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BLOCK INTRODUCTION 
 
In this block we will continue our discussion on ring theory. In Unit 14, you will study 
about two special types of rings, namely, integral domains and fields. Here we will 
discuss the properties of these special rings in some detail. 
 
Next, in Unit 15, we shall discuss rings whose elements may be familiar to you, 
namely, polynomials in one indeterminate. We will discuss various properties of 
polynomials over any commutative ring. Apart from its mathematical interest, the theory 
of polynomials over a field has several applications. In fact, because of this, linear and 
quadratic polynomials over Q  were dealt with in considerable depth by the ancient 
Indian mathematicians Aryabhata I, Sridhar, Bhaskara II and others. Nowadays, this 
theory is used in coding theory and in mathematical modelling of problems from the 
social sciences and the physical sciences. 
 
Finally, in Unit 16, the last unit of this course, we shall look at those polynomials over 

RQ,  and C  which do not have any non-unit factors. Such polynomials are called 
irreducible polynomials. In this unit, you will study, and apply, several criteria for a 
polynomial over these fields to be irreducible. 
 
As in the other blocks, at the end of the block you will find several worked out examples 
covering the concepts you have studied in this block. There are also several 
miscellaneous exercises, given after the examples, for you to solve. Please work on 
these exercises yourself to understand the concepts concerned in a better way. 
 
With this block we come to the end of the course. After you finish studying it, please 
work on the assignment of the course, which deals with all the blocks of the course.
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NOTATIONS AND SYMBOLS (used in Block 4) 
 
Please review the notations and symbols given in the previous blocks also. 
 

Rchar  characteristic of the ring R  
]x[R  ring of polynomials, in the indeterminate ,x  over the ring R  

]n[Z  ZZZ ∈+ n,n  
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UNIT 14                                  

       INTEGRAL DOMAINS AND FIELDS 

Structure            Page Nos. 
 
14.1 Introduction     125  

Objectives 
14.2 What is an Integral Domain?    126 
14.3 Characteristic of a Ring    132 
14.4 Fields     135 
14.5 Field of Quotients    139 
14.6 Prime and Maximal Ideals    143 
14.7 Summary     150 
14.8 Solutions / Answers    151        
 

14.1 INTRODUCTION 
 
In Unit 10, we introduced you to rings, and then to special rings, like 
commutative rings and rings with unity. As you found there, the speciality of 
these rings lies in the properties of the multiplication defined on them. You 
also saw that a typical example of such special rings is .Z  So, in a sense, 
these rings are abstractions of .Z  Yet, they do not necessarily satisfy an 
essential property of ,Z  which is the cancellation property for multiplication. In 
this unit, you shall study about rings which have this property too. Such rings 
are called integral domains, and are very important for studying several 
branches of algebra and its applications. 
 
Throughout this unit, we shall assume the rings to be commutative, 
unless specified otherwise.  
 
In Sec.14.2, we will begin by discussing what a zero divisor is. This will take 
you further, to the definition of an integral domain, along with several 
examples. You will see why many of the rings you have seen so far are 
examples of integral domains, and why many are not! We will discuss various 
properties of integral domains also in this section. 
 
In the next section, Sec.14.3, we will focus on a feature that characterises any 
ring, not necessarily commutative. This is a non-negative integer connected to 
each ring, called its characteristic. We will focus here on the characteristic of 
an integral domain, in particular. You will study the reasons for the 
characteristic of an integral domain being 0  or a prime number. 
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In Sec.14.4, you will study a common property of rings like CRQ ,,  and pZ  
(where p is a prime number). In these rings, the non-zero elements form an  
abelian group with respect to multiplication. Such a  ring is called a  field.  
Fields are very useful algebraic objects, one reason being that every non-zero 
element of a field is a unit. In this section, you will also study some basic 
properties of fields. 
 
Next, in Sec.14.5, you will study that given an integral domain, there is a field 
containing it. You will also see how to construct the smallest field that contains 
a given integral domain. As you will see, this is essentially the way that Q  is 
constructed from .Z   
 
Related to integral domains and fields are certain special ideals of rings, called 
prime ideals and maximal ideals. In Sec.14.6, you will study such ideals and 
their relationship with integral domains and fields. 
 
As you can see, in this unit you will study several new concepts. You may 
need some time to grasp them. Don’t worry. Take as much time as you need. 
But by the time you finish studying it, we hope that you will have attained the 
following learning objectives.  
 
Objectives 
 
After studying this unit, you should be able to:  

• define, and give examples of, a zero divisor in a ring; 

• check whether an algebraic system is an integral domain or not; 

• obtain the characteristic of a ring, whether commutative or not; 

• check whether an algebraic system is a field or not; 

• prove, and apply, simple properties of integral domains and fields; 

• construct, or identify, the field of quotients of an integral domain; 

• define, and identify, prime ideals and maximal ideals of a ring. 
 

14.2 WHAT IS AN INTEGRAL DOMAIN? 
 
Let’s begin this discussion with looking at the product of two non-zero integers. 
You know that this is a non-zero integer, i.e., if Z∈n,m  such that 

,0n,0m ≠≠  then .0mn ≠   
Now consider the ring .6Z  Here 02 ≠  and ,03 ≠  yet .0632 ==⋅  So, we 

find that the product of the non-zero elements 2  and 3  is zero in .6Z  This 
example leads us to the following definition. 
 
Definition: A non-zero element r  in a ring R  is called a zero divisor in R  if 
there exists a non-zero element b in R  such that .0rb =  
(Note that b will be a zero divisor too!) 
 
Now, do you agree that 2  is a zero divisor in ?6Z  What about 3  in ?4Z  Since 

0x3 ≠⋅  for every non-zero x  in 3,4Z  is not a zero divisor in .4Z   
 
The name ‘zero divisor’ comes from the fact that an element Rx∈  divides 

Rr∈  if Ry∈∃  s.t. .rxy =  The difference, though, is that here 0r =  but x  

Remember that R  is 
commutative. 
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and y  are both non-zero. So, in the case of 02,032 =⋅  and .03  Thus, 

both 2  and 3  are zero divisors in .6Z  
 
Let us consider some more examples of rings with zero divisors. 
 
Example 1: Check whether or not >< 4]3[Z  has zero divisors. 
 
Solution: Note that },b,a43ba{4]3[ ZZ ∈><++=><  and 

}.b,a3b4a4{4 Z∈+=><  

We need to see if ><∈∃ 4]3[y,x Z  s.t. 0y,0x ≠≠  but ,0xy =  i.e., if ∃  

]3[y,x Z∈  s.t. ,4y,x >∉<  but .4xy >∈<  
Consider .2y,2x ==  Now .4y,4x >∉<>∉<  (Why?)  
But .44xy >∈<=  

Hence, 2  is a zero divisor in .4]3[ ><Z  
You can find several other zero divisors in this ring. In fact, you should try and 
find at least one more. 

*** 
 
Example 2: Give an example, with justification, of a zero divisor in ]1,0[C .  
 
Solution: Consider the function ],1,0[Cf∈  given by 

⎪⎩

⎪
⎨
⎧

≤≤

≤≤−=
.1x2/1,0

2/1x0,2
1x)x(f  

Let us define R→]1,0[:g  by 

⎪⎩

⎪
⎨
⎧

≤≤−

≤≤
= .1x2/1,2

1x

2/1x0,0
)x(g  

Then, from Calculus, you know that ].1,0[Cg,f ∈   
Also 0g,0f ≠≠  and ].1,0[x0)x(g)x(f)x)(fg( ∈∀==   
Thus, fg  is the zero function.  
Hence, f  is a zero divisor in ],1,0[C  and so is .g  

*** 
 
Example 3: Check whether or not the direct product of two non-trivial rings 
has zero divisors. 
 
Solution: Let A  and B  be non-trivial rings. Let ,0a,Aa ≠∈  and 

.0b,Bb ≠∈  
Then BA)0,a( ×∈  and BA)b,0( ×∈  are both non-zero.  
However, ).0,0()b,0()0,a( =  
Hence, )0,a(  and )b,0(  are zero divisors in .BA×  

*** 
 
Example 4: Check whether or not )X(℘  has zero divisors, where X  is a set 
with at least two elements.  
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Solution: Each non-empty proper subset A  of X  is a zero divisor because  

,AAAA cc «=∩=⋅  the zero element of ).X(℘  

*** 
 
Example 5: Let x  be a zero divisor in ,nZ  where .n N∈  Show that .1)n,x( >  
 
Solution: Let ny Z∈  s.t. 0y ≠  and .0yx =  
So ,yn,xn  but .xyn  
Suppose .1)n,x( =  Then Z∈∃ r,m  s.t. .1nrmx =+  
Then .nrymxy1yy +=⋅=  
Now xyn  and .nryn  Hence, ),nrymxy(n +  i.e., ,yn  a contradiction. 
Thus, .1)n,x( ≠  
Hence, .1)n,x( >  

*** 
 
Try solving these exercises now. 
 
 

E1) List all the zero divisors and all the units in ,Z  and in .10Z  Is there a 
relationship between the zero divisors and the units of each ring? If so,  

 what is it? (This is linked with E5.) 
 
E2) Prove the converse of what is given in Example 5. 
 
E3) Let R  be a ring and Ra∈  be a zero divisor. Show that every non-zero 

element of the principal ideal Ra  is a zero divisor. 
 
E4) Check whether or not )X(℘  has zero divisors, where }.a{X =  
 
E5) Let R  be a ring with unity and .0a,Ra ≠∈  

 i) If a  is not a zero divisor, does ?)R(Ua∈  

 ii) If ),R(Ua∈  can a  be a zero divisor in ?R  

 Justify your answers. 
 

 
So far you have seen several examples of rings with zero divisors. You also 
know that Z  has no zero divisors. Actually, there are many rings without zero 
divisors. Let us define such rings. 
 
Definition: A non-trivial ring R  is called an integral domain if  

i)  R  is commutative,  

ii)  R  is with identity, and  

ii)  R  has no zero divisors. 
 
Thus, an integral domain is a non-trivial commutative ring with identity in which 
the product of two non-zero elements is a non-zero element. 
 
This kind of ring gets its name from the set of integers, one of its best known 
examples. In fact, integral domains were originally thought of as a 
generalisation of .Z  
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Can you think of other integral domains? What about RQ,  and ?C  You 
should check that they satisfy the conditions in the definition. 
 
Now, from the examples you have studied so far, can you think of rings that 
are not integral domains? What about ?]1,0[C  In Example 2, you have seen 
that it has zero divisors. Thus, ]1,0[C  is not an integral domain. 
 
Before we go further, here is a short remark about terminology. 
 
Remark 1: Several authors often shorten the term ‘integral domain’ to 
‘domain’. We will do so too.  
 
Let us now look at .nZ In E1 you have proved that 10Z  is not a domain. Earlier, 
you have noted that 6Z  and 4Z  are not domains. So, is nZ  not a domain for 

any ?n N∈  Take }.1,0{2 =Z  Since 2,0111 Z≠=⋅  is a domain.  
What about ?}2,1,0{3 =Z  You should check that it is a domain. 
So, what is it about 2Z  and 3Z  that makes them domains, while 6Z  and 4Z  
are not? You may have concluded what we shall now prove. 
 
Theorem 1:  pZ  is an integral domain iff p  is a prime number. 
 
Proof: You know that nZ  is a non-trivial commutative ring with identity 

.2n ≥∀  So, we need to prove that pZ  has no zero divisors iff p  is a prime. 
 
First, let us assume that p  is a prime number.  

Suppose pb,a Z∈  satisfy .0ba =   

Then 0ab = , i.e., abp .  

Since p  is a prime number, from Unit 1 you know that ap  or .bp   

Thus, 0a =  or .0b =   
Thus, we have proved that if 0a ≠  and ,0b ≠  then 0ba ≠  in .pZ   
From Block 1 of the course, Real Analysis, you know that this is equivalent to 
having proved that 0a0ba =⇒=  or .0b =   
Thus, pZ  is without zero divisors, and hence, is a domain. 
 
Conversely, we are given that pZ  has no zero divisors.  

If ,1p =  then pZ  is the trivial ring, which is not a domain. 

If ,1p ≠  let pm  for some .m N∈  So ,mrp =  for some .r N∈   

Then ,pr1,pm1 ≤≤≤≤  and 0pmrrm ===  in .pZ   

Since pZ  is without zero divisors, 0m =  or .0r =  Thus, mp  or .rp   
This is only possible if pm =  or .pr =   
If .1r,pm ==  If .1m,pr ==  Thus, the only factors of p  are 1 and .p   
Hence, p  is a prime. 
 
By applying Theorem 1, you can immediately conclude something you have 
proved earlier, namely, that 610 , ZZ  and 4Z  have zero divisors! 
 
Let us look at another example of a domain now. 

A ring R  is without 
zero divisors if for 

,Rb,a ∈ 0a0ab =⇒=   
or .0b =
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Example 6: Show that }0{D
)DD(R

1

21
×

×=  is an integral domain, where 1D  

and 2D  are domains. 
 

Solution: From Unit 13, you know that ,D~
}0{D

)DD(
2

1

21 −×
×  a domain. 

Since isomorphic rings have exactly the same algebraic properties, and R  is 
isomorphic to a domain, R  must be a domain. Hence the result. 

*** 
 
An interesting point is brought out by the example above. From Example 4, 
you know that 21 DD ×  is not a domain. But a quotient ring of 21 DD ×  
becomes a domain! 
 
Try solving some exercises now. 
 
 
E6) Which of the following rings are not integral domains? Why? 
 }).0{()(},0{,,i,2,97 ×××+ ZZZRRZZZZ  
 
E7) Must the subring of an integral domain be a domain? Must the quotient 

ring of a domain be a domain? Give reasons for your answers. 
 
E8) Check whether or not ]n[Q  is an integral domain, where n  is a 

square-free integer. 
 
 
Now consider a ring .R  We know that the cancellation law for addition holds in 

,R  i.e., whenever caba +=+  in ,R  then .cb =  But, does acab =  imply 
?cb =  It need not. For example, 2010 ⋅=⋅  in ,Z  but .21≠  So, if 

acab,0a ==  does not imply .cb =  But, if 0a ≠  and ,acab =  is it true that 
?cb =  We will prove that this is true for integral domains. 

 
Theorem 2: A ring R  has no zero divisors if and only if the cancellation law 
for multiplication holds in R (i.e., if Rc,b,a ∈ such that 0a ≠  and acab =  or 

,caba =  then .)cb =  
 
Proof: Let us first assume that R  has no zero divisors. Assume that 

Rc,b,a ∈ such that 0a ≠  and .acab =  Then  
,acab)cb(a −=−  by Theorem 1, Unit 10. 

            .0=   
As 0a ≠  and R  has no zero divisors, we get ,0cb =−  i.e., .cb =  
Thus, if acab =  and ,0a ≠  then .cb =  
Similarly, if caba =  and ,0a ≠  then .cb =  (Note that here R  is not assumed 
to be commutative.) 
 
Conversely, assume that the cancellation law for multiplication holds in .R   
Let Ra∈  such that .0a ≠   
Suppose 0ab =  for some .Rb∈   
Then .0a0ab ==   
Using the cancellation law for multiplication, we get .0b =   
So, there is no non-zero b  s.t. .0ab =   
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Hence, a  is not a zero divisor, i.e., R has no zero divisors. 
 
Using this theorem, we can immediately conclude that the cancellation law 
for multiplication holds in an integral domain. 
 
Note that Theorem 2 is not true for domains alone. It is also true for any non-
domain that is without zero divisors, like .2Z  
 
Let us look at a couple of examples of the use of Theorem 2. 
 
Example 7: Does the cancellation law for multiplication hold for ?]i[Z  
 
Solution: Since ]i[Z  is a subring of ,C  it is without zero divisors. Thus, by 
Theorem 2, the cancellation law holds for ].i[Z  

*** 
 
Example 8: Let R  be a non-trivial finite ring with no zero divisors. Show that 
R  must have identity. 
 
Solution: Let .R0a ∈≠  Then ia  is a non-zero element of .iR N∈∀   
But R  has only finitely many elements.  
So sr aa =  for some .sr,s,r ≠∈N  
Let n  be the least positive integer s.t. N∈∃ m  with .nm,aa nm ≠=   
Then .nm >  
So, for all ,Rx∈  

nm axax ⋅=⋅  
,xaxa 1n1m −− =⇒  applying Theorem 2 and cancelling .a  

,xxa nm =⇒ −  applying the same process )1n( −  more times. 
Similarly, you can show that .Rxxxa nm ∈∀=−  
Thus, nma −  is the identity of .R  

*** 
 
Now, you should use Theorem 2 to solve the following exercises. 
 
 
E9) Check whether or not the cancellation law for multiplication holds in 

]7[Z  and in .5Z  
 
E10) In a domain, show that the only solutions of the equation xx2 =  are 

0x =  and .1x =  
 
E11) Prove that 0  is the only nilpotent element (see Example 9 of Unit 12) in 

a domain. 
 
E12) Let R  be a non-trivial finite ring with identity and let .0a,Ra ≠∈  Show 

that a  is either a zero divisor or a  is a unit of .R  
 
 
Now let us introduce a non-negative integer associated with any ring. This will 
lead us to a particular feature of an integral domain. 
 

An element r  of a ring 
R  is called an  
idempotent if .rr 2 =  
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14.3 CHARACTERISTIC OF A RING 
 
In this section, we will focus on a non-negative integer that characterises rings. 
If the ring R is finite, this integer actually turns out to be a divisor of the order 
of the underlying abelian group ).,R( +  The purpose of introducing this feature 
of a ring is that it gives an important property of integral domains, as you will 
see.  
 
Note that in this section, we will NOT restrict the discussion only to 
commutative rings. 
 
Let us begin with a look at .4Z  Is there an N∈n  s.t. 02n =⋅  in ?4Z  Yes, for 
example, N∈2  s.t. .022 =⋅  Is there an N∈n  such that 03n =⋅  in ?4Z  

What about ?4  01234 ==⋅  in ,4Z  so this works. 
Is there an N∈n  s.t. ?x0xn 4Z∈∀=⋅  What about ?4  
You know that ,x0x4 4Z∈∀=  since .04 =  In fact, 0x8 =  and 0x12 =  
also, for any .x 4Z∈  But 4  is the least positive integer with this property, that 
is, 4  is the least element of the set .}x0nxn{ 4ZN ∈∀=∈  This tells us  

that 4  is the characteristic of ,4Z  as you will see now. 
 
Definition: Let R  be a ring. The least positive integer n  such that 

Rx0nx ∈∀=  is called the characteristic of .R  
If there is no positive integer n  such that ,Rx0nx ∈∀=  then the 
characteristic of R  is defined to be zero. 
The characteristic of R  is denoted by .Rchar  
 
So, as you have seen above, .4char 4 =Z  In fact, you should check that  

,nchar n =Z  and .0char =Z  
 
Let us consider another example. 
 
Example 9: Find ),m(char Z  where .2m,m ≥∈Z  
 
Solution: Any element of Zm  is of the form .n,mn Z∈  Now, if Z∈r  such 
that ,n0rmn Z∈∀=  then ,0rm =  taking .1n =   
Since ,0m ≠  we conclude .0r =  
Hence, .0)m(char =Z  

*** 
 
Solving the following exercises will give you a better understanding of the 
characteristic of a ring. 
 
  

E13) Give an example, with justification, of a ring R  with ,0Rchar =  
.m,mR NZ ∈≠  

 
E14) Find ),X(char℘  where X  is a non-empty set. 
 
E15) Let R  be a ring and let .mRchar =  What is )RR(char × ? 
 
E16) If R  is a finite ring, why must Rchar  be non-zero? 

Remember that in this 
section the rings need not 
be commutative. 
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E17) i) Let R  be a finite ring, with n  elements. Show that Rchar  divides 

.n   

 ii) In particular, what are n  and ,r  for ?)(R 42 ZM=  

 iii) Give an example, with justification, of R  in (i) above, with .nr =  
  
 
Now let us look at a nice result about the characteristic of a ring with identity. It 
helps in considerably reducing our labour when we want to obtain the 
characteristic of such a ring. 
 
Theorem 3: Let m  be a positive integer and R  be a ring with identity. Then 
the following conditions are equivalent. 

i) .01m =⋅  

ii) 0ma =  for all .Ra∈  
 
Proof: We will prove )ii()i( ⇒  and ).i()ii( ⇒  
 

:(ii)(i)⇒  We know that .01m =⋅  
Thus, for any ,0a0a)1m()a1(mma,Ra =⋅=⋅=⋅=∈  i.e., (ii) holds. 
 

:(i)(ii)⇒  If ,Ra0ma ∈∀=  then it is certainly true for ,1a =  i.e., .01m =⋅  
 
What Theorem 3 tells us is that to find the characteristic of a ring R with 
identity, we only need to look at the set ,}n1{n N∈⋅  instead of 

.n,Rxnx N∈∈∀  
 
Let us look at some examples. 

i)  ,0char =Q  since 01n ≠⋅  for any .n N∈  

ii)  Similarly, 0char =R  and .0char =C  

iii)   You have already seen that ,nchar n =Z  for .2n ≥  Here ,01n =⋅  and 
n  is the least such natural number. 

 
You have seen several examples of rings and their characteristics. From these 
examples you may have concluded that the characteristic of an infinite ring is 
zero. However, consider the following example. 
 
Example 10: Find the characteristic of ],x[3Z  the ring of polynomials in x  
with coefficients from .3Z  
 
Solution: Any element of ]x[3Z  is a polynomial in x  with coefficients 1,0  or 

2  in .3Z  This ring has an identity, namely, .1  

Since 3  is the smallest positive integer such that ,3]x[char,01n 3 ==⋅ Z  by 
Theorem 3. 

*** 
 
Note that ]x[3Z  is an infinite ring, since for each ,n N∈  there is a polynomial 
of degree ,n  and all these polynomials are distinct. Thus, ]x[3Z  is an 
example of an infinite ring with non-zero characteristic.  
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Why don’t you solve some exercises now? 
 
 
E18) Find ,n),(char n NCM ∈  and .m,n),(char mn NZM ∈  
 
E19) If R  is a ring and I  an ideal of ,R  must ?)IR(charRchar =  Why, or 

why not? 
 
E20) If R  is a ring and S  is a proper subring of ,R  is RcharSchar <  in all 

cases? Why, or why not? 
 
E21) Is there any ring with characteristic ?1  Why, or why not? 
 
E22) Let R  and S  be isomorphic rings. Find .ScharRchar −  
  
 
Now let us look at what Theorem 1 says. It says nZ  is a domain iff n  is a 
prime. So, if we connect this with ,char nZ  we find that nZ  is a domain iff 

nchar Z  is a prime. So, the question arises if there is any domain whose 
characteristic is not a prime. Isn’t Q  one such domain, since ,0char =Q  not 
a prime? Can R,Rchar  a domain, take any other values? The following 
theorem answers this question. 
 
Theorem 4: The characteristic of an integral domain is either zero or a prime. 
 
Proof: Let R  be a domain. We will prove that if the characteristic of R  is not 
zero, then it is a prime number.  
 
So, suppose char ,mR =  where .m N∈  Then m  is the least positive integer 
such that ,01m =⋅  by Theorem 3.  
We will show that m  is a prime number, using the method of contradiction, 
i.e., we will assume m  is not prime, and then reach a contradiction. This will 
show that our assumption was wrong. 
 
So, suppose m  is not prime. So ,stm =  where ms1,t,s <<∈N  and 

.mt1 <<   
Then 01s0)1t()1s(01)st(01m =⋅⇒=⋅⋅⇒=⋅⇒=⋅  or ,01t =⋅  since R  is 
without zero divisors.  
But, s  and t  are less than .m  So, by Theorem 3, we reach a contradiction to 
the fact that .Rcharm =  Therefore, our assumption that m  is not prime must 
be wrong. Thus, m  is a prime number. 
 
Now, what about the converse of Theorem 4? That is, if R  is a ring with 
characteristic 0  or with prime characteristic, must R  be a domain? You can 
use your understanding of ‘characteristic’ to answer this, and to solve the other 
exercises that are given below. 
 
 
E23) Check whether or not the converse of Theorem 4 is true. 
 (Hint: Does E15 help?) 
 
E24) Let R  be an integral domain of characteristic p,p  a prime.  Prove that  

 i) for ppp ba)ba(,Rb,a +=+∈  and .ba)ba( ppp −=−  
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 ii) 
nnn ppp ba)ba( +=+  for N∈n  and .Rb,a ∈  

 iii) the subset }Raa{ p ∈  is a subring of .R  

 iv) the map pa)a(:RR: =→ φφ  is a monomorphism. 

 v) if R  is a finite integral domain, then φ  [in (iv) above] is an 
isomorphism. 

 
E25) Which of the statements in E24 are true if ?0Rchar =  Why? 
 
E26) Show that 666 ba)ba( +=+  need not be true for a ring ,R  where 

,Rb,a ∈  and .6Rchar =  
 
E27) Let R  be a ring with unity ,1  and let char .mR =  Define 

.1n)n(f:R:f ⋅=→Z  Show that f  is a homomorphism. What is a 
generator for ?fKer  

 
E28) Find the characteristic of .43 ZZ ×  Use this ring as an example to show 

why Theorem 4 is only true for integral domains. 
 
 
By now, you would be familiar with integral domains, and their characteristic. 
Let us move to a discussion on another algebraic structure. We obtain this 
structure by imposing certain restrictions on the multiplication of a domain.  
 

14.4 FIELDS 
 
In this section, you will study some special domains, of which RQ,  and C  
are examples. Let us see what is extra special about these integral domains. 
 
To understand what we are leading to, take a ring, ).,,R( ⋅+  You know that 

),R( +  is an abelian group. You also know that the operation · is associative in 
.R  But ),R( ⋅  need not be an abelian group. For instance, ),( ⋅Z  is not an 

abelian group since, for example, 2  has no multiplicative inverse in .Z   
Similarly, ),( ⋅C  is not an abelian group since there is no element C∈a  such 
that .10a =⋅  But ),( ⋅∗C  is an abelian group, as you know. So are ∗Q  and ∗R   
abelian groups with respect to multiplication. These observations lead us to  
define a new algebraic object. 
 
Definition: A ring ),,R( ⋅+  is called a field if )},0{\R( ⋅  is an abelian group. 
 
Thus, for a system ),,R( ⋅+  to be a field it must satisfy the ring axioms 1R  to 

6R  (of Unit 10) as well as the following axioms: 

R7)  multiplication is commutative; 

R8)  R  has a non-zero identity (which we denote by )1 ;  and  

R9)  every non-zero element x  in R  has a multiplicative inverse, which we 
denote by ,x 1−  i.e., }.0{\R)R(U =  

Consider the following related piece of information, before we go further. 
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Remark 2: A ring that satisfies 8R  and ,9R  but not ,7R  is called a division 
ring, or a skew field, or a non-commutative field. Such rings are also very 
important in the study of algebra. (One example is ,H  the ring of real 
quaternions that you studied in Unit 10.) However, we will not be discussing 
division rings in this course. 
 
Let us go back to fields now. The notion of a field evolved during the 19th 
century, through the research of the German mathematicians, Richard 
Dedekind and Leopold Kronecker, in algebraic number theory. Dedekind used 
the German word ‘Körper’, which means ‘field’, for this concept. This is why 
you will often find that a field is denoted by K  in mathematics books and 
articles.  
 
As you have seen, RQ,  and C  are fields. However, ),( ⋅∗Z  is not a group. 
So, Z  is not a field.  
 
Consider another example of a field, in some detail. 
 
Example 11: Show that }b,ab2a{]2[ QQ ∈+=  is a field. 

 
Solution: From Unit 10, you know that ]2[F Q=  is a commutative ring with 

identity, .021 ⋅+  
Now, let b2a +  be a non-zero element of .F  Using the rationalisation 
process, we see that 

22

1

b2a
b2a

)b2a()b2a(
b2a

b2a
1)b2a(

−
−

=
−+

−
=

+
=+

−
 

 .F
b2a
)b(2

b2a
a

2222 ∈
−
−

+
−

=  

(Note that ,0b2a 22 ≠−  since 2  is not rational and at least one of a  and b  
is non-zero.)  
Thus, every non-zero element of F  has a multiplicative inverse.  
Therefore, QQ 2F +=  is a field. 

*** 
 
By now you have noted several examples of fields. Have you observed that all 
of them happen to be integral domains also? This is not a coincidence. In fact, 
we have the following result.                                                                                              
 
Theorem 5: Every field is an integral domain. 
 
Proof: Let F  be a field. Then F},0{F ≠  is a commutative ring and .F1∈  We 
need to see if F  has zero divisors.  
So, let a and b be elements of F  such that 0ab =  and .0a ≠  As 0a ≠  and F  
is a field, 1a−  exists.  
Then, as you proved in E5(ii), a  is not a zero divisor.  
So, F  has no zero divisors.  
Thus, F  is an integral domain. 
 
We can use Theorem 5 in many ways. For example, by applying Theorem 5 
and Theorem 1, you know that 10Z  is not a field, as 10  is not a prime. 
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Now, is the converse of Theorem 5 true? That is, is every domain a field? Note 
that Z  is a domain, but not a field.  
 
Now you should solve these related exercises. 
 
 
E29) Which of the following rings are not fields, and why? 

}).a({,],2[,,,6 65 ℘×QQZZZZ  
 
E30) Is a subring of a field also a field? Why? 
 
E31) Check whether or not ]i[Z  and ]i[Q  are fields. 
 
E32) Is >< 2x]x[Z an integral domain? Is it a field? Give reasons for your 

answers. 
 
 
You have noted that not every domain is a field. However, if we restrict 
ourselves to finite domains, we find that they are fields, as you will now see. 
 
Theorem 6: Every finite integral domain is a field. 
 
Proof: Let }a,,a,1a,0a{R n210 K===  be a domain. Then, by definition, R  is 
commutative. To show that R  is a field, we must show that }.0{\R)R(U =  
 
So, let iaa =  be a non-zero element of R (i.e., 0i ≠ ). Consider the elements 

.aa,,aa n1 ⋅⋅⋅  For every ,0a,0j j ≠≠  and since ,0a ≠  we get .0aa j ≠  

Hence, the set }.a...,,a{}aa...,,aa{ n1n1 ⊆  
 
Also, n21 aa,,aa,aa K  are all distinct elements of the set },a...,,a{ n1  since 

,aaaaaa kjkj =⇒=  by Theorem 2. 

Thus, }.a...,,a{}aa...,,aa{ n1n1 =  
In particular, j1 aaa1 ==  for some .n,,1j K=  
Thus, a  is invertible in .R   
Hence, every non-zero element of R  has a multiplicative inverse.  
Thus, R  is a field. 
 
Using this result, we will now prove a theorem which generates several 
examples of fields. 
 
Theorem 7: nZ  is a field if and only if n  is a prime number. 
 
Proof: From Theorem 1, you know that nZ  is a domain if and only if n  is a 
prime number. You also know that nZ  has only n  elements. Now we can 
apply Theorem 6 to obtain the result. 
 
Theorem 7 unleashes infinitely many examples of fields: ,,,, 7532 ZZZZ  and 
so on. They are all examples of what we now define. 
 
Definition: A field whose underlying set is finite is called a finite field. 
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Thus, pZ  is a finite field for every prime .p  Finite fields have many important 
applications in various areas of science and technology, like cryptography.  
You can study them in detail at a later stage. 
 
Looking at all the examples of fields, can you say anything about the 
characteristic of a field? In fact, using Theorems 4 and 5 we can. 
 
Theorem 8: The characteristic of a field is either zero or a prime number. 
 
Proof: Applying Theorems 4 and 5, we get this result. 
 
From Theorem 7 and Theorem 8, we see that for each prime p  we have a 
field of characteristic ,p  namely, .pZ  
 
So far the examples of finite fields that you have seen have consisted of p  
elements, for some prime .p  In the following exercise, we ask you to check an 
example of a finite field with 4  elements. 
 
  
E33) Let }.a1,a,1,0{R +=  Define +  and · in R  as given in the following 

Cayley tables. 

 

01aa1a1
10a1aa
aa1011

a1a100
a1a10

++
+

+
+
++

 

a1a10a1
1a1a0a

a1a101
00000

a1a10

++
+

+

+•

 

 Show that R  is a field. Also find the characteristic of this field. 
 
