrings. 
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E6) Show that  

 i) R is a subring of ,C   

 ii) ]i[Z  is a subring of ,C  and  

 iii) ]2[Q  is a subring of .R  
 
E7) Let X  be a non-empty set, 

/
«.≠⊆ A,XA  Show that }X,A,A,{S c«=  is 

a subring of ).X(℘  Is )A(℘  a subring of ?)X(℘  
 
E8) Show that if A  is a subring of ,B  and B  is a subring of ,C  then A  is a 

subring of .C  Thus, the relation ‘is a subring of’, on the set of subrings of 
a ring, is transitive. Is this relation symmetric? Is it reflexive? Why, or 
why not? 

 

E9) Check whether or not 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Zb,a

bb
aa

R  is a subring of ).(2 ZM  

 

 
You have already seen that Z  has infinitely many subrings, .n,n ZZ ∈  Thus, 
an infinite ring can have infinitely many subrings.  
Also, Example 6 and E7 show us that for each proper subset of a set ,X  we 
get a proper non-trivial subring of ).X(℘  So, if X  has n  elements, )X(℘  has 

n2  elements. For each of these subsets of ,X  except )X(,X ℘  has a proper 
subring corresponding to it. Thus, a finite ring can have several proper non-
trivial subrings.  
 
Let us now consider the behaviour of subrings of a ring with identity. 
 
Example 7: Show that if R  is a ring with identity, a subring of R  may or may 
not be with identity.  
 
Solution: Consider .Z  It is a ring with identity ,1  but its subring Z2  has no 
multiplicative identity. 
On the other hand, you have seen that Z  is a subring of ,C  and both have 
the identity .1  

*** 
 
Example 8: Must the identity of a subring, if it exists, coincide with the identity 
of the ring?  Why, or why not? 
 
Solution: You know, from E7, that )A(℘  is a subring of ).X(℘  You also 
know, from Example 5, Unit 10, that A  and X  are the respective identities of 

)A(℘  and ).X(℘   
Hence, if ,XA ≠  as in E7, the two identities will not coincide. 

*** 
Now let us look at an example which generalises the fact that Zn  is a subring 
of .n ZZ ∈∀  
 
Example 9: Let R  be a ring and .Ra∈  Show that }Rxax{aR ∈=  is a 
subring of .R  
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Solution: Since «.« ≠≠ aR,R   
Now, for any two elements ax  and ay  of ,aR  

,aR)yx(aayax ∈−=−  and aR)xay(a)ay()ax( ∈=  (since ).Rxay∈  
Thus, by Theorem 1, aR  is a subring of .R  

*** 
 
Using Example 9, we can immediately say, for example, that nmZ  is a 
subring of .m nn ZZ ∈∀  Of course, these subrings need not be distinct. For 
example, 553 ZZ =  and .42 66 ZZ =  
 
In the next example you will study a special subring. 
 
Example 10: Let R  be a ring, and }.RrxrrxRx{)R(C ∈∀=∈=  Show that 

)R(C  is a subring of .R  ( )R(C  is called the centre of .)R  
 
Solution: Firstly, since .)R(C),R(C0 «≠∈   
Next, for )R(Cy,x ∈  and rxxr,Rr =∈  and .ryyr =  
So, .r)yx(yrxrryrx)yx(r −=−=−=−   
Thus, ).R(Cyx ∈−  
Also, ).xy(ry)rx(y)xr()ry(x)yr(xr)xy( =====  
Thus, ).R(Cxy∈   
Hence, )R(C  is a subring of .R  

*** 
 
Why don’t you solve some related exercises now?  
 
 
E10) Find all the subrings of .n,n NZ ∈  How many of these are with identity? 
 
E11) Check whether or not the following are subrings of :)(2 RM  

 i)  ,b,a
b0
0a

S
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Z  

 ii) .c,b,a
0c
ba

T
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= R  

 If they are subrings, do they have unity? If yes, then is the identity the 
same as that of ?)(2 RM   

 
E12) Give an example, with justification, of a subset of a ring R  which is a 

subgroup of ),R( +  but not a subring of .R  
 
E13) Which of the following statements are true? Give reasons for your 

answers. 

 i) A subring of a commutative ring is commutative. 

 ii) If R has a subring with identity, then R  is with identity. 

 iii) If R has a commutative subring, then R  is commutative.  
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E14) Find )R(C  for HRMZ === R),(R,R 2  (see Example 14, Unit 10). 
 
E15) Let ),,R( ⋅+  be a ring. Is the centre of the group ),R( +  the same as 

?)R(C  Why? 
 
E16) If R  is with identity, is )R(C  with identity? Why, or why not? 
 
E17) In each of the following cases, check whether or not S  is a subring of .R  

 i) QQ ;R,b3
b
aS =

⎭
⎬
⎫

⎩
⎨
⎧

∈=  

 ii) ).(R,b,a
b0
1a

S 2 RMR =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
=  

 

 
Let us conclude this section with an important comment. 
 
Remark 3: From Examples 7 and 8, and from E13, you can see that a ring 
and its subring can have different algebraic structures. A ring may satisfy a 
property that its subring may not, and vice-versa. You must keep this in mind 
always when dealing with rings and their subrings. 
 
Let us now consider the behaviour of subrings under operations on the 
underlying sets of the subrings of a ring. 
 

11.4 SET OPERATIONS ON SUBRINGS 
 
In Unit 3, you found that the intersection of two subgroups of a group is a 
subgroup. Does the same hold for subrings? Further, is the union of subrings 
a subring? Is the complement of a subring a subring? The answers to these 
questions are very similar to the analogous questions for subgroups, as you 
would expect by now. In this section, we shall focus on the answers to these, 
and other similar, questions. 
 
Let us begin with the answer to the first question above. 
 
Theorem 2: Let 1S  and 2S  be subrings of a ring .R  Then 21 SS ∩  is also a 
subring of .R  
 
Proof: Since 1S0∈  and 212 SS0,S0 ∩∈∈ . .SS 21 «≠∩∴  
Now, let .SSy,x 21∩∈  Then 1Sy,x ∈  and .Sy,x 2∈   
Thus, by Theorem 1, yx −  and xy  are in 1S  as well as in ,S2  i.e., yx −  and 
xy  lie in .SS 21∩  
 
Thus, 21 SS ∩ is a subring of .R  
 
On the same lines as the proof above, you can prove that the intersection of 
three, four or more subrings of a ring R is a subring of R.   
 
Let us consider an example of applying Theorem 2. 
 
Example 11: Show that the intersection of any two subrings of Z  is Zr  for 
some .r Z∈  
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Solution: Let Zn  and Zm  be two subrings of .Z  Then, by Theorem 2, 

ZZ mn ∩  is a subring of .Z  Thus, by Example 4, ZZZ rmn =∩  for some 
.r Z∈  In fact, you should show that r  is the l.c.m of n  and ,m  using what you 

studied in Unit 4. 

*** 
Now consider the union of subrings of a ring. Do you think it will be a subring?  
Let’s see. You must remember that the union of two subgroups need not be a 
subgroup! 
 
Example 12: Show that ZZ 32S ∪=  is not a subring of .Z  
 
Solution: Note that S2∈  and .S3∈  But ,S132 ∉−=−  since Z2)1( ∉−  and 

.3)1( Z∉−  Thus, by Theorem 1, S  is not a subring of .Z  

*** 
 
Solve the following related exercises now. 
   
 
E18) You know that ]i[Z  and Q  are subrings of .C  Is  their union a subring 

of ?C  Why, or why not? 
 
E19) Under what conditions on the subrings 1S  and 2S  of ,R  will 21 SS ∪  be a 

subring of ?R  Give reasons for your answer. 
 
 
Now let us look at the analogue of the product of two subgroups, for subrings. 
Remember that a ring is an abelian group. 
 
Example 13: If S  and T  are subrings of a ring ,R  is TS+  a subring of ?R  
Why, or why not? 
 
Solution: You know that .STTS +=+   
Hence, by Theorem 7, Unit 3, ).,R(),TS( +≤++   
However, TS+  need not be closed with respect to multiplication.  
For example, consider the sets  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Rb,a

0b
0a

S  and .b,a
00
ba

T
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= R   

By E5, Unit 10, S  and T  are subrings of ).(2 RM  However, 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
=+ Rc,b,a

0c
ba

TS  is not a subring of ),(2 RM  as you have shown 

in E11(ii).  
*** 

 
Now let us consider the set operation of complementation. If 1S  and 2S  are 
subrings of a ring ,R  is 21 S\S  a subring of ?R  Is 21 SS Δ  a subring of ?R  
Let us consider an example. 
 
Example 14: If 1S  and 2S  are subrings of a ring ,R  then show that 21 S\S  is 
never a subring of .R  
 
Solution: Since 2S  is a subring, .S0 2∈  Hence, .S\S0 21∉  
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Hence, 21 S\S  cannot be a subring of .R  

*** 
 
Try solving an exercise now. 
 
 
E20) If 1S  and 2S  are subrings of ,R  can 21 SS Δ  be a subring of ,R  where 

Δ  denotes the symmetric difference? Why, or why not?  
 
 
Now let us look at the Cartesian product of subrings. Let us consider two 
subrings of the ring .2Z  
 
Example 15: Show that }0{}n)0,n({S ×=∈= ZZ  is a subring of .ZZ×  

Also show that }n)n,n({D Z∈=  is a subring of .ZZ×  
 
Solution: Recall the ring structure of 2Z  from Example 9 of Unit 10.  
Both S  and D  are non-empty.  
Also, you should verify that both of them satisfy (i) and (ii) of Theorem 1. Thus, 
S  and D  are both subrings of .2Z  

*** 
 
You have just seen that }0{×Z  is a subring of .ZZ×  Also }0{}0{)}0,0{( ×=  
is a subring of .2Z  More generally, the following result tells us about some 
subrings of the direct product of rings. 
 
Theorem 3: Let 1S  and 2S  be subrings of the rings 1R  and ,R2  respectively. 
Then 21 SS ×  is a subring of .RR 21×  
 
Proof: Since 1S  and 2S  are subrings of 1R  and «≠12 S,R  and .S2 «≠  

.SS 21 «≠×∴  
 
Now, let )b,a(  and )b,a( ′′  be in .SS 21×  Then 1Sa,a ∈′  and .Sb,b 2∈′   
As 1S  and 2S  are subrings, 1Saa,aa ∈′′−  and .Sbb,bb 2∈′′−  
(We are using +  and · for 21 R,R  and 21 RR ×  here, for convenience.)  
Hence, .SS)bb,aa()b,a()b,a( 21×∈′−′−=′′−  
Also, .SS)bb,aa()b,a()b,a( 21×∈′′=′′⋅  
Thus, by Theorem 1, 21 SS ×  is a subring of .RR 21×  
 
Theorem 3 can be generalised to the Cartesian product of three or more 
subrings. However, note that not every subring of 21 RR ×  is of the form 

21 SS ×  (see E21). 
 
Let us look at an example of a subring of .RR 21×  
 
Example 16: Show that )(]x[ 3 QMZ ×  is a subring of ).(]x[ 3 RMR ×  Further, 
give two distinct elements of this subring. 
 
Solution: First, from E4, you know that ]x[Z  is a subring of ].x[R  
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Next, let us see if )(3 QM  is a subring of ).(3 RM  By E11, Unit 10, you know 
that )(3 QM  and )(3 RM  are rings w.r.t. the operations of matrix addition and 
multiplication. Also, since ).()(, 33 RMQMRQ ⊆⊆  So both these sets are 
rings w.r.t the same binary operations. 
Therefore, )(3 QM  is a subring of ).(3 RM  
 
Thus, )(]x[ 3 QMZ ×  is a subring of ).(]x[ 3 RMR ×  
 
This subring is infinite. Two of its elements are )I,1(  and ),,x( 0  for example, 
where I  and 0  are the multiplicative and additive identities of ).(3 QM   
Note that )I,1(  and )I,0(  are also distinct elements, since they differ in the 
first component. 

*** 
 
Try solving some exercises now. 
 
 

E21) Obtain two proper non-trivial subrings of .RZ×  
 
E22) Use D  in Example 15 to show that not every subring of 21 RR ×  is of the 

form ,SS 21×  where 1S  and 2S  are subrings of 1R  and ,R 2  respectively. 
 
E23) Let 1R  and 2R  be rings, with subrings 1S  and ,S2  respectively. Under 

what conditions on 1S  and 2S  will 21 SS ×  be a commutative ring with 
unity?  

 
E24) If X  and Y  are two non-empty sets, give a proper non-trivial subring of 

).Y()X( ℘×℘  
 

 
With this we come to the end of this discussion on subrings. In the next unit, 
you will study certain special subrings. For now, let us summarise what you 
have studied in this unit. 
 

11.5 SUMMARY 
 
In this unit, you studied the following points. 
 
1. A subring of a ring R  is a non-empty subset S  of R  such that 

),R(),S( +≤+  and multiplication is closed in .S  
 
2. Several examples, and non-examples, of subrings. 
 
3. A subring of a ring need not have the same algebraic properties of the 

ring, and vice-versa. 
 

 
4. The proof, and applications, of the subring test, namely, a non-empty 

subset ,S  of a ring ,R  is a subring of R  iff Syx ∈−  and 
.Sy,xSxy ∈∀∈  

 
5. If 1S  and 2S  are subrings of a ring ,R  then 21 SS ∩  is a subring of .R  

However, 21 SS ∪  is a subring of R  iff 21 SS ⊆  or .SS 12 ⊆   
Also, 21 S\S  and 21 SS Δ  are never subrings of .R  
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6. If 1S  and 2S  are subrings of 1R  and ,R 2  respectively, then 21 SS ×  is a 

subring of .RR 21 ×  Not every subring of 21 RR ×  is of this form, though. 
 

11.6 SOLUTIONS / ANSWERS 
 
E1) No, since .n ZZ ⊄  
 
E2) For ],i[dic,bia Z∈++  
 ],i[)db(i)ca()dic()bia( Z∈+++=+++  and 

].i[)bcad(i)bdac()dic()bia( Z∈++−=+⋅+  
 Further, ].i[0i00 Z∈+=  
 Finally, for ].i[)b(i)a()iba(],i[iba ZZ ∈−+−=+−∈+  
 Thus, ]i[Z  satisfies .3S,2S,1S   

Hence, ]i[Z is a subring of .C  
 
E3) By E11, Unit 10, )R(3M  is a ring w.r.t. matrix addition and matrix 

multiplication, where ),,R( ⋅+  is a ring. 
 Hence, )(3 ZM  and )(3 QM  are rings w.r.t. the same operations. 
 Also, ).()( 33 QMZM ⊆   

Hence, )(3 ZM  is a subring of ).(3 QM  
 
E4) You should show that if ],x[)x(g),x(f Z∈  then )x(g)x(f +  and 

)x(g)x(f  are also in ].x[Z  
 Next, ].x[0 Z∈  
 Finally, for ],x[xaxaa)x(f n

n10 Z∈+++= L  

].x[x)a(x)a()a()x(f n
n10 Z∈−++−+−=− L  

 Hence, ]x[Z  is a subring of ].x[R  
 
E5) S1  is necessary: Consider .}1,1,0{S Z⊆−=  This satisfies 2S  and 

,3S  but not ,1S  regarding addition in Z  (e.g., ,S11 ∉+  though S1∈ ). 
 Note that ),,S( ⋅+  is not a ring, since addition is not a binary operation 

on .S  Thus, S  is not a subring of .Z  
 
 S3  is necessary: Consider the set of whole numbers, .W   
 ),,W( ⋅+  satisfies 1S  and ,2S  but not 3S  (e.g., W1∈  but W)1( ∉− ). 
 Note that ),,W( ⋅+  is not a subring of ),,,( ⋅+Z  since it does not satisfy 

4R  (of Unit 10), and hence is not a ring. 
 
 2S  follows from 1S  and ,3S  taken together. So, if 2S  is not included 

explicitly, it is inbuilt. Hence, it is necessary. 
 
E6) i) Firstly, .CR ⊆  

Next, RR ∈−∈∀ yx,y,x  and .xy R∈   
Thus, R  is a subring of .C   

 
Similarly, you should check the other two cases. 

 
E7) For any ,Sy,x ∈  
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yx)y(xyx Δ=−Δ=−  (as pointed out in Example 6), and  

.yxyx ∩=⋅  
 So, you need to check that Syx ∈Δ  and ,Syx ∈∩  for each .Sy,x ∈  

Once you do this, you will find that S  is a subring of ).X(℘   
 Further, in Unit 3 you have seen that ).),X(()),A(( Δ℘≤Δ℘   

Also, for ).A(yxyx),A(y,x ℘∈∩=⋅℘∈   
Thus, ),),A(( ∩Δ℘  is a subring of ).X(℘  

 
E8) Since A  is a subring of ,A,B «≠  and  

Ayx,Ay,x ∈−∈∀  and .Axy∈   
Here the addition and multiplication are those defined on .B  Further, 
these operations are the same as those defined on C  since B  is a 
subring of .C  Thus, A  satisfies Theorem 1, and hence is a subring of 

.C  
 
The, relation is not symmetric – e.g., Z  is a subring of ,Q  but Q  is not 
a subring of .Z  
 
Since every ring is a subring of itself, the relation is reflexive. 

 

E9) First, note that .R
00
00
∈⎥
⎦

⎤
⎢
⎣

⎡
 So .R «≠  

 Next, for ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

dd
cc

B,
bb
aa

A  in ,R  

 ,R
dbdb
caca

BA ∈⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=−  and  

 .R
)dc(b)dc(b
)dc(a)dc(a

AB ∈⎥
⎦

⎤
⎢
⎣

⎡
++
++

=  

 Hence, R  is a subring of ).(2 ZM  
 
E10) From Example 9, you know that nmZ  is a subring of .m nn ZZ ∈∀  
 Also, as in Example 4, you should show that every subring of nZ  must 

be of the form nmZ  for some .m nZ∈  
 Thus, all the subrings of nZ  are .m,m nn ZZ ∈  
 
 Further, nm1 Z∈  iff nsmr1 +=  for some ,s,r Z∈  i.e., iff ,1)n,m( =  as 

you know from Unit 1. 
 

E11) i) Firstly, .S «≠  (Why?) 

Secondly, for any ⎥
⎦

⎤
⎢
⎣

⎡
=

b0
0a

A  and ⎥
⎦

⎤
⎢
⎣

⎡
=

d0
0c

C  in ,S  

  S
db0

0ca
CA ∈⎥

⎦

⎤
⎢
⎣

⎡
−

−
=−  and .S

bd0
0ac

AC ∈⎥
⎦

⎤
⎢
⎣

⎡
=  

  Thus, S  is a subring of .R  

  The unity of =⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

S the unity of .R  
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ii) Verify that .T «≠  Now, ⎥
⎦

⎤
⎢
⎣

⎡
03
21

 and .T
01
11
∈⎥

⎦

⎤
⎢
⎣

⎡
 But, 

,T
33
13

01
11

03
21

∉⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 since it does not have 0  in the  

th)2,2(  place. Thus, T  is not a subring of ).(2 RM  
 
E12) Consider T  in E11(ii). Check that ).(),T( 2 RM≤+   

However, as given in the solution, T  is not a subring of ).(2 RM  
 You can think of many other examples. 
 
E13) i) This is true, since the operation of multiplication on the subring is 

the same as that on the ring. 
 
 ii) No. For example, the trivial ring has identity, and is a subring of 

,2Z  which does not have identity. 
 
 iii) No. For instance, the subring S  in E11(i) is commutative, but 

)(2 RM  is not. 
 
E14) }xxzzxz{)(C ZZZ ∈∀=∈=  
          ,Z=  since Z  is commutative. 
 
 .)}(BBAAB)(A{))((C 222 RMRMRM ∈∀=∈=  

 Now, for any )),((C
dc
ba

2 RM∈⎥
⎦

⎤
⎢
⎣

⎡
 and ,,, β≠α∈βα R  

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
β

α
=⎥

⎦

⎤
⎢
⎣

⎡
β

α
⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

0
0

0
0

dc
ba

 

 ⎥
⎦

⎤
⎢
⎣

⎡
ββ
αα

=⎥
⎦

⎤
⎢
⎣

⎡
βα
βα

⇒
dc
ba

dc
ba

 

 .cc,bb β=αα=β⇒  
 ,0c,0b ==⇒  since .β≠α  

 Now, since )),((C
d0
0a

2 RM∈⎥
⎦

⎤
⎢
⎣

⎡
 it must commute with .

01
01
⎥
⎦

⎤
⎢
⎣

⎡
 

 This gives .
0a
0a

0d
0a

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
 So .da =  

 Finally, for any ,a,
a0
0a

R∈⎥
⎦

⎤
⎢
⎣

⎡
 

 ,
a0
0a

rd
cb

rd
cb

a0
0a

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 for ).(

rd
cb

2 RM∈⎥
⎦

⎤
⎢
⎣

⎡
 

 Thus, ,
10
01

a
a0
0a

))((C 2 RRRM ⎥
⎦

⎤
⎢
⎣

⎡
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
=  the ring of scalar 

matrices in ).(2 RM  
 
 Since k,j,i  do not commute with ,i,k,j  respectively, 

)(Ckdjciba H∈+++  iff .0dcb ===  
 Further, for any ,r,d,c,b,a R∈  

,a,
a0
0a

R∈⎥⎦
⎤

⎢⎣
⎡  is called a 

scalar matrix over .R  
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 .r)kdjciba()kdjciba(r +++=+++  
 So .)(C RH =  
 
E15) No. Since ),R( +  is abelian, you know from Unit 6 that .R)R(Z =  
 However, as you have seen in E14, R)R(C ≠  for all non-commutative 

rings .R  
 
E16) For any .1rrr1,Rr ⋅==⋅∈  Thus, ).R(C1∈  Hence, )R(C  is with 

identity. 
 
E17) i) Firstly, Q⊆S  and .S «≠  

  Next, for Sd
c

b
a,Sd

c,b
a ∈−∈  and ,Sd

c
b
a ∈⋅  since .bd3  

  Thus, S  is a subring of .R  
 
 ii) Note that ,S∉0  since 0  doesn’t have 1 in the th)2,1(  place.  

Hence, S  is not a subring of .R  
 

E18) i1+  and 2
1  are elements of the union. 

 But .]i[i2
1

2
1i1 QZ ∪∉+=−+  Thus, QZ ∪]i[  is not a subring of .C  

 
E19) Firstly, 21 SS ∪  is a subgroup of ),R( +  iff 21 SS ⊆  or .SS 12 ⊆   

Once this condition is satisfied, multiplication will be closed on ,SS 21 ∪  
by definition. 

 Thus, 21 SS ∪  is a subring of R  iff 21 SS ⊆  or .SS 12 ⊆  
 
E20) ).S\S()S\S(SS 122121 ∪=Δ  
 Since neither 21 S\S  nor 12 S\S  has .SS0,0 21Δ∉  
 Hence, 21 SS Δ  is never a subring of .R   
 
E21) Since Zn  is a subring of ,n ZZ ∈∀  and }0{  and R  are subrings of 

}0{3,2, ×× ZRZR  are two subrings of .RZ×  You can find infinitely 
many examples. 

