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BLOCK INTRODUCTION

In this block we will continue our discussion on ring theory. In Unit 14, you will study
about two special types of rings, namely, integral domains and fields. Here we will
discuss the properties of these special rings in some detail.

Next, in Unit 15, we shall discuss rings whose elements may be familiar to you,
namely, polynomials in one indeterminate. We will discuss various properties of
polynomials over any commutative ring. Apart from its mathematical interest, the theory
of polynomials over a field has several applications. In fact, because of this, linear and
guadratic polynomials over Q were dealt with in considerable depth by the ancient
Indian mathematicians Aryabhata I, Sridhar, Bhaskara Il and others. Nowadays, this
theory is used in coding theory and in mathematical modelling of problems from the
social sciences and the physical sciences.

Finally, in Unit 16, the last unit of this course, we shall look at those polynomials over
Q, R and C which do not have any non-unit factors. Such polynomials are called

irreducible polynomials. In this unit, you will study, and apply, several criteria for a
polynomial over these fields to be irreducible.

As in the other blocks, at the end of the block you will find several worked out examples
covering the concepts you have studied in this block. There are also several
miscellaneous exercises, given after the examples, for you to solve. Please work on
these exercises yourself to understand the concepts concerned in a better way.

With this block we come to the end of the course. After you finish studying it, please
work on the assignment of the course, which deals with all the blocks of the course.
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NOTATIONS AND SYMBOLS (used in Block 4)

Please review the notations and symbols given in the previous blocks also.

char R characteristic of the ring R
R[X] ring of polynomials, in the indeterminate X, over the ring R

Z[\n] Z+\nZ, neZ
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UNIT 14

INTEGRAL DOMAINS AND FIELDS \

Structure Page Nos.
14.1 Introduction 125
Objectives
14.2 What is an Integral Domain? 126
14.3 Characteristic of a Ring 132
14.4 Fields 135
14.5 Field of Quotients 139
14.6 Prime and Maximal Ideals 143
14.7 Summary 150
14.8 Solutions / Answers 151

14.1 INTRODUCTION

In Unit 10, we introduced you to rings, and then to special rings, like
commutative rings and rings with unity. As you found there, the speciality of
these rings lies in the properties of the multiplication defined on them. You
also saw that a typical example of such special rings is Z. So, in a sense,
these rings are abstractions of Z. Yet, they do not necessarily satisfy an
essential property of Z, which is the cancellation property for multiplication. In

this unit, you shall study about rings which have this property too. Such rings
are called integral domains, and are very important for studying several
branches of algebra and its applications.

Throughout this unit, we shall assume the rings to be commutative,
unless specified otherwise.

In Sec.14.2, we will begin by discussing what a zero divisor is. This will take
you further, to the definition of an integral domain, along with several
examples. You will see why many of the rings you have seen so far are
examples of integral domains, and why many are not! We will discuss various
properties of integral domains also in this section.

In the next section, Sec.14.3, we will focus on a feature that characterises any
ring, not necessarily commutative. This is a non-negative integer connected to
each ring, called its characteristic. We will focus here on the characteristic of
an integral domain, in particular. You will study the reasons for the
characteristic of an integral domain being 0 or a prime number.
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Remember that R is
commutative.

126

In Sec.14.4, you will study a common property of rings like Q, R, C and Zp
(where p is a prime number). In these rings, the non-zero elements form an

abelian group with respect to multiplication. Such a ring is called a field.
Fields are very useful algebraic objects, one reason being that every non-zero
element of a field is a unit. In this section, you will also study some basic
properties of fields.

Next, in Sec.14.5, you will study that given an integral domain, there is a field
containing it. You will also see how to construct the smallest field that contains
a given integral domain. As you will see, this is essentially the way that Q is

constructed from Z.

Related to integral domains and fields are certain special ideals of rings, called
prime ideals and maximal ideals. In Sec.14.6, you will study such ideals and
their relationship with integral domains and fields.

As you can see, in this unit you will study several new concepts. You may
need some time to grasp them. Don’t worry. Take as much time as you need.
But by the time you finish studying it, we hope that you will have attained the
following learning objectives.

Objectives

After studying this unit, you should be able to:

. define, and give examples of, a zero divisor in a ring;

o check whether an algebraic system is an integral domain or not;

. obtain the characteristic of a ring, whether commutative or not;

o check whether an algebraic system is a field or not;

o prove, and apply, simple properties of integral domains and fields;
. construct, or identify, the field of quotients of an integral domain;

o define, and identify, prime ideals and maximal ideals of a ring.

14.2 WHAT IS AN INTEGRAL DOMAIN?

Let’s begin this discussion with looking at the product of two non-zero integers.
You know that this is a non-zero integer, i.e., if m,n e Z such that

m=0, n=0, then mn=0.

Now consider the ring Z,. Here 20 and 3#0, yet 2-3=6=0. So, we
find that the product of the non-zero elements 2 and 3 is zero in Zg. This
example leads us to the following definition.

Definition: A non-zero element r inaring R is called a zero divisor in R if
there exists a non-zero element b in R such that rb=0.
(Note that b will be a zero divisor too!)

Now, do you agree that 2 is a zero divisor in Z,? What about 3 in Z,? Since

3-x#0 for every non-zero X in Z,, 3 is not a zero divisor in Z,.

The name ‘zero divisor’ comes from the fact that an element X e R divides
reR if 3y eR s.t. Xy =r. The difference, though, is that here r =0 but X



and y are both non-zero. So, in the case of 2-3=0, 5‘5 and 5‘5. Thus,

both 2 and 3 are zero divisors in Zj.
Let us consider some more examples of rings with zero divisors.

Example 1: Check whether or not Z[\/g]/< 4> has zero divisors.

Solution: Note that Z[\/g]/<4> ={a+b\/§+<4>‘a, beZ}, and

<4> ={4a+4by3Ja, beZ}.

We need to see if 3X, Ye Z[+/3]/<4> st. X#0,y=0 but Xy="0, i.e., if 3
X, yeZ[\/§] s.t. X, yg<4>, but xye<4>.

Consider x =2, y=2. Now X ¢<4> y¢<4>. (Why?)
But Xxy=4e<4>.

Hence, 2 is a zero divisor in Z[+/3]/<4>.

You can find several other zero divisors in this ring. In fact, you should try and
find at least one more.

**k*k

Example 2: Give an example, with justification, of a zero divisor in C[0,1].

Solution: Consider the function f e C[0,1], given by
1
f(x) = X=%, 0<x<1/2
0, 1/2<x<1.
Let us define g:[0,1] > R by
0, 0<x<1/2

9(x) = x—%, 1/2<x<1.

Then, from Calculus, you know that f, g € C[0,1].

Also f #0,9 =0 and (fg)(x) =f(x)g(x)=0 V x [0, 1].
Thus, fg is the zero function.

Hence, f is a zero divisor in C[0,1], and sois @.

***x

Example 3: Check whether or not the direct product of two non-trivial rings
has zero divisors.

Solution: Let A and B be non-trivial rings. Let ae A, a=0, and
beB, b=0.

Then (a,0) e AxB and (0,b) € AxB are both non-zero.
However, (a,0)(0,b) =(0,0).

Hence, (a,0) and (0,b) are zero divisors in AxB.

*k*k

Example 4: Check whether or not ¢(X) has zero divisors, where X is a set

with at least two elements.
127
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Solution: Each non-empty proper subset A of X is a zero divisor because
AN =ANA =, the zero element of @(X).

*kx

Example 5: Let X be a zero divisor in Z_, where n e N. Show that (x, n) >1.

n?

Solution: Let yeZ, s.t. y#0 and Xy = 0.
So n)(x, n/i’y, but n|xy.

Suppose (X, N)=1 Then Am,reZ s.t. mx+nr=1

Then y=Yy-1=mxy+nry.

Now n|xy and n|nry. Hence, n|(mxy+nry), i.e., n|y, a contradiction.
Thus, (X, n) #1.

Hence, (X, n) >1.

*k*k

Try solving these exercises now.

E1l) Listall the zero divisors and all the units in Z, and in Z,,. Is there a
relationship between the zero divisors and the units of each ring? If so,
what is it? (This is linked with E5.)

E2) Prove the converse of what is given in Example 5.

E3) Let R bearingand a R be a zero divisor. Show that every non-zero
element of the principal ideal Ra is a zero divisor.

E4) Check whether or not ¢(X) has zero divisors, where X ={a}.

E5) Let R be aring with unity and ae R, a #0.
i) If a is not a zero divisor, does ac U(R)?
i) If acU(R), can a be a zero divisor in R?

Justify your answers.

So far you have seen several examples of rings with zero divisors. You also
know that Z has no zero divisors. Actually, there are many rings without zero
divisors. Let us define such rings.

Definition: A non-trivial ring R is called an integral domain if

i) R is commutative,

ii) R is with identity, and

i) R has no zero divisors.

Thus, an integral domain is a non-trivial commutative ring with identity in which
the product of two non-zero elements is a non-zero element.

This kind of ring gets its name from the set of integers, one of its best known
examples. In fact, integral domains were originally thought of as a
generalisation of Z.



Can you think of other integral domains? What about Q, R and C? You
should check that they satisfy the conditions in the definition.

Now, from the examples you have studied so far, can you think of rings that
are not integral domains? What about C[0,1]? In Example 2, you have seen

that it has zero divisors. Thus, C[0,1] is not an integral domain.

Before we go further, here is a short remark about terminology.

Remark 1: Several authors often shorten the term ‘integral domain’ to
‘domain’. We will do so too.

Let us now look at Z,.In E1 you have proved that Z,, is not a domain. Earlier,
you have noted that Z; and Z, are not domains. So, is Z, not a domain for
any neN? Take Z, ={0, 1}. Since 1-1=1#0, Z, is a domain.

What about Z, ={0, 1, 2}? You should check that it is a domain.

So, what is it about Z, and Z, that makes them domains, while Z; and Z,
are not? You may have concluded what we shall now prove.

Theorem 1: Z, is an integral domain iff p is a prime number.

Proof: You know that Z_ is a non-trivial commutative ring with identity

n

¥ n2>2. So, we need to prove that Zp has no zero divisors iff p is a prime.

First, let us assume that p is a prime number. ] -
Aring R is without

Suppose 3,b e Z, satisfy ab=0. zero divisors if for
— N a,beR,ab=0=>a=0
Then ab=0, i.e., p|ab. or b=0.

Since p is a prime number, from Unit 1 you know that p|a or p| b.
Thus, a=0 or b=0.
Thus, we have proved thatif 2= 0 and b =0, then ab#0 in Z,.

From Block 1 of the course, Real Analysis, you know that this is equivalent to
having proved that ab=0=a=0 or b=0.
Thus, Z, is without zero divisors, and hence, is a domain.

Conversely, we are given that Z, has no zero divisors.
If p=1, then Z

If p=1, let m|p for some meN. So p=mr, for some reN.

o is the trivial ring, which is not a domain.

Then1<m<p,1<r<p, and Mf=mr=p=0in Z,.

Since Z, is without zero divisors, M=0 or F=0. Thus, p|m or p|r.

This is only possible if m=p or r=p.

If m=p, r=1. If r=p, m=1. Thus, the only factors of p are 1 and p.
Hence, p is a prime. [

By applying Theorem 1, you can immediately conclude something you have
proved earlier, namely, that Z,,, Z, and Z, have zero divisors!

Let us look at another example of a domain now. 129
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. _(D,;xD,) i i i
Example 6: Show that R = D, x{0} is an integral domain, where D,

and D, are domains.

ian- i (D, xD,) =~ i
Solution: From Unit 13, you know that D, «{0} D,, a domain.

Since isomorphic rings have exactly the same algebraic properties, and R is
isomorphic to a domain, R must be a domain. Hence the result.

*k*k

An interesting point is brought out by the example above. From Example 4,
you know that D, x D, is not a domain. But a quotient ring of D, x D,
becomes a domain!

Try solving some exercises now.

E6) Which of the following rings are not integral domains? Why?
Ly, 27, Z.+1Z, RxR, {0}, (ZxZ)/(Z x{0}).

E7) Must the subring of an integral domain be a domain? Must the quotient
ring of a domain be a domain? Give reasons for your answers.

E8) Check whether or not @[\/ﬁ] is an integral domain, where n is a
square-free integer.

Now consider a ring R. We know that the cancellation law for addition holds in
R, i.e., whenever a+b=a+c in R, then b=c. But, does ab=ac imply

b =c? It need not. For example, 0-1=0-2 in Z, but 1+ 2. So, if
a=0, ab=ac does notimply b=c. But, if a0 and ab=ac, is it true that
b =c? We will prove that this is true for integral domains.

Theorem 2: Aring R has no zero divisors if and only if the cancellation law
for multiplication holds in R (i.e., if a,b,c € R such that a # 0 and ab=ac or

ba=ca, then b=c.)

Proof: Let us first assume that R has no zero divisors. Assume that
a,b,ce R suchthat a#0 and ab=ac. Then

a(b—c)=ab—ac, by Theorem 1, Unit 10.
=0.
As a =0 and R has no zero divisors, we get b—c=0, i.e., b=c.
Thus, if ab=ac and a =0, then b=c.
Similarly, if ba=ca and a #0, then b =c. (Note that here R is not assumed
to be commutative.)

Conversely, assume that the cancellation law for multiplication holds in R.
Let a € R such that a #0.

Suppose ab =0 for some b eR.

Then ab=0=a0.

Using the cancellation law for multiplication, we get b =0.

So, there is no non-zero b s.t. ab=0.



Hence, a is not a zero divisor, i.e., R has no zero divisors. |

Using this theorem, we can immediately conclude that the cancellation law
for multiplication holds in an integral domain.

Note that Theorem 2 is not true for domains alone. It is also true for any non-
domain that is without zero divisors, like 2Z.

Let us look at a couple of examples of the use of Theorem 2.

Example 7: Does the cancellation law for multiplication hold for Z[i]?

Solution: Since Z[i] is a subring of C, it is without zero divisors. Thus, by
Theorem 2, the cancellation law holds for Z[i].

*k*k

Example 8: Let R be a non-trivial finite ring with no zero divisors. Show that
R must have identity.

Solution: Let a=0eR. Then a is a non-zero element of R V i e N.
But R has only finitely many elements.
So a'=a’ forsome r,seN, r #s.

Let n be the least positive integer s.t. 3me N with a"=a", m=n.
Then m > n.
So, for all X e R,

x-a"=x-a"

= xa" "= xa"", applying Theorem 2 and cancelling a.

= xa" " =X, applying the same process (n—1) more times.
Similarly, you can show that 8" "X =x V x € R.

Thus, d"" is the identity of R.

***k

Now, you should use Theorem 2 to solve the following exercises.

E9) Check whether or not the cancellation law for multiplication holds in
Z[ﬁ] and in 5Z.

E10) In a domain, show that the only solutions of the equation x> =X are An element r of aring
x=0 and x=1. R is called an
idempotent if r*=r.
E11) Prove that O is the only nilpotent element (see Example 9 of Unit 12) in
a domain.

E12) Let R be a non-trivial finite ring with identity and let a € R, a # 0. Show
that a is either a zero divisor or a is a unit of R.

Now let us introduce a non-negative integer associated with any ring. This will
lead us to a particular feature of an integral domain.

131



Remember that in this
section the rings need not
be commutative.

132

14.3 CHARACTERISTIC OF A RING

In this section, we will focus on a non-negative integer that characterises rings.
If the ring R is finite, this integer actually turns out to be a divisor of the order
of the underlying abelian group (R, +). The purpose of introducing this feature

of a ring is that it gives an important property of integral domains, as you will
see.

Note that in this section, we will NOT restrict the discussion only to
commutative rings.

Let us begin with a look at Z,. Istherean ne N s.t. n-2=0 in Z,? Yes, for
example, 2e N s.t. 2-2=0. Istherean ne N suchthat n-3=0 in Z,?
What about 4? 4-3=12=0 in Z,, so this works.

Istherean neN s.t. n-x=0V x € Z,? What about 4?

You know that 4x =0 V X € Z,, since 4=0. Infact, 8 =0 and 12x =0
also, for any x €Z,. But 4 is the least positive integer with this property, that
is, 4 is the least element of the set {n eN|nx =0 V x € Z,}. This tells us

that 4 is the characteristic of Z,, as you will see now.

Definition: Let R be aring. The least positive integer n such that
nXx =0V X eR is called the characteristic of R.

If there is no positive integer n such that nx=0 V X € R, then the

characteristic of R is defined to be zero.
The characteristic of R is denoted by char R.

So, as you have seen above, char Z, = 4. In fact, you should check that
char Z, =n, and char Z =0.

Let us consider another example.

Example 9: Find char (mZ), where meZ, m> 2.

Solution: Any element of mZ is of the form mn, n € Z. Now, if r € Z such
that rmn=0V neZ, then rm=0, taking n =1

Since m =0, we conclude r =0.

Hence, char (mZ) =0.

*k*k

Solving the following exercises will give you a better understanding of the
characteristic of a ring.

E13) Give an example, with justification, of a ring R with char R =0,
R=mZ, meN.

E14) Find char @(X), where X is a non-empty set.
E15) Let R be aring and let char R =m. What is char (R xR)?

E16) If R is a finite ring, why must char R be non-zero?



E17) i) Let R be a finite ring, with n elements. Show that char R divides
n.

i) In particular, what are n and r, for R =M, (Z,)?

i)  Give an example, with justification, of R in (i) above, with r =n.

Now let us look at a nice result about the characteristic of a ring with identity. It
helps in considerably reducing our labour when we want to obtain the
characteristic of such a ring.

Theorem 3: Let m be a positive integer and R be a ring with identity. Then
the following conditions are equivalent.
i) m-1=0.

i) ma=0 forall aeR.
Proof: We will prove (i) = (ii) and (ii) = (i).

()= (ii) : We know that m-1=0.
Thus, forany aeR, ma=m(l-a)=(m-1)a=0-a=0, i.e,, (ii) holds.

(M) =(@{): f ma=0V aeR, thenitis certainly true for a=1, i.e., m-1=0. W

What Theorem 3 tells us is that to find the characteristic of aring R with
identity, we only need to look at the set {n -1| n e N}, instead of

nXxVvxeR,neN.

Let us look at some examples.

i) char @ =0, since n-1#0 forany n eN.

i)  Similarly, char R =0 and char C =0.

i) You have already seen that char Z, =n, for n>2. Here n .1=0, and
n is the least such natural number.

You have seen several examples of rings and their characteristics. From these
examples you may have concluded that the characteristic of an infinite ring is
zero. However, consider the following example.

Example 10: Find the characteristic of Z,[x], the ring of polynomials in X
with coefficients from Z,.

Solution: Any element of Z,[x] is a polynomial in X with coefficients 0,1 or
2 in Z,. This ring has an identity, namely, 1.

Since 3 is the smallest positive integer such that n-1 =0, char Z,[x] =3, by
Theorem 3.

*k*

Note that Z,[x] is an infinite ring, since for each n € N, there is a polynomial

of degree n, and all these polynomials are distinct. Thus, Z,[x] is an

example of an infinite ring with non-zero characteristic. 133
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Why don’t you solve some exercises now?

E18) Find char M, (C), neN, and char M (Z,_ ), n, meN.

E19) If R isaringand | anideal of R, must char R =char (R/I)? Why, or
why not?

E20) If R isaring and S is a proper subring of R, is char S<char R in all
cases? Why, or why not?

E21) Is there any ring with characteristic 1? Why, or why not?

E22) Let R and S be isomorphic rings. Find char R —char S.

Now let us look at what Theorem 1 says. It says Z, is a domain iff n is a
prime. So, if we connect this with char Z,, we find that Z,, is a domain iff
char Z, is a prime. So, the question arises if there is any domain whose
characteristic is not a prime. Isn’t Q one such domain, since char Q =0, not
a prime? Can char R, R a domain, take any other values? The following

theorem answers this question.
Theorem 4: The characteristic of an integral domain is either zero or a prime.

Proof: Let R be a domain. We will prove that if the characteristic of R is not
zero, then it is a prime number.

So, suppose char R =m, where m e N. Then m is the least positive integer

such that m-1=0, by Theorem 3.

We will show that m is a prime number, using the method of contradiction,
i.e., we will assume m is not prime, and then reach a contradiction. This will
show that our assumption was wrong.

So, suppose M is not prime. So m =st, where s,teN,1<s<m and

1<t<m.

Then m-1=0=(st)-1=0=(s-1)(t-1)=0=>s-1=0 or t-1=0, since R is
without zero divisors.

But, s and t are less than m. So, by Theorem 3, we reach a contradiction to
the fact that m =char R. Therefore, our assumption that m is not prime must
be wrong. Thus, m is a prime number. [ |

Now, what about the converse of Theorem 4? That is, if R is a ring with
characteristic 0 or with prime characteristic, must R be a domain? You can
use your understanding of ‘characteristic’ to answer this, and to solve the other
exercises that are given below.

E23) Check whether or not the converse of Theorem 4 is true.
(Hint: Does E15 help?)

E24) Let R be an integral domain of characteristic p, p a prime. Prove that

i) fora beR,(@a+b)’=a+b" and (a—h)’ =a"-b"



i) (a+b)” =a”+b” for neN and a,beR.
i) the subset {a’|a e R} is a subring of R.

iv) themap ¢:R —>R:¢(a)=a’ is a monomorphism.

v) if R is afinite integral domain, then ¢ [in (iv) above] is an
isomorphism.

E25) Which of the statements in E24 are true if char R =0? Why?

E26) Show that (a+b)° =a® + b® need not be true for a ring R, where
a, beR, and char R =6.

E27) Let R be aring with unity 1, and let char R = m. Define
f:Z—>R:f(n)=n-1 Show that f is a homomorphism. What is a
generator for Ker f?

E28) Find the characteristic of Z,x Z,. Use this ring as an example to show
why Theorem 4 is only true for integral domains.

By now, you would be familiar with integral domains, and their characteristic.
Let us move to a discussion on another algebraic structure. We obtain this
structure by imposing certain restrictions on the multiplication of a domain.

14.4 FIELDS

In this section, you will study some special domains, of which Q, R and C
are examples. Let us see what is extra special about these integral domains.

To understand what we are leading to, take a ring, (R, +, -). You know that
(R,+) is an abelian group. You also know that the operation - is associative in
R. But (R, -) need not be an abelian group. For instance, (Z, -) is not an
abelian group since, for example, 2 has no multiplicative inverse in Z.
Similarly, (C, -) is not an abelian group since there is no element a € C such
that a-0=1 But (C", -) is an abelian group, as you know. So are Q* and R"

abelian groups with respect to multiplication. These observations lead us to
define a new algebraic object.

Definition: Aring (R, +, -) is called a field if (R \{0}, ) is an abelian group.

Thus, for a system (R, +, -) to be a field it must satisfy the ring axioms R1 to

R 6 (of Unit 10) as well as the following axioms:

R7) multiplication is commutative;

R8) R has a non-zero identity (which we denote by 1); and

R9) every non-zero element X in R has a multiplicative inverse, which we
denote by x*, i.e., U(R) =R \{0}.

Consider the following related piece of information, before we go further. 135
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Remark 2: A ring that satisfies R8 and R9, but not R7, is called a division

ring, or a skew field, or a non-commutative field. Such rings are also very
important in the study of algebra. (One example is H, the ring of real

quaternions that you studied in Unit 10.) However, we will not be discussing
division rings in this course.

Let us go back to fields now. The notion of a field evolved during the 19"
century, through the research of the German mathematicians, Richard
Dedekind and Leopold Kronecker, in algebraic number theory. Dedekind used
the German word ‘Kérper’, which means ‘field’, for this concept. This is why
you will often find that a field is denoted by K in mathematics books and
articles.

As you have seen, Q, R and C are fields. However, (Z", -) is not a group.
So, Z is not a field.

Consider another example of a field, in some detail.

Example 11: Show that Q[v/2] :{a+\/§b‘a, b e Q} is afield.

Solution: From Unit 10, you know that F = Q[\/E] is a commutative ring with

identity, 1+~/2 - 0.

Now, let a + \/Eb be a non-zero element of F. Using the rationalisation
process, we see that

a4 1 ] a—+/2b _a-+/2b
(a-++/2b) _a+ﬁb_(a+ﬁb) (a—+/2b) a?-2b?