 
What E33 tells you is that there are finite fields that have n  elements, where 
n  is not a prime. However, as you will see in your higher studies, rpn =  for 
some prime p  and some .r N∈  For example, in E33, .2n 2=  
 
Let us now look at the ideals of a field. Consider the examples of fields you 
have studied so far. In Unit 12, you have seen that RQ,  and C  have only 

}0{  as a proper ideal. Is this true for other fields? The answer is given by the 
following theorem.         
 
Theorem 9: Let R  be a commutative ring with identity. Then R  is a field if 
and only if R  and }0{  are the only ideals of .R  
 
Proof: Let us first assume that R  is a field. Let I  be an ideal of .R   
If },0{I ≠  there exists a non-zero element .Ix∈   
As 0x ≠  and R  is a field, 1xy =  for some .Ry∈   
Since Ix∈  and I  is an ideal, ,Ixy∈  i.e., .I1∈  
Thus, by Theorem 2 of Unit 12, .RI =  
So, the only ideals of R  are }0{  and .R  
 
Conversely, assume that R  and }0{  are the only ideals of .R   
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Let .0a,Ra ≠∈  Consider the principal ideal }.Rrra{Ra ∈=   
This is a non-zero ideal of ,R  since .Raa∈   
Therefore, .RRa =   
Now, .RaR1 =∈   
Therefore, ba1=  for some ,Rb∈  i.e., 1a−  exists.  
Since a  was an arbitrary non-zero element of ,R  we have proved that every 
such element has a multiplicative inverse.  
Therefore, R  is a field. 
 
From Theorem 9 and Example 11, you know that ]2[Q  has no non-trivial 

proper ideal. In fact, ]p[Q  has no non-trivial proper ideal, where p  is a 
prime. Similarly, you also now know that RC,  and pZ  have no proper non-
trivial ideals. Thus, Theorem 9 is very useful. You will find that you will be 
applying it again and again in the rest of this block. 
 
Using Theorem 9, we can obtain some interesting properties of field 
homomorphisms. We ask you to prove them in the following set of exercises. 
 
 
E34) Let F  and K  be fields, and let KF:f →  be a field homomorphism. 

Show that either f  is the zero map or f  is .1-1  
 
E35) Check whether or not 

 i) a homomorphism from a ring to a field must be ,1-1  

 ii) a field homomorphism must be the zero map or surjective. 
 
E36) Let R  be a ring isomorphic to a field .F  Show that R  must be a field. 
 
 
Now that we have discussed integral domains and fields, let us look at a 
natural way of embedding a domain in a field. 
 

14.5 FIELD OF QUOTIENTS 
 
Let us consider the relationship between Z  and .Q  You know that every 

element of Q  is of the form ,b
a  where Z∈a  and .b ∗∈Z  Actually, we can 

also denote b
a  by the ordered pair .)b,a( ∗×∈ ZZ  Let us use this to define a 

relation in ∗×ZZ  which mimics the way elements of Q  behave.   
 

In ,Q  you know d
c

b
a =  iff .bcad =  Let us put a similar relation, ~, on the 

elements of ,∗×ZZ  i.e., )d,c(~)b,a(  iff .bcad =   
Then, you should check that ~ is an equivalence relation. 
 
Next, you know that the operations in Q  are given by 

bd
bcad

d
c

b
a +=+  and .d

c,b
a

bd
ac

d
c

b
a Q∈∀=⋅  

Recall that, for any 
ring  R, ∗R  denotes 

}.0{\R  

A field homomorphism is 
a ring homomorphism from 
one field to another. 
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Keeping these operations in mind, we define binary operations on the 
equivalence classes in ∗×ZZ  as follows:  

)],bd,bcad[()]d,c[()]b,a[( +=+  and 
.~)()]d,c[()],b,a[()]bd,ac[()]d,c[()]b,a[( ∗×∈∀=⋅ ZZ   

It turns out that a ring is formed by the set of these equivalence classes, w.r.t. 
these operations, and it is a field isomorphic to .Q  
Further, there is an inclusion from Z  to this field, so that we can treat Z  as a 
subring of this field. 
 
Let us generalise this procedure to obtain a field encompassing any given 
integral domain.  
 
Theorem 10: Let R  be an integral domain. Then R  can be embedded in a 
field ,F  where every element of F  has the form 1ab−  for .0b,Rb,a ≠∈  
 
Proof: Consider the set of ordered pairs, Rb,a)b,a{(K ∈= and }.0b ≠  
Let us define a relation ~ in K  by )d,c(~)b,a('  if .'bcad =  
 
~ is reflexive: ,K)b,a()b,a(~)b,a( ∈∀  since R  is commutative.  
So, ∼ is reflexive. 
 
~ is symmetric: Let K)d,c(),b,a( ∈  such that ).d,c(~)b,a(   
Then ,bcad =  i.e., .dacb =   
Therefore, ).b,a(~)d,c(   
Thus, ~ is symmetric.  
 
~ is transitive: Let K)v,u(),d,c(),b,a( ∈  such that )d,c(~)b,a(  and 

).v,u(~)d,c(   
Then bcad =  and .ducv =   
Therefore, ,bdu)cv(bv)bc(v)ad( ===  i.e., .budavd =   
Since ,0d ≠  by the cancellation law for multiplication, we get  

,buav =  i.e., ).v,u(~)b,a(   
Thus, ~ is transitive.  
 
Hence, ~ is an equivalence relation. 
 
Let us denote the equivalence class that contains )b,a(  by ].b,a[   
Thus, 0d,Rd,c)d,c{(]b,a[ ≠∈=  and }.bcad =   

For example, ]3,1[)6,2( ∈  and ]3,1[)2,1( ∉  in ,∗×ZZ  since 1632 ⋅=⋅  and 
.1231 ⋅≠⋅  

 
Also, note that for any domain {0}).\(R{0}1][0,R, ×=  
 
Let F  be the set of all equivalence classes of K  with respect to ~, i.e., 

.~KF =  
As we did for ~,)( ∗×ZZ let us define +  and · in F  as follows:  

],bd,bcad[]d,c[]b,a[ +=+  and  
].bd,ac[]d,c[]b,a[ =⋅  

Do you agree that +  and · are binary operations on ?F  Note that if 0b ≠  and  

A ring R is embedded in a 
ring S if there is a ring 
monomorphism from R to S. 

Recall, from Unit 1, that 
the set of all equivalence 
classes of ∗× ZZ  w.r.t. ∼ is  
denoted by .~/)( ∗×ZZ   
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0d ≠  in the integral domain ,R  then .0bd ≠  So, the right-hand sides of the 

equations defining the operations are equivalence classes in .F  Thus, the sum  
and the product of two elements in F  is again an element in .F  But, we still  
need to make sure that these operations are well-defined. 
 
So, let ]b,a[]b,a[ ′′=  and ].d,c[]d,c[ ′′=  We have to show that 

]d,c[]b,a[]d,c[]b,a[ ′′+′′=+  and ],d,c[]b,a[]d,c[]b,a[ ′′⋅′′=⋅   

i.e., ]db,cbda[]bd,bcad[ ′′′′+′′=+  and ].db,ca[]bd,ac[ ′′′′=  

Now, bd)cbda(db)bcad( ′′+′′−′′+  

 bdbcdbdabbdcddba ′′−′′−′′+′′=  
 bb)dcdc(dd)baba( ′′−′+′′−′=  

 ,bb)0(dd)0( ′+′=  since )b,a(~)b,a( ′′  and ).d,c(~)d,c( ′′  

 .0=  
Hence, ],db,cbda[]bd,bcad[ ′′′′+′′=+  i.e., +  is well-defined. 
 
Now, let us check if multiplication is well-defined. Consider 

cdabdcba)ca()bd()db()ac( ′′−′′=′′−′′  
                              ,dcabdcab ′′−′′=  since abba ′=′  and .cddc ′=′  
                              .0=  
Therefore, ].db,ca[]bd,ac[ ′′′′=  Hence, · is well-defined. 
 
Let us now prove that F  is a field. 
i)  +  is associative: For ,F]v,u[],d,c[],b,a[ ∈  

  ]v,u[]bd,bcad[]v,u[])d,c[]b,a([ ++=++  

         ]bdv,ubdv)bcad[( ++=  

         ]bdv),udcv(badv[ ++=  

         ]dv,udcv[]b,a[ ++=  

         ]).v,u[]d,c([]b,a[ ++=  
 
ii)  +  is commutative: For ,F]d,c[],b,a[ ∈   

   ].b,a[]d,c[]db,dacb[]bd,bcad[]d,c[]b,a[ +=+=+=+  
 
iii)  1][0,  is the additive identity for :F  For ,F]b,a[ ∈  

  ].b,a[]b1,a1b0[]b,a[]1,0[ =⋅⋅+⋅=+  
  
iv)  The additive inverse of Fb][a, ∈  is :b]a,[−  

  ],1,0[]b,0[]b,abab[]b,a[]b,a[ 22 ==−=−+  since ).b,0(~)1,0( 2  

We would like you to prove the rest of the requirements for F  to be a field (see 
E37), after which the proof will continue. 
 
 
E37) Show that · in F  is associative, commutative, distributive over ,+  and 

]1,1[  is the multiplicative identity for .F   
 Further, show that },0b,aF]b,a[{F ≠∈=∗  and that .F)F(U ∗=  
  
 
So, we have put our heads together and proved that F  is a field. 
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Now, let us define ].1,a[)a(f:FR:f =→  We want to show that f  is a 
monomorphism. 
 
f  is well-defined: If ba =  in ]1,b[]1,a[,R =  in ,F  i.e., )b(f)a(f =  in .F  
 
f  is a homomorphism: For ,Rb,a ∈  

),b(f)a(f]1,b[]1,a[]1,ba[)ba(f +=+=+=+  and  
).b(f)a(f]1,b[]1,a[]1,ab[)ab(f ⋅=⋅==  

 
f  is :1-1  Let Rb,a ∈  such that ).b(f)a(f =  Then 

.ba)1,b(~)1,a(]1,b[]1,a[ =⇒⇒=  
 
Thus, f  is a monomorphism. 
 
So, by the Fundamental Theorem of Homomorphism, )R(ffIm =  is a 
subring of F  which is isomorphic to .R  
As you know, isomorphic structures are algebraically identical. 
So, we can identify R  with ),R(f  and think of R  as a subring of .F  
Now, any element of F  is of the form 

,)b(f)a(f]1,b[]1,a[]b,1[]1,a[]b,a[ 11 −− ===  where .0b ≠   
Thus, identifying Rx∈  with ),R(f)x(f ∈  we can say that any element of F  is 
of the form ,ab 1−  where .0b,Rb,a ≠∈  
So, F  is the required field in which R  is embedded. 
  
The field ,F  whose existence we have just proved, is called the field of 
quotients (or the field of fractions, or the quotient field) of .R  
 
Thus, Q  is the field of quotients of .Z  
 
Consider the following remark in this context. 
 
Remark 3: Remember that the elements of the field of quotients of a domain 
R  are actually a product of equivalence classes. When we say that any 
element of this field ,F  is of the form ,ab 1−  we actually mean ,]1,b][1,a[ 1−  for 

.0b,Rb,a ≠∈  We are ‘loosely’ equating R  with its isomorphic copy )R(f  in 
.F  

 
Before considering more examples of a field of quotients, we shall prove a 
basic property of this field. This property will make it easier for you to obtain 
the quotient field of a domain. 
 
Theorem 11: The field of quotients of an integral domain R  is the smallest 
field containing .R  
 
Proof: To prove this, we shall equate ]1,a[  (of Theorem 10) with a .Ra∈∀  
Let F  be the field of quotients of .R  
Then, ,FR ⊆  as discussed in Theorem 10. 
Let K  be any other field containing .R  
Any element of F  is of the form ,ab 1−  where Rb,a ∈  and .0b ≠  
Since .Kb,a,Rb,a ∈∈   
Since ∗∈Kb  and K  is a field, .Kb 1∈−   
Thus, .Kb,a 1 ∈−  Hence, .Kab 1 ∈−  
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Thus, .KF ⊆  
Hence, F  is the smallest field containing .R  
 
Let us now use Theorem 11 to find the field of quotients of a large class of 
domains. 
 
Example 12: Find the field of fractions of a field .F  
 
Solution: Since F  is a field, it is the smallest field containing itself. Thus, F  is 
its own field of fractions. 

*** 
 
By Example 12, you know that pZ  is the field of fractions of itself, where p  is 
a prime. Similarly, Q  and C  are their own field of fractions. 
 
Try doing some exercises now. 
 
 
E38) Is R  the field of quotients of ZZ 2+ ? Or, is it ?C  Or, is it ?2QQ+  

Give reasons for your answers. 
 
E39) At what stage of the construction of the field F  in Theorem 10 was it 

crucial to assume that R  is a domain? Why? 
 
E40) Let R  be a commutative ring with unity, but not an integral domain. Can 

R  be embedded in a field? Why, or why not? 
 
 
In this section, you have seen how an integral domain can be naturally 
embedded in a field. Now let us look at quotient rings that are integral domains 
or fields, and their corresponding fields of fractions. 
 

14.6 PRIME AND MAXIMAL IDEALS 
 
Let us, again, begin with considering .pZ  You know that n

~
n ZZ

Z −  for .n N∈  

You also know that nZ  is an integral domain iff n  is a prime. Thus, Z
Z

n  is a 

domain iff n  is a prime. What is this property of a prime p  that allows Z
Z

p  

to be a domain? 

You know that if p  is a prime number and p  divides the product of two 
integers a  and ,b  then either p  divides a or p  divides .b  In other words, if 

,pab Z∈  then either Zpa∈  or .pb Z∈  It is this property that makes Zp  a 
special ideal of .Z  More generally, consider the following definition. 
 
Definition: A proper ideal P of a ring R  (commutative or not) is called a 
prime ideal of R if whenever Pab∈  for ,Rb,a ∈  then either Pa∈  or .Pb∈  
Thus, ZZZ 11,3,2  are all prime ideals of .Z  
 
As another example, }0{  is a prime ideal of R  because it is a proper ideal of 

,R  and   
0a0ab}0{ab =⇒=⇒∈  or }0{a0b ∈⇒=  or },0{b∈  where .b,a R∈  
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Let us look at other examples of prime ideals. 
 
Example 13: Let R  be an integral domain. Show that }Rx)x,0({I ∈=  is a 
prime ideal of .RR ×  
 
Solution: Note that .R}0{I ×=  In Unit 12, you have seen that I  is an ideal of 

.RR ×   
Further, it is a proper ideal, since .R}0{ ≠   
 
Now, let us check if I  is a prime ideal or not. For this, let 

RR)b,a(),b,a( 2211 ×∈  such that .I)b,a)(b,a( 2211 ∈  
Then )x,0()bb,aa( 2121 =  for some .Rx∈  

,0aa 21 =∴  i.e., 0a1 =  or ,0a2 =  since R  is a domain.  
Therefore, I)b,a( 11 ∈  or .I)b,a( 22 ∈  
Thus, I  is a prime ideal of .RR×  

*** 
 
Example 14: Check whether or not the ideal )Y(℘  is a prime ideal of ),X(℘  
where X  is a non-empty set and Y  is a proper non-empty subset of .X  
 
Solution: Let )X(B,A ℘∈  s.t. ),Y(AB ℘∈  i.e., .YBA ⊆∩  Then it is not 
necessary that YA ⊆  or ,YB⊆  i.e., it is not necessary that )Y(A ℘∈  or 

).Y(B ℘∈   
For instance, let },1{Y},3,2,1{X ==  }.3,1{B},2,1{A ==  Then 

,YBA ⊆∩  but neither A  nor B  are subsets of .Y  
Thus, )Y(℘  is not a prime ideal of ).X(℘  

*** 
 
Try solving the following exercises now. Doing so will help you get used to 
prime ideals. 
 
 

E41) Check whether or not the set }0)0(f]1,0[Cf{I =∈=  is a prime ideal of 
].1,0[C  

 
E42) Show that a commutative non-trivial ring R  with identity is an integral 

domain if and only if }0{  is a prime ideal of .R  
 
E43) Find all the prime ideals of .C  
 

E44) Check whether or not >< 6  is a prime ideal of ].5[Z  
 
 
Now, as you have seen, ZZ n  is a domain iff Zn  is a prime ideal of .Z  Is this  
situation true for prime ideals of Z  only? In fact, the same relationship holds  
between any integral domain and its prime ideals, as we will now prove. 
 
Theorem 12: An ideal P  of a commutative ring R  with identity is a prime 
ideal of R  if and only if the quotient ring PR  is an integral domain. 
 
Proof: Let us first assume that P  is a prime ideal of .R  Since R is 
commutative and has identity, from Unit 12 you know that PR  is commutative 
and has identity. 
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Also, since P  is a proper ideal of }.0{)PR(,R ≠   
Now, let Pa +  and Pb +  be in PR  such that ,P)Pb)(Pa( =++  the zero 
element of .PR   
Then ,PPab =+  i.e., .Pab∈    
As P  is a prime ideal of ,R either Pa∈  or .Pb∈   
So, either PPa =+  or .PPb =+  
Thus, PR  has no zero divisors. 
Hence, PR  is an integral domain. 
 
Conversely, assume that PR  is an integral domain.   
Let Rb,a ∈  such that .Pab∈   
Then PPab =+  in ,PR  i.e., P)Pb)(Pa( =++  in .PR  
As PR  is an integral domain, either PPa =+  or ,PPb =+  i.e., either Pa∈  
or .Pb∈    
This shows that P  is a prime ideal of .R  
 
Let us consider some examples to understand how useful Theorem 12 is. 
 
Example 15: Find all the prime ideals of .45Z  
 

Solution: You know that .4545 Z
ZZ =  So, by Theorem 8 of Unit 12, you know 

that the ideals of 45Z  correspond to the ideals of Z  containing .45Z   

Thus, the ideals of 45Z  are ,n ><  where .45n  So .45,15,9,5,3,1n =  

Hence, >< n  is ,0,15,9,5,3,45 ><><><><><Z  respectively.  
Since a prime ideal is a proper ideal, 45Z  is not a prime ideal. 

Since ,933 ><∈⋅  but ><><∉ 9,93  is not a prime ideal. 

Similarly, you should show why ><15  is not a prime ideal. 
Since 45  is not a prime, 45Z  is not a domain. Hence, >< 0  is not a prime 
ideal. 

Now, ,~
3 3

45 ZZ −
><

 by the isomorphism theorems; and 3Z  is a field. Hence, 

>< 3
45Z  is a field. So by Theorem 12, >< 3  is a prime ideal of .45Z  

Similarly, show that >< 5  is a prime ideal of .45Z  
Note that >< 3  and >< 5  are the only prime ideals of Z  containing .45Z  
Thus, the prime ideals of 45Z  correspond to the prime ideals of Z  containing 

,45Z  i.e., ,pZ  where p,45p  a prime.  

That is, the only prime ideals of 45Z  are  

},40,35,30,25,20,15,10,5,0{5 =><  and 

}.42,39,36,33,30,27,24,21,18,15,12,9,6,3,0{3 =><  

*** 
 

Example 16: Show that >+< 5x  is a prime ideal of ].x[R  Also find the 
quotient field of .5x]x[ >+<R  
 

Solution: First, let us use the Fundamental Theorem of Homomorphism to  

prove that .~
5x

]x[ RR −>+<  

In E48 you will see that the 
prime ideals of nZ  
correspond to the prime 
ideals of Z  that contain .nZ  
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Define the evaluation function ).5(f))x(f(:]x[: −=φ→φ RR  
You know, from E2 of Unit 13, that φ  is a well-defined ring epimorphism. Also 

)5(]x[)x(f{Ker −∈=φ R  is a root of )}x(f  

         )5x(]x[)x(f{ +∈= R  divides )},x(f  as you know from Block 1 of  
              Calculus. 

         .5x >+<=  

Hence, by the Fundamental Theorem of Homomorphism, .~
5x

]x[ RR −>+<  

Since R  is a field, it is a domain. 

Hence, >+< 5x
]x[R  is a domain. 

Thus, >+< 5x  is a prime ideal of ],x[R  applying Theorem 12. 
 

Further, as ,~
5x

]x[ RR −>+<  a field, >+< 5x
]x[R  is a field. Hence, it is its 

own quotient field. 

*** 
 
Along the lines of Example 16, you should prove that >+< rx  is a prime ideal 
of .r]x[ RR ∈∀  
 
Now, let us consider another example of the use of the isomorphism 
theorems, and Theorem 12, for checking the primeness of an ideal. 
 
Example 17: Check whether or not >< 7  is a prime ideal of .49Z   

If it is, find the field of fractions of .749 ><Z   

If it is not, give a ring in which >< 749Z  is embedded. 
 
Solution: We will apply the third isomorphism theorem, which you have 
proved in Unit 13. Here, note that Z49  is an ideal of ,7Z  which is an ideal of 

.Z  Now, 

.7
~

)497(
)49(~

7
49

><−− Z
ZZ

ZZ
Z

Z  

Since you have seen that Z
Z

7  is a domain, so is .7
49

><
Z   

Hence, >< 7  is a prime ideal of .49Z  
 
Note that the required field of fractions is .7Z  (Why?) 

*** 
Try solving some related exercises now. 
 
 
E45) Check whether or not >+< 20x  is a prime ideal of ].x[Z  
 
E46) Let R  be a commutative ring with unity such that IR  is a domain for 

some ideal I  of .R  Will R  be a domain? Why? 
 
E47) Find all the prime ideals of .30Z  
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Now, in Z  you have seen that a prime ideal is generated by a prime number. 
Can this be generalised to other domains? 
For this, let us first talk about divisibility and prime elements in a domain.  
Recall, from E29, Unit 10, that we generalised the definition of a'  divides 'b  in 
Z  to any commutative ring, .R  You studied that an element a divides an 
element b  in R (denoted by ba ) if rab =  for some .Rr∈  
In this case, we also say that a  is a factor of ,b  or that a  is a divisor of .b  
 
Thus, 3  divides 6  in 7Z , since .623 =⋅  

Similarly, for },1{B},2,1{A},3,2,1{X ===  BA  in )X(℘  because  
X}3,1{C ⊆=∃  s.t. .BCA =∩  

 
Note that if R  is a ring with unity, then .Raaa ∈∀  (Why?) 
 
Given this definition of ‘divisor’ generalised to any commutative ring, let us 
generalise the concept of a prime integer. We will see what a prime element is 
in any domain. 
 
Definition: A non-zero element p  of an integral domain R  is called a prime 
element if 
i) p  is not a unit, and  
ii) whenever Rb,a ∈  and ,abp  then ap  or .bp  
 
Thus, the prime elements of Z  are precisely the prime numbers and their 
negatives. You also know that a prime element in Z  generates a prime ideal. 
Is this true for other domains? The following theorem answers this question. 
 
Theorem 13: Let R  be an integral domain. Then p  is a prime element of R  if 
and only if Rp  is a prime ideal of .R  
 
Proof: Let us first assume that p  is a prime element of .R   
Since p  does not have a multiplicative inverse, .Rp1∉   
Thus, Rp  is a proper ideal of .R   
 
Next, let Rb,a ∈  such that .Rpab∈  Then  

,rpab =  for some .Rr∈  
abp⇒  

ap⇒  or ,bp  since p  is a prime element. 
xpa =⇒  or xpb =  for some .Rx∈  
Rpa∈⇒  or .Rpb∈  

Thus, ⇒∈Rpab Rpa∈  or ,Rpb∈  i.e., Rp  is a prime ideal of .R  
 
Conversely, assume that Rp  is a prime ideal of .R  Then ,RRp ≠  by 
definition. Thus, ,Rp1∉  and hence, p  does not have a multiplicative inverse. 
Now, suppose p  divides ,ab  where .Rb,a ∈   
Then rpab =  for some ,Rr∈  i.e., .Rpab∈  
As Rp  is a prime ideal, either Rpa∈  or .Rpb∈   
Hence, either ap  or .bp    
Thus, p  is a prime element in .R  

Rx ∈ has a multiplicative  
inverse iff .RRx =  
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Theorem 13 is very useful for checking whether an element is a prime element 
or not, or for finding out when a principal ideal is a prime ideal.  For example, 
Theorem 13 and E42 tell us that 0  is a prime element of R  iff R  is a 
domain. 
 
Prime ideals have several other useful properties.  In the following exercises 
we ask you to prove some of them. 
 
 
E48) Let SR:f →  be a ring epimorphism with kernel .N  Show that  

 i) if J  is a prime ideal in ,S  then )J(f 1−  is a prime ideal in .R  

 ii) if I  is a prime ideal of R  containing ,N  then )I(f  is a prime ideal 
of .S  

 iii) the map φ  between the set of prime ideals of R  that contain N  
and the set of prime ideals of ,S  given by ),I(f)I( =φ  is a bijection. 

 
E49) Give an example of a ring homomorphism f  from R  to S  such that P  is 

a prime ideal of ,R  but )P(f  is not a prime ideal of .S  
 
E50) Let 1P  and 2P  be distinct prime ideals of a ring .R  

 i) Must 21 PP ∩  be a prime ideal of ?R   

 ii) Will 21 PP +  be a prime ideal of R in all cases? 

 iii) Will 21PP  be a prime ideal of R in all cases?  

 Give reasons for your answers. 
 
E51) Find two distinct prime ideals of .ZZ×  
 

 
Let us now define a particular kind of prime ideal. This will actually connect a 
ring to a field as its quotient ring. 
 
Let us begin, again, with Z  as an example. Consider the ideal Z2  of .Z  
Suppose the ideal Zn  in Z  is such that .n2 ZZZ ⊆⊆  Then .2n  Therefore, 

1n ±=  or ,2n ±=  so that ZZ =n  or .2n ZZ =  
What this tells us is that no ideal of Z  can lie between Z2  and .Z  That is, 
Z2  is maximal among the proper ideals of Z  that contain it. This leads us to 

the following definition. 
 
Definition: A proper ideal M  of a ring R  (commutative or not) is called a 
maximal ideal if whenever I  is an ideal of R  such that ,RIM ⊆⊆  then 
either MI =  or .RI =  
 
Thus, a proper ideal M  is a maximal ideal if there is no proper ideal of 
R which contains it. 
 
An example that may come to your mind immediately is the zero ideal in any 
field .F  This is maximal because you know that the only other ideal of F  is F  
itself. You have also seen earlier that }0{  is a prime ideal of .F  
 
In the case of fields, you have just seen that a maximal ideal is a prime ideal. 
Is this true for rings in general? Is there a connection between a prime ideal 

Remember that all rings 
here are assumed to be 
commutative. 
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and a maximal ideal of a ring? To answer this, consider the following 
characterisation of maximal ideals. 
 
Theorem 14: Let R  be a commutative ring with identity. An ideal M  in R  is 
maximal if and only if MR  is a field. 
 
Proof: Let us first assume that M  is a maximal ideal of .R  We want to prove 
that MR  is a field. You already know that MR  is a commutative ring with 
identity. So, it is enough to prove that MR  has no non-trivial proper ideals 
(see Theorem 9).  
So, let I  be an ideal of .MR  Consider the canonical homomorphism 

.Mr)r(:MRR: +=η→η   
Then, from Unit 13, you know that )I(1−η  is an ideal of R  containing ,M  the 
kernel of η .  
Since M  is a maximal ideal of M)I(,R 1 =η−  or .R)I(1 =η−   
Therefore, ))I((I 1−ηη=  is either )M(η  or )R(η .  
That is, }0{I = or .MRI =   
Thus, MR  is a field. 
 
Conversely, let M  be an ideal of R  such that MR  is a field.  
Then the only ideals of MR  are }0{  and .MR   
Let I  be an ideal of R  containing .M  Then, as above, }0{)I( =η  or 

.MR)I( =η  
))I((I 1 ηη=∴ −  is M  or .R   

Therefore, M  is a maximal ideal of .R  
 
There is an immediate consequence of Theorem 14 (and a few other 
theorems too). 
 
Corollary 1: Every maximal ideal of a commutative ring with identity is a prime 
ideal. 
 
We ask you to prove the corollary as an exercise (see E52). 
 
Notice that Corollary 1 is a one-way statement. What about its converse? That 
is, is every prime ideal maximal? What about the zero ideal in ?Z  Since 

/ /
}0{,2}0{ ZZ ⊆⊆  is not a maximal ideal. However, since Z  is an integral 

domain, }0{  is a prime ideal of .Z  
 
Now let us use the powerful characteristion in Theorem 14 to get some 
examples of maximal ideals. 
 
Example 18: Show that an ideal Zm  of Z  is maximal iff m  is a prime 
number. 
 
Solution: From Theorem 7, you know that mZ  is a field iff m  is a prime 

number. You also know that .~
m mZZ

Z −   

Thus, by E36, ZZ m is a field iff m  is prime.  
Hence, by Theorem 14, Zm  is maximal in Z  iff m  is a prime number. 

*** 
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Example 19: Show that 122Z  is a maximal ideal of ,12Z  whereas 124Z  is not. 
 
Solution: You know that Z

ZZ 12
~

12 −  and  .12
2~2 12 Z
ZZ −  Thus, by the third 

isomorphism theorem in Unit 13, we see that 
,~2~)122()12(~2 21212 ZZZZZZZZZ −−−  which is a field. Therefore, 

}10,8,6,4,2,0{2 12 =Z  is maximal in .12Z  
 
Now, 

//
.24 121212 ZZZ ⊆⊆  

Therefore, }8,4,0{4 12 =Z  is not maximal in .12Z  

*** 
 
Try solving the following exercises now. 
 
 
E52) Prove Corollary 1. 
  
E53) Show that }8,6,4,2,0{  is maximal in .10Z  
 
E54) Check whether or not >π−< x  is maximal in ].x[C  
 

E55) Show that }02
1f]1,0[Cf{ )( =∈  is maximal in ].1,0[C  

 
 
So, let us see what you have studied in this section. You were first introduced 
to a special ideal of a ring, called a prime ideal. Its speciality lies in the fact 
that the quotient ring corresponding to it is an integral domain. Then you 
studied about a special kind of prime ideal, i.e., a maximal ideal. Why do we 
consider such an ideal doubly special? Because, the quotient ring 
corresponding to it is a field, and a field is a very handy algebraic structure to 
deal with. 
 
We end this discussion on integral domains here. Let us now briefly 
summarise all the ideas you have studied in this unit. 
 

14.7 SUMMARY 
 
In this unit, we have discussed the following points. 
 
1. The definition, and examples, of a zero divisor in a ring. 
 
2. The definition, and examples, of an integral domain. 
 
3. nZ  is a field iff n  is a prime number. 
 
4. The cancellation law for multiplication holds in an integral domain. 
 
5. The definition, and examples, of the characteristic of a ring. 
 
6. The characteristic of an integral domain is either zero or a prime number. 
 
7. The definition, and examples, of a field. 
 
8. Every field is a domain, but the converse is not true. 



 

 

151

Unit 14                                       Integral Domains and Fields
9. A finite domain is a field. 
 
10. The characterstic of a field is either zero or a prime number. 
 
11. The construction of the field of quotients of an integral domain. 
 
12. The quotient field of a domain is the smallest field containing the 

domain. 
 
13. The definition, and examples, of prime and maximal ideals. 
 
14. The proof and use of the result that a proper ideal I  of a ring R  with 

identity is prime (respectively, maximal) iff IR  is an integral domain 
(respectively, a field). 

 
15. Every maximal ideal is a prime ideal, but the converse is not true. 
 
16.  An element p  of an integral domain R  is prime iff the principal ideal 

pR  is a prime ideal of .R  
 

14.8 SOLUTIONS / ANSWERS 
 
E1) Z  has no zero divisors since .n,m0mn0n,0m Z∈∀≠⇒≠≠  
 In Block 3, you have also seen that }.1,1{)(U −=Z  
 
 Now, let us consider the zero divisors in .10Z   
 10m Z∈  is a zero divisor 

 10n Z∈∃⇔  s.t. .0n,0m,0nm ≠≠=⋅  

 2m =⇔  or .5m =  
 Thus, the zero divisors of 10Z  are .5,2  

Also, in Block 3, you have seen that  
}1)10,m(m{)(U 1010 =∈= ZZ }.9,7,3,1{=  

 
From these two examples, a possible conclusion we can reach about 

,A  the set of zero divisors, and ,B  the set of units, in a ring is that 
.BA «=∩  However, for rings in general, this is only a conjecture. It 

needs to be proved, or disproved. 
 