 
E22) Consider the subring ,}n)n,n({D Z∈=  of .ZZ×   

Suppose D  is of the form ,SS 21×  where 21 S,S  are subrings of .Z   
So ZZ sS,mS 21 ==  for some .s,m Z∈   
Now any element of D  is of the form ),b,a(  with 1Sa∈  and .Sb 2∈  
So 11 ssb,mma ==  for some .s,m 11 Z∈  

 As  )n,n()b,a(,D)b,a( =∈  for some ,n Z∈  i.e., ).n,n()ss,mm( 11 =  
 So ,ssnmm 11 ==  i.e., .ns,nm  This is true for each .n Z∈  
 Thus, by E29, Unit 10, .1s,1m ±=±=  
 Hence, ,SS 21 == Z  i.e., .D ZZ×=  
 But then ZZ×  has elements like )2,1(  also, which is not in .D  So we 

reach a contradiction. Thus, our assumption must be wrong. 
 Thus, .SSD 21×≠  
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E23) 21 SS ×  will be commutative iff both 1S  and 2S  are commutative, by 

Example 13, Unit 10. 
 Similarly, 21 SS ×  has unity iff both 1S  and 2S  have unity, again by 

Example 13, Unit 10. 
 
E24) )Y(}{ ℘×«  is an example. 
 This is a subring since }{«  is a subring of )X(℘  and )Y(℘  is a subring 

of ).Y(℘  
 This is proper, since .)X(}{

/
℘⊆«  

 This is non-trivial, since .}{)Y( «≠℘  
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UNIT 12                                  

                                                    IDEALS 

Structure    Page Nos. 
 
12.1 Introduction            51 
 Objectives 
12.2 What is an Ideal?           52 
12.3 Properties of Ideals           59 
12.4 Quotient Rings            66 
12.5 Summary            73 
12.6 Solutions / Answers           74  
 

12.1 INTRODUCTION 
 
You have seen that a subring S  of a ring R  is a subgroup of ).,R( +  From 
Unit 6, you also know that ),S( +  is a normal subgroup of ),,R( +  since +  is 
commutative. Can this ‘normality’ be extended to both the operations, in some 
sense? In other words, is there a concept like a normal subring? 
Recall that Galois had invented the concept of a normal subgroup in the 
context of defining a quotient group. So the questions that arise are – Is there 
a concept in ring theory analogous to that of  

i) a quotient group? 

ii) a normal subgroup? 

Both these questions are considered in this unit. 
 
In Sec.12.2, you will study the analogue, in ring theory, of a normal subgroup. 
This is the concept of ‘an ideal’. You will study several examples of ideals also 
in this section. 
 
In Sec.12.3, the focus will be on elementary properties of ideals. You will find 
out if the intersection, union or product of ideals is an ideal or not. 
 
Finally, in Sec.12.4, you will study the analogue, in ring theory, of a quotient 
group. To understand the discussion here, it may be a good idea to re-look 
Unit 7 before studying this section. 
 
Our discussion in this unit will be built around the following learning 
expectations. Please go through the unit carefully, so that you achieve these 
objectives.  
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Objectives 
After studying this unit, you should be able to:  

• define, and give examples of, an ideal of a ring; 

• decide whether a subset of a ring is an ideal or not; 

• prove, and apply, basic properties of ideals of a ring; 

• define, and give examples of, a quotient ring; 

• prove, and apply, some elementary properties of quotient rings. 
 

12.2 WHAT IS AN IDEAL? 
 
In Block 2, you studied normal subgroups and the role that they play in group 
theory. You saw that the most important reason for the creation of normal 
subgroups is that they allow us to define quotient groups. In ring theory, we 
would like to define an analogous concept, namely, a quotient ring. In this 
section, you will study about a class of subrings that will help us to do so. 
While exploring algebraic number theory, the 19th century mathematicians 
Dedekind, Kronecker and others developed this concept.  
 
Let us first consider what kind of properties a subring needs so that we can 
define a corresponding quotient ring. 
Let us being by considering .Z  You know that this is a subring of .R  So, 

).,(),( +≤+ RZ  Hence, Z    .R  So, ZR  is a well-defined quotient group. Is it 
also a ring? Let’s see.  
As in Unit 7, if multiplication were defined on ,ZR  then we should have 

.s,rrs)s()r( RZZZ ∈∀+=+⋅+   
So, let us see if this operation is well-defined.  
Firstly, you know that .n,n ZZZ =+∈∀  So .01 ZZZ =+=+  

Therefore, ).0(5
1)1(5

1 ZZZZ +⎟
⎠
⎞

⎜
⎝
⎛ +=+⎟

⎠
⎞

⎜
⎝
⎛ +  

Thus, ,05
115

1 ZZ +⎟
⎠
⎞

⎜
⎝
⎛ ⋅=+⎟

⎠
⎞

⎜
⎝
⎛ ⋅  i.e., .05

1 ZZZ =+=+  

So, ,5
1 Z∈  which is not true. 

So we conclude that this multiplication is not well-defined in .ZR  
 
On the other hand, let’s see what happens if we consider the subring Z6  of 

.Z  Is the elementwise multiplication well-defined in ?6ZZ  Let’s see.  
Let ZZ 6s6r +=+  and ,6n6m ZZ +=+  where .n,m,s,r Z∈   

Then .6nm,6sr ZZ ∈−∈−  Let ,u6nm,t6sr =−=−  for .u,t Z∈  Then 
ZZZZ 6)u6n)(t6s(6rm)6m)(6r( +++=+=++  

          Z6)ut6sunt(6sn ++++=   

           ,6sn Z+=  since .ut6sunt Z∈++  

          ).6n)(6s( ZZ ++=  
Thus, the multiplication in ZZ 6  is well-defined. 
 
Also, you should verify that, this multiplication is associative, using the fact that 
multiplication in Z  is associative.  

Fig.1: Dedekind 
           (1831-1916) 
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Finally, for ,t,s,r Z∈  

ZZZZ 6)ts(r)]6t()6s)[(6r( ++=++++  
                                            )6rt()6rs( ZZ +++=  

                                           ).6t)(6r()6s)(6r( ZZZZ +++++=  

Thus, multiplication is distributive over addition in .6ZZ   
So, in this case, it seems we get a quotient group which is also a ring. 
 
What was it about the subring Z6  in ,Z  that the subring Z  in R  didn’t have? 
Notice that for Z∈t  and ZZ 6nt6,6n6 ∈∈  also. However, for Z∈n  and 

rn,r R∈  need not be in .Z  It turns out that it is this property that makes all 
the difference, as you will see in the detailed discussion on quotient rings in 
Sec.12.4. For now, we will focus on subrings with the property that you have 
just seen. Let us begin with defining such a subring. 
 
Definition: A subring I  of a ring ),,R( ⋅+  is called an ideal of R  if Iar∈  and 

Ira∈  for all Rr∈  and .Ia∈  
 
For example, as you have seen earlier in this discussion, Z6  is an ideal of ,Z  
but Z  is not an ideal of .R   
 
Note that, if R  is a commutative ring, then the second requirement in the 
definition above is not needed, as .Rr,IaIraIar ∈∈∀∈⇒∈   
 
So, from the definition above, you know that ideals are defined for any ring. 
However, henceforth in this unit, we will always assume that the rings we 
deal with are commutative, unless mentioned otherwise. This is being done 
to help you get used to the concept. 
 
Now, from the definition you know that every ideal is a subring. Is the converse 
true? Here is a remark about this. 
 
Remark 1: You know that every subgroup of a commutative group is a normal 
subgroup. However, every subring of a commutative ring need not be an ideal. 
For instance, R  is commutative, Z  is a subring of ,R  but Z  is not an ideal of 

,R  as you have seen above. 
 
Now, let us look at some examples of ideals. 
 
Example 1: Every ring ,R  whether commutative or not, has at least two ideals, 

}0{  and .R  }0({  is called the trivial ideal of .)R  
 
Solution: You have seen, in Example 1 of Unit 11, that R  and }0{  are 
subrings of .R   
Now, for any ,}0{00r,Rr ∈=⋅∈  and }.0{0r0 ∈=⋅   
Hence, }0{  is an ideal of .R  
  
Next, for any Rrssr,Rr ∈=⋅∈  and .RsRsrrs ∈∀∈=⋅  
Thus, R  satisfies the requirement for being an ideal. 

*** 
 
Example 1 leads us to the following definition. 
 

If you study advanced 
ring theory, you will find 
that non-commutative 
rings have left ideals and 
right ideals too. 
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Definition: If an ideal I  of a ring R  is such that ,RI ≠  then I is called a 
proper ideal of .R  Further, if I},0{I ≠  is called a non-trivial ideal of .R  
 
Let us consider some proper non-trivial ideals now. You have earlier seen that 
Z6  is an ideal of .Z  We generalise this in the following example. 

 
Example 2: Show that if ,1,0n ±≠  then the subring Zn  is a proper non-trivial 
ideal of .Z  Further, these are the only such ideals of .Z  
 
Solution: From Example 4, Unit 11, you know that Zn  is a proper non-trivial 
subring of Z  if .1,0n ±≠  
Also, for any Z∈z  and .n)zm(n)nm(z,nnm ZZ ∈=∈   
Hence, Zn  is an ideal of }0{n, ≠ZZ  and .n ZZ ≠  
 
Now, every ideal is a subring. From Example 4, Unit 11, you also know that the 
only subrings of Z  are of the form .n,n ZZ ∈  Hence, the only ideals of Z  are 
of the form .n,n ZZ ∈  Thus, the only proper non-trivial ideals of Z  are 

.1,1,0n,n −≠Z  
*** 

 
Example 3: Check whether or not ]p[Q  is an ideal of ,R  where p  is a prime. 
 
Solution: From Example 2, Unit 11, you know that ]p[Q  is a subring of .R  
Now, consider .R∈π  Then, for ,b,a Q∈  

],p[pba)pba( Q∉π+π=+π  since .a Q∉π   

Hence, ]p[Q  is not an ideal of .R  
*** 

 
Why don’t you solve some exercises now? 
 
 
E1) Find a non-trivial proper ideal of the ring of functions from ]3,3[−  to R  

w.r.t. pointwise addition and multiplication. 
 
E2) Is ]10[Q  an ideal of ?C  Why, or why not?  
 
E3) Check whether or not  

 i) ]i[Z  is a proper ideal of ,C   

 ii) ]x[R  is an ideal of ],x[C  

 iii) }3,0{  and }4,2,0{  are proper ideals of .6Z  
 
 
Now, from Sec.11.3, Unit 11, you know that there are criteria to decide whether 
a given subset of a ring is a subring or not. Can we use these to develop criteria 
for testing if a subset is an ideal or not? Consider the following result about this. 
 
Theorem 1 (Ideal Test): A non-empty subset ,I  of a ring R  (not necessarily 
commutative), is an ideal of R  if and only if  

i) ,Ib,aIba ∈∀∈−  and  
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ii) Iar∈  and .Rr,IaIra ∈∈∀∈  
 
Proof: First, let I  be an ideal of .R  Then I  is a subring of .R  Thus, by the 
subring test, .Ib,aIba ∈∀∈−  Hence, (i) is true. 
Further, (ii) above is true, by definition. 
 
Conversely, assume (i) and (ii) are true for .I  
Then Iba ∈−  and .Ib,aIab ∈∀∈   
Hence, I  is a subring of .R   
Further, because of (ii), I  satisfies the conditions in the definition of an ideal of 

.R  
Thus, I  is an ideal of .R  
 
Note that if R  is a commutative ring, then the condition (ii) in the ideal test 
reduces to '.Rr,IaIar' ∈∈∀∈  
 
Let us apply this test in some cases. 
 
Example 4: Let ,}b,abi2a{S Z∈+=  where .1i −=  Show that S  is a subring 
of ].i[Z  Is S  an ideal of ?]i[Z  Why, or why not? 
 
Solution: First, .Si2 ∈  So, .S «≠   
Next, for di2c,bi2a ++  in ,S  

,Si)db(2)ca()di2c()bi2a( ∈−+−=+−+  and 
.Si)adbc(2)bd4ac()di2c)(bi2a( ∈++−=++  

Thus, S  is a subring of ].i[Z  
 
However, SaSar ∈∀∉  and ].i[r Z∈  For instance, Si0211 ∈⋅⋅+=  and 

]i[i Z∈  such that .Sii1 ∉=⋅   
Thus, S  is not an ideal of ].i[Z  

*** 
 
Example 5: Let X  be an infinite set. Consider ,I  the set of all finite subsets of 

.X  Is I  an ideal of ?),),X(( ∩Δ℘  Why, or why not? 
 
Solution: AA{I =  is a finite subset of }.X  Note that 

i) I,«∈  i.e., the zero element of )X(℘  is in .I  So .I «≠  

ii) For )B(ABA),X(B,A −Δ=−℘∈  
                               ,BAΔ=  as BB −=  in ).X(℘  

iii) For .BAAB),X(B,A ∩=℘∈  
 
Thus, if ,IB,A ∈  then BA −  is again a finite subset of ,X  and hence .IBA ∈−  
 
Next, whenever A  is a finite subset of X  and B  is any subset of 

.ABA,X ⊆∩  Hence, BA∩  is a finite subset of .X  
Thus, if IA∈  and ),X(B ℘∈  then .IAB∈  
 
Hence, by the ideal test, I  is an ideal of ).X(℘  

*** 
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Example 6: Let X  be a non-empty set and Y  be a non-empty proper subset of 

.X  Show that }YA)X(A{I «=∩℘∈=  is an ideal of ).X(℘  

In particular, if },x{Y 0=  where 
/

,X}x{ 0 ⊆  then  

}Ax)X(A{I 0 ∉℘∈=  is an ideal of ).X(℘  
 
Solution: Firstly, note that ),Y(I c℘=  and .Yc «≠  Thus, .I «≠  
 
Secondly, ,IB,A ∈∀   

Y)BA(Y)BA( ∩Δ=∩−     
                    ««Δ=∩Δ∩= )YB()YA(  

 «.=   
Thus, .IBA ∈−  
 
Finally, for IA∈  and ),X(B ℘∈  

«.« =∩=∩∩=∩∩=∩∩=∩ B)YA(BY)AB(Y)BA(Y)AB(  
Thus, .IAB∈  
 
Thus, by Theorem 1, I  is an ideal of ).X(℘  

*** 
 
Now consider an example which will be used in the rest of the units several 
times. 
 
Example 7: Consider the ring ],1,0[C  given in Example 7, Unit 10. 
Let }.0)21(f]1,0[Cf{M =∈=  Show that M  is an ideal of ].1,0[C  
 
Solution: The zero element 0  is defined by 0)x( =0  for all ].1,0[x∈  Since 

.M0,0)21(0 ∈=  Thus, .M «≠  
 
Also, if ,Mg,f ∈  then ,]1,0[Cgf ∈−  and  

.000)21(g)21(f)21()gf( =−=−=−  
So, .Mgf ∈−  
 
Next, if Mf ∈  and ],1,0[Cg∈  then you know that ].1,0[Cgf ∈⋅  
Also, .0)21(g0)21(g)21(f)21)(fg( =⋅==   
So .Mfg∈  
 
Thus, by Theorem 1, M  is an ideal of ].1,0[C  

*** 
 
Now it is time for you to solve some exercises. 
 
 
E4) Let us generalise Example 7.  

 i) Let ].1,0[a∈  Show that }0)a(f]1,0[Cf{Ia =∈= is an ideal of 
].1,0[C  

 ii) For any interval ]b,a[  in R  and ],b,a[r∈  show that 
}0)r(f]b,a[Cf{Ir =∈=  is an ideal of ].b,a[C  

]b,a[C  has infinitely many  
ideals, for any closed interval   

]b,a[  in .R  

If X  is an infinite set, 
)X(℘  has infinitely 

many distinct ideals. 
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 iii) For ],1,0[r∈  is }1)r(f]1,0[Cf{Jr =∈=  an ideal of ?]1,0[C  Why, 
or why not? 

 
E5) Check whether or not ),R(C  the centre of ,R  is an ideal of .R  
 
E6) Check whether or not the following are ideals of :]x[Z  

 i) The set of all polynomials over Z  with constant term ,0  

 ii) .n,,1,0i3axaS i

n

0i

i
i

⎭
⎬
⎫

⎩
⎨
⎧

=∀∈= ∑
=

KZ  

 
E7) Let R be a ring and .Ra∈  Show that Ra is an ideal of .R  Ra(  is called 

the principal ideal of R  generated by .)Ra∈  
 (Remember that R  is a commutative ring!) 
 
E8) Let R  be a ring and .Rb,a ∈  Show that }bRaxRx{I ∈∈=  is an ideal 

of .R  
 
 
Now that you’ve solved E7, do you see the connection with E3(iii) and E6(i)? 
Note that the set in E6(i) is simply ].x[xZ  
  
Let us now see how we can generalise what you have proved in E7.  
 
Example 8: For any ring R and ,Ra,a 21 ∈  show that  

}Rx,xaxax{RaRa 21221121 ∈+=+  is an ideal of .R  
 
Solution: Firstly, .a0a00 21 +=  .RaRa0 21 +∈∴  

So, .RaRa 21 «≠+  
 
Next, ,Ry,y,x,x 2121 ∈∀  

.RaRaa)yx(a)yx()ayay()axax( 2122211122112211 +∈−+−=+−+  
 
Finally, for Rr∈  and ,RaRaaxax 212211 +∈+  

,RaRaarxarx)axax(r 2122112211 +∈+=+  since .Rrx,Rrx 21 ∈∈  
 
Thus, by Theorem 1, 21 RaRa +  is an ideal of .R  

*** 
 
The method of obtaining ideals in Example 8 can be extended to give ideals of 
the form ,}Rxax...axax{ inn2211 ∈+++  for fixed elements n1 a,,a K  of ,R  for 
any .n N∈  Such ideals crop up again and again in ring theory. They have a 
special name, linked to what you studied in Sec.4.4, Unit 4. 
 
Definition: Let n1 a,,a K  be given elements of a ring ,R  for .n N∈  Then the 
ideal of R  generated by n1 a,,a K is 

.}Rxaxaxax{RaRaRa inn2211n21 ∈+++=+++ LL  

If R is not commutative, 

21 RaRa +  is not an 
ideal of R. 
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The elements n1 a,,a K  are called the generators of this ideal. We also 
denote this ideal by .>< n21 a,,a,a K  
 
When ,1n =  the ideal we get is the one in E7, called a principal ideal. Thus, 
if ,Ra∈  then ><= aRa  is a principal ideal of .R  In the next block, you will 
be working with principal ideals quite a bit. 
Do you see the connection between the concepts of a principal ideal and a 
cyclic group? Aren’t they the same if the ring is ?Z  In this context, consider 
the following remark. 
 
Remark 2: From Example 2, you can see that every ideal of Z  is a principal 
ideal. 
 
Now, some exercises on ideals and generators. 
 
 
E9) Let R  be a ring with identity. Show that .R1 =><  If ),R(Uu∈  find 

.u ><  
 
E10) Let R  be a ring and .Rr∈  Find the cyclic subgroup of R  generated by 

.r  Is this the same as the principal ideal of R  generated by ?r  Why, or 
why not? 

 
E11) Find the principal ideals of 10Z  generated by ,3  and by ,5  respectively. 

Also find ,3,2 ><  and see if it is >< 5  or not. 
 
E12) Show that every ideal of ,n,n NZ ∈  is a principal ideal. 
 
E13) Let X  be an infinite set, and let A  be a proper non-empty subset of .X  

Show that the principal ideal A)X(℘  is ).A(℘  
 
 
Let us now look at a special ideal of a ring. But, to do so, we first need to give 
a definition. 
 
Definition: An element a of a ring R is called nilpotent if there exists a 
positive integer n  such that .0an =  
 
For example, 3  and 6  are nilpotent elements of ,9Z  since 0932 ==  and 

.03662 ==   
 
Also, in any ring 0R,  is a nilpotent element. 
 
Now consider the following example. 
 
Example 9: Let R be a ring. Show that the set of nilpotent elements of R  is 
an ideal of .R  (This ideal is called the nil radical of .)R  
 
Solution: Let N  be the set of nilpotent elements of ,R  i.e.,  

0aRa{N n =∈=  for some positive integer }.n   

Also .N0∈  So, .N «≠  
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Next, if ,Nb,a ∈  then 0an =  and 0bm =  for some positive integers m  and .n  
Now, from E16 of Unit 10, you know that 

∑
+

=

−+++ −=−
nm

0r

rnmr
r

nmnm .)b(aC)ba(  

Note that, for each ,nm,,1,0r += K  either nr ≥  or .mrnm ≥−+  Therefore, 
either 0ar =  or .0b rnm =−+   
Thus, the term ,0ba rnmr =−+  for each .r   
So, .0)ba( nm =− +  
Thus, Nba ∈−  whenever .Nb,a ∈  
 

Finally, if 0a,Na n =∈  for some positive integer .n  So, for any ,Rr∈  
,ra)ar( nnn =  since R  is commutative. 

        ,0=   
i.e., .Nar∈  
 
Thus, N  is an ideal of .R  

*** 
 
Let us see what the nil radicals of some familiar rings are.  
For the rings RQZ ,,  or },0{N, =C  since any positive power of any non-
zero element of these rings is non-zero. 
 

For },2,0{N,4 =Z  since ,11n =  and n3  is 1  or .n3 N∈∀  
 
Now, if R  is a ring and ,Ra∈  there is an ideal of R  associated with .a  We 
define it, and ask you to prove that it is an ideal, in one of the following 
exercises (see E15).  
 
 
E14) Find the nil radicals of 8Z  and ),X(℘  where X  is a non-empty set. 
 
E15) Let R be a ring and .Ra∈  Show that }0raRr{ =∈=aAnn is an ideal 

of .R  (This ideal is called the annihilator of a.) 
 

 What is the annihilator of ?R0∈  If R  is with unity, what is the 
annihilator of ?R1∈  

 
E16) Which of the following statements are true? Justify your answers. 

 i)       aAnn  is a proper non-trivial ideal of ,R  where R  is a non-trivial 
ring and .Ra∈   

 ii) If R  is a ring and Rb,a ∈  s.t. ,bAnnaAnn =  then .ba =  

 iii) If R  and S  are rings with the same nil radicals, then .SR =  
 
 
By now you must be familiar with the concept of an ideal. Let us now discuss 
some basic properties of ideals. 
 

12.3 PROPERTIES OF IDEALS 
 
In this section, we shall look at several interesting aspects of ideals. We shall 
also discuss set operations on ideals.  
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Let us begin with a property that you may have got an indication about in E9. 
Consider all the ideals of .Z  They are given in Example 2. None of the proper 
ideals contain .1  Is this true only for ?Z  Not so, as the following theorem will 
tell you. 
 
Theorem 2: Let R be a ring with identity .1  If I is an ideal of R and ,I1∈  then 

.RI =  
 
Proof: You know that .RI ⊆  We want to prove that .IR ⊆   
Let .Rr∈  Since I1∈  and I  is an ideal of .I1rr,R ∈⋅=  So, .IR ⊆   
Hence, RI = . 
 