( b)
" a —2b2 \/_ NPT

(Note that a’—2b® # 0, since \/E is not rational and at least one of a and b
iS non-zero.)
Thus, every non-zero element of F has a multiplicative inverse.

Therefore, F=Q + \/EQ is a field.

*k*k

By now you have noted several examples of fields. Have you observed that all
of them happen to be integral domains also? This is not a coincidence. In fact,
we have the following result.

Theorem 5: Every field is an integral domain.

Proof: Let F be a field. Then F={0}, F is a commutative ring and 1€ F. We
need to see if F has zero divisors.

So, let a and b be elements of F suchthat ab=0 and a=0. Asa=0 and F
is a field, a™* exists.

Then, as you proved in E5(ii), a is not a zero divisor.

So, F has no zero divisors.

Thus, F is an integral domain. ]

We can use Theorem 5 in many ways. For example, by applying Theorem 5
and Theorem 1, you know that Z,, is not a field, as 10 is not a prime.



Now, is the converse of Theorem 5 true? That is, is every domain a field? Note
that Z is a domain, but not a field.

Now you should solve these related exercises.

E29) Which of the following rings are not fields, and why?
6Z, Zs, Zs, ZIN2], Qx Q. p({a}).

E30) Is a subring of a field also a field? Why?

E31) Check whether or not Z[i] and QJi] are fields.

E32) Is Z[x]/< x*> an integral domain? Is it a field? Give reasons for your
answers.

You have noted that not every domain is a field. However, if we restrict
ourselves to finite domains, we find that they are fields, as you will now see.

Theorem 6: Every finite integral domain is a field.

Proof: Let R ={a,=0, a,=1a,,...,a,} be adomain. Then, by definition, R is
commutative. To show that R is a field, we must show that U(R) = R \{0}.

So, let a =a; be a non-zero element of R (i.e., i #0). Consider the elements
aa,,---,aa,. For every j;«tO,aj #0, and since a #0, we get aa; # 0.

Hence, the set {aa,,...,aa, }<={a,,...,a,}-

Also, aa,,aa,,...,aa, are all distinct elements of the set {a,,...,a,}, since
aa; =aa, = a;=a,, by Theorem 2.

Thus, {aa,,...,aa, }={a,,....a,}-

In particular, 1=a,=aa; for some j=1,...,n.

Thus, a is invertible in R.
Hence, every non-zero element of R has a multiplicative inverse.
Thus, R is a field. L

Using this result, we will now prove a theorem which generates several
examples of fields.

Theorem 7: Z, is a field if and only if n is a prime number.

Proof: From Theorem 1, you know that Z is a domain if and only if n is a

prime number. You also know that Z, has only n elements. Now we can
apply Theorem 6 to obtain the result. |

Theorem 7 unleashes infinitely many examples of fields: Z,, Z,, Z., Z,, and
so on. They are all examples of what we now define.

Definition: A field whose underlying set is finite is called a finite field.
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Thus, Z, is a finite field for every prime p. Finite fields have many important

applications in various areas of science and technology, like cryptography.
You can study them in detail at a later stage.

Looking at all the examples of fields, can you say anything about the
characteristic of a field? In fact, using Theorems 4 and 5 we can.

Theorem 8: The characteristic of a field is either zero or a prime number.
Proof: Applying Theorems 4 and 5, we get this result. [ ]

From Theorem 7 and Theorem 8, we see that for each prime p we have a
field of characteristic p, namely, Zp.

So far the examples of finite fields that you have seen have consisted of p
elements, for some prime p. In the following exercise, we ask you to check an
example of a finite field with 4 elements.

E33) Let R={0,1, a,1+a}. Define + and - in R as given in the following

Cayley tables.
+ 0 1 a |l+a 0 1 a |l+a
0 0 1 a |l+a 0| O 0 0
1 1 0 |1+a| a 1 0] 1 a |l+a
a a |1+a| O 1 a 0] a |[1+a| 1
l+a|l+a | a 1 0 l1+a|0|1l+a| 1 a

Show that R is a field. Also find the characteristic of this field.

What E33 tells you is that there are finite fields that have n elements, where
n is not a prime. However, as you will see in your higher studies, n =p" for

some prime p and some r € N. For example, in E33, n = 22,

Let us now look at the ideals of a field. Consider the examples of fields you
have studied so far. In Unit 12, you have seen that QQ, R and C have only

{0} as a proper ideal. Is this true for other fields? The answer is given by the
following theorem.

Theorem 9: Let R be a commutative ring with identity. Then R is a field if
and only if R and {0} are the only ideals of R.

Proof: Let us first assume that R is a field. Let | be an ideal of R.
If 1={0}, there exists a non-zero element X € I.

As x#0 and R is afield, Xy =1 for some y e R.
Since X el and | isanideal, xyel, i.e.,, 1€l.

Thus, by Theorem 2 of Unit 12, | =R.
So, the only ideals of R are {0} and R.

Conversely, assume that R and {0} are the only ideals of R.
138



Let aeR, a=0. Consider the principal ideal Ra :{ra| reR}.

This is a non-zero ideal of R, since a € Ra.

Therefore, Ra =R.
Now, 1R =Ra.

Therefore, 1=ba for some beR, i.e, a! exists.
Since a was an arbitrary non-zero element of R, we have proved that every

such element has a multiplicative inverse.
Therefore, R is a field. [ |

From Theorem 9 and Example 11, you know that Q[\/E] has no non-trivial
proper ideal. In fact, Q[\/E] has no non-trivial proper ideal, where p is a

prime. Similarly, you also now know that C, R and 4, have no proper non-

trivial ideals. Thus, Theorem 9 is very useful. You will find that you will be
applying it again and again in the rest of this block.

Using Theorem 9, we can obtain some interesting properties of field A field homomorphism is
homomorphisms. We ask you to prove them in the following set of exercises. a ring homomorphism from
one field to another.

E34) Let F and K be fields, and let f:F — K be a field homomorphism.
Show that either f is the zero map or f is 1-1.

E35) Check whether or not

i) a homomorphism from a ring to a field must be 1-1,

ii) a field homomorphism must be the zero map or surjective.

E36) Let R be aring isomorphic to a field F. Show that R must be a field.

Now that we have discussed integral domains and fields, let us look at a
natural way of embedding a domain in a field.

14.5 FIELD OF QUOTIENTS

Let us consider the relationship between Z and Q. You know that every

element of Q is of the form %, where a € Z and beZ". Actually, we can
Recall that, for any
also denote & by the ordered pair (a,b) € ZxZ". Let us use this to define a ring R, R" denotes

b R \{0}.
relation in Zx Z" which mimics the way elements of Q behave.
a_c

In Q, you know b=

elements of ZxZ", i.e., (a,b) ~ (c,d) iff ad = bc.
Then, you should check that ~ is an equivalence relation.

iff ad = bc. Let us put a similar relation, ~, on the

Next, you know that the operations in Q are given by

b d ™ bd ™Mbdbd b

a Cc_ad+bc ,a c_aca %e@.
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Recall, from Unit 1, that
the set of all equivalence

classes of Z xZ" w.rt. ~is
denoted by (ZxZ")/~.

Aring R is embedded in a
ring S if there is a ring

monomorphism from R to S.
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Keeping these operations in mind, we define binary operations on the
equivalence classes in ZxZ" as follows:

[(a,b)]+[(c,d)]=[(ad + bc,bd)], and
[ b)]-[(c.d)] =[(ac,bd)] ¥ [(a, b)], [(c,d)] e (ZxZ")/~.
It turns out that a ring is formed by the set of these equivalence classes, w.r.t.

these operations, and it is a field isomorphic to Q.

Further, there is an inclusion from Z to this field, so that we can treat Z as a
subring of this field.

Let us generalise this procedure to obtain a field encompassing any given
integral domain.

Theorem 10: Let R be an integral domain. Then R can be embedded in a
field F, where every element of F has the form ab™ for a, be R,b 0.

Proof: Consider the set of ordered pairs, K ={(a, b)| a,beR and b= 0}.
Let us define a relation ~in K by '(a,b) ~ (c,d) if ad =bc.'

~is reflexive: (a,b) ~(a,b) V (a,b) e K, since R is commutative.
So, ~ is reflexive.

~is symmetric: Let (a,b), (c,d) e K such that (a,b) ~ (c,d).
Then ad = bc, i.e., ch=da.

Therefore, (c,d) ~ (a,b).

Thus, ~ is symmetric.

~ is transitive: Let (a,b), (c,d), (u,Vv) € K such that (a,b) ~ (c,d) and
(c,d) ~ (u,v).

Then ad =bc and cv=du.

Therefore, (ad)v = (bc)v =b(cv) =bdu, i.e., avd = bud.

Since d =0, by the cancellation law for multiplication, we get

av="hu, i.e., (a,b)~ (u,v).

Thus, ~ is transitive.

Hence, ~ is an equivalence relation.

Let us denote the equivalence class that contains (a,b) by [a,b].
Thus, [a,b] ={(c,d)|c,deR, d#0 and ad = bc}.

For example, (2,6) €[1,3] and (1,2) ¢[1,3] in ZxZ", since 2-3=6-1 and
1.3#2-1.

Also, note that for any domain R, [0, 1]={0}x (R \{0}).

Let F be the set of all equivalence classes of K with respect to ~, i.e.,
F=K/~.

As we did for (ZxZ*)/~, let us define + and - in F as follows:

[a,b]+[c,d] =[ad + bc, bd], and

[a,b][c,d]=[ac, bd].

Do you agree that + and - are binary operations on F? Note that if b =0 and



d # 0 in the integral domain R, then bd # 0. So, the right-hand sides of the
equations defining the operations are equivalence classes in F. Thus, the sum
and the product of two elements in F is again an element in F. But, we still
need to make sure that these operations are well-defined.

So, let [a,b]=[a’,b] and [c,d]=[c’,d"]. We have to show that
[a,b]+[c,d]=[a’,b']+[c’,d'] and [a,b]-[c,d]=[a",b']-[c’,d"],
i.e., [ad +bc,bd]=[a'd"+b'c’,b'd"] and [ac,bd] =[a’c’,b'd"].
Now, (ad +bc)b'd’—(a'd"+ b'c") bd

=ab'dd’ + cd'bb’ —a’'bdd’ — c'dbb’

= (ab’—a’b)dd’ + (cd"—c'd) bb’

=(0)dd’ + (0) bb’, since (a,b) ~(a’,b") and (c,d) ~ (c',d").

=0.
Hence, [ad +Dbc,bd]=[a"d"+b'c’,b'd], i.e., + is well-defined.

Now, let us check if multiplication is well-defined. Consider

(ac) (b'd") — (bd) (a’c") = ab’cd’ — ba'dc’
=ba'cd’—ba'cd’, since ab’=ba" and cd’' =dc".
=0.

Therefore, [ac,bd] =[a'c’,b'd"]. Hence, - is well-defined.

Let us now prove that F is a field.
i) + is associative: For [a,b], [c,d], [u,Vv] e F,

([a,b] +[c,d]) +[u,v] =[ad + bc, bd] +[u, V]
=[(ad + bc)v + ubd, bdv]
=[adv + b(cv+ud), bdv]
=[a,b]+[cv+ud,dv]
=[a,b] + ([c,d] +[u,V]).

i)  + is commutative: For [a,b], [c,d] e F,
[a,b]+[c,d]=[ad + bc,bd] =[cb + da,db] =[c,d] +[a, b].

i) [0,1] is the additive identity for F: For [a,b] e F,
[0,]+[a,b] =[0-b+1-a,1-b] =[a,b].

iv)  The additive inverse of [a,b]eF is [-a,b]:
[a,b] +[-a,b] =[ab—ab,b*]=[0,b*]=[0,1], since (0,1) ~ (0,b?).

We would like you to prove the rest of the requirements for F to be a field (see
E37), after which the proof will continue.

E37) Show that - in F is associative, commutative, distributive over +, and
[1, 1] is the multiplicative identity for F.

Further, show that F* ={[a,b]€F|a,b 0}, and that U(F) =F

So, we have put our heads together and proved that F is a field. 141



Now, let us define f:R — F:f(a)=[a,1]. We want to show that f is a
monomorphism.

f is well-defined: If a=b in R,[a,1]=[b,1] in F, i.e., f(a)=f(b) in F.

f is ahomomorphism: For a, beR,
f(a+b)=[a+b,1]=[a,1]+[b,2]=f(a)+f(b), and
f(ab) =[ab,1] =[a,1]-[b,1] =f(a) - f(b).

f is 1-1: Let a,beR such that f(a)=f(b). Then
[a,1]=[b,]]= (a,) ~ (b, ) = a=h.

Thus, f is a monomorphism.

So, by the Fundamental Theorem of Homomorphism, Im f =f(R) is a

subring of F which is isomorphic to R.
As you know, isomorphic structures are algebraically identical.
So, we can identify R with f(R), and think of R as a subring of F.

Now, any element of F is of the form

[a,b] =[a,1][L b] =[a,1][b,1] " = f(a)f (b) ", where b 0.

Thus, identifying X € R with f(x)ef(R), we can say that any element of F is
of the form ab™, where a, beR, b#0.

So, F is the required field in which R is embedded. |

The field F, whose existence we have just proved, is called the field of
quotients (or the field of fractions, or the quotient field) of R.

Thus, Q is the field of quotients of Z.

Consider the following remark in this context.

Remark 3: Remember that the elements of the field of quotients of a domain
R are actually a product of equivalence classes. When we say that any

element of this field F, is of the form ab™, we actually mean [a,1][b,1]™, for
a, beR, b=#0. We are ‘loosely’ equating R with its isomorphic copy f(R) in
F.

Before considering more examples of a field of quotients, we shall prove a
basic property of this field. This property will make it easier for you to obtain
the quotient field of a domain.

Theorem 11: The field of quotients of an integral domain R is the smallest
field containing R.

Proof: To prove this, we shall equate [a,1] (of Theorem 10) with a V a € R.

Let F be the field of quotients of R.
Then, R ¢ F, as discussed in Theorem 10.

Let K be any other field containing R.
Any element of F is of the form ab™, where a, beR and b #0.
Since a,beR, a,bekK.
Since beK" and K is afield, b™ e K.
142 Thus, a, b™ € K. Hence, ab™ e K.



Thus, Fc K.
Hence, F is the smallest field containing R. [ |

Let us now use Theorem 11 to find the field of quotients of a large class of
domains.

Example 12: Find the field of fractions of a field F.

Solution: Since F is a field, it is the smallest field containing itself. Thus, F is
its own field of fractions.

*k*x

By Example 12, you know that Z  is the field of fractions of itself, where p is

p
a prime. Similarly, @ and C are their own field of fractions.

Try doing some exercises now.

E38) Is R the field of quotients of Z+\/§Z? Or,isit C? Or, is it Q+\/EQ?
Give reasons for your answers.

E39) At what stage of the construction of the field F in Theorem 10 was it
crucial to assume that R is a domain? Why?

E40) Let R be a commutative ring with unity, but not an integral domain. Can
R be embedded in a field? Why, or why not?

In this section, you have seen how an integral domain can be naturally
embedded in a field. Now let us look at quotient rings that are integral domains
or fields, and their corresponding fields of fractions.

14.6 PRIME AND MAXIMAL IDEALS

Let us, again, begin with considering Z,. You know that %Z:Z” for ne N.

You also know that Z

n

is an integral domain iff n is a prime. Thus, AZ is a

domain iff n is a prime. What is this property of a prime p that allows %Z

to be a domain?

You know that if p is a prime number and p divides the product of two
integers a and b, then either p divides a or p divides b. In other words, if
ab € pZ, then either a € pZ or b € pZ. Itis this property that makes pZ a
special ideal of Z. More generally, consider the following definition.

Definition: A proper ideal P of aring R (commutative or not) is called a
prime ideal of R if whenever ab € P for a,b e R, then either acP or beP.

Thus, 27, 37,117 are all prime ideals of Z.

As another example, {0} is a prime ideal of R because it is a proper ideal of
R, and

abe{0}=>ab=0=a=0 or b=0=a {0} or b {0}, where a,beR.
143
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Let us look at other examples of prime ideals.

Example 13: Let R be an integral domain. Show that 1 ={(0, x)|x eR}isa
prime ideal of R xR.

Solution: Note that I ={0}xR. In Unit 12, you have seen that | is an ideal of
R xR.
Further, it is a proper ideal, since {0} # R.

Now, let us check if | is a prime ideal or not. For this, let
(a,,b,),(a,,b,) eRxR suchthat (a;,b,)(a,,b,) el
Then (a,a,,b,b,) =(0,x) for some xeR.
-.a,a,=0,ie,a =0o0ra,=0, since R isadomain.
Therefore, (a,,b,) el or (a,,b,) el

Thus, | is a prime ideal of Rx R.

*kk

Example 14: Check whether or not the ideal () is a prime ideal of @(X),
where X is a non-empty set and Y is a proper non-empty subset of X.

Solution: Let A, B e p(X) s.t. ABe p(Y), i.e., ANBcC Y. Thenitis not
necessary that Ac Y or B, i.e., itis not necessary that A € p(Y) or
B e p(Y).

Forinstance, let X ={1, 2, 3}, Y ={1}, A={1, 2}, B={, 3}. Then
ANBcY, butneither A nor B are subsets of Y.

Thus, ©(Y) is not a prime ideal of @(X).

*kx

Try solving the following exercises now. Doing so will help you get used to
prime ideals.

E41) Check whether or not the set | ={f € C[0, 1]| f(0) = 0} is a prime ideal of
C[o, 1].

E42) Show that a commutative non-trivial ring R with identity is an integral
domain if and only if {0} is a prime ideal of R.

E43) Find all the prime ideals of C.

E44) Check whether or not <6 > is a prime ideal of Z[\/g].

Now, as you have seen, Z/nZ is a domain iff nZ is a prime ideal of Z. Is this

situation true for prime ideals of Z only? In fact, the same relationship holds
between any integral domain and its prime ideals, as we will now prove.

Theorem 12: Anideal P of a commutative ring R with identity is a prime
ideal of R if and only if the quotient ring R/P is an integral domain.

Proof: Let us first assume that P is a prime ideal of R. Since R is
commutative and has identity, from Unit 12 you know that R/P is commutative
and has identity.



Also, since P is a proper ideal of R, (R/P) = {0}.

Now, let a+P and b+P bein R/P such that (a+P)(b+P) =P, the zero
element of R/P.

Then ab+P =P, i.e., abeP.

As P is a prime ideal of R,either a€P or beP.

So, either a+P=P or b+P=P.

Thus, R/P has no zero divisors.

Hence, R/P is an integral domain.

Conversely, assume that R/P is an integral domain.

Let a, beR such that ab eP.

Then ab+P =P in R/P, i.e, (@a+P)(b+P)=P in R/P.

As R/P is an integral domain, either a+ P=P or b+P =P, i.e., either acP

or beP.
This shows that P is a prime ideal of R. [

Let us consider some examples to understand how useful Theorem 12 is.

Example 15: Find all the prime ideals of Z,.

Solution: You know that Z,, = %SZ' So, by Theorem 8 of Unit 12, you know

that the ideals of Z,, correspond to the ideals of Z containing 45Z.
Thus, the ideals of Z,, are <n >, where n|45. So n=13,5,09,15, 45.

Hence, <A > is Z,, <3>,<5> <9> <15> <0 >, respectively.
Since a prime ideal is a proper ideal, Z,; is not a prime ideal.
Since 3-3e€<9>, but 3¢<9>,<9> is not a prime ideal.
Similarly, you should show why <15> is not a prime ideal.

Since 45 is not a prime, Z,; is not a domain. Hence, <0 > is not a prime

ideal. In E48 you will see that the
prime ideals of Z

correspond to the prime
ideals of Z that contain nZ.

Now, Z‘%§ >:Z3, by the isomorphism theorems; and Z, is a field. Hence,

Z‘%g S is a field. So by Theorem 12, < 3 > is a prime ideal of Z .

Similarly, show that <5 > is a prime ideal of Z ;.

Note that <3> and <5> are the only prime ideals of Z containing 45Z.
Thus, the prime ideals of Z,, correspond to the prime ideals of Z containing

457, i.e., pZ, where p|45, p aprime.

That is, the only prime ideals of Z,, are

<3>={0, 3, 6,9,12, 15,18, 21, 24, 27, 30, 33, 36, 39, 42}.

***x

Example 16: Show that < X +5 > is a prime ideal of R[x]. Also find the
quotient field of R[x]/< x +5>.

Solution: First, let us use the Fundamental Theorem of Homomorphism to

]R[Xy ~
prove that L X +5> R. 145
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Define the evaluation function ¢:R[x] — R:¢(f(x)) =T (-5).
You know, from E2 of Unit 13, that ¢ is a well-defined ring epimorphism. Also
Ker ¢ ={f (x) eR[x]|(-5) is a root of f(x)}

={f(x) eR[x]|(x +5) divides f(x)}, as you know from Block 1 of

Calculus.
=<X+5>.

Hence, by the Fundamental Theorem of Homomorphism, R[X%X 45 =R.
Since R is a field, it is a domain.

R[Xy . .
Hence, L x+5> 1S@ domain.

Thus, <X +5> is a prime ideal of R[x], applying Theorem 12.

]R[xy ~ . R[xy . . o
Further, as X +5> R, afield, AN is a field. Hence, it is its

own gquotient field.

*x*k

Along the lines of Example 16, you should prove that < X +r > is a prime ideal
of R[X]VreR.

Now, let us consider another example of the use of the isomorphism
theorems, and Theorem 12, for checking the primeness of an ideal.

Example 17: Check whether or not < 7 > is a prime ideal of Z,q.
If it is, find the field of fractions of Z,, /< 7 >.

If it is not, give a ring in which Z49/<7 > is embedded.

Solution: We will apply the third isomorphism theorem, which you have
proved in Unit 13. Here, note that 497 is an ideal of 7Z, which is an ideal of

Z.. Now,

ik (&3 Z%?Z/wz) 1 Z%? >

" 7 . . . ZV_
Since you have seen that AZ is a domain, so is LT

Hence, <7 > is a prime ideal of Z,.

Note that the required field of fractions is Z,. (Why?)

*k*k

Try solving some related exercises now.

E45) Check whether or not < x +20 > is a prime ideal of Z[X].

E46) Let R be a commutative ring with unity such that R/1 is a domain for
some ideal | of R. Will R be a domain? Why?

E47) Find all the prime ideals of Z,,.




Now, in Z you have seen that a prime ideal is generated by a prime number.
Can this be generalised to other domains?

For this, let us first talk about divisibility and prime elements in a domain.
Recall, from E29, Unit 10, that we generalised the definition of 'a divides b' in
Z. to any commutative ring, R. You studied that an element a divides an

element b in R (denoted by a|b) if b=ra for some reR.
In this case, we also say that a is a factor of b, orthat a is a divisor of b.

Thus, 3 divides 6 in Z,, since 3.2=6.
Similarly, for X ={1, 2, 3}, A={1, 2}, B={}, A[B in @(X) because
3C={ Fc X st. AnNC=B.

Note that if R is a ring with unity, then a|a VaeR. (Why?)

Given this definition of ‘divisor’ generalised to any commutative ring, let us
generalise the concept of a prime integer. We will see what a prime element is
in any domain.

Definition: A non-zero element p of an integral domain R is called a prime
element if

i) p is not a unit, and

i)  whenever a, beR and p|ab, then p|a or p|b.

Thus, the prime elements of Z are precisely the prime numbers and their
negatives. You also know that a prime element in Z generates a prime ideal.
Is this true for other domains? The following theorem answers this question.

Theorem 13: Let R be an integral domain. Then p is a prime element of R if
and only if Rp is a prime ideal of R.

Proof: Let us first assume that p is a prime element of R.
Since p does not have a multiplicative inverse, 1¢Rp. xeR h_af: a multiplicative
Thus, Rp is a proper ideal of R. IMEERT Rx 3.

Next, let a, b €R such that ab eRp. Then
ab=rp, for some reR.

= plab

=pla or p|b, since p is a prime element.
= a=Xp or b=xp for some xeR.

=aeRp or beRp.
Thus, abe Rp=a<Rp or beRp, i.e., Rp is a prime ideal of R.