E2) The statement you need to prove is: For ,n N∈  if nx Z∈  s.t. ,1)n,x( >  

then x  is a zero divisor in .nZ  
 
 To prove it, suppose x  is not a zero divisor in .nZ  
 Then show that .x}mxm{ nn ><=∈= ZZ   

Thus, ,1)n,x( =  which is a contradiction to what is given to us, namely, 
.1)n,x( >  

 Hence, x  must be a zero divisor in .nZ  
 
E3) Let 0b ≠  be in R  such that .0ab =   
 Then, for any ,Rr∈  
 .0)ab(rb)ra( ==  
 Thus, every non-zero element of Ra  is a zero divisor. 
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E4) .X},X,{)X( «« ≠=℘  
 Since )X(,XXXXX ℘≠=∩=⋅ «  has no zero divisors. 
 
E5) i) No. For example, Z∈2  is not a zero divisor. Also, ).(U2 Z∉  
 
 ii) No, let us prove this. 
  If Rb),R(Ua ∈∃∈  s.t. .1ab =  
  Suppose a  were a zero divisor in .R  Then 0c ≠∃  in R  s.t. 

.0ac =  
  Thus, ,0acb =  i.e., ,0c)ab( =  since R  is commutative. 
  ,0c =∴  a contradiction. 
  Hence, if a),R(Ua∈  is not a zero divisor in .R  
 
E6) 97Z  is a domain, by Theorem 1, since 97  is a prime. 
 
 Z2  is not a domain, since .21 Z∉  
 
 ZZ i+  is a non-trivial commutative ring with identity. 
 Now, let ]i[iba Z∈+  s.t. ,0idc],i[idc ≠+∈+∃ Z  and 

.0)idc)(iba( =++  
 Then ,0bdac =−  and    …(1) 
 .0bcad =+     …(2) 
 (1) gives 0)dc(b 22 =+  in ,Z  using (2). 
 0b =∴  or .0dc 22 =+  
 0c0dc 22 =⇒=+  and ,0d =  which is not possible, since .0idc ≠+  
 .0b =∴   
 Then (1) gives ,0ac =  and (2) gives .0ad =  
 If ,0a ≠  then ,0ac =  so that ;0c =  and .0d0ad =⇒=  
 This is not possible, again since .0idc ≠+  
 So, 0a =  also. 
 Thus, .0iba =+  
 Hence, ]i[Z  has no zero divisors, and hence, it is a domain. 
 
 As in Example 4, RR×  is not a domain. 
 
 }0{  is trivial, and hence, is not a domain. 
 

 As in Example 6, ,~
})0{(

)( ZZ
ZZ −×

×  which is an integral domain. 

Hence, })0{(
)(

×
×

Z
ZZ  is a domain. 

 
E7) No, for example, you have seen that Z2  is not a domain, though Z  is. 
 The quotient ring need not be a domain. For example, you know that Z  

is a domain, but 66 ZZ
Z =  is not. 

 
E8) From Unit 10, you know that ]n[Q  is a commutative ring with identity. 

 Since ]n[Q  is a subring of ,C  and C  has no zero divisors, ]n[Q   
 has no zero divisors. Hence, it is a domain. 
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E9) Note that R  is an integral domain. Since ]7[Z  is a subring of ,R  it is 
also without zero divisors. Hence, the cancellation law for multiplication 
holds in ].7[Z  

 Since Z5  is a subring of ,Z  and Z  is without zero divisors, so is .5Z  
Hence, the cancellation law holds for .5Z  

 
E10) 0)1x(xxx2 =−⇒=  
                   0x =⇒  or 01x =−  
                   0x =⇒  or .1x =  
 
E11) Let R  be a domain and Rx∈  be nilpotent. 
 Then 0xn =  for some .n N∈  
 If .0x,1n ==  
 If ,1n >  then .0xx 1n =⋅ −  
 Since R  has no zero divisors, 0x =  or .0x 1n =−  We can apply the same 

argument again and again, till we reach .0x2=   
 ,0xx =⋅∴  i.e., .0x =  
 
E12) Let }.x,,x{R n1 K=  
 Suppose a  is not a zero divisor.  
 Now .n,,1iRaxi K=∀∈  
 Also, since a  is not a zero divisor, ji axax =  iff ji xx =  for .n,,1j,i K=  

 Thus, }.ax,,ax{R n1 K=  
 Since iax1,R1 =∈  for some .n,,1i K=  
 Hence, a  is a unit in .R  
 
E13) For example, consider .R Q=  Let .charr Q=   

 Then .n
m0n

mr Q∈∀=⋅  

 In particular, ,01r =⋅  since .1 Q∈   
 This is possible only if .0r =   
 
E14) We will show that ,XAA2 ⊆∀= «  and that 2 is the least such natural 

number. 
 Firstly, for any ,XA ⊆  
 .)A\A()A\A(AAA2 «=∪=Δ=  
 Also, since «.« ≠⋅≠ X1,X  Thus, .1)X(char ≠℘  
 .2)X(char =℘∴  
 
E15) Let char .n)RR( =×   
 We know that ,Rr0mr ∈∀=  and m  is the least such non-negative 

integer. 
 Now, let )s,r(  be any element of .RR ×  
 Then ),0,0()ms,mr()s,r(m ==  since .Rs,r ∈  
 Thus, .mn ≤     …(3) 
 On the other hand, if ,Rr∈  then .RR)0,r( ×∈  
 ),0,0()0,r(n =∴  
 i.e., ),0,0()0,nr( =  
 i.e., .0nr =  
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 This is true for any .Rr∈  
 .nm ≤∴     …(4) 
 Thus, (3) and (4) show that ,nm =  i.e., ).RR(charRchar ×=  
 
E16) ),R( +  is a finite group. If ,n)R(o =  then r  is the m.c.l  of the orders of 

.Rxx ∈∀   
 Also, )x(o  is a factor of n  for each x  in .R  Thus, .0r ≠  
 
E17) i) ),R( +  is a group of order n  s.t. ,Rx0rx ∈∀=  where 

.Rcharr =   
  By E16, .0r ≠  
  Hence, ,Rxr)x(o ∈∀  and r  is the least such positive integer. 

  Hence, from Unit 4, you know that .nr  
 
 ii) When .2n),(R 4

42 == ZM  So 32 2,2,2r =  or .24  In fact, 4r =  

since ,
x4x4
x4x4

xx
xx

4
43

21

43

21 0=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
 where ;x,x,x,x 44321 Z∈  

and .
00
02

00
01

2 0≠⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
 

 
 iii) For example, .n,n NZ ∈  Here .charn),(o nn ZZ ==+  
 

E18) Here the identity is ).(

100
0

010
001

I n CM∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

K

MM

MMM

K

K

 

 For any .

r00

0r0
00r

Ir,r 0≠

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⋅∈

K

MMM

K

K

N  

 Hence, .0)(char n =CM  
 

 The identity in )( mn ZM  is .

100

010
001

I
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

K

MMM

K

K

 

 ,

m00

0m0
00m

mI 0=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=∴

K

MMM

K

K

 and m  is the least such positive integer. 

 .m)(char mn =∴ ZM  
 
E19) No; e.g., 0char =Z  and .2char)2(char 2 == ZZZ  
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E20) No; e.g., 

/
,QZ ⊆  but .0charchar == QZ  

 
E21) Let R  have characteristic .1  
 Then, for any ,0r1,Rr =⋅∈  i.e., .0r =  
 Hence, only the trivial ring has characteristic .1  
 
E22) Since ,S~R−  they have exactly the same algebraic properties. Hence, 

.ScharRchar =  Hence, .0ScharRchar =−  
 
E23) Let D  be a domain. Then Dchar  is 0  or a prime. So, by E15, 

)DD(char ×  is 0  or a prime.  
But, from Example 4, DD×  is not a domain.  
Thus, the converse of Theorem 4 is not true. 

 
E24) i) By the binomial expansion (see E16 of Unit 10), 
  .babCbaCa)ba( p1p

1p
p1p

1
ppp ++++=+ −

−
− L  

 Since Rx0xC,1p...,,1nCp n
p

n
p ∈∀=−=∀  and 

.1p...,,1n −=∀  
  Thus, .abC0baC 1p

1p
p1p

1
p −

−
− === L  

  .ba)ba( ppp +=+∴  
  You can, similarly, show that .ba)ba( ppp −=−  Here, note that in a 

ring of characteristic ,1)1(,2 =−  since .02 =  
 
 ii) You should prove this by induction, taking )m(P  to be the 

predicate, ,'Rb,a,ba)ba('
mmm ppp ∈+=+  for .m N∈  

  In (i), you have proved )1(P  is true. Now assume )k(P  is true for 
some ,k N∈  and then prove that )1k(P +  is true. 

  Then, )n(P  will be true .n N∈∀  
 
 iii) Let .}Raa{S p ∈=  

  Firstly, ,S «≠  since .R «≠  
  Secondly, let .S, ∈βα  Then pp b,a =β=α  for some .Rb,a ∈  
  Then ,S)ba( p ∈−=β−α  by (i) above, and .S)ab( p ∈=αβ   
  Thus, S  is a subring of .R  
 
 iv) You must first check that φ  is well-defined. 

Next, ),b()a(ba)ba()ba( ppp φ+φ=+=+=+φ  and  
  .)b()a(ba)ab()ab( ppp φφ===φ  
  Thus, φ  is a ring homomorphism. 
 
  φ  is 1-1  because 
  ,0)ba(ba)b()a( ppp =−⇒=⇒φ=φ  from (i). 
                    ,0ba =−⇒  since R  is without zero divisors.                                                     
                                    .ba =⇒  
  
 v) We have to show that if R  is finite, then φ  is surjective. 
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  Let R  have n  elements. Since φ  is φIm,1-1  also has n  

elements.  
  Also .RIm ⊆φ  Thus, .RIm =φ  
  Hence, φ  is surjective. 

 
E25) While showing that none of the statements hold true, you will need to 

use the facts that 00  is not defined (see the course ‘Calculus’) and 
0a,Ra1a0 ≠∈∀=  (since R  is a domain). 

 

E26) Consider ,6Z  and .3,2 6Z∈   

Now, 426 =  and .446 =  
 So 2842 66 ==+  in .6Z  

 Also, .00)42( 66 ==+  
 Thus, .42)42( 666 +≠+   
 
E27) You should check that f  is a well-defined function. 
  

Next, for 1)nm()nm(f,n,m ⋅+=+∈Z  
                                             ,1n1m ⋅+⋅=  by LI 2(i), Sec.10.3, Unit 10 
                                             ).n(f)m(f +=  
 Also, ),1n)(1m()11)(mn(1)mn()mn(f ⋅⋅=⋅=⋅=  from LI 2(v). 
 So f  is a ring homomorphism. 
 
 }01nn{fKer =⋅∈= Z  is an ideal of .Z   

So, ,rfKer Z=  for some ,r Z∈  where .01r =⋅   
Since char .01m,mR =⋅=  
So ,rm ZZ ⊆  i.e., .mr   
But .Rcharm =  So .mr ≥   
Thus, ,mr =  i.e., .mfKer Z=  

 
E28) Show that .12)(char 43 =×ZZ  

Thus, the characteristic of 43 ZZ ×  is neither 0  nor a prime. 
Note that 43 ZZ ×  is not a domain, as you have seen in Example 4.  

 
E29) Z6  is not, since Z6  is without unity. 
 
 6Z  is not, since it is not a domain. 
  
 ]2[Z  is not, since not every non-zero element in it is invertible. 
 

QQ×  is not, since it is not a domain. 
  
 5Z  is a field, since it is a domain, by Theorem 1, and ),( 5 ⋅∗Z  is a group. 
 
 }}a{,{})a({ «=℘  is a field since it satisfies 9R-1R  (see E4). 
 
E30) No. For example, Z  is a subring of QQ,  is a field, but Z  is not. 
 
E31) From Unit 10, you know that .])i[(}i,1{])i[(U ∗≠±±= ZZ  
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 Hence, ]i[Z  is not a field. 
 
 }b,aiba{]i[ QQ ∈+=  is a commutative ring with unity. Does every 

non-zero element in it have a multiplicative inverse? Check this along 
the lines of Example 11. 

 
E32) Note that ,0]x[xx ≠+= Z  since .xx 2 ><∉  (Why?) 

 But .0xxx 2 ==⋅  
 Hence, >< 2x]x[Z  is not a domain. 
 Thus, by Theorem 5, it is not a field. 
 
E33) From the tables, you can see that +  and · are binary operations on .R  

Further, R  satisfies 6R-1R  (of Unit 10).  
 Next, R  is commutative with identity and every non-zero element has 

an inverse, i.e., R  satisfies .9R-7R  
 Thus, R  is a field. 
 Here, Rx0x2 ∈∀=  and 0x1 ≠⋅  for some Rx∈  (e.g., 1x = ). 
 Thus, char .2R =  
 
E34)  fKer  is an ideal of .F  Thus, by Theorem 9, 

}0{fKer =  or .FfKer =  
  If },0{fKer =  then f  is .1-1   
  If ,FfKer =  then .f 0=  
 
E35) i) It need not. For example, consider 

⎩
⎨
⎧

=π→π
.oddismif,1
,evenismif,0

)m(:2: Z
ZZ   

  Check that π  is a ring homomorphism that is not .1-1  
  You also know that ,2 2ZZ

Z =  a field. 

 
 ii) Consider the inclusion homomorphism from Q  to .R  
  This is neither 0  nor surjective. 
 
E36) Since ,F~R −  and isomorphic rings satisfy exactly the same algebraic 

properties, R  is a field. 
 
E37) You should prove all these properties by using the corresponding 

properties of .R  Keeping Q  in mind may help you too. 
 
E38) Firstly, from E29, you know that ]2[Z  is not a field. Thus, it can’t be its 

own field of fractions. 
 
 Next, any element of the field of quotients ,F  of ],2[Z  is of the form 

,
2dc
2ba

+
+

 where ,02dc ≠+  .d,c,b,a Z∈  

 Now, 

.2
d2c
adbc2

d2c
bd2ac

d2c
)2dc()2ba(

2dc
2ba

222222 QQ +∈⎟
⎠
⎞

⎜
⎝
⎛

−
−

+⎟
⎠
⎞

⎜
⎝
⎛

−
−

=
−

−+
=

+
+

Thus, .2F QQ +⊆  
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 Note that QQ 2+  is a field, as you studied in Example 11. 

 Also, any element of QQ 2+  is of the form 

.0d,0b,d,c,b,a,d
c2b

a ≠≠∈+ Z  

 Now, ,
20bd
2bcad

bd
2bcad

d
c2b

a
+
+=+=+  with 0.bd,bd,bc,ad ≠∈Z  

 Thus, .Fd
c2b

a ∈+  

 Hence, .F2 ⊆+ QQ  

 Thus, .2F QQ +=  
 
 Note that 

/
F⊇C  (e.g., Fi∉ ), and hence, is not the field of fractions of 

].2[Z  Similarly, R  is not the quotient field of ].2[Z  (For example, 

R∈3  but ].2[3 Q∉  Why? Let’s see. 

 Suppose ].2[3 Q∈   

 Then Z∈∃ m  s.t. .b,a,2ba3m Z∈+=   

 So .2ab2b2am3 222 ++=   
 Therefore, 22 m3b2a =+ 2  and .0ab2 =  So 0a =  or .0b =   
 If ,6m2b3m,0a Z∈⇒==  a contradiction.  
 Similarly, 0b =  leads to a contradiction.) 
 
E39) If R  is not a domain, the relation ~ need not be transitive, and hence, F  

is not defined. 
 
E40) Let R  be a commutative ring with unity. Suppose it is embedded in a 

field .F  Then F  is without zero divisors, and R  is a subring of .F  
Thus, R  has to be without zero divisors, i.e., R  has to be a domain. 

 
E41) Firstly, I  is an ideal of ],1,0[C  as you know from Unit 12. 

 
Secondly, since any non-zero constant function (e.g., the map 

)1)x(h:]1,0[:h =→ R  is in I,I\]1,0[C  is a proper ideal.  
 
Finally, let ,Ifg∈  where ].1,0[Cg,f ∈   
Then ,0)0)(fg( =  i.e., 0)0(g)0(f =⋅  in .R   
Since R  is a domain, this gives us 0)0(f =  or ,0)0(g =  i.e., If∈  or 

.Ig∈  
Thus, I  is a prime ideal of .]1,0[C  
 

E42) R  is a commutative ring with identity. Thus, we need to show that R  is 
without zero divisors iff }0{  is a prime ideal in .R  
Now, }0{  is a prime ideal in R  
iff }0{a}0{ab ∈⇒∈  or },0{b∈  for Rb,a ∈  
iff 0a0ab =⇒=  or 0b =  
iff R  is without zero divisors. 
Thus, }0{  is a prime ideal in R  iff R  is an integral domain. 

 
E43) Since C  is a field, its only ideals are }0{  and .C  Since C  is a domain, 

}0{  is a prime ideal of ,C  by E42. Hence, }0{  is the only prime ideal of 
.C  
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E44) It is not. For example, .632 >∈<⋅  
 Now, if ,62 >∈<  then ]5[5ba Z∈+∃  s.t. ,2)5ba(6 =+  i.e., 

.0b,2a6 ==  
 But there is no Z∈a  s.t. .2a6 =  Hence, .62 >∉<  
 Similarly, .63 >∉<  
 

E45) As in Example 16, prove that ,~
20x

]x[ ZZ −>+<  a domain. Hence, 

>+< 20x  is a prime ideal of ].x[Z  
 

E46) No. For example, ZZ×  is not a domain, but ,~
})0{(

)( ZZ
ZZ −×

×  a 

domain. Hence, })0{(
)(

×
×

Z
ZZ  is a domain.  

 
E47) You can do this along the lines of Example 15.  
 The prime ideals of 30Z  are ,p ><  where p,30p  a prime. 

 Thus, these are >< 3,2 30Z  and .5 ><  
 
E48) i) From Theorem 4 of Unit 13, you know that )J(f 1−  is an ideal of 

 .R  Since f  is surjective and .R)J(f,SJ 1 ≠≠ −  
  Now, let Rb,a ∈  such that .)J(fab 1−∈  
  J)ab(f ∈⇒  
  J)b(f)a(f ∈⇒  
  J)a(f ∈⇒  or ,J)b(f ∈  since J  is a prime ideal. 
  )J(fa 1−∈⇒  or .)J(fb 1−∈  
  Thus, )J(f 1−  is a prime ideal of .R  
  
 ii) Firstly, since f  is onto, you know (from Theorem 4, Unit 13) that 

)I(f  is an ideal of .S   
  Also, since I1∉  and I))I(f(f 1 =− (from Theorem 5, Unit 13 as 

NI ⊇ ), .)I(f)1(f ∉  Thus, .S)I(f ≠  
  Finally, let Sy,x ∈  such that .)I(fxy∈  
  Since Rb,a,fImS ∈∃=  such that )a(fx =  and .)b(fy =  
  Then ),I(fxy)b(f)a(f)ab(f ∈==  i.e., .I))I(f(fab 1 =∈ −  
  Ia∈∴  or ,Ib∈  since I  is a prime ideal.  
  So, )I(fx∈  or ).I(fy∈  
  Thus, )I(f  is a prime ideal of .S  
  
 iii) φ  is )J()I( φ=φ:1-1  
  )J(f)I(f =⇒  
  ))J(f(f))I(f(f 11 −− =⇒  
  ,JI =⇒  as both I  and J  contain .N  
 
  φ  is onto: Let J  be a prime ideal of .S  Then )J(f 1−  is a prime 

ideal of R  and J))J(f(f))J(f( 11 ==φ −−  (from Unit 13).  
  Thus, .ImJ φ∈  
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E49) Consider the inclusion map ⊂ QZ→:i  and .2P Z=  Then Z2)P(i =  is 

not an ideal of Q  since the only ideals of Q  are }0{  and .Q  Hence, Z2  
is not a prime ideal of .Q    

 
E50) i) Let 1P  and 2P  be prime ideals of a ring R  s.t. 21 P\Px∈∃  and 

.P\Py 12∈   
   Then 1Pxy∈  and ,Pxy 2∈  since 1P  and 2P  are ideals. 
   .PPxy 21 ∩∈∴   
   But 21 PPx ∩∉  and .PPy 21 ∩∉  
  Thus, 21 PP ∩  is not prime. 
 
 ii) No. For example, ,32 ZZZ =+  since .1)3,2( =  Here, Z2  and 

Z3  are prime ideals of ,Z  but Z  is not prime in .Z  (Why?) 
 
 iii) No. e.g., ,6)3)(2( ZZZ =  which is not prime in .Z  
 
E51) As you know from Unit 12, ZZ nm ×  is an ideal of ,ZZ×  where 

.n,m Z∈  

 Now, ,~
)nm( nm ZZZZ

ZZ ×−×
×  which is a domain only if 1m( =  and n  

is a prime or n  is )0  or if 1n( =  and m  is a prime or m  is ).0  
 Thus, ZZ 2×  and ZZ 3×  are two prime ideals of .ZZ×  
 Note that they are distinct because, for example, ZZ 2)2,1( ×∈  but 

.3)2,1( ZZ×∉  
 
E52) M  is maximal in R  
 MR⇒  is a field, by Theorem 14. 
 MR⇒  is a domain, by Theorem 5. 
 M⇒  is prime in ,R  by Theorem 12. 
 
E53) 102}8,6,4,2,0{ Z=  and ,~2 21010 ZZZ −  a field. 

 Thus, }8,6,4,2,0{  is maximal in .10Z  
 

E54) As in Example 16, show that ,~
x

]x[ CC −>π−<  a field. 

Hence, >π−< x  is maximal in ].x[C  
 
E55) In Unit 13, you have seen that this ideal is the kernel of the onto 

homomorphism .2
1f)f(:]1,0[C: )(=φ→φ R  

 ,~Ker]1,0[C R−φ∴  a field. 
 Thus, φKer  is maximal in ].1,0[C  
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UNIT 15                                  

           POLYNOMIAL RINGS 

Structure    Page Nos. 
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15.6 Summary           188 
15.7 Solutions / Answers           189        
 

15.1 INTRODUCTION 
 
So far you have studied about many rings, includings rings with special 
properties. You have also studied about polynomials over R  in some detail in 
Block 1 of ‘Calculus’. In the previous units of this course, you studied several 
examples related to various rings of polynomials. In this unit, we aim to put all 
your earlier studies of polynomials together, and take them a little further. 
 
In Sec.15.2, you will study about sets whose elements are polynomials of the 
type ,xaxaa n

n10 +++ L  where n10 a,,a,a K  are elements of a ring .R  You will 
see that this set, denoted by ],x[R  is a ring also. 
 
In Sec.15.3, you will see why we are discussing polynomial rings in a block on  
domains and fields. You will study several properties of ]x[R  in this 
connection. In particular, you will see that if R  is an integral domain, so is  

].x[R  
 
Taking the discussion further, in Sec.15.4, you will see that the ring of 
polynomials over a field behaves quite a bit like .Z  It satisfies a division 
algorithm, which is similar to the one satisfied by Z  (see Unit 1). We will prove 
this property, and some of its consequences, in this section. 
 
In the next section, Sec.15.5, the focus will be on ideals of ],x[F  where F  is a 
field. You will find out why every ideal in ]x[F  is a principal ideal, just as for 

.Z  You will also see why this fact is so important. 
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In the next unit, we will continue our discussion on polynomials. What you 
study in this unit, and the next, is very basic for your study in any branch of 
mathematics. So study this unit carefully. Do every exercise in it as you come 
to the exercise. This will help you ensure that you have achieved the following 
expected learning outcomes of studying this unit. 
 
Objectives 
 
After studying this unit, you should be able to:  

• Define, and give examples of, polynomials over a given ring; 

• prove, and use, the result that the set of polynomials over a commutative 
ring R is the ring );,],x[R( ⋅+  

• relate certain properties of ]x[R  to those of ;R  

• prove, and apply, the division algorithm for ],x[F  where F  is a field; 

• prove, and apply, the result that every ideal in ]x[F  is a principal ideal, 
where F  is a field. 

 

15.2 RING OF POLYNOMIALS 
 
You have seen several polynomials like ,0,1x,x4x32,x1 52 −+++  and so 
on. These are examples of polynomials over ,R  as their coefficients are in .R  
But they are also polynomials over ,Z  as their coefficients lie in .Z  Does this 
brief discussion suggest to you what a polynomial over any ring R  is? Let’s 
define this object, and terms immediately related to it. 
 
Definitions: Let R  be a ring, and let x  be an indeterminate. 

i)  A polynomial over ,R  in ,x  is an expression of the form 
 ,xaxaxaxa n

n
2

2
1

1
0

0 ++++ L  
 where n  is a non-negative integer and .Ra,,a,a n10 ∈K  
 
ii) For i

ixa,n,,1,0i K=  is called a term of the polynomial in (i) above.         
 If 0

00 xa,0a ≠  is called the constant term of this polynomial.  
 
iii) n10 a,,a,a K  are called the coefficients of the polynomial in (i) above.  
  If ,0an ≠ na  is called the leading coefficient of this polynomial, and n  is 

called the degree of the polynomial. We denote this fact by 
.n)xax(adeg n

n
0

0 =++L  
 
iv)  If ,0a 0 ≠  the polynomial 0

0xa  is called a constant polynomial.  
 
v)  If ,n,,1,0i0ai K=∀=  the polynomial obtained is ,0  called the zero 

polynomial. By definition, it has no leading coefficient. 
 Further, the degree of the zero polynomial is undefined. 
 
For example, for any ring R  and any 0rx,Rr∈  is a constant polynomial (if 

0r ≠ ) or the zero polynomial (if 0r = ). 

An ‘indeterminate’ is a 
formal symbol. It is not a 
variable. 
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Note that in the matter of writing polynomials, we will observe the following 
conventions.  

i) We will not write ,x0  so that we will only write 0a  for .xa 0
0  

ii)  We will write 1x  as .x  

iii)  We will write mx  instead of mx1⋅  (i.e., when 1am = ), and write  max−  if 
.R)a(am ∈−=  

iv)  We will omit terms of the type .x0 m⋅  

Thus, the polynomial 3210 x)1(x3x0x2 −++⋅+  over Z  will be written as 
,xx32 32 −+  with )1(−  as its leading coefficient and 2  as its constant term. 

As an example,  115 x2x2
1 +π−  is a polynomial over ,R  where 

2a,a,2
1a 11

50 =π−==  and 0ai =  for .5i,10,,1i ≠= K  Similarly, 

115 x2x2
1 −π+−  is a polynomial over .R   

Also, ,BxAx 4+  where ,
32
03B,

5.0
12

A ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
π−

=  is a polynomial of 

degree 4  over ),(2 RM  with B  as its leading coefficient and with no constant 
term. 
 
Henceforth, whenever we will use the word ‘polynomial’, we will mean a 
polynomial in the indeterminate .x  We will also often use the shorter 

notation ∑
=

n

0i

i
ixa  for the polynomial .xaxaa n

n10 +++ L  

 
Here is a remark to explain the use of the indeterminate. 
 
Remark 1: As noted above, x  is used here as a symbol, called an 
indeterminate. The symbols K,x,x,x 210  are there as placeholders. So, 
instead of writing the polynomial over R  as ,xaxaa n

n10 +++ L  we could as 
well have written it as an infinite sequence with only finitely many non-zero 
entries, as ),0,0,a,,a,a( n10 KK  (recall your study of sequences from ‘Real 
Analysis’). Similarly, a polynomial of degree m  can be written as 

,Rb),,0,0,b,,b,b( im10 ∈KK  or as .xbxbb m
m10 +++ L  

Note that ),11,9,7,5,1,2,0,0( K  is not a polynomial, as it does not have only 
finitely many non-zero entries. 
 
Let us consider some more examples of polynomials in .x  

i)  2x3x45 ++  is a polynomial of degree ,2  whose coefficients belong to 
.Z  Its leading coefficient is .3  

 
ii)  42 x2xx68 +++  is a polynomial of degree ,4  with coefficients in .10Z  

Its leading coefficient is .2   
 
Before giving more examples, we would like to set up some more notation. 
 
Notation: R[x] will denote the set of all polynomials over a ring .R   

Recall that Σ  is the capital 
Greek letter ‘sigma’, and 
denotes ‘sum’. 
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(Note the use of the square brackets [ ] here. Do not use any other kind of 
brackets because ]x[R  and )x(R  denote different sets, as you will see a little 
later.) 

Thus, 
⎭
⎬
⎫

⎩
⎨
⎧

∈≥=∀∈= ∑
=

n

0i
i

i
i n,0nwhere,n,,1,0iRaxa]x[R ZK . 

We will also often denote a polynomial n
n10 xaxaa +++ L  by ),x(q),x(p),x(f  

etc. 
Thus, an example of an element from ]x[4Z  is .x2x31)x(f 4++=  
Here deg ,4)x(f =  and the leading coefficient of )x(f  is .2  
 
Before going further, let us see when two polynomials are equal. (Recall, from 
the course ‘Real Analysis’ the condition for two sequences to be equal.) 
 
Definition: Let R  be a ring, and let n

n10 xaxaa)x(f +++= L  and 
m

m10 xbxbb)x(g +++= L  be in ].x[R  We say that )x(f  and )x(g  are equal, 
denoted by ,g(x)f(x) =  if .n,,1,0iba ii K=∀=    
 
Thus, if two polynomials are equal they have the same leading coefficients, 
and hence, the same degree. Is the converse true? No. 
For example, 4x3x2 +  and 4x35+  are both of degree 4  in ],x[Z  though they 
are not equal. This is because the coefficients corresponding to the places 0x  
and 1x  are different in both. 
 
To check your understanding of what you have studied so far, you should 
solve the following exercises now. 
  
 
E1) Identify the polynomials from among the following expressions. Which of 

these are elements of ?]x[Z  

 i)    ,xxxx1 642 ++++   ii)    ,xxx
1

x
2 2

2 +++  

 iii)  ,x3x2 2+    iv)   ,x4
1x3

1x2
11 32 +++  

 v)   ,xxx 221 ++    vi)   ,5−  

 vii)  ,ix
0i

i∑
∞

=

   viii)  .0   

 

E2) If 11
4

3
3

2
21

32
0 xbxbxbxb2

1x3x5a ++++=++  in ],x[R  find 

.b,b,b,b,a 43210  
 
E3) Determine the degree and the leading coefficient of each of the following 

polynomials in .]x[R  

 i)    ,x27 +  ii)    ,x7x31 3−+  iii)    ,x0xx1 543 ⋅+++  

 iv)    ,x7
1x5

1x3
1 32 ++       v)   .0  
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Now, for any ring ,R  let us see how we can define addition and multiplication 
in ]x[R  so that they are well-defined binary operations on ].x[R  To start with, 
consider the addition of polynomials. 
 
Definition: Let n

n10 xaxaa)x(f +++= L  and m
m10 xbxbb)x(g +++= L  be 

in ].x[R  Let us assume that .nm ≥  (An analogous definition holds if .)mn >  
Then we define addition in R[x] by  

m
m

1n
1n

n
nn1100 xbxbx)ba(x)ba()ba()x(g)x(f +++++++++=+ +

+ LL  

                  ,x)ba( i
m

0i
ii∑

=

+=  where 0ai =  for .ni >   

 
For example, consider the two polynomials )x(q),x(p  in ],x[Z  given by 

.x7x54)x(q,x3x21)x(p 32 ++=++=  Then 
.x7x3x75x)70(x)03(x)52()41()x(q)x(p 3232 +++=+++++++=+  

Note that ],x[)x(q)x(p Z∈+  and that 
))x(qdeg),x(p(degmax3))x(q)x(p(deg ==+  in this case. 

 
From the definition given above, it seems that 

)).x(gdeg),x(f(degmax))x(g)x(f(deg =+  Is this true? Let’s see.  

Consider 2x1)x(p +=  and 2xx32)x(q −+=  in ].x[Z  

Then .x33x)11(x)30()21()x(q)x(p 2 +=−++++=+  
Here ;1))x(q)x(p(deg =+  but .2)2,2max())x(qdeg),x(pmax(deg ==  
Thus, ))x(qdeg),x(pmax(deg))x(q)x(p(deg <+  in this case. 
 