Using this result, we can immediately say that Z  is not an ideal of .Q  How? 
Well, if Z  were an ideal of ,Q  wouldn’t Theorem 2 imply that ?QZ =  And this 
is not true. So, Z  couldn’t be an ideal of .Q  
 
Does this also tell us whether Q  is an ideal of R  or  not? It does. Since Q∈1  
and QRQ ,≠  can’t be an ideal of .R  
 
Another important application of Theorem 2 is the following. 
 
Example 10: Find all the ideals of .Q  
 
Solution: As you know, two ideals are }0{  and .Q  Are there any others? Let’s 
find out.  
Let }0{I ≠  be an ideal of .Q  Then .0x,Ix ≠∈∃   

Since .x
1,Ix QQ ∈⊆∈  

Since I  is an ideal of ,Ix
1x, ∈⋅Q  i.e., .I1∈   

But then, by Theorem 2, .I Q=   
Hence, Q  has no non-trivial proper ideals. 

*** 
 
Try solving a related exercise now. 
 
 
E17) Find all the ideals of R  and .C  
 
 
Now let us shift our attention to binary operations on the set of ideals of a ring. 
In the previous section you studied that the intersection of subrings is a 
subring. You will now see why the intersection of ideals is an ideal.  
 
Theorem 3: If I  and J  are ideals of a ring R (not necessarily commutative), 
then the following are ideals of :R  
i) ,JI∩  and 
ii) Iaba{JI ∈+=+  and }.Jb∈  
 
Proof: i) From Unit 11, you know that JI∩  is a subring of .R   
  
 Next, if ,JIa ∩∈  then Ia∈  and .Ja∈   
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 Therefore, Ixa,Iax ∈∈  and Jxa,Jax ∈∈  for all x  in .R   
 So, JIax ∩∈  and JIxa ∩∈  for all JIa ∩∈  and .Rx∈   
 
 Thus, JI∩  is an ideal of .R   
 
ii) Firstly, .JI.JI000 «≠+∴+∈+=  
 
  Secondly, if ,JIy,x +∈  then 11 bax +=  and 22 bay +=  for some 

Ia,a 21 ∈  and .Jb,b 21 ∈  
  So, .JI)bb()aa()ba()ba(yx 21212211 +∈−+−=+−+=−  
  
  Finally, let JIx +∈  and .Rr∈  Then bax +=  for some Ia∈  and .Jb∈  

Now Ira,Iar ∈∈  and Jrb,Jbr ∈∈  since I  and J  are ideals of .R   
  Therefore,  .JIbrarr)ba(xr +∈+=+=  
  Also, ,JIrbra)ba(rrx +∈+=+=  similarly. 
 
  Thus, JI +  is an ideal of .R  
 
So, the sum of two ideals is an ideal. Here, note that the sum of two subrings 
need not be a subring, as you found in Unit 11. 
 
Further, as we noted in Unit 11 in the case of subrings, the intersection of 
any number of ideals of R  is an ideal of .R  This can be proved along the 
same lines as Theorem 3(i). 
 
Also note that Example 8 follows from Theorem 3. 
 
Now, let us consider the product of ideals. In Unit 11, you saw that if we define 

},Jb,Iaab{IJ ∈∈=  then IJ  need not even be a subring, leave alone being 
an ideal. This is because if ,IJy,x ∈  then with this definition of IJ  it is not 
necessary that .IJyx ∈−  (You will study an example in Unit 15.)  
However, if we define the product  

mm11 babaxRx{IJ ++=∈= L  for ,}mm,,1,iJbI,a ii N∈=∀∈∈ K   
then we have the following theorem. 
 
Theorem 4: Let I  and J  be ideals of a ring ,R  whether commutative or not. 
Then IJ  is an ideal of .R  
 
Proof: Firstly, ,IJ «≠  since «≠I  and .J «≠  
 
Next, let .IJy,x ∈  Then  

mm11 babax ++= L  and ,babay nn11 ′′++′′= L   
for some Ia,,a,a,,a n1m1 ∈′′ KK  and .Jb,,b,b,,b n1m1 ∈′′ KK  

)baba()baba(yx nn11mm11 ′′++′′−++=−∴ LL  

     ,b)a(b)a()baba( nn11mm11 ′′−++′′−+++= LL  

which is a finite sum of elements of the form ab  with Ia∈  and .Jb∈  
So, .IJyx ∈−  
 
Finally, let ,IJx∈  say ,babax nn11 ++= L  with Iai∈  and .Jbi∈   
Then, for any ,Rr∈  
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),rb(a...)rb(ar)ba...ba(xr nn11nn11 ++=++=  and 

.b)ra(b)ra()baba(rrx nn11nn11 ++=++= LL  
Since I  and J  are ideals of Ira,R i∈  and .n,,1iJrbi K=∀∈  
So xr  and rx  are finite sums of elements of the form ab  with Ia∈  and .Jb∈  
Hence, IJxr∈  and .IJrx∈  
 
Thus, IJ  is an ideal of .R  
 
Let us consider an example to understand what IJ,JI∩  and JI +  look like. 
 
Example 11: For ,n,m Z∈  show that  

i) ,mn ZZZ l=∩  where ],m,n[=l  the l.c.m of n  and ;m  

ii) ,hmn ZZZ =+  where ),m,n(h =  the g.c.d of n  and ;m  and  

iii) .nm)m)(n( ZZZ =    
 
Solution: From Unit 1, you know that l  and h  exist. 

i) Since nx],m,n[ == ll  and ,my=l  for some .y,x Z∈  
So, .mn ZZ∩∈l   
Hence, .mn ZZZ ∩⊆l     …(1) 
Conversely, let .mn ZZ∩∈α   
Since .n,n α∈α Z  Since .m,m α∈α Z   

Hence, by definition, .αl  So, .Zl∈α   
Thus, .mn ZZZ l⊆∩     …(2) 
From (1) and (2), we get .mn ZZZ l=∩  

 
ii) Any element of ZZ mn +  is ,msnr +  where .s,r Z∈  

Since ,h)m,n( = nhn1 =  and ,mhm1 =  for some .m,n 11 Z∈  
Then .h)smrn(hmsnr 11 Z∈+=+   
Therefore, .hmn ZZZ ⊆+     …(3) 
Conversely, from Unit 1 you know that ,mbnah +=  for some .b,a Z∈   
Hence, .mnh ZZ +∈   
So, .mnh ZZZ +⊆     …(4) 
From (3) and (4), we see that .hmn ZZZ =+  

 
iii)  For the product, note that ).m)(n()1m)(1n(nm ZZ∈⋅⋅=  

).m)(n(nm ZZZ ⊆∴  
Also, any element of )m)(n( ZZ  is of the form 

.nmsrnm)ms)(nr(
t

1i
ii

t

1i
ii Z∈⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

==

 

So, .nm)m)(n( ZZZ ⊆  
Hence, .nm)m)(n( ZZZ =  

*** 
 
Consider the following comment related to Example 11. 
 
Remark 3: Note that what is proved in Example 11 is analogous to what was 
proved in Theorem 8, Unit 4, for cyclic groups. 
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Next, we want to highlight a very useful point made in Example 11. This point 
is used very often when dealing with ,Z  as you will see in Block 4 particularly. 
 
Example 12: Show that if n  and m  are coprime integers, then .mn ZZZ =+  
 
Solution: Since n  and m  are coprime, 1)m,n( =  (see Unit 1). 
Now, from Example 11, you know that  

.)m,n(mn ZZZ =+  
Hence the result. 

*** 
 
Now let us see what IJ  is like if one of I  or J  is a principal ideal. You have 
already seen this for Z  in Example 11. 
 
Example 13: Let R  be a ring, and I  and J  be ideals of R  such that one of 
them is principal. Show that }.Jb,Iaab{IJ ∈∈=  
 
Solution: Let ,aI ><=  and J  may or may not be principal. 

Then any element of IJ  is .Jb,Ia,bax ii

n

1i
ii ∈∈=∑

=

 

Let ,ara ii =  where .n,,1iRri K=∀∈  

Then ,abbrax
n

1i
ii =⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

 where ,Jbrb
n

1i
ii ∈=∑

=

 since J  is an ideal of .R  

Hence the result. 

*** 
 
Try solving some exercises now. 
 
 
E18) Find JI,JI +∩  and IJ  for  

 i) ><= 4I  and ><= 6J  in ;12Z  

 ii) )Y(I ℘=  and }YA)X(A{J «=∩℘∈=  in ),X(℘  where X  is a 

non-empty set and 
/

.Y,XY «≠⊆  
 
E19) If I  and J  are ideals of a ring R  (not necessarily commutative), then 

show that 

 i) JIIJIIJ +⊆⊆∩⊆  and ;JIJJIIJ +⊆⊆∩⊆  
  (This is shown schematically in Fig.2.) 

 ii) JI + is the smallest ideal containing both the ideals I and ,J  i.e., if 
A  is an ideal of R  containing both I  and ,J  then A must contain 

;JI +  

 iii) JI∩  is the largest ideal that is contained in both I and ,J  i.e., if B  
is an ideal of R  contained in both I  and ,J  then );JI(B ∩⊆  

 iv) If R1∈ and ,RJI =+  then ,JIIJ ∩=  i.e., if the top two of Fig.2 
are equal, then so are the lowest two. 

 v) If R1∉  in (iv) above, is the rest of (iv) still true? Why, or why not? 
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Fig. 2: The ideal hierarchy! An arrow from an ideal to another just shows that the first is 
 contained in the second, like in the subgroup diagrams of Block 1. 
 
 
Now let us look at the set operations of complementation and of union. In Unit 
11, you have seen that the complement of a subring is not a subring. You 
have also seen the conditions under which the union of two subrings is a 
subring. Build on that understanding to solve the following exercises. 
 
 
E20) Consider the following ‘proof’ of the statement, “ 21 I\I  is an ideal of R  

whenever 1I  and 2I  are distinct ideals of .R ”  
 At each step of the ‘proof’, decide whether the statement is true or false, 

and give your reasons for saying so. 
 
 Proof: 1)  For 121 Iy,x,I\Iy,x ∈∈  and .Iy,Ix 22 ∉∉  

    2)  .I\Iyx 21∈−  

    3)  For 21 I\Ix∈  and 1Ixr,Rr ∈∈  and .Ixr 2∉  

    4)  .Rr,I\IxI\Ixr 2121 ∈∈∀∈  

    5)  21 I\I  is an ideal of .R   
 
E21) Explain why 21 I\I  is not an ideal of the ring ,R  where 1I  and 2I  are 

ideals of .R  
 
E22) i) Let ><= 3I1  and ><= 5I2  in .10Z  Is 21 II ∪  an ideal of ?10Z  

Why, or why not? 

 ii) If ><= 4I3  in ,10Z  is 32 II ∪  an ideal of ?10Z  Why, or why not? 

R

JI ∩

JI +

J  I

IJ
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E23) Using what you have found in E22, find the condition under which 

21 II ∪  is an ideal of a ring ,R  where 1I  and 2I  are ideals of .R  
 

 
Let us now see whether the Cartesian product of ideals is an ideal of the direct 
product of the rings concerned. In Sec.6.4, Unit 6, you noted that if H    1G  
and K    ,G2  then KH×    .GG 21 ×  Does an analogous result hold true for 
ideals of the direct product ?RR 21×  Consider the following theorem. 
 
Theorem 5: Let 1I  and 2I  be ideals of the rings 1R  and ,R 2  respectively, 
where 1R  and 2R  may or may not be commutative. Then 21 II ×  is an ideal of 

.RR 21×  
 
Proof: By Theorem 3, Unit 11, you know that 21 II ×  is a subring of .RR 21×  
Now, let 21 II)b,a( ×∈  and .RR)y,x( 21×∈  
Then ,II)by,ax()y,x)(b,a( 21×∈=  and  

.II)yb,xa()b,a)(y,x( 21×∈=  (Why?) 
 
Thus, 21 II ×  is an ideal of .RR 21×  
 
Along the lines of Theorem 5, you can prove that the Cartesian product 

n21 III ××× K  of ideals n21 I,,I,I K  in ,R,,R,R n21 K  respectively, is an 
ideal of .2nRRR n21 ≥××× ∀K  Let us consider an example of this, for 

.2n =  
 
Example 14: Find a proper non-trivial ideal of ].2,1[C]1,0[C ×  
 
Solution: Here we will use what you proved in E4. 
Let ]1,0[a∈  and ].2,1[b∈  Then aI  and bI  are ideals of ]1,0[C  and ],2,1[C  
respectively. Since 1)x(f:]1,0[:f =→ R  does not belong to ].1,0[CI,I aa ≠  
Also ax)x(g:]1,0[:g −=→ R  is in aI  and .g 0≠  So .}{Ia 0≠  
Thus, aI  is a proper non-trivial ideal of ].1,0[C   
Similarly, bI  is a proper non-trivial ideal of ].2,1[C   
Thus, by Theorem 5, ba II ×  is a proper non-trivial ideal of ].2,1[C]1,0[C ×  
 
Note that bI]1,0[C ×  and ]2,1[CIa×  are also non-trivial proper ideals of 

].2,1[C]1,0[C ×  (Why?) 

*** 
 
In Unit 11, you showed that not every subring of 21 RR ×  is a direct product of 
subrings. The following example shows that the same is true for ideals too. 
 
Example 15: Let 1R  and 2R  be rings. Show that not every ideal of 21 RR ×  is 
of the form ,II 21×  where 1I  is an ideal of 1R  and 2I  is an ideal of .R 2  
 
Solution: Let 1A  and 2A  be abelian groups. Define multiplication on 1A  and 

2A  by a ,Ab,a0b 1∈∀=  and a′ .Ab,a0b 2∈′′∀=′  
Then, you should verify that ,,AA( 21 +× ) is a ring, where +  and  denote 
componentwise addition and multiplication. 
Let us take .AA 21 Z==  
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Let }.n)n,n({I Z∈=  
Then, in Example 15, Unit 11, you have seen that I  is a subring of .ZZ×  
Also, I  is an ideal of ,AA 21 ×  since 

)n,n( n()b,a( = n,a .)b,a(,nI)0,0()b ZZZ ×∈∈∀∈=   
Note that I  cannot be of the form ,II 21 ×  where 1I  and 2I  are ideals of .Z  
Because, if it were, then the subring I  would have been of the form ,II 21 ×  
where 1I  and 2I  are subrings of .Z  But you have proved in E22, Unit 11, that 
this is not so. 

*** 
 
By solving the following exercises, you will get some more examples of the 
ideals discussed in Theorem 5. While solving them, use your experience of 
working with direct products of groups also. 
 
 
E24) Find three distinct non-trivial proper ideals of .4R  
 
E25) Let R  be a non-trivial ring. Check whether or not }Rx)x,x({S ∈=  is 

an ideal of .RR ×  (Here the multiplication on R  is not the zero  
 

 multiplication given in Example 15.) 
 
E26) Find two distinct non-trivial proper ideals of ].3[]x[ ZQ ×  
 
 
With this, let us end our discussion on set operations on ideals. We will now 
focus on the real reason for the creation of the concept of an ideal. 
 

12.4 QUOTIENT RINGS 
 
In Unit 7, you have studied quotient groups in some detail. In this section, we 
will discuss an analogous concept for rings. Much is similar between these two 
concepts. So please re-look Unit 7 before going further.  
 
You know that the set of all cosets of  a subgroup ,H  of a group ,G  forms a 
group only if H    .G  This group is ,HG  the factor group (or the quotient 
group) associated with the normal subgroup .H   We want to define an 
analogous concept for rings. But first, an important remark!  
 
Remark 4: In this unit, you have studied the definition of an ideal of a ring – of 
any ring. There we also mentioned that we would only work with commutative 
rings, unless mentioned otherwise. In this section, the theorems we prove 
will be valid for any ring, commutative or not. However, the examples will be 
only of commutative rings, as you will be largely looking at the examples you 
have studied in the previous sections. 
 
At the beginning of Sec.12.2, you noted that if ),,R( ⋅+  is a ring and I  is a 
subring of ,R  then I    ).,R( +  So ),IR( +  is a group. In fact, from Unit 7, you 
know that this is an abelian group. Now, if ),,IR( ⋅+  is to be a ring, where +  
and · are defined by 

,I)yx()Iy()Ix( ++=+++  and  
,IRIy,IxIxy)Iy()Ix( ∈++∀+=+⋅+  
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then you have seen that the subring I  needs to satisfy the extra condition that 

Irx∈  and Ixr∈  whenever Rr∈  and ,Ix∈  i.e., I  should be an ideal of .R   
Of course, if I  is an ideal of ,R  then +  is well-defined on .IR  We need to 
see whether · is well-defined on IR  or not. Let’s check this. 
 
Let Rb,b,a,a ∈′′  be such that .IbIb,IaIa +′=++′=+  
Now, since .Iaa,IaIa ∈′−+′=+  Let .xaa =′−   
Similarly, ,Ibb ∈′−  say, .ybb =′−  
Then ).xyyabx(ba)yb)(xa(ab +′+′+′′=+′+′=  

,Ibaab ∈′′−∴  since Iy,Ix ∈∈  and I  is an ideal of .R  
,IbaIab +′′=+∴  as you know from Unit 5. 

Thus, · is a well-defined binary operation on .IR  
 
Now we are in a position to prove the following result for a ring ,R  which may 
or may not be commutative. 
 
Theorem 6: Let R  be a ring,  and let I  be a subring of .R  The set of cosets 
of I  in ,IR,R  is a ring with respect to addition and multiplication, defined by  

,I)yx()Iy()yx( ++=+++  and  
,Ry,xIxy)Iy()Ix( ∈∀+=+⋅+  

if and only if I  is an ideal of .R  
 
Proof: First, let us assume that I  is an ideal of .R  
As you have noted earlier, ),IR( +  is an abelian group. So, to prove that IR  
is a ring we need to check that · is a binary operation on ,IR  which is 
associative and distributive over .+  
 
i) · is a binary operation: This is proved just before stating Theorem 6. 
 
ii) · is associative: ,Rc,b,a ∈∀  
 )Ic()Iab()Ic())Ib()Ia(( +⋅+=+⋅+⋅+  
           Ic)ab( +=  
           I)bc(a +=  
           )).Ic()Ib(()Ia( +⋅+⋅+=  
 
iii) Distributive laws: Let .IRIc,Ib,Ia ∈+++  Then  
 ]I)cb[()Ia())Ic()Ib(()Ia( ++⋅+=+++⋅+  
              I)cb(a ++=  
              I)acab( ++=  
              )Iac()Iab( +++=   
              ).Ic()Ia()Ib()Ia( +⋅+++⋅+=  
 You can, similarly, prove that ,Rc,b,a ∈∀  
 ).Ic()Ib()Ic()Ia()Ic())Ib()Ia(( +⋅+++⋅+=+⋅+++   
 Thus, multiplication distributes over addition. 
 
Hence, IR  is a ring. 
 
Next, to prove the converse, suppose I  is not an ideal of .R  Then Ix∈∃  and 

Rr∈  s.t. .Ixr∉   

IR is read as ‘ R modulo 
I ’  or ‘ R mod I ’, in brief. 
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Now ,II0Ix =+=+  since .Ix∈   
So ,IIxr)Ir()Ix( ≠+=+⋅+  since .Ixr∉   
Also .II0)Ir)(I0()Ir)(Ix( =+=++=++   
Thus, the multiplication is not well-defined on .IR  
Hence, ),,IR( ⋅+  is not a ring. 
 
Note that Theorem 6 holds for any ring ,R  commutative or not. 
The ring IR  is called the quotient ring, or factor ring, of R by the ideal I.  
 
Let us look at some examples. We start with the example that gave rise to the 
terminology ‘ R mod I ’. 
 
Example 16: Let Z=R  and .nI Z=  What is ?IR  
 
Solution: In Sec.12.2, you have seen that Zn  is an ideal of .Z  From Unit 2, 
you know that }n)1n(,,n1,n{n ZZZZZ +−+= K  

          }1n,,1,0{ −= K ,  
that is, the set of equivalence classes modulo .,n nZ  
So, IR  is the ring ,nZ  the ring of integers modulo .n  

*** 
 
Now let us look at an ideal of ,nZ  where .8n =  
 
Example 17: Let .R 8Z=  Show that }4,0{I =  is an ideal of .R  Construct the 
Cayley tables for +  and · in .IR  
 
Solution: Note that ,R4I =  and hence, is a principal ideal of .R   
From Unit 7, you know that the number of elements in IR  

.4
2
8

)I(o
)R(o)IR(o ====  

You can see that these elements are the following cosets: 
}.7,3{I3},6,2{I2},5,1{I1},4,0{I0 =+=+=+=+  

 

The Cayley tables for +  and · in IR  are: 

I2I1I0I3I3
I1I0I3I2I2
I0I3I2I1I1
I3I2I1I0I0
I3I2I1I0

+++++
+++++
+++++
+++++
+++++

  

I1I2I3I0I3
I2I0I2I0I2
I3I2I1I0I1
I0I0I0I0I0
I3I2I1I0

+++++
+++++
+++++
+++++
++++•

 

*** 
 
Next, let us look at an example of a polynomial ring. 
 
Example 18: What do the elements of >< x]x[R  look like? Give two distinct 
non-trivial elements of this ring also. 
 
Solution: Let ].x[xaxaa)x(f n

n10 R∈+++= L  Then  
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),x(xga)x(f 0 +=  where .xaxaa)x(g 1n
n21

−+++= L   
So ,xax)x(xgax)x(f 00 ><+=><++=><+  since .x)x(xg >∈<  
Thus, any element of >< x]x[R  is of the form ,axa =><+  where .a R∈  
 
Two non-trivial elements of >< x]x[R  are 1  and .2  They are distinct 
because .0112 ≠=−  (There are infinitely many other elements you can pick. 
In fact, why don’t you find some others?) 

*** 
 
In the examples above, note that both R  and IR  are commutative, and both 
have identity. Is this always true? You will answer this while working on the 
following exercises. 
 
 
E27) If R  is a commutative ring and I  is an ideal of ,R  must IR  be 

commutative? Why, or why not? 
 
E28) Show that if R is a ring with identity, then IR  is a ring with identity, for 

any ideal I  of .R  
 
E29) Construct the Cayley tables for the quotient rings ZZ 62  and 

.214 ><Z  
 
E30) If R is a ring with identity ,1  and I  is an ideal of R  containing ,1  then 

what does IR  look like? 
 
E31) Let X  be a non-empty set and 

/
,XY ⊆ .Y «≠  Give two distinct 

elements of ).Y()X( ℘℘  
 
E32) Give two distinct non-trivial elements of .)53( ><×><×ZZ  How many 

elements does this ring have? 
 
E33) Let N  be the nil radical of .R  Show that NR  has no non-zero nilpotent 

element. 
 
E34) Let R  be a ring and I  be an ideal of .R  Find ),IR(C  the centre of .IR  
 
 
Now let us see what the subrings of a quotient ring look like. From Unit 7, you 
know that the subgroups of the quotient group ),IR( +  are of the form 

,),IJ( +  where J  is a subgroup of R  containing .I  Also, you know that any 
subring of IR  is a subgroup of ).,IR( +  Thus, any subring of ),IR( +  must 
be of the form ),,IS( +  where .RSI ≤≤  Is this enough for IS  to be a subring 
of ?IR  Not so. Don’t forget that IS  needs to be closed w.r.t. multiplication. 
Let us see what this means for .S  Consider the following theorem. 
 