Conversely, assume that Rp is a prime ideal of R. Then Rp# R, by
definition. Thus, 1¢ Rp, and hence, p does not have a multiplicative inverse.
Now, suppose p divides ab, where a, beR.

Then ab =rp for some reR, i.e., ab e Rp.

As Rp is a prime ideal, either a € Rp or b e Rp.

Hence, either p|a or p|b.
Thus, p is a prime element in R. [ | 147



Remember that all rings
here are assumed to be
commutative.
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Theorem 13 is very useful for checking whether an element is a prime element
or not, or for finding out when a principal ideal is a prime ideal. For example,
Theorem 13 and E42 tell us that O is a prime element of R iff R isa
domain.

Prime ideals have several other useful properties. In the following exercises
we ask you to prove some of them.

E48) Let f:R — S be a ring epimorphism with kernel N. Show that
i) if J is a prime ideal in S, then f~'(J) is a prime ideal in R.

ii) if 1 is a prime ideal of R containing N, then f(l) is a prime ideal
of S.

i)  the map ¢ between the set of prime ideals of R that contain N
and the set of prime ideals of S, given by ¢(I) =f(l), is a bijection.

E49) Give an example of a ring homomorphism f from R to S such that P is
a prime ideal of R, but f(P) is not a prime ideal of S.

E50) Let P, and P, be distinct prime ideals of aring R.
i) Must P, " P, be a prime ideal of R?
i)  Will P, +P, be aprime ideal of R in all cases?
i) Will PP, be a prime ideal of R in all cases?
Give reasons for your answers.

E51) Find two distinct prime ideals of Z x Z.

Let us now define a particular kind of prime ideal. This will actually connect a
ring to a field as its quotient ring.

Let us begin, again, with Z as an example. Consider the ideal 27 of Z.
Suppose the ideal nZ in Z is such that 27 < nZ c 7Z. Then n|2. Therefore,
Nn=+1 or n=12, sothat nNZ =7 or nZ = 27.

What this tells us is that no ideal of Z can lie between 27 and Z. That s,

27. is maximal among the proper ideals of Z that contain it. This leads us to
the following definition.

Definition: A proper ideal M of aring R (commutative or not) is called a
maximal ideal if whenever | is anideal of R such that M c | <R, then

either =M or I =R.

Thus, a proper ideal M is a maximal ideal if there is no proper ideal of
R which contains it.

An example that may come to your mind immediately is the zero ideal in any
field F. This is maximal because you know that the only other ideal of F is F
itself. You have also seen earlier that {0} is a prime ideal of F.

In the case of fields, you have just seen that a maximal ideal is a prime ideal.
Is this true for rings in general? Is there a connection between a prime ideal



and a maximal ideal of a ring? To answer this, consider the following
characterisation of maximal ideals.

Theorem 14: Let R be a commutative ring with identity. An ideal M in R is
maximal if and only if R/M is a field.

Proof: Let us first assume that M is a maximal ideal of R. We want to prove
that R/M is a field. You already know that R/M is a commutative ring with

identity. So, it is enough to prove that R/M has no non-trivial proper ideals
(see Theorem 9).
So, let | be an ideal of R/M. Consider the canonical homomorphism

N:R—->R/M:n(r)=r+M.

Then, from Unit 13, you know that n7*(1) is an ideal of R containing M, the
kernel of n.

Since M is a maximal ideal of R,n™"(I)=M or n°'(I)=R.

Therefore, | =n(n (1)) is either n(M) or n(R).

Thatis, 1={0} or I=R/M.

Thus, R/M is a field.

Conversely, let M be an ideal of R such that R/M is a field.
Then the only ideals of R/M are {0} and R/M.
Let | be an ideal of R containing M. Then, as above, n(l) ={0} or

n(l)=R/M.
S I=n""(n(D) is M or R.
Therefore, M is a maximal ideal of R. |

There is an immediate consequence of Theorem 14 (and a few other
theorems too0).

Corollary 1: Every maximal ideal of a commutative ring with identity is a prime
ideal. [

We ask you to prove the corollary as an exercise (see E52).

Notice that Corollary 1 is a one-way statement. What about its converse? That
is, is every prime ideal maximal? What about the zero ideal in Z? Since
{0} £ 2Z ¢ Z, {0} is not a maximal ideal. However, since Z is an integral

domain, {0} is a prime ideal of Z.

Now let us use the powerful characteristion in Theorem 14 to get some
examples of maximal ideals.

Example 18: Show that an ideal mZ of Z is maximal iff m is a prime
number.

Solution: From Theorem 7, you know that 7Z _ is a field iff m is a prime

m

7, =
number. You also know that /nZ Lo,

Thus, by E36, Z/mZis a field iff m is prime.
Hence, by Theorem 14, mZ is maximal in Z iff m is a prime number.

*k*x
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Example 19: Show that 27Z,, is a maximal ideal of Z,,, whereas 4Z,, is not.

Solution: You know that Z,, :%ZZ and 27, :Z%ZZ' Thus, by the third

isomorphism theorem in Unit 13, we see that
L., /27, =(Z/127)/(27./127) = 7,/ 27.= 7.,, which is a field. Therefore,

Now, 4Z,, < 272, < Ly,.
Therefore, 47Z,, ={0,4,8} is not maximal in Z,,.

*k*k

Try solving the following exercises now.

E52) Prove Corollary 1.

E53) Show that {0, 2,4,6,8} is maximal in Z,,.

E54) Check whether or not < X — 7t > is maximal in C[Xx].

E55) Show that {f € C[0,1] f(%) =0} is maximal in C[0,1].

So, let us see what you have studied in this section. You were first introduced
to a special ideal of a ring, called a prime ideal. Its speciality lies in the fact
that the quotient ring corresponding to it is an integral domain. Then you
studied about a special kind of prime ideal, i.e., a maximal ideal. Why do we
consider such an ideal doubly special? Because, the quotient ring
corresponding to it is a field, and a field is a very handy algebraic structure to
deal with.

We end this discussion on integral domains here. Let us now briefly
summarise all the ideas you have studied in this unit.

14.7 SUMMARY

In this unit, we have discussed the following points.
1. The definition, and examples, of a zero divisor in a ring.

2. The definition, and examples, of an integral domain.

3. Z_ is afield iff n is a prime number.

n
The cancellation law for multiplication holds in an integral domain.
The definition, and examples, of the characteristic of a ring.

The characteristic of an integral domain is either zero or a prime number.

N o o &

The definition, and examples, of a field.

8.  Every field is a domain, but the converse is not true.



9.  Afinite domain is a field.
10. The characterstic of a field is either zero or a prime number.
11. The construction of the field of quotients of an integral domain.

12. The quotient field of a domain is the smallest field containing the
domain.

13. The definition, and examples, of prime and maximal ideals.

14. The proof and use of the result that a proper ideal | of aring R with
identity is prime (respectively, maximal) iff R/l is an integral domain
(respectively, a field).

15. Every maximal ideal is a prime ideal, but the converse is not true.

16. Anelement p of an integral domain R is prime iff the principal ideal
PR is a prime ideal of R.

14.8 SOLUTIONS / ANSWERS

E1l) Z has no zerodivisorssince m=0,n0=mn=0V m, neZ.
In Block 3, you have also seen that U(Z) ={-1, 1}.

Now, let us consider the zero divisors in Z,,.

m e Z,, is a zero divisor

<3INeZ, st M-A=0mM=0,n=0.
< m=2 or m=5.
Thus, the zero divisors of Z,, are Z 5.

Also, in Block 3, you have seen that
U(Zlo) :{m € Z10|(m’ 10) :1} ={Il §| 71 §}

From these two examples, a possible conclusion we can reach about
A, the set of zero divisors, and B, the set of units, in a ring is that

A N B = (. However, for rings in general, this is only a conjecture. It
needs to be proved, or disproved.

E2) The statement you need to prove is: For neN, if XxeZ, s.t. (X, n)>1,
then X is a zero divisor in Z.,.

To prove it, suppose X is not a zero divisor in Z ..

Then show that Z, ={M X|M e Z }=<X>.

Thus, (X, n) =1, which is a contradiction to what is given to us, namely,
(X, n)>1.

Hence, X must be a zero divisor in Z,.

E3) Let b=0 bein R suchthat ab=0.
Then, forany r e R,

(ra)b =r(ab) =0.

Thus, every non-zero element of Ra is a zero divisor. 151
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E4)

E5)

E6)

E7)

ES)

©P(X)={0, X}, X = Q.
Since X-X=XnNnX=X=Q, (X) has no zero divisors.

i) No. For example, 2 € Z is not a zero divisor. Also, 2 ¢ U(Z).

i) No, let us prove this.
IfacU(R), 3beR s.t. ab=1.

Suppose a were a zero divisorin R. Then 3¢#0 in R s.t.
ac=0.

Thus, acb=0, i.e., (ab)c=0, since R is commutative.
..¢=0, a contradiction.

Hence, if a € U(R), a is not a zero divisor in R.

Zg, is a domain, by Theorem 1, since 97 is a prime.

27, is not a domain, since 1¢ 27Z.

Z +17 is a non-trivial commutative ring with identity.
Now, let a+ib e Z[i] s.t. 3 c+id e Z[i], c+1id # 0, and

(a+ib)(c+id) =0.
Then ac—bd =0, and ..(1)

ad+ bc =0. ...(2)

(1) gives b(c* +d*) =0 in Z, using (2).

. b=0orc®+d?=0.

c?+d?*=0=c=0 and d =0, which is not possible, since ¢+ id 0.
- b=0.

Then (1) gives ac =0, and (2) gives ad =0.

If a#0, then ac=0, sothat c=0; and ad=0=d =0.

This is not possible, again since ¢+id = 0.

So, a=0 also.

Thus, a+ib=0.

Hence, Z[i] has no zero divisors, and hence, it is a domain.

As in Example 4, Rx R is not a domain.

{0} is trivial, and hence, is not a domain.

. Zx7) - . . .
As in Example 6, ( / =7, which is an integral domain.
P (Zx{0}) J

Hence, (Zx Z%Z «{0}) is a domain.

No, for example, you have seen that 27 is not a domain, though 7Z is.
The quotient ring need not be a domain. For example, you know that 7Z

is a domain, but %Z =Zg is not.

From Unit 10, you know that Q[\/H] is a commutative ring with identity.
Since Q[\/ﬁ] is a subring of C, and C has no zero divisors, @[\/ﬁ]

has no zero divisors. Hence, it is a domain.



E9) Note that R is an integral domain. Since Z[ﬁ] is a subring of R, itis
also without zero divisors. Hence, the cancellation law for multiplication
holds in Z[N7].

Since 5Z is a subring of Z, and Z is without zero divisors, so is 5Z.
Hence, the cancellation law holds for 5Z.

E10) x’=x=X(x-1)=0
= X=0o0or x-1=0
= X=0 or x=1.

E11) Let R be adomain and X € R be nilpotent.
Then x"=0 for some neN.
If n=1, x=0.
If n>1, then x-x""=0.
Since R has no zero divisors, X =0 or X" '=0. We can apply the same

argument again and again, till we reach x°=0.
S X-xXx=0, i.e., x=0.

E12) Let R ={X,,..., X, }.
Suppose a is not a zero divisor.
Now ax; e R Vi=1,...,n.
Also, since a is not a zero divisor, ax; =ax; iff X; = x; for L, j=1,...,n.
Thus, R ={ax,,...,ax, }.
Since 1e R, 1=ax; forsome i=1,...,n.
Hence, a is a unitin R.

E13) For example, consider R = Q. Let r =char Q.
Then r-%:o A %e@.

In particular, r-1=0, since 1€ Q.
This is possible only if r=0.

E14) We will show that 2A =@ V A c X, and that 2 is the least such natural

number.
Firstly, forany A c X,

2A=AAA=(A\A)U(A\A) = .
Also, since X =@, 1- X = (. Thus, char o (X) =1.
.. char p(X) =2.

E15) Let char(RxR)=n.
We know that mr=0 V r e R, and m is the least such non-negative

integer.
Now, let (r,s) be any element of R xR.

Then m(r,s) = (mr,ms) =(0,0), since r, seR.

Thus, n<m. ..(3)

On the other hand, if r e R, then (r,0) e R xR.

= n(r,0)=(0,0),

i.e., (nr,0)=(0,0),

i.e., nr=0. 153



This is true for any r e R.
S.m<n. ...(4)
Thus, (3) and (4) show that m=n, i.e., char R =char (R xR).

E16) (R, +) is afinite group. If o(R) =n, then r is the /.c.m of the orders of

XV XeR.
Also, 0(x) is a factor of n for each X in R. Thus, r=0.

E17) i) (R, +) isagroup of order n s.t. Ix=0V xeR, where
r =char R.
By E16, r = 0.
Hence, 0(x)|r V X € R, and r is the least such positive integer.

Hence, from Unit 4, you know that r|n.

i)  When R=M,(Z,),n=2% So r=2,2% 2% or 2* Infact, r=4
X, X,| [4%, 4%,
X 4%, 4%,

X; X,
and ZE 9 = E 9 = 0.
0 O 0 O

i)  For example, Z,, n € N. Here o(Z,, +)=n=char Z,.

since 4{ }:0, where X, X,, X5, X,€Z,;

10 ...0
1 ... 0
E18) Here the identityis I=|: : e M, (C).

10 0 1]
r 0 0
Or ... 0

Forany reN, r-1= . § : #0.

00 ...t

Hence, char M, (C) =0.

10 0
The identity in M (Z,,) is | = O 1 O .
00 .1
m 0 0
Soml= 6 m 6 =0, and m is the least such positive integer.
0 0 .. m

- char M, (Z,,) =m.

E19) No; e.g., char Z =0 and char (Z/2Z) =char Z, = 2.
154



E20) No; e.g., Z ¢ Q, but char Z = char Q =0.

E21) Let R have characteristic 1.
Then, forany reR,1-r=0, i.e.,, r=0.
Hence, only the trivial ring has characteristic 1.

E22) Since R=S, they have exactly the same algebraic properties. Hence,
char R =char S. Hence, charR —char S=0.

E23) Let D be a domain. Then char D is 0 or a prime. So, by E15,
char (Dx D) is 0 or a prime.

But, from Example 4, D x D is not a domain.
Thus, the converse of Theorem 4 is not true.

E24) i)

ii)

By the binomial expansion (see E16 of Unit 10),

(a+hb)* =a’ +PC,a" b +---+°C_ ab*" +b".

since p|°C,¥n=1..,p-1°Cx=0V xeR and

v n=1..p-1

Thus, "Ca"'b=0="---="C_ ab*™

s (@+b)? =af +b".

You can, similarly, show that (a —b)” =a” —b". Here, note that in a
ring of characteristic 2, (—1) =1, since 2 =0.

You should prove this by induction, taking P(m) to be the

predicate, '(a + b)pm: a” +b”", a, beR', for meN.

In (i), you have proved P(1) is true. Now assume P(K) is true for
some k € N, and then prove that P(k +1) is true.

Then, P(n) will be true V ne N,

Let S={a" ‘a R}

Firstly, S# @, since R = Q.

Secondly, let o, BeS. Then aa=a", B=b" for some a, b e R.
Then ao—B =(a—-b)" €S, by (i) above, and off = (ab)" €S.
Thus, S is a subring of R.

You must first check that ¢ is well-defined.
Next, d(a+b)=(a+b)’ =a” +b° =¢(a) + ¢(b), and
¢(ab) = (ab)® =a"b® = o(a) ¢(b).

Thus, ¢ is a ring homomorphism.

¢ is 1-1 because

d(@) = dp(b) = a® =b? = (a—b)” =0, from (i).
= a-b=0, since R is without zero divisors.
=a=h

We have to show that if R is finite, then ¢ is surjective.
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Let R have n elements. Since ¢ is 1-1, Im ¢ also has n

elements.
Also Im ¢ < R. Thus,Im ¢ =R.

Hence, ¢ is surjective.

E25) While showing that none of the statements hold true, you will need to
use the facts that 0° is not defined (see the course ‘Calculus’) and
=1V aeR, a=0 (since R is a domain).

E26) Consider Z, and 2, 3 € Zj.
Now, 2% =4 and 4° = 4.
S0 2°+4°=8=2in Z,.
Also, (2+4)°=0°=0.
Thus, (2 +4)® = 2° + 4°.
E27) You should check that f is a well-defined function.

Next, for m,neZ, f(m+n)=(m+n)-1
=m-1+n-1, by LI 2(i), Sec.10.3, Unit 10
=f(m)+f(n).

Also, f(mn)=(mn)-1=(mn)(1-1) = (m-1)(n-1), from LI 2(v).

So f is a ring homomorphism.

Ker f ={n eZ|n -1=0} is an ideal of Z.

So, Ker f =rZ, for some reZ, where r-1=0.

Since char R=m, m-1=0.

So mMZcrZ, ie., r|m.

But m=char R. So r>m.

Thus, r=m, i.e., Ker f = mZ.

E28) Show that char (Z,xZ,) =12.
Thus, the characteristic of Z, xZ, is neither 0 nor a prime.
Note that Z, xZ, is not a domain, as you have seen in Example 4.

E29) 67 is not, since 67 is without unity.

Zg is not, since it is not a domain.
Z[\/E] is not, since not every non-zero element in it is invertible.
QxQ is not, since it is not a domain.
Zg is a field, since it is a domain, by Theorem 1, and (Z;, -) is a group.
o({a}) ={0,{a}} is a field since it satisfies R1- R9 (see E4).
E30) No. For example, Z is a subring of Q, Q is a field, but Z is not.

156 E31) From Unit 10, you know that U(Z[i]) ={z1, £i}= (Z][i])".



E32)

E33)

E34)

E35)

E36)

E37)

E38)

Hence, Z[i] is not a field.

Qlil={a+ ib| a, b € Q} is a commutative ring with unity. Does every

non-zero element in it have a multiplicative inverse? Check this along
the lines of Example 11.

Note that X = X + Z[x] = 0, since X ¢ < x> >. (Why?)
But X-X =X’ = 0.

Hence, Z[x]k x? > is not a domain.

Thus, by Theorem 5, it is not a field.

From the tables, you can see that + and - are binary operations on R.
Further, R satisfies R1-R6 (of Unit 10).

Next, R is commutative with identity and every non-zero element has
an inverse, i.e., R satisfies R7-R9.

Thus, R is afield.

Here, 2Xx =0V X e R and 1-x#0 for some xeR (e.g., Xx=1).

Thus, char R = 2.

Ker f is anideal of F. Thus, by Theorem 9,
Ker f ={0} or Ker f =F.

If Ker f ={0}, then f is 1-1.

If Ker f =F, then f=0.

)] It need not. For example, consider
0, if mis even
n:Z L. n(m)y=4" ’
Y2z, {1, if m is odd.
Check that & is a ring homomorphism that is not 1-1.
Z ) .
You also know that AZ =7,, afield.

ii) Consider the inclusion homomorphism from Q to R.
This is neither 0 nor surjective.

Since R =F, and isomorphic rings satisfy exactly the same algebraic
properties, R is a field.

You should prove all these properties by using the corresponding
properties of R. Keeping @ in mind may help you too.

Firstly, from E29, you know that Z[\/E] is not a field. Thus, it can’t be its
own field of fractions.

Next, any element of the field of quotients F, of Z[\/E], is of the form
a+b2
c+dv2

Now

, where C+d\/§¢0, a,b,c,deZ.

¢’ 2d?

a+t;\/§_ (a+bv2) (c—dv2) :(ac—Zbde/E(bc—ad je@+\/§<@.

c+dv2 ¢’ 2d? c?— 202

Thus, Fc Q++/20Q.
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Note that Q + \/EQ is a field, as you studied in Example 11.
Also, any element of Q+\/§Q is of the form

%+ﬁ%,a, b,c,deZ, b=0,d=0.

Now, & 4428 _2d+beV2 _ad+bev2 i i be b @ 7, bd 0.
b ""d bd bd +0+/2

Thus, %+J§%e F.

Hence, Q+\/5Qg F.
Thus, F=Q+ \/EQ.

Note that C 2 F (e.g., i ¢ F), and hence, is not the field of fractions of
Z[\/E]. Similarly, R is not the quotient field of Z[\/E]. (For example,
J3eR but V3¢ Q[\/E]. Why? Let's see.

Suppose JV3e Q[\/E].

Then AmeZ s.t. m\/§:a+b\/§, a,beZ.

So 3m? =a’+ 2b?+ 2ab+/2.

Therefore, a®+2b*=3m? and 2ab=0. So a=0 or b=0.

If a=0, m\/§ = b\/E = m\/g e 7, a contradiction.
Similarly, b =0 leads to a contradiction.)

E39) If R is not a domain, the relation ~ need not be transitive, and hence, F
is not defined.

E40) Let R be a commutative ring with unity. Suppose it is embedded in a
field F. Then F is without zero divisors, and R is a subring of F.
Thus, R has to be without zero divisors, i.e., R has to be a domain.

E41) Firstly, | is an ideal of C[0, 1], as you know from Unit 12.

Secondly, since any non-zero constant function (e.g., the map
h:[0,1] > R:h(x)=1) isin C[O, 1]\, I is a proper ideal.

Finally, let fg € I, where f, g € C[O0, 1].
Then (fg)(0) =0, i.e., f(0)-g(0)=0 in R.
Since R is a domain, this gives us f(0)=0 or g(0)=0, i.e., fel or

gel.
Thus, | is a prime ideal of C[O0, 1].

E42) R is a commutative ring with identity. Thus, we need to show that R is
without zero divisors iff {0} is a prime ideal in R.

Now, {0} is a prime ideal in R

iff abe{0}=a {0} or be{0}, fora, beR

iff ab=0=a=0o0rb=0

iff R is without zero divisors.

Thus, {0} is a prime ideal in R iff R is an integral domain.

E43) Since C is a field, its only ideals are {0} and C. Since C is a domain,
{0} is a prime ideal of C, by E42. Hence, {0} is the only prime ideal of
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E44) Itis not. For example, 2-3e<6>.
Now, if 2e<6 >, then 3 a+b+/5 e Z[\5] s.t. 6(a+b/5)=2, i.e.,
6a=2,b=0.
Butthereisno aeZ s.t. 6a=2. Hence, 2¢<6>.
Similarly, 3¢<6>.

E45) As in Example 16, prove that Z[X%X +920 >:Z, a domain. Hence,

<X+ 20> is a prime ideal of Z[X].

, , (Zx17) ~
E46) No. For example, Z xZ is not a domain, but (7. x40}) Z, a

domain. Hence, (Zx Z%Z «{0}) is a domain.

E47) You can do this along the lines of Example 15.
The prime ideals of Z,, are <p >, where p|30, p aprime.

Thus, these are 2Z,,, <3 > and <5 >.

E48) i) From Theorem 4 of Unit 13, you know that f *(J) is an ideal of
R. Since f is surjective and J#S,f *(J) # R.
Now, let a, b e R such that ab e f *(J).
= f(ab) €l
=f(a)f(b) el
=f(a)eJ or f(b) eJ, since J is a prime ideal.
=aef™(J) or bef™(J).
Thus, f*(J) is a prime ideal of R.

i) Firstly, since f is onto, you know (from Theorem 4, Unit 13) that
f(l) is anideal of S.

Also, since 1¢ | and f ™ (f(1)) = | (from Theorem 5, Unit 13 as
IoN), @) ef(l). Thus, f(I)=S.

Finally, let X,y €S such that xy e f(I).

Since S=Im f, 3a, beR suchthat x=f(a) and y="(b).
Then f(ab) =f(a)f(b) =xy ef(l), i.e., abef(f(I))=1.
s.aelorbel, since | is a prime ideal.

So, xef(l) or yef(l).

Thus, (1) is a prime ideal of S.

i) ¢ is 1-1:¢(1)=0(J)
=f()=fQ)
=f7(f(1) =f(fQ9))
= 1=, asboth | and J contain N.

¢ is onto: Let J be a prime ideal of S. Then f*(J) is a prime
ideal of R and ¢(f ' (3)) =f(f " (J)) =J (from Unit 13).
Thus, JeIm ¢.
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E49) Consider the inclusion map i:Z<=>Q and P =2Z. Then i(P)=2Z is
not an ideal of Q since the only ideals of Q are {0} and Q. Hence, 27Z
is not a prime ideal of Q.