So, what we can say is that 

g(x))degf(x),(degmax (x))g(f(x)deg ≤+  ].x[R)x(g),x(f ∈∀  
 
Now let us define multiplication in ].x[R  
 
Definition: Let R  be a ring. For n

n10 xaxaa)x(f +++= L  and 
m

m10 xbxbb)x(g +++= L  in ],x[R  we define multiplication in R[x] by  

,xcxcc)x(g)x(f nm
nm10

+
++++=⋅ L  

where .nm,,1,0ibababac i011i0ii +=∀+++= − KL  
(Here note that 0ai =  for ni >  and 0bi =  for .)mi >  
 
As an illustration, let us multiply the following polynomials in :]x[Z  

.x7x52)x(q,x2x1)x(p 23 ++=+−=  
Here ,2n,3m ==  so that .5nm =+  Now 

,a0a,2a,0a,1a,1a 543210 ====−==  
.bb0b,7b,5b,2b 543210 ======  

Thus, ∑
=

=⋅
5

0i

i
i ,xc)x(q)x(p  where 

,2bac 000 ==  
,3babac 10011 =+=  

,2bababac 2011022 =++=  
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,3babababac 302112033 −=+++=  

,10bababababac 40312213044 =++++=  
.14babababababac 5041322314055 =+++++=  

So .x14x10x3x2x32)x(q)x(p 5432 ++−++=⋅  
Note that ],x[)x(q)x(p Z∈⋅  and )).x(qdeg)x(p(deg5))x(q)x(p(deg +==⋅  
 
As another example, consider 

].x[x32)x(q,x21)x(p 6
2 Z∈+=+=  

Then, ,x3x42x6x3x42)x(q)x(p 232 ++=+++=⋅  since .06 =  
Here, ))x(qdeg)x(p(deg2))x(q)x(p(deg +<=⋅  (since ,1)x(pdeg =  

).2)x(qdeg =  
 
So, what we can say is that  

.g(x)degf(x)degg(x))(f(x)deg +⋅ ≤  
 
We need to check that addition and multiplication in ],x[R  as defined, are 
closed in ].x[R  First, let us see if +  is well-defined. If 

∑ ∑ ∑ ∑
= = = =

′=′=′=′=
n

0i

m

0i

r

0i

s

0i

i
i

i
i

i
i

i
i xb)x(g,xb)x(g,xa)x(f,xa)x(f  are in ]x[R  s.t. 

)x(f)x(f ′=  and ),x(g)x(g ′=  then 
.r,,0j,n,,0ibb,aa,sr,mn jjii KK ==∀′=′===  

So ∑ ∑
= =

′+′=′+′=+=+
)r,nmax(

0i

)s,mmax(

0i

i
ii

i
ii ).x(g)x(fx)ba(x)ba()x(g)x(f  

Thus, +  is well-defined. 
 
You should similarly show that multiplication is well-defined. 
 
For the rest, do E4 below. Also solve the other exercises below. Doing this will 
help you get used to these operations on polynomials. 
 
 
E4) Explain why addition and multiplication are binary operations on ].x[R  
 
E5) Calculate the following: 

 i) )xx5()x4x32( 332 ++++  in ],x[Z  

 ii) )x5x21()x26( 32 +−++  in ],x[7Z  

 iii) )xx21()x1( 2++⋅+  in ],x[Z  

 iv) )xx21()x1( 2++⋅+  in ],x[3Z  

 v) )xx5()xx2( 32 +⋅++  in ].x[Q  
 
E6) Explain why each term of the polynomial R],x[Rxaxaa n

n10 ∈+++ L  a 

ring, is also a polynomial over .R  Thus, ∑
=

n

0i

i
ixa  is the sum of n  

polynomials over .R  
 

A polynomial having 
only one term is called a 
monomial. 
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By now you must have got used to the addition and multiplication of 
polynomials. You have also seen that +  and · are binary operations over 

].x[R  The question now is whether or not ),],x[R( ⋅+  is a ring. Let’s see. 
 
Theorem 1: If R  is a ring, then so is ],x[R  where x  is an indeterminate. 
 
Proof: We need to establish the axioms 6R-1R  (of Unit 10) for ).,],x[R( ⋅+  

R1  (Addition is commutative): Let n
n10 xaxaa)x(p +++= L  and 

m
m10 xbxbb)x(q +++= L  be in ].x[R  

 Then, ,xcxcc)x(q)x(p t
t10 +++=+ L  

 where )n,mmax(t =  and .t,,1,0ibac iii K=∀+=  
 Similarly, 
 ,xdxdd)x(p)x(q s

s10 +++=+ L  
 where ,t)m,nmax(s ==  and .t,,1,0iabd iii K=∀+=  
 Since addition is commutative in .0idc,R ii ≥∀=  
 Hence, ).x(p)x(q)x(q)x(p +=+  
 
R2  (Addition is associative): By using the associativity of addition in ,R  you 

should check that for ],x[R)x(s),x(q),x(p ∈  
 .)}x(s)x(q{)x(p)x(s)}x(q)x(p{ ++=++  
 
R3  (Additive identity): The zero polynomial is the additive identity in ].x[R  

This is because, for any ],x[Rxaxaa)x(p n
n10 ∈+++= L  

n
n10 x)a0(x)a0()a0()x(p0 ++++++=+ L  

               n
n10 xaxaa +++= L  

               ).x(p=  
 
R4  (Additive inverse): For ],x[Rxaxaa)x(p n

n10 ∈+++= L  consider the 

polynomial i
n

n10 a,xaxaa)x(p)x(q −−−−−=−= L  being the additive 
inverse of ia  in .R  Then 

n
nn1100 x)aa(x)aa()aa()x(q)x(p −++−+−=+ L  

      n2 x0x0x00 ⋅++⋅+⋅+= L  
      .0=  
 Therefore, ))x(p)(x(q −=  is the additive inverse of ).x(p  
 
R5  (Multiplication is associative): Let ,xaxaa)x(p n

n10 +++= L  

,xbxbb)x(q m
m10 +++= L  and r

r10 xdxdd)x(t +++= L  be in ].x[R  
Then 

 ,xcxcc)x(q)x(p s
s10 +++=⋅ L  where nms +=  and 

.s,...,1,0kbababac k011k0kk =∀+++= − L  
 Therefore,  
 ,xexee)x(t)}x(q)x(p{ t

t10 +++=⋅⋅ L  
 where ,rnmrst ++=+=  and 
 k011k0kk dcdcdce +++= − L  
      .dbad)baba(d)baba( k0011k001k0k00k +++++++= −− LLL  
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 Similarly, you should check that the coefficient of kx  (for any 0k ≥ ) in 
)}x(t)x(q{)x(p ⋅⋅  is  

)dbdbdb(a)dbdb(adba k011k0k010011k00k +++++++ −− LL              

         ,ek=  by using the properties of +  and · in .R  
Hence, )}.x(t)x(q{)x(p)x(t)}x(q)x(p{ ⋅⋅=⋅⋅  
 

R6  (Multiplication distributes over addition): Let ,xaxaa)x(p n
n10 +++= L        

m
m10 xbxbb)x(q +++= L  and r

r10 xdxdd)x(t +++= L  be in ].x[R  For  

any ,0k ≥  the coefficient of kx  in ))x(t)x(q()x(p +⋅  is  

).db(a)db(a)db(ac kk0111k00kk ++++++= − L  

Also the coefficient of kx  in )x(t)x(p)x(q)x(p ⋅+⋅  is  

)dadada()bababa( k011k0kk011k0k +++++++ −− LL   

)db(a)db(a)db(a kk0111k00k ++++++= − L  

.ck=  
 Hence, ).x(t)x(p)x(q)x(p)}x(t)x(q{)x(p ⋅+⋅=+⋅  

Similarly, you can prove that  
).x(p)x(t)x(p)x(q)x(p)}x(t)x(q{ ⋅+⋅=⋅+  

Thus, ]x[R  is a ring. 
 
What Theorem 1 tells us is that apart from the examples of polynomial rings 
you have worked with earlier, ]x[],x)[(],x)[3(],x][1,0[C n HZMZ  are all 
rings.  
 
Also note that, since )],x[R( +  is abelian, and using E6, we see that 

n
n10 xaxaa +++ L  can be written as ,axaxaxa 01

1n
1n

n
n ++++ −

− L  or 

.xaxaaxa 1
1n

1n0
n

n L++++ −
−   

So, for example, ]x[x5x5 3 R∈++π−  is the same as 3x5x5 +π−  or 
.x5x5 3 π−+  

 
Let us consider an example of ]x[R  in detail. 
 
Example 1: Is ]x[6Z  finite? Why? 
 
Solution: 6Z  has 6  elements. 

}.}0{n,n,,1,0iaxaxaa{]x[ 6i
n

n106 ∪∈=∀∈+++= NZZ KL  

So, 0a  can take any of the values .5,4,3,2,1,0   
Similarly, each ia  can take any one of 6  values. 
So, 0  is the zero polynomial, and there are 5  constant polynomials. Now, 
there are 3056 =×  polynomials of degree ,1  as 0a  can take 6  values but 

0a1 ≠  (as we have already counted 0 ) so that 1a  can take 5  values. 
Similarly, there are 566 ××  polynomials of degree 2  over ,6Z  and so on. 
Since n  can take infinitely many values, there are infinitely many polynomials 
over .6Z  

*** 



 

 

169

Unit 15                                                         Polynomial Rings
Before going further, let us define some commonly used terms related to 
polynomials. You may already be familiar with them from your earlier studies. 
 
Definition: i) A polynomial of degree 1 is called a linear polynomial. 
 
ii) A polynomial of degree 2  is called a quadratic polynomial. 
 
iii) A polynomial of degree 3  is called a cubic polynomial. 
 
iv) A polynomial of degree 4  is called a bi-quadratic (or quartic) 

polynomial. 
 
v) A polynomial with leading coefficient 1 is called a monic polynomial. 
 

So, for example ]x[x53 3 Z∈+  is a cubic polynomial, and 3x5
3 + is a cubic 

monic polynomial over .Q  
 
Try solving some exercises now. 
 
 
E7) Which of the following statements are true? Give reasons for your 

answers. 

 i) The product of two linear polynomials in ]x[R  can be a linear 
polynomial, where R  is a ring.  

 ii) The product of two quadratic polynomials in ]x[Q  is a quartic 
polynomial.  

 iii) The sum of two quadratic polynomials in ]x[C  is a quadratic 
polynomial.  

 iv) If )x(p  is a monic polynomial in ],x[R  where R  is a ring with 
unity, then )x(q)x(p +  is monic ].x[R)x(q ∈∀  

 
E8) Give two distinct elements of positive degree in ],x)[(2 CM  with 

justification. 
 
E9) Check whether or not R  is  

 i) a subring of ],x[R  

 ii) an ideal of ].x[R  
 
E10) List all the quadratic polynomials in ].x[4Z  
 
E11) Let R  be a ring and let },0{}n)x(fdeg]x[R)x(f{n ∪≤∈=℘  for 

.n N∈  Check whether or not n℘  is a subring of ].x[R  
 

E12) Let R  be a ring and .oddisiif0a]x[RxaA i

n

0i

i
i

⎭
⎬
⎫

⎩
⎨
⎧

=∈= ∑
=

 Is A  a 

subring of ?]x[R  Why, or why not? 
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Note that the definitions and theorem in this section are true for any ring. But, 
the case that we are really interested in is when R  is a domain. In the next 
section, our discussion will progress towards this case. 
 

15.3 SOME PROPERTIES OF POLYNOMIAL 
RINGS 

 
While studying the previous section, you would have realised some properties 
of ].x[R  For instance, from Example 1, you may have realised that given any 
finite non-trivial ring ]x[R,R  is an infinite ring. Have you also thought about 
the intimate relationship between the operations on a ring R  and the 
operations on ?]x[R  Of course, while proving Theorem 1, you have seen this 
relationship. You will now see further evidence of the relationship pertaining to 
the multiplications in R  and in ].x[R  
 
Theorem 2: Let R  be a commutative ring with identity. Then ]x[R  is also a 
commutative ring with identity. 
 
Proof: First we shall show that ]x[R  is commutative. 
Let n

n10 xaxaa)x(p +++= L  and m
m10 xbxbb)x(q +++= L  be in the ring 

].x[R  
Then ,xcxcc)x(q)x(p s

s10 +++=⋅ L  where ,nms +=  and 

k011k0kk bababac +++= − L  
    ,abababab k01k111k0k ++++= −− L  since both addition and  
                        multiplication are commutative in .R  
    =  coefficient of kx  in ).x(p)x(q ⋅  
Thus, for every ,0i ≥  the coefficient of ix  in )x(q)x(p ⋅  and )x(p)x(q ⋅  are 
equal.  
Hence, ),x(p)x(q)x(q)x(p ⋅=⋅  i.e., ]x[R  is commutative. 
 

 Next, we know that R has identity .1  We will prove that the constant 
polynomial 1 is the identity of ].x[R   
Take ].x[Rxaxaa)x(p n

n10 ∈+++= L  

Then n
n10 xcxcc)x(p1 +++=⋅ L  (since ),01deg =  

where .a0a0a0a1ac k02k1kkk =⋅++⋅+⋅+⋅= −− L  
Thus, ).x(p)x(p1 =⋅  
Hence, 1 is the identity of ].x[R  

 
From Theorem 2, we know that ]x[Z  is a commutative ring with identity. 
Similarly, ]x[F  is a commutative ring with identity, for any field .F  
 
What about the converse of Theorem 2? This is what the following exercises 
are about.  
 
 
E13) If R  is a ring such that ]x[R  is commutative and has identity, then  

 i) must R be commutative? 

ii) must R have identity? 
Give reasons for your answers. 
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E14) Let R  be a commutative ring with identity. Show that ).R(U])x[R(U =  
 
 
Henceforth, we will assume that the rings are commutative and with 
identity. 
 
Now let us see if R and ]x[R  behave the same way regarding zero divisors. 
For this, we shall first prove a result we had mentioned when we defined the 
multiplication of polynomials. You also used this implicitly while solving E7(ii). 
 
Theorem 3: Let R  be a ring, and let )x(f  and )x(g  be two non-zero 
elements of ].x[R  Then  

),x(gdeg)x(fdeg))x(g)x(f(deg +≤  
with equality iff R  is without zero divisors. 
 
Proof: Let ,0a,xaxaa)x(f n

n
n10 ≠+++= L  

and .0b,xbxbb)x(g m
m

m10 ≠+++= L  
Then .m)x(gdeg,n)x(fdeg ==    
So, ,xcxcc)x(g)x(f nm

nm10
+

++++=⋅ L  where 
.nm,,1,0k,bababac k011k0kk +=+++= − KL  

Since mn2n1n a,,a,a +++ K  and nm2m1m b,,b,b +++ K  are all zero, 
.bac mnnm =+  

Thus, ).x(gdeg)x(fdegmn))x(g)x(f(deg +=+≤⋅  
 
Now, if R  is without zero divisors, then ,0ba mn ≠  since 0a n ≠  and .0bm ≠  
Thus, in this case, 

).x(gdeg)x(fdeg))x(g)x(f(deg +=  
 
Conversely, let }.0{\]x[R)x(g),x(f)x(gdeg)x(fdeg))x(g)x(f(deg ∈∀+=  
We shall prove, by contradiction, that R  is without zero divisors. 
Suppose, to the contrary, that R has zero divisors, say ,0ab =  where 

0b,0a ≠≠  in .R   
Let axa)x(f 0 +=  and bxb)x(g 0 +=  be in ].x[R   

Then .x)baab(baabxx)baab(ba)x(g)x(f 0000
2

0000 ++=+++=   
In this case, ),x(gdeg)x(fdeg21))x(g)x(f(deg +=<=  and we reach a 
contradiction. 
Thus, R  is without zero divisors. 
 
Theorems 2 and 3 lead us to the following important result. 
 
Theorem 4: ]x[R  is an integral domain R⇔  is an integral domain. 
 
Proof: From Theorem 2 and E13, you know that R  is a commutative ring with 
identity iff ]x[R  is a commutative ring with identity. Thus, to prove this 
theorem we need to prove that R  is without zero divisors iff ]x[R  is without 
zero divisors. 
 
So let us first assume that R  is without zero divisors. 
Let )x(p  and )x(q  be in ],x[R  of degree n  and ,m  respectively.  
Then, from Theorem 3, you know that .0nm))x(q)x(p(deg ≥+=  
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Thus, .0)x(q)x(p ≠  
Thus, ]x[R  is without zero divisors. 
 
Conversely, let us assume that ]x[R  is without zero divisors. Since R  is a 
subring of R],x[R  is also without zero divisors.  
So, we have proved the theorem. 
 
In this section, so far, you have seen that many properties of the ring R  carry 
over to ],x[R  and vice-versa. Thus, if F  is a field, you may expect ]x[F  to be 
a field also. Let us see if this is so. 
 
Example 2: Let F  be a field. Show that ]x[F  is not a field. 
 
Solution: Since F  is a field, it is an integral domain. So ]x[F  is an integral 
domain, by Theorem 4.  
Suppose ]x[F  is a field. Then .]x[F])x[F(U ∗=   
But, from E14 you know that .]x[FF)F(U])x[F(U ∗∗≠==  
So we reach a contradiction. 
Thus, ]x[F  is not a field. 

*** 
 
Why don’t you solve the following exercises now? Doing so will help you 
understand ]x[R  better, for some rings .R  
 
 
E15) Which of the following polynomial rings are without zero divisors? 

 i) ]x[R , where },b,a5ba{R Z∈−+=  

 ii) ],x[7Z  

 iii) ],x)[(2 QM  

 iv) ],x[R  where ],1,0[CR =  

 v) ],x)[X(℘  where X  is a set with at least two elements. 
 

E16) If I  is an ideal of a ring ,R  show that 
⎭
⎬
⎫

⎩
⎨
⎧

∪∈∈= ∑
=

}0{n,Iaxa]x[I i

n

0i

i
i N  

is an ideal of ].x[R  Further, show that ( ) .]x[I
]x[R~]x[I

R −  

 
E17) Show that >< x  is a proper ideal of ],x[R  where R  is a non-trivial 

commutative ring. Hence, show that not every ideal of ]x[R  is of the 
form ],x[I  where I  is an ideal of .R  

 
E18) Let R  be a domain. Show that ].x[RcharRchar =   
 
E19) Let SR:f →  be a ring homomorphism. Show that  
 n

n10
n

n10 x)a(fx)a(f)a(f)xaxaa(:]x[S]x[R: +++=+++φ→φ LL  is a 
ring homomorphism. 

 Further, if f  is an isomorphism, will φ  be an isomorphism? Why, or why 
not? 
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E20) Let R  and S  be rings. Define 

.xb,xax)b,a(:]x[S]x[R]x)[SR(:
n

0i

n

0i

i
i

i
i

n

0i

i
ii ⎟

⎠

⎞
⎜
⎝

⎛
=⎟

⎠

⎞
⎜
⎝

⎛
φ×→×φ ∑ ∑∑

= ==

 Check 

whether or not φ  is a ring homomorphism. Is φ  onto? Is ?1-1φ  
 
 
You have seen that if R  is a domain so is ];x[R  but if F  is a field, ]x[F  is not 
a field. However, ]x[F  is a domain. So, the question arises if there is any 
connection between F  and the field of quotients of ].x[F  To answer this, let 
us consider the following definition first. 
 
Definition: A rational function in an indeterminate x  over a field F  is a 
quotient ,)x(q)x(p  with .0)x(q],x[F)x(q),x(p ≠∈  
The set of rational functions in x  over F  is denoted by .F(x)  (Note the use of 
the round brackets here.) 
 
For example, }.0)x(g],x[)x(g),x(f)x(g)x(f{)x( ≠∈= QQ  
 
Now, let us move towards answering the question we raised above. 
 
Theorem 5: Let F  be a field. Then )x(F  is the field of fractions of ].x[F  
 
Proof: From Unit 14, you know that the field of fractions of the integral domain 

]x[F  is ),x(F}0)x(q],x[F)x(q),x(p)]x(q)[x(p{ 1 =≠∈−  by definition. 
 
Thus, for any field F(x)F,  is a field, and is called the field of rational 
functions, in one indeterminate, over .F  
 
For example, )x(Q  is the field of rational functions in x  over .Q  
 
Now consider a domain .R  You know that ]x[R  is a domain. If F  is the 
quotient field of ,R  will )x(F  be the quotient field of ?]x[R  Let us try and find 
an answer, through an example. 
 
Example 3: Find the field of fractions of  

i)  ],x[Q  ii)  ].x[Z  
 
Solution: i)  By Theorem 5, )x(Q  is the field of quotients of ].x[Q  
 
ii) You know that the field of fractions of a domain is the smallest field 

containing it. You also know that the field of quotients of Z  is .Q  We will 
use these facts to find ,F  the field of fractions of ].x[Z   

 Since F  is a field containing ],x[Z  it contains .Z  
 So .F Q⊇  

 Also, for any ],x[xs
rxs

r
s
r)x(f n

n

n

1

1

0

0 Q∈+++= L ].x[)x(fsss n10 Z∈K   

 Thus, given any ZQ ∈∃∈ m],x[)x(f  s.t. ].x[)x(mf Z∈  

 Now, let ),x()x(g
)x(f Q∈  where ],x[)x(g),x(f Q∈  with .0)x(g ≠   

).x(F]x[F ≠  Note the use 
of the different kinds of 
brackets to denote the 
different rings. 
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 If ,0)x(f =  then .F
)x(g
)x(f
∈   

 If ,0)x(f ≠  then )x(mf  and )x(ng  are in ]x[Z  for some ,n,m Z∈  
.0n,m ≠  

 So ,F)x(ng
)x(mf

m
n

)x(g
)x(f )( ∈=  since F⊆Q  and F  is the field of 

quotients of ].x[Z   
 Hence, .F)x( ⊆Q  
 Also, for any ).x(]x[)x(p],x[)x(p QQZ ⊆∈∈  
 Now )x(Q  is a field containing ]x[Z  and it is contained in ,F  the 

quotient field of ].x[Z  Therefore, .F)x( =Q  
 Thus, the field of quotients of ]x[Z  is the same as the field of quotients 

of ].x[Q  Note that we have used the fact that Q  is the field of quotients 
of .Z  

*** 
 
On the same lines as in the example above, let us answer the question raised 
before Example 3. 
 
Theorem 6: Let D  be an integral domain, with F  being its field of fractions. 
Then the field of fractions of ]x[D  is ),x(F  the field of rational functions over 

.F  
 
Proof: Firstly, ).x(FFD ⊆⊆  So ).x(F]x[F]x[D ⊆⊆  
Also, )x(F  is the smallest field containing ].x[F  
Let K  be any field containing ].x[D  
Then ,DK ⊇  and hence .FK ⊇   

Also, any polynomial in ]x[F  is of the form ,x
b
ax

b
a

b
a)x(f n

n

n

1

1

0

0 +++= L  

0b,Db,a jji ≠∈  for .n,,1j,i K=   

Then, as in Example 3(ii), ∗∈∃ Dd  s.t. ].x[D)x(df ∈   
)x(f∴  lies in ,K  since every polynomial in ]x[D  lies in .K   

Thus, ].x[FK ⊇  
Hence, ).x(FK ⊇  
Thus, )x(F  is the smallest field containing ],x[D  i.e., it is the field of fractions 
of ].x[D  
 
Why don’t you solve some related exercises now? 
 
 
E21) Find the field of fractions of the following domains: 

 i)   ],x][i[Z   ii)   ],x[]11[Q   iii)   p],x[pZ  a prime.  
 
E22) Give two distinct non-trivial elements of the field of quotients of ],x[C  

with justification. 
 
E23) Find an infinite field of characteristic ,p  for each prime .p  
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In this section you have seen several ways in which the properties of ]x[R  
mirror the properties of .R  You have also seen that there are some properties 
that do not match. For example, F  is a field, but ]x[F  is not. However, ]x[F  is 
a very interesting algebraic object in its own right. It has several interesting 
properties which are similar to those of .Z  In the next section, we shall 
discuss some such properties related to divisibility. 
 

15.4 DIVISIBILITY IN POLYNOMIAL RINGS 
 
In Unit 1, you studied various properties of divisibility in .Z  In particular, you 
studied the division algorithm for integers. We will now discuss divisibility, and 
the division algorithm, for polynomials over a field .F  Before going further, why 
don’t you revise Theorem 4, Unit 1, and the related examples? This may help 
you see the parallels between the properties satisfied by the integers and by 
polynomials over .F  
 
Let us begin with an example in ].x[Q  Let us use long division to find out what 
happens on dividing 4x3 3+  by .xx2 2+  

4x4
3

x4
3x2

3

4x2
3

x2
3x3

4x3xx2

4
3x2

3

2

2

23

32

+

−−

+−

+

++

−

 

 
So, what did we do in the division above? We continued subtracting different  
multiples of )xx2( 2+  till we reached 0  or a polynomial of degree less than 

).xx2(deg 2+  This polynomial, ,4x4
3 +  is the remainder. The sum of the 

multiples of ),xx2( 2 +  i.e., ,4
3x2

3 −  is the quotient. This is essentially what is 

done in the division algorithm, as you will now see. 
 
Theorem 7 (Division Algorithm): Let F  be a field. Let )x(f  and )x(g  be 
polynomials in ],x[F  with .0)x(g ≠  Then  

i) there exist polynomials )x(q  and )x(r  in ]x[F  such that 
 ),x(r)x(g)x(q)x(f +=  where 0)x(r =  or  ),x(gdeg)x(rdeg <  and 
 
ii) the polynomials )x(q  and )x(r  are unique. 
 
Proof: i) If ),x(gdeg)x(fdeg <  we can choose .0)x(q =  

Then ),x(f)x(g0)x(f +⋅=  where ).x(gdeg)x(fdeg <  
So, in this case, )x(f)x(r =  and .0)x(q =  
 
Now, let us assume that ).x(gdeg)x(fdeg ≥  

quotient 

remainder 
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Let ,0a,xaxaa)x(f n
n

n10 ≠+++= L  and       

,0b,xbxbb)x(g m
m

m10 ≠+++= L  with .mn ≥  
We shall apply the strong form of the principle of mathematical induction 
(see Unit 1) on ),x(fdeg  i.e., .n  
If ,0n =  then ,0m =  since .0)x(g ≠   
So, 0a)x(f =  and 0b)x(g =  are in .F   

Hence, ),x(r)x(g)x(q0b)ba()x(f 0
1

00 +=+= −  where 1
00ba)x(q −=  and 

.0)x(r =  
So the algorithm is true when .0n =  
Let us assume that the algorithm holds for all polynomials of degree less 
than ,n  and then see if it is true for ).x(f  
Consider the polynomial  

)x(gxba)x(f)x(f mn1
mn1

−−−=  
         ).xbbaxbbaxbba()xaxaa( n

m
1

mn
1mn

1
1

mn
mn

0
1

mn
n

n10
−+−−−− +++−+++= LL  

 We have chosen to multiply the term mn1
mn xba −−  with )x(g  to make the 

coefficient of nx  in )x(f1  zero.  
 So .1n)x(fdeg 1 −≤  
 By the induction hypothesis, there exist )x(q1  and )x(r  in ]x[F  such that 

),x(r)x(g)x(q)x(f 11 +=  where 0)x(r =  or ).x(gdeg)x(rdeg <  
 Substituting the value of ),x(f1  we get 

),x(r)x(g)x(q)x(gxba)x(f 1
mn1

mn +=− −−  
 i.e., )x(r)x(g)}x(qxba{)x(f 1

mn1
mn ++= −−  

                ),x(r)x(g)x(q +=  where )x(qxba)x(q 1
mn1

mn += −−  and  
        0)x(r =  or ).x(gdeg)x(rdeg <  
 Therefore, (i) is true for ).x(f   
 Hence, by the principle of induction, (i) is true for all polynomials in ].x[F  
 
ii) Now let us show that )x(q  and )x(r  are uniquely determined.  
 Let .0)x(g],x[F)x(g),x(f ≠∈   
 If possible, let )x(r),x(r),x(q),x(q 2121  be in ]x[F  such that  
 ),x(r)x(g)x(q)x(f 11 +=  where 0)x(r1 =  or ),x(gdeg)x(rdeg 1 <  and  
 ),x(r)x(g)x(q)x(f 22 +=  where 0)x(r2 =  or ).x(gdeg)x(rdeg 2 <   
 Then  
 ),x(r)x(g)x(q)x(r)x(g)x(q 2211 +=+  so that 
 ).x(r)x(r)x(g)}x(q)x(q{ 1221 −=−    …(1) 
 If ),x(r)x(r 21 =  then ),x(q)x(q 21 =  by (1), since .0)x(g ≠  
 So, assume .0)x(r)x(r 21 ≠−  Then ).x(q)x(q 21 ≠   
 So ,0)}x(q)x(q{deg 21 ≥−  and hence,  
 ).x(gdeg)]x(g)}x(q)x(q[{deg 21 ≥−    …(2) 

 On the other hand,  
 ),x(gdeg)}x(r)x(r{deg 12 <−     …(3) 
 since ,0)x(r)x(r 21 ≠−  and hence, 0)x(r1 ≠  or .0)x(r2 ≠  
 From (2) and (3), we get a contradiction to (1).  
 Hence, (1) will remain valid only if .0)x(r)x(r 12 =−  And then, 

.0)x(q)x(q 21 =−  



 

 

177

Unit 15                                                         Polynomial Rings

 i.e., )x(q)x(q 21 =  and ).x(r)x(r 21 =  
 Thus, we have proved the uniqueness of )x(q  and )x(r  in the 

expression ).x(r)x(g)x(q)x(f +=  
 
The algorithm in Theorem 7 requires us to define some terms, just as in the 
case of .Z  
 
Definitions: i) The polynomial )x(q  in Theorem 7 is called the quotient, and 

)x(r  is called the remainder, obtained on dividing )x(f  by ).x(g  
 
ii) If ,0)x(r =  then ).x(q)x(g)x(f =  In this case, we say that )x(g  divides 

),x(f  or that )x(g  is a factor of ),x(f  or that )x(f  is divisible by ).x(g  
  We write f(x)g(x)  for ‘ )x(g  divides )x(f ’, and g(x)   f(x)  for )x(g'  

does not divide )'.x(f  
 
Let us apply the division algorithm in a few situations now. 
 
Example 4: Find the quotient and remainder obtained on dividing 

xx5xx 234 −++  by )1xx( 2 ++  in ].x[Q  
 
Solution: We will apply long division of polynomials to solve this problem. 
Here xx5xx)x(f 234 −++=  and .1xx)x(g 2 ++=  

xx5xx)1xx(
q(x)quotient4x

2342

2

−++++
←+

  

   
))x(gx)x(f(

)x(gx
xx4

xxx
2

2

2

234

−←
←

−
++

 

                 
4g(x))g(x)x)x(f(

)x(g4
4x5
4x4x4

2

2

−−←
←

−−
++

 

  
Now, since ),1xx(deg1)4x5(deg 2 ++<=−− we stop the process. So, the 
remainder .4x5)x(r −−=  So, we get 

).4x5()4x()1xx(xx5xx 22234 +−+++=−++  
Here the quotient is 4x2+  and the remainder is ).4x5( +−  

*** 
 
Example 5: Check whether or not )2x( 2 +  divides )2x2x3( 24 ++  in ],x[R  
and )2x( 2 +  divides )2x2x3( 24 ++  in ].x[5Z  
 
Solution: Let us first divide in ].x[R  

10
8x4
2x4

x6x3
2x2x3)2x(

4x3

2

2

24

242

2

−−

+−
+

+++
−

 

Thus, in .10)4x3)(2x(2x2x3],x[ 2224 +−+=++R   …(4) 
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Since the remainder is not zero, )2x( 2 +   )2x2x3( 24 ++  in ].x[R  
 
Now, let us look at the question for ].x[5Z  Note that the polynomials are the 
same as the earlier ones in ].x[R  Also note that (4) is true in ]x[Z  too. So, if 
we look at (4) in ],x[5Z  we get  

),1x3)(2x(2x2x3 2224 ++=++  since 14 =−  and 010 =  in .5Z  

So )2x2x3()2x( 242 +++  in ].x[5Z  

*** 
 
Why don’t you apply the division algorithm for some cases now? 
 