Theorem 7: Let R  be a ring and I  be an ideal of .R  There is a 1-1  
correspondence between ,S  the set of subrings of IR  and ,  the set of 
subrings of R  containing .I  
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Proof: Let us define .IS)S(:: =φ→φ S  
φ  is well-defined: We need to show that IS  is in ,S  for S  in .   
Since IS ⊇  and .IS,S «« ≠≠  
Let .ISIs,Is 21 ∈++  Then .Ss,s 21 ∈  So, Sss 21 ∈−  and .Sss 21 ∈  
Now ,ISI)ss()Is()Is( 2121 ∈+−=+−+  since .S)ss( 21 ∈−  
Also ,ISIss)Is()Is( 2121 ∈+=+⋅+  since .Sss 21 ∈  
Thus, .IS S∈  
 
φ  is :1-1  Let ∈21 S,S  such that ).IS()IS( 21 =  
Let .Ss 1∈  Then .ISISIs 21 =∈+  
So 2Ss ∈′∃  s.t. .IsIs +′=+  Thus, .SI)ss( 2⊆∈′−  
Now 2Sss ∈′−  and ,Ss 2∈′  so that .Ss 2∈  
Thus, .SS 21 ⊆  
Similarly, you should show that .SS 12 ⊆  
Thus, .SS 21 =  
Hence, φ  is .1-1  
 
φ  is surjective: Let A  be a subring of IR  and let }.AIsRs{S ∈+∈=  

Since .S,A «« ≠≠  
Also, for .AIs,AIs,Ss,s 2121 ∈+∈+∈  
Since A  is a subring of AI)ss(,IR 21 ∈+−  and .AIss 21 ∈+  
Thus, Sss 21 ∈−  and .Sss 21 ∈  

S∴  is a subring of .R  
Now, ,IIx,Ix =+∈∀  the zero element of .IR  Hence, .AIx ∈+   
Thus, ,IxSx ∈∀∈  i.e., .IS ⊇  
Also, for Ir +  in .ISIrSrAIr,IR ∈+⇔∈⇔∈+   
Thus, .ISA =  
Hence, ),S(A φ=  i.e., φ  is surjective. 
 
Thus, φ  is a bijection. 
 
Hence, every subring of IR  is of the form ,IS  where S  is a subring of 
R  containing .I  
 
Now, as you have seen for subrings, let us consider what the ideals of a 
quotient ring look like. Does Theorem 7 give you an idea? You know that an 
ideal of a ring R  is a subring of .R  Thus, if R  is a ring and I  is an ideal of ,R  
then any ideal of IR  must be of the form ,IJ  where J  is a subring of R  
containing .I  Of course, J  would need to satisfy some more properties too. 
So, let us see what the ideals of IR  are. 
 
Theorem 8: Let R  be a ring and I  be an ideal of .R  Then there is a 1-1  
correspondence between ,  the set of ideals of ,IR  and ,  the set of 
ideals of R  containing .I  
 
Proof: Define .IJ)J(:: =φ→φ  
φ  is well-defined: Here we need to check that .IJ ∈   
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Since IJ ⊇  and .IJ,J «« ≠≠  
Let .IJIb,Ia ∈++  Then ,Jb,a ∈  and   

,IJI)ba()Ib()Ia( ∈+−=+−+  since .J)ba( ∈−  
Next, for IJIa ∈+  and .Rr,Ja,IRIr ∈∈∈+  So, 

,IJIar)Ir)(Ia( ∈+=++  since ,Jar∈  as J  is an ideal of .R  
Hence, IJ  is an ideal of .IR  
Hence, φ  is well-defined. 
 
φ  is 1-1: Let ∈21 J,J  such that .IJIJ 21 =  
As for Theorem 7, you should prove that ,JJ 21 =  i.e., φ  is 1-1. 
 
φ  is onto: Let S  be an ideal of ,IR  and let }.SIsRs{J ∈+∈=  
As in the case of Theorem 7, you should prove that J  is an ideal of R  
containing .I  
Further, for SIx,IRIx ∈+∈+  iff ,IJIx ∈+  i.e., .IJS =  
Thus, ∈J  s.t. .S)J( =φ  
 
Hence φ  is 1-1  and onto, i.e., φ  is a bijection. 
 
Thus, every ideal of IR  is of the form ,IJ  for some ideal J  of R  
containing .I  Conversely, for each ideal J  of R  containing IJI,  is an 
ideal of .IR  
 
Let us consider some examples. 
 
Example 19: Find all the subrings and ideals of .10ZZ  
 
Solution: First, any subring of Z  is of the form ,nZ  for .n Z∈  
Also, in Unit 7 you have seen that ZZ n10 ⊆  iff .10n   

Thus, the only subrings of ZZ 10  are ,10
n

Z
Z  where .10,5,2,1n =  

For ,1n =  we get the whole ring .10ZZ  
For ,10n =  we get the trivial subring. 

The other two subrings are ><
><

10
2  and .10

5
><

><  

 
You know that every subring of Z  is an ideal of .Z  Of course, every ideal of 
Z  is a subring of .Z  By Theorems 7 and 8, this holds true for ZZ 10  also. 
Thus, ZZ 10  has 4  ideals – ZZZZZZ 105,102,10  and }.0{   

*** 
 

Example 20: Find all the ideals of the ring .30
2

Z
Z  

 
Solution: Any ideal of Z

Z
30

2  is of the form ,30
n

Z
Z  where  

,2n30 ZZZ ⊆⊆  i.e., n2  and .30n  
So, 10,6,2n =  or .30  

Hence, the required ideals are }.0{,30
10,30

6,30
2

Z
Z

Z
Z

Z
Z  
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Note that these are all the subrings of Z
Z

30
2  also. 

*** 
 
Example 21: Let R  be a ring (not necessarily commutative), and let I  be an 

ideal of .R  Then, for any subring S  of ,R  will IS  and I
)IS( +  be subrings of 

?IR  Under what conditions on S  will I
)IS( +  be an ideal of ?IR   

Also give an example to show that I
)IS( +  need not be an ideal of .IR  

 
Solution: By Theorem 7, you know that IS  is a subring of IR  only if .IS ⊇  
 
Next, note that .RISI ⊆+⊆  
Further, for ,ISxs,xs 2211 +∈++   

,IS)xx()ss()xs()xs( 21212211 +∈−+−=+−+  and 
,ISxxxssxss)xs)(xs( 212121212211 +∈+++=++  since Sss 21 ∈  and 

.Ixx,xs,sx 212121 ∈  
Thus, IS+  is a subring of R  containing .I  

Hence, I
)IS( +  is a subring of .IR  

 

Finally, I
)IS( +  will be an ideal of IR  if IS+  is an ideal of ,R  by      

Theorem 8. 
Now, for IS+  to be an ideal of ,R   

,ISxrsrr)xs( +∈+=+  for IS)xs( +∈+  and .Rr∈  
Since I  is an ideal of .Ixr,R ∈  
Thus, IS+  will be an ideal of IR  iff Ss∈∀  and .ISsr,Rr +∈∈   

In particular, if S  is an ideal of ,R  then I
)IS( +  will be an ideal of .IR  

 

As an example of I
)IS( +  not being an ideal of ,IR  take Z=S  and }0{I =  

in .R Q=  Then I
)IS( +  is an ideal of IQ  iff IS+  is an ideal of ,Q  i.e., 

ZZ =+ }0{  is an ideal of .Q  You have already seen that this is not true. 

Hence, I
)IS( +  is not an ideal of .IQ  

*** 
 
Try solving some exercises now. 
 
 

E35) Show that ><
><

x
x,2  is an ideal of .x

]x[
><

Z  

 
E36) Give two distinct ideals of .25ZZ  
 
E37) Give two distinct ideals of ),Y()X( ℘℘  where }10,,2,1{X K=  and 

}.2,1{Y =  
 

Here we have proved that 
IS +  is a subring of .R  

However, in Example 13, 
Unit 11, you studied that 
the sum of subrings need 
not be a subring. What do 
you conclude? 
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E38) Show that if S  is a subring of a ring ,R  and I  is an ideal of ,R  then 

IS∩  is an ideal of .S   
(In Unit 13, you will see that IS

S
∩  is a subring of .IR )  

Give an example to show that IS
S

∩  need not be an ideal of .IS
R

∩  

 
 
You will realise the utility and importance of quotient rings when we discuss 
homomorphisms in the next unit. For now, consider an important remark 
before we end this discussion. 
 
Remark 5: In much of this unit you have worked with commutative rings. 
However, you have studied the proofs of several theorems for non-
commutative rings also. You have studied quotient rings of any ring. Thus, for 
example, )(n RM  and H  also have ideals and corresponding quotient rings. 
Similarly, Theorems 7 and 8 are true for any ring.  
However, we have defined ideals generated by n  elements, ,n N∈  only 
for commutative rings. 
 
Now let us briefly summarise what you have studied in this unit. 
 

12.5 SUMMARY 
 
In this unit, we have discussed the following points.  
 
1. The definition of an ideal of a ring, and examples of ideals of 

commutative rings. 
 
2. The criteria for a subset of a ring to be an ideal: A non-empty subset I  of 

a ring R  is an ideal of R  if and only if 

i) ,Ib,IaIba ∈∈∀∈−  and  

ii) Iar∈  and .Rr,IaIra ∈∈∀∈  
 
3. The definition of a principal ideal, and of an ideal generated by n  

elements, ,2n ≥  of a commutative ring. 
 
4. The set of nilpotent elements in a commutative ring is an ideal of the 

ring. 
 
5. If I is an ideal of a ring R with identity ,1  and ,I1∈  then .RI =  
 
6. If I  and J  are ideals of a ring ,R  then  

 i) JI,JI +∩  and IJ  are ideals of ;R  

 ii) JI∪  is an ideal of R  iff JI ⊆  or ,IJ ⊆  

 iii) J\I  is not an ideal of .R  
 
7. The Cartesian product of ideals is an ideal of the direct product of the 

corresponding rings. 
 
8. The definition, and examples, of a quotient ring. 
 
9. The quotient ring of a ring with identity (commutative ring, respectively) 

is a ring with identity (commutative ring, respectively.) 
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10. A subring (respectively, ideal) of a quotient ring IR  is  of the form ,IS  

where S  is a subring (respectively, ideal) of R  containing .I  
 

12.6 SOLUTIONS / ANSWERS 
 
E1) Let  be the ring of functions from ]3,3[−  to ,R  w.r.t. pointwise 

addition and multiplication. You know that  is a commutative ring. 
 Let }.0)0(ff{I =∈=  
 Using the subring test, of Sec.11.3, you should check that I  is a subring 

of .  
 Also, for any ∈f  and .0)0(g)0(f)0)(gf(,Ig ==⋅∈  
 So ∈∀∈⋅ fIgf  and .Ig∈  
 Thus, I  is an ideal of .  
 
E2)  As in Example 3, show that this is not an ideal of .C   
 
E3) i) In Unit 11, you have seen that ]i[Z  is a subring of .C  

  However, C∈5
1  and ],i[i Z∈  but ].i[i5

1 Z∉  So ]i[Z  is not an 

ideal of .C  
 
 ii) You know that ]x[R  is a subring of ],x[C  since .CR ⊆  
  However, ]x[i C∈  and ],x[x R∈  but ].x[ixxi R∉=⋅  
  So ]x[R  is not an ideal of ].x[C   
 

 iii) Note that the two sets are 63Z  and .2 6Z  From Example 9, Unit 
11, you know that they are subrings of .6Z   

  Now, by elementwise multiplication, you can check that 

66 r3rx ZZ ∈∀∈  and .3x 6Z∈   

  (For instance, .)331535 6Z∈==⋅  

  You can, similarly, see that .2x,r2rx 666 ZZZ ∈∈∀∈  

  Thus, 63Z  and 62Z  are ideals of .6Z  
 
E4) i) Firstly, ,Ia «≠  since .I0 a∈  

 Next, ].1,0[Cg,fIg,f a ∈⇒∈  So, ].1,0[Cgf ∈−   
 Further, .0)a(g)a(f)a)(gf( =−=−  
 Thus, .Igf a∈−  
  
 Thirdly, ].1,0[Cfg]1,0[Cg,If a ∈⇒∈∈   
 Also, .0)a(g0)a(g)a(f)a)(fg( =⋅==  
 Thus, .Ifg a∈  

  aI∴  is an ideal of ].1,0[C  
 
 ii) On the same lines as in (i) above, you should prove that rI  is an 

ideal of ].b,a[C  
 

 iii) Let .2
1r =  Then .}1)2

1(f]1,0[Cf{Jr =∈=   
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  If ,Jg,f r∈  then .102
1g2

1f2
1)gf( ≠=⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛−  So .Jgf r∉−   

  Thus, rJ  is not a subring of ].1,0[C  Hence, rJ  is not an ideal of 
].1,0[C  

 
E5) Since R  is commutative, .R)R(C =  Hence, )R(C  is an ideal of .R  
 
E6) i) Let .}n,axaxaxa{S i

n
n

2
21 NZ ∈∈+++= L  

  Since .S,Sx «≠∈  

  If ∑∑
==

==
m

1j

j
j

n

1i

i
i xb)x(g,xa)x(f  are in ,S  then 

∑ ∑
= +=

−+−=−
n

1i

m

1ni

j
j

i
ii ,x)b(x)ba()x(g)x(f  if .mn ≤  (If ,mn ≥  you 

can work this out similarly.) 
  So )x(g)x(f −  has constant term ,0  i.e., .S)x(g)x(f ∈−  
 
  Again, from Block 1 of Calculus, you know that if ,S)x(f ∈  then 

0)x(f =  or ,1)x(fdeg ≥  and the constant term of )x(f  is .0   
  Also, if ],x[)x(g Z∈  then 0)x(g =  or .0)x(g ≠  
  If .S)x(fS0)x(g)x(f,0)x(g ∈∀∈==   
  If ,0)x(g ≠  the constant term of )x(g)x(f is ,0b0 =⋅  where b  is 

the constant term of ).x(g  
  Also .1)x(gdeg)x(fdeg))x(g)x(f(deg ≥+=⋅   
  Thus, .S)x(g)x(f ∈  
  Hence, S  is an ideal of ].x[Z  
 
 ii) Since .S,S0 «≠∈  

  If ∑ ∑
= =

==
n

0i

j
m

0j
j

i
i xb3)x(g,xa3)x(f  are in ,S  then you should show 

why .S)x(g)x(f ∈−  

  Also, if ∑
=

=
n

0i

i
ixa3)x(f  and ∑

=

∈=
m

0j

j
j ],x[xb)x(g Z then 

∑ ∑
+

= =+

∈=
nm

0k kji

k
ji .Sx)ba3()x(g)x(f  

  Thus, S  is an ideal of ].x[Z  
 
E7) Ra is a subring of R (see Example 9, Unit 11). 
 Also, for Rr∈  and ,Raxa∈  
 .Raa)rx()xa(r ∈=  
 Ra∴  is an ideal of .R  
 
E8) .I «≠  Why? Doesn’t ?Ib∈  
 Also, for .bRay,bRax,Iy,x ∈∈∈  
 Since bR  is a subring of .bRayax)yx(a,R ∈−=−   
 .Iyx ∈−∴  
 
 Next, if Ix∈  and ,Rr∈  
 .bRbRrr)ax()xr(a =∈=  
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 So, .Ixr∈  
 
 Thus, I  is an ideal of .R  
 
E9) You know that .R1 ⊆><  So, you need to show that .1R ><⊆  
 Now, for any .11rr,Rr >∈<⋅=∈  Thus, .1R ><⊆  
 .1R ><=∴  
 
 Next, since Rv),R(Uu ∈∃∈  s.t. .1uv =  So .u1 >∈<  
 ,u1 ><⊆>∴<  i.e., .uR ><⊆   
 But ,Ru ⊆><  since .Ru∈   
 Thus, .Ru =><  
 
E10) The subgroup >< r  of ),R( +  is .rZ  
 However, the principal ideal is .Rr  
 So, for example, if R=R  and ,5r =  then the cyclic subgroup is .5Z  
 However, since RRR =∈ 5),(U5  (by E9). 
 Note that .5 RZ ≠  
 
E11) }27,24,21,18,15,12,9,6,3,0{}xx3{3 1010 =∈= ZZ  

       }7,4,1,8,5,2,9,6,3,0{=  
                                  .10Z=  

 }.5,0{5 10 =Z  

 Now ,232 1010101010 ZZZZZ =+=+  since .2 1010 ZZ ⊆  

 Thus, .3,25 ><≠><  
 
E12) You should prove this along the lines of Example 2, using E10 of       

Unit 11. 
 
E13) Any element of A)X(℘  is ),A(AYYA ℘∈∩=  for ).X(Y ℘∈  
 So, ).A(A)X( ℘⊆℘  
 Conversely, if ),A(S ℘∈  then )X(S ℘∈  and .A)X(ASS ℘∈∩=  
 So, .A)X()A( ℘⊆℘  
 Thus, .A)X()A( ℘=℘  
 
E14) Let the nil radical of 8Z  be .N  Then .N0∈  

 N1∉  since 01)1( n ≠=  for all .n N∈  
 Note that Na∈  iff Z8an∈  (for some N∈n ) iff na8  (for some )N∈n  iff 

na2  (for some )n N∈  iff a2  (see Unit 1). 

 Thus, N6,4,2 ∈  and .N7,5,3 ∉  
 }.6,4,2,0{N =∴  
  
 For any .nAA...AAA),X(A n N∈∀=∩∩∩=℘∈  
 Thus, «=nA  iff .A «=   
 Thus, the nil radical of )X(℘  is },{«  the trivial ideal. 
 
E15) Let .aAnnI =  Firstly, «≠I  since .I0∈  
 Secondly, .Isr0a)sr(sa0raIs,r ∈−⇒=−⇒==⇒∈  
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 Finally, Ir∈  and .Irx00x)ra(xa)rx(Rx ∈⇒=⋅==⇒∈  
 Thus, I  is an ideal of .R  
 
 .R}00rRr{0Ann ==⋅∈=  
 
 }.0{}01rRr{1Ann ==⋅∈=  
 
E16) i) False, as you have seen in E15. 
 
 ii) Take 1 and 2  in .Z  Then ,2Ann}0{1Ann ==  but .21≠  So, this 

is false. 
 
 iii) As you have seen, the nil radicals of Z  and R  are both }.0{  But 

.RZ ≠  So this is false. 
 
E17) As in Example 10, show that the only ideals of R  are }0{  and ;R  and 

those of C  are }0{  and .C  
 
E18) i) Since }8,4,0{4 =><  and }.0{64},6,0{6 =><∩><=><  
  Also .2}8,6,4,2,0{64 ><==><+><  

  Here },0{}Jb,Iaab{IJ =∈∈=  since .024 =  
 
 ii) }.{}YA)Y(A{JI «« ==∩℘∈=∩  

  },JB,IABA{}JB,IABA{JI ∈∈∪=∈∈Δ=+  since YA ⊆  

and .YB c⊆  
  JB,IA)BA()BA()BA({IJ iinn2211 ∈∈∩ΔΔ∩Δ∩= K  for  
                           }n,n,,1i N∈= K   
      ,}{«= since .n,,1iBA ii K=∀=∩ «  
  
E19) i) For any Ia∈  and Iab,Jb ∈∈  and .Jab∈  
  Thus, .JIab ∩∈   
  Since JI∩  is an ideal, any finite sum of such elements will also be 

in .JI∩    
  Thus, .JIIJ ∩⊆  
  By definition, IJI ⊆∩  and .JJI ⊆∩  
  Also, ,JIJ,JII +⊆+⊆ since JI0xx +∈+=  and ,JIy0y +∈+=  

for Ix∈  and .Jy∈  
 

ii) Let A  be an ideal of R containing I  as well as .J   
Then, for any .AJy,AIx,JIyx ⊆∈⊆∈+∈+  So .Ayx ∈+  
Thus, .AJI ⊆+   
Thus, (ii) is proved. 

 
iii) Let B  be an ideal of R such that IB⊆  and .JB⊆  Then certainly, 

.JIB ∩⊆   
 Thus, (iii) is proved. 

 
iv) You know that .JIIJ ∩⊆  So, you need to show that .IJJI ⊆∩  

 Let .JIx ∩∈  Then Ix∈  and .Jx∈  



 

 

78 

Block 3                                                                                           Introduction to Rings
 Since ,ji1,JIR1 +=+=∈  for some Ii∈  and .Jj∈  

  Now IJix∈  since Ii∈  and .Jx∈  Similarly, .IJxj∈  Therefore, 
.IJxjxi1xx ∈+=⋅=  

 Thus, .IJJI ⊆∩  
 

 v) No. For example, let .6J,4I,2R ZZZ ===   
  Then .R1∉  
  Also, from Example 11, you know that Z12JI,JIR =∩+=  and 

.24IJ Z=  
  Thus, .JIIJ ∩≠  
 
E20) 1) Since ,I\I 21 «≠  the statement is correct. 
 
 2) False, for instance, ZZZZ 2\1,2\3 ∈∈  but .2\213 ZZ∉=−  
 
 3) False, for instance, ,2\3 ZZ∈  but .2632 Z∈=⋅  
 
 4) This follows from (3), but (3) is false. Hence, this is false. 
 
 5) This follows from (2) and (4), which are false. Hence, this is false. 
 
E21) Since 21 I\I  is not a subring, as you have seen in Unit 11, it cannot be 

an ideal. 
 