ES50) i) Let P, and P, be prime ideals ofaring R s.t. 3 x P, \P, and
yeP,\P,.
Then xy e P, and xy € P,, since P, and P, are ideals.
. XyeP, NP,
But XxgP, NP, and ye P, nP,.
Thus, P, NP, is not prime.

ii) No. For example, 27 + 37 =7, since (2, 3) =1. Here, 27Z and
37 are prime ideals of Z, but Z is not prime in Z. (Why?)

i)  No.e.qg., (2Z)(3Z) = 6Z, which is not prime in Z.

E51) As you know from Unit 12, mZ xnZ is an ideal of Zx 7Z, where
m, neZ.

7.x7, =~ ich i i ; _
Now, %mZx nZ) Z.,x Z,, which is a domain only if (m=1 and n
isaprimeor n is 0) orif (n=1 and m is a prime or m is 0).

Thus, Zx 27 and Zx3Z are two prime ideals of Z x Z.
Note that they are distinct because, for example, (1, 2) € Z x 27 but

(1, 2) ¢ Z x3Z.

E52) M is maximal in R
= R/M is a field, by Theorem 14.

= R/M is a domain, by Theorem 5.
= M is prime in R, by Theorem 12.

Thus, {0,2,4,6,8} is maximal in Z,,.

E54) As in Example 16, show that (C[X%X o >:(C, a field.

Hence, < X — > is maximal in C[X].
E55) In Unit 13, you have seen that this ideal is the kernel of the onto
homomorphism ¢ : C[0,1] - R: ¢(f) = f(%)

- C[0,1]/Ker =R, a field.
Thus, Ker ¢ is maximal in C[0,1].
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15.1 INTRODUCTION

So far you have studied about many rings, includings rings with special
properties. You have also studied about polynomials over R in some detail in
Block 1 of ‘Calculus’. In the previous units of this course, you studied several
examples related to various rings of polynomials. In this unit, we aim to put all
your earlier studies of polynomials together, and take them a little further.

In Sec.15.2, you will study about sets whose elements are polynomials of the
type a,+a,Xx+ ---+a,X", where a,,a,,...,a, are elements of aring R. You will

see that this set, denoted by R[X], is a ring also.

In Sec.15.3, you will see why we are discussing polynomial rings in a block on
domains and fields. You will study several properties of R[x] in this
connection. In particular, you will see that if R is an integral domain, so is
R[X].

Taking the discussion further, in Sec.15.4, you will see that the ring of
polynomials over a field behaves quite a bit like Z. It satisfies a division
algorithm, which is similar to the one satisfied by Z (see Unit 1). We will prove
this property, and some of its consequences, in this section.

In the next section, Sec.15.5, the focus will be on ideals of F[x], where F is a
field. You will find out why every ideal in F[X] is a principal ideal, just as for
Z. You will also see why this fact is so important.

161



An ‘indeterminate’ is a
formal symbol. It is not a
variable.
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In the next unit, we will continue our discussion on polynomials. What you
study in this unit, and the next, is very basic for your study in any branch of
mathematics. So study this unit carefully. Do every exercise in it as you come
to the exercise. This will help you ensure that you have achieved the following
expected learning outcomes of studying this unit.

Objectives

After studying this unit, you should be able to:
o Define, and give examples of, polynomials over a given ring;

o prove, and use, the result that the set of polynomials over a commutative
ring Ris the ring (R[X], +, °);

. relate certain properties of R[x] to those of R;
o prove, and apply, the division algorithm for F[x], where F is a field;

. prove, and apply, the result that every ideal in F[X] is a principal ideal,
where F is a field.

15.2 RING OF POLYNOMIALS

You have seen several polynomials like 1+ X, 2+3x +4x*, x°—1, 0, and so
on. These are examples of polynomials over R, as their coefficients are in R.
But they are also polynomials over Z, as their coefficients lie in Z. Does this

brief discussion suggest to you what a polynomial over any ring R is? Let's
define this object, and terms immediately related to it.

Definitions: Let R be aring, and let X be an indeterminate.

i) A polynomial over R, in X, is an expression of the form
a X’ +a X +a,x>+---+a X',

where n is a non-negative integer and a,, a,,...,a, € R.

ii) Fori=0,1,...,n, aixi is called a term of the polynomial in (i) above.
If a,# 0, a,X° is called the constant term of this polynomial.

i)  ay,a,,...,a, are called the coefficients of the polynomial in (i) above.

If a,#0, a, is called the leading coefficient of this polynomial, and n is
called the degree of the polynomial. We denote this fact by
deg (@,x°+---+a x")=n,

iv) If a, #0, the polynomial aoxO is called a constant polynomial.

V) If a,=0Vi=0,1,...,n, the polynomial obtained is O, called the zero
polynomial. By definition, it has no leading coefficient.
Further, the degree of the zero polynomial is undefined.

For example, for any ring R and any r e R, rx’ is a constant polynomial (if
r #0) or the zero polynomial (if r =0).



Note that in the matter of writing polynomials, we will observe the following
conventions.

i) We will not write X, so that we will only write a, for a,x".

i) We will write x* as X.

i) We will write X" instead of 1-x™ (i.e., when a_ =1), and write —ax" if
a,=(-a)eR.

iv)  We will omit terms of the type 0-x".

Thus, the polynomial 2x°+0-x"+3x*+ (-1)x* over Z will be written as
2+3x? -3, with (-1) as its leading coefficient and 2 as its constant term.

%—nx5 +~/2x" is a polynomial over R, where

As an example,
a, :%, a; =-m a’ —J/2 and a, =0 for i=1,...,10, i # 5. Similarly,

—%+ nx® —+/2x™ is a polynomial over R.

-05 =« J2

degree 4 over M, (R), with B as its leading coefficient and with no constant
term.

2 1
Also, Ax + Bx*, where A:{ } B:{\/§ ﬂ is a polynomial of

Henceforth, whenever we will use the word ‘polynomial’, we will mean a
polynomial in the indeterminate X. We will also often use the shorter

n
notation » a,x' for the polynomial a,+a,X +---+2a,X".
i=0

Here is a remark to explain the use of the indeterminate.
Remark 1: As noted above, X is used here as a symbol, called an

indeterminate. The symbols x°, X, x?,... are there as placeholders. So,

instead of writing the polynomial over R as a,+a,x+:--+a,X", we could as

well have written it as an infinite sequence with only finitely many non-zero
entries, as (a,, 4,,...,8,, 0, 0,...) (recall your study of sequences from ‘Real

Analysis’). Similarly, a polynomial of degree m can be written as

(by, by,...,b,,0,0,...), b, eR, oras b,+bx+---+b_x".

Note that (0,0, 2,1,5,7,9,11,...) is not a polynomial, as it does not have only
finitely many non-zero entries.

Let us consider some more examples of polynomials in X.

i) 5+4x+3x” is a polynomial of degree 2, whose coefficients belong to
Z. lts leading coefficient is 3.

i)  8+6x+x°+2x" is a polynomial of degree 4, with coefficients in Z,,.
Its leading coefficient is 2.

Before giving more examples, we would like to set up some more notation.

Notation: R[x] will denote the set of all polynomials over aring R.

Recall that X is the capital
Greek letter ‘sigma’, and
denotes ‘sum’.
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(Note the use of the square brackets [ ] here. Do not use any other kind of
brackets because R[x] and R(x) denote different sets, as you will see a little

later.)

Thus, R[x]={2aixi |8, eRVi=0,1,...,n, wheren>0,n eZ}.
i=0

We will also often denote a polynomial a,+a,x +---+a,x" by f(x), p(x), q(x),
etc.
Thus, an example of an element from Z,[x] is f(x) =1+ 3x + 2x".

Here deg f(x) = 4, and the leading coefficient of f(x) is 2.

Before going further, let us see when two polynomials are equal. (Recall, from
the course ‘Real Analysis’ the condition for two sequences to be equal.)

Definition: Let R be aring, and let f(x)=a,+a,x+---+a,Xx" and
g(x)=b, +b,x+---+b X" bein R[x]. We say that f(x) and g(x) are equal,
denoted by f(x)=9(x), if a, =b, Vi=0,1,...,n.

Thus, if two polynomials are equal they have the same leading coefficients,
and hence, the same degree. Is the converse true? No.

For example, 2x +3x* and 5+3x* are both of degree 4 in Z[x], though they

are not equal. This is because the coefficients corresponding to the places x°
and x* are different in both.

To check your understanding of what you have studied so far, you should
solve the following exercises now.

E1l) Identify the polynomials from among the following expressions. Which of
these are elements of Z[x]?

i -

) 1+x+x*+x*+x°, i) 7+Y+x+x2,
i)y /2x +/3%2, iv) 1+%x+%x2+%x3,
v) x¥24x+x% vi) -5,
vii) iix‘, viii) 0.
=
1

E2) If ag+5x2++/3x° =
a,, by, b,, by, b,.

5+ DX+ b,x* +b,x*+b,x" in R[x], find

E3) Determine the degree and the leading coefficient of each of the following
polynomials in R[X].

) 7+42x, i) 1+3x-7x° i) 1+x+x*+0-x°,
. 1 12,13
|V) §X+§X +7X , V) 0.




Now, for any ring R, let us see how we can define addition and multiplication
in R[x] so that they are well-defined binary operations on R[X]. To start with,
consider the addition of polynomials.

Definition: Let f(x) =a,+a,X+---+a,Xx" and g(x) =b,+b,x+---+b_x" be
in R[x]. Let us assume that m > n. (An analogous definition holds if n >m.)
Then we define addition in R[Xx] by

f(x)+9(x) = (a,+b,) +(a,+b)x+---+(@,+b )X" +b_ X" +---+b_x"

n+l

:i(ai+ b,)x', where a, =0 for i > n.
i=0
For example, consider the two polynomials p(x), q(x) in Z[X], given by
p(X) =1+ 2x +3x% q(X) =4+5x+7x°%. Then
PX)+q(X)=1+4)+(2+5)x+B+0)x* +(0+7)x> =5+ 7x+3x* + 7x°.
Note that p(x) +q(x) € Z[x], and that
deg (p(x) +q(x)) =3 =max (deg p(x), deg q(x)) in this case.

From the definition given above, it seems that
deg (f(x)+g(x)) = max (deg f(x),deg g(x)). Is this true? Let's see.

Consider p(x) =1+x* and q(x) =2+3x—x* in Z[x].

Then p(x) +q(x) = @+2) +(0+3)x + 1-1)x* = 3+3x.

Here deg (p(x)+q(x)) =1 but max(deg p(x), deg q(x)) = max(2, 2) = 2.
Thus, deg (p(x) +q(x)) < max(deg p(x), deg q(x)) in this case.

So, what we can say is that
deg (f(x) + g (X)) < max (deg f(x), deg g(x)) V f(x), g(x) € R[x].

Now let us define multiplication in R[X].

Definition: Let R be aring. For f(x) =a,+a,Xx+---+a,X" and
g(x)=b,+b,x+---+b_x" in R[x], we define multiplication in R[x] by
f(X)-g(X) =Co+CX+--+Cp. X",

where ¢, =ab,+a, b, +---+a,b, vV i=0,1,...,m+n.

(Here note that a8, =0 for i >n and b, =0 for i > m.)

As an illustration, let us multiply the following polynomials in Z[X]:
P(X) =1-x+2x> q(X) =2+5x + 7x°.

Here m=3,n=2, sothat m+n=>5. Now
a,=La,=-1a,=0a,=2,a,=0=a,,
b,=2,b,=5b,=7b,=0=b,=bh,.

5 .

Thus, p(X)-q(x) = > ¢,x', where
i=0

Co =a,b, =2,

c, =a,b, +ayb, =3,

c, =a,b,+ab, +a,b, =2,
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C, =azb, +a,b, +ab, +ab, =-3,

c, =a,b, +ab, +a,b, +ab, +a,b, =10,

c, =agb, +a,b, +a,b, +a,b;+ab, +a,b, =14.

So p(x)-g(x) = 2+ 3x + 2x* - 3x* +10x* + 14x°

Note that p(x)-q(x) € Z[x], and deg (p(x)-q(x)) =5= (deg p(x) +deg q(x)).

A polynomial having
only one term is called a
monomial.
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As another example, consider

p(X) =1+ 2x, q(x) = 2+ 3x” € Z,[x].

Then, p(x)-q(x) =2+ 4x + 3x? + 6x>= 2 + 4x + 3x? since 6 =0.
Here, deg (p(x)-q(x)) =2 < (deg p(x) + deg q(x)) (since deg p(x) =1,
deg q(x) =2).

So, what we can say is that
deg (f(x)-g(x)) < deg f(x)+ deg g(x).

We need to check that addition and multiplication in R[], as defined, are
closed in R[X]. First, let us see if + is well-defined. If

f(x) =Zn:aix‘, f'(x) :Zm:a;x‘, g(x) :Zr:bixi, g'(x) :Zslb{x‘ are in R[x] s.t.

f(x) =f'(x) and g(x)=g'(x), then
n=m,r=s,a;=2a;,b;=b; vi=0,...,n, j=0,..,r.

max(n,r) max(m, s)

So f(x) +g(x) = Z(ai+ b,)X'= Z(a; +b))x'=f(x) +g'(x).

Thus, + is well-defined.

You should similarly show that multiplication is well-defined.

For the rest, do E4 below. Also solve the other exercises below. Doing this will
help you get used to these operations on polynomials.

E4)

E5)

E6)

Explain why addition and multiplication are binary operations on R[X].

Calculate the following:

) (2+3x%+4x%) + (5x+X°) in Z[X],

i) (6+2x%)+(1-2x+5x%) in Z,[x],

i) (L+x)-(L+2x+x?) in Z[x],

iv)  (L+x)-@+2x+x%) in Z,[x],

V) (2+x+x%)-(5x+x°) in Q[x].

Explain why each term of the polynomial a,+a,x+---+a,x" e R[x], R a
ring, is also a polynomial over R. Thus, i:aixi is the sum of n

i=0
polynomials over R.




By now you must have got used to the addition and multiplication of
polynomials. You have also seen that + and - are binary operations over
R[x]. The question now is whether or not (R[X], +, -) is aring. Let’s see.

Theorem 1: If R is aring, then so is R[x], where X is an indeterminate.

Proof: We need to establish the axioms R1-R6 (of Unit 10) for (R[x], +, -).

R1

R2

R3

R4

R5

(Addition is commutative): Let p(x) =a,+a,X+---+a,X" and
q(x)=b,+bx+---+b X" bein R[x].

Then, p(X) +q(X) =Cy+CX +++-+C.X,

where t=max(m, n) and ¢, =a,+b,Vi=0,1,...,t
Similarly,

q(x)+p(x)=d,+dx+---+d¢,

where s=max(n, m)=t, and d, =b,+a,vVi=0,1,...,t
Since addition is commutative in R, ¢,=d; vV 1 >0.

Hence, p(x) +q(x) = q(x) + p(x).

(Addition is associative): By using the associativity of addition in R, you

should check that for p(x), q(x), s(x) € R[X],
{p(x) +a(x)}+5s(x) = p(x) +{a(x) +s(x)}-

(Additive identity): The zero polynomial is the additive identity in R[X].
This is because, for any p(X) =a,+a,x+---+a,X" € R[x],
0+p(x)=(0+a,)+(0+a)x+---+(0+a,)x"

=a,+a,X+-+a,X

=p(x).

(Additive inverse): For p(x) =a,+a,Xx+---+a,X" € R[x], consider the

polynomial q(x) =—-p(x)=—-a,—a,Xx—---—a,X",—a; being the additive

inverse of a; in R. Then

P(X) +q(X) = (3,—2,) + (8, —a,)X +---+(a,—2a,)X"
=0+0-X+0-X*+---4+0-X"

Therefore, q(>?).(: —p(x)) is the additive inverse of p(x).

(Multiplication is associative): Let p(x) =a,+a,X+---+a,X",
q(x)=b,+bx+---+b X", and t(x) =d,+d,x+---+d X" bein R[x].
Then
pP(X)-q(X) =Cy+CX+---+CX, where S=m+n and
c, =ab,+a, b, +---+a,b, vV k=0,1..5s.
Therefore,
{p(x)-q(x)}-t(x) =€, +ex+---+eX,
where t=s+r=m+n+r, and
e, =cd,+c, ,d, +---+c,d,
=(a b, +---+a,b)d,+ (a4 by +---+a,b, ,)d, +---+a,b,d,.
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Similarly, you should check that the coefficient of x* (for any k >0) in
p(x)-{a(x) - t(x)} is

ab,d,+a, ,(b,d, +byd,)+---+a,(b,d, +b,,d, +---+Db,d,)

=¢,, by using the properties of + and - in R.

Hence, {p(x)-q(x)}-t(x) = p(x) {a(x) - 1(x)}.

R6 (Multiplication distributes over addition): Let p(x) =a,+a,X+---+a,X",
q(x)=b,+bx+---+b x" and t(x) =d,+d,x+---+d X" bein R[x]. For
any k>0, the coefficient of X in p(x)- (q(x) + t(x)) is
¢, =a,(b,+d;)+a,,(b,+d,)+---+a,(b, +d,).

Also the coefficient of X in p(x)-q(x) + p(X) - t(x) is
(ab,+a, b, +---+a,b,)+(a,d,+a,,d; +---+a,d,)
=a,(b,+d,)+a, (b, +d)+---+a,(b, +d,)

=C,.

Hence, p(x)-{a(x) + t(x)} = p(x) - q(x) + p(x) - 1(x).
Similarly, you can prove that

{a(x) +t(x)}- p(x) = a(x) - p(x) + t(x) - p(x).
Thus, R[X] is aring. [

What Theorem 1 tells us is that apart from the examples of polynomial rings
you have worked with earlier, C[O0, 1][x], (3Z)[x], M, (Z)[x], H[x] are all
rings.

Also note that, since (R[X], +) is abelian, and using E6, we see that
a,+a,X+---+a,X' can be written as a, X"+a, X'+ +a,X+a,, Or

a X' +a,+a, X H+aX -+

So, for example, — +5% + 5%’ € R[x] is the same as 5x —n+5x’ or

5X +5X°— .

Let us consider an example of R[X] in detail.
Example 1: Is Z[X] finite? Why?

Solution: Z4 has 6 elements.
a,e€Zs Vi=0,1...,n, ne NU{0}}.

Zx]={a,+a,x+---+a,X"

So, a, can take any of the values 0, 1, 2, 3, 4, 5.

Similarly, each a; can take any one of 6 values.

So, 0 is the zero polynomial, and there are 5 constant polynomials. Now,
there are 6x5=230 polynomials of degree 1, as a, can take 6 values but
a, # 0 (as we have already counted 0) so that a, can take 5 values.
Similarly, there are 6x6x5 polynomials of degree 2 over Z,, and so on.

Since n can take infinitely many values, there are infinitely many polynomials
over Zj.

*k*k



Before going further, let us define some commonly used terms related to
polynomials. You may already be familiar with them from your earlier studies.

Definition: i) A polynomial of degree 1 is called a linear polynomial.
i) A polynomial of degree 2 is called a quadratic polynomial.
iii) A polynomial of degree 3 is called a cubic polynomial.

iv) A polynomial of degree 4 is called a bi-quadratic (or quartic)
polynomial.

v) A polynomial with leading coefficient 1 is called a monic polynomial.

So, for example 3+ 5x%e Z[x] is a cubic polynomial, and 3 1 Xis a cubic

5
monic polynomial over Q.

Try solving some exercises now.

E7) Which of the following statements are true? Give reasons for your
answers.

i) The product of two linear polynomials in R[X] can be a linear
polynomial, where R is aring.

i) The product of two quadratic polynomials in Q[x] is a quartic
polynomial.

iy  The sum of two quadratic polynomials in C[x] is a quadratic
polynomial.

iv)  If p(X) is a monic polynomial in R[X], where R is a ring with
unity, then p(x) +q(x) is monic V q(x) € R[x].

E8) Give two distinct elements of positive degree in M,(C)[x], with
justification.

E9) Check whether or not R is
i) a subring of R[X],
i)  anideal of R[X].

E10) List all the quadratic polynomials in Z,[X].

E11) Let R be aring and let o, ={f(X) € R[x]|deg f(x) <n}u{0}, for
n € N. Check whether or not ¢, is a subring of R[X].

E12) Let R be aring and A:{Zaixi eR[X]
i=0

a,=0ifiis odd}. Is A a

subring of R[X]? Why, or why not?
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Note that the definitions and theorem in this section are true for any ring. But,
the case that we are really interested in is when R is a domain. In the next
section, our discussion will progress towards this case.

15.3 SOME PROPERTIES OF POLYNOMIAL
RINGS

While studying the previous section, you would have realised some properties
of R[x]. For instance, from Example 1, you may have realised that given any

finite non-trivial ring R, R[X] is an infinite ring. Have you also thought about

the intimate relationship between the operations on aring R and the
operations on R[Xx]? Of course, while proving Theorem 1, you have seen this

relationship. You will now see further evidence of the relationship pertaining to
the multiplications in R and in R[X].

Theorem 2: Let R be a commutative ring with identity. Then R[X] is also a
commutative ring with identity.

Proof: First we shall show that R[x] is commutative.
Let p(X) =a,+a,X+---+a,X" and q(x) =b,+b,x+---+b, X" be in the ring
R[x].
Then p(x)-q(x) =c,+C¢,X+---+CX, where S=m+n, and
C, =a,b, +a, b, +---+a,b,
=ba,+b, ,a,+---+ba, , +b,a,, since both addition and
multiplication are commutative in R.
= coefficient of X in q(x)-p(x).
Thus, for every i >0, the coefficient of X' in p(x)-q(x) and g(x)-p(x) are

equal.
Hence, p(x)-q(x) =q(x)-p(x), i.e., R[X] is commutative.

Next, we know that R has identity 1. We will prove that the constant
polynomial 1 is the identity of R[X].

Take p(x)=a,+a,x+---+a,X"e R[x].

Then 1-p(X) =c,+C,X+---+¢,X" (since deg 1=0),

where ¢, =a,-1+4a,,-0+a, ,-0+---+a,-0=a,.

Thus, 1-p(x) = p(X).

Hence, 1 is the identity of R[X]. [

From Theorem 2, we know that Z[Xx] is a commutative ring with identity.
Similarly, F[X] is a commutative ring with identity, for any field F.

What about the converse of Theorem 2? This is what the following exercises
are about.

E13) If R is aring such that R[X] is commutative and has identity, then

i) must R be commutative?

i)  must R have identity?
Give reasons for your answers.



E14) Let R be a commutative ring with identity. Show that U(R[x]) = U(R).

Henceforth, we will assume that the rings are commutative and with
identity.

Now let us see if R and R[x] behave the same way regarding zero divisors.

For this, we shall first prove a result we had mentioned when we defined the
multiplication of polynomials. You also used this implicitly while solving E7(ii).

Theorem 3: Let R be aring, and let f(x) and g(x) be two non-zero
elements of R[x]. Then

deg (f(x)g(x)) < deg f(x) +deg g(x),
with equality iff R is without zero divisors.

Proof: Let f(x)=a,+a,x+---+a,Xx", a,#0,
and g(x)=by,+bx+---+b X", b, #0.

Then deg f(x)=n, deg g(x) =m.

So, f(X)-g(X)=c,+CX+---+C, X", Where
c,=ab,+a b, +--+ab,,k=01...,m+n.
netr @nigreenr oy @Nd Doy,
Conen =8,

Thus, deg (f(x)-g(x)) <n+m=deg f(x)+deg g(x).

b b_. are all zero,

m+27°° 1~ m+n

Since a

Now, if R is without zero divisors, then a b, # 0, since a,#0 and b, #0.

Thus, in this case,
deg (f(x)g(x)) =deg f(x) +deg g(x).

Conversely, let deg (f(x)g(x)) =deg f(x) +deg g(x) V f(x), g(x) € R[x]\{0}.
We shall prove, by contradiction, that R is without zero divisors.

Suppose, to the contrary, that R has zero divisors, say ab =0, where
a=0,b=0in R.

Let f(x) =a,+ax and g(x) =b,+bx bein R[X].

Then f(x)g(x) =a,b, + (ab, +a,b)x +abx* =a b, + (ab, +a,b)x.