 
E24) Express )x(f  as ),x(r)x(q)x(g +  where 0)x(r =  or 

),x(gdeg)x(rdeg <  in each of the following cases. 

i) 34 x7
1)x(g,1x)x(f −=+=  in ],x[Q  

ii) 1x2)x(g,1xx2x)x(f 23 +=+−+=  in ],x[3Z  

iii) 3x)x(g,33x)x(f 3 −=−=  in ].x[R  

In which of these cases does )x(g  divide ?)x(f  
 
 
Let us now prove some properties of the relation ‘divides’ in ].x[F  (Keep 
noting the similarity with ,Z  while you are studying them. While doing so, you 
can replace ‘degree’ by ‘absolute value’ in the case of integers.) 
 
Theorem 8: Let F  be a field, and let ],x[F)x(h),x(g),x(f ∈  with .0)x(f ≠  

i) If ),x(g)x(f  where ,0)x(g ≠  then ).x(gdeg)x(fdeg ≤  
 
ii) ).x(f)x(f  
 
iii) If )x(g)x(f  and ,Fa ∗∈  then ).x(ag)x(af  
 
iv) If 0)x(g ≠  is s.t. )x(g)x(f  and ),x(h)x(g  then ).x(h)x(f  
 
v) If 0)x(g ≠  is s.t. )x(g)x(f  and ),x(f)x(g  then )x(ag)x(f =  for some 

.Fa ∗∈  
 
vi) If )x(g)x(f  and ),x(h)x(f  then )).x(h)x(g()x(f +  
 
vii) If ),x(g)x(f  then ).x(h)x(g)x(f  
 
Proof: We will prove (i) and (v)  here, and leave the rest for you to prove, as 
an exercise (see E25). 
 
i) If ),x(g)x(f  then ]x[F)x(q ∈∃  s.t. ).x(g)x(q)x(f =  
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 So ).x(gdeg)x(qdeg)x(fdeg =+  
 Since .0)x(q,0)x(g ≠≠   
 Hence, .0)x(qdeg ≥   
 Hence, ).x(gdeg)x(fdeg ≤  
 
v) Let )x(g)x(q)x(f =  and )x(f)x(r)x(g =  for some ],x[F)x(r),x(q ∈  

with .0)x(r,0)x(q ≠≠  
 Then ).x(g)x(q)x(r)x(g =   
 So, ,1)x(q)x(r =  since cancellation holds in ].x[F  
 Thus, ,F)F(U])x[F(U)x(r ∗==∈  as you have proved in E14. 
 Hence, .Fr)x(r 0

∗∈=  

 Thus, .Fr),x(gr)x(f 00
∗∈=  

 
The proof of the theorem above will be complete once you do the following 
exercise. 
 
 
E25) Prove Theorem 8, except for (i) and (v). 
  
 
Let us now see if, based on Theorem 8, we can define an equivalence relation 
analogous to Example 3 of Unit 1. 
 
Example 6: Let F  be a field and let .0)x(h],x[F)x(h ≠∈  Consider the 
relation )x(h))x(g),x(f({R = divides ]}.x[F)x(g),x(f)],x(g)x(f[ ∈−   
Check whether or not R  is an equivalence relation on ].x[F  If it is, find two 
distinct elements in the equivalence class of .0  If it is not, define an 
equivalence relation on ].x[F  
 
Solution: Note that R  is the relation ~ given by  
‘ )x(g~)x(f  iff )]x(g)x(f[)x(h −  in ]x[F ’. 

R  is reflexive: For any ),x(f~)x(f],x[F)x(f ∈  since .0)x(h   

R  is symmetric: Let ).x(g~)x(f  Then ]x[F)x(r ∈∃  s.t. 
).x(r)x(h)x(g)x(f =−  

So, )],x(r)[x(h)x(f)x(g −=−  and ].x[F)x(r ∈−   
Hence, ).x(f~)x(g  
R  is transitive: Let )x(g~)x(f  and )x(s~)x(g  in ].x[F  

Then )]x(g)x(f[)x(h −  and )].x(s)x(g[)x(h −  

Thus, by Theorem 8(vi), )],x(s)x(g)x(g)x(f[)x(h −+−  i.e., 

)].x(s)x(f[)x(h −   

Hence, ).x(s~)x(f  
 
So, we have proved that R  is an equivalence relation. Hence, R  partitions 

]x[F  into equivalence classes, as you know from Sec.1.3, Unit 1. 
)x(h]x[F)x(f{]0[ ∈=  divides )x(h]x[F)x(f{]}0)x(f[ ∈=−  divides )}x(f       

     ]}x[F)x(g)x(g)x(h{ ∈=  
     .)x(h ><=  
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Thus, two elements of ]0[  are )x(h  and ),x(xh  for example. They are 
distinct, as they have different degrees. 

*** 
 
Why don’t you check your understanding of divisibility in ]x[F  now? 
 
 
E26) In Theorem 8, if ]x[F  is replaced by ],x[R  where R  is an integral 

domain, which statements remain true, and why? 
 
E27) Show that if R  is a domain and ]x[R)x(g),x(f ∈  are monic 

polynomials such that )x(g)x(f  and ),x(f)x(g  then ).x(g)x(f =  
 
E28) Let F  be a field. Check whether or not the relation ~ in ],x[F  given by 

)x(g~)x(f'  iff )'x(g)x(f  is an equivalence relation. 
 
E29) Let F  be a field and let ]x[F)x(h),x(g),x(f ∈  s.t. 0)x(f ≠  and 

),x(g)x(f ).x(h)x(f  Show that )]x(s)x(h)x(r)x(g[)x(f +  for any 
].x[F)x(s),x(r ∈  

  
 
Let us now move to another property of ,Z  and see if it holds true for ].x[F  

You have seen, in Unit 1, that any two non-zero integers a  and b  have a 
greatest common divisor ,d  and bmand +=  for some m,n  in .Z  Can we 
define the g.c.d of any two non-zero polynomials in ]x[F  similarly? Can the 
concept of ‘relatively prime’ also be thought of in ?]x[F  Let’s see. 
 
Take any two polynomials, say x3x2+  and 27x3+  in ].x[Q  Now, 

)3x(xx3x2 +=+  and ).9x3x)(3x(27x 23 +−+=+  
So 3x +  divides 3x2 +  as well as .27x3 +  Thus, 3x +  is a common divisor 
of both these polynomials, according to the definitions given below. 
 
Definitions: Let F  be a field, and let )x(g),x(f  be non-zero elements of 

].x[F  

i) ]x[F)x(h ∈  is called a common divisor of )x(f  and )x(g  if )x(f)x(h  

and ).x(g)x(h  
 
ii) ]x[F)x(d ∈  is called the greatest common divisor (g.c.d, in short) of 

)x(f  and ),x(g  and denoted by ,g(x))(f(x),  if  
 )1D  )x(d  is a common divisor of )x(f  and );x(g  
 )2D  whenever )x(h  is a common divisor of )x(f  and );x(d)x(h),x(g  
 )3D  )x(d  is a monic polynomial. 
 
iii) )x(f  and )x(g  are called coprime, or relatively prime, if 

.1))x(g),x(f( =  
 
For example, )3x()27x,x3x( 32 +=++  in ],x[Q  by looking at their factors. 
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Consider the following remark about the uniqueness of the g.c.d. 
 
Remark 2: Suppose )x(d  and )x(d′  are two g.c.ds of )x(f  and )x(g  in 

F],x[F  a field. Then, by ,2D )x(d)x(d ′  and ).x(d)x(d′  

Hence, by Theorem 8, )x(da)x(d ′=  for some .Fa ∗∈  So if we want )x(d  to 
be unique, we need .1a =  This is ensured, by E27, if the condition 3D  is 
satisfied. Hence, 3D  is an essential condition for the g.c.d to be unique. 
 
Now, in the case of ,Z  you know that any two non-zero integers have a g.c.d. 
Do any two non-zero polynomials in ]x[F  have a g.c.d? Let’s see. 
 
Theorem 9: Let F  be a field. Any two non-zero polynomials over F  have a 
g.c.d. Further, for },0{\]x[F)x(g),x(f ∈  

),x(s)x(g)x(r)x(f))x(g),x(f( +=  for some ].x[F)x(s),x(r ∈  
 
Proof: Let )x(g),x(f  be two non-zero polynomials in ].x[F  Let S  be the set 
of all monic polynomials in ]x[F  of the form ),x(s)x(g)x(r)x(f +  with 

].x[F)x(s),x(r ∈   
Let na  be the leading coefficient of ).x(f   

Then )x(fa 1
n
−  is monic, and .S)x(g0)x(fa)x(fa 1

n
1

n ∈⋅+⋅= −−  
Thus, .S «≠  
Now consider )x(hdegn}0{n{A =∪∈= N  for some }.S)x(h ∈   

Then ,A «≠  since .S «≠  So, by the well-ordering principle, that you studied 
in Unit 1, A  has a least element, say .m   
Let S)x(d ∈  s.t. .m)x(ddeg =  
Since )x(d,S)x(d ∈  is a monic polynomial and ]x[F)x(),x( ∈βα∃  s.t. 

.)x()x(g)x()x(f)x(d β+α=     …(5) 
Now, by the division algorithm applied to )x(f  and )x(q),x(d ∃  and )x(r  in 

]x[F  s.t. 
),x(r)x(q)x(d)x(f +=      …(6) 

with 0)x(r =  or ).x(ddeg)x(rdeg <  
Now, suppose .0)x(r ≠  Then  

),x(q)x(d)x(f)x(r −=  from (6). 
       ),x(q)]x()x(g)x()x(f[)x(f β+α−=  from (5). 
       )].x(q)x()[x(g)]x(q)x(1)[x(f β−+α−=  
Let a  be the leading coefficient of ).x(r  Then 

)].x(q)x(a)[x(g)]x(q)x(aa)[x(f)x(ra 1111 β−+α−= −−−−  

Thus, S)x(ra 1 ∈−  and ).x(ddeg)x(rdeg)x(radeg 1 <=−  
This is a contradiction to the way )x(d  was chosen. 
Therefore, our assumption that 0)x(r ≠  must be wrong. 
Thus, .0)x(r =   

Hence, from (6), ).x(f)x(d  

Similarly, you can show that ).x(g)x(d  

Thus, )x(d  satisfies 1D  and 3D  of the definition of g.c.d. 
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Now, let )x(h  be a common divisor of )x(f  and ).x(g  Then, by E29, 

).x(d)x(h  So )x(d  satisfies 2D  of the definition also. 
Hence, )).x(g),x(f()x(d =  
Thus, by (5), ),x()x(g)x()x(f))x(g),x(f( β+α=  for some ].x[F)x(),x( ∈βα  
 
In this context, consider the following remark. 
 
Remark 3: Theorem 9 says that ))x(g),x(f(  is that linear combination of 

)x(f  and )x(g  in ]x[F  which is monic and of least degree among all such 
combinations.  
Note that not every linear combination of )x(f  and )x(g  is )).x(g),x(f(  For 
example, consider )1x( 3−  and )2x( 2+  in ].x[Q  By the division algorithm, 

).1x2(x)2x(1x 23 −−++=−  
So ),2x(x)1x(1x2 23 +−−=−−  a linear combination of )1x( 3−  and )2x( 2+  
in ].x[Q  But 1x2 −−  is neither a divisor of ),1x( 3−  nor of ),2x( 2+  in ].x[Q  
 
As in the case of ,Z  if )x(f  and )x(g  are relatively prime, we have the 
following corollary to Theorem 9. 
 
Corollary 2: Let F  be a field and let }.0{\]x[F)x(g),x(f ∈  Then )x(f  and 

)x(g  are relatively prime if and only if )x(s)x(g)x(r)x(f1 +=  for some 
].x[F)x(s),x(r ∈  

 
Proof: We leave the proof to you (see E30). 
 
Theorem 9 tells us that any two non-zero polynomials have a g.c.d. Let us 
consider an example. 
 
Example 7: Find )1x2,5x( +−  in ].x[R  
 
Solution: Since ,11)1x2()5x(2 −=+−−  

).1x2(11
1)5x(11

)2(1 ++−
−

=  

Hence, by Corollary 2, .1)1x2,5x( =+−  
Thus, )5x( −  and )1x2( +  are relatively prime in ].x[R  

*** 
 
Note that the definition of g.c.d can be extended to that of n  polynomials. 
 
Definition: Let F  be a field and )x(f,),x(f),x(f n21 K  be non-zero elements 
of ].x[F  The monic polynomial ]x[F)x(g ∈  is called the greatest common 
divisor of )x(f,),x(f n1 K  if  

i)  ,n,,1i)x(f)x(g i K=∀  and  

ii)  whenever ,n,,1i)x(f)x(h i K=∀  then ).x(g)x(h  
 
Further, as in Theorem 9, the g.c.d of (x)f,(x),f n1 K  exists and is of the 

form ∑
=

n

1i
ii (x)(x)hf  for some .n,,1i],x[F)x(hi K=∈  
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For example, the g.c.d of 33x,6)232(xx2 32 ++++  and 

]x[x35x5x37x7 234 R∈+++  is ,3x +  as 3x +  is a common divisor 
which is monic, and the only other common divisors are elements of .∗R  
 
Now, as in the case of ,Z  relatively prime polynomials have very useful 
properties. Let us prove some of them. 
 
Theorem 10: Let F  be a field, and let .0)x(f],x[F)x(f ≠∈  If 

]x[F)x(h),x(g ∈  are relatively prime and both are divisors of ),x(f  then 
)x(h)x(g  divides ).x(f  

 
Proof: We know that )x()x(h)x()x(g1 β+α=  for some ].x[F)x(),x( ∈βα  
So ).x()x(h)x(f)x()x(g)x(f)x(f β+α=    …(7) 
Since ),x(f)x(g  and )x(r)x(g)x(f),x(f)x(h =  and )x(s)x(h)x(f =  for 
some ].x[F)x(s),x(r ∈  
Thus, substituting these values of )x(f  in (7), we get 

)x()x(h)x(r)x(g)x()x(g)x(s)x(h)x(f β+α=  
       )].x()x(r)x()x(s)[x(h)x(g β+α=  
Hence, )x(f)x(h)x(g  in ].x[F  
 
Why don’t you prove some related properties now? 
 
 
E30) Prove Corollary 2. 
 
E31) Prove that if F  is a field with ,ba,Fb,a ≠∈  then ax +  and bx +  are 

coprime in ].x[F  
 
E32) Give an example, with justification, of a cubic polynomial and a quartic 

polynomial in ]x[13Z  which are coprime. 
 
E33) Let F  be a field, and let ].x[F)x(h),x(g),x(f ∈  Prove that  

 i) if )x(f  and )x(g  are relatively prime, and )x(f  and )x(h  are 
relatively prime, then )x(f  and )x(h)x(g  are relatively prime. 

 ii) if )x(h)x(g)x(f,0)x(f ≠  and ,1))x(g),x(f( =  then ).x(h)x(f  
  (This is analogous to the property for Z  given in Theorem 6,    

Unit 1.) 
   
 

Now, if you are asked to find the g.c.d of )5
7xx5x3

1x3( 245 +++−  and 

)1x3x7
2( 23 +−  in ],x[Q  how would you go about doing it? You may look for 

common divisors, which won’t be easy at all. But, remember the Euclidean 
Algorithm for Z  in Unit 1? There is a similar algorithm for ]x[F  too, based on 
applying the division algorithm multiple times. Let’s see what it is, through a 
simple example, to give you an idea of the method. 
 
Example 8: Find the g.c.d of )1x( 3−  and )xx( 2−  in ].x[Q  
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Solution: First, we apply the division algorithm to )1x( 3−  and ).xx( 2−  We 
get  

.)1x()1x)(xx(1x 23 −++−=−     …(8) 
Now we apply the division algorithm to )xx( 2−  and the remainder in (8), i.e., 

).1x( −  We get  
.0x)1x(xx2 +−=−      …(9) 

We have reached a stage where the remainder is zero. Thus, the divisor 
polynomial at this stage, i.e., )1x( −  is the g.c.d. Note that this polynomial is 
monic. 

*** 
 
Note that if the divisor polynomial at the last step in Example 8 had not been 
monic, we would have multiplied it by the inverse of its leading coefficient to 
make it monic, and this polynomial would have been the g.c.d. 
 
Now keep this example in mind while going through the following algorithm, 
which we shall not prove in this course. 
 
Euclidean Algorithm: Let F  be a field, and let )x(f  and )x(g  be two non-
zero elements of ].x[F  Apply the division algorithm in ]x[F  to )x(f  and ),x(g  
then to )x(g  and ),x(r1  and then to )x(r1  and ),x(r2  and so on, till a zero 
remainder is obtained, as follows: 

),x(r)x(q)x(g)x(f 11 +=  with );x(gdeg)x(rdeg 1 <  

),x(r)x(q)x(r)x(g 221 +=  with );x(rdeg)x(rdeg 12 <  

),x(r)x(q)x(r)x(r 3321 +=  with );x(rdeg)x(rdeg 23 <  

 M  
),x(r)x(q)x(r)x(r nn1n2n += −−  with );x(rdeg)x(rdeg 1nn −<  

).x(q)x(r)x(r 1nn1n +− =  
Then )x(ra n

1−  is the g.c.d of )x(f  and ),x(g  where a  is the leading 
coefficient of ).x(rn  
 
Now that you have some idea of what the Euclidean algorithm is, let us 
consider some more examples of its application. 
 
Example 9: Find )),x(g),x(f(  where 2xx2x)x(f 34 +++=  and 

1x2)x(g 2+=  in ].x[3Z  
 
Solution: First, .0)2xx2)(1x2(2xx2x 2234 ++++=+++  
We have obtained 0  as the remainder right in the first step, and the quotient 
is .1x2 2 +  So the g.c.d is )1x2(2 21 +−  in ].x[3Z   

Since ,22 1 =−  the g.c.d is ),1x2(2 2 +  i.e., .2x2+  

*** 
 
Example 10: Find the g.c.d of 1x3x2)x(f 5 +−=  and 1x2)x(g 3+=  in ].x[Q  
 
Solution: We apply the division algorithm to )x(f  and ),x(g  and get 

).1x3x()x)(1x2(1x3x2 2235 +−−++=+−  
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Next, we apply the division algorithm to 1x2 3+  and ).1x3x( 2 +−−  We get  
.)7x20()6x2)(1x3x(1x2 23 +++−+−−=+  

In this way, we continue applying the division algorithm, as follows. 

,400
771

400
53x20

1)7x20(1x3x2 +⎟
⎠
⎞

⎜
⎝
⎛ −−+=+−−  

.771
2800x771

8000
400
7717x20 ⎟

⎠
⎞

⎜
⎝
⎛ +=+  

∴ The g.c.d is ,400
771

400
771

1−

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛  as it has to be a monic. 

i.e., .1))x(g),x(f( =  
*** 

 
Why don’t you work out the g.c.d in some cases yourself now? 
 
 
E34) Find the g.c.d of 2345678910 x8x13x19x11x11x11x3x3x +−+−+−+−  

3x9 +−  and 2x5x5x9x3x3x 23456 +−+−+−  in ].x[Q  
  
E35) Find the g.c.d of 2x4x2x4 24 +−+  and 1x2x2 2 −+  in ].x[5Z  
   
  
Let us now discuss another property of ],x[F  akin to a property of .Z  
 

15.5 IDEALS IN POLYNOMIAL RINGS 
 
Let us now discuss the algebraic structure of ideals in ],x[F  where F  is a 
field. You know that any ideal in Z  is a principal ideal. You also know that this 
is true for any field. Is the same true for ],x[F  where F  is a field? The answer 
is yes, as you will now see. 
 
Theorem 11: Every ideal of ]x[F  is a principal ideal, where F  is a field. 
 
Proof: Let I  be an ideal of ].x[F  If },0{I =  then ,0I ><=  a principal ideal.  
So, let }.0{I ≠  
Let n)x(fdeg}0{n{S =∪∈= N  for some }.I)x(f ∈  

Since .S},0{I «≠≠  So, by the well-ordering principle, S  has a least 
element, say ,m  and m)x(gdeg =  for some .I)x(g ∈  
So .I)x(g ⊆><   
 
We will show that .)x(gI ><=   
For this, let .I)x(f ∈  Then, by the division algorithm, ]x[F)x(r),x(q ∈∃  s.t.  

),x(r)x(q)x(g)x(f +=  where 0)x(r =  or ).x(gdeg)x(rdeg <  
Suppose, if possible, .0)x(r ≠  Then  

,I)x(q)x(g)x(f)x(r ∈−=  since .I)x(g),x(f ∈   
But ),x(gdeg)x(rdeg <  which contradicts the way )x(g  has been chosen. 
Hence, 0)x(r ≠  is not possible.  
Thus, .0)x(r =  
Hence, ,)x(g)x(f ><∈  i.e., .)x(gI ><⊆  
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Thus, .)x(gI ><=  
 
Regarding Theorem 11, you must note the important point brought out in it. 
 
Remark 4: Any ideal I  in ]x[F  is generated by a polynomial in it of least 
degree. 
 
Let us now consider some examples of ideals in ].x[F  
 
Example 11: Let S  be the set of polynomials over R  with zero constant 
term. Check whether or not S  is a maximal ideal of ].x[R  
 
Solution: Firstly, you should check that .S «≠   
Next, you should check that S  is a subring of ].x[R  Here, note that for any 

,S)x(f ∈ ).xaxaa(xxaxaxa)x(f 1n
n21

n
n

2
21

−+++=+++= LL  Thus, 
.x)x(f >∈<  
.xS ><⊆∴  

 
Now, for any S)x(f ∈  and ],x[)x(g R∈   

)x(g)xaxaa(x)x(g)x(f 1n
n21

−++= L  has no constant term. 
Hence, .S)x(g)x(f ∈  
Thus, S  is an ideal of ].x[R  
Also, ,Sx∈  so that .Sx ⊆><  

Thus, .xS ><=  

Next, define .axa:]x[: 0

n

0i

i
i =⎟

⎠

⎞
⎜
⎝

⎛
φ→φ ∑

=

RR  

Then, you should check that φ  is a well-defined ring homomorphism, 
R=φIm  and .xKer ><=φ  

Thus, by the Fundamental Theorem of Homomorphism, ,~
x

]x[ RR −><  which 

is a field. 
Hence, by Theorem 14 of Unit 14, >< x  is a maximal ideal of ],x[R  i.e., S  is 
a maximal ideal of ].x[R  

*** 
 
Example 12: Give an example, with justification, of an ideal in ]x[F F(  a 
field), which is  

i) a prime ideal but not a maximal ideal; 

ii) not a prime ideal. 
 
Solution: i)  Does >< 0  fit the bill? To answer this, check whether or not 

>< 0]x[F  is a domain and/or a field. Here you need to recall, from Unit 
13, that R~0R −><  for any ring .R  

 
ii) Consider .)1x(xI >+<=   
 Suppose .Ix∈  Then )x(f)1x(xx +=  for some ].x[F)x(f ∈   
 So, by cancellation, .1)x(f)1x( =+   
 Comparing degrees on both sides, we get  
 .0)x(fdeg1 =+   
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 But .0)x(fdeg ≥  So we reach a contradiction. So .Ix∉   
 Similarly, you should show that .I1x ∉+   
 Thus, I)1x(x ∈+  but .I1x,Ix ∉+∉   
 Hence, I  is not a prime ideal of ].x[F  

***  
 
Now, you may wonder if Theorem 11 is true for polynomial rings over a 
domain which is not a field. Consider an example. 
 
Example 13: Show that the ideal >< 2,x  in ]x[Z  is not a principal ideal. 
 
Solution: You know that ]x[Z  is a domain, since Z  is a domain. We will 
show that ><≠>< )x(fx,2  for any ],x[)x(f Z∈  by contradiction. 
So, suppose ]x[)x(f Z∈∃  such that .)x(fx,2 ><=><   
Since .0)x(f,)x(f2 ≠>∈<   
Also, ]x[)x(h),x(g Z∈∃  such that  

)x(g)x(f2 =  and ).x(h)x(fx =  
Thus, ,02deg)x(gdeg)x(fdeg ==+  and    …(10) 

.1xdeg)x(hdeg)x(fdeg ==+     …(11) 

(10) shows that ,0)x(fdeg =  i.e., ,)x(f ∗∈Z  say .n)x(f =  
Then (11) shows that .1)x(hdeg =  Let ,bax)x(h +=  with .0a,b,a ≠∈Z  
Then ).bax(n)x(h)x(fx +==  
Comparing the coefficients on either side of this equation, we see that  

1na =  and .0nb =   
Thus, n  is a unit in ,Z  that is, .1n ±=  
Therefore, .2,x)x(f1 ><=>∈<  Thus, we can write  

),xbxbb(2)xaxaa(x1 s
s10

r
r10 +++++++= LL  where  

r,,1,0ib,a ji K=∀∈Z  and .s,,1,0j K=  

Now, on comparing the constant term on either side we see that .b21 0=  This 
is not possible, since 2  is not invertible in .Z  So we reach a contradiction. 
Thus, >< 2,x  is not a principal ideal. 

*** 
 
Now let us consider another property that Z  and ]x[F  have in common. This 
is related to Theorem 11. 
 
Theorem 12: Let F  be a field and let )x(g),x(f  be non-zero elements of 

].x[F  Then ,)x(d)x(g),x(f ><=><  where )).x(g),x(f()x(d =  
 
Proof: By Theorem 11, you know that ><=>< )x(h)x(g),x(f  for some 

].x[F)x(h ∈  So >∈< )x(h)x(f  and ,)x(h)x(g >∈<  

i.e., )x(f)x(h  and ).x(g)x(h  

).x(d)x(h∴      …(12) 

Further, since )x(f)x(d  and )x(d),x(g)x(d  divides each element of 
,)x(g),x(f ><  by E29. 

).x(h)x(d∴      …(13) 

Not every ideal in ]x[Z  
is a principal ideal. 
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By (12) and (13), ),x(ah)x(d =  where ,Fa ∗∈  applying Theorem 8. 
.)x(d)x(da)x(g),x(f 1 ><=><=><∴ −  

 
Theorem 12 is very useful. For instance, from Example 8, you now know that 

>−<=>−−< 1xxx,1x 23  in ].x[Q   
Similarly, from Example 9, you know that  

>+<=>++++< 2x1x2,2xx2x 2234  in ].x[3Z  
 
You should solve some exercises now. 
 
 
E36) Check whether or not >+< 1x2  is a maximal ideal of ].x[C  
 

E37) Find a generator of >++−++< 1xx2
1,2xx3 532  in ].x[Q  Is this ideal a 

prime ideal of ?]x[Q  Why, or why not? 
 
E38) Show that ],x[F1x,x,,x,x,x n1n32 =>−< −K  where 2n ≥  and  F  is a 

field. 
 
E39) Find )x(f  and )x(g  in ],x[11Z  each of degree ,2≥  s.t. 

].x[)x(g),x(f 11Z=><  
 
 
With this we come to the end of our introductory discussion on polynomial 
rings. In the next unit, you shall go a little deeper into this area. You will study 
about roots and factors of polynomials over a field. 
 
Let us now take a pointwise overview of what has been discussed in this unit. 
 

15.6 SUMMARY 
 
In this unit, you have studied the following points. 
 
1) The definition, and examples, of polynomials over a ring. 
 
2) The ring structure of ],x[R  the set of polynomials over a ring .R  
 
3) R  is a commutative ring with identity iff ]x[R  is a commutative ring with 

identity. 
 
4) R  is an integral domain iff ]x[R  is an integral domain. 
 
5) Let F  be a field. Then  

 i) ]x[F  is not a field, 

 ii) )x(F  is the field of fractions of ].x[F  
 
6) Let D  be an integral domain, with F  being its field of fractions. Then the 

field of fractions of ]x[D  is ),x(F  the field of rational functions over .F  
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7) The division algorithm in ],x[F  where F  is a field. This states that if  
 ],x[F)x(g),x(f ∈  ,0)x(g ≠  then there exist unique ]x[F)x(r),x(q ∈  

with ),x(r)x(g)x(q)x(f +=  where 0)x(r =  or ).x(gdeg)x(rdeg <  
 
8) A polynomial )x(f  divides a polynomial )x(g  in ]x[F  iff )x(g)x(h)x(f =  

for some ].x[F)x(h ∈  
 
9) Let F  be a field. Any two non-zero polynomials over F  have a unique 

g.c.d. Further, for },0{\]x[F)x(g),x(f ∈  
),x(s)x(g)x(r)x(f))x(g),x(f( +=  for some ].x[F)x(s),x(r ∈  

 
10) The Euclidean algorithm to find the g.c.d of two non-zero polynomials in 

F],x[F  a field. 
 
11) Every ideal in ]x[F  is a principal ideal, where F  is a field. This is not true 

for ],x[D  where D  is a domain but not a field. 
 
12) Let F  be a field and let )x(g),x(f  be non-zero elements of ].x[F  Then 

,)x(d)x(g),x(f ><=><  where )).x(g),x(f()x(d =  
 

15.7 SOLUTIONS / ANSWERS 
 
E1) The polynomials are (i), (iii), (iv), (vi), (viii). 
 (ii) and (v) are not polynomials since they involve negative and fractional 

powers of ;x  (vii) is not a polynomial since it has infinitely many non-
zero terms. 

 (i), (vi) and (viii) are in ]x[Z . 
 

E2) .b0b,3b,5b,2
1a 41320 =====  

 
E3) The degrees are ,3,4,3,1  undefined, respectively.  

 The leading coefficients of the first four are ,7
1,1,7,2 −  respectively.  

 0  has no leading coefficient.  
 
E4) You have seen that addition in ]x[R  is well-defined. Further, If 

∑ ∑
= =

==
n

0i

m

0i

i
i

i
i ,xb)x(g,xa)x(f  then ,x)ba()x(g)x(f

)m,n(axm

0i

i
ii∑

=

+=+  

 a finite sum. 
Since ).m,nmax(,,1,0iRba,Rb,a iiii K=∀∈+∈  

 ].x[R)x(g)x(f ∈+∴  
 
 As for addition, if )x(f)x(f ′=  and )x(g)x(g ′=  in ],x[R  show why 

),x(g)x(f)x(g)x(f ′⋅′=⋅  i.e., multiplication is well-defined. 
 
 Then, explain why ]x[R)x(g)x(f ∈⋅  if ].x[R)x(g),x(f ∈  
 
E5) i) .x5x3x52x)14(x3x52 3232 +++=++++  
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 ii) 3232 x5x2x2x5x2x2)16( ++−=++−+ , since .07 =  
                                                        ,x5x2x5 32++=  since .52 =−  
  
 iii) .xx3x31x)102111(x)1121()11( 322 +++=⋅+⋅+⋅+⋅+⋅+⋅  
 
 iv) ,x1 3+  since .03 =  
 
 v) .xxx7x5x10 5432 ++++  
 
E6) Each term, ,xa i

i  is a finite sum, and .Rai∈  Thus, ].x[Rxa i
i ∈  

 
E7) i) True; for instance, x2x2x0)1x3)(x2( 2 =+⋅=+  in ].x[6Z  
 
 ii) True. Let 2cxbxa)x(f ++=  and 2rxqxp)x(g ++=  be in ],x[Q  

where .0r,0c ≠≠  As Q  is a field, .0cr ≠  
  Also, the highest degree term is .crx4  
  Thus, )x(g)x(f  is a quartic polynomial. 
 
 iii) False; for example, if ],x[cxbxa)x(f 2 C∈++=  then 

,0))x(f()x(f =−+  not a quadratic polynomial. 
 
 iv) False; for example, if x)x(p =  and 2x2)x(q =  in ],x[Z  then )x(p  

is a monic polynomial but )x(q)x(p +  has leading coefficient .2   
 

E8) There are infinitely many such pairs. One is x
00
01

)x(f ⎥
⎦

⎤
⎢
⎣

⎡
=  and 

x
43
21

)x(g ⎥
⎦

⎤
⎢
⎣

⎡
=  over ).(2 CM  

 Since both )x(f  and )x(g  are linear, with different leading coefficients, 
they are distinct. 