E22) i) Yes, because ,3I 101 Z=><=  so that .II 1021 Z=∪  
 

 ii) No. Note that },8,6,5,4,2,0{II5,4 32 =∪∈  but .II54 32 ∪∉+  
 
E23) From Unit 11, you know that 21 II ∪  is a subring of R  iff 21 II ⊆   or 

.II 12 ⊆  Once this condition is satisfied, 21 II ∪  will certainly be an ideal 
of .R  

 
E24) For instance, RRRRRR ×××××× }0{,}0{  and }.0{××× RRR  
 These are ideals of ,4 RRRRR ×××=  since R  and }0{  are ideals of 

.R  Each of these is non-trivial since the trivial ideal is )}.0,0,0,0{(  
Each of these is a proper ideal, since one component is not .R  

 
E25) In Unit 11, you have seen that }n)n,n({S Z∈=  is a subring of .ZZ×  

However, S)1,1( ∈  and ZZ×∈)2,1(  such that .S)2,1()2,1)(1,1( ∉=  
 Thus, S  is not an ideal of .ZZ×  
 Similarly, you should show that for any non-trivial ring ,R  

}Rx)x,x({S ∈=  is not an ideal of .RR ×  
 
E26) For instance, }0{x ×><  and }.0{]x[ ×Q  
 
E27) If R  is a commutative ring, then IR  is a commutative ring. This is 

because )Ia()Ib(IbaIab)Ib()Ia( +⋅+=+=+=+⋅+  for all 
.IRIb,Ia ∈++  

 
E28) I1+  is the identity of ,IR  where 1 is the identity of ,R  since 

.Rx)Ix()I1(Ix)I1()Ix( ∈∀+⋅+=+=+⋅+  
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E29) You should show that Z6  is an ideal of ,2Z  and  

}.64,62,6{62 ZZZZZ ++=  Then the Cayley tables are: 

  

2044
0422
4200
420+

 

4204
2402
0000
420•

 

 

 Show that }.21,2{2 1414
14

14 ZZZ
Z +=  

 Then the tables are: 

  
011
100
10+

       
101
000
10•

 

 
E30) From Theorem 2, you know that .RI =  
 },0{IR =∴  where the bar denotes the corresponding coset of .I  
 
E31) Suppose X  is finite, .nX|| =  Then .1nY|| −≤  
 So .2)22())Y()X((o 1nn =≥℘℘ −  
 If X  is infinite, and Y  is a finite subset, then )Y()X( ℘℘  is an infinite 

ring. 
 In either case, .Y\Xa∈∃  So )Y(}a{ ℘Δ  is a non-zero coset. Thus, «  

and }a{  are two distinct element of ),Y()X( ℘℘  the bar denoting the 
corresponding coset of ).Y(℘  

 
E32) Any element of )53()(R ><×><×= ZZ  is of the form 

),53()n,m( ><×><+  for .n,m Z∈   

 Now )b,a()n,m( =  iff >∈<− 3)ma(  and .5)nb( >∈<−  
 Thus, the distinct elements of R  are 

},54,53,52,51,50{}32,31,30{ ZZZZZZZZ +++++×+++  i.e., 
all the elements of .53 ZZ ×  

 Hence, R  has 15  elements. For example, two of them are 
)50,30( ZZ ++  and ).51,32( ZZ ++  

 
E33) Let NRNx ∈+  be a nilpotent element. 
 Then ,N)Nx( n =+  for some positive integer .n  
 ,Nxn ∈⇒  for some positive integer .n  
 ,0)x( mn =⇒  for some positive integer .m  
 ,0xnm =⇒  for some positive integer .nm  
 Nx∈⇒  
 ,N0Nx +=+⇒  the zero element of .NR  
 Thus, NR  has no non-zero nilpotent element. 
 
E34) Let ).IR(Cx∈  Then ,IRrxrrx ∈∀=  i.e., .RrI)rxxr( ∈∀∈−  
 }.RrIrxxrIRIx{)IR(C / ∈∀∈−∈+=∴  
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E35) Since >< x,2  is an ideal of ],x[Z  containing ><
><>< x

x,2,x  is an 

ideal of .x]x[ ><Z  
 
E36) Any ideal of ZZ 25  is of the form ,25n ZZ  where .25n   
 Thus, .25,5,1n =  
 Thus, you can pick any two out of these, say 5n =  and .25  The 

corresponding ideals of ZZ 25  will be ZZ 255  and .}0{  
 Note that they are distinct because, for example, you can check that 

their orders are different. 
 
E37) Consider }3,2,1{A =  and }.7,6,2,1{B =  Then )A(℘  and )B(℘  are 

ideals of ),X(℘  each containing ).Y(℘  
 Hence, )Y()A( ℘℘  and )Y()B( ℘℘  are ideals of ).Y()X( ℘℘  

 Note that ,2
2
2))Y()A((o 2

3

==℘℘  and .4
2
2))Y()B((o 2

4

==℘℘  

 Thus, these two ideals are distinct. 
 
E38) Since S  and I  are subrings of ,R  so is .IS∩  
 Since IS,SIS ∩⊆∩  is a subring of .S  
 Further, for ISx ∩∈  and Sxs,Ss ∈∈  and .Ixs∈  
 So .ISxs ∩∈   
 Similarly, .ISsx ∩∈  
 Thus, IS∩  is an ideal of .S  
 
 For the example, consider }.0{I,R,S === RZ  

 Then },0{IS =∩  so that .}0{IS
S Z=∩  

 Since Z  is not an ideal of }0{, ZR  is not an ideal of .}0{R   
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UNIT 13                                  

                    RING HOMOMORPHISMS  
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13.5 Summary           103 
13.6 Solutions / Answers          104  
 

13.1 INTRODUCTION 
 
In Unit 8, you studied about functions between groups that preserve the binary 
operation. You also saw how useful they were for studying the algebraic 
structure of a group, and classifying groups accordingly. In this unit, we will 
discuss functions between rings which preserve both the binary operations. 
Such functions, as you would expect, are called ring homomorphisms.  
 
In Sec.13.2, you will study the formal definition of a ring homomorphism. Of 
course, you will consider several examples, and non-examples of this concept 
too. In this section, you will also see how homomorphisms allow us to 
investigate the algebraic nature of a ring. 
 
In Sec.13.3, you will study several properties of ring homomorphisms. Most of 
these properties will be analogous to those of group homomorphisms, that you 
have studied, and applied, in Unit 8.  
 
If a homomorphism is a bijection, it is called an isomorphism. The role of 
isomorphisms in ring theory, as in group theory, is to identify algebraically 
identical systems. That is why they are important. We will introduce them to 
you in Sec.13.4. Then you will study the inter-relationship between ring 
homomorphisms, ideals and quotient rings in the form of the Fundamental 
Theorem of Homomorphism for rings. You will also study its applications for 
proving, and using, two other isomorphism theorems. 
 
As in group theory, homomorphisms are crucially important for ring theory. 
Therefore, it is important that you study this unit carefully, and solve every 
exercise as you come to it. This will help you to achieve the following learning 
objectives. 
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Objectives 
After studying this unit, you should be able to:  

• define, and give examples of, different kinds of ring homomorphisms; 

• obtain the kernel and image of any ring homomorphism; 

• define, and give examples of, ring isomorphisms; 

• prove, and apply, some basic properties of a ring homomorphism; 

• state, prove and apply the Fundamental Theorem of Homomorphism for 
rings.  

 

13.2 HOMOMORPHISMS BETWEEN RINGS 
 
In Unit 8, you studied maps between groups that preserve the group 
operations of the domains concerned. These functions are called group 
homomorphisms, as you know. Analogous to the notion of a group 
homomorphism, we have the concept of a ring homomorphism. So it is natural 
to expect a ring homomorphism to be a map between rings that preserves the 
ring structure of its domain. In this case there are two binary operations 
involved. So, you may expect the following definition of a ring homomorphism. 
 
Definition: Let ),,R( 1 ⋅+  and ),,R( 2 ⋅+  be two rings. A map 21 RR:f →  is 
called a ring homomorphism if 

),b(f)a(f)ba(f +=+  and 
),b(f)a(f)ba(f ⋅=⋅   

for all b,a in .R1  
 
Note that the +  and · occurring on the left hand sides of the equations in the 
definition above are defined on ,R1  while the + and · occurring on the right 
hand sides are defined on .R2  
Also note the following comment about the definition above. 
 
Remark 1: Notice that 21 RR:f →  is a ring homomorphism if 

i) the image of a sum is the sum of the images, and  

ii) the image of a product is the product of the images. 

Because of (i) above, the ring homomorphism f  is, in particular, a group 
homomorphism from ),R( 1 +  to ).,R( 2 +  
Also, you know that ),R( 1 ⋅  and ),R( 2 ⋅  are semigroups. What (ii) above says 
is that f  is a semigroup homomorphism from ),R( 1 ⋅  to ).,R( 2 ⋅  
 
As in the case of groups, we have different types of homomorphisms. 
 
Definitions: Let 21 RR:f →  be a ring homomorphism. 

i) If f  is ,1-1 it is called a ring monomorphism. 

ii) If f  is surjective, it is called a ring epimorphism. 

iii) If f  is bijective, it is called a ring isomorphism. 

iv) If ,RR 21 =  then f  is called a ring endomorphism of .R1  
 
Consider a remark about the definitions above. 
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Remark 2: The word ‘ring’ in each definition, is just to emphasise that we are 
working in the context of rings. If this context is clear, we drop the word ‘ring’. 
Thus, in future we will use the term ‘homomorphism’ for ‘ring 
homomorphism’, if the context is clear. You may remember that we also did 
this in the case of group homomorphisms. 
 
Let us consider some examples, and non-examples, of the functions we have 
just defined. 
 
Example 1: Consider ,x2)x(g::g,x)x(f::f =→=→ ZZZZ  and let 

.fh −=  Check whether g,f  and h  are ring homomorphisms or not. 
 
Solution: First, you should verify that g,f  and h  are well-defined. 
 
Next, for ),m(f)n(fmn)mn(f,m,n +=+=+∈Z  and 

).m(f)n(fnm)nm(f ==  
Thus, f  is a ring homomorphism. 
 
Now let us consider .g   
For ).m(g)n(gm2n2)mn(2)mn(g,m,n +=+=+=+∈Z   
However, ).m2)(n2(nm2)nm(g ≠=   
For instance, .12)6(g)32(g ==⋅  But .2464)3(g)2(g =⋅=  
So ).3(g)2(g)32(g ≠⋅  
Hence, g  is not a ring homomorphism. 
 
Finally, you should verify that )f(−  is also not a ring homomorphism, since it 
does not preserve multiplication. 

*** 
 
Some important points show up in the example above. We note them in the 
following remark. 
 
Remark 3: Consider the three points below, about g,f  and h  of Example 1.  

i) If f  is a group homomorphism, so is .f−  However, this is not true for 
ring homomorphisms. 

ii) f  is, in fact, bijective, and is the identity homomorphism. We usually 
denote f  by .I   

iii) Though g  is a group homomorphism from ),( +Z  to ),,( +Z  it is not a 
ring homomorphism. 

 
Now consider another example. 
 
Example 2: Consider ,)A(f:)()(:f nn 0=→ RMRM  the zero matrix in 

).(n RM  Check whether f  is a ring isomorphism or not. 
 
Solution: For ),B(f)A(f)BA(f),(B,A n +=+==+∈ 000RM  and 

).B(f)A(f)AB(f ⋅=⋅== 000  
Thus, f  is a ring homomorphism. 
However, f  is not surjective, since for example, there is no )(A n RM∈  for 
which ,I)A(f =  the identity matrix in ).(n RM  
Therefore, f  is not an isomorphism. 

*** 
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Let us now generalise some of the points made in the examples above. 
 
Example 3: Let R  be a ring. Show that r)r(I:RR:I =→  and 

0)r(:RR: =→ 00  are endomorphisms. ( I  is called the identity 
homomorphism, as noted for Z  in Remark 3. 0  is called the trivial 
homomorphism.) 
 
Solution: You should verify that both I  and 0  preserve both the operations of 

.R  
*** 

 
Before going further, let us consider the kernel and image of a ring 
homomorphism. In Unit 8, you have studied these objects for a group 
homomorphism. Do you expect the kernel, or image, of a ring homomorphism 
to be defined any differently? Actually, they are defined in the same way. 
 
Definition: Let 1R  and 2R  be two rings, and let 21 RR:f →  be a ring 
homomorphism. Then we define 

i) the image of f  to be the set }.Rx)x(f{ 1∈=fIm  

ii) the kernel of f  to be the set .}0)x(fRx{ 1 =∈=fKer  
 
You know that if f  is an epimorphism, .RfIm 2=  
 
Now let us look at some examples of the image and kernel of a ring 
homomorphism. 
 
Example 4: Let R be a ring. Obtain the kernels and images of the identity 
homomorphism and the trivial homomorphism, defined in Example 3. 
 
Solution: }0xRx{}0)x(IRx{IKer =∈==∈=    
                         }.0{=  

}Rxx{}Rx)x(I{IIm ∈=∈=           
       .R=  

.R}0)x(Rx{Ker ==∈= 00  

}.0{}Rx)x({Im =∈= 00  

*** 
 
Example 5: Let .s N∈  Show that the map m)m(f::f s =→ ZZ  is a ring 
epimorphism. Obtain fKer  also. 
 
Solution: For any ,n,m Z∈  

),n(f)m(fnmnm)nm(f +=+=+=+  and  
).n(f)m(fnmmn)mn(f ===  

Therefore, f  is a ring homomorphism. 
Further, }m)m(f{fIm Z∈=  

                     }mm{ Z∈=  

                     ,sZ=  
showing that f  is an epimorphism. 

Note that 2RfIm ⊆   
 and .1RfKer ⊆  
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Now, }0)m(fm{fKer =∈= Z  

  }0mm{ =∈= Z  

  })s(mod0mm{ ≡∈= Z  
  .sZ=  

*** 
 
Example 6: Consider the maps )3(modn))6(modn(f::f 36 =→ ZZ  and 

).6(modn))3(modn(g::g 63 =→ ZZ  Check whether or not f  and g  are ring 
homomorphisms. If they are, find their kernels and images. 
 
Solution: First, for ,m,n Z∈  

)6(modm)6(modn =  
)mn(6 −⇒  

)mn(3 −⇒  
)3(modm)3(modn =⇒  

).m(f)n(f =⇒  
So, f  is well-defined. 
 
Second, for ,m,n Z∈  

)3(mod)mn())6(mod)mn((f))6(modm)6(modn(f +=+=+  
    )3(modm)3(modn +=  
    ))6(modm(f))6(modn(f +=  
You should, similarly, show that  

)).6(modm(f))6(modn(f))6(modm)6(modn(f ⋅=⋅  
Thus, f  is a ring homomorphism. 
 

}3n)6(modn{})3(mod0n)6(modn{fKer Z∈=≡=  

         },3,0{=  bar denoting ‘ 6mod ’. 
         .3 6Z=  
 

.}n)3(modn{fIm 36 ZZ =∈=  
 
Now, let’s see if g  is well-defined. Note that 41 =  in ,3Z  but )4(g)1(g ≠  in 

.6Z  Hence, g  is not well-defined. Thus, there is no question of g  being a 
homomorphism. 

*** 
 
By observing the examples above, you may have observed what we are now 
going to note. 
 
Remark 4: The kernel and image of a ring homomorphism ,f  from 1R  to ,R2  
are the same as the kernel and image of ,f  as a group homomorphism from 

),R( 1 +  to ).,R( 2 +  
 
Before we look at some more examples, why don’t you solve some exercises? 
This will help you check how well you have understood what has been 
discussed so far. 
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E1) If S  is a subring of a ring ,R  then S  is a ring with respect to the +  and · 

of .R  Show that the inclusion map x)x(i:RS:i =→  is a 
homomorphism. What are iKer  and ?iIm  

 
E2) i) Show that )1(f))x(f(:]x[: =φ→φ ZZ  is a homomorphism. Find 

φKer  and φIm  also. φ(  is called the evaluation map at .)1x =   
 
 ii) For any ,z C∈  show that the evaluation map  

)z(f))x(f(:]x[: zz =φ→φ CC  is a homomorphism. Also find 

zKer φ  and .Im zφ  
 
E3) Consider .a)kdjciba(:: =+++φ→φ RH  Check whether or not φ  is a 

homomorphism. 
 
E4) Consider ).Adet()A(:)(: 2 =ψ→ψ CCM  Check whether or not ψ  is a 

homomorphism. 
 
E5) Consider ).6(modn4))3(modn(f::f 63 =→ ZZ  Check whether or not 

f  is a ring homomorphism. 
 
 
Now let us look at some more examples. 
 
Example 7: Consider the ring ]1,0[C  of all real-valued continuous functions 
defined on the closed interval ].1,0[  Define ).21(f)f(:]1,0[C: =φ→φ R  Show 
that φ  is an epimorphism. Is φ  a monomorphism? 
 
Solution: Let f and ].1,0[Cg∈  Then +  and · are defined by 

),x(g)x(f)x()gf( +=+  and  
),x(g)x(f)x()gf( =⋅   

for all ].1,0[x∈  
Now, ),g()f()21(g)21(f)21)(gf()gf( φ+φ=+=+=+φ  and  

).g()f()21(g)21(f)21)(fg()fg( φφ===φ  
Thus, φ  is a ring homomorphism. 
 
Now, φ  is onto because for any ,r R∈  consider the constant function 

.r)x(g:]1,0[:g =→ R   
From Calculus, you know that g  is continuous on ].1,0[  Also .r)21(g =   
Thus, .r)g( =φ  
Hence, φ  is an epimorphism. 
 

However, φ  is not .1-1  For example, if ,2
1x)x(f:]1,0[:f −=→ R  and g  is 

the zero function, then ),g()f( φ=φ  but .gf ≠  

*** 
 

Example 8: Consider the ring 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Rb,a

b0
0a

R  under matrix addition  

,φ  in Example 7,  
is  called the 
evaluation map at  

Note that using E1 we 
know that QZ→:f (or 

,R  or ,C  or ),iZZ +  
given by ,n)n(f = is a ring 
homomorphism. 
 

the point .2
1x =  
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and multiplication. Show that the map ⎥
⎦

⎤
⎢
⎣

⎡
=→

n0
0n

)n(f:R:f Z  is a 

homomorphism. Also find .fKer  Is f  an epimorphism? 
  

Solution: Note that f  is well-defined since, if ,mn =  then .
m0
0m

n0
0n

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
 

Next, for ,m,n Z∈  

),m(f)n(f
m0
0m

n0
0n

mn0
0mn

)mn(f +=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+

+
=+  and  

).m(f)n(f)nm(f =  (Verify this!)  
Thus, f  is a homomorphism. 
 

}.0{})n(fn{fKer ==∈= 0Z  

Finally, consider .
20
01

A ⎥
⎦

⎤
⎢
⎣

⎡
=  This is not in ,fIm  since its th)1,1(  and 

th)2,2(  elements are different. However, A  is in .R  
Hence, f  is not an epimorphism. 

*** 
 
Example 9: Consider the ring ),,),X(( ∩Δ℘  where X  is a non-empty set 
having a non-empty proper subset .Y  
Define .YA)A(f:)Y()X(:f ∩=℘→℘  Show that f  is a homomorphism. 
Does ?fKerYc ∈  What is ?fIm\)Y(℘  
 
Solution: If A  and B  are in )X(℘  s.t. ,BA =  then .YBYA ∩=∩  Thus, f  
is well-defined. 
 
Now, recall from Block 1 of Calculus, that ‘intersection’ distributes over ‘union’ 
and over ‘complementation’. We will use these properties now. 
 
For ),X(B,A ℘∈  

))A\B()B\A((f)BA(f ∪=Δ  
              Y))A\B()B\A(( ∩∪=  
              )Y)A\B(()Y)B\A(( ∩∪∩=  
              ))YA(\)YB(())YB(\)YA(( ∩∩∪∩∩=  
              ))A(f\)B(f())B(f\)A(f( ∪=  
              ),B(f)A(f Δ=  and  

Y)BA()BA(f ∩∩=∩  
               ),YY()BA( ∩∩∩=  since .YYY =∩  
               ),YB()YA( ∩∩∩=  since ∩  is associative and commutative. 
               ).B(f)A(f ∩=  
So, f  is a ring homomorphism from )X(℘  to ).Y(℘  
 
Next, recall that the zero element of )Y(℘  is «. Therefore, 

).Y(}YA)X(A{}YA)X(A{fKer cc ℘=⊆℘∈==∩℘∈= «   

.fKerYc∈∴  
 
Finally, to see what fIm\)Y(℘  is, note that  
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).Y(})X(AYA{fIm ℘⊆℘∈∩=  

Now, let ).Y(B ℘∈  Then )X(B ℘∈  and .BYB)B(f =∩=  Thus, .fImB∈  
So .fIm)Y( ⊆℘  
Therefore, ).Y(fIm ℘=   
Hence, .fIm\)Y( «=℘  

*** 
 
Now, you should solve the following exercises to get some more examples 
(and non-examples!) of homomorphisms. 
 
 
E6) Let A  and B  be two rings. Show that the projection map 

x)y,x(p:ABA:p =→×  is a homomorphism. What are pKer  and 
?pIm  Is p  an isomorphism?  

 (Similarly, y)y,x(p:BBA:p =′→×′  is a homomorphism.) 
 
E7) Is b2a)b2a(f:]2[]2[:f −=+→ ZZ  a ring endomorphism?  

 Is 7ba)3ba(g:]7[]3[:g +=+→QQ  a ring homomorphism? 
Give reasons for your answers. 

 
E8) Check whether or not n5)n3(f:53:f =→ ZZ  is a homomorphism. 
 

E9) Check whether or not ⎥
⎦

⎤
⎢
⎣

⎡
−

=+φ→φ
ab
ba

)iba(:R:C  is an 

isomorphism, where 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
−

= Rb,a
ab
ba

R  is a subring of ).(2 RM  

 
E10) Show that the map ))1(f),0(f()f(:]1,0[C: =φ×→φ RR  is a 

homomorphism. Also check if φ  is an isomorphism or not. 
  
 
Having discussed many examples, let us look at some elementary properties 
of ring homomorphisms. 
 

13.3 PROPERTIES OF RING HOMOMORPHISMS 
 
Let us start this section by revisiting each of the examples of homomorphisms 
you have studied in the previous section. In all these cases, what is the image 
of the additive identity of the domain ring? Isn’t it the additive identity of the co-
domain? Isn’t this to be expected since every ring homomorphism is also a 
group homomorphism? In fact, every ring homomorphism will satisfy all the 
properties listed in the following theorem for this reason. 
 
Theorem 1: Let 21 RR:f →  be a ring homomorphism. Then 

i) ,0)0(f =  

ii) ,Rx)x(f)x(f 1∈∀−=−  and 

iii) .Ry,x)y(f)x(f)yx(f 1∈∀−=−  
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Proof: Since f  is a group homomorphism from ),R( 1 +  to ),,R( 2 +  you can 
apply Theorem 1, Unit 8, to get the result. 
 
Now let us consider some properties beyond just the group homomorphism 
aspect of a ring homomorphism. 
 
Theorem 2: Let 1R  be a ring with identity, and let 21 RR:f →  be a ring 
epimorphism, where }.0{R2 ≠  Then 

i) 2R  is with identity, );1(f  and  

ii) if ),R(Uu 1∈  then )R(U)u(f 2∈  and ).u(f)]u(f[ 11 −− =  
 
Proof: Here note that 1R  is with identity and f  is surjective.  
i)  Let .Rr 2∈  Since f  is surjective, 1Rs∈∃  s.t. .r)s(f =   

Then .r)s(f)1s(f)1(f)s(f)1(fr ==⋅==⋅   
Similarly, .rr)1(f =  

 Hence, )1(f  is the identity of .R2  
 
ii) Let ).R(Uu 1∈  Then 1

1 Ru ∈∃ −  s.t. .uu1uu 11 −− ==   
So ),1(f)uu(f 1 =−  that is, ).u(f)u(f)1(f)u(f)u(f 11 −− ==  

 Thus, )R(U)u(f 2∈  and ).u(f)]u(f[ 11 −− =  
  
Because of Theorem 2, we know that for any onto homomorphism ,R:f Z→  
where R  is a ring with unity, .1)1(f =  Similarly, if Q→R:f  is a ring 
epimorphism, where R  has unity, then .1)1(f =  
 
Note that Theorem 2 need not be true if f  is not surjective. For instance, take 
the trivial homomorphism of Example 2. Then .If(I) ≠= 0  
 
Now, let us look at direct and inverse images of subrings under 
homomorphisms. 
 