In this case, deg (f(x)g(x)) =1<2=deg f(x)+deg g(x), and we reach a

contradiction.
Thus, R is without zero divisors. [ |

Theorems 2 and 3 lead us to the following important result.

Theorem 4: R[X] is an integral domain <> R is an integral domain.

Proof: From Theorem 2 and E13, you know that R is a commutative ring with
identity iff R[X] is a commutative ring with identity. Thus, to prove this

theorem we need to prove that R is without zero divisors iff R[X] is without
zero divisors.

So let us first assume that R is without zero divisors.
Let p(x) and q(x) be in R[x], of degree n and m, respectively.

Then, from Theorem 3, you know that deg (p(x)q(x))=m+n >0.
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Thus, p(x)q(x) 0.
Thus, R[X] is without zero divisors.

Conversely, let us assume that R[x] is without zero divisors. Since R is a
subring of R[X], R is also without zero divisors.
So, we have proved the theorem. [ |

In this section, so far, you have seen that many properties of the ring R carry
over to R[x], and vice-versa. Thus, if F is a field, you may expect F[x] to be

a field also. Let us see if this is so.

Example 2: Let F be a field. Show that F[x] is not a field.

Solution: Since F is a field, it is an integral domain. So F[x] is an integral
domain, by Theorem 4.

Suppose F[x] is a field. Then U(F[x]) = F[x]"

But, from E14 you know that U(F[x]) = U(F) = F" = F[x]".

So we reach a contradiction.

Thus, F[X] is not a field.

*kx

Why don’t you solve the following exercises now? Doing so will help you
understand R[X] better, for some rings R.

E15) Which of the following polynomial rings are without zero divisors?

i R[x],whereR:{a+b\/—_5‘a,beZ},
i) Z,[x],

i) M, (Q)[x],
iv)  R[x], where R =CJ0, 1],

v)  o(X)[x], where X is a set with at least two elements.

E16) If | is an ideal of aring R, show that I[x]:{Zaixi

i=0

a,el,n ENU{O}}
is an ideal of R[x]. Further, show that (F% )[X] = R[%x]'

E17) Show that < X > is a proper ideal of R[Xx], where R is a non-trivial
commutative ring. Hence, show that not every ideal of R[X] is of the
form I[x], where | is an ideal of R.

E18) Let R be a domain. Show that char R =char R[x].

E19) Let f:R — S be a ring homomorphism. Show that
¢:R[x]— 9[x]: d(a,+a,x+ ---+a,x")=f(a,)+f(a,)x+---+f(a,)x" isa
ring homomorphism.
Further, if f is an isomorphism, will ¢ be an isomorphism? Why, or why
not?



E20) Let R and S be rings. Define
o2 (RxS)[x] = R[X]x9[X]: q{zn: (a;,b,)x j = (Zn:aix‘, Zn:bixi j Check

whether or not ¢ is a ring homomorphism. Is ¢ onto? Is ¢ 1-1?

You have seen that if R is a domain so is R[X]; butif F is a field, F[X] is not
a field. However, F[x] is a domain. So, the question arises if there is any
connection between F and the field of quotients of F[x]. To answer this, let
us consider the following definition first.

Definition: A rational function in an indeterminate X over afield F is a
quotient p(x)/q(x), with p(x), q(x) € F[x], q(x) # 0. F[x] # F(x). Note the use
The set of rational functions in x over F is denoted by F(x). (Note the use of of the different kinds of

the round brackets here.) glr?g:gast tr?ncgesnote the

For example, Q(X) :{f(x)/g(x)|f(x), g(x) € Q[x], g(x) = O}.
Now, let us move towards answering the question we raised above.

Theorem 5: Let F be a field. Then F(X) is the field of fractions of F[X].

Proof: From Unit 14, you know that the field of fractions of the integral domain
FIx] is {p00[A0)] [p(x), q(x) €F[x], q(x) = 0} = F(x), by definition. u

Thus, for any field F, F(x) is afield, and is called the field of rational
functions, in one indeterminate, over F.

For example, Q(X) is the field of rational functions in X over Q.

Now consider a domain R. You know that R[X] is a domain. If F is the
quotient field of R, will F(x) be the quotient field of R[x]? Let us try and find
an answer, through an example.

Example 3: Find the field of fractions of

i) Q[x], i) Z[x].
Solution: i) By Theorem 5, Q(X) is the field of quotients of Q[X].

i) You know that the field of fractions of a domain is the smallest field
containing it. You also know that the field of quotients of Z is Q. We will

use these facts to find F, the field of fractions of Z[X].
Since F is a field containing Z[X], it contains Z.
So Fo Q.

Also, for any F(x) = &+ & x4+ &X' € QX], Sos, .5, F(x) € Z[x].
0 1 n

Thus, given any f(x) e Q[x], 3meZ s.t. mf(x) € Z[X].

Now, let TX)/ (), where f(x), g(x) € Q[x], with g(x) = 0.

9(x)
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If f(X)=0, then ) eF.

9(x)
If f(xX) =0, then mf(x) and ng(x) are in Z[x] for some m, n €Z,
m, n = 0.
o fX) b0 o )%(QEF, since Q = F and F is the field of

quotients of Z[X].

Hence, Q(x) c F.

Also, for any p(x) € Z[x], p(x) € Q[x] < Q(X).

Now Q(X) is a field containing Z[X] and it is contained in F, the
quotient field of Z[x]. Therefore, Q(x) =F.

Thus, the field of quotients of Z[X] is the same as the field of quotients
of Q[x]. Note that we have used the fact that Q is the field of quotients
of Z.

*kx

On the same lines as in the example above, let us answer the question raised
before Example 3.

Theorem 6: Let D be an integral domain, with F being its field of fractions.
Then the field of fractions of D[X] is F(x), the field of rational functions over

F.

Proof: Firstly, D < F < F(x). So D[x] < F[x] < F(x).
Also, F(X) is the smallest field containing F[x].

Let K be any field containing D[X].

Then K> D, and hence Ko F.

Also, any polynomial in F[x] is of the form f(x) = %+%x +---+E—”x“,
0 1

a;,b; €D, b;=0 for i, j=1,...,n

Then, as in Example 3(ii), 3d € D* s.t. df(x) e D[x].

- f(x) liesin K, since every polynomial in D[X] lies in K.

Thus, K o F[x].

Hence, K o F(x).

Thus, F(x) is the smallest field containing D[X], i.e., it is the field of fractions
of D[X]. [

Why don’t you solve some related exercises now?

E21) Find the field of fractions of the following domains:

i) Z[il[x], i) Q[V11][x], iy Z,[x], p aprime.

E22) Give two distinct non-trivial elements of the field of quotients of C[x],
with justification.

E23) Find an infinite field of characteristic p, for each prime p.




In this section you have seen several ways in which the properties of R[X]
mirror the properties of R. You have also seen that there are some properties
that do not match. For example, F is a field, but F[X] is not. However, F[X] is
a very interesting algebraic object in its own right. It has several interesting
properties which are similar to those of Z. In the next section, we shall
discuss some such properties related to divisibility.

15.4 DIVISIBILITY IN POLYNOMIAL RINGS

In Unit 1, you studied various properties of divisibility in Z. In particular, you
studied the division algorithm for integers. We will now discuss divisibility, and
the division algorithm, for polynomials over a field F. Before going further, why
don’t you revise Theorem 4, Unit 1, and the related examples? This may help
you see the parallels between the properties satisfied by the integers and by
polynomials over F.

Let us begin with an example in Q[X]. Let us use long division to find out what
happens on dividing 3x*+4 by 2x°+X.

%x—% <«—— quotient

2X% + X i3x3 +4

3x3+§x

3
4
%x +4 «—remainder

So, what did we do in the division above? We continued subtracting different
multiples of (2x°+ X) till we reached 0 or a polynomial of degree less than

deg (2x*+ x). This polynomial, %x +4, is the remainder. The sum of the
multiples of (2x* +X), i.e., %x —%, is the quotient. This is essentially what is

done in the division algorithm, as you will now see.

Theorem 7 (Division Algorithm): Let F be a field. Let f(x) and g(x) be
polynomials in F[x], with g(x)# 0. Then

i) there exist polynomials g(x) and r(x) in F[x] such that
f(x) =q(x)g(x) + r(x), where r(x) =0 or deg r(x) < deg g(x), and

i)  the polynomials q(x) and r(x) are unique.

Proof: i) If deg f(x) < deg g(x), we can choose g(x) =0.
Then f(x) =0-g(x) +f(x), where deg f(x) < deg g(x).
So, in this case, r(x) =f(x) and q(x) =0.

Now, let us assume that deg f(x) > deg g(x). 175
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Let f(x)=a,+a,x+---+a,Xx", a,#0, and

g(x)=by+bx+---+b X", b,#0, with n>m.

We shall apply the strong form of the principle of mathematical induction
(see Unit 1) on deg f(x), i.e., n.

If n=0, then m=0, since g(x) #0.

So, f(x)=a, and g(x)=Db, arein F.

Hence, f(x) = (a,b;")b, +0=q(x)g(x) +r(x), where q(x)=a,b;" and
r(x)=0.

So the algorithm is true when n =0.

Let us assume that the algorithm holds for all polynomials of degree less
than n, and then see if it is true for f(x).

Consider the polynomial
f,(x) = f(x) —a,b,xX""g(x)
=(a, +a,X+--+a,X")—(a,bb,X ™ +a,b b x"™ +...+a b 'b_X").
We have chosen to multiply the term a,b-'x"™™ with g(x) to make the
coefficient of X" in f,(X) zero.
So deg f,(x)<n-1.
By the induction hypothesis, there exist g,(x) and r(x) in F[x] such that
f,(x) =9,(x)g(x) +r(x), where r(x) =0 or deg r(x) < deg g(x).
Substituting the value of f,(X), we get
F(X) — 2,0, g (x) = 6, (X)g(x) + 1(x),
i.e., f(x)={a b, 'x"™ +q,(X)}g(x) +r(x)
=q(x)g(x) +r(x), where q(x)=a, b X" +q,(x) and
r(x) =0 or deg r(x) < deg g(x).
Therefore, (i) is true for f(Xx).
Hence, by the principle of induction, (i) is true for all polynomials in F[X].

Now let us show that gq(x) and r(x) are uniquely determined.

Let f(x), g(x) eF[x], g(x) # 0.

If possible, let q,(x), 9,(X), r,(x), r,(x) bein F[x] such that

f(x) =0q,(x)g9(x) +r,(x), where r,(x) =0 or deg r,(x) < deg g(x), and
f(x) =q,(x)g(x) +r,(x), where r,(x) =0 or deg r,(x) < deg g(x).
Then

0, (X)9(x) +1.(X) = ,(X) g(x) +1r,(X), so that

{9.(x) =9, (x)}9(x) = r,(x) - 1.(X). (1)
If r,(X) =r,(x), then g,(x) =q,(x), by (1), since g(x) = 0.

So, assume 1,(X) —1,(x) #0. Then g,(x) = q,(X).

So deg {q,(x) —q,(x)}=0, and hence,

deg [{d,(x) —d,(x)}g(x)] = deg g(X). -(2)
On the other hand,
deg {r, (x) —r,(x)} < deg g(x), -(3)

since r;(x) —r,(x) # 0, and hence, r,(X) #0 or r,(x) #0.
From (2) and (3), we get a contradiction to (1).
Hence, (1) will remain valid only if r,(x) —r,(x) = 0. And then,

0. (x) = 9,(x) =0.



i.e., 9,(X)=0,(x) and r,(x) =r,(x).
Thus, we have proved the uniqueness of (x) and r(x) in the

expression f(x) =q(x)g(x) + r(x). |

The algorithm in Theorem 7 requires us to define some terms, just as in the
case of Z.

Definitions: i) The polynomial q(x) in Theorem 7 is called the quotient, and
r(x) is called the remainder, obtained on dividing f(x) by g(x).

iy If r(x) =0, then f(x) =g(x)q(x). In this case, we say that g(x) divides
f(x), or that g(x) is a factor of f(x), or that f(x) is divisible by g(x).
We write g(x)|f(x) for ‘g(x) divides f(x)’, and g(x)*f(x) for 'g(x)
does not divide f(x)'".

Let us apply the division algorithm in a few situations now.

Example 4: Find the quotient and remainder obtained on dividing
x* +x3+5x° —x by (X* +x+1) in Q[Xx].

Solution: We will apply long division of polynomials to solve this problem.
Here f(x) =x*+x*+5x* —x and g(x) =X* + X +1.

X +4 < quotient q(x)
(X* + X +1)>x4 +Xx*+5x% —x

x*+x3+x° « Xg(x)
4x* —x  « (f(x) - ¥g(x))
AX*+4x+4 < 49(X)
—5x—4  « (f(x) - Xg(x) - 49(x))

Now, since deg (-5x —4) =1<deg (X* + X +1), we stop the process. So, the
remainder r(x) =-5x—4. So, we get

X+ 3345 =X = (X*+ X +1) (X +4) - (5x +4).

Here the quotient is X°+4 and the remainder is — (5xX + 4).

*k*k

Example 5: Check whether or not (x* +2) divides (3x* +2x* +2) in R[X],
and (x> +2) divides (3x* +2x*+2) in Z[x].

Solution: Let us first divide in R[X].
3x° -4
(x? + 2))3x4+ 2x% +2
3x* +6x°
—4x*+2
—4x* -8
10
Thus, in R[x], 3X'+ 2X° + 2 = (X’ + 2)(3x" — 4) +10. ...(4)

177



178

Since the remainder is not zero, (x* +2) f(3x" +2xX* +2) in R[x].

Now, let us look at the question for Z.[x]. Note that the polynomials are the
same as the earlier ones in R[X]. Also note that (4) is true in Z[X] too. So, if
we look at (4) in Z[x], we get

3K+ 2¥°+2= (X +2)(3x"+ 1), since ~4=1 and 10=0 in Z.
So (¢ +2)|(3x*+2x°+2) in Zg[x].

*k*x

Why don’t you apply the division algorithm for some cases now?

E24) Express f(x) as g(x)q(x)+r(x), where r(x) =0 or
deg r(x) < deg g(x), in each of the following cases.

) f(x)=x'+1 g(x) =%—x3 in Q[x],
iy  f(x)=x*+2x*-x+1, g(x)=2x+1 in Z,[X],

i) f(x) =x"-3v3, g(x) =x -3 in R[x].

In which of these cases does g(x) divide f(x)?

Let us now prove some properties of the relation ‘divides’ in F[x]. (Keep
noting the similarity with Z, while you are studying them. While doing so, you
can replace ‘degree’ by ‘absolute value’ in the case of integers.)

Theorem 8: Let F be a field, and let f(x), g(x), h(x) e F[x], with f(x) = 0.
iy If f(x)|g(x), where g(x) =0, then deg f(x) < deg g(x).

i) FO[F(X).
i) If f(x)|g(x) and a e F’, then af(x)|ag(x).
iv) If g(x) =0 is s.t. f(x)|g(x) and g(x)|h(x), then f(x)|h(x).

v)  If g(x) =0 iss.t. f(x)|g(x) and g(x)|f(x), then f(x)=ag(x) for some
aeF.

vi) I £(x)|g(x) and f(x)|h(x), then f(x)|(g(x) +h(x)).

vi) If F(x)|g(x), then £(x)|g()h(x).

Proof: We will prove (i) and (v) here, and leave the rest for you to prove, as
an exercise (see E25).

) 1f £(x)|g(x), then 3 q(x) e F[x] s.t. f(x)q(x) =g(x).



So deg f(x) +deg q(x) =deg g(x).
Since g(x) =0, gq(x) 0.

Hence, deg q(x) > 0.

Hence, deg f(x) <deg g(x).

v)  Let f(x)q(x) =g(x) and g(x)r(x)=f(x) for some q(x), r(x) e F[x],
with q(x) =0, r(x) #0.
Then g(x)r(x)a(x) = g(x).
So, r(x)q(x) =1, since cancellation holds in F[x].
Thus, r(x) e U(F[x]) = U(F) =F’, as you have proved in E14.
Hence, r(x)=r, e F.

Thus, f(X) =r,g(x), 1, € F. [

The proof of the theorem above will be complete once you do the following
exercise.

E25) Prove Theorem 8, except for (i) and (v).

Let us now see if, based on Theorem 8, we can define an equivalence relation
analogous to Example 3 of Unit 1.

Example 6: Let F be a field and let h(x) € F[x], h(x) # 0. Consider the
relation R :{(f(x),g(x))|h(x) divides [f(x) —g(x)], f(x), g(x) e F[x]}.
Check whether or not R is an equivalence relation on F[x]. Ifitis, find two

distinct elements in the equivalence class of 0. If it is not, define an
equivalence relation on F[x].

Solution: Note that R is the relation ~ given by

“f(x) ~ 9(x) iff h(X)|[f(x) -g(x)] in F[x]"

R is reflexive: For any f(x) € F[x], f(x) ~ f(x), since h(X)|0.
R is symmetric: Let f(x) ~g(Xx). Then 3 r(x) e F[X] s.t.
f(x) —9(x) =h(x)r(x).

So, g(x)—f(x) =h(x)[-r(x)], and —r(x) € F[x].

Hence, g(x) ~ f(x).

R is transitive: Let f(X) ~ g(x) and g(x) ~s(x) in F[x].
Then h(x)|[f(x)—g(x)] and h(x)|[g(x)—s(x)].

Thus, by Theorem 8(vi), h(x)|[f(x) —g(X)+9g(x)—s(x)], i.e.,
h()|[f(x) —s(x)].

Hence, f(x) ~s(x).

So, we have proved that R is an equivalence relation. Hence, R partitions
F[x] into equivalence classes, as you know from Sec.1.3, Unit 1.

[0]={f(x) eFIx]|h(x) divides [f(x)—OJ} = {f(x) eF[x]|h(x) divides f(x)}
={h()g(x)|9(x) eFIx]}

= <h(x)>.
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Thus, two elements of [0] are h(x) and xh(x), for example. They are
distinct, as they have different degrees.

*k%x

Why don’t you check your understanding of divisibility in F[x] now?

E26) In Theorem 8, if F[X] is replaced by R[x], where R is an integral
domain, which statements remain true, and why?

E27) Show thatif R is a domain and f(x), g(x) € R[x] are monic
polynomials such that f(x)|g(x) and g(x)|f(x), then f(x) =g(x).

E28) Let F be a field. Check whether or not the relation ~ in F[x], given by
f(x) ~ g(x) iff f(x)|g(x)‘ is an equivalence relation.

E29) Let F be afield and let f(x), g(x), h(x) e F[x] s.t. f(x)#0 and
f(X)|g(x), f(x)|h(x). Show that f(x)|[g(X)r(x)+h(x)s(x)] for any
r(x), s(x) e F[x].

Let us now move to another property of Z, and see if it holds true for F[Xx].

You have seen, in Unit 1, that any two non-zero integers a and b have a
greatest common divisor d, and d =an+bm for some n, m in Z. Can we

define the g.c.d of any two non-zero polynomials in F[x] similarly? Can the
concept of ‘relatively prime’ also be thought of in F[x]? Let's see.

Take any two polynomials, say X°+3x and x*+27 in Q[x]. Now,
X?+3x=x(x+3) and x>+ 27 = (x + 3)(xX* -~ 3x + 9).

So X +3 divides x* +3 as well as x® + 27. Thus, X + 3 is a common divisor
of both these polynomials, according to the definitions given below.

Definitions: Let F be a field, and let f(x), g(x) be non-zero elements of

F[x].

i) h(x) e F[x] is called a common divisor of f(x) and g(x) if h(x)|f(x)
and h(x)|g(x).

i)  d(x)eF[x] is called the greatest common divisor (g.c.d, in short) of
f(x) and g(x), and denoted by (f(x), g(x)), if
D1) d(x) is a common divisor of f(x) and g(x);
D2) whenever h(x) is a common divisor of f(x) and g(x), h(x)|d(x);
D3) d(x) is a monic polynomial.

i)  f(x) and g(x) are called coprime, or relatively prime, if

(F(x), g(x)) =1.

For example, (x*+3x, x*+27) = (x+3) in Q[x], by looking at their factors.



Consider the following remark about the uniqueness of the g.c.d.

Remark 2: Suppose d(x) and d'(x) are two g.c.ds of f(x) and g(x) in
F[x], F afield. Then, by D2, d(x)|d'(x) and d'(x)|d(x).
Hence, by Theorem 8, d(x) =ad’'(x) for some a € F’. So if we want d(x) to

be unique, we need a =1. This is ensured, by E27, if the condition D3 is
satisfied. Hence, D3 is an essential condition for the g.c.d to be unique.

Now, in the case of Z, you know that any two non-zero integers have a g.c.d.

Do any two non-zero polynomials in F[x] have a g.c.d? Let’s see.

Theorem 9: Let F be a field. Any two non-zero polynomials over F have a
g.c.d. Further, for f(x), g(x) e F[x]\{0},

(F(x), g(x)) =F(x)r(x) +g(x)s(x), for some r(x), s(x) e F[x].

Proof: Let f(x), g(x) be two non-zero polynomials in F[x]. Let S be the set
of all monic polynomials in F[x] of the form f(x)r(x) +g(x)s(x), with
r(x), s(x) e F[x].
Let a, be the leading coefficient of f(x).
Then a_'f(x) is monic, and a 'f(x) =a; - f(x)+0-g(x) €S.
Thus, S#= Q.
Now consider A ={n e NU{0}n =deg h(x) for some h(x) e S}.
Then A = (), since S# (). So, by the well-ordering principle, that you studied
in Unit 1, A has a least element, say m.
Let d(x) €S s.t. deg d(x) =m.
Since d(x) €S, d(x) is a monic polynomial and 3 a.(x), B(X) € F[X] s.t.
d(x) = f(x)a(x) +9(x) B(x). ..(5)
Now, by the division algorithm applied to f(x) and d(x), 3 q(x) and r(x) in
F[X] s.t.
f(x) =d(x)q(x) +r(x), ...(6)
with r(x) =0 or deg r(x) < deg d(x).
Now, suppose r(x) = 0. Then
r(x) =f(x) —d(x)q(x), from (6).
=f(x) - [F(x)a(x) + 9(x)B(x)]a(x), from (5).
=) -a(x)a()1+9(x)[-B(x)a(x)].
Let a be the leading coefficient of r(x). Then
a~r(x) =f)[a™ —a " a(x)q()]+g(x)[-a "Bx)q(x)]
Thus, a™'r(x) €S and deg a 'r(x) = deg r(x) < deg d(x).
This is a contradiction to the way d(x) was chosen.
Therefore, our assumption that r(x) =0 must be wrong.
Thus, r(x) =0.
Hence, from (6), d(x)|f(x).
Similarly, you can show that d(x)|g(x).
Thus, d(x) satisfies D1 and D3 of the definition of g.c.d.
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Now, let h(x) be a common divisor of f(x) and g(x). Then, by E29,
h(x)|d(x). So d(x) satisfies D2 of the definition also.

Hence, d(x) = (f(x), g(x)).

Thus, by (5), (f(x), g(x)) = f(X)a(x) +g(Xx)B(x), for some a(x), B(x) € F[x].

In this context, consider the following remark.

Remark 3: Theorem 9 says that (f(x), g(x)) is that linear combination of
f(x) and g(x) in F[x] which is monic and of least degree among all such

combinations.
Note that not every linear combination of f(x) and g(x) is (f(x), g(x)). For

example, consider (x*—1) and (x*+2) in Q[x]. By the division algorithm,
X—1= (X+ 2)X + (-2x -1).

So —2x-1=(x*~1) —x(x*+2), a linear combination of (x*~1) and (X*+ 2)
in Q[x]. But —2x —1 is neither a divisor of (x*~1), nor of (x*+2), in Q[x].

As in the case of Z, if f(X) and g(Xx) are relatively prime, we have the
following corollary to Theorem 9.

Corollary 2: Let F be a field and let f(x), g(x) € F[x]\{0}. Then f(x) and
g(x) are relatively prime if and only if 1=f(x)r(x)+g(x)s(x) for some
r(x), s(x) e F[x].

Proof: We leave the proof to you (see E30). |

Theorem 9 tells us that any two non-zero polynomials have a g.c.d. Let us
consider an example.

Example 7: Find (x -5, 2x +1) in R[x].