 
E9) i) R  can be thought of as the set of constant polynomials and 0  in 

].x[R  So, ].x[RR ⊂   
  Also, both R  and ]x[R  are rings w.r.t. the same operations.  
  Thus, R  is a subring of ].x[R  
 
 ii) This is not true. 
  For example, let Z=R  and take ].x[x Z∈   

  Then Z∉rx  for any .r ∗∈Z  
  Hence, Z  is not an ideal of ].x[Z  
 
E10) }.3,2,1,0{4 =Z  
 Any quadratic polynomial over 4Z  is of the form ,xaxaa 2

210 ++  where 
.a,a,a 4210 Z∈  

 Thus, there are 48344 =××  possibilities. 
 You should list them all for practice in working with such polynomials. 
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E11) No. For example, let Q=R  and .1n =  
 Then ,x1 1℘∈+  but .)x1( 1

2 ℘∉+  Hence, 1℘  is not a ring, and hence, 
not a subring of ].x[Q  

E12) Note that if ,A)x(f ∈  then ∑
=

=
n

0i

i2
i ,xa)x(f since the coefficient of 1i2x −  is 

.i0 N∈∀   
 Also, .A)x(fA)x(f ∈−⇒∈  (Why?) 

 Now, let ∑ ∑
= =

==
n

0i

m

0i

i2
i

i2
i .xb)x(g,xa)x(f  

 Then you should check that the odd power coefficients of )x(g)x(f −  
and )x(g)x(f  will also be zero. 

 Hence, A)x(g)x(f ∈−  and .A)x(g)x(f ∈  
 Thus, A  is a subring of ].x[R  
 
E13) i) R  is a subring of ].x[R  Therefore, multiplication in R is also 

commutative. 
 
 ii) The identity of ]x[R  is an element of ,R  and hence, is the identity 

of .R  
 
E14) Let ]x[R)x(f ∈  be a unit. Then ]x[R)x(g ∈∃  s.t. .1)x(g)x(f =  So 

.01deg)x(gdeg)x(fdeg ==+  
 Since ,0)x(gdeg,0)x(fdeg ≥≥  we get .0)x(gdeg,0)x(fdeg ==   
 So R)x(f ∈  and is a unit. Thus, ).R(U])x[R(U ⊆   
 Of course, since R  is a subring of ]).x[R(U)R(U],x[R ⊆   
 Thus, ]).x[R(U)R(U =  
 
E15) (i) and (ii), as ]5[ −Z  and 7Z  are domains. 
 In Unit 14, you have seen that ]1,0[C),(2 QM  and )X(℘  have zero 

divisors. Hence, the rings in (iii), (iv) and (v) have zero divisors. 
 

E16) Let ∑ ∑
= =

∈==
n

0i

m

0i

i
i

i
i ]x[Ixb)x(g,xa)x(f  and ∑

=

∈=
t

0j

j
j ].x[Rxc)x(h  

 Then ,]x[Ix)ba())x(g()x(f)x(g)x(f
)n,mmax(

0i

i
ii∑

=

∈−=−+=−  and 

∑
+

=
− ∈+++=

tn

0i

i
i011i0i ],x[Ix)cacaca()x(h)x(f L   

 since I  is an ideal of .R  

 Similarly, ].x[I)x(f)x(h ∈  
 Hence, ]x[I  is an ideal of ].x[R  
 

 Let us define ,xaxa:]x)[IR(]x[R: i
n

0i
i

n

0i

i
i ∑∑

==

=⎟
⎠

⎞
⎜
⎝

⎛
φ→φ  where 

.Ra)I(modaa ∈∀=  

 φ  is well-defined: Let ∑∑
==

=
m

0i

i
i

n

0i

i
i xbxa  in ].x[R  Then mn =  and 

.n,,1,0iba ii K=∀=  
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 So .n,,0iba ii K=∀=  

 ∑∑
==

=∴
m

0i

i
i

n

0i

i
i xbxa  in ].x[)IR(  

 φ  is a ring homomorphism: Let ∑ ∑
= =

==
n

0i

m

0i

i
i

i
i .xb)x(g,xa)x(f  

 Then ,x)ba())x(g)x(f(
t

0i

i
ii ⎟

⎠

⎞
⎜
⎝

⎛
+φ=+φ ∑

=

 where ).n,mmax(t =  

                                 i
t

0i
ii x)ba(∑

=

+=  

                                 ⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

==

m

0i

i
i

n

0i

i
i xbxa  

                                 )),x(g())x(f( φ+φ=  and  

 ,xc))x(g)x(f(
r

0i

i
i ⎟

⎠

⎞
⎜
⎝

⎛
φ=φ ∑

=

 where nmr +=  and ∑
=

−=
k

0i
ikik .bac  

                    ∑
=

=
r

0i

i
ixc  

                            ∑
=

− +++=
r

0i

i
i011i0i x)bababa( L  

                    ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑

==

m

0i

i
i

n

0i

i
i xbxa  

                    )).x(g())x(f( φφ=  

 φ  is onto: For any ∑
=

∈=
n

0i

i
i ],x[)IR(xa)x(h   

 ]x[Rxa)x(f
n

0i

i
i ∈=∃ ∑

=

 s.t. ).x(h))x(f( =φ  

 Thus, ].x[)IR(Im =φ  
 

 φKer
⎭
⎬
⎫

⎩
⎨
⎧

=∈= ∑∑
==

n

0i

i
i

n

0i

i
i 0xa]x[Rxa  

            
⎭
⎬
⎫

⎩
⎨
⎧

=∀=∈= ∑
=

n,,0i0a]x[Rxa i

n

0i

i
i K  

            
⎭
⎬
⎫

⎩
⎨
⎧

=∀∈∈= ∑
=

n,,0iIa]x[Rxa i

n

0i

i
i K  

            ].x[I=  
 Now apply FTH to get the result. 
 
E17) Let .Rr ∗∈  Suppose .xr >∈<  Then )x(xfr =  for some ].x[R)x(f ∈  
 ,1)x(fdegxdegrdeg0 ≥+==∴  a contradiction. Hence, ].x[Rx ≠><  
 
 Suppose ],x[Ix =><  for some proper ideal I  of .R  
 Let .I\Ra∈  Then ],x[Ixax =><∈  a contradiction. 
 Thus, ].x[Ix ≠><  
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E18) Let .nRchar =  By Theorem 3 of Unit 14, you know that n  is the least 

positive integer such that .01n =⋅  Since 1 is also the identity of ]x[R , 
the same theorem of Unit 14 tells you that .Rcharn]x[Rchar ==  

 
E19) Let ].x[Rxbxbb)x(q,xaxaa)x(p m

m10
n

n10 ∈+++=+++= LL  

 Then ⎟
⎠

⎞
⎜
⎝

⎛
+φ=+φ ∑

=

t

0i

i
ii x)ba())x(q)x(p( , where ).n,m(maxt =  

        ∑
=

+=
t

0i

i
ii x)ba(f  

        ∑
=

+=
t

0i

i
ii x)]b(f)a(f[  

        ∑ ∑
= =

+=
t

0i

i
i

t

0i

i
i x)b(fx)a(f  

        )),x(q())x(p( φ+φ=  since )b(f0)a(f ji ==      

                                                                            whenever .0b,0a ji ==  

 Also, ⎟
⎠

⎞
⎜
⎝

⎛
φ=⋅φ ∑

+

=

nm

0i

i
ixc))x(q)x(p( , where .bababac i011i0ii +++= − L  

                              ∑
+

=

=
nm

0i

i
i x)c(f  

     ∑
+

=
− +++=

nm

0i

i
i011i0i ,x)]b(f)a(f...)b(f)a(f)b(f)a(f[             

                              )).x(q())x(p( φφ=  
 Thus, φ  is a homomorphism. 
 

 Now, if f  is an isomorphism, then for any ∑
=

∈=
n

0i

i
i ],x[Sxa)x(h  

 ∑
=

=
n

0i

i
i ,x)b(f)x(h  where i)b(fa ii ∀=  as f  is onto. 

        .xb
n

0i

i
i ⎟

⎠

⎞
⎜
⎝

⎛
φ= ∑

=

 

 Thus, ].x[SIm =φ  
 

 Show that },0{]x[)fKer(Ker ==φ  as f  is .1-1  
 Thus, φ  is an isomorphism. 
 
E20) First, show that φ  is well-defined. 

 Next, if ∑
=

=
n

0i

i
ii x)r,a()x(f  and ∑

=

=
m

0i

i
ii x)s,b()x(g  in ],x[)SR( ×  then 

)n,mmax(t,x)]s,b()r,a[())x(g)x(f(
t

0i

i
iiii =⎟

⎠

⎞
⎜
⎝

⎛
+φ=+φ ∑

=

 

                        ⎟
⎠

⎞
⎜
⎝

⎛
++φ= ∑

=

t

0i

i
iiii x)sr,ba(  

since f  is a ring homomorphism. 



 

 

194 

Block 4                                                                                                  Integral Domains

                        ⎟
⎠

⎞
⎜
⎝

⎛
++= ∑ ∑

= =

t

0i

t

0i

i
ii

i
ii x)sr(,x)ba(  

                                ⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
= ∑ ∑∑ ∑

= == =

t

0i

t

0i

i
i

i
i

t

0i

t

0i

i
i

i
i xs,xbxr,xa  

                        )).x(g())x(f( φ+φ=  

 Similarly, show that )).x(g())x(f())x(g)x(f( φφ=φ  
 
 Next, let ],x[S]x[R))x(g),x(f( ×∈  where n)x(fdeg =  and 

.m)x(gdeg =  Suppose .nm ≥   

Then, ∑ ∑
= =

==
m

0i

m

0i

i
i

i
i ,xb)x(g,xa)x(f  where 0ai =  for .ni >  

 Then )).x(g),x(f(x)b,a(
m

0i

i
ii =⎟

⎠

⎞
⎜
⎝

⎛
φ ∑

=

 

 Thus, φ  is onto. 
 

 
⎭
⎬
⎫

⎩
⎨
⎧

=∀==×∈=φ ∑
=

n,,0ib0a]x[)SR(x)b,a(Ker ii

n

0i

i
ii K  

           }.0{=  
 
 Thus, φ  is an isomorphism. 
 ].x[S]x[R~]x[)SR( ×−×∴  
 

E21) i) The quotient field of ]i[Z  is .0idc,d,c,b,aidc
iba

⎭
⎬
⎫

⎩
⎨
⎧

≠+∈+
+ Z  

  Now ,iqp
dc

)idc)(iba(
idc
iba

22 +=
+

−+
=+

+  for some .q,p Q∈  

  Thus, the quotient field of ]i[Z  is ].i[Q  

  ∴ The quotient field of ]x[]i[Z  is ).x(]i[Q  
 
 ii) ]11[Q  is a field, as you have shown in Unit 14. 

  )x(]11[Q∴  is the required field. 
 
 iii) ).x(pZ  
 
E22) Any element α  of ]x[C  is also in ).x(C  Apart from these elements, 

there are the elements like  

 ,)xbxbb()xaxaa( 1m
m10

n
n10

−++++++ LL  where ∑
=

≠
m

0i

i
i ,0xb   

.m,,1j;n,1ib,a ji KK ==∀∈C  
 Pick any two, and show why they are distinct. 
 
E23) In E18 you have proved that .pchar]x[char pp == ZZ   

 Now consider ).x(pZ  The identity is ,1  where .01p =⋅  

 Thus, .p)x(char p =Z  
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 Also, )x(pZ  is infinite, as ]x[pZ  is infinite. 
 

E24) i) 
x

1x7
1x 43
−

++−  

               
1x7

1

x7
1x4

+

−
 

   We stop here since .7
1xdeg1x7

1deg 3 ⎟
⎠
⎞

⎜
⎝
⎛ +−<⎟

⎠
⎞

⎜
⎝
⎛ +  

   So .1x7
1)x(g)x()x(f ⎟

⎠
⎞

⎜
⎝
⎛ ++−=  

   Here x)x(q −=  and .1x7
1)x(r +=  

 

 ii) 
1x2

1xx2x1x2

2

23
+

+−++  

            
1x

x2x 23

+−
+

  

          
0
1x2 +

  

  Thus, ).x(g)1x2()x(f 2 +=  
  ).x(f)x(g∴  
  
 iii) ).x(g)3x3x()x(f 2 ++=  
  ).x(f)x(g∴  
 
E25) ii) Since )x(f1)x(f ⋅=  and ).x(f)x(f],x[F1∈  
 
 iii) ]x[F)x(p)x(g)x(f ∈∃⇒  s.t. )x(p)x(f)x(g =  

                 ),x(p)x(af)x(ag =⇒  for any .Fa ∗∈  

                 ).x(ag)x(af⇒  
 
 iv) )x(p)x(f)x(g =  and )x(q)x(g)x(h =  for some ].x[F)x(q),x(p ∈  
  ),x(q)x(p)x(f)x(h =∴  and ].x[F)x(q)x(p ∈  

  Thus, ).x(h)x(f  
 
 vi) )x(p)x(f)x(g =  and )x(q)x(f)x(h =  for some ].x[F)x(q),x(p ∈  
  So )),x(q)x(p()x(f)x(h)x(g +=+  and ].x[F)x(q)x(p ∈+  
  )).x(h)x(g()x(f +∴  
 
 vii) )x(p)x(f)x(g =  for some ].x[F)x(p ∈  
  ),x(h)x(p)x(f)x(h)x(g =∴  and ].x[F)x(h)x(p ∈  
  ).x(h)x(g)x(f∴  
 

(since 14 =  here) 

(since 21 =−  here) 
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E26) The difference between ]x[F  and ]x[R  lies in their units. But nowhere 

in the proofs have we applied the fact that every element of ∗F  is a unit, 
except in ).v(  This can be written as:  

 ‘If )x(g  is s.t. ,0)x(g ≠ )x(g)x(f  and ),x(f)x(g  then ,)x(ag)x(f =  for 
some ).R(Ua∈ ’ 

 
E27) By E26, )x(ag)x(f =  for some ).R(Ua∈  
 Thus, ).x(gdeg)x(fdeg =  
 Since the leading coefficients of )x(f  and )x(g  are .1a,1 =  
 Thus, ).x(g)x(f =  
 
E28) ~ is not symmetric. For example, )4x()2x( 2−−  in ],x[Q  but          

)4x( 2−   ).2x( −  (Why?) 
 
 
E29) Use (vi) and (vii) of Theorem 8 to prove this. 
 
E30) If )x(f  and )x(g  are relatively prime, .1))x(g),x(f( =  So 

),x(s)x(g)x(r)x(f1 +=  for some ].x[F)x(s),x(r ∈  
 
 Conversely, we know that 1 is a linear combination of )x(f  and ).x(g  

Let )).x(g),x(f()x(d =  

 Since )x(f)x(d  and ),x(g)x(d  

 )),x(s)x(g)x(r)x(f()x(d +  i.e., ,1)x(d  by E29. 

 .0)x(ddeg =∴  
 Also, )x(d  is monic. 
 Hence, .1)x(d =  
 

E31) ).bx(
)ba(

1)ax(
)ba(

11 +
−

−+
−

=  Hence, by Corollary 2, they are 

coprime. 
 
E32) e.g., .1x)x(g,x)x(f 43 +==   
 Since .1))x(g),x(f(,1)x(g)x(f)x( ==+−   
 There can be several other examples. Look for some more. 
 
E33) i) )x(s)x(g)x(r)x(f1 +=     …(14) 
  )x(q)x(h)x(p)x(f1 +=    …(15) 
  for some ].x[F)x(q),x(p),x(s),x(r ∈  
  From (15), we get  
  ).x(q)x(h)x(g)x(p)x(g)x(f)x(g +=  
  So, putting this in (14), we get  
  )x(s)x(q)x(h)x(g)]x(s)x(p)x(g)x(r)[x(f1 ++=  
  .1))x(h)x(g),x(f( =∴  
 
 ii) )x(s)x(g)x(r)x(f1 +=     …(16) 
  for some ].x[F)x(s),x(r ∈  
  Also )x(p)x(f)x(h)x(g =    …(17) 
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  for some ].x[F)x(p ∈  
  Now, from (16), we get  
  )x(s)x(h)x(g)x(r)x(h)x(f)x(h +=  
          ),x(s)x(p)x(f)x(r)x(h)x(f +=  from (17). 
          ),x()x(f α=  where ].x[F)x(s)x(p)x(r)x(h)x( ∈+=α  
  ).x(h)x(f∴  
 
E34) 3x9x8x13x19x11x11x11x3x3x 2345678910 +−+−+−+−+−  
 .)3x5x2x3x()x2x()2x5x5x9x3x3x( 234423456 +−−−−+−+−+−+−=  
 Then, 2x5x5x9x3x3x 23456 +−+−+−  
 .)59x118x59()19x6x()3x5x2x3x( 32234 +−−+−+−+−−−−=  

 Next, .59
3x59

1)59x118x59(3x5x2x3x 3234 ⎟
⎠
⎞

⎜
⎝
⎛ ++−−=+−−−−  

 ∴ the required g.c.d is ),59x118x59(59
1 3 +−−−  since the g.c.d has to 

be monic. 
 Thus, the g.c.d is ).1x2x( 3 −+  
 
E35) ,4x2x2)x(g,2xx2x4)x(f 224 ++=+++=  since .41 =−  
 ),3x()4x3x2()4x2x2(2xx2x4 2224 ++++++=+++  
 ,1)1x2()3x(4x2x2 2 +++=++  
 ).3x(1)3x( +=+  
 .1))x(g),x(f( =∴  
 
E36) )ix()ix(1x2 −+=+  in ].x[C  
 So 

/
],x[ix1x2 C⊆>+∈<+  since .ix1 >+∉<  

 Suppose .1xix 2 >+∈<+   
 Then ,)x(f)1x()ix( 2 +=+  for some ].x[)x(f C∈  
 So ,2)x(fdeg)1x(deg)ix(deg1 2 ≥++=+=  which is a contradiction. 

 Thus, .1xix 2 >+∉<+  
 .ix1x2 >+<≠>+<∴  

 
//

].x[ix1x2 C⊆>+<⊆>+<∴  

 >+<∴ 1x2  is not a maximal ideal of ].x[C  
 

E37) You should check that 2x3x2 ++  and 1x2
1x 35 +−  are coprime. 

 ].x[11xx2
1,2xx3 532 Q=><=>++−++<∴  

 Thus, the given ideal is not a proper ideal, and hence, it is not a prime 
ideal. 

 
E38) The g.c.d of 1n2 x,,x,x −K  is .x  
 ∴ the g.c.d of 1x,x,,x,x n1n2 −−K  is the g.c.d of ,1x,x n −  which is 1 

(because ).1)1x(xx n1n =−−⋅ −  
 ].x[F11x,x,,x,x n1n2 =><=>−<∴ −K  
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E39) There can be several answers. Ours is ,10x2 +  and .x2  

 Here ).x10x()10(1 221 −+= −  

 Hence, 10x2 +  and 2x  are co-prime. 
 ].x[1x,10x 11

22 Z=><=>+<∴  
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  UNIT 16                                  

ROOTS AND FACTORS OF 
POLYNOMIALS 

Structure       Page Nos. 
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16.6 Summary             218 
16.7 Solutions / Answers            219       
 

16.1 INTRODUCTION 
 
In the previous unit, you have worked with polynomials over different rings. 
You have also studied the division algorithm in ],x[F  where F  is a field. In this 
context, you have worked with quotients, remainders and the idea of one 
polynomial dividing another. In this unit, we will help you take this 
understanding further. Note that throughout this unit, a ring is assumed to 
be commutative. 
 
In Sec.16.2, you will study what a root of a polynomial is, and how this is 
related to a factor of a polynomial. You will also see how the degree of a 
polynomial is related to the number of roots it has. This follows from the 
remainder theorem, as you will see. 
 
In the next section, Sec.16.3, you will be introduced to the idea of reducible 
and irreducible polynomials over a field, .F  Here you will see that an 
irreducible polynomial in ]x[F  generates a maximal ideal of ].x[F  You will also 
see that irreducible elements of ]x[F  are precisely the prime elements of 

].x[F  
 
Next, in Sec.16.4, you will study the criteria for a polynomial over ]x[F  to be 
irreducible, when F  is RQ,  or .C  For example, you will discover that an 
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irreducible polynomial over Q  can be of any degree, while over C  it must be 
of degree .1  
 
In Unit 15, you have seen that there is much similarity in the properties of 
integers and the properties of polynomials over a field. In Sec.16.5, we will 
consider another such similarity, namely, unique factorisation. You will find 
that irreducible polynomials over a field play the role that prime numbers play 
in .Z  In this section, you will also study some consequences of unique 
factorisation in ].x[F  
 
This unit has been created keeping the following expected learning goals in 
mind. Please go through it carefully, solving every exercise as you come to it. 
 

Objectives 
After studying this unit, you should be able to:  

• define, and give examples of, a root (or a zero) of a polynomial over a 
commutative ring ;R  

• state, prove and apply the remainder theorem; 

• define, and give examples of, a factor of a polynomial corresponding to a 
root of the polynomial; 

• define, and give examples of, irreducible elements and prime elements 
of ],x[F  where F  is a field; 

• apply the various criteria to decide whether a given polynomial over 
RC,  or Q  is irreducible or not;  

• state, prove and apply the unique factorisation theorem for ],x[F  where 
F  is a field. 

 

16.2  ROOTS 
 
In Calculus, as well as in school mathematics, you have been finding roots of 
polynomials. For example, you know that if ,01x =+  then .1x −=  So )1(−  is 
a root of the polynomial .1x +  Similarly, you know that if cbxax2 ++  is a 
quadratic polynomial over ,C  then its roots are given by the quadratic formula: 

.
a2

ac4bb 2 −±−
 To generalise this concept, let us formally define a term for a 

process you have used several times before. 
 

Definition: Let R  be a ring and let ].x[Rxaxaa)x(f n
n10 ∈+++= L  

Then for any ,Rr∈  we define Rraraa)r(f n
n10 ∈+++= L  to be the value of 

f(x)  obtained by substituting r  for .x  
 

Thus, if ],x[xx1)x(f 2 Z∈++=  then ,7421)2(f =++=  and 
.1001)0(f =++=  

 
Now let us define a root, in general. 
 
Definition: Let R  be a ring. An element r  in R  is called a root (or a zero) of 

]x[R)x(f ∈  if .0)r(f =  

For example, if 2x2x212)x(f −−=  in ],x[2Z  then .08412)2(f =−−=   
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So 2  is a root of 2x2x212 −−  in .2Z   
Also, since ,08412)2(f ≠−+=−  )2(−  is not a root of 2x2x212 −−  in .2Z  
 

As another example, if ],x[5x)5(x)21(x2)x(f 23 R∈π−π−+π−+=  then 
.0)(f =π  So, π  is a zero of )x(f  in .R  

 
For polynomials over a field ,F  the concept of a root is closely related to the 
division algorithm in ].x[F  To see how, consider the following important 
theorem, which is actually a corollary of the division algorithm given in Unit 15. 
 
Theorem 1 (Remainder Theorem): Let F  be a field. If ]x[F)x(f ∈  and ,Fb∈  
then there exists a unique polynomial ]x[F)x(q ∈  such that 

).b(f)x(q)bx()x(f +−=      
 
Proof: Let .bx)x(g −=  Then, applying the division algorithm to )x(f  and 

),x(g  there exist unique )x(q  and )x(r  in ],x[F  such that 
)x(r)x(g)x(q)x(f +=  

       ),x(r)bx)(x(q +−=  where 0)x(r =  or .1)x(gdeg)x(rdeg =<  
So 0)x(r =  or )x(r  is an element of .F∗   
Thus, ,a)x(r =  for some .Fa∈  
So, .a)x(q)bx()x(f +−=  
Substituting b  for ,x  we get 

.aa)b(q0a)b(q)bb()b(f =+⋅=+−=  
Thus, ).b(fa =  
Therefore, ).b(f)x(q)bx()x(f +−=  
Thus, the remainder is the value of )x(f  when we substitute b  for .x  
 
Note that in Theorem 1, ).x(qdeg1)x(qdeg)bx(deg)x(fdeg +=+−=  
Therefore, .1)x(fdeg)x(qdeg −=  
 
An immediate corollary to Theorem 1 is the following. 
 
Corollary 1: Let F  be a field and let ],x[F)x(f ∈  with .1)x(fdeg ≥  Then 

Fa∈  is a root of )x(f  iff ).x(f)ax( −  
 
Proof: We leave the proof to you as an exercise (see E1). 
 
Let’s see how Corollary 1 is useful. For example, you now know that 

]x[)1x(x Z∈+  has 0  and 1 as its only roots since x  and 1x +  are its only 
linear factors. 
 
As another example, consider ].x[1xx6)x(f 2 Q∈−−=  By the quadratic 

formula, you know that its roots are 2
1  and .3

1−  Thus, )2
1x( −  and )3

1x( +  

are factors of ),x(f  by Corollary 1.  

Now, since 2  is a unit in ).2
1x(2)2()2

1x(, 1 −=− −Q  So )2
1x(2 −  is also a 

factor of ),x(f  i.e., )1x2( −  is a factor of ).x(f   
Similarly, )1x3( +  is a factor of ).x(f   
Did you notice that both these factors of )x(f  are in ?]x[Z  
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Now consider ].x[)2x()1x( 2 Q∈−−  Here )1x( −  is a double factor. So, 1 is 
twice a root of this polynomial. This is an example of what we shall now define. 
 
Definition: Let R be a ring and ].x[R)x(f ∈  We say that Ra∈  is a root of 
multiplicity m  of ,m),x(f N∈  if  

),x(f)ax( m−  but 1m)ax( +−   ).x(f  
 
For example, 3  is a root of multiplicity 2  of the polynomial 

],x[)2x()3x( 2 Q∈+−  and )2(−  is a root of multiplicity 1 of this polynomial. 
 
Now you should solve some exercises. 
 
 
E1) Prove Corollary 1. 
 
E2) Find the roots of the following polynomials, along with their multiplicities. 

i) ],x[3x2
5x2

1 2 Q∈+−  

ii) ],x[1xx 3
2 Z∈++  

iii) ],x[1x2x2x 5
34 Z∈−−+  

iv) ].x[)i31ix()x42()3x5( 1132 C∈−+−+  
 
E3) Give an example of a polynomial over 11Z  which has only two distinct 

roots, of multiplicity 3  and ,2  respectively. Justify your choice of 
example. 
 

E4) Let F  be a field and .Fa∈  Define a function ).a(f))x(f(:F]x[F: =φ→φ  
(This function is the evaluation map at ,a  as you know from Unit 13.) 

 Show that 

i) φ  is an onto ring homomorphism,  

ii) ,Fbb)b( ∈∀=φ  

iii) φKer  is the set of all polynomials in ]x[F  having a  as a zero. 
Further, find a generator for .Ker φ  

What does the Fundamental Theorem of Homomorphism say in this 
case? 

 

E5) Let F  be a field. Prove that .Fax
]x[F~

ax
]x[F ∗∈∀><−>−<  

 
E6) Let F  be a field, and let ∗∈Fa  be a root of ].x[Fxaxaa n

n10 ∈+++ L  

Show that 1a−  is a root of ].x[Fxaxaa n
01nn ∈+++ − L   

Will this still be true if F  is replaced by a domain D  which is not a field? 
Why? 

 

 
Let us now look at how we can obtain all the roots of a given polynomial in 

].x[F  As you know, this is possible for a linear, or a quadratic, polynomial. For 
polynomials of higher degree we may be able to obtain some by trial-and-
error, as you have done in E2(iii).  
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As another example, consider ].x[1x2x)x(f 5 R∈+−=  We try replacing x  by 
,1  and find .0)1(f =  So, we find that 1 is a zero of ).x(f  But this method may 

not give us all the roots of )x(f  in .R  
 
Also, note that a polynomial in ]x[F  may have no zero in .F  (For example, 

]x[1x2 R∈+  has no zero in ,R  since its zeros are i  and ,i−  both in .\RC ) 
However, we can give an upper bound for the number of roots in F  of a 
polynomial in ].x[F  
 
Theorem 2: A non-zero polynomial of degree n  over a field F  has at the most 
n  roots in .F  
 
Proof: If ,0n =  then any polynomial of degree 0  is a non-zero constant 
polynomial. Thus, it has no roots, and hence, it has at most )n(0 =  roots in .F  
So, let us assume that .1n ≥  We will use the principle of induction on .n   
For ,n N∈  let )n(P  be the predicate, ‘If ]x[F)x(f ∈  is of degree ,n  then )x(f  
has at most n  roots in F ’. 
We will first check whether the statement )1(P  is true or not.  
If ]x[F)x(f ∈  s.t. ,1)x(fdeg =  then ,xaa)x(f 10 +=  where Fa,a 10 ∈  and 

.0a1 ≠  
So )x(f  has one root, namely, .F)aa( 0

1
1 ∈− −  Can it have more roots? From 

Corollary 1, you know that it cannot have more roots, since 
).aax(deg1)x(fdeg 0

1
1
−+==  

So, for )x(f,1n =  has exactly 1 root, in fact, and it is in .F  
Thus, )1(P  is true. 
 
Now assume that )m(P  is true for some .m N∈   
We will show that )1m(P +  is true. 
Let ]x[F)x(f ∈  s.t. .1m)x(fdeg +=  We will show that the number of roots of 

)x(f  in F  is at most .1m +  
There are two possibilities now – either )x(f  has no zero in ,F  or )x(f  has a 
zero in .F  
If )x(f  has no root in ,F  then the number of roots of )x(f  in F  is .1m0 +≤  
Thus, trivially, )x(f  has at most 1m +  roots in .F  
 
Next, suppose )x(f  has a root .Fa∈  
Then ),x(g)ax()x(f −=  where ,m1)1m()x(gdeg =−+=  and ].x[F)x(g ∈  
Hence, by the induction hypothesis, )x(g  has at most m  roots in .F  Let 

s1 a,,a K  be the distinct roots of )x(g  in ,F  where .ms ≤   
Now, ia  is a root of )x(g  

0)a(g i =⇒  

0)a(g)aa()a(f iii =−=⇒  

ia⇒  is a root of )x(f  in .s...,,1iF =∀  
Thus, each root of )x(g  is a root of ).x(f  
Thus, )x(f  has at least 1s +  roots s1 a,,a,a K  in ,F  where .m1s ≤+  
Does )x(f  have any more roots in ?F  Let’s see. 
Now, Fb∈  is a root of )x(f  

0)b(f =⇔  
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0)b(g)ab( =−⇔  
0ab =−⇔  or ,0)b(g =  since F  is an integral domain.  

Thus, b  is a root of )x(f  
ab =⇔  or b  is a root of )x(g  

.a,,a,ab s1 K=⇔  
So, the only roots of )x(f  are a  and .a,...,a s1   
Thus, )x(f  has at the most 1m +  roots in .F  

)1m(P +∴  is a true statement. 
 
Hence, )n(P  is true ,n N∈∀  i.e., the theorem is true for all .1n ≥  
 
Here consider an important point about Theorem 2. 
 

Remark 1: Using Theorem 2, you know that ]x[1x3 Q∈−  can’t have more 
than 3  roots in .Q  However, it has only one root in ,Q  i.e., .1  The others are 

,
2

3i1+−
=ω  and ,2ω  in .\QC  Thus, it is important to note the significance 

of ‘at the most’ in the statement of Theorem 2. 
  
In Theorem 2, we have not spoken about the multiplicity of the roots. This is 
the point of the following corollary of Theorem 2. 
 
Corollary 2: If [x]Ff(x)∈  is of degree ,n  then f(x)  has at the most n  distinct 
roots in F,  where F  is a field. 
 
We will use Corollary 2 to prove the following useful theorem. 
 
Theorem 3: Let )x(f  and )x(g  be non-zero polynomials of degree n  over a 
field .F  If there exist 1n +  distinct elements 1n1 a,,a +K  in F  such that 

,1n,...,1i)a(g)a(f ii +=∀=  then ).x(g)x(f =  
 
Proof: Consider the polynomial ).x(g)x(f)x(h −=  
Then ,n)x(hdeg ≤  but )x(h  has 1n +  distinct roots 1n1 a,...,a +  in .F  (Why?) 
By Corollary 2, this is impossible, unless )x(h  is the zero polynomial, i.e., 

).x(g)x(f =  
 
Note that Theorem 3 is not true if the sai  are not all distinct. For example, take 

)3x()2x()x(f 2 −−=  and 2)3x)(2x()x(g −−=  in ].x[R  They are both of 
degree ,3  but 3,3,2,2  are 4  elements in R  s.t. )x(f  and )x(g  have the 
same value, ,0  at these points. Also ).x(g)x(f ≠  
 
Now, by Theorem 2, you know that if you are given a polynomial of degree ,25  
say, over ,R  then you can find a maximum of 25  zeros of this polynomial in 

.R  Is the same true for ,Z  say? Or for a ring that is not a domain? Let us look 
at an example. 
 