Theorem 3: Let 21 RR:f →  be a ring homomorphism. Then 

i) if S  is a subring of )S(f,R1  is a subring of ;R2  and  

ii) if T  is a subring of )T(f,R 1
2

−  is a subring of .R1  
 
Proof: We will prove (ii) and leave the proof of (i) to you (see E11).  
Firstly, since «.« ≠≠ − )T(f,T 1  
Next, let ).T(fb,a 1−∈  Then .T)b(f),a(f ∈  

T)b(f)a(f ∈−⇒  and ,T)b(f)a(f ∈  since T  is a subring of .R2  
T)ba(f ∈−⇒  (by Theorem 1), and .T)ab(f ∈   

)T(fba 1−∈−⇒  and ).T(fab 1−∈   
)T(f 1−⇒  is a subring of ,R1  by the subring test. 

 
To complete the proof of Theorem 3, you need to solve E11. 
 
 
E11) Prove (i) of Theorem 3. 
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E12) In the setting of Theorem 3, let  and  be the set of subrings of 1R  

and the set of subrings of ,R2  respectively. Then show that there is a 
correspondence .: →φ  Is φ  a bijection? Why, or why not? 

 
 
Now, it is natural to expect an analogue of Theorem 3 for ideals. In fact, (ii) 
follows through for ideals too. But, regarding (i), consider the following remark.  
 
Remark 5: The image of an ideal under a ring homomorphism need not be an 
ideal. For instance, consider the inclusion .x)x(i::i =→ RZ  You know that 
Z  is an ideal of .Z  But is )(i Z  (i.e., )Z  an ideal of ?R  No, as you have seen 
in Unit 12.  
 
So, regarding ideals, we have the following result, for any two rings 1R  and 

,R2  commutative or not.  
 
Theorem 4: Let 21 RR:f →  be a ring homomorphism. 

i) If f  is surjective and I  is an ideal of ,R1  then f(I)  is an ideal of .R2  

ii) If I  is an ideal of ,R2  then )I(f 1−  is an ideal of ,R1  and ).I(ffKer 1−⊆  
 
Proof: Here we will prove (i) and leave (ii) to you (see E13). 
Firstly, since I  is a subring of )I(f,R1  is a subring of ,R2  by Theorem 3. 
 
Secondly, take any )I(f)x(f ∈  and .Rr 2∈   
Since f  is surjective, 1Rs∈∃  such that .r)s(f =  Then 

),I(f)sx(f)x(f)s(f)x(fr ∈==⋅  since .Isx∈  
Similarly, ).I(fr)x(f ∈⋅  
Thus, )I(f  is an ideal of .R2  
 
The proof of Theorem 4 will be complete, once you solve E13 below. 
 
 
E13) Prove (ii) of Theorem 4. 
 
E14) Let SR:f →  be a surjection. Then for any non-empty subset J  of ,S  

.J))J(f(f 1 =−  In particular, if f  is an onto ring homomorphism and J  is 
an ideal of ,S  then .J))J(f(f 1 =−  

 
 
Now, consider a ring epimorphism SR:f →  and an ideal I  in .R  In E14, you 
have proved that if J  is an ideal of ,S  then )).J(f(fJ 1−=  Also, in this setting, 
by Theorem 4 you know that )I(f  is an ideal of S  and ))I(f(f 1−  is an ideal of 

.R  So, is ?))I(f(fI 1−=   
For instance, consider m)m(f::f 5 =→ ZZ  (see Example 5). Here f  is a 

surjection. Take .2I Z=  Then .I5∉  But )),I(f(f5 1−∈  since ).I(f0)5(f ∈=  So 
)).I(f(fI 1−≠   
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But looking at the two ideals, I  and )),I(f(f 1−  in ,R  it seems that there should 
be some relationship between them. What could it be? You will find the 
answer in the following theorem. 
 
Theorem 5: Let SR:f →  be a ring homomorphism, and let I  be an ideal of 

.R  Then .fKerI))I(f(f 1 +=−  
 
Proof: You know that )),I(f(f})0({ffKer 11 −− ⊆=  since ).I(f0∈  
Also, if ,Ix∈  then ).I(f)x(f ∈  So )).I(f(fx 1−∈  Hence, )).I(f(fI 1−⊆  
Thus, )).I(f(ffKerI 1−⊆+     …(1) 
 
Now, to show ,fKerI))I(f(f 1 +⊆− let )).I(f(fx 1−∈  Then  

)I(f)x(f ∈  
),y(f)x(f =⇒  for some .Iy∈   

,0)yx(f =−⇒  by Theorem 1. 
fKeryx ∈−⇒  

.fKerIfKeryx +⊆+∈⇒  

.fKerI))I(f(f 1 +⊆∴ −      …(2) 
 
From (1) and (2), we conclude that .fKerI))I(f(f 1 +=−  
 
An immediate corollary to Theorem 5 is the following. 
 
Corollary 1: If SR:f →  is a ring homomorphism, and I  is an ideal of R  
containing ,fKer  then .I))I(f(f 1 =−  
 
Proof: Since .IfKerI,IfKer =+⊆  

.I))I(f(f 1 =∴ −  
 
Regarding Theorem 5, consider the following important comment. 
 
Remark 6: Note that Theorem 5 is true whether f  is surjective or not. In this 
theorem, and in Corollary 1, we treat )I(f  as a subring only, by Theorem 3. If 
we want )I(f  to be an ideal, then we will have to add the condition that f  is a 
surjection. 
  
Now, in E12 you have seen that if SR:f →  is a homomorphism, there is a 
correspondence between the subrings of R  and the subrings of .S  But this is 
not a 1-to-1  correspondence. Let us use Theorems 4 and 5 to see what the 
situation is regarding the ideals of R  and .S  Consider the following theorem. 
 
Theorem 6: Let SR:f →  be an onto ring homomorphism. Then )I(fI a  
defines a one-to-one correspondence between the  set of ideals of R  
containing fKer  and the set of ideals of .S  
 
Proof: Let  be the set of ideals of R  containing ,fKer  and  be the set 
of ideals of .S  
Define ).I(f)I(:: =φ→φ  
 
We want to show that φ  is a bijection. 
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φ  is onto: If ,J∈  then ∈− )J(f 1  and ),J(ffKer 1−⊆  by Theorem 4. 
Now, ,J))J(f(f))J(f( 11 ==φ −−  using E14. 
Hence, φ  is surjective. 
 
φ  is one-one: If 1I  and 2I  are in ,  then 

)I(f)I(f)I()I( 2121 =⇒φ=φ  
 ))I(f(f))I(f(f 2

1
1

1 −− =⇒  
 ,II 21 =⇒  by Corollary 1. 
 

Thus, φ  is bijective.  
 
Let us consider an example of the utility of Theorem 6. 
 
Example 10: Find the kernel of the homomorphism .z)z(f::f 12 =→ ZZ  Also 
find all the ideals of .12Z  
 
Solution: .12)}12(mod0nn{fKer ZZ =≡∈=  
Now, you know that any ideal of Z  is of the form .n,n NZ ∈  Thus, the ideals 
of Z  containing fKer are of the form Zn  such that ,12n  i.e., for which 

.12,6,4,3,2,1n =  These are .12,6,4,3,2, ZZZZZZ   
Thus, by Theorem 6, the ideals of 12Z  are 1212121212 6,4,3,2, ZZZZZ  and 

.}0{  

*** 
 
Now, you should solve some related exercises. 
 
 
E15) Verify Theorem 5 for ),5(modn)n(f::f 5 =→ ZZ  and .2I Z=   
 Also verify it for the trivial homomorphism in Example 3. 
 
E16) What does Theorem 6 say in the context of Example 7? 
 
E17) i) Show that )n,n()n(f::f =×→ ZZZ  is not an epimorphism.  

 ii) Find an ideal in ZZ×  which is not of the form ),I(f  where I  is an 
ideal of .Z  

 
E18) Check if )0,n()n(g::g =×→ ZZZ  is a ring homomorphism or not. 

Further, is g  onto? Is )I(g  an ideal of ,ZZ×  for every ideal I  of ?Z  
Does this counter Theorem 4? Why, or why not? 

 
E19) Is every ideal of nZ  a principal ideal, for any ?n N∈  Use Theorem 6 to 

decide this. 
 
 
And now let us look closely at the sets fKer  and ,fIm  where f  is a ring 
homomorphism. In Unit 8, we proved that if 21 GG:f →  is a group 
homomorphism, then fKer  is a normal subgroup of 1G  and fIm  is a 
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subgroup of .G2  We have an analogous result for ring homomorphisms, which 
you may have already realised from the examples you have studied so far. 
 
Theorem 7: Let 21 RR:f →  be a ring homomorphism. Then  

i) fKer  is an ideal of ,R1  and  

ii) fIm  is a subring of .R2  
 
Proof: i) Since }0{  is an ideal of ,R2  by Theorem 4(ii) you know that 

})0({f 1−  is an ideal of .R1   
 As fKer,fKer})0({f 1 =−  is an ideal of .R1  
 
ii)  Since 1R  is a subring of )R(f,R 11  is a subring of ,R2  by Theorem 3(i). 

Thus, fIm  is a subring of .R2  
 
Theorem 7 is very useful for showing that certain sets are ideals. For example, 
from Theorem 7 and Example 9, you can immediately find a non-trivial proper 
ideal of ),X(℘  for any X  having at least two elements.   
Similarly, from Example 7, you can see that }0)2/1(f]1,0[Cf{ =∈  is a non-
trivial ideal of ].1,0[C  
As we go along, you will see more examples of this use of Theorem 7. For 
now, let us examine the kernel of a homomorphism some more. In fact, let us 
prove a result which is actually a corollary of Theorem 4 of Unit 8. 
 
Theorem 8: Let 21 RR:f →  be a homomorphism. Then f  is injective iff 

}.0{fKer =  
 
Proof: Note that 21 RR:f →  is injective iff  ),R(),R(:f 21 +→+  is an injective 
group homomorphism, that is, iff },0{fKer =  by Theorem 4 of Unit 8.  
Hence, the result is proved. 
 
As an example of the application of Theorem 8, you can immediately tell that 
f  (in Example 9) is not injective. 
 
Solve the following exercises now. 
 
 
E20) Which of the homomorphisms in Examples 1-8 are 1-1? 
 
E21) Which of the homomorphisms in E1-E7 are 1-1? 
 
E22) Check whether or not the following are ring homomorphisms. For those 

that are, find φKer  and .Im φ  Hence decide if φ  is an isomorphism or 
not. 

 i) ,
0x
0x

)x(:)(: 2 ⎥
⎦

⎤
⎢
⎣

⎡
−

=φ→φ RMR  

 ii) .n)n(:: 3
33 =φ→φ ZZ  

 
 
Now let us look at another aspect of homomorphisms. You know, from Unit 8, 
that given a subgroup H  of ),,R( +  you can define a group homomorphism 
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),S(),R(:f +→+  with .HfKer =  You have also seen that given a ring 

homomorphism ,SR:f →  you obtain an ideal of R  corresponding to ,f  
namely, .fKer  So, the question is, given an ideal I  of a ring ,R  can you 
define a ring  homomorphism f  so that ?IfKer =  
The following theorem answers this question. Before studying it, though, 
please refresh your mind about the definition of a quotient ring from Unit 12. 
Also remember that quotient rings are defined for any ring. 
 
Theorem 9: If I  is an ideal of a ring ,R  then there exists a ring S  and a 
surjective ring homomorphism SR:f →  whose kernel is .I   
 
Proof: Let ,IRS =  which is well-defined as I  is an ideal of .R  We define 

.Ia)a(f:IRR:f +=→   
Let us see if f  is a well-defined homomorphism.  
 
If ba =  in ,R  then ,IbIa +=+  i.e., )b(f)a(f =  in .IR   
Hence, f  is well-defined.  
 
Next, for ,Rb,a ∈   

),b(f)a(f)Ib()Ia(I)ba()ba(f +=+++=++=+  and  
).b(f)a(f)Ib()Ia(Iab)ab(f =++=+=  

Thus, f  is a homomorphism. 
 
Further, }I)a(fRa{fKer =∈=  (Remember, I  is the zero element of .)IR  

                        }IIaRa{ =+∈=  

       }IaRa{ ∈∈=  
                        .I=  
 

.IR}RrIr{fIm =∈+=  
Thus, f  is surjective. 
 
Hence, the theorem is proved. 
 
The homomorphism defined in the proof above is called the canonical (or 
natural) homomorphism from R onto .IR  You have already studied its 
analogue for groups in Unit 8. As in the case of groups, you will find the 
theorem above used a lot in the next section. 
 
Try a couple of related exercises now. 
 
 
E23) Will the statement in Theorem 9 still be true if we replace ‘ideal’ by 

‘subring’ in it? That is, if S  is a subring of a ring ,R  can we always 
define a ring homomorphism whose domain is R and kernel is ?S  Why, 
or why not? 

 
E24) Let R  be a ring and I  be an ideal of .R  Use Theorems 4 and 9 to prove 

that any ideal of IR  is of the form ,IJ  where J  is an ideal of R  
containing .I  (You have already proved this in Unit 12, of course.) 
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Now let us look at the behaviour of the composition of homomorphisms. In 
Theorem 2, Unit 8, you studied that the composition of group homomorphisms 
is a group homomorphism. So, you may not find the following analogous result 
surprising. 
 
Theorem 10: Let 21 R,R  and 3R  be rings, and let 21 RR:f →  and 

32 RR:g →  be ring homomorphisms. Then their composition  
))x(f(g)x()fg(:RR:fg 31 =→ oo  is a ring homomorphism. 

 
The proof of this result is on the same lines as the proof of the corresponding 
result in Unit 8. We leave it to you to prove (see E25). 
 
Now, it is time to solve the following exercises. Doing so, will help you become 
familiar with some properties of the composition of ring homomorphisms. 
 
 
E25) Prove Theorem 10. 
 
E26) In the situation of Theorem 10, prove that 

 i)  if fg o  is 1-1 , then so is .f  

 ii) if fg o  is onto, then so is .g  

 iii) if fg o  is g,1-1  need not be .1-1  

 iv) if fg o  is onto, f  need not be onto. 
 
E27) Use Theorem 10 to show that ,:h rZZZ →×  defined by ,m))m,n((h =  

is a homomorphism, where .r N∈  
 
 
Now let us focus on ring isomorphisms. 
 

13.4 THE ISOMORPHISM THEOREMS 
 
In Sec.8.4, Unit 8, we discussed group isomorphisms and various results 
involving them. In this section we will do the same thing for rings.  
 
In Sec.13.2, you have already seen that a ring isomorphism is a bijective ring 
homomorphism. Also, as for groups, if 21 RR:f →  is an isomorphism, we say 
that 1R  is isomorphic to ,2R  and denote this by .~

21 RR −  
Further, as for groups, an isomorphism of a ring R  onto itself is called an 
automorphism of .R  
 
For example, every ring R  has at least one automorphism, namely ,I  as you 
have studied in Examples 3 and 4. 
 
Over here consider the following remark, akin to what you have seen for 
groups. 
 
Remark 7: Two rings are isomorphic if and only if they are algebraically 
identical. That is, isomorphic rings must have exactly the same algebraic 
properties. Thus, if R  is a ring with identity, then it cannot be isomorphic to a 
ring without identity. Similarly, if the only ideals of R  are }0{  and itself, then 
any ring isomorphic to R  must have this property too. 
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Let us look at a few examples that you have already worked out. Take, the 

case of E9. There you have shown that ,b,a
ab
ba~

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
−

− RC  a subring of 

).(2 RM  From Unit 12, you know that C  has only two ideals, }0{  and itself. 
Thus, the same holds for the subring of )(2 RM  to which C  is isomorphic. 
 
Next, consider E22(i). You have seen that φ  is a homomorphism, }0{Ker =φ  

and ,Sx
0x
0x

Im =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
−

=φ R  say.  

Hence, .S~−R   
Therefore, S  is commutative, since R  is commutative.  
Since R  has only two ideals, }0{  and itself, the same is true for .S   
Since ,)(U ∗= RR  the same is true for ,S  i.e., },{\S)S(U 0=  and so on.  
Here, note that none of the properties just discussed above for S  are true for 

).(2 RM  But they are true for the subring S  of ).(2 RM  
 
Let us look at a few other examples. 
 

Example 11: Let S  be the subring 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡ Zb,a
ab10
ba

 of ).(2 ZM  Check 

whether or not ⎥
⎦

⎤
⎢
⎣

⎡
=+→

ab10
ba

)10ba(f:S]10[:f Z  is an isomorphism. 

 
Solution: You should check that f  is well-defined. 
Next, show that ),10dc(f)10ba(f)]10dc()10ba[(f +++=+++  and 

).10dc(f)10ba(f)]10dc)(10ba[(f ++=++  
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈=⎥
⎦

⎤
⎢
⎣

⎡
+= Zb,a,

ab10
ba

10bafKer 0  

          }.0{=  
 

,SfIm =  which you should verify. 
 
Thus, f  is an isomorphism. 

*** 
 
Example 12: Let R  and S  be rings. Prove that SR ×  contains a subring 
isomorphic to R  and a subring isomorphic to .S  
 
Solution: Define )0,r()r(f:SRR:f =×→  and ).s,0()s(g:SRS:g =×→  
Now, you should verify that both f  and g  are well-defined. 
Further, ,Rr,r 21 ∈∀   

,)r(f)r(f)0,r()0,r()0,rr()rr(f 21212121 +=+=+=+  and  

).r(f)r(f)0,r)(0,r()0,rr()rr(f 21212121 ===  

Thus, f  is a ring homomorphism. 
 
Similarly, you should show that g  is a ring homomorphism. 
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Next, },0{)}0,0()0,r(Rr{fKer ==∈=  so that f  is .1-1  

Also, }0{R}Rr)0,r({fIm ×=∈=  is a subring of ,SR ×  such that 
}.0{RfIm~R ×=−  

 
Similarly, you should show that ,S}0{gIm~S ×=−  a subring of .SR ×  
Thus, SR ×  contains a subring isomorphic to R  and a subring isomorphic to 

.S  
*** 

 
Example 13: Show that / .~ RC −  
 
Solution: We shall prove this by contradiction, as in Unit 8. 
So suppose that .~ RC −  Then C  and R  must have the same algebraic 
properties. Thus, )(U C  and )(U R  must have the same properties, i.e., ∗C  
and ∗R  must have the same properties.  
Now, ∗C  has an element, ,i  of order .4  That is, .1)i( 4 =  But ∗R  has no 
element of order .4  Hence, we reach a contradiction.  
Thus, .~ RC −/  

*** 
 
Example 14: Show that if ,S~R −  and R  is a ring with identity, then 

,)S(U)R(U =  where )R(U  denotes the group of units of R  and ||A  denotes 
the cardinality of a set .A  
 
Solution: Let SR:f →  be an isomorphism.  
Firstly, since R  is a ring with identity, and S,S~R −  is also a ring with identity. 
 
You also know, from Theorem 2, that if ),R(Uu∈  then ).S(U)u(f ∈  
So, ).S(U))R(U(f ⊆  
We shall show that )).R(U(f)S(U ⊆  
So, let ).S(Us∈  Then )t(fs =  for some ,Rt∈  since f  is surjective. 
Similarly, Rr∈∃  s.t. ).r(fs 1=−  
Now, ),1(f1ss)t(f)r(f)rt(f 1 ==== −  from Theorem 2. 
Thus, ,1rt =  since f  is injective.  
Hence, ),R(Ur∈  so that )).R(U(f)S(U ⊆  
Thus, )).R(U(f)S(U =  
Also, since f  is 1-1  over ,R  it is 1-1  when restricted to ).R(U  
Thus, ,f  restricted to ),R(U  is a bijection from )R(U  to ).S(U  
Hence, .)S(U)R(U =  

*** 
 
Try solving the following exercises now. They will help you in becoming more 
familiar with isomorphisms. 
 
 
E28) Which of the following functions are ring isomorphisms? Give reasons 

for your answers. 

 i)  ,n)n(f::f =→ RZ  

Recall, from Unit 8, 
that /−~  denotes ‘is not 
isomorphic to’. 
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 ii) ,n5)n(f:10:f =→ Z
ZZ  

 iii) z)z(f::f =→CC , the complex conjugate of ,z  

 iv) ).zArg,z()z(f::f =×→ RRC  

 
E29) Let 21 RR: →φ  be a ring isomorphism. Then you know that  

12
1 RR: →φ−  is a well-defined function, since φ  is bijective. Show that 
1−φ  is also an isomorphism. 

 
E30) Show that the composition of isomorphisms is an isomorphism. 
 
E31) Which of the following are true? Give reasons for your answers. 

 i) ,~ ZQ −  

 ii) ,~ RQ −/  

 iii) ),(~
mn ZMZ −  for some ,m,n N∈  

 iv) ,~
3 ZZZZ ××−  

 v) If R  and S  are rings such that ),S(~),R( +−+  as groups, then R  
and S  are isomorphic rings. 

 
E32) Prove that ,~)X( 22 ZZ ×−℘  where }.2,1{X =  
 (Hint: Define 22)X(:f ZZ ×→℘  for each of the 4  elements of )X(℘  in 

a manner that f  is an isomorphism.)   
 
 
And now, let us go back to Sec.8.4, Unit 8, for a moment. Over there, we 
proved the Fundamental Theorem of Homomorphism for groups. According to 
this theorem, the homomorphic image of a group G  is isomorphic to a 
quotient group of .G  Now we will prove a similar result for rings. This is known 
as the first isomorphism theorem, or the Fundamental Theorem of 
Homomorphism for rings (FTH, in brief). 
 
Theorem 11 (The Fundamental Theorem of Homomorphism): Let 

SR:f →  be a ring homomorphism. Then .fIm~
fKer

R −   

In particular, if f  is surjective, then .S~
fKer

R −  

 
Proof: First, note that fKerR  is a well-defined quotient ring, since fKer  is 
an ideal of .R  For convenience, let us write .IfKer =  Let us define 

SIR: →ψ  by ).x(f)Ix( =+ψ  
 
As in the case of the FTH in Unit 8, we need to check that ψ  is well-defined.  
Now, )y(f)x(f0)yx(ffKerIyxIyIx =⇒=−⇒=∈−⇒+=+  

).Iy()Ix( +ψ=+ψ⇒  
Thus, ψ  is well-defined. 
 
Now let us see whether ψ  is an isomorphism or not. 

21 R~R − iff .12 R~R −  
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ψ  is a homomorphism: Let .Ry,x ∈  Then 

)y(f)x(f)yx(f)Iyx())Iy()Ix(( +=+=++ψ=+++ψ  
                             ),Iy()Ix( +ψ++ψ=  and  

)y(f)x(f)xy(f)Ixy())Iy()Ix(( ==+ψ=++ψ  
        ).Iy()Ix( +ψ+ψ=  

Thus, ψ  is a ring homomorphism. 
 

:fImIm =ψ  Since .fImIm,RxfIm)x(f)Ix( ⊆ψ∈∀∈=+ψ   
Also any element of fIm  is of the form )Ix()x(f +ψ=  for some .Rx∈  
Thus, .ImfIm ψ⊆  
So, .fImIm =ψ  
 
ψ  is :11 -  Let Ry,x ∈ such that ).Iy()Ix( +ψ=+ψ  
Then ),y(f)x(f =  so that ,0)yx(f =−  i.e., ,IfKeryx =∈−  
i.e., .IyIx +=+  
Thus, ψ  is .1-1  

So, we have shown that .fIm~
fKer

R −  

Thus, if f  is onto, then ,SfIm =  and .S~
fKer

R −  

 
Note that this result says that f  is the composition ,ηψ o  where η  is the 
canonical homomorphism .fKera)a(:)fKerR(R: +=η→η  This is 
diagrammatically shown in Fig.1. 
 