Solution: Since 2(x-5)—(2x+1) =-11,
_(=2) 1
1_T(x—5)+ﬁ(2x+l).

Hence, by Corollary 2, (x5, 2x+1) =1
Thus, (X—5) and (2x+1) are relatively prime in R[X].

*k*k

Note that the definition of g.c.d can be extended to that of n polynomials.

Definition: Let F be a field and f,(x), f,(x),...,f,(X) be non-zero elements
of F[x]. The monic polynomial g(x) € F[x] is called the greatest common
divisor of f,(x),...,f, (x) if

) g)[f;(x) Vi=1...,n, and

i) whenever h(x)|f,(x) Vi=1,...,n, then h(x)|g(x).

Further, as in Theorem 9, the g.c.d of f,(X),...,f,(X) exists and is of the

form Zn:fi(x)hi(x) for some h,(x) eF[x],i=1,...,n.

i=1



For example, the g.c.d of 2X*+ X(2+/3 ++/2) +/6, X+ 3+/3 and
7x* 4+ 74/3x°+5x%+ 543 e R[X] is X ++/3, as X ++/3 is a common divisor
which is monic, and the only other common divisors are elements of R’

Now, as in the case of Z, relatively prime polynomials have very useful
properties. Let us prove some of them.

Theorem 10: Let F be a field, and let f(x) € F[x], f(x) # 0. If
g(x), h(x) e F[x] are relatively prime and both are divisors of f(x), then
g(x)h(x) divides f(x).

Proof: We know that 1=g(X)a(x) +h(x)B(x) for some a(x), B(x) € F[x].
So f(x) =f(x)g(xX)a(x) + F(xX)h(X)B(x). . (7)
Since g(x)|f(x), and h(x)|f(x), f(x) =g(x)r(x) and f(x) =h(x)s(x) for
some r(x), s(x) e F[x].
Thus, substituting these values of f(x) in (7), we get
f(x) = h(x)s(x)g(x)a(x) + g(x)r(x)h(x)B(x)
=g()h()[s(x)a(x) +r(x)B(x)].
Hence, g(x)h(x)|f(x) in F[x]. u

Why don’t you prove some related properties now?

E30) Prove Corollary 2.

E31) Prove thatif F is a field with a, be F, a=b, then x+a and x+b are
coprime in F[X].

E32) Give an example, with justification, of a cubic polynomial and a quartic
polynomial in Z,,[X] which are coprime.

E33) Let F be afield, and let f(x), g(x), h(x) e F[x]. Prove that
i) if f(x) and g(x) are relatively prime, and f(x) and h(x) are
relatively prime, then f(x) and g(x)h(x) are relatively prime.
i) if f(x) = 0,f(x)|g(x)h(x) and (f(x), g(x)) =1, then f(x)|h(x).

(This is analogous to the property for Z given in Theorem 6,
Unit 1.)

1

4 2 7
3X + 5X +x+5) and

Now, if you are asked to find the g.c.d of (3x’—

(%x3—3x2+1) in Q[x], how would you go about doing it? You may look for

common divisors, which won'’t be easy at all. But, remember the Euclidean
Algorithm for Z in Unit 1? There is a similar algorithm for F[X] too, based on

applying the division algorithm multiple times. Let’s see what it is, through a
simple example, to give you an idea of the method.

Example 8: Find the g.c.d of (x*~1) and (x*—x) in Q[x]. 183



Solution: First, we apply the division algorithm to (x’~1) and (Xx*—X). We

get

X—1=(C=x)(x+1) + (x -1). ...(8)
Now we apply the division algorithm to (xz—x) and the remainder in (8), i.e.,
(x—1). We get

X —x =(x-1x+0. ...(9)

We have reached a stage where the remainder is zero. Thus, the divisor
polynomial at this stage, i.e., (X —1) is the g.c.d. Note that this polynomial is
monic.

*k*x

Note that if the divisor polynomial at the last step in Example 8 had not been
monic, we would have multiplied it by the inverse of its leading coefficient to
make it monic, and this polynomial would have been the g.c.d.

Now keep this example in mind while going through the following algorithm,
which we shall not prove in this course.

Euclidean Algorithm: Let F be a field, and let f(x) and g(x) be two non-
zero elements of F[x]. Apply the division algorithm in F[x] to f(x) and g(x),

then to g(x) and r,(x), and then to r,(x) and r,(x), and so on, till a zero
remainder is obtained, as follows:

f(x) =9(x)a, (x) +1,(x), with deg r,(x) < deg g(x);
9(x) =1,.(x)d,(x) + 1, (x), with deg r,(x) < deg r,(x);
r(X) = r,(X)d,(x) + 1;(x), with deg r,(x) < deg r,(x);

-2 (X.) =T (X)0, (%) + 1, (X), with deg r, (x) < deg r, ,(X);

rn—1(X) - r.n (X)qn+1(x)'
Then a”'r (x) is the g.c.d of f(x) and g(x), where a is the leading
coefficient of r,(X). [

Now that you have some idea of what the Euclidean algorithm is, let us
consider some more examples of its application.

Example 9: Find (f(x), g(x)), where f(x) = x*+2x*+x+2 and
9(x) =2x+1 in Z,[x].

Solution: First, X'+ 2x3+ x+2 = (2x*+ 1)(2x*+x + 2) + 0.

We have obtained 0 as the remainder right in the first step, and the quotient
is 2x°+1. Sothe g.c.dis 27 (2x°+1) in Z,[x].

Since 2'=2, the g.cdis 2(2x*+1), i.e., X+ 2.

*k*k

Example 10: Find the g.c.d of f(x) = 2x’-3x+1 and g(x) = 2x*+1 in Q[x].

Solution: We apply the division algorithm to f(x) and g(x), and get

2X°—3x +1= (2x>+1)(X°) + (-=x* = 3x +1).
184



Next, we apply the division algorithm to 2x*+1 and (—x*—3x +1). We get
23 +1=(—X"=3x +1)(-2X + 6) + (20x + 7).
In this way, we continue applying the division algorithm, as follows.

v _ _ 1, 933, 771
X 3x+1_(20x+7)( 20x 400j+400,
_771( 8000 2800
20X +7 = 400( 771 T j
-1
.. Theg.cdis (400}(400} , as it has to be a monic.

ie., (f(x),g(x))=1

*k*k

Why don’t you work out the g.c.d in some cases yourself now?

E34) Find the g.c.d of x'® —3x? +3x® —11x" +11x°® —11x° +19x* —13x> + 8x?

—9x+3 and x®—3x* +3x* —9x® +5x* —5x + 2 in Q[X].

E35) Find the g.c.d of 4x* +2x*—4x+2 and 2x* +2x—1 in ZXx].

Let us now discuss another property of F[x], akin to a property of Z.

15.5 IDEALS IN POLYNOMIAL RINGS

Let us now discuss the algebraic structure of ideals in F[x], where F is a

field. You know that any ideal in Z is a principal ideal. You also know that this
is true for any field. Is the same true for F[x], where F is a field? The answer

is yes, as you will now see.

Theorem 11: Every ideal of F[X] is a principal ideal, where F is a field.

Proof: Let | be anideal of F[x]. If I ={0}, then I =<0>, a principal ideal.

So, let | #{0}.

Let S={n e NU{0}deg f(x) =n for some f(x) e I}.

Since | #{0}, S# (. So, by the well-ordering principle, S has a least
element, say m, and deg g(x) =m for some g(x) € I.

So <g(X)>c .

We will show that | =< g(Xx) >.

For this, let f(x) € I. Then, by the division algorithm, 3 q(x), r(x) e F[X] s.t.
f(x) =g(x)q(x) +r(x), where r(x) =0 or deg r(x) < deg g(x).

Suppose, if possible, r(x) = 0. Then

r(x) =f(x)—g(x)q(x) e 1, since f(x), g(x) el.

But deg r(x) < deg g(x), which contradicts the way g(x) has been chosen.
Hence, r(x) # 0 is not possible.

Thus, r(x) =0.

Hence, f(X) e <g(x) >, i.e., | € <g(x) >.
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Thus, I =<g(x) >. [
Regarding Theorem 11, you must note the important point brought out in it.

Remark 4: Any ideal | in F[X] is generated by a polynomial in it of least
degree.

Let us now consider some examples of ideals in F[X].

Example 11: Let S be the set of polynomials over R with zero constant
term. Check whether or not S is a maximal ideal of R[X].

Solution: Firstly, you should check that S # Q.

Next, you should check that S is a subring of R[x]. Here, note that for any
f(x) €S, f(x) =a,x +a,x’+---+a X"=x(a,+a,X +---+a x""). Thus,

f(x) e<x>.

SLSc<x>.

Now, for any f(x) €S and g(x) € R[x],

f(x)g(x) = x(a,+a,x +---a,x"*)g(x) has no constant term.
Hence, f(x)g(x) €S.

Thus, S is an ideal of R[X].

Also, X €S, sothat <X >cS.

Thus, S=<X>.

Next, define ¢:R[x] > R: q{zn: aixiJ —ay

i=0
Then, you should check that ¢ is a well-defined ring homomorphism,
Imd=R and Ker p=<x>.

Thus, by the Fundamental Theorem of Homomorphism, R[X%X >: R, which
is a field.

Hence, by Theorem 14 of Unit 14, < X > is a maximal ideal of R[x], i.e., S is
a maximal ideal of R[X].

*kx

Example 12: Give an example, with justification, of an ideal in F[x] (F a
field), which is

i) a prime ideal but not a maximal ideal;

ii) not a prime ideal.

Solution: i) Does < 0> fit the bill? To answer this, check whether or not
F[x]/< 0> is a domain and/or a field. Here you need to recall, from Unit

13, that R/<0> =R for any ring R.

i)  Consider | = <x(x+1)>.
Suppose X € I. Then x =Xx(x +1)f(x) for some f(x) e F[x].
So, by cancellation, (x+1)f(x)=1.

Comparing degrees on both sides, we get
1+deg f(x) =0.



But deg f(x) > 0. So we reach a contradiction. So X ¢ .

Similarly, you should show that x +1¢ .
Thus, X(X+1) el but xgl, x+1¢l.

Hence, | is not a prime ideal of F[X].

*kxx

Now, you may wonder if Theorem 11 is true for polynomial rings over a
domain which is not a field. Consider an example.

Example 13: Show that the ideal < X, 2 > in Z[X] is not a principal ideal.

Solution: You know that Z[X] is a domain, since Z is a domain. We will Not every ideal in Z[X]
show that < 2,x > # < f(X) > for any f(x) € Z[X], by contradiction. is a principal ideal.
So, suppose 3 f(X) € Z[x] such that <2,x > = <f(X) >.

Since 2 e<f(x) >, f(x) #0.

Also, 3 g(x), h(x) € Z[x] such that

2 =1(x)g(x) and x =f(x)h(x).

Thus, deg f(x)+deg g(x)=deg 2=0, and ...(10)

deg f(x)+deg h(x) =deg x =1. ..(12)

(10) shows that deg f(x) =0, i.e., f(x) e Z", say f(x)=n.

Then (11) shows that deg h(x) =1 Let h(x) =ax+b, with a, beZ, a #0.

Then x =f(x)h(x) =n(ax +b).

Comparing the coefficients on either side of this equation, we see that

na=1and nb=0.

Thus, n isaunitin Z, thatis, n = £1.

Therefore, 1e<f(x) > = <X, 2>. Thus, we can write
1=x(@,+a,X+--+a,X)+2(by+b,x+---+b,X*), where

a,, bj eZVvi=0,1,...,rand j=0,1,...,s.

Now, on comparing the constant term on either side we see that 1=2b,. This

is not possible, since 2 is not invertible in Z. So we reach a contradiction.
Thus, <X, 2> is not a principal ideal.

*k*k

Now let us consider another property that Z and F[X] have in common. This
is related to Theorem 11.

Theorem 12: Let F be a field and let f(x), g(x) be non-zero elements of
F[x]. Then <f(x), g(x) > = <d(x) >, where d(x) = (f(x), g(x)).

Proof: By Theorem 11, you know that < f(x), g(x) > = <h(x) > for some
h(x) € F[x]. So f(x) e<h(x)> and g(x) e<h(x) >,

i.e., h(x)|f(x) and h(x)|g(x).

h(x)|d(x). ..(12)
Further, since d(x)|f(x) and d(x)|g(x), d(x) divides each element of
<f(x), g(x) >, by E29.

- d(x)[h(x). ..(13) -
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By (12) and (13), d(x) =ah(x), where a € F*, applying Theorem 8.
s <f(x), g(x) > = <ad(x) > = <d(x) >. N

Theorem 12 is very useful. For instance, from Example 8, you how know that
<x3-1, x*=x>=<x-1>in Q[x].

Similarly, from Example 9, you know that

<X+ 2%+ X+2, 2+ 1> = <X+ 2> in Zg[x].

You should solve some exercises now.

E36) Check whether or not < X’ +1> is a maximal ideal of C[x].

E37) Find a generator of < 3X + X*+ 2, L i1 in Q[X]. Is this ideal a

2
prime ideal of QQ[x]? Why, or why not?

E38) Show that < X, X*, X*,...,x"™", X" =1> =F[x], where n>2 and Fisa
field.

E39) Find f(x) and g(x) in Z,,[X], each of degree > 2, s.t.
<f(x), 9(x) > =Z,[x].

With this we come to the end of our introductory discussion on polynomial
rings. In the next unit, you shall go a little deeper into this area. You will study
about roots and factors of polynomials over a field.

Let us now take a pointwise overview of what has been discussed in this unit.

15.6 SUMMARY

In this unit, you have studied the following points.
1)  The definition, and examples, of polynomials over a ring.

2)  Thering structure of R[X], the set of polynomials over a ring R.

3) R is a commutative ring with identity iff R[x] is a commutative ring with
identity.

4) R is anintegral domain iff R[X] is an integral domain.

5) Let F be afield. Then
i) F[X] is not a field,

ii) F(x) is the field of fractions of F[X].

6) Let D be an integral domain, with F being its field of fractions. Then the
field of fractions of D[x] is F(x), the field of rational functions over F.



8)

9)

10)

11)

12)

The division algorithm in F[x], where F is a field. This states that if
f(x), g(x) eF[x], g(x) =0, then there exist unique q(x), r(x) € F[x]
with f(X) =q(x)g(x)+r(x), where r(x) =0 or deg r(x) <deg g(x).

A polynomial f(x) divides a polynomial g(x) in F[x] iff f(x)h(x) =g(x)
for some h(x) e F[x].

Let F be a field. Any two non-zero polynomials over F have a unique
g.c.d. Further, for f(x), g(x) € F[x]\{0},

(F(x), g(x)) =f(x)r(x) +g(x)s(x), for some r(x), s(x) e F[x].

The Euclidean algorithm to find the g.c.d of two non-zero polynomials in
F[x], F afield.

Every ideal in F[X] is a principal ideal, where F is a field. This is not true
for D[x], where D is a domain but not a field.

Let F be a field and let f(x), g(x) be non-zero elements of F[x]. Then
<f(x), g(x) > = <d(x) >, where d(x) = (f(x), g(x)).

15.7 SOLUTIONS / ANSWERS

E1)

E2)

E3)

E4)

E5)

The polynomials are (i), (iii), (iv), (vi), (viii).
(i) and (v) are not polynomials since they involve negative and fractional
powers of X; (vii) is not a polynomial since it has infinitely many non-

zero terms.
(i), (vi) and (viii) are in Z[X].

8, =3, b, =5, b, =3, b, =0=b,.

The degrees are 1, 3, 4, 3, undefined, respectively.

1

The leading coefficients of the first four are \/E -7,1 7 respectively.

0 has no leading coefficient.

You have seen that addition in R[X] is well-defined. Further, If

n . m . max(n, m) _
f(x):Zaix', g(X)=zbiX', then f(x)+g(x):2(ai+bi)x',
i=0 i=0 i=0
a finite sum.
Since a;, b, eR, a,+b, e R Vi=0,1,...,max(n, m).
- F(X) +g(x) e R[x].

As for addition, if f(x) =f'(x) and g(x) =g'(x) in R[x], show why
f(x)-g(x) =f'(x)-g'(x), i.e., multiplication is well-defined.

Then, explain why f(x)-g(x) e R[x] if f(x), g(x) € R[X].

) 245X +3X°+(4+1) X’ =2+5x +3x°+ 5.
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E6)

E7)

ES)

E9)

E10)

i)  (6+1)—2x+2x*+5x°=-2x+2x*+5x°, since

7
=5x +2x*+ 5%, since —2

i) @D+ @2+1-Dx+(1-1+1-2+0-1)x*=1+3x + 3X° + X',
iv) 1+, since 3=0.

V) 10X45X°+ 7+ X+ X0

Each term, a,x', is a finite sum, and a, € R. Thus, a.x' € R[X].
i)  True; forinstance, (2x)(3x+1)=0-X" +2x = 2X in Zg[X].

i)  True. Let f(x) =a+bx +cx* and g(x)=p+0gx +rx* bein Q[x],
where c=0, r=0. As Q is a field, cr =0.

Also, the highest degree term is crx’.
Thus, f(X)g(x) is a quartic polynomial.

iy  False; for example, if f(x) =a + bx + cx® e C[x], then
f(x) + (=f(x)) =0, not a quadratic polynomial.

iv)  False; for example, if p(x) =X and q(x) =2x in Z[x], then p(X)
is @ monic polynomial but p(x) +q(Xx) has leading coefficient 2.

10
There are infinitely many such pairs. One is f(X) = {0 0}( and

g(x) :E ﬂx over M, (C).

Since both f(x) and g(x) are linear, with different leading coefficients,
they are distinct.

i) R can be thought of as the set of constant polynomials and 0 in
R[x]. So, R c R[x].
Also, both R and R[X] are rings w.r.t. the same operations.
Thus, R is a subring of R[x].

i)  Thisis not true.
For example, let R =7Z and take X € Z[X].

Then rx ¢ Z forany reZ".
Hence, Z is not an ideal of Z[X].

7,={0,1, 2, 3}.
Any quadratic polynomial over Z, is of the form a, +a,X +a,X*, where
ay, d,, , €Z,.

Thus, there are 4 x4 x3 =48 possibilities.
You should list them all for practice in working with such polynomials.



E11)

E12)

E13)

E14)

E15)

E16)

No. For example, let R =Q and n=1.

Then 1+ X € p,, but (1+X)’¢ g,. Hence, g, is not a ring, and hence,
not a subring of Q[X].

Note that if f(x) € A, then f(x) =Y a,x", since the coefficient of x* is
i=0

OVieN.

Also, f(x) e A= —f(x) € A. (Why?)

Now, let f(x) =D a,x*, g(x) =D b,x*.
i=0 i=0

Then you should check that the odd power coefficients of f(x)—g(x)
and f(x)g(x) will also be zero.

Hence, f(x)—g(x) € A and f(x)g(x) € A.

Thus, A is a subring of R[x].

i) R is a subring of R[X]. Therefore, multiplication in R is also
commutative.

i)  The identity of R[X] is an element of R, and hence, is the identity
of R.

Let f(x) e R[x] be a unit. Then 3 g(x) € R[X] s.t. f(X)g(x)=1. So
deg f(x) +deg g(x) =deg 1=0.

Since deg f(x) >0, deg g(x) >0, we get deg f(x) =0, deg g(x) =0.
So f(x) e R and is a unit. Thus, U(R[x]) < U(R).

Of course, since R is a subring of R[x],U(R) < U(R[X]).

Thus, U(R) = U(R[X]).

(i) and (i), as Z[v—-5] and Z, are domains.
In Unit 14, you have seen that M, (Q), C[0, 1] and @(X) have zero
divisors. Hence, the rings in (iii), (iv) and (v) have zero divisors.

Let f(x)= Zn:aix‘, g(x) = ibix‘ e I[x] and h(x) = Zt:cjxj e R[x].

max(m, n)

Then f(x) —g(x) = f(X) + (-g(X)) = Z(ai —b,)x' €I[x], and

n+t .
FOON(X) =D (a;Co +a,,C, +++-+3,¢)X' e I[X],
i=0
since | is anideal of R.

Similarly, h(x)f(x) e I[x].
Hence, I[X] is an ideal of R[X].

Let us define ¢: R[x] - (R/D[X]: ¢(Zn:aixij = anéixi, where

i=0

a=a(modl) VaeR.

n - m -
¢ is well-defined: Let Y axx'=> bx' in R[x]. Then n=m and
i=0 i=0

a,=b,vi=0,1...,n.
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.'.Zn:E,x i bx' in (R/1[X].

i=0 i=0

¢ is aring homomorphism: Let f(x) =) axx', g(x) =Y _bx'.

i=0 i=0

Then ¢(f(x) +g(x)) = d{i (a, + bi)xij, where t = max(m, n).

:Zt:(ai +hb,)x!

I
TR
-
)
x—.
N
_I_
/N
=
o
x—
—

i=0

¢(f(X))¢(9 (X))

¢ is onto: For any h(x) =Zn: ax' e (R/N[x],

i=0

If(x)= Zn:aixi e R[X] s.t. ¢(f(x)) = h(x).
Thus, Imli¢= (R/D[x].

:{ y ax' eR[x]|a :5V|:0,...,n}
:{Zn:aixieR[x]a e1vi=0,.., n}
=1[x].

Now apply FTH to get the result.

E17) Let re R". Suppose re<x >. Then r = xf(x) for some f(x) e R[X].
.. 0=deg r=deg x +deg f(x) >1, a contradiction. Hence, < x > # R[X].

Suppose < X > = I[x], for some proper ideal | of R.
Let ae R\l Then ax € < x > =I[x], a contradiction.

Thus, <x > = I[X].
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E18) Let char R =n. By Theorem 3 of Unit 14, you know that n is the least
positive integer such that n-1=0. Since 1 is also the identity of R[X],
the same theorem of Unit 14 tells you that char R[x] =n =char R.

E19) Let p(X) =a,+a,Xx+---+a,X", q(X) =b,+bx+---+b X" € R[X].
Then ¢(p(x) +q(x)) =¢[i(ai+bi)x‘j, where t=max (m, n).

f(a,+b,)X

[f(a;) +f(b)]X

I
M- I~ 'Z';M~

f(a,)x’ +Zf(b)x

o(p(x)) +0(q(x)), since f(a;) =0="1(b;)

whenever a,=0, bj= 0.

m+n

Also, d(p(X)-q(x)) = <|)[Zcixi ] , where ¢,=ab, +a,_b, + ---+a,b,.

= nff(ci)xi

m-+n

= Z[f(a )f(b,) +f(a,_,)f(b,) +...+f(a,) f(b,)]x,

since f is a ring homomorphism.

=9 (p(x)) 6 (q(x)).

Thus, ¢ is a homomorphism.

Now, if f is an isomorphism, then for any h(x) = Z:aixi e §[x],
i=0

h(x)=>_f(b)X, where a, =f(b,) Vi as f is onto.

= d{znl b,x' j
Thus, Im ¢ =[x].

Show that Ker ¢ = (Ker f)[x]={0}, as f is 1-1.
Thus, ¢ is an isomorphism.

E20) First, show that ¢ is well-defined.

Next, if f(x) = Z(a,, r)x' and g(x) = Z(b,, )X in (RxS)[x], then
¢(f(X)+g(X)) q)[Z[(aU |)+(b|’ |)]XJ t:maX(m, n)

:<|>[Z(ai +b,r +si)xiJ

i=0
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E21)

E22)

E23)

(Zt:(a, +b,)x, Z(r +s)x]

i=0

:(Zaerxj+(be stj

= 0(f(x)) + d(g(x)).
Similarly, show that ¢(f(x)g(x)) = ¢(f(x))d(g(X)).

Next, let (f(X), g(x)) e R[x]xS[x], where deg f(x)=n and
deg g(x) = m. Suppose m>n.

Then, f(x) :Zaixi,g(x) =Y bX, where a; =0 for i>n.

Then d{Z(a., i ]Z(f(X), 9(x))-
Thus, ¢ is onto.

Ker ¢ = {Zn: (a,, b,)x' € (RxS)[x]

i=0

= {0}.

a,=0=b, Vv i:O,...,n}
Thus, ¢ is an isomorphism.
- (RxS)[x]=R[x]xS[x].