Example 1: Prove that ]x[x5x 6

3 Z∈+  has more than 3  zeros. 
 
Solution: Since 6Z  is finite, it is easy for us to run through all its elements and 

check which of them are roots of .x5x)x(f 3+=  
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So, by substitution we find that 

).5(f)4(f)3(f)2(f)1(f0)0(f ======  
In fact, every element of 6Z  is a zero of ).x(f  Thus, )x(f  has 6  zeros, while 

.3)x(fdeg =  Thus, Theorem 2 (and hence, Theorem 3) is not true for ].x[6Z  

*** 
 
From Example 1, you can see that for a ring that is not a domain, Theorem 2 
and 3 are not true. However, these theorems are true for a domain too, as you 
will now see. 
 
Theorem 4: A non-zero polynomial of degree n  in ],x[D  where D  is an 
integral domain, has at the most n  roots in .D  
 
Proof: Let ]x[D)x(f ∈  be of degree .n  Let F  be the field of quotients of .D  
Then ].x[F)x(f ∈  Hence, )x(f  has at the most n  roots in ,F  by Theorem 2. 
Also, any root of )x(f  in D  will be a root in F  too. Thus, )x(f  cannot have 
more than n  roots in .D  
 
Try solving the following exercises now. 
 
 
E7) Prove Corollary 2. 
 
E8) State, and prove, the statement analogous to Theorem 3, replacing a 

field F  by an integral domain .D  
 
E9) Let F  be a field and }.0{\]x[F)x(f ∈  Show that )x(f  can have at most 

n  linear factors in ].x[F  
 

E10) Let p  be a prime number. Consider ].x[1x p
1p Z∈−−  Use the fact that 

pZ  is a group of order p  to show that every non-zero element of  pZ  is 

a root of .1x 1p −−  Thus, show that  

 i) ),1px()2x()1x(1x 1p −−−−=−− K  and  

 ii) ).p(mod1)!2p( ≡−  
 
E11) The polynomial 4x4+  can be factored into linear factors in ].x[5Z  Find 

this factorisation. 
 

E12) Find all the zeros of ],x[1xn C∈−  where .n N∈   
 
 
In E12, you may have noted that all the zeros of the polynomial over ]x[C  lie 
in .C  As you know, this need not be true for polynomials in ],x[F  for other 
fields .F  For example, this is not true for .F R=  
 
Let us now consider elements of ]x[F  that have no roots in .F  These 
polynomials are somewhat analogous to prime numbers in .Z  
 

16.3 IRREDUCIBLE POLYNOMIALS 
 
From Unit 1, you know that a prime number is a non-zero, non-unit element of 
Z  that has no factors other than 1 and itself. You also know that if p  is a 
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prime in ,Z  then Zp  is a maximal ideal of .Z  So, does a prime element of 
]x[F  satisfy this property too, where F  is a field? From Theorem 13, Unit 14, 

we are assured that a prime element will generate a prime ideal. This may or 
may not be maximal in ].x[F  In this section, you will study what these prime 
elements are. You will also study that they generate maximal ideals in ].x[F  
 
Firstly, recall from Unit 15, that the units of ]x[F  are the elements of .F∗  Thus, 
the units of F[x]  are precisely the constant polynomials in .[x]F  So, a 
non-zero non-unit element of ]x[F  is a polynomial of degree .1≥  
 
Next, if )x(g)x(f  in ],x[F  then ).x(gdeg)x(fdeg ≤  So, if )x(g  has no 

factors other than a unit and itself, then ),x(af)x(g =  for some .Fa ∗∈   
This means that ).x(gdeg)x(fdeg =  
For example, 5x3)x(g +=  has no factor of positive degree, since 

.1)x(gdeg =  Also, ]x[1x2 R∈+  has no linear factor in ],x[R  by Corollary 1. 
However, 1x2−  has )1x( −  and )1x( +  as factors in ],x[R  again by    
Corollary 1.  
With this background, let us define a concept in ]x[F  that will turn out to have 
somewhat similar properties to that of a prime number in .Z  
 
Definition: Let F  be a field. A non-zero non-unit polynomial ]x[F)x(p ∈  is 
called  

i) irreducible in ]x[F  if whenever )x(g)x(f)x(p =  in ],x[F  then 
0)x(fdeg =  or .0)x(gdeg =  

ii) reducible in ],x[F  if it is not irreducible in ].x[F  
 
For example, )1x( 2−  is reducible in ]x[Q  as well as in ]x[R  as 

)1x)(1x(1x2 +−=−  and ).1x(deg1)1x(deg +==−   
 
Let us consider an example of irreducible polynomials in detail. This is actually 
a class of examples. 
 
Example 2: Let F  be a field. Show that any linear polynomial in ]x[F  is 
irreducible in ].x[F  
 
Solution: Let .0a],x[Fbax)x(f ≠∈+=  Suppose ),x(h)x(g)x(f =  in ].x[F  
Then .0)x(hdeg)x(gdeg)x(fdeg1 ≥+==   
This is only possible if either 0)x(gdeg =  or ,0)x(hdeg =  i.e., if either 

∗∈F)x(g  or .F)x(h ∗∈  
Thus, by definition, )x(f  is irreducible in ].x[F  

*** 
  
So, a linear polynomial is irreducible over .F  What about non-linear 
polynomials in ?]x[F  You have seen that 1x2−  is reducible over .R  Consider 
the following example. 
 
Example 3: Check whether or not ]x[1x2 R∈+  is irreducible. 
 

Solution: Let )x(g)x(f1x2 =+  in ].x[R  Then .2)x(fdeg ≤   
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Suppose, if possible, .1)x(fdeg =   
Since ),1x()x(f 2+  by Corollary 1 we find that 1x2+  has a root in .R  
This is a contradiction.  
Hence, .1)x(fdeg ≠  

0)x(fdeg =∴  or .2)x(fdeg =   
If ,2)x(fdeg =  then .0)x(gdeg =   
Hence, )1x( 2+  is irreducible. 

*** 
 
In the following theorem you can see the relationship between irreducibility 
and roots of non-linear polynomials. 
 
Theorem 5: Let F  be a field and let ],x[F)x(p ∈  with .2)x(pdeg ≥  If )x(p  is 
irreducible in ],x[F  then )x(p  has no roots in .F  
 
Proof: We shall prove the contrapositive of the statement to be proved, i.e., if 

)x(p  has a root in ,F  then )x(p  is reducible.  
 
Suppose )x(p  has a root .Fa∈  Then, by Corollary 1, ).x(p)ax( −  So 

)x(g)ax()x(p −=  in ],x[F  where .11)x(pdeg)x(gdeg ≥−=  
Thus, )x(p  is reducible in ].x[F  
Hence, the theorem is proved. 
 
Now, is the converse of Theorem 5 true? That is, if )x(p  is of degree 2≥  and  
has no root in ,F  then must )x(p  be irreducible in ?]x[F  Let’s see.  
Consider ].x[1x2x)x(f 24 R∈++=  This is reducible, since 

)1x)(1x()x(f 22 ++=  in ]x[R  and .02)1x(deg 2 ≠=+  But )x(f  has no root in 

,R  since it roots are .\1 RC∈−±  
Thus, the converse of Theorem 5 is not true. 
 
In the counterexample above, note that .4)x(fdeg =  So, the question  
now is — Is the converse of Theorem 5 true if 2)x(fdeg =  or ?3  This is what 
the following theorem answers. 
 
Theorem 6: Let F  be a field, and let )x(p  be a quadratic or a cubic 
polynomial over .F  If )x(p  has no roots in ,F  then )x(p  is irreducible in ].x[F  
 
Proof: We shall prove the contrapositive of the statement to be proved. Thus, 
we aim to prove that if )x(p  is reducible in ],x[F  then )x(p  has a root in .F  
So, let )x(g)x(f)x(p =  in ],x[F  with .1)x(gdeg,1)x(fdeg ≥≥  Now 

),x(gdeg)x(fdeg)x(pdeg +=  and 2)x(pdeg =  or .3  Therefore, 
1)x(fdeg =  or .1)x(gdeg =  

Suppose )x(f  is linear, say .0a,bax)x(f ≠+=  
Then .0)ba(f 1 =− −  So .0)ba(p 1 =− −  Thus, Fba 1 ∈− −  is a root of ).x(p  
 
Similarly, if )x(g  is linear, then )x(p  will have a root in .F  
Thus, we have proved that if )x(p  is reducible, it has a root in ;F  or 
equivalently, if )x(p  has no root in )x(p,F  is irreducible over .F  
 
Why don’t you solve some exercises now? 
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E13) Which of the following polynomials are irreducible? Give reasons for 
your choice. 

 i) ],x[1x2x2 R∈+−  

 ii) ],x[1xx2 C∈++  

 iii) ],x[2ix C∈+  

 iv) ,]x[2x3x 24 R∈++  

 v) .a]x[ax 22 ∗∈∀∈+ RR  
 

E14) Check whether or not 2x3x 23 ++  is irreducible in ].x[5Z  
 
E15) If ]x[F)x(f ∈  has a root in ,F  with ,3)x(fdeg ≤  then )x(f  is reducible in 

].x[F  True or false? Why?  
 

E16) Find two prime numbers p  s.t. )1xxxx()2x( 234 +−+++  in ].x[pZ  
 

E17) For which N∈n  is ]x[1xn Q∈−  irreducible, and why? 
 

 
So far, you have studied the relationship between )x(f  being irreducible in 

]x[F  and the roots of )x(f  in .F  Let us now come back to what we had 
suggested at the beginning of this section, i.e., an analogue in ]x[F  of a prime 
element in .Z  In Unit 14, you saw that if p  is a prime number, then Zp  is a 
maximal ideal of .Z  You will now see that irreducible elements in ],x[F  where 
F  is a field, have the same property. 
 
Theorem 7: Let F  be a field and let ]x[F)x(f ∈  be irreducible in ].x[F  The 
ideal >< )x(f  is a maximal ideal of ].x[F  
 
Proof: Let I  be an ideal of ]x[F  s.t. ].x[FI)x(f ⊆⊆><  
From Sec.15.5, Unit 15, you know that every ideal in ]x[F  is a principal ideal. 

><=∴ )x(gI  for some ].x[F)x(g ∈  
Then ]x[F)x(h)x(g)x(f ∈∃⇒>∈<  s.t. ).x(h)x(g)x(f =  
Since )x(f  is irreducible, either ∗∈F)x(g  or .F)x(h ∗∈  
If ,F)x(g ∗∈  say ,c)x(g =  then ].x[Fc)x(g =><=><   
If ,F)x(h ∗∈  say ,a)x(h =  then ,)x(f)x(fa)x(g 1 >∈<= −  so that 

.)x(f)x(g ><=><  
Hence, >< )x(f  is a maximal ideal of ].x[F  
 
Two immediate corollaries of Theorem 7 are the following. 
 
Corollary 3: If ]x[F)x(f ∈  is irreducible, then >< )x(f]x[F  is a field. 
Proof: Since >< )x(f  is a maximal ideal of >< )x(f]x[F],x[F  is a field, by 
Theorem 14, Unit 14. 
 
Corollary 4: If ]x[F)x(f ∈  is irreducible, then )x(f  is a prime element of ].x[F  
 
Proof: Since >< )x(f  is a maximal ideal, it is a prime ideal of ].x[F  Hence, 

)x(f  is a prime element of ],x[F  by Theorem 13, Unit 14. 
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Let us consider an example of the use of Theorem 7. 
 

Example 4: Let p  be a prime number. Is >−< px]x[ 3Q  a field? Why, or 
why not? 
 
Solution: From Theorem 7 you know that for any field ,F  if )x(f  is irreducible 
in ],x[F  then >< )x(f  is a maximal ideal of ].x[F  
Now, the roots of px3−  are ,p,p,p 23/13/13/1 ωω  where ω  is a cube root of unity 
in .\RC . Also .\p 3/1 QR∈  Thus, none of the roots of px3−  lie in .Q   
So, by Theorem 6, px3−  is irreducible.   
Therefore, >−< px3  is a maximal ideal of ].x[Q  
Thus, >−< px]x[ 3Q  is a field. 

*** 
 
Now let us go back to Corollary 4. In this corollary, you have seen that every 
irreducible element of ]x[F  is a prime element. Is the converse true? Let’s 
see. 
 
Theorem 8: Let F  be a field and let ]x[F)x(f ∈  be a prime element. Then 

)x(f  is irreducible in ].x[F  
 

Proof: Let )x(h)x(g)x(f =  in ].x[F  Then ).x(h)x(g)x(f   

So, by the definition of a prime element, )x(g)x(f  or ).x(h)x(f   

Suppose ).x(g)x(f   

Since ),x(h)x(g)x(f =  we see that )x(f)x(g  also. 

So, by Theorem 8, Unit 15, )x(ag)x(f =  for some .Fa ∗∈   
Thus, ).x(h)x(g)x(ag =   
So, by the cancellation law, ,a)x(h =  i.e., .0)x(hdeg =   
Similarly, if ),x(h)x(f  then .0)x(gdeg =  
Thus, )x(f  is irreducible.  
 
What do Theorem 8 and Corollary 4 tell you? Don’t they say that [x]F(x)f ∈  is 
prime iff it is irreducible? 
 
Why don’t you solve some related exercises now? 
 
 

E18) Let F  be a field, and let )x(p  be irreducible in ].x[F  If 
),x(f)x(f)x(f)x(p n21 K  then show that )x(f)x(p i  for some ,n,,1i K=  

where .n,,1j]x[F)x(fj K=∀∈  
   
E19) Which of the following statements are true? Give reasons for your 

answers. 

 i) If 1F  and 2F  are fields such that ,FF 21 ⊆  and ]x[F)x(f 1∈  is 
irreducible over ,F1  then )x(f  is irreducible over .F2   

 ii) 2x2x 23 ++  is a prime element in ].x[5Z  

 iii) If )x(p  is a prime element of ],x[F  then )x(p  is a prime element 
of I]x[F  for any ideal I  of ],x[F  where F  is a field. 
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By now you would have developed quite a bit of familiarity with the idea of 
irreducibility over a field. Let us look at this concept in greater depth in the 
special cases of polynomials over the complex, real and rational fields. 
 

16.4 IRREDUCIBILITY OVER RC,  AND Q  
 
So far, you have studied irreducibility over any field .F  Let us discuss what 
happens over RC,  or ,Q  in particular. 
 
16.4.1 Irreducibility over C  and R  
You have seen that a linear polynomial is irreducible in ],x[F  for any field .F  
Hence, linear polynomials over C  are irreducible too. However, for C  we 
have a much stronger result, which is really basic for algebra. 
 
Theorem 9 (The Fundamental Theorem of Algebra): A polynomial of 
degree 1n ≥  in ]x[C  has all n  of its roots in ,C  where repeated roots are 
counted with their respective multiplicities. 
 
This theorem appears simple, but is very deep. We shall not prove it in this 
course, as the proof requires some understanding of complex analysis. But let 
us see what follows immediately from this theorem. 
 
Corollary 5: Every polynomial over ,C  of degree ,1n ≥  can be written as a 
product of n  linear polynomials in .[x]C  
  
In other words, Corollary 5 says that the only irreducible polynomials in 

[x]C  are the linear polynomials. 
Thus, )1x( 2+  is not irreducible in ],x[C  while it is irreducible in ],x[R  as you 
have seen earlier.  
 
By the Fundamental Theorem of Algebra, you now know that, for example, 

ixx)5i5(x)i32( 5710 +π++−++  has 10  roots in .C  These roots may or may 
not all be distinct, of course. 
 
Next, let us look at irreducible polynomials in ].x[R  How do we find out if a 
given polynomial of degree 2≥  in ]x[R  is irreducible or not? Well, by 
Theorems 5 and 6, you know that if the polynomial is of degree 2  or ,3  it is 
irreducible iff it has no root in .R  However, we have a more precise result 
about this, which actually follows from Theorem 9. 
 
Theorem 10: If ]x[)x(p R∈  is irreducible, then )x(p  is a linear or a quadratic 
polynomial. 
 
Proof: Let .n)x(pdeg =  Since )x(p  is irreducible in ],x[R  it has no real 
roots. 
If ,1n =  then )x(p  is linear, and hence, it is irreducible.  
Suppose .2n ≥  Note that ].x[]x[)x(p CR ⊆∈   
So, by Theorem 9, ),zx()zx)(zx(a)x(p n21n −−−= K  where R∈na  and 

.n,,1izi K=∀∈C  

Also, .n,,0ia,xaxaa)x(p i
n

n10 KL =∀∈+++= R  

Now, if 0)z(p =  for some ,z C∈  then 0zazaa n
n10 =+++ L  in .C  

In 1799, the great 
mathematician Gauss 
proved the Fundamental 
Theorem of Algebra. 



 

 

211

 
Unit 16                                                                  Roots and Factors of Polynomials

So 0)z(pzazaa)z(p n
n10 ==+++= L  in ,C  where z  is the conjugate of z  

in .C  Note that ,aa ii =  since .n,,1,0iai K=∀∈R   
So, if )zx( −  is a factor of )zx(),x(p −  must also be a factor of )x(p  in ,C  
i.e., if z  is a root of )x(p  in ,C  then so is .z  Note that ,zz ≠  since .z R∉   
Thus, the non-real complex roots of )x(p  occur in pairs.  
So, if ]x[)x(p R∈  has one non-real complex root, it must have at least two 
such roots. Similarly, if )x(p  has 3  non-real complex roots, then it must have 
at least four such roots, and so on. 
 
Now two cases arise: )x(pdeg  is odd, or )x(pdeg  is even.  
If )x(pdeg  is odd, then )x(p  must have at least one real root since any root 
in RC \  will occur in pairs. Thus, )x(p  is reducible over R  in this case.  
 
Next, suppose )x(pdeg  is even, say ,m,m2)x(pdeg N∈=  i.e., .m2n =   
For each pair of non-real complex conjugate roots iba +  and ,iba −  of ),x(p  

].x[)ba(ax2x)]iba(x)][iba(x[ 222 R∈++−=−−+−   …(1)  
So, for each pair of non-real complex conjugate roots, you get a factor of )x(p  
of degree .2  Since )x(p  has no real roots, and the non-real roots of )x(p  
occur in pairs, )x(p  has m  pairs of roots in .\ RC  So )x(p  has m  factors in 

]x[R  of the form in (1). 
Therefore, in this case )x(p  can be irreducible only if ,1m =  i.e., .2)x(pdeg =  
 
Thus, we have proved that if ]x[)x(p R∈  is irreducible, then 1)x(pdeg =  or 

.2)x(pdeg =  
 
Why don’t you solve some exercises now? 
 
 
E20) If )x(p  is a linear polynomial, or a quadratic polynomial, in ],x[R  it is 

irreducible. True or false? Why? 
 
E21) If ]x[)x(p R∈  is of degree ,6  how many linear factors does it have in 

?]x[C  And, how many irreducible factors can )x(p  have in ?]x[R  
 
 
So, you have seen that irreducibility over C  or R  is pretty clear-cut in terms 
of the degree of the polynomials. Let us see if this is the case in ].x[Q  
 
16.4.2 Irreducibility over Q  
Let us now consider irreducible polynomials over .Q  Surprisingly, we find that 
if ]x[)x(p Q∈  is irreducible, we cannot say anything about its degree. To 
understand the reason for this, we need to first define irreducibility in ].x[Z   
  
Definition: Let .1,1,0)x(f],x[)x(f −≠∈Z  )x(f  is called irreducible in [x]Z  
if whenever )x(h)x(g)x(f =  in ],x[Z  then 1)x(g ±=  or .1)x(h ±=  
 
For example, 9x +  is irreducible in ],x[Z  but 9x3 +  is reducible since 

),3x(39x3 +=+  both factors being non-units in ].x[Z  
 
Related to this is the following comment. 

Recall that  
}.1,1{)(U])x[(U −== ZZ
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Remark 1: Note that a polynomial that is reducible in ]x[Z  can be irreducible 
in ]x[Q  (e.g., ).9x3 +   

Now consider any polynomial over ,Q  say .3
1x3x5

1x2
3)x(f 23 +++=  If we 

take the l.c.m of all the denominators, i.e., of 1,5,2  and ,3  which is ,30  and 
multiply )x(f  by it, what do we get? We get 

,10x90x6x45)x(f30 23 +++=  and this lies in ].x[Z  
Using the same process, we can multiply any ]x[)x(f Q∈  by a suitable integer 
d  so that ].x[)x(df Z∈  In fact, you have used this process while proving 
Theorem 6, Unit 15. This process will also be used to prove the following 
theorem. 
 
Theorem 11: If ]x[)x(f Z∈  is irreducible in ],x[Z  then it is also irreducible in  

].x[Q  
 
We will not prove this theorem here, as it involves introducing some more 
concepts and Gauss’ Lemma. (If you are interested in learning about this, 
please do refer to Gauss’ Lemma in any of the books we have recommended 
in the Course Introduction.) But let’s see why this theorem is important. What 
this result says is that to check irreducibility of a polynomial in ],x[Q  it is 
enough to check it in ].x[Z  And, for checking it in ],x[Z  we have a wonderful 
test formulated by the German mathematician, Theodor Schönemann (1812-
1868), and later proved by the German mathematician Eisenstein in 1850. It is 
popularly known by Eisenstein’s name, and Schönemann’s name seems to 
have gone into the background. We will state this here, but we will not prove it 
in this course. 
 

Theorem 12 (Eisenstein’s Criterion): Let ].x[xaxaa)x(f n
n10 Z∈+++= L  

Suppose that for some prime number ,p  

i) p  ,a n  

ii) ,ap,,ap,ap 1n10 −K  and  

iii) 2p  .a0  
Then )x(f  is irreducible in ]x[Z  (and hence, in ]x[Q ). 
 
Now, putting Theorems 11 and 12 together, you can see that Eisenstein’s test 
tells us when a polynomial in ]x[Z  is irreducible in ].x[Q  Let us illustrate the 
use of this criterion. 
 

Example 5: Is 12x3x6x3x2 3457 ++−+  irreducible in ?]x[Q  Why, or why not? 
 

Solution: The given polynomial is of degree ,7  in ].x[Z  Its coefficients are 
.2a,0a,3a,6a,3a,a0a,12a 76543210 ===−=====  By looking at the  

coefficients, we see that the prime number 3  satisfies the conditions given in 
Eisenstein’s criterion:   

i) 3  ,2  

ii) ),6(3,33,03,123 −  and  

iii) 23  .12  
Therefore, the given polynomial is irreducible in ],x[Z  and hence, in ].x[Q  

*** 

 

Fig.1: Ferdinand Gotthold 
           Max Eisenstein 
           (1823 -1852) was a  
           student of Gauss. 
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Now let us look at an example of checking the irreducibility of a  polynomial, 
using Theorem 12 indirectly. 
 
Example 6: Let p  be a prime number. Show that 1xxx)x(f 2p1p ++++= −− L  
is irreducible in ].x[Q  ( )x(f  is called the pth cyclotomic polynomial.) 
 
Solution: To start with, note that )x(h)x(g)x(f =  in ]x[Z  iff 

)1x(h)1x(g)1x(f ++=+  in ].x[Z   
Thus, )x(f  is irreducible in ]x[Z  iff )1x(f +  is irreducible in ].x[Z  
Now, .1x)x(f)1x( p−=−  

,1)1x()1x(f]1)1x[( p−+=+−+∴  

i.e., 11xCxCx)1x(xf 1p
p1p

1
pp −++++=+ −

− L  (by the binomial theorem) 

                     )pxCxCpxx(x 2p
p3p

2
p2p1p +++++= −

−−− L  

,pxCxCpxx)1x(f 2p
p3p

2
p2p1p +++++=+∴ −

−−− L  by cancellation, since .0x ≠  

Now apply Eisenstein’s criterion, taking p  as the prime.  
You can see that )1x(f +  is irreducible in ].x[Z   
Therefore, )x(f  is irreducible in ],x[Z  and hence, in ].x[Q  

*** 
 
You should solve the following exercises now. 
 
 
E22) For any N∈n  and prime number ,p  show that pxn −  is irreducible in 

].x[Q   
 
E23) If ]x[xaxaa n

n10 Z∈+++ L  is irreducible in ],x[Q  can you always find 
a prime p  that satisfies the conditions (i), (ii) and (iii) in Theorem 12? 
Why, or why not? 

 
E24) Which of the following elements of ]x[Z  are irreducible over ?Q  
 i)   ,12x2−      ii)   ,24x9x6x8 23 +−+      iii)   ,1x5 +      iv)    .5x5 2 +   
 
E25) Show that ]x[ax p

p Z∈+  is not irreducible for any .a pZ∈  
  
E26) Check whether or not ]x[1xxx 2n1n Z∈++++ −− L  is irreducible in 

.2n]x[ ≥∀Q  
 
E27) If ]x[)x(f Z∈  is irreducible over ,Q  then it is irreducible over .Z  True, 

or false? Why? 
 
E28) Is Theorem 7 true for ?]x[Z  Why? 
 
 
It is not always easy to find out if a given polynomial in ]x[Q  is irreducible or 
not. Of course, Eisenstein’s criterion helps in some cases. But from E23, you 
know that there are irreducible polynomials in ]x[Q  that do not satisfy this 
criterion. However, there are a couple of other theorems that could be of some 
help. Let us discuss them now. 
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Theorem 13 (Rational Root Theorem): Let ],x[xaxaa)x(f n
n10 Z∈+++= L  

where .0an ≠  If Q∈q
p

 is a root of ),x(f  where ,1)q,p( =  then 0ap and .aq n  

 

Proof: Since ,0)q
p(f =  we see that .0

q
paq

paa n

n

n10 =+++ L   

So .0paqpapqaqa n
n

1n
1n

1n
1

n
0 =++++ −

−
− L   

Now, .)qpaqa(q 1n
1n

n
0

−
−++L  

So ).pa(q n
n−   

Thus, ,aq n  as .1)q,p( =  

Similarly, since ,)paqpapqa(p n
n

2n2
2

1n
1 +++ −− L .ap 0  

Hence the result. 
 
Note that if ]x[)x(f Z∈  has no root in ,Q  it could still be irreducible (e.g., 

1x2 + ). So Theorem 13 has only a very limited role for checking irreducibility 
of a polynomial of degree .4≥  
 
Let us consider an example of applying Theorem 13. 
 
Example 7: Check whether or not 2x5x9x8)x(f 23 −−+=  is irreducible in 

].x[Q  
 
Solution: In this case there is no prime number which will help us apply 
Eisenstein’s criterion. So, let’s see if )x(f  has a rational root.  

If q
p

 is a root, with ,1)q,p( =  then by Theorem 13, )2(p −  and .18q   

So the possibilities for p  and q  are ,2,1p ±±=  and 
.18,9,6,3,2,1q ±±±±±±=   

The next step is to use a trial-and-error method. Voila! We find .03
1f =⎟
⎠
⎞

⎜
⎝
⎛−  

Hence, ⎟
⎠
⎞

⎜
⎝
⎛ + 3

1x  is a factor of )x(f  in ].x[Q  

)x(f∴  is not irreducible over .Q  
*** 

 
As you can see from the example above, applying the rational root theorem is 

not easy manually. This is because q
p

 could be one of many possibilities, and 

each has to be tried out till you hit a possible root – or don’t ! 
Further, if a polynomial has degree ,4≥  then it may have no root in Q  and still 
be reducible, as you have seen. So, this theorem is not really helpful except in 
the case of degree 2  or ,3  and that too when the coefficients na  and 0a  have 
only a small number of factors. 
 
Now let’s discuss another criterion for irreducibility over .Q  Like Theorem 12, 
this is based on Theorem 11 too. 
 
Theorem 14 ( pMod  Irreducibility Test): Let 

.]x[xaxaa)x(f n
n10 Z∈+++= L  If there is a prime p  s.t. p  na  and s.t. 
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n
n10 xaxaa)x(f +++= L  is irreducible in ],x[pZ  then )x(f  is irreducible in 

].x[Q  
 
Proof: We shall prove this by contradiction. Suppose )x(f  is reducible over 

.Q  Then )x(f  is reducible over ,Z  by Theorem 11.  
So ),x(h)x(g)x(f =  with .1)x(h,1)x(g],x[)x(h),x(g ±≠±≠∈Z  

So, in ],x[pZ  we have .)x(h)x(g)x(f ⋅=  

Here )x(fdeg)x(gdeg)x(gdeg <≤  and .)x(fdeg)x(hdeg <  

This contradicts our assumption that )x(f  is irreducible over .pZ  So we reach 
a contradiction.  
Therefore, )x(f  is irreducible in ].x[Q  
 
Let us consider an application of Theorem 14. 
 
Example 8: Is 2x8x7x6 23 ++−  irreducible in ?]x[Q  Give reasons for your 
answer. 
 
Solution: Here there is no prime for which we can apply Eisenstein’s criterion. 
So, let us try Theorem 14. 
Let .2x8x7x6)x(f 23 ++−=  

Consider ,7p =  as 7  .6  So, we look at )x(f  in ].x[7Z  We find that 

.2xx6)x(f 3 ++=  

This is reducible iff )x(f  has a root in ,7Z  by Theorem 6. 

On substituting ,6,,1,0x K=  you can check that none of these give 

.0)x(f =  

Hence, )x(f  is irreducible in ].x[7Z  
Thus, by Theorem 14, )x(f  is irreducible in ].x[Q  
 
Check that you can take 5p =  in this example too. Why? You will find that 

)x(f  is irreducible in ]x[5Z  also. 

*** 
 
Let us consider an example of a polynomial with degree 3>  also. 
 

Example 9: Let ].x[5
3x35

9x7
2x7

3)x(f 24 Q∈++−=  Check whether or not 

)x(f  is irreducible over .Q  

Solution: Note that ].x[21x9x10x15)x(f35)x(g 24 Z∈++−==   
Also )x(f  is irreducible over Q  iff )x(g  is irreducible over .Q  

Now, take 2p =  in Theorem 14. We get ].x[1xx)x(g 2
4 Z∈++=   

You can check that )x(g  has no roots in .2Z   
Let us check if it has any quadratic factors.  
Any such factor has to be 1x2 +  or .1xx2 ++   
Since 1x2 +  has a zero in ,2Z  this cannot be a factor of .)x(g  Also, 

)1xx( 2 ++   )1xx( 4 ++  in ].x[2Z  (Why?).  

So )x(g  is irreducible in ].x[2Z   
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Thus, )x(g  is irreducible in ],x[Q  by Theorem 14.  
Hence, )x(f  is irreducible in ].x[Q  

*** 
 
In spite of Eisenstein’s criterion, and Theorems 13 and 14, we don’t have 
enough tools for checking irreducibility over .Q  For example, there may be a 
polynomial that has no root in .Q  Or, there may be a polynomial for which an 
obvious candidate for p  is not available for applying Theorem 14. Then, we 
can fall back on our good old way of inspection in some cases. For example, if 
you see ,2x4x 24 ++  you can look at it and say it is ,)2x( 22+  and hence it is 
reducible over .Q  
Also, there are several factorisation algorithms available in Computer Algebra, 
for testing over a finite field or over .Q  You can study some of these in your 
higher studies. 
 
Why don’t you solve some exercises now? 
 
 

E29) Which of the following statements are true? Justify your answers.  

 i) 
>−+< 14x7x

]x[
67

Q  

 ii) 
>−+< 14x7x

]x[
67

R  

 iii) 
>++−< 9x2x3x21

]x[Q
23  

 
E30) Give an example, with justification, of a polynomial of degree ,10  which 

is irreducible over ,Q  but when considered in ]x[11Z  it is reducible. 
 
E31) Check whether or not the following polynomials are irreducible over .Q  

 i) ,2x6x3x2 23 +++  

 ii) ,9xx6 3 ++  

 iii) ,4x2x5 ++  

 iv) 1x6x8 3 +−  (you can apply the method used in Example 6 here). 
 