 
 
 
 
 

 
 

Fig.1: Given ∃f,  an isomorphism ψ  s.t. f.ηψ =o  
 
Let us, now, look at some examples of the application of the Fundamental 
Theorem. 
 
Example 15: Show that the rings ZZ m  and mZ  are isomorphic, where 

.m N∈  
 
Solution: Consider .n)n(p::p m =→ ZZ   
You should check that p  is an epimorphism, and 

.m}in0nn{pKer m ZZ ===  

Therefore, by Theorem 11, .~
m mZZ

Z −   

(Note that you have often used the fact that ZZ m  and mZ  are isomorphic 
groups.) 

*** 
 

Example 16: Prove that if 1R  and 2R  are rings, then 1
2

21 R~
R

)RR( −×  and  

R ⊂ SfIm →
f 

fKerR  

η  ψ
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.R~
R

)RR(
2

1

21 −×  

 
Solution: Define .a)b,a(p:RRR:p 121 =→×  Then, from E6, you know that 
the projection map p  is an epimorphism, and its kernel is 

.R}0{}Rb)b,0{(pKer 22 ×=∈=  

Thus, by Theorem 11, .R~
R}0{

)RR(
1

2

21 −×
×  

Now define .b)b,0(f:RR}0{:f 22 =→×  Then you should prove that f  is a 
ring isomorphism.  
Thus, .R~pKer 2−  
Hence, 2R  can be treated as an ideal of ,RR 21 ×  and can replace .pKer  

Therefore, .R~
R

)RR(
1

2

21 −×  

 

You should prove that 2
1

21 R~
R

)RR( −×  on the same lines. 

*** 
 

Example 17: Consider the ring .b,a
a0
ba

R
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= R   

Let .c
00
c0

I
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= R  

i) Prove that I  is an ideal of .R  

ii) Show that .~)IR( R−  
 
Solution: i) Since .I,I «≠∈0  

 Next, for ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

00
b0

B,
00
a0

A  in .I
00

ba0
BA,I ∈⎥

⎦

⎤
⎢
⎣

⎡ −
=−  

 Also, for ⎥
⎦

⎤
⎢
⎣

⎡
=

00
a0

A  in I  and ⎥
⎦

⎤
⎢
⎣

⎡
=

c0
dc

C  in ,R  

.I
00
ac0

CA,I
00
ac0

AC ∈⎥
⎦

⎤
⎢
⎣

⎡
=∈⎥

⎦

⎤
⎢
⎣

⎡
=  

 Thus, I  is an ideal of .R  
 

ii) Define .a
a0
ba

:R: =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
π→π R  Then π  is well-defined (verify this!). 

Further, prove that π  is a ring homomorphism and π  is surjective. 

 Now, .Ib
00
b0

0a,b,a
a0
ba

Ker =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=∈⎥
⎦

⎤
⎢
⎣

⎡
=π RR  

 Therefore, by the FTH, .~)IR( R−  

*** 
 
Try solving some exercises now. 
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E33) What does the Fundamental Theorem of Homomorphism say in the case 

of the homomorphisms in each of the Examples 1 to 9? 
 

E34) Prove that .~
x

]x[ RR −><  

 

E35) Let .b,a
ab
ba

R
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Z  Show that R  is a commutative subring of 

),(2 ZM with unity.  

 Further, define .ba
ab
ba

:R: −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
φ→φ Z  Show that φ  is a ring 

homomorphism. What does Theorem 11 say in this case? 
 
E36) Let R  be a ring with unity. For ),R(Ur∈  define .srr)s(f:RR:f 1

rr
−=→  

Check if rf  is a homomorphism or not. If it is, what does FTH say in this 
case? If rf  is not a homomorphism, find an endomorphism of .R  

 
E37) Let S  be a subring of a ring ,R  and I  be an ideal of .R  In Unit 12, you 

have proved that IS∩  is an ideal of .S  Use the FTH to prove that 
)IS(S ∩  is a subring of .IR  Is it also an ideal of ?IR  Why? 

 
 
Now, what E36 tells us is that if R  is a ring with unity, then RAutfr ∈  for 
each ).R(Ur∈  Are all these distinct? For example, are 1f−  and 1f  distinct 
automorphisms of ?Z  The answer to this lies in a very surprising result that 
we will now discuss. We will use Theorem 11 to prove that any ring 
homomorphism from a ring R  onto Z  is uniquely determined by its kernel. 
That is, we can’t have two different ring homomorphisms from R onto Z  with 
the same kernel. (Note that this is not true for group homomorphisms. In 
fact, you know that ,I  the identity map on ,Z  and I−  are distinct group 
homomorphisms from Z  onto itseIf with the same kernel, }0{ .) To prove this 
statement we need the following result. 
 
Theorem 12: The only non-trivial ring homomorphism from Z  to itself is the 
identity map. 
 
Proof: Let ZZ→:f  be a non-trivial ring homomorphism. Let n  be a positive 
integer. Then 111n +++= L (n times).  
Therefore, )1(f)1(f)1(f)n(f +++= L (n times) ).1(fn=  
 
On the other hand, if n  is a negative integer, then )n(−  is a positive integer. 
Therefore, ),1(f)n()n(f −=−   
i.e., ),1(nf)n(f −=−  by Theorem 1.  
Thus, )1(fn)n(f =  in this case too. 
Also ),1(f00)0(f ==  again, by Theorem 1. 
Thus, .n)1(nf)n(f Z∈∀=     …(3) 
You also know that ,1)1(f =  since f  is a non-trivial ring homomorphism. 
Therefore, from (3), you can see that 

,nn)n(f Z∈∀=  i.e., .If =  
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This theorem has an important corollary. 
 
Corollary 2: Let R  be a ring isomorphic to .Z  If f  and g  are two 
isomorphisms from R  onto ,Z  then .gf =  
 
Proof: The composition 1gf −o  is an isomorphism from Z  onto itself. 
Therefore, by Theorem 12,  0=−1gf o  or .Igf 1 =−o  
If ,gf 1 0=−o  then ,0)1(f0))1(g(f0)1)(gf( 11 =⇒=⇒= −−o  a contradiction, 
since f  is non-trivial. 
Thus, .Igf 1 =−o   
Hence, .gf =  
 
We are now in a position to prove the really surprising result we had 
mentioned earlier. 
 
Theorem 13: Let R  be a ring and f  and g  be homorphisms from R  onto Z  
such that .gKerfKer =  Then .gf =  
 
Proof: By Theorem 11, we have isomorphisms 

Z→ψ fKer
R:f  and .gKer

R:g Z→ψ  

Since f,gKerfKer ψ=  and gψ  are isomorphisms of the same ring onto .Z  

Thus, by Corollary 2, .gf ψ=ψ  

Also, the canonical maps fKer
RR:f →η  and gKer

RR:g →η  are the 

same since .gKerfKer =  
,f ff ηψ=∴ o  using Theorem 11 

      gg ηψ= o  
      .g=  
 
We will now give you a chance to prove some important applications of 
Theorem 11! They are analogous to Theorem 12 and Theorem 14 of Unit 8. 
 
 
E38) (Second Isomorphism Theorem): Let S  be a subring and I  be an 

ideal of a ring .R  Show that .)IS(
S~

I
)IS(

∩−+  

 
E39) (Third Isomorphism Theorem): Let I  and J  be ideals of a ring R  

such that .IJ ⊆  Show that .I
R~

)JI(
)JR( −  

 
E40) Prove that  

 i) ,~
5 5

15

15 ZZ
Z −  

 ii) ,~
n n

m

m ZZ
Z −  where N∈n,m  and .mn  

 
E41) How many non-trivial ring automorphisms of Q  are there, and why? 
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We shall halt our discussion of ring homomorphisms and isomorphisms here, 
and briefly recall what we have done in this unit. Of course, we have not 
finished with these functions. We will be using them again and again in the 
units of the next block. 
 

13.5 SUMMARY 
 
In this unit, you have studied the following points. 
 
1.  The definition of a ring homomorphism, its kernel and its image, along 

with several examples. 
 
2.  The direct, and inverse, image of a subring under a homomorphism is a 

subring. 
 
3.  If SR:f →  is a ring homomorphism, then 

 i) fKer  is an ideal of ,R  

 ii) fIm  is a subring of ,S  

 iii) )I(f 1−  is an ideal of R  for every ideal I  of ,S  

iv)  if f  is surjective, then )I(f  is an ideal of .S  
 
4. Let SR:f →  be an onto ring homomorphism. Then )I(fI a  defines a 

one-to-one correspondence between the  set of ideals of R  containing 
fKer  and the set of ideals of .S  

 
5.  A homomorphism is injective iff its kernel is }.0{  
 
6. If I  is an ideal of a ring ,R  then there exists a ring S  and a surjective 

ring homomorphism SR:f →  whose kernel is .I   
 
7.  The composition of homomorphisms is a homomorphism. 
 
8.  The definition, and examples, of a ring isomorphism. 
 
9.  The proof, and applications, of the Fundamental Theorem of 

Homomorphism for rings, which says that if SR:f →  is a ring 
homomorphism, then .fIm~

fKer
R −  

 
10. Second Isomorphism Theorem: Let S  be a subring and I  be an ideal 

of a ring .R  Then .)IS(
S~

I
)IS(

∩−+  

 
11. Third Isomorphism Theorem: Let I  and J  be ideals of a ring R  such 

that .IJ ⊆  Then .I
R~

)JI(
)JR( −  

12. The only non-trivial ring homomorphism from Z  to Z  is the identity 
automorphism.  

 
13. Let R  be a ring and f  and g  be homorphisms from R  onto Z  such 

that .gKerfKer =  Then .gf =  
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13.6 SOLUTIONS / ANSWERS 
 
E1) For ,Sy,x ∈  
 ),y(i)x(iyx)yx(i +=+=+  and  
 ).y(i)x(ixy)xy(i ==  
 i∴  is a homomorphism. 
 }.0{}0)x(iSx{iKer | ==∈=  
 .S}Sx)x(i{iIm | =∈=  
 
E2) i) First, if )x(g)x(f =  in ],x[Z  then )1(g)1(f =  in .Z  So φ  is   well-

defined. 
 

  Next, let ∑
=

=
m

0i

i
i ,xa)x(f  and ∑

=

=
n

0i

i
ixb)x(g  be in ].x[Z  Then 

))x(g)x(f( +φ   

  ,x)ba(
m

0i

i
ii ⎟

⎠

⎞
⎜
⎝

⎛
+φ= ∑

=

 assuming nm ≥  and   

         

    ∑
=

+=
m

0i
ii ),ba(  putting .1x =  

  ,ba
n

0i
i

m

0i
i ⎟

⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

==

 since 0bj =  for .nj ≥  

  )).x(g())x(f( φ+φ=  
  If ,nm ≤  you can prove that )),x(g())x(f())x(g)x(f( φ+φ=+φ  

similarly. 

  Also, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φ=⋅φ ∑ ∑

+

= =+

+
nm

0k kji

ji
ji xba))x(g)x(f(  

                                 ,ba
nm

0k kji
ji∑ ∑

+

= =+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  putting .1x =  

              )1(g)1(f ⋅=   

                                                 )).x(g())x(f( φ⋅φ=  
  Thus, φ  is a homomorphism. 
   
  .}0)1(f]x[)x(f{Ker =∈=φ Z   
  From Calculus, you know that if ],x[)x(f Z∈  then 0)a(f =  iff a  is 

a root of the polynomial ),x(f  where .a Z∈  
  Thus, f]x[)x(f{Ker Z∈=φ  has 1 as a root}. 
 
  ,Im Z=φ  because for any ]x[m1x)x(f,m ZZ ∈+−=∈  s.t. 

.m)1(f =  
 
 ii) As in (i), you should prove that zφ  is a homomorphism. 
  Further, }.0)z(f]x[)x(f{Ker z =∈=φ C  

  Thus, zKer φ  is the set of all complex polynomials which have          
z  as a root. 

.bb0b m2n1n ==== ++ L  
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  ,]}x[)x(f)z(f{Im z CCC =∈∈=φ  because for any 

]x[zwx,w CC ∈−+∈  s.t. .w)zwx(z =−+φ  
 
E3) Let H∈+=α i1  and .ji21 H∈++=β  
 Then .kji31)ji21)(i1( +++−=+++=αβ  (Remember the relations 

satisfied by )!k,j,i  
 So .1)( −=αβφ  
 But .111)()( =⋅=βφαφ  
 Thus, )()()( βφαφ≠αβφ  in .R  
 Thus, φ  is not a homomorphism. 
 

E4) Take ).(
10
12

B,
43
21

A 2 CM∈⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=  Then 

.6915
53
33

det
53
33

)BA( =−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
ψ=+ψ  

 Also .022)B()A( =+−=ψ+ψ  
 Thus, ψ  is not a homomorphism. 
 
E5) You need to first check if f  is well-defined. 
 Now, if mn =  in ,3Z  then ).mn(3 −  So ).mn(46 −  

 i.e., m4n4 =  in .6Z  
 Therefore, f  is well-defined. 
 
 Next, for m,n  in ,3Z   
 )6)(modmn(4)mn(f)mn(f +=+=+                 
                       )6(modm4)6(modn4 +=  
               ).m(f)n(f +=  
 Also, )6(modnm4)nm(f)mn(f ==⋅  

                       ),6(modnm16=  since 164 =  in .6Z  
                        )6(modm4)6(modn4 ⋅=  
                       ).m(f)n(f ⋅=  
 Thus, f  is a ring homomorphism.  
 
E6) You should first show that p  is well-defined. 
 
 Next, for any ,BA)d,c(),b,a( ×∈  
 )),d,c((p))b,a((pca))db,ca((p))d,c()b,a((p +=+=++=+  and  
 )).d,c((p))b,a((pac))bd,ac((p))d,c()b,a((p ===  
 So, p  is a ring homomorphism. 
  
 .B}0{}0aBA)b,a({pKer ×==×∈=  

  
 .A}BA)b,a(a{}BA)b,a()b,a(p{pIm =×∈=×∈=  

 
 If B  is not the trivial ring, p  is not .1-1  This is because 

,bb,Bb,b 2121 ≠∈∃  so that ).b,0()b,0( 21 ≠  
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 But )).b,0((p0))b,0((p 21 ==  
 
 Hence, if p},0{B ≠  is not an isomorphism. 
 
E7) Firstly, f  is well-defined since .b,a]2[2)b(a2ba ZZ ∈∀∈−+=−  
 
 Next, for ,d,c,b,a Z∈   

 ))db(2ca(f))2dc()2ba((f +++=+++  

 )2dc()2ba(2)db()ca( −+−=+−+=  

 ).2dc(f)2ba(f +++=  

 Also, ))bcad(2bd2ac(f))2dc)(2ba((f +++=++  

)d2c)(b2a(2)bcad(bd2ac −−=+−+=  

 ).2dc(f)2ba(f +⋅+=  
 Thus, f  is an endomorphism. 
 
 You should check that g  is well-defined. However, 

,2)2(g)]31)(31[(g −=−=−+  and 

.6)71)(71()31(g)31(g −=−+=−⋅+  Thus, g  is not a 
homomorphism. 

 
E8) For .m5n5)nm3(5)nm9(f)m3n3(f,m3,n3 ⋅≠==⋅∈Z  
 Hence, f  is not a homomorphism. 
 
E9) First, you should check whether or not φ  is well-defined. 
 Then prove that it is a homomorphism, 1-1  and onto. 
 Here, note that ,d,c,b,a R∈∀  
 )]bcad(i)bdac[())idc)(iba(( ++−φ=++φ  

 ⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−+−
+−

=
cd
dc

ab
ba

bdac)bcad(
bcadbdac

 

 ).idc()iba( +φ⋅+φ=   
 
E10) For ],1,0[Cg,f ∈  
 ))1()gf(),0()gf(()gf( ++=+φ  
              ))1(g)1(f),0(g)0(f( ++=  
              ))1(g),0(g())1(f),0(f( +=  
              ),g()f( φ+φ=  and  
 ))1(g)1(f),0(g)0(f())1(fg),0(fg()fg( ⋅⋅==φ  
          ))1(g),0(g())1(f,0(f(=  
  ).g()f( φφ=  
 φ∴  is a homomorphism. 
 
 φ  is not injective since, for example, 0≠f  but ),()f( 0φ=φ  where 

)1x(x)x(f:]1,0[:f −=→ R  is in ].1,0[C  
 Thus, φ  is not an isomorphism. 
 
E11) We will use Theorem 1 of Unit 11. 
 Firstly, «.« ≠⇒≠ )S(fS  
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 Next, let ).S(fb,a ∈′′  Then Sb,a ∈∃  such that .b)b(f,a)a(f ′=′=  
 Now ),S(f)ba(f)b(f)a(fba ∈−=−=′−′  since ,Sba ∈−  and  
 ),S(f)ab(f)b(f)a(fba ∈==′′  since .Sab∈  
 )S(f∴  is a subring of .R2  
 
E12) Consider the trivial homomophism .0)x(f::f =→ZZ  Then, ZZ 32 ≠  in 

.  But )3(f}{)2(f ZZ == 0  in .  Thus, φ  is not ,1-1  and hence, not a 
bijection. 

 
E13) Since I  is a subring of )I(f,R 1

2
−  is a subring of ,R1  by Theorem 3. 

 Now, let )I(fa 1−∈  and .Rr 1∈  

 We want to show that )I(far 1−∈  and ).I(fra 1−∈  

 Since .I)a(f),I(fa 1 ∈∈ −   
 I)r(f)a(f ∈∴  and ,I)a(f)r(f ∈  i.e., I)ar(f ∈  and .I)ra(f ∈  (Note that 

2R  need not be commutative.) 

 )I(far 1−∈∴  and ).I(fra 1−∈  

 Thus, )I(f 1−  is an ideal of .R1  
 
 Also, if ,fKerx∈  then .I0)x(f ∈=  
 ).I(fx 1−∈∴  
 ).I(ffKer 1−⊆∴  
 
E14) Let )).J(f(fx 1−∈  Then ),y(fx =  where ),J(fy 1−∈  i.e., ,J)y(f ∈  i.e., 

.Jx∈  
 Thus, .J))J(f(f 1 ⊆−  
  
 Now, let .Jx∈  Since f  is surjective, Ry∈∃ such that .x)y(f =  
 Then ).J(f)x(fy 11 −− ⊆∈  (Note that )x(f 1−  is a set, not an element.) 
 )).J(f(f)y(fx 1−∈=∴  
 Thus, )).J(f(fJ 1−⊆   
 Hence, the result is proved. 
 
E15) Here ,2)I(f 55 ZZ ==  since .1)5,2( =   

 So ,fKer))I(f(f 1 +==− ZZ  since .fKer Z⊆  
 
 For any ideal I  of ,R  in Example 3, },0{)I(f =  where .f 0=  So 

,fKerRR))I(f(f 1 +==−  since .RfKer =  
 
E16) You know, from Unit 12, that the only ideals of R  are }0{  and .R  Here 

]1,0[Cf{Ker ∈=φ  s.t. }.0)21(f =   
 So, if I  is an ideal of ]1,0[C  s.t. ,IKer ⊆φ  then }0{)I( =φ  or ,)I( R=φ  

by Theorem 6. 
 But, if },0{)I( =φ  then ,KerI φ⊆  i.e., .KerI φ=   
 So if ,KerI φ≠  then ,)I( R=φ  by Theorem 6. 
 
E17) i) For example, .fIm)1,0( ∉  Hence, f  is not onto. 
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 ii) For any ideal I  of ZZ nI, =  for some .n Z∈  So 

},m)nm,nm({)I(f Z∈=  which is not an ideal of ,ZZ×  as you 
have seen in Unit 12. Thus, the ideal }0{×Z  of ZZ×  is not of the 
form ),I(f  for any ideal I  of .Z  In fact, no ideal of ZZ×  can be of 
the form ).I(f  

 
E18) You should prove that ),n(g)m(g)nm(g +=+  and ).n(g)m(g)mn(g =  
 Hence, g  is a homomorphism. 
 However, g  is not surjective – e.g., .gIm)2,1( ∉  
 
 Now, let I  be an ideal of .Z  So ,nI Z=  for some .n N∈  
 Then }0{n)I(g ×= Z  is an ideal of ,ZZ×  by Theorem 5, Unit 12. 
 
 This does not counter Theorem 4, as Theorem 4 says that if f  is 

surjective, )I(f  should be an ideal of the co-domain. It does not say that 
if f  is not surjective, then )I(f  cannot be an ideal. 

 
E19) As in Example 10, we consider .m)m(f::f n =→ZZ  Since f  is an 

epimorphism, the ideals of nZ  are of the form ),m(f Z  where .nm   

 Thus, the ideals of nZ  are ,m nZ  where .nm  

 Thus, every ideal of nZ  is a principal ideal. 
 
E20) The homomorphisms in Example 1, I  in Example 3 (and 4), and f  in 

Example 8 have kernel }.0{  Thus, they are .1-1  
 
E21) The homomorphism in E1, certainly. 
 
 In E5, }.0{}6n4n{fKer 3 =∈= Z  So f  is .1-1  
 
 In E7, }b,a,02ba2ba{fKer Z∈=−+=  

                     }0b,0a2ba{ ==+=  

                     }.0{=  
 

E22) i) Firstly, if yx =  in ,R  then .
0y
0y

0x
0x

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

  

  So )y()x( φ=φ  in ).(2 RM  
  Thus, φ  is well-defined. 
 
  Next, you should check that for ,y,x R∈  
  )y()x()yx( φ+φ=+φ  and ).y()x()xy( φφ=φ   
  So φ  is a ring homomorphism. 
 
  }.0{})x(x{Ker ==φ=φ 0  So φ  is .1-1  

  ),(x
0x
0x

Im 2 RMR ≠
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
−

=φ  because, for example,  
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  .Im
43
21

φ∉⎥
⎦

⎤
⎢
⎣

⎡
  

  So φ  is not onto. 
 
  Thus, φ  is not an isomorphism. 
 
 ii) You should check that φ  is well-defined and 

.n,n)n()n()nn( 3212121 Z∈∀φ⋅φ=⋅φ  

  Now 3
21

3
212121 )nn()nn()nn()nn( +=+=+φ=+φ  

         ,nn 3
2

3
1 +=  since .03 =   

         .n,n)n()n( 32121 Z∈∀φ+φ=  
  Thus, φ  is a ring homomorphism. 
 
  }.0{}0nn{Ker 3

3 ==∈=φ Z  So φ  is .1-1  

  .}nn{Im 33
3 ZZ =∈=φ  So φ  is onto. 

 
  Thus, φ  is an isomorphism. 
 
E23) No. For example, take the subring Z  of .Q  Since Z  is not an ideal of 

,Q  it can’t be the kernel of any homomorphism from Q  to another ring, 
because of Theorem 7. 

 
E24) Consider f  of Theorem 9. Since f  is surjective, I

J)J(f =  is an ideal of 

,IR  for any ideal J  of R containing ,I  by Theorem 4. 
 