_ . 1 Ja+ib
i) The quotient field of Z[i] is {c+ id

a,b,c,deZ, c+id¢0}.
a+ib _ (a+ib)(c—id)
c+id c2+d?
Thus, the quotient field of Z[i] is Q][i].
.. The quotient field of Z[i][x] is Q[i](X).

Now

=p+ig, for some p,qe Q.

ii) Q[\/ﬁ] is a field, as you have shown in Unit 14.
- Q[V11](x) is the required field.

i) Z,(x).

Any element o of C[x] is also in C(x). Apart from these elements,
there are the elements like

(@g+aX+---+2a,X") (Dy+ bx +---+Db, x") ", where ) bx' 0,
a;,b;eCVvi=1..n;j=1...,m.

Pick any two, and show why they are distinct.

In E18 you have proved that char Z [x]=char Z, =p.
Now consider Z,(x). The identity is 1, where p-1 =
Thus, char Z,(x) = p.



Also, Z,(x) is infinite, as Z [x] is infinite.

E24) i) -x° +— x*+1
x* —7x
1
7x+1

We stop here since deg (7 X +1j <deg ( X3+ %j

So f(x)=(— x)g(x)+( x+1}

Here q(X) =—x and r(x) = —x +1.

2x° +1
i) §x+1>x3+§x2—x+1

x% +2x? (since 4=1 here)
-x+1
2x+1 1
0 (since —1 =2 here)
Thus, f(x) = (2x* + 1) g(x).
L 9ff(x).

i) f(X)=(C+/3x +3)g(X).
= g(X)[f (%)

E25) i)  Since f(x)=1-f(x) and e F[x],f(x)|f(x).

i) f(x)[g(x) = 3 p(x) e F[x] s.t. g(x) =F(x)p(x)
= ag(x) =af(x)p(x), forany aeF".
=af(x)|ag(x).

iv)  g(x)=f(X)p(x) and h(x)=g(x)q(x) for some p(x), q(x) € F[x].
- h(x) =f(x)p(x)a(x), and p(x)q(x) € F[x].
Thus, f(x)|h(x).

vi)  g(x)=f(x)p(x) and h(x)=f(x)q(x) for some p(x), q(x) e F[X].
So g(x) +h(x) =f(x) (p(x) +a(x)), and p(x)+q(x) e F[x].
- 09 |(9(x) + h(x)).

vii)  g(x) =f(x)p(x) for some p(x) eF[x].
~ g(x)h(x) =f(x)p(x)h(x), and p(x)h(x)eF[x].
- FO0[g(x)h(x).
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E26) The difference between F[x] and R[X] lies in their units. But nowhere

in the proofs have we applied the fact that every element of F is a unit,
except in (V). This can be written as:

If g(x) is s.t. g(x) =0, f(x)|g(x) and g(x)[f(x), then f(x) =ag(x), for
some a e U(R).’

E27) By E26, f(x)=ag(x) for some a € U(R).
Thus, deg f(x) = deg g(x).
Since the leading coefficients of f(x) and g(x) are 1,a=1
Thus, f(x)=g(x).

E28) ~ is not symmetric. For example, (X —2)|(x2— 4) in Q[x], but
(x~4) f(x~2). (Why?)

E29) Use (vi) and (vii) of Theorem 8 to prove this.

E30) If f(x) and g(x) are relatively prime, (f(x), g(x)) =1 So
1=1(x)r(x)+g(x)s(x), for some r(x), s(x) e F[x].

Conversely, we know that 1 is a linear combination of f(x) and g(x).

Let d(x) = (f(x), g(x)).

Since d(x)|f(x) and d(x)|g(x),

d(x)|(FO)r(x) + g(x)s(x)), i.e., d(x)|1, by E29.

.. deg d(x) =0.

Also, d(x) is monic.

Hence, d(x) =1

: L(x +a) —L(X +Db). Hence, by Corollary 2, they are
(a—b) (a-b)

coprime.

E31) 1

E32) e.g., f(x) =x*,g(x) =x* + 1
Since (—=x)f(x) +g(x) =1, (f(x),9(x)) = L.
There can be several other examples. Look for some more.

E33) i) 1="F(X)r(x) +g(x)s(x) ...(14)
1=1(x)p(x) +h(x)q(x) ...(15)
for some r(x), s(x), p(x), q(x) € F[x].
From (15), we get
g9(x) =f(x)g(x)p(x) +g(x)h(x)a(x).
So, putting this in (14), we get
1=F(x)[r(x) +9(x)p(x)s(x)]+g(x)h(x)q(x)s(x)
= (F(x), g(x)h(x)) =1.

iy  1=fO)r(x)+g(x)s(x) ...(16)
for some r(x), s(x) e F[x].
Also g(x)h(x) =f(x)p(x) ..(17)



for some p(x) € F[x].
Now, from (16), we get
h(x) = f(x)h(x)r(x) + g(x)h(x)s(x)
=T(X)h(X)r(x) + f(x)p(x)s(x), from (17).
=f(x)a(x), where a(x) =h(x)r(x) + p(x)s(x) e F[x].
~F(x)|h(x).

E34) x°—3x°+3x®—11x" +11x°® —11x° +19x* —13x°>+ 8x*— 9x + 3
= (X°=3x°+3x* = 9x*+ 5x* = 5x + 2) (x*— 2X) +(—x* = 3x*— 2x*~5x + 3).
Then, x°—3x°+3x* — 9%+ 5x* —5X + 2
= (—x*=3x* = 2x* = 5x + 3) (-x*+ 6x —19) + (-59x°~118x +59).

4 3 2 (_EOv3_ 1,3
Next, — X" —3x"—2X“—5Xx +3 = (-59x 118x+59)[59x+59j.

.. the required g.c.d is —5—19(—59x3—118x +59), since the g.c.d has to

be monic.
Thus, the g.c.d is (xX*+ 2x —1).

E35) f(X)=4x"+2x*+X+2, g(X) = 2x* + 2X + 4, since —1 =4,
AP+ 2X°+ X+ 2= (2X%+ 2x + 4) (2X*+ 3x + 4) + (x + 3),
2X°+2x+4=(x+3)(2x+ 1) + 1,

(x+3)=1(x+3).
- (F(x), g(x))=1.

E36) x°+1=(x+i)(x—1i) in C[x].
So x*+le<x+i>c C[x], since lg<x+i>.

Suppose X +ie<Xx? +1>.
Then (x +1i) = (x* +1)f(x), for some f(x) e C[x].

So 1=deg (x +i) = deg (x* +1) + deg f(x) > 2, which is a contradiction.

Thus, X +ig<x?+1>.
<Xl E <X+

<X Hl>c<x+i>cC[x].
T T

s.<x?*+1> is not a maximal ideal of C[x].

E37) You should check that x*+3x+2 and Xs—%xe’ +1 are coprime.

<X+ X+ 2, —%xs +X +1>=<1>=Q[Xx].

Thus, the given ideal is not a proper ideal, and hence, it is not a prime
ideal.

E38) The g.c.d of X, X*,...,x" " is X.
. the g.c.d of X, xX*,...,x" ", X"—1 is the g.c.d of X, X"—1, which is 1
(because x-x"'—(x"-1) =1).
<X XX XN —1> = <1> =F[x].
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E39) There can be several answers. Ours is X +10, and *.
Here 1 =(10)"(>¢+10—>).
Hence, ¥* +10 and X are co-prime.
5<X4+10, ¥ > = <1> =7, [x].
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16.1 INTRODUCTION

In the previous unit, you have worked with polynomials over different rings.
You have also studied the division algorithm in F[Xx], where F is a field. In this
context, you have worked with quotients, remainders and the idea of one
polynomial dividing another. In this unit, we will help you take this
understanding further. Note that throughout this unit, aring is assumed to
be commutative.

In Sec.16.2, you will study what a root of a polynomial is, and how this is
related to a factor of a polynomial. You will also see how the degree of a
polynomial is related to the number of roots it has. This follows from the
remainder theorem, as you will see.

In the next section, Sec.16.3, you will be introduced to the idea of reducible
and irreducible polynomials over a field, F. Here you will see that an
irreducible polynomial in F[x] generates a maximal ideal of F[x]. You will also

see that irreducible elements of F[x] are precisely the prime elements of
FIx].

Next, in Sec.16.4, you will study the criteria for a polynomial over F[x] to be
irreducible, when F is Q, R or C. For example, you will discover that an
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irreducible polynomial over Q can be of any degree, while over C it must be
of degree 1.

In Unit 15, you have seen that there is much similarity in the properties of
integers and the properties of polynomials over a field. In Sec.16.5, we will
consider another such similarity, namely, unique factorisation. You will find
that irreducible polynomials over a field play the role that prime numbers play
in Z. In this section, you will also study some consequences of unique
factorisation in F[x].

This unit has been created keeping the following expected learning goals in
mind. Please go through it carefully, solving every exercise as you come to it.
Objectives

After studying this unit, you should be able to:

o define, and give examples of, a root (or a zero) of a polynomial over a
commutative ring R;

) state, prove and apply the remainder theorem;

o define, and give examples of, a factor of a polynomial corresponding to a
root of the polynomial;

o define, and give examples of, irreducible elements and prime elements
of F[x], where F is a field;

o apply the various criteria to decide whether a given polynomial over
C, R or Q isirreducible or not;

o state, prove and apply the unigue factorisation theorem for F[x], where
F is afield.

16.2 ROOTS

In Calculus, as well as in school mathematics, you have been finding roots of
polynomials. For example, you know that if X +1=0, then x =-1. So (-1) is

a root of the polynomial x +1. Similarly, you know that if ax*+ bx +¢ is a
guadratic polynomial over C, then its roots are given by the quadratic formula:

—b++/b*—4ac
2a
process you have used several times before.

. To generalise this concept, let us formally define a term for a

Definition: Let R be aring and let f(x) =a,+a,x +---+a,X'e R[x].
Then for any r e R, we define f(r)=a,+a,r+---+a,r" eR to be the value of
f(X) obtained by substituting r for x.

Thus, if f(X) =1+ X+ X € Z[x], then f(2)=1+2+4=7, and
f(0)=1+0+0=1.

Now let us define a root, in general.

Definition: Let R be aring. An element r in R is called a root (or a zero) of
f(x) e R[x] if f(r) =0.

200 For example, if f(x) =12—2x—2x" in 2Z[x], then f(2) =12-4-8=0.



So 2 is aroot of 12—2x—2x in 2Z.
Also, since f(-2)=12+4-8=0, (-2) is not a root of 12—2x —2X’ in 2Z.

As another example, if f(X) = 2X’+ (1-21)x*+ (5— )X —5n € R[X], then
f(r) =0. So, 7 is a zero of f(x) in R.

For polynomials over a field F, the concept of a root is closely related to the
division algorithm in F[X]. To see how, consider the following important
theorem, which is actually a corollary of the division algorithm given in Unit 15.

Theorem 1 (Remainder Theorem): Let F be a field. If f(x) eF[x] and b eF,

then there exists a unique polynomial q(x) € {x] such that
f(x) = (x =b)q(x) + f(b).

Proof: Let g(X) = X —b. Then, applying the division algorithm to f(x) and
g(x), there exist unique q(x) and r(x) in F[x], such that
f(x) = a(x)g(x) +r(x)
=g(Xx)(x —b) +r(x), where r(x) =0 or deg r(x) < deg g(x) =1.
So r(x) =0 or r(x) is an element of F".
Thus, r(x) =a, for some a eF.
So, f(x) =(x-b)q(x) +a.
Substituting b for X, we get
f(b)=(b-b)q(b)+a=0-q(b)+a=a.

Thus, a =f(b).
Therefore, f(x) = (x—b)q(x) +f(b).
Thus, the remainder is the value of f(x) when we substitute b for Xx. [

Note that in Theorem 1, deg f(x) =deg (x —b) +deg q(x) =1+ deg q(x).
Therefore, deg q(x) =deg f(x) —1.

An immediate corollary to Theorem 1 is the following.

Corollary 1: Let F be a field and let f(x) e F[x], with deg f(x) >1. Then
aeF isaroot of f(x) iff (x —a)|f(x).

Proof: We leave the proof to you as an exercise (see E1). [

Let's see how Corollary 1 is useful. For example, you now know that
X(x+1) e Z[x] has 0 and 1 as its only roots since X and X +1 are its only

linear factors.

As another example, consider f(x) = 6x*—x —1eQ[x]. By the quadratic

formula, you know that its roots are 1 and -1

1 1
5 3 Thus, (X_j) and (X +§)

are factors of f(x), by Corollary 1.
Now, since 2 is a unitin Q, (X —%) =(2712(x —%). So 2(x —%) is also a

factor of f(x), i.e., (2x—1) is a factor of f(X).
Similarly, (3x +1) is a factor of f(x).

Did you notice that both these factors of f(x) are in Z[x]? 201



Now consider (x —1)*(x —2) € Q[x]. Here (x—1) is a double factor. So, 1 is
twice a root of this polynomial. This is an example of what we shall now define.

Definition: Let R be aring and f(X)eR[X]. We say that a € R is a root of
multiplicity m of f(x), meN, if

(x—a)"[f(x), but (x-a)""f(x).

For example, 3 is a root of multiplicity 2 of the polynomial
(x=3)*(x+2) e Q[x], and (=2) is a root of multiplicity 1 of this polynomial.

Now you should solve some exercises.

E1) Prove Corollary 1.
E2) Find the roots of the following polynomials, along with their multiplicities.

i) %xz—%x+3e(@[x],

iy  X+x+1eZ[x],
iy x'+2x°—2x-1eZ]x],

iv)  (5X+3Y (V2 — 4x)°(ix +1—+/3i)" e C[x].

E3) Give an example of a polynomial over Z,, which has only two distinct
roots, of multiplicity 3 and 2, respectively. Justify your choice of
example.

E4) Let F be afield and a € F. Define a function ¢:F[x]— F:¢(f(x))=f(a).
(This function is the evaluation map at a, as you know from Unit 13.)
Show that

i) ¢ is an onto ring homomorphism,

i) d(b)=b V beF,

i) Ker ¢ is the set of all polynomials in F[x] having a as a zero.
Further, find a generator for Ker ¢.

What does the Fundamental Theorem of Homomorphism say in this
case?

, F[Xy ~ F[x] .
E5) Let F be afield. Prove that L X —a> LysVaek.

E6) Let F be afield, and let a € F* be aroot of a,+a,X+---+a,X" € {x].

Show that a™ is a root of a,+a, ;X +---+a,X" e F[x].

Will this still be true if F is replaced by a domain D which is not a field?
Why?

Let us now look at how we can obtain all the roots of a given polynomial in
F[X]. As you know, this is possible for a linear, or a quadratic, polynomial. For

polynomials of higher degree we may be able to obtain some by trial-and-
202 error, as you have done in E2(iii).



As another example, consider f(x) = x°—2x+1e R[x]. We try replacing X by
1, and find f(1) =0. So, we find that 1 is a zero of f(x). But this method may
not give us all the roots of f(x) in R.

Also, note that a polynomial in F[X] may have no zero in F. (For example,

x*+1e R[x] has no zero in R, since its zeros are i and —i, bothin C\R.)

However, we can give an upper bound for the number of roots in F of a
polynomial in F[X].

Theorem 2: A non-zero polynomial of degree n over a field F has at the most
n rootsin F.

Proof: If n =0, then any polynomial of degree 0 is a non-zero constant
polynomial. Thus, it has no roots, and hence, it has at most 0(=n) roots in F.

So, let us assume that n >1. We will use the principle of induction on n.
For neN, let P(n) be the predicate, ‘If f(x) e F[x] is of degree n, then f(x)

has at most n roots in F'.
We will first check whether the statement P(1) is true or not.

If f(x) e F[X] s.t. deg f(x) =1, then f(X) =a,+a,x, where a,, a, €F and
a, #0.

So f(x) has one root, namely, (-a;"a,) € F. Can it have more roots? From
Corollary 1, you know that it cannot have more roots, since

deg f(x) =1=deg (x+a;"a,).

So, for n =1, f(x) has exactly 1 root, in fact, and it is in F.

Thus, P(1) is true.

Now assume that P(m) is true for some m e N.

We will show that P(m+1) is true.

Let f(x) e F[X] s.t. deg f(x) = m+1. We will show that the number of roots of
f(x) in F is at most m+1.

There are two possibilities now — either f(x) has no zero in F, or f(X) has a

zeroin F.
If f(X) has no root in F, then the number of roots of f(x) in Fis 0<m+1.

Thus, trivially, f(X) has at most m+1 roots in F.

Next, suppose f(X) has aroot a e F.

Then f(x) = (x—a)g(x), where deg g(X) =(m+1)—1=m, and g(x) € FXx].
Hence, by the induction hypothesis, g(x) has at most m roots in F. Let
a,,...,a, be the distinct roots of g(x) in F, where s<m.

Now, a; is a root of g(X)

=g()=0

= f(a;)=(a;-a)g(a;) =0

—=a, isarootof f(x) in FVi=1..,s.

Thus, each root of g(x) is a root of f(x).

Thus, f(x) has at least s+1 roots g, a,,...,a, in F, where s+1<m.
Does f(x) have any more roots in F? Let's see.

Now, b € F is a root of f(x)

= f(b)=0 203
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< (b—a)g(b)=0

< b-a=0 or g(b)=0, since F is an integral domain.
Thus, b is a root of f(x)

< b=a or b isaroot of g(x)

<b=a, a;,...,a,.

So, the only roots of f(x) are a and a,,...,a..

Thus, f(X) has at the most m+1 roots in F.

. P(m+1) is atrue statement.

Hence, P(n) istrue V neN, i.e., the theorem is true for all n >1. |
Here consider an important point about Theorem 2.

Remark 1: Using Theorem 2, you know that x’~1e Q[x] can't have more
than 3 roots in Q. However, it has only one root in Q, i.e., 1. The others are

~1+iV3
o=—"—

, and ®% in C\Q. Thus, it is important to note the significance

of ‘at the most’ in the statement of Theorem 2.

In Theorem 2, we have not spoken about the multiplicity of the roots. This is
the point of the following corollary of Theorem 2.

Corollary 2: If f(x) € F[X] is of degree n, then f(x) has at the most n distinct
roots in F, where F is a field. |

We will use Corollary 2 to prove the following useful theorem.

Theorem 3: Let f(x) and g(x) be non-zero polynomials of degree n over a
field F. If there exist n +1 distinct elements a,,...,a,,, in F such that
f(a,)=9(a;) YV i=1..,n+1 then f(x) =g(x).

Proof: Consider the polynomial h(x) = f(x) —g(x).

Then deg h(x) <n, but h(x) has n+1 distinct roots a,,...,a,,, in F. (Why?)
By Corollary 2, this is impossible, unless h(x) is the zero polynomial, i.e.,
f(x) =g(x). u

Note that Theorem 3 is not true if the a;S are not all distinct. For example, take
f(x) = (x = 2¥ (x —3) and g(x) = (x — 2)(x —3)* in R[x]. They are both of
degree 3, but 2, 2, 3, 3 are 4 elements in R s.t. f(x) and g(x) have the
same value, 0, at these points. Also f(x) = g(x).

Now, by Theorem 2, you know that if you are given a polynomial of degree 25,
say, over R, then you can find a maximum of 25 zeros of this polynomial in
R. Is the same true for Z, say? Or for a ring that is not a domain? Let us look
at an example.

Example 1: Prove that X’+ 5Xx € Z,[x] has more than 3 zeros.

Solution: Since Z is finite, it is easy for us to run through all its elements and

check which of them are roots of f(x) = x>+ 5x.



So, by substitution we find that

f(0)=0="7(1)=1(2) =f(3) =f(4) =f(5).

In fact, every element of Z; is a zero of f(x). Thus, f(x) has 6 zeros, while
deg f(x) =3. Thus, Theorem 2 (and hence, Theorem 3) is not true for Zg[x].

*k*x

From Example 1, you can see that for a ring that is not a domain, Theorem 2
and 3 are not true. However, these theorems are true for a domain too, as you
will now see.

Theorem 4: A non-zero polynomial of degree n in D[x], where D is an
integral domain, has at the most n roots in D.

Proof: Let f(x) € D[X] be of degree n. Let F be the field of quotients of D.
Then f(x) € F[x]. Hence, f(X) has at the most n roots in F, by Theorem 2.
Also, any root of f(x) in D will be arootin F too. Thus, f(X) cannot have
more than n roots in D. [

Try solving the following exercises now.

E7) Prove Corollary 2.

E8) State, and prove, the statement analogous to Theorem 3, replacing a
field F by an integral domain D.

E9) Let F be afield and f(x) e Hx]\{0}. Show that f(x) can have at most
n linear factors in F[x].

E10) Let p be a prime number. Consider x"*—1 ¢ Z,[x]. Use the fact that

Z, is a group of order p to show that every non-zero element of Z is

aroot of X"*—1. Thus, show that
) XT-1=(x-1)(x-2)...(x-p-1), and
i)  (p—2)'=1(mod p).

E11) The polynomial x*+ 4 can be factored into linear factors in Zg[X]. Find
this factorisation.

E12) Find all the zeros of x"-1e C[x], where neN.

In E12, you may have noted that all the zeros of the polynomial over C[x] lie
in C. As you know, this need not be true for polynomials in F[x], for other
fields F. For example, this is not true for F =RR.

Let us now consider elements of F[x] that have no roots in F. These
polynomials are somewhat analogous to prime numbers in Z.

16.3 IRREDUCIBLE POLYNOMIALS

From Unit 1, you know that a prime number is a non-zero, non-unit element of

7 that has no factors other than 1 and itself. You also know that if p is a
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prime in Z, then pZ is a maximal ideal of Z. So, does a prime element of
F[x] satisfy this property too, where F is a field? From Theorem 13, Unit 14,

we are assured that a prime element will generate a prime ideal. This may or
may not be maximal in F[x]. In this section, you will study what these prime

elements are. You will also study that they generate maximal ideals in F[x].

Firstly, recall from Unit 15, that the units of F[x] are the elements of F*. Thus,
the units of F[X] are precisely the constant polynomials in F[x]. So, a
non-zero non-unit element of F[x] is a polynomial of degree >1.

Next, if f(x)|g(x) in F[x], then deg f(x) <deg g(x). So, if g(x) has no
factors other than a unit and itself, then g(x) = af(x), for some acF".

This means that deg f(x) = deg g(x).

For example, g(X) =3x+5 has no factor of positive degree, since

deg g(x) =1. Also, X’ +1e R[x] has no linear factor in R[x], by Corollary 1.
However, x*—1 has (x—1) and (x+1) as factors in R[x], again by

Corollary 1.
With this background, let us define a concept in F[X] that will turn out to have

somewhat similar properties to that of a prime number in Z.

Definition: Let F be a field. A non-zero non-unit polynomial p(x) e F[x] is
called
i) irreducible in F[x] if whenever p(x) =f(x)g(x) in F[x], then

deg f(x) =0 or deg g(x) =0.

i)  reduciblein F[x], if itis not irreducible in F[x].

For example, (x*—1) is reducible in Q[x] as well as in R[x] as
x*—1=(x-1)(x+1) and deg (x—1) =1=deg (X +1).

Let us consider an example of irreducible polynomials in detail. This is actually
a class of examples.

Example 2: Let F be a field. Show that any linear polynomial in F[X] is
irreducible in F[X].

Solution: Let f(x) =ax+beF[x], a #0. Suppose f(x) =g(x)h(x), in F[x].
Then 1=deg f(x) =deg g(x) +deg h(x) >0.

This is only possible if either deg g(x) =0 or deg h(x) =0, i.e., if either
g(x) e F" or h(x) e F.

Thus, by definition, f(X) is irreducible in F[x].

*kx

So, a linear polynomial is irreducible over F. What about non-linear
polynomials in F[x]? You have seen that x*—1 is reducible over R. Consider
the following example.

Example 3: Check whether or not x*+1e R[x] is irreducible.

206 Solution: Let x*+1=f(x)g(x) in R[x]. Then deg f(x) < 2.



Suppose, if possible, deg f(x) =1.

Since f(x)|(x*+1), by Corollary 1 we find that X*+1 has a root in R.
This is a contradiction.

Hence, deg f(x) #1.

~.deg f(x) =0 or deg f(x) =2.