 
Let us now consider why irreducible polynomials are important in ].x[F  
 

16.5 UNIQUE FACTORISATION 
 
In Unit 1, you studied the Fundamental Theorem of Arithmetic. As you know, 
this theorem is the basis on which we say that prime numbers are the atoms 
that make up any integer. Also, you have seen a parallel between prime 
numbers and irreducible polynomials in ]x[F  in many aspects. Let us see if 
we can think of irreducible polynomials as being the building blocks for any 
polynomial in ],x[F  paralleling the Fundamental Theorem of Arithmetic. 
 
Now, from the Fundamental Theorem of Algebra, you know that if ]x[)x(f C∈  

s.t. ,1n)x(fdeg ≥=  then ),x(p)x(p)x(p)x(f n21 K=  where )x(pi  is a linear 

is a field. 

is a field. 

is not a field. 
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polynomial in .n,,1i]x[ K=∀C  Thus, )x(f  is completely factorised as a 
product of irreducible polynomials in ].x[C  For example, 

),x)(x)(1x(1x 23 ω−ω−−=−  where ω  is a non-real cube root of unity. 
 
Now, in ]x[R  you have seen that the irreducible polynomials are of degree 1 
or degree .2  Can we completely factorise any polynomial in ]x[R  as a 
product of irreducible polynomials? The following theorem tells us we can, and 
more!! 
 
Theorem 15 (Unique Factorisation): Let F  be a field, and let ]x[F)x(f ∈  s.t.  

.1n)x(fdeg ≥=  
 

i) There exist irreducible polynomials )x(p,),x(p),x(p m21 K  in ]x[F  such 
that ).x(p)x(p)x(p)x(f m21 K=  

 

ii) If )x(q)x(q)x(q)x(f r21 K=  also, where ]x[F)x(qi ∈  is irreducible 
,r,,1i K=∀  then rm =  and each jii qcp =  for some m,,1j K=  and 

.Fci
∗∈  

 
Theorem 15 can be proved by using Corollary 4, and then applying induction 
on .m  However, we shall not prove it in this course, but will apply it in several 
situations. Let us consider an example. 
 
Example 10: Write x4x)x(f 5−=  as a product of irreducible polynomials in 

],x[R  and in ].x[C  
 
Solution: Now )2x)(2x(x)4x(xx4x)x(f 2245 +−=−=−=        

                                .)2x)(2x)(2x(x 2++−=    …(2) 

Since 2x2 +  has no real roots, )2x)(2x)(2x(x)x(f 2++−=  is a 
factorisation in ],x[R  as required. 

However, in ).2ix)(2ix(2x],x[ 2 −+=+C  

So (2) gives us ),2ix)(2ix)(2x)(2x(x)x(f −++−=  as a product of 
irreducible polynomials in ].x[C  

*** 
 
You should solve the following exercises now. 
 
 

E32) Show that ]x[3x4x3 5
2 Z∈++  factors as )4x)(2x3( ++  and as 

).3x2)(1x4( ++  Does this contradict Theorem 15(ii)? Give reasons for 
your answer. 

 
E33) Write 2xx4xx2 234 ++++  as a product of irreducible polynomials in 

].x[Q  
 
E34) Write 6x9x8x3x2 234 ++−−  as a product of irreducible polynomials in 

].x[R  
 
E35) If ]x[)x(f R∈  such that ,5)x(fdeg =  how many real roots can )x(f  

have? Give examples to justify your answer. 
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E36) Show that the factorisation in Theorem 15 need not be unique, upto 
order, in ].x[8Z  Note that 8Z  is not a field. 

 (Thus, Theorem 15 need not be true if F  is not a field.) 
 
 
With this we come to the end of our discussion on factorisation and 
irreducibility in ],x[F  where F  is a field. Let us summarise what we have 
discussed in this unit. 
 

16.6 SUMMARY 
 
In this unit, you have studied the following points. 
 
1. The definition of a root (or a zero), and the multiplicity of a root, of a 

polynomial over a ring .R  
 
2. (Remainder Theorem): Let F  be a field. If ]x[F)x(f ∈  and ,Fb∈  then 

there exists a unique polynomial ]x[F)x(q ∈  such that 
).b(f)x(q)bx()x(f +−=  

 
3. Let F  be a field and let ],x[F)x(f ∈  with .1)x(fdeg ≥  Then Fa∈  is a 

root of )x(f  iff ).x(f)ax( −  
 
4. A non-zero polynomial of degree n  over a field F  has at the most n  

roots in .F  
 
5. A non-zero polynomial of degree n  in ],x[D  where D  is an integral 

domain, has at the most n  roots in .D  
 
6. Let )x(f  and )x(g  be two non-zero polynomials of degree n  over a field 

F  (respectively, a domain D ). If there exist 1n +  distinct elements 
1n1 a,,a +K  in F  (respectively, D ) such that ,1n,...,1i)a(g)a(f ii +=∀=  

then ).x(g)x(f =  
 
7. The definition, and examples, of an irreducible polynomial over a field ,F  

and over .Z  
 
8. Let F  be a field and let ],x[F)x(p ∈  with .2)x(pdeg ≥  If )x(p  is 

irreducible in ],x[F  then )x(p  has no roots in .F  
 
9. Let F  be a field, and let )x(p  be a quadratic or a cubic polynomial over 

.F  If )x(p  has no roots in ,F  then )x(p  is irreducible in ].x[F  
 
10. Fundamental Theorem of Algebra: A polynomial of degree 1n ≥  in 

]x[C  has all of its roots in ,C  counted with their respective multiplicities. 

11. If ]x[)x(p R∈  is irreducible, then )x(p  is a linear or a quadratic 
polynomial. 

 
12. If ]x[)x(f Z∈  is irreducible in ],x[Z  then it is irreducible in ].x[Q  
 

13. Eisenstein’s Criterion: Let ].x[xaxaa)x(f n
n10 Z∈+++= L  Suppose 

that for some prime number ,p  

i)  p  ,a n  
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ii) ,ap,,ap,ap 1n10 −K  and  

iii) 2p  .a0  

Then )x(f  is irreducible in ]x[Z  (and hence, in ]x[Q ). 
 
14. Let F  be a field and let ]x[F)x(f ∈  be irreducible. Then >< )x(f  is a 

maximal ideal of ].x[F  
 
15. Let F  be a field and let ]x[F)x(f ∈  be a prime element. Then )x(f  is 

irreducible in ].x[F  
 

16. Rational root theorem: Let .0a],x[xaxaa)x(f n
n

n10 ≠∈+++= ZL  If 

Q∈q
p

 is a root of ),x(f  where ,1)q,p( =  then 0ap  and .aq n  

 

17. ( pMod  Irreducibility Test): Let ].x[xaxaa)x(f n
n10 Z∈+++= L  If 

there is a prime p  s.t. p  na  and s.t. n
n10 xaxaa)x(f +++= L  is 

irreducible in ],x[pZ  then )x(f  is irreducible in ].x[Q  
 
18. Unique factorisation: Let F  be a field, and let ],x[F)x(f ∈  

.1n)x(fdeg ≥=  

  i) There exist irreducible polynomials )x(p,),x(p),x(p m21 K  in ]x[F  
such that ).x(p)x(p)x(p)x(f m21 K=  

  ii) If )x(q)x(q)x(q)x(f r21 K=  also, where ]x[F)x(qi ∈  is irreducible 
,r,,1i K=∀  then rm =  and each jii qcp =  for some m,,1j K=  

and .Fci
∗∈  

 

16.7 SOLUTIONS / ANSWERS 
 
E1) Fa∈  is a root of ]x[F)x(f ∈   

iff 0)a(f =   
iff ),x(q)ax()x(f −=  for some ],x[F)x(q ∈  by Theorem 1. 

 Iff ),x(f)ax( −  by definition. 
 
E2) i) By the quadratic formula, the roots are 3  and ,2  each with 

multiplicity .1  Thus, the given polynomial is the same as 

].x[)2x)(3x(2
1 Q∈−−  You should check this. 

 

 ii) 22 )1x(1xx −=++ , since 12 =−  in .3Z  

  Thus, 1  is the only zero. Its multiplicity is 2  since 2)1x( −  is a 
factor, and 3)1x( −  is not a factor, of the given polynomial 

 

 iii) By trial-and-error, one zero is 1 . Now, applying long division, we 
get 

  .)1x3x3x)(1x(1x2x2x 2334 +++−=−−+   
  Again, by trial and error, we find that 1x +  is a factor of 

.1x3x3x 23 +++   
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  Applying long division, we see that .)1x(1x3x3x 323 +=+++  
  Thus, .)1x)(1x(1x2x2x 334 +−=−−+   
  This shows that 1  is a root of multiplicity 1 and )4(1 =−  is a root 

of multiplicity .3  
 

 iv) Note that )
22

1x)(4(x42),5
3x(53x5 −−=−+=+  and 

)].i3(x[i)3i1ix( +−=−+   

  So 
22

1,5
3−  and )i3( +  are the roots of the given polynomial.  

  Since the polynomial is given as a product of these linear 
polynomials, you can see that their multiplicities are ,11,3,2  
respectively. 

 

E3) For example, ].x[)10x(x 11
23 Z∈−  

 Here 0  has multiplicity 3  and 10  has multiplicity ,2  and these are the 
only roots. There can be several other examples. 

 
E4) i) Prove this as you have done in Unit 13. 

 ii) Since b  is a constant polynomial, its value doesn’t change by 
substituting a  for .x  

 iii) φ∈Ker)x(f  iff 0))x(f( =φ  iff 0)a(f =  iff a  is a zero of ).x(f  
  Now, by Corollary 1, φ∈Ker)x(f  
  iff )x(f)ax( −   
  iff .ax)x(f >−<∈  
  Thus, .axKer >−<=φ  
 The Fundamental Theorem of Homomorphism says that 
 F~)ax]x[F( −>−< . 
 

E5) By E4, F~
ax

]x[F −>−<  and .F~
x

]x[F −><  Hence the result. 
 

E6) Let .xaxaa)x(f n
n10 +++= L   

 Then ,0aaaaa n
n10 =+++ L  as ∗∈Fa  is a root of ).x(f  

 So .0)aaaaa(a n
)1n(

1
n

0
n =+++ −−− L  

 Since 0an ≠  and F  is a domain, 
,0)a(a)a(aaaa n1

0
1n1

1
1

1nn =+++ −−−−
− L  noting that .m)a(a m1m Z∈∀= −−  

 1a−∴  is a root of ].x[Fxaxaxaa n
0

1n
11nn ∈++++ −

− L  

 No, as 1a−  may not lie in .D  For example, 2  is a root of ].x[4x2 Z∈−  
But ]x[1x4 2 Z∈−  has no root in .Z  

E7) By Theorem 2, )x(f  has at most n  roots in .F  Hence, )x(f  has at most 
n  distinct roots in .F  

 
E8) Statement: Let )x(f  and )x(g  be two non-zero polynomials of degree 

n  over an integral domain .D  If there exist 1n +  distinct elements 
1n1 a,,a +K  in D  such that ,1n,...,1i)a(g)a(f ii +=∀=  then ).x(g)x(f =  

 
 Proof: Follow the reasoning in the proof of Theorem 3, applying 

Theorem 4 and E7 to get the result. 



 

 

221

 
Unit 16                                                                  Roots and Factors of Polynomials
E9) Show how this follows from Corollary 1 and Theorem 2. 
 
E10) i) You know that ),( *

p ⋅Z  is a group, and .1p)(o *
p −=Z  

  Thus, from Unit 4, you know that ,x1x *
p

1p Z∈∀=−  

  i.e., each of the 1p −  elements of *
pZ  is a root of 1x 1p −− . 

  Therefore, )1x()1px(....)1x( 1p −−−− − . 
  Since 1x 1p −−  can have at most 1p −  roots in pZ  (by Theorem 2),  

we find that the )1p( −  elements of *
pZ  are the only roots of 

.1x 1p −−  
  Now, comparing the leading coefficients and degrees of 1x 1p −−  

and ∏
−

=

−
1p

1i

),ix(  we see that ).1px()2x)(1x(1x 1p −−−−=−− K  

 

 ii) Substituting 0  for x  in (i), we get ,)!1p()1(1 1p −−=− −  i.e., 

,)!1p()1(1p 1p −−=− −  since 11p −=−  in .pZ   

  i.e., ).p(mod1)!2p()1( 1p ≡−− −   
  Now, ,)p(mod1)1( 1p ≡− −  for every prime .p  (Why?) 
  Hence, we get the result. 
 
E11) The polynomial 4x4+  is the same as 1x4−  in ],x[5Z  since 14 −= .  
 Thus, applying the result in E10, we get 
 ).4x)(3x)(2x)(1x(4x4 −−−−=+  
 
E12) Recall, from your study of group theory, the group )n(U  of the nth  roots 

of unity. Each nth  root of unity is a zero of 1xn−  in .C  Also, 1xn−  has 
at most n  zeros in .C  Hence, the elements of )n(U  are all the zeros of 

1xn −  in .C  
 

E13) i) No, since ).1x)(1x(1x2x2 −−=+−  

  ii) No, since ),x)(x(1xx 22 ω−ω−=++  where ω  is a non-real cube 
root of unity. 

 iii) Yes, by Example 2. 

 iv) No, since ).2x)(1x(2x3x 2224 ++=++  

 v) No, by Theorem 6. 
 

E14) Let .2x3x)x(f 23 ++=  Since )x(f  is a cubic, by Theorem 6 you need to 
see if 0)a(f =  for any .a 5Z∈  You will find that .a0)a(f 5Z∈∀≠   

 Thus, )x(f  is irreducible over .5Z  
 
E15) False. For example, a linear polynomial over F  is irreducible, and its 

root is in .F  However, it is true for the other cases, by Theorem 5. 
 

E16) Let 1xxxx)x(f 234 +−++=  in ].x[Z  
 Then .15124816)2(f =+++−=−  
 Thus, 0)2(f =−  in ]x[pZ  for 3p =  or .5p =  

 )x(f)2x( +∴  in ]x[pZ  if 3p =  or .5p =  
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E17) .2n)1xxx)(1x(1x 2n1nn ≥∀++++−=− −− L   
 Thus, 1xn −  is reducible .2n ≥∀   
 However, for 1x,1n −=  is irreducible, by Example 2.  
 
E18) Since )x(p  is irreducible over ,F  it is prime in ],x[F  by Corollary 4.  
 You need to prove )n(P  is true ,n N∈∀  where  
 :)n(P  if ),x(f)x(f)x(p n1 K  then )x(f)x(p i  for some .n,,1i K=  
 )1(P  is trivially true. (Why?) 
 Assume that the statement )m(P  is true for some .m N∈  
 You should prove that )1m(P +  is true. (You can write 

),x(f)]x(f)x(f[)x(f)x(f 1mm11m1 ++ = KK  and use the definition of a prime 
element.) 

 Hence, )n(P  is true .n N∈∀  
 

E19) i) e.g., take 5x3−  in ],x[Q  and in ].x[R  Use Example 4 and 
Theorem 6 to show why the statement is false. 

 ii) This is false. Since 1  is a zero in ,5Z  the given polynomial is 
reducible, and hence, not prime in ].x[5Z  

 iii) Not true; e.g., x  is a prime element of ],x[F  but x  is zero in 
,x]x[F ><  and hence, not a prime element. 

 
E20) If )x(p  is linear, it is irreducible. However, if it is quadratic it need not be 

irreducible. e.g., 1x2−  is quadratic and reducible in ].x[R  
 
E21) By Theorem 9, )x(p  has 6  linear factors in ],x[C  not necessarily 

distinct. 
 
 For ],x[)x(p R∈  we have the following cases. 

 i) All the roots of )x(p  are in .R  Then )x(p  has 6  irreducible 
(linear) factors in ].x[R  

 ii) )x(p  has 4  roots in R  and 2  in .\ RC  Then )x(p  has 5  
irreducible factors in 4],x[R  linear and 1 quadratic, as in 
Theorem 10. 

 iii) )x(p  has 2  roots in R  and 4  in .\ RC  Then )x(p  has 4  
irreducible factors in 2],x[R  linear and 2  quadratic. 

 iv) )x(p  has no real roots, and 6  roots in .\ RC  Then )x(p  has 3  
irreducible factors in ],x[R  all of them being quadratic. 

 

E22) The coefficients in pxn −  are .pa,a0a,1a 011nn −===== − L  

 iap∴  for p,1n,,1,0i −= K  na  and 2p  .a0  

 Hence, by Eisenstein’s criterion, pxn −  is irreducible in ],x[Z  and 
hence, in ].x[Q  

 

E23) Not so; )1x( 2 +  is a counterexample. (Why?) 
 
E24) i) It is irreducible, since its roots are not in Q  (or show this by using 

Eisenstein’s criterion with 3p = ). 
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 ii) This is irreducible, using Eisenstein’s criterion with .3p =  

 iii) This is irreducible, since it is a linear polynomial. 

 iv) Note that this is reducible over ,Z  since it is ).1x(5 2 +  It is 
irreducible over Q  as it has no roots in .Q  

 
E25) Since ),( p ⋅∗Z  is a group of order ,1p −  

 .a1a p
1p ∗− ∈∀= Z  

 .aaa p
p ∗∈∀=∴ Z  

 Also .00p =  
 .aaa p

p Z∈∀=∴  

 So .a0paapaap p
p

Z∈∀==+−=+−  

 Thus, ap −  is a zero of axp +  in .pZ  

 axp +∴  is reducible over .pZ  
 
E26) From Example 6, you know that if n  is a prime, this is irreducible in 

].x[Q  

 However, if you take an odd composite integer, say ,9n =  then ∑
=

9

0i

ix  

has )1(−  as a root. 
 ∴ It is reducible in ].x[Q  
 
E27) False. For example, )5x(3 +  is irreducible over ,Q  but not over .Z  
 

E28) x  is irreducible over .Z  However, ,~
x

]x[ ZZ −><  which is not a field. 

Hence, >< x  is not maximal in ].x[Z  
 
E29) i) Show that by Eisenstein’s criterion, 14x7x 67 −+  is irreducible over 

],x[Z  and hence, over ].x[Q   
  >−+<∴ 14x7x 67  is maximal in ].x[Q  
  Hence, the given quotient ring is a field. 
 

 ii) By Theorem 10, 14x7x 67 −+  is reducible in ].x[R  
  Hence, >−+< 14x7x 67  is not maximal in ].x[R  
  Hence, the given quotient ring is not a field. 
 
 iii) False. Use the pMod  Irreducibility Test, with ,2p =  to show that 

9x2x3x21 23 ++−  is irreducible over .Q  
 
E30) Take, for example, .11x10−  Explain why this example works. 
 
E31) i) Eisenstein’s criterion can’t be applied here. Let’s apply Theorem 

14 for .3p =  We get the polynomial 2x2 3+  over ].x[3Z  

  But this has a root, .2  
  So taking 3p =  doesn’t help. 
  Let us try .5p =  Then the polynomial we get is 

].x[2xx3x2 5
23 Z∈+++  
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  You should check that this has no zero in .5Z  Thus, it is irreducible 
over .5Z  

  Hence, by Theorem 14, 2x6x3x2 23 +++  is irreducible over ].x[Q  
 

 ii) Similarly, apply Theorem 14 here, with .5p =  
 

 iii) Apply Theorem 14, with ,3p =  to conclude that this has no linear 
factors in ].x[3Z  Then check for quadratic factors.  

  Suppose ]x[bxax 3
2 Z∈++  is such a factor.  

  Then it should not have a zero in .3Z  So the only possibility for 

such factors are 2xx,1x 22 +++  and .2x2x2 ++   
  By long division, you should check that none of these divide 

1x2x5 ++  in ].x[3Z   

  1x2x5 ++∴  is irreducible in ].x[3Z   
  Therefore, the given polynomial is irreducible over .Q  
 

 iv) If ,1x6x8)x(p 3 +−=  then you can show this is irreducible over Q  
by using Eisenstein’s criterion on ).1x(p +  You can also use 
Theorem 14, with ,5p =  to prove this. 

 
E32) You should check that   
 ).3x2)(1x4(3x4x3)4x)(2x3( 2 ++=++=++  
 Also note that )1x4(44x +=+  and ),3x2(42x3 +=+  where .4 5

∗∈Z  
 Hence, this exemplifies Theorem 15(ii); it doesn’t contradict the theorem. 
 
E33) Inspection works here. You should check that the given polynomial is 

),1x)(2xx2( 22 +++  as a product of irreducible polynomials over .Q  
 
E34) By trial-and-error, using Theorem 13 as an aid, we get )2x( −  as a 

linear factor. 
 Then, by long division, you will get 

)3x6xx2)(2x(6x9x8x3x2 23234 −−+−=++−−    

                                            ),3x)(3x)(1x2)(2x( +−+−=   
 applying Theorem 13 again, or by inspection. 
 This is the required factorisation. 
 

E35) All 5  can be real, as in ∏
=

∈−
5

1i
ii .a),ax( R  

 It can have 3  real roots and 2  non-real roots, as in ,)1x)(1x( 32 ++   
 or it can have only 1 real root, as in ).1x()1x( 22 ++  
 
E36) For instance, ).1x2(3)1x4)(3x2( +=++  
 Here 3  is a unit in ,8Z  since .1)8,3( =  
 So the LHS is a product of two irreducible polynomials, while the RHS 

has only one irreducible polynomial. 



 

225

 

Block 4                                                        Miscellaneous Examples and Exercises

MISCELLANEOUS EXAMPLES AND EXERCISES 
 
As in the previous blocks, the few examples and exercises, given below cover 
the concepts and processes you have studied in this block. Studying the 
examples, and solving the exercises, will give you a better understanding of 
the concepts concerned. This will also give you more practice in solving such 
problems. 
 
Example 1: Find all the prime ideals, and maximal ideals, of .16Z  
 
Solution: The ideals of 16Z  are of the form ,m 16Z  where .16m  
So .16,8,4,2,1m =  
Thus, the proper ideals are .8,4,2},0{ ><><><  
Since 16  is not a prime, 16Z  is not a domain. So }0{  is not a prime ideal. 

Next, by the isomorphism theorems, ,~
2 2

16 ZZ −
><

 a field. 

So >< 2  is a maximal ideal of ,16Z  and hence a prime ideal of .16Z  

Now, let us consider .4 ><  Since >∈< 44  is s.t. ,016)4( 2 ==  and ,04 ≠  
>< 4  is not a prime ideal of .16Z  

Similarly, show why >< 8  is not a prime ideal of .16Z  

Thus, the only prime ideal of 16Z  is ,2 ><  which is also the only maximal 
ideal. 

*** 
 

Example 2: Prove that the prime ideals of nZ  correspond to the prime ideals 
of Z  containing ,nZ  where .n N∈  
 
Solution: We have the natural epimorphism .mnm)m(:: n =+=π→π ZZZ  
Here .nKer Z=π   
By E47(iii), Unit 14, you get the result now. 

*** 
 
Example 3: If R  and S  are two rings and SR:f →  is a homomorphism, then 

)M(f  is a maximal ideal of S  for every maximal ideal M  of .R  True, or false? 
Why? 
 

Solution: Consider the natural map .6: Z
ZZ→π  

Now, Z5  is maximal in ,Z  but ,6)5( Z
ZZ =π  since .1)6,5( =   

Hence, )5( Zπ  is not a proper ideal. Thus, it is not a maximal ideal of .6ZZ  
Thus, the given statement is false. 

*** 
 
Example 4: If R  is a commutative ring with unity, can ]x[R  be a field? Why, 
or why not? 
 
Solution: Suppose ]x[R  is a field. Then ],x[Rx 1 ∈−  say ].x[R)x(fx 1 ∈=−  
So .1)x(xf =         …(1) 
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Also, since ]x[R  is without zero divisors, R  is without zero divisors. 
Thus, by (1), ,0)x(fdeg1 =+  a contradiction. 
Thus, ]x[R  is not a field. 

*** 
 
Example 5: Prove that if a ring has characteristic zero, then it must be infinite. 
 
Solution: Let R  be a ring with characteristic zero. 
If there is an Ra∈  s.t. )a(o  is infinite, then }nna{ Z∈  is an infinite subset of 

.R  Thus, R  must be infinite. 
 
Now consider the case that every element of R  has finite order. Suppose, if 
possible, that R  is finite, say }.a,,a,a{R n21 K=  
Let .n,,1im)a(o ii K=∀=  
Then, for .n,,1i0ma,mmmm in21 KK =∀==  
So Rchar  is finite, a contradiction to our hypothesis. 
Hence, R  must be infinite. 

*** 
 
Example 6: Construct a field with 8  elements, using an appropriate 
irreducible polynomial over .2Z  
 
Solution: We are looking for a field with 32  elements. So we use Theorem 6 
and Corollary 3 of Unit 16, and look for an irreducible cubic polynomial over 

.2Z   
Let us consider .1xx)x(f 3 ++=  
You should check that )x(f  is irreducible over .2Z   

Hence, }c,b,a1xxcbxax{1xx
]x[

2
32

3
2 ZZ ∈>++<+++=

>++<
 is a field.  

Since each of c,b,a  can take 2  values, the number of elements in this field 
is .8  
Hence, this is the required field. 

*** 
 
Example 7: Let F  be a field and .x)x(f >∈<  Let }.0)(fF{K =α∈α=  Is K  
a subring of ?F  Give reasons for your answer. 
 
Solution: Consider ].x[)1x(x)x(f R∈−=  Here .}1,0{K =  So K  is not a 
subring of .R  

*** 
 
 
Miscellaneous Exercises 
 
E1)  If R  and S  are rings with identity, and SR:f →  is a monomorphism, 

show that .ScharRchar =  
 
E2) Let F  be a field and R  be a ring s.t. RF:f →  is a ring homomorphism. 

Show that f  is the zero map or f  is .1-1  

Note that the field in 
Example 6 has rp  
elements, where 2p =  
and .3r =  
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E3) Let R  be a domain. Show that ,Rs,r)s(o)r(o ∈∀=  where )x(o  
denotes the order of x  as an element of ).,R( +  

 
E4) Let R  be a commutative ring s.t. the order of ),R( +  is .10  Can R  be 

an integral domain? Why, or why not? 
 
E5) Let R  be an integral domain. If ,0Rchar =  show that the order of every 

non-zero element is infinite. If ,pRchar =  show that every non-zero 
element has order .p  

 
E6) Is 20x10x20x15x3 345 ++−+  irreducible over ?]x[Q  Is it irreducible 

over ?]x[R  Give reasons for your answers. 
 
E7) Let F  be a field, ]x[F)x(f ∈  and .Fa,0a ∈≠  

 i) If )x(af  is irreducible over ,F  prove that )x(f  is irreducible over 
.F  

 ii) If )ax(f  is irreducible over ,F  prove that )x(f  is irreducible over 
.F  

 iii) If )ax(f +  is irreducible over ,F  prove that )x(f  is irreducible over 
.F  

 
E8) Construct a field of with 25  elements. 
 
E9) Check whether the following polynomials are irreducible or not. 

 i) 10
3x7

6x5
3x4

15x4
9x2

5 2345 +++++  over ,Q  

 ii) 4xx2 ++  over ,11Z  

 iii) 1x4 +  over ,11Z  

 iv) 7x15x 34 ++  over ,Q  

 v) )1n5(x)1m5(x3 ++++  over ,Z  where .n,m Z∈  
 
E10) Let F],x[F)x(f ∈  being a field. Show that for any ,Fa∈  

)].a(f)x(f[)ax( −−  
 
E11) Let ]x[)x(f Z∈  be a monic polynomial. Let Q∈α  s.t. .0)(f =α  Show 

that .Z∈α  
 
E12) Let F  be a finite field. Find a polynomial over F  which has no root in .F  
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SOLUTIONS / ANSWERS 
 
E1) Let SR:f →  be a monomorphism, and let .nSchar,mRchar ==  
 Now, m  is the least positive integer s.t. 
 01m =⋅  in .R        …(2) 
 Also )1(f  is the identity in .S  Hence, by definition, n  is the least positive 

integer s.t. 
 0)1(fn =⋅  in .S        …(3) 
 (2) gives us ,0)0(f)1(fm ==⋅  in .S     …(4) 
 From (3) and (4), we get .nm ≥  
 Similarly, you should see why .mn ≥  
 Thus, .nm =  
 
E2) Let .f 0≠  Since fKer  is an ideal of ,F  and ,FfKer ≠  we get 

}.0{fKer =  Thus, f  is .1-1  
 
E3) Let .n)s(o,m)r(o ==  
 Then ,0ns,0mr ==  and m  and n  are the least such positive integers. 
 Now, 0s)mr(0mr =⇒=  
                     0)ms(r =⇒  
                     ,0ms =⇒  since 0r ≠  
 .mn∴         …(5) 

 Similarly, you should show that .nm     …(6) 
 (5) and (6) give us ,nm =  i.e., ).s(o)r(o =  
 
E4) Since 2  and 5  are primes dividing ,10  by Cauchy’s theorem for finite 

abelian groups (see Unit 7), we have Rb,a ∈  s.t.  
2)a(o =  and .5)b(o =  

 Now, .0aa52)a(o ≠=⇒=  
 Also, .0b25)b(o ≠⇒=  
 But ,0ab10)b2)(a5( ==  since .10)R(o =  
 Thus, a5  and b2  are zero divisors in .R  
 Hence, R  is not an integral domain. 
 
E5) By E3, .Rr)1(o)r(o *∈∀=      …(7) 
 If ,0Rchar =  then )1(o  is infinite. 
 So, by (7), )r(o  is infinite .Rr ∗∈∀  
 
 If ,pRchar =  then by (7), .Rr)r(op)1(o *∈∀==  
 
E6) Let .20x10x20x15x3)x(p 345 ++−+=  
 Now 5  divides each of the coefficients of ,x,x,x,x,x 01234  i.e., 

.20,10,0,20,15 −  
 Also ,35  the leading coefficient, and ,2052  the constant term. 
 Hence, by Eisenstein’s criterion, )x(p  is irreducible over .Q  
 
 Since ,2)x(pdeg >  it is reducible over .R  
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E7) i) Suppose, to the contrary, that )x(f  is reducible over .F  
  Then )x(h)x(g)x(f =  in ],x[F  where .1)x(hdeg,1)x(gdeg ≥≥  
  ),x(h)]x(ag[)x(af =⇒  with 1)x(agdeg ≥  and .1)x(hdeg ≥  
  Thus, )x(af  is reducible in ],x[F  a contradiction. 
 
  You can solve (ii) and (iii) along the same lines as (i). 
 
E8) Note that .525 2=  So we can look for an irreducible quadratic polynomial 

over ,5Z  to construct a field of order .25  You can see Example 6 for 
completing the solution. 

 
E9) i) Let )x(f  be the given polynomial, and ).x(f140)x(g =   
  Then .42x120x84x525x315x350)x(g 2345 +++++=  
  Now, taking 3p =  and applying Eisenstein’s criterion, you should 

be able to conclude that )x(g  is irreducible over .Q   
  Hence, )x(f  is irreducible over Q  (using E7(i)). 
 
 ii) You should check that none of the elements of 11Z  is a root of the 

given polynomial. Hence, it is irreducible. 
 
 iii) Again, as in (ii), show that this is irreducible. 
 
 iv) Using the pmod  test, for ,3p =  you should show that this is 

irreducible. 
 
 v) Apply the pmod  test for ,5p =  and prove this. 
 
E10) Let ].x[F)a(f)x(f)x(g ∈−=  Then ,0)a(g =  i.e., a  is a root of ).x(g  

Hence, ).x(g)ax( −  Hence the result. 
 

E11) Let ],x[axaxax)x(f 01
1n

1n
n Z∈++++= −

− L  and let ,q
p

=α  with 

.1)q,p( =  
 Then .0qapqaqpap n

0
1n

1
1n

1n
n =++++ −−

− L  
 If ,1q ±=  then .Z∈α  
 Suppose ,1q ±≠  and let 1r  be a prime dividing .q  Then 1r  divides 

.p)]qapqapa(q[ n1n
0

2n
1

1n
1n =+++− −−−
− L  

 Hence, pr1  (see Unit 1). 
 We reach a contradiction because .1)q,p( =  
 Hence, q  has no prime factors. 
 Hence, ,1q ±=  i.e., .Z∈α  
 
E12) Let }.a,,a,a{F n21 K=  Then  

 ∏
=

∈−+=
n

1i
i ].x[F)ax(1)x(f  

 Also .n,,1i1)a(f i K=∀=  
 Thus, no element of F  is a root of ).x(f  
 Hence, )x(f  fits the given constraints. 