 Conversely, let A  be an ideal of .IR  Then )A(f 1−  is an ideal of R  

containing .IfKer =   
 Hence, )I)A(f())A(f(f 11 −− =  is an ideal of ,IR  by Theorem 6. 
 Also, from E14, you know that )).A(f(fA 1−=  
 Thus, ,IJ)I)A(f(A 1 == −  where ).A(fJ 1−=  
 
E25) For any ,Ry,x 1∈  
 )),y(f)x(f(g))yx(f(g)yx(fg +=+=+o  since f  is a homomorphism. 
                   )),y(f(g))x(f(g +=  since g  is a homomorphism. 
            ),y(fg)x(fg oo +=  and  
 )xy(fg o )),y(f)x(f(g))xy(f(g ==  since f  is a homomorphism. 
                )),y(f(g))x(f(g ⋅=  since g  is a homomorphism. 
                .)y(fg)x(fg oo ⋅=  
 Thus, fg o  is a homomorphism. 
 
E26) i)  ,0x0)x(fg0)x(ffKerx =⇒=⇒=⇒∈ o  since fg o  is .1-1  
   .}0{fKer =∴  
   f∴  is .1-1  
 
 ii)  Let .Rx 3∈  Since fg o  is onto, 1Ry∈∃  such that ,x)y(fg =o  

i.e., ,x))y(f(g =  where .R)y(f 2∈  Thus, g  is onto. 



 

 

110 

Block 3                                                                                           Introduction to Rings
 iii)  For example, consider ,:i ZZ→φ o  where ⊂ =→ m)m(i:]x[:i ZZ  

and φ  is the map in E2(i). 
   Then ,:Ii ZZ→=φ o  which is .1-1   
   But φ  is not 1-1  since }.0{Ker ≠φ  
 
 iv)  You can use the example in (iii) above, to show this too. 
 
E27) h  is the composition of the projection map m)m,n(p::p =→× ZZZ  

and the map .m)m(f::f r =→ ZZ   
 Both p  and f  are ring homomorphisms, as you know from E6 and 

Example 5, respectively.  
 h∴  is a homomorphism. 
 

E28) i)  f  is not onto, since ,fIm
2
1
∉  for example. Hence, f  is not an 

isomorphism. 
 
 ii)  f  is not an isomorphism, since }.0{10fKer ≠= Z  
 
 iii)  From Block 1, Calculus, you know that ,zzzz 2121 +=+  and 

.zzzz 2121 ⋅=  Use this to show that f  is a ring homomorphism. 
 
   Next, for any .iba)iba(f,iba +=−∈+ C  So .fIm C=  
   Also, }.0{}0ibaiba{fKer ==−+=  
 
   Thus, f  is an isomorphism. 
 
 iv)  Note that .0z|| ≥  Use this to show that f  is not surjective. Hence, 

f  cannot be an isomorphism. 
 
E29) Let 2Ry,x ∈  and .s)y(,r)x( 11 =φ=φ −−  Then )r(x φ=  and ).s(y φ=  

Therefore, ),sr()s()r(yx +φ=φ+φ=+  and ).rs(xy φ=  
 ),y()x(sr)yx( 111 −−− φ+φ=+=+φ∴  and  
 ).y()x(rs)xy( 111 −−− φ⋅φ==φ  
 Thus, 1−φ  is a ring homomorphism. 
 You already know that it is bijective.  
 Thus, 1−φ  is an isomorphism. 
 
E30) Let 21 RR:f →  and 32 RR:g →  be ring isomorphisms. From Theorem 

10, you know that fg o  is a homomorphism. For the rest, proceed as 
you did for solving E19, Unit 8. 

 
E31) i) Since ∗=QQ)(U  and ZQZ −/−= ~},1,1{)(U  (by Example 14). 

Thus, this is false. 

 ii) See Example 20, Unit 8, for why this is true. 

 iii) Here Z  is infinite, but )( mn ZM  is finite. Thus, this is false. 

 iv) Since 3Z  is finite and ZZZ ××  is infinite, this is false. 
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 v) False. Consider Z  and .2Z  You know that Z  and Z2  are 

isomorphic groups. However, Z  is a ring with unity, while Z2  
does not have unity. Hence, they are not isomorphic rings. 

 
E32) Define 22)X(:f ZZ ×→℘  by 

).1,1()X(f),1,0(})2({f),0,1(})1({f),0,0()(f ====«  
 Now, f  is a well-defined bijection, as you can see. 
 You should check, case by case, that for ),X(B,A ℘∈  

),B(f)A(f)BA(f +=Δ  and ).B(f)A(f)BA(f ⋅=∩  
 Thus, .~)X( 22 ZZ ×−℘  
 
E33) Example 1: .~

}0{ ZZ −  

 Example 2: }.{~))()(( nn 0−RMRM  

 Example 3 and 4: ,R~
}0{

R −  and },0{~)RR( −  for any ring .R  

 Example 5: .s,~s s NZZZ ∈∀−  

 Example 6: ,~}3,0{ 36 ZZ −  i.e., .~)3( 366 ZZZ −  
 Example 7: },0)21(f]1,0[Cf{Ker | =∈=φ  and  
             .Im R=φ  

             So .~
Ker

]1,0[C R−φ   

 Example 8: },nnI{~ ZZ ∈−  using the fact of Example 1, i.e., ,~}0{ ZZ −   
                    and Theorem 10. 

             Here .
10
01

I ⎥
⎦

⎤
⎢
⎣

⎡
=   

 Example 9: ).Y(~
)Y(

)X(
c ℘−

℘
℘  

 
E34) Define .a)xaxaa(f:]x[:f 0

n
n10 =+++→ LRR  

 Then f  is the evalution map .0φ  As in E2, you should prove that f  is a 
homomorphism, ><= xfKer  and .fIm R=  

 Hence, by FTH, .~
x

]x[ RR −><   

 
E35) You should show that ,R «≠  and that RBA ∈−  and 

.RB,ARAB ∈∀∈  

 Further, prove that .RB,ABAAB ∈∀=  Note that .R
10
01
∈⎥
⎦

⎤
⎢
⎣

⎡
 

 
 Next, prove that φ  is a ring homomorphism. 
 

 After this, show that .rr
11
11

Ker
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
=φ Z  

 Note that ,Im Z=φ  because for any .
n0
0n

n,n ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
φ=∈Z  

 
 So FTH tells us that .~KerR Z−φ  
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E36) Since rf),R(Ur∈  is well-defined. 
 Now, for ,Ry,x ∈  
 yrrxrrr)yx(r)yx(f 111

r
−−− +=+=+  

        ),y(f)x(f rr +=  and   

 )yrr)(xrr(xyrr)xy(f 111
r

−−− ==  
           ).y(f)x(f rr ⋅=  
 
 Thus, rf  is a homomorphism. 
 
 Next, }.0xrrRx{fKer 1

r =∈= −   
 Since r  is a unit, Rs∈∃  s.t. .sr1rs ==  
 So 0xrr 1 =−  iff ,0s0sxrsrs 111 == −−−  i.e., iff .0x =   
 Thus, }.0{fKer r =   
 Also, for any .s)rsr(f,Rs 1

r =∈ −   
 So .RfIm r =  
 Thus, rf  is an automorphism, and FTH tells us that .R~}0{R −  
 
E37) Define .Is)s(f:IRS:f +=→  Show that f  is a homomorphism, and  

.ISfKer ∩=  
 Thus, by FTH, ,fIm~))IS(S( −∩  a subring of .IR   
 Hence, we can treat )ISS( ∩  as a subring of .IR  
 
 In E38, Unit 12, you have given an example to show that )ISS( ∩  need 

not be an ideal of .IR   
 
E38) Since I  is an ideal of R  and ,ISI +⊆  it is an ideal of .IS+  
 Thus, I)IS( +  is a well-defined ring. 
 Define .Ix)x(f:I)IS(S:f +=+→  
 As you did in Theorem 12 of Unit 8, you should prove that f  is          

well-defined.  
 Then, you should check that ),y(f)x(f)yx(f +=+  and  
 .Sy,x)y(f)x(f)xy(f ∈∀=  
 
 Further, show that f  is surjective and .ISfKer ∩=   

 Thus, ,I
)IS(~

)IS(
S +−∩  by Theorem 11. 

  
E39) Define .Ir)Jr(f:IRJR:f +=+→  
 As you did in Theorem 14, Unit 8, you can check that f  is well-defined.  
 Next, prove that f  is a ring homomorphism, f  is surjective and 

.JIfKer =  

 Thus, JI  is an ideal of ,JR  and .I
R~

)JI(
)JR( −  

 
E40) i) By Example 15, .m~)m( m NZZZ ∈∀−  
  So .155)15(5~5,15~

1515 ZZZZZZZZ =−−  

  So, by the third isomorphism theorem, .~5~5 515 ZZZZ −−><  
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 ii) Again, as in (i) above, 

  .~n~
)mn(

)m(~n nmm ZZZZZ
ZZZZ −−−  

 

E41) Let f  be an automorphism of .Q  Then, for any ,q
p Q∈  

 n
m

q
pf =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 for some .0n,n,m ≠∈Z   

 So ,n
mqq

pqfq
pqf)p(f =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  since f  is a homomorphism. 

 Also )1(pf)1p(f)p(f =⋅=  
                 .p=  

 So .n
mqp ⎟
⎠
⎞

⎜
⎝
⎛=  

 .n
m

q
p
=∴  

 .q
p

q
p

q
pf Q∈∀=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∴  

 i.e., ,If =  the identity homomorphism. 
 Thus, the only automorphism of Q  is .I  
 In fact, the only epimorphism from Q  to Q  is .I  
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MISCELLANEOUS EXAMPLES AND EXERCISES 
 
As in the previous blocks, the few examples and exercises, given below cover 
the concepts and processes you have studied in this block. Studying the 
examples, and solving the exercises, will give you a better understanding of 
the concepts concerned. This will also give you more practice in solving such 
problems. 
 
Example 1: Find the distinct cosets of the ideal >−< i2  in ].i[Z  
 
Solution: Any coset of >−< i2  is of the form .b,a,i2bia Z∈>−<++  

In ,i2]i[R >−<= Z  note that .0i2 =−  So .i2 =  

.b,ab2abiaiba Z∈∀+=+=+∴  
Also .0514i2 =⇒−=⇒=  
So, ,xb2aiba =+=+  where ).5(modxb2a ≡+  

For example, 43223i2 =⋅+−=+−  and ,383223i2 ==⋅+=+  since 
).5(mod38 ≡  

Further, to prove that 4,3,2,1,0  are distinct cosets of >−< i2  in ,R  
suppose, to the contrary that, say .21 =  
Then ,012 =−  i.e., .i21 >−∈<  
Then )idc)(i2(1 +−=  for some .d,c Z∈  

dc21 +=⇒  and .d2c0 +−=  
,51d =⇒  a contradiction. 

Thus, .21 =  
 
Similarly, show that equating any of ,4,3,2,1,0  will lead to a contradiction.  
Hence, the distinct elements of R  are .4,3,2,1,0  
In fact, .~R 5Z−  

*** 
 
Example 2: Show that no element of the set }kk43{ Z∈+  is a sum of the 
squares of two integers. 
 
Solution: We will prove this by contradiction. 
Suppose Z∈∃ b,a,k  s.t.  

.bak43 22+=+        …(1) 
Then apply the natural homomorphism ,m)m(p::p 4 =→ ZZ  to (1). We get 

22 ba3 +=  for some b,a  in .4Z      …(2) 
Now 0b,0a ==  doesn’t satisfy (2). Similarly, you should check that none of 
the 16  possibilities for )b,a(  satisfy (2). 
So we reach a contradiction. 
Thus, there are no Z∈b,a  s.t. ,bak43 22+=+  for any .k Z∈  

*** 
 
Example 3: Give an example, with justification, of a non-trivial subring S  with 
unity of ,30Z  with S  having a unity different from .1  
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Solution: For example, take .3S 30Z=  Then S  is a non-trivial subring of ,30Z   

and .S1∉  
You should draw up the Cayley table for multiplication in .S  From the table, 
you will find that 2173 =⋅  is the unity in .S  

*** 
 
Example 4: Find ).(U 1510 ZZ ×  
 
Solution: Let ).(UU 1510 ZZ ×=  
Now U))15(modb),10(moda( ∈  

))15(mod1),10(mod1())15(modd),10(modc))(15(modb),10(moda( =⇔  for  
                         some .d,c Z∈  

)10(mod1ac ≡⇔  and )15(mod1bd ≡  for some .d,c Z∈  
)(Ua 10Z∈⇔  and ).(Ub 15Z∈  

Thus, ).(U)(U)(U 15101510 ZZZZ ×=×  

*** 
 
Example 5: Determine all ring homomorphisms from ZZ×  to .Z  
 
Solution: Let ZZZ →×φ :  be a homomorphism. 
If φ  is not the zero homomorphism, then  

,1)1,1( =φ  since )1,1(  is the unity of ZZ×  and 1 is the unity of .Z   
i.e., ,1)]1,0()0,1[( =+φ        …(3) 
i.e., .1))1,0(())0,1(( =φ+φ  
Let .m))0,1(( =φ  
Also, )).0,1(())0,1(())0,1)(0,1(())0,1(( φφ=φ=φ  So .mm 2=  
Thus, m  is an idempotent in .Z  .1,0m =∴  
If ,0m =  then ,1))1,0(( =φ  and if ,1m =  then ,0))1,0(( =φ  by (3). 
Now .y,x))1,0((y))0,1((x)]1,0(y)0,1(x[))y,x(( Z∈∀φ+φ=+φ=φ  
So, if ,0))0,1(( =φ  then .y,xy))y,x(( Z∈∀=φ  
If ,0))1,0(( =φ  then .y,xx))y,x(( Z∈∀=φ  
Thus, the only possible homomorphisms from ZZZ →×  are ,,, 321 φφφ  
defined by  

,x))y,x((1 =φ ,y))y,x((2 =φ .y,x0))y,x((3 Z∈∀=φ  

*** 
 

Example 6: Show that 
⎭
⎬
⎫

⎩
⎨
⎧

>∈= 0n,n,m
2
mS n Z  is the smallest subring of Q  

containing .2
1  

 
Solution: First, .S Q⊆  

Also, for ,S
2
m,

2
m

21 n
2

n
1 ∈  suppose .nn 21 ≥  Then  

.S)m2m(
2
1

2
m

2
m

2
nn

1nn
2

n
1 21

121
∈⋅−=− −  
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Also .S
2

mm
2
m

2
m

2121 nn
21

n
2

n
1 ∈=⋅ +  

Hence, S  is a subring of .Q  

Let T  be a subring of Q  s.t. .T2
1 ∈  

Then Z∈∀∈ n,mT
2
m

n  and .0n >  

So .TS⊆  

Thus, S  is the smallest subring of Q  containing .2
1  

*** 
 
Example 7: Find all the possible ring homomorphisms from 6Z  to .6Z  
 
Solution: One is the trivial homomorphism, of course. Let’s look for the 
others. 
Let 66: ZZ →φ  be a non-trivial homomorphism. 

Then )1(φ  is the unity of ,Im φ  say m)1( =φ  in ,6Z  where .0m ≠  

Then .mm2 =  
This is true only for 4,3,1m =  in .6Z  
So ,n)n(:: 1661 =φ→φ ZZ  (i.e., ),I1 =φ  

,n3)n(:: 2662 =φ→φ ZZ  and  

n4)n(:: 3663 =φ→φ ZZ  
are the non-trivial homomorphisms. 
Here, note that };4,2,0{Im},3,0{Im,Im 3261 =φ=φ=φ Z  and }3,0{  is a 

subring of ,6Z  with unity }4,2,0{;3  is a subring of ,6Z  with unity .4  

*** 
 

 
Miscellaneous Exercises 
 
E1)  Let R  be a ring. Show that Rb,a)ba)(ba(ba 22 ∈∀+−=−  iff R  is 

commutative. 
 
E2) Which of the following statements are true? Justify each answer. 

 i) 222 ZZZ ××  is a Boolean ring (ref. E24, Unit 10). 

 ii) 6Z  is a subring of .12Z  

 iii) ⎥
⎦

⎤
⎢
⎣

⎡
00
01

 and ⎥
⎦

⎤
⎢
⎣

⎡
00
10

 commute with each other in ).(2 ZM  

 iv) ZZ 2×  is a ring with unity. 

 v) ).(U)(U ZZZ =×  
 

E3) Draw the Cayley tables for ).,,2( 10 ⋅+Z  Hence decide if it is a 
commutative ring with unity or not. 

 
E4) Are Z2  and Z3  isomorphic rings? Are Z2  and Z4  isomorphic rings? 

Give reasons for your answers. 
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E5) Check whether or not 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
−

−
= Zn,m

nnm
nmm

S  is a subring of 

).(2 ZM  Is it an ideal of ?)(2 ZM  Why? 
 

E6) Check whether or not 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
+

+
= Zn,m

nnm
nmm

S  is a subring of 

).(2 ZM  Is it an ideal of ?)(2 ZM  Why? 
 
E7) Show that )2(I 2 ZM=  is an ideal of ).(2 ZM  Also prove that 

).(~
)2(

)(
22

2

2 ZMZM
ZM −  

 
E8) How many elements are in ?3i]i[ >+<Z  Why? 
 
E9) Find all possible ring homomorphisms from 20Z  to .30Z  
 
E10) Prove that }kk82{ Z∈+  contains no cube of an integer. 
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SOLUTIONS / ANSWERS 
 
E1) R  is commutative. 
 Rb,abaab ∈∀=⇔  
 .Rb,a)ba)(ba(ba 22 ∈∀+−=−⇔  
 
E2) i) True. For any ,)x,x,x( 222321 ZZZ ××∈  0xi =  or .3,2,1i1 =∀  

  ).x,x,x()x,x,x()x,x,x()x,x,x( 321
2
3

2
2

2
1321321 ==⋅∴  

   
 ii) False. .126 ZZ ⊄  
 

 iii) You should check that .
00
01

00
10

00
10

00
01

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
≠⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 

 
 iv) Since Z2  is without unity, so is .2ZZ×  
 
 v) The elements of ZZ×  are ordered pairs of elements of .Z  Hence, 

this is false. 
     

   

642088
420866
208644
086422
864200
86420+

  

482608
864206
246804
628402
000000
86420•

 

 
 From the tables, we can see that 102Z  is closed w.r.t. addition and 

multiplication ).10(mod   
 
Further, both addition and multiplication are commutative. 
 
Next, 0  is the additive identity and 6  is the unity. 

 
 Also, every element has an additive inverse, and the multiplicative 

inverses are:  
.28,66,44,82 1111 ==== −−−−   

You can also use the tables to check that the rest of the requirements for 
>< 2  to be a commutative ring with unity are satisfied.  

 
E4) Suppose .3~2 ZZ −  Then ,3

~
2 Z

Z
Z

Z −  i.e., ,~
32 ZZ −  a contradiction. 

 
 Suppose ZZ 42: →φ  is an isomorphism, and let ,n4)2( =φ  for some 

.n Z∈  
 Then .n8)2()2()22()4( =φ+φ=+φ=φ  
 Also .n16)n4()2()2()22()4( 22 ==φ⋅φ=⋅φ=φ  
 So ,1n2n16n8 2 =⇒=  a contradiction, since .n Z∈  
 .4~2 ZZ −/∴  
 

E3) 
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E5) First, ,S «≠  since .S
10
01
∈⎥
⎦

⎤
⎢
⎣

⎡
 Also ).(S 2 ZM⊆  

Next, let ⎥
⎦

⎤
⎢
⎣

⎡
−

−
bba

baa
 and .S

nnm
nmm

∈⎥
⎦

⎤
⎢
⎣

⎡
−

−
  

Then 

,S
nb)nb()ma(

)nb()ma(ma
nnm

nmm
bba

baa
∈⎥
⎦

⎤
⎢
⎣

⎡
−−−−

−−−−
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
−⎥

⎦

⎤
⎢
⎣

⎡
−

−

 

 and  
 

⎥
⎦

⎤
⎢
⎣

⎡
+−−−+−
−+−−−+

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
⋅⎥

⎦

⎤
⎢
⎣

⎡
−

−
bn)nm)(ba()nm(bm)ba(

n)ba()nm(a)nm)(ba(am
nnm

nmm
bba

baa

 

,S
bn2anbmambnam

bnambnanbmam2
∈⎥
⎦

⎤
⎢
⎣

⎡
ββ−α
α−βα

=⎥
⎦

⎤
⎢
⎣

⎡
+−−−

−+−−
=  

where bnanbmam2 +−−=α  and .bn2anbmam +−−=β  
So S  is a subring of ).(2 ZM  
 
However, S  is not an ideal of ).(2 ZM  For instance, 

S
03
04

01
01

21
13

∉⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
 though .S

21
13
∈⎥
⎦

⎤
⎢
⎣

⎡
 

 
E6) Here S  is not a subring since, for example,  

,S
02
22

,
13
32

∈⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 but  

.S
68
410

02
22

13
32

∉⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
 

 Hence, S  is not an ideal either.  
 

E7) You should show that 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Z2d,c,b,a

dc
ba

I  is an ideal of ).(2 ZM  

 Define .
dc
ba

dc
ba

:)()(: 222 ⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
φ→φ ZMZM  

 Check that φ  is well-defined, and an onto ring homomorphism. Further,  

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

====⎥
⎦

⎤
⎢
⎣

⎡
=φ 2indcb0a

dc
ba

Ker Z  

                   
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Z2d,c,b,a

dc
ba

 

                   ).2(2 ZM=  
 Now apply FTH to get the result. 
   
E8) As in Example 1, show that 010 =  in .3i]i[ >+<Z  
 Also .73i3i =−=⇒−=  

 Hence, show that }.9,,1,0{3i
]i[ K=>+<

Z  
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E9) Let 3020: ZZ →φ  be a ring homomorphism. 

 Since 1  generates )1(,20 φZ  determines .φ  

 Let ).30(modm)1( =φ  

 Now, in .211,20 =Z  Also, .1)1( 2 =  

 So ),1(21)21()1( φ=φ=φ  and ).1()]1([ 2 φ=φ  
 Thus, m21m =  and mm2 =  in .30Z  

 So m2030  and )1m(m30 −  in .Z  

 Now, .m3m23m2030 ⇒⇒  

 So 27,,6,3,0m K=  in .30Z  

 Now, which of these values satisfy ?mm2 =  They are .21,15,6,0  
 Accordingly, there are 4  ring homomorphisms from ,3020 ZZ →  namely,  
 ,1 0≡φ  

 ,n6)n(:: 230202 =φ→φ ZZ  

 ,n15)n(:: 330203 =φ→φ ZZ  

 .n21)n(:: 430204 =φ→φ ZZ  
 
 
E10) Suppose ,nk82 3=+  for some .n Z∈     …(4) 
 Then, applying the canonical homomorphism ,x)x(p::p 8 =→ZZ   

 to (4), we get 3n2 =  in .8Z  
 You should check that there is no such n  in .8Z  
 So we reach a contradiction. 
 Thus, }kk82{ Z∈+  contains no element of the form .n,n3 Z∈  