If deg f(x) =2, then deg g(x)=0.

Hence, (X*+1) is irreducible.

***x

In the following theorem you can see the relationship between irreducibility
and roots of non-linear polynomials.

Theorem 5: Let F be a field and let p(x) e F[x], with deg p(x)>2. If p(x) is
irreducible in F[x], then p(x) has no roots in F.

Proof: We shall prove the contrapositive of the statement to be proved, i.e., if
p(x) has arootin F, then p(x) is reducible.

Suppose p(x) has aroot a € F. Then, by Corollary 1, (x —a)|p(x). So

p(x) =(x—a)g(x) in F[x], where deg g(x)=deg p(x)-1>1.

Thus, p(x) is reducible in F[X].

Hence, the theorem is proved. [ |

Now, is the converse of Theorem 5 true? That is, if p(X) is of degree > 2 and
has no root in F, then must p(x) be irreducible in F[x]? Let's see.

Consider f(x)=x"+2x*+1e R[x]. This is reducible, since

f(x) = (* +1)(x*+1) in R[x] and deg(x® +1) =2 # 0. But f(x) has no root in
R, since it roots are * J-1eC\R.

Thus, the converse of Theorem 5 is not true.

In the counterexample above, note that deg f(x) =4. So, the question
now is — Is the converse of Theorem 5 true if deg f(x) =2 or 3? This is what
the following theorem answers.

Theorem 6: Let F be a field, and let p(X) be a quadratic or a cubic
polynomial over F. If p(x) has no roots in F, then p(x) is irreducible in F[X].

Proof: We shall prove the contrapositive of the statement to be proved. Thus,
we aim to prove that if p(x) is reducible in F[x], then p(x) has arootin F.

So, let p(x) =f(x)g(x) in F[x], with deg f(x)>1, deg g(x) >1. Now
deg p(x) =deg f(x) +deg g(x), and deg p(x) =2 or 3. Therefore,
deg f(x) =1 or deg g(x) =1.

Suppose f(X) is linear, say f(x)=ax+b, a=0.

Then f(—a™b)=0. So p(-a'b)=0. Thus, —a ‘b e F is a root of p(x).

Similarly, if g(x) is linear, then p(x) will have a root in F.
Thus, we have proved that if p(x) is reducible, it has a root in F; or
equivalently, if p(x) has no root in F, p(x) is irreducible over F. [

Why don’t you solve some exercises how? 207



E13) Which of the following polynomials are irreducible? Give reasons for
your choice.

)  x*-2x+1leR[X],
iy  x+x+leC[x],
i)y ix+2e([x],
iv)  x'+3x°+2eR[X],
v) X+aeR[x]VaeR"
E14) Check whether or not x*+ 3x°+ 2 is irreducible in Z[x].

E15) If f(X) e F[x] has arootin F, with deg f(x) <3, then f(X) is reducible in
F[X]. True or false? Why?

E16) Find two prime numbers p s.t. (X +§)‘ (x*+3°+x2=x+1) in Z[X].

E17) For which neN is x"—1e Q[x] irreducible, and why?

So far, you have studied the relationship between f(x) being irreducible in
F[X] and the roots of f(x) in F. Let us now come back to what we had
suggested at the beginning of this section, i.e., an analogue in F[X] of a prime
elementin Z. In Unit 14, you saw that if p is a prime number, then pZ is a
maximal ideal of Z. You will now see that irreducible elements in F[x], where
F is a field, have the same property.

Theorem 7: Let F be a field and let f(x) € Hx] be irreducible in F[x]. The
ideal <f(x)> is a maximal ideal of F[x].

Proof: Let | be anideal of F[x] s.t. <f(x) > c | < F[X].

From Sec.15.5, Unit 15, you know that every ideal in F[X] is a principal ideal.
- 1=<g(x) > for some g(x) e F[x].

Then f(X) e<g(X) >= 3 h(x) e F[X] s.t. f(X) =g(X)h(x).

Since f(x) is irreducible, either g(x) e F* or h(x) e F".

If g(x) e F, say g(x)=c, then <g(x)>=<c>=FXx].

If h(x) e F, say h(x) =a, then g(x) =a*f(x) e<f(x) >, so that
<g(x)>=<f(x)>.

Hence, <f(x) > is a maximal ideal of F[x]. |

Two immediate corollaries of Theorem 7 are the following.

Corollary 3: If f(x) e F[x] is irreducible, then F[x]/< f(x) > is a field.
Proof: Since < f(x) > is a maximal ideal of F[x], F[x]/<f(x) > is a field, by
Theorem 14, Unit 14. [

Corollary 4: If f(x) e F[x] is irreducible, then f(X) is a prime element of F[X].

Proof: Since <f(x) > is a maximal ideal, it is a prime ideal of F[x]. Hence,

208 f(x) is a prime element of F[x], by Theorem 13, Unit 14. [



Let us consider an example of the use of Theorem 7.

Example 4: Let p be a prime number. Is Q[x]/< x*~p> a field? Why, or
why not?

Solution: From Theorem 7 you know that for any field F, if f(X) is irreducible
in F[x], then <f(x)> is a maximal ideal of F[x].

Now, the roots of X’~p are p*?, p"°0, p“°w’, where ® is a cube root of unity
in C\R.. Also p* e R\Q. Thus, none of the roots of X*~p lie in Q.

So, by Theorem 6, X’—p is irreducible.

Therefore, < x*~p > is a maximal ideal of Q[x].

Thus, Q[x]/<x®—p> is a field.

*k*k

Now let us go back to Corollary 4. In this corollary, you have seen that every
irreducible element of F[X] is a prime element. Is the converse true? Let's

see.

Theorem 8: Let F be a field and let f(x) € F[x] be a prime element. Then
f(x) is irreducible in F[x].

Proof: Let f(x) =g(x)h(x) in F[x]. Then f(x)|g(x)h(x).

So, by the definition of a prime element, f(x)|g(x) or f(x)|h(x).

Suppose f(x)|g(x).

Since f(x) =g(x)h(x), we see that g(x)|f(x) also.

So, by Theorem 8, Unit 15, f(x) =ag(x) for some a e F".

Thus, ag(x) = g(x)h(x).

So, by the cancellation law, h(x) =a, i.e., deg h(x) =0.

Similarly, if f(x)|h(x), then deg g(x) =0.

Thus, f(x) is irreducible. u

What do Theorem 8 and Corollary 4 tell you? Don't they say that f(X) e F[X] is
prime iff it is irreducible?

Why don’t you solve some related exercises how?

E18) Let F be a field, and let p(x) be irreducible in F[x]. If
P(X)[F,(X)F(X)....F,(x), then show that p(x)|f,(x) for some i=1,...,n,
where f,(x) e F[x] V j=1...,n.

E19) Which of the following statements are true? Give reasons for your
answers.

i) If F, and F, are fields such that F, c F,, and f(x) e F[X] is
irreducible over F, then f(X) is irreducible over F,.

iy  X+2x*+2 is a prime element in Z.[x].

iy If p(x) is a prime element of F[x], then p(x) is a prime element
of F[x]/I for any ideal | of F[x], where F is a field.
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By now you would have developed quite a bit of familiarity with the idea of
irreducibility over a field. Let us look at this concept in greater depth in the
special cases of polynomials over the complex, real and rational fields.

16.4 IRREDUCIBILITY OVER C,R AND Q

So far, you have studied irreducibility over any field F. Let us discuss what
happens over C, R or Q, in particular.

16.4.1 Irreducibility over C and R

You have seen that a linear polynomial is irreducible in F[x], for any field F.

Hence, linear polynomials over C are irreducible too. However, for C we
have a much stronger result, which is really basic for algebra.

In 1799, the great Theorem 9 (The Fundamental Theorem of Algebra): A polynomial of
mathematician Gauss degree n>1 in C[x] has all n of its roots in C, where repeated roots are
proved the Fundamental counted with their respective multiplicities. |
Theorem of Algebra.

This theorem appears simple, but is very deep. We shall not prove it in this
course, as the proof requires some understanding of complex analysis. But let
us see what follows immediately from this theorem.

Corollary 5: Every polynomial over C, of degree n>1, can be written as a
product of n linear polynomials in C[X]. [

In other words, Corollary 5 says that the only irreducible polynomials in
C[X] are the linear polynomials.

Thus, (x*+1) is not irreducible in C[x], while it is irreducible in R[x], as you
have seen earlier.

By the Fundamental Theorem of Algebra, you now know that, for example,
(2+3i)X°+ (-5+iv/5)X + mx°+i has 10 roots in C. These roots may or may
not all be distinct, of course.

Next, let us look at irreducible polynomials in R[x]. How do we find out if a
given polynomial of degree > 2 in R[X] is irreducible or not? Well, by
Theorems 5 and 6, you know that if the polynomial is of degree 2 or 3, itis

irreducible iff it has no root in R. However, we have a more precise result
about this, which actually follows from Theorem 9.

Theorem 10: If p(x) € R[X] is irreducible, then p(x) is a linear or a quadratic
polynomial.

Proof: Let deg p(x) =n. Since p(x) is irreducible in R[x], it has no real
roots.
If n=1, then p(X) is linear, and hence, it is irreducible.

Suppose n > 2. Note that p(x) € R[x] < C[x].

So, by Theorem 9, p(x) =a,(X-z,)(X-2,)...(X-2,), where a,€ R and
z,eCVvVi=l..,n.

Also, p(x)=a,+a,;x+---+a,X",a,eR Vi=0,...,n.

210 Now, if p(z) =0 for some z € C, then a,+a,z+---+a,2" =0 in C.



So p(z)=a,+a,Z+---+a,z" :ﬁ =0 in C, where Z is the conjugate of z
in C. Note that a, =3, since a, e R Vi=0,1,...,n.

So, if (Xx—2) is a factor of p(X), (Xx—2Z) must also be a factor of p(x) in C,
i.e., if z isaroot of p(x) in C, then sois Z. Note that z# Z, since z ¢ R.
Thus, the non-real complex roots of p(x) occur in pairs.

So, if p(x) € R[X] has one non-real complex root, it must have at least two
such roots. Similarly, if p(x) has 3 non-real complex roots, then it must have
at least four such roots, and so on.

Now two cases arise: deg p(x) is odd, or deg p(x) is even.
If deg p(x) is odd, then p(x) must have at least one real root since any root
in C\R will occur in pairs. Thus, p(x) is reducible over R in this case.

Next, suppose deg p(X) is even, say deg p(x)=2m, meN, i.e.,, n=2m.
For each pair of non-real complex conjugate roots a+ib and a—ib, of p(x),
[x —(a+ib)][x — (a—ib)] = ¥ - 2ax + (a° + b°) € R[X]. ..(1)

So, for each pair of non-real complex conjugate roots, you get a factor of p(x)
of degree 2. Since p(X) has no real roots, and the non-real roots of p(x)
occur in pairs, p(x) has m pairs of roots in C\RR. So p(x) has m factors in
R[X] of the form in (1).

Therefore, in this case p(x) can be irreducible only if m=1, i.e.,deg p(x) = 2.

Thus, we have proved that if p(x) € R[X] is irreducible, then deg p(x) =1 or
deg p(x) =2. u

Why don’t you solve some exercises now?

E20) If p(x) is a linear polynomial, or a quadratic polynomial, in R[X], it is
irreducible. True or false? Why?

E21) If p(x) € R[X] is of degree 6, how many linear factors does it have in
C[x]? And, how many irreducible factors can p(x) have in R[x]?

So, you have seen that irreducibility over C or R is pretty clear-cut in terms
of the degree of the polynomials. Let us see if this is the case in Q[x].

16.4.2 Irreducibility over Q

Let us now consider irreducible polynomials over Q. Surprisingly, we find that
if p(x) € Q[X] is irreducible, we cannot say anything about its degree. To
understand the reason for this, we need to first define irreducibility in Z[X].

Definition: Let f(x) e Z[x], f(x) #0, 1, —1. f(x) is called irreducible in Z[X] Recall that
if whenever f(x) =g(x)h(x) in Z[x], then g(x)==+1 or h(x) =+1. U(Z[x]) =U(Zz) ={1, -1}.

For example, X +9 is irreducible in Z[X], but 3x+9 is reducible since
3x+9=3(x+3), both factors being non-units in Z[X].

Related to this is the following comment. 211



Fig.1: Ferdinand Gotthold
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Max Eisenstein
(1823-1852) was a
student of Gauss.

Remark 1: Note that a polynomial that is reducible in Z[X] can be irreducible
in Q[x] (e.g., 3x+9).

Now consider any polynomial over Q, say f(x) = %XS+%X2+ 3x +%. If we

take the l.c.m of all the denominators, i.e., of 2,5,1 and 3, which is 30, and
multiply f(x) by it, what do we get? We get

30f(x) = 45x%+6x°+90x +10, and this lies in Z[X].

Using the same process, we can multiply any f(x) € Q[x] by a suitable integer
d so that df(x) € Z[x]. In fact, you have used this process while proving

Theorem 6, Unit 15. This process will also be used to prove the following
theorem.

Theorem 11: If f(x) € Z[X] is irreducible in Z[X], then it is also irreducible in

Q[x]. m

We will not prove this theorem here, as it involves introducing some more
concepts and Gauss’ Lemma. (If you are interested in learning about this,
please do refer to Gauss’ Lemma in any of the books we have recommended
in the Course Introduction.) But let's see why this theorem is important. What
this result says is that to check irreducibility of a polynomial in Q[x], it is

enough to check it in Z[X]. And, for checking it in Z[x], we have a wonderful

test formulated by the German mathematician, Theodor Schénemann (1812-
1868), and later proved by the German mathematician Eisenstein in 1850. It is
popularly known by Eisenstein’s name, and Schénemann’s name seems to
have gone into the background. We will state this here, but we will not prove it
in this course.

Theorem 12 (Eisenstein’s Criterion): Let f(x) =a,+a,x+---+a,X" € Z[X].
Suppose that for some prime number p,

i) p)(an,

i) p|a play,.... pa,y, and

ii) pz)(ao.

Then f(x) is irreducible in Z[x] (and hence, in Q[X]). ]

Now, putting Theorems 11 and 12 together, you can see that Eisenstein’s test
tells us when a polynomial in Z[X] is irreducible in Q[x]. Let us illustrate the

use of this criterion.
Example 5: Is 2X + 3X°—6x"+3x*+12 irreducible in Q[x]? Why, or why not?
Solution: The given polynomial is of degree 7, in Z[X]. Its coefficients are

a,=12,a,=0=a,, a,=3,a,=-6,a,=3, a,=0, a,=2. By looking at the

coefficients, we see that the prime number 3 satisfies the conditions given in
Eisenstein’s criterion:

) 32

i) 3|12, 3|0, 3|3, 3|(-6), and

i) 3/12.

Therefore, the given polynomial is irreducible in Z[x], and hence, in Q[X].

*k*k



Now let us look at an example of checking the irreducibility of a polynomial,
using Theorem 12 indirectly.

Example 6: Let p be a prime number. Show that f(x) = X"+ x>+ --- + x +1
is irreducible in Q[x]. (f(x) is called the pth cyclotomic polynomial.)

Solution: To start with, note that f(x) = g(x)h(x) in Z[x] iff
f(x+1) =g(x+1)h(x+1) in Z[X].
Thus, f(X) is irreducible in Z[Xx] iff f(x +1) is irreducible in Z[X].
Now, (x-1)f(x) =x"-1.
S+ -10f(x +1) = (x +1)P -1,
ie., Xf(x+1) =x"+PCx"*+.--+PC_,x+1-1 (by the binomial theorem)
= X(X* 4+ pxP 24+ PC X+ -+ PC X + D)
S (X +1) =X+ pxP 2+ PC X%+ 4 PC__,x +p, by cancellation, since x # 0.
Now apply Eisenstein’s criterion, taking p as the prime.

You can see that f(x +1) is irreducible in Z[X].
Therefore, f(X) is irreducible in Z[x], and hence, in Q[X].

*k*k

You should solve the following exercises now.

E22) For any n e N and prime number p, show that X" —p is irreducible in

QIx].

E23) If a,+a,x+---+a,X" € Z[x] is irreducible in Q[x], can you always find
a prime p that satisfies the conditions (i), (ii) and (iii) in Theorem 127?
Why, or why not?

E24) Which of the following elements of Z[x] are irreducible over Q?
) xX*-12, i) 8X°+6x°—9x+24, i) 5x+1, iv) 5x*+5.

E25) Show that X* +a € Z[X] is not irreducible for any a e Z.

E26) Check whether or not X"+ X" ?+---+ x +1€ Z[X] is irreducible in
Q[xX]vVn>2.

E27) If f(x) € Z[X] is irreducible over Q, then itis irreducible over Z. True,
or false? Why?

E28) Is Theorem 7 true for Z[X]? Why?

It is not always easy to find out if a given polynomial in Q[X] is irreducible or
not. Of course, Eisenstein’s criterion helps in some cases. But from E23, you
know that there are irreducible polynomials in Q[x] that do not satisfy this

criterion. However, there are a couple of other theorems that could be of some

help. Let us discuss them now.
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Theorem 13 (Rational Root Theorem): Let f(x) =a,+a,x+---+a,X" e Z[X],

where a_ #0. If %e@ is a root of f(x), where (p, q) =1, then p|a,and q|a,.

Proof: Since f(%) =0, we see that a0+a1£+”'+anp_n:0'

q
So a,q"+a,pq" " +---+a,,p"q+a,p" =0.

Now, q(a,+:--+a,p""q).

So q|(-a,p").

Thus, g|a,, as (p, q) =1.

Similarly, since p|(a,pg" "+ a,p’g" *+---+a,p"), p|a,.

Hence the result. [ |

Note that if f(X) € Z[x] has no root in Q, it could still be irreducible (e.g.,

x* +1). So Theorem 13 has only a very limited role for checking irreducibility
of a polynomial of degree > 4.

Let us consider an example of applying Theorem 13.

Example 7: Check whether or not f(x) = 8x*+9x*~5x —2 is irreducible in

QIx].

Solution: In this case there is no prime number which will help us apply
Eisenstein’s criterion. So, let's see if f(X) has a rational root.

p
If q
So the possibilities for p and q are p=+1, £2, and
q=+1, +2,+3,+6, +9, +18.

is a root, with (p, q) =1, then by Theorem 13, p|(-2) and q[18.

The next step is to use a trial-and-error method. Voila! We find f(— lj =0.

3

Hence, (X +%) is a factor of f(x) in Q[x].

. T(X) is not irreducible over Q.

*kx

As you can see from the example above, applying the rational root theorem is

not easy manually. This is because p could be one of many possibilities, and

q

each has to be tried out till you hit a possible root — or don'’t !

Further, if a polynomial has degree > 4, then it may have no root in Q and still
be reducible, as you have seen. So, this theorem is not really helpful except in
the case of degree 2 or 3, and that too when the coefficients a, and a, have

only a small number of factors.

Now let’s discuss another criterion for irreducibility over Q. Like Theorem 12,
this is based on Theorem 11 too.

Theorem 14 (Mod p Irreducibility Test): Let

214 f(x)=a,+a,x+---+a,X €Z[x]. If there is a prime p s.t. p){an and s.t.



f(x) =a,+ax+---+a,x" isirreducible in Z [x], then f(x) is irreducible in

QIx].

Proof: We shall prove this by contradiction. Suppose f(x) is reducible over
Q. Then f(x) is reducible over Z, by Theorem 11.

So f(x) =g(x)h(x), with g(x), h(x) € Z[x], g(x) # £1, h(x) = £1.

So, in Z,[x], we have f(x) =g(x)-h(x).

Here deg g(x) < deg g(x) <deg f(x) and deg h(x) < deg f(x).
This contradicts our assumption that W is irreducible over Z,. So we reach

a contradiction.
Therefore, f(x) is irreducible in Q[x]. [

Let us consider an application of Theorem 14.

Example 8: Is 6x>—7x*+8x + 2 irreducible in Q[x]? Give reasons for your
answer.

Solution: Here there is no prime for which we can apply Eisenstein’s criterion.
So, let us try Theorem 14.

Let f(X) =6x>—7x*+8x +2.

Consider p=7, as 7){6. So, we look at m in Z,[x]. We find that
f(X) = 6+ X + 2.

This is reducible iff m has aroot in Z,, by Theorem 6.

On substituting x =0, 1,...,6, you can check that none of these give
f(x)=0.

Hence, m is irreducible in Z,[X].

Thus, by Theorem 14, f(X) is irreducible in Q[x].

Check that you can take p =5 in this example too. Why? You will find that

f(x) is irreducible in Zg[X] also.

*k*k

Let us consider an example of a polynomial with degree > 3 also.

Example 9: Let f(x) =%X4—%X2+%X +% € Q[x]. Check whether or not

f(x) is irreducible over Q.

Solution: Note that g(x) = 35f(x) =15x*-10x*+ 9x + 21 € Z[x].
Also f(x) is irreducible over Q iff g(x) is irreducible over Q.

Now, take p =2 in Theorem 14. We get g(X) = X'+ X+ 1 € Z,[x].

You can check that g(x) has no roots in Z,.
Let us check if it has any quadratic factors.
Any such factor has to be x*+1 or x>+ x+1.

Since x°+1 has a zero in Z,, this cannot be a factor of g(x). Also,
(x2+x+T))((x4+x+I) in Z,[x]. (Why?).

So g(x) is irreducible in Z,[x]. 215



Thus, g(x) is irreducible in Q[x], by Theorem 14.
Hence, f(x) is irreducible in Q[X].

*k%x

In spite of Eisenstein’s criterion, and Theorems 13 and 14, we don't have
enough tools for checking irreducibility over Q. For example, there may be a
polynomial that has no root in Q. Or, there may be a polynomial for which an
obvious candidate for p is not available for applying Theorem 14. Then, we
can fall back on our good old way of inspection in some cases. For example, if
you see X*+4x%+2, you can look at it and say itis (x*+2)°, and hence it is
reducible over Q.

Also, there are several factorisation algorithms available in Computer Algebra,
for testing over a finite field or over Q. You can study some of these in your

higher studies.

Why don’t you solve some exercises now?

E29) Which of the following statements are true? Justify your answers.

) Q[xy is a field.
<X +7x°-14>

i R[Xy is a field.
<X +7x° 14>

i) Q[)y ! .5 is not a field.
<2IX'—-3X+2X +9 >

E30) Give an example, with justification, of a polynomial of degree 10, which
is irreducible over @, but when considered in Z,,[X] itis reducible.

E31) Check whether or not the following polynomials are irreducible over Q.
) 2X+3X°+6X+2,
i) 6xX*+x+09,
i) X+ 2x+4,

iv)  8x’-6x+1 (you can apply the method used in Example 6 here).

Let us now consider why irreducible polynomials are important in F[X].

16.5 UNIQUE FACTORISATION

In Unit 1, you studied the Fundamental Theorem of Arithmetic. As you know,
this theorem is the basis on which we say that prime numbers are the atoms
that make up any integer. Also, you have seen a parallel between prime
numbers and irreducible polynomials in F[X] in many aspects. Let us see if
we can think of irreducible polynomials as being the building blocks for any
polynomial in F[x], paralleling the Fundamental Theorem of Arithmetic.

Now, from the Fundamental Theorem of Algebra, you know that if f(x) € C[x]

216 s.t. deg f(X) =n =1, then f(x) = p,(X)p,(X)...p,(X), where p,(X) is a linear



polynomial in C[x] ¥V i=1,...,n. Thus, f(x) is completely factorised as a
product of irreducible polynomials in C[x]. For example,

x*—1=(x-1)(Xx - 0)(X —0’), where ® is a non-real cube root of unity.

Now, in R[X] you have seen that the irreducible polynomials are of degree 1
or degree 2. Can we completely factorise any polynomial in R[x] as a

product of irreducible polynomials? The following theorem tells us we can, and
more!!

Theorem 15 (Unique Factorisation): Let F be a field, and let f(x) € F[x] s.t.

deg f(x)=n2>1.

i) There exist irreducible polynomials p,(X), p,(X),...,p,(X) in F[x] such
that f(x) = p,(X)Py(X)... Py (X)-

i) If f(x) =0q,(x)q,(x)...q,(x) also, where g;(x) € F[X] is irreducible
Vi=1...,r, then m=r and each p, =C,q; for some j=1...,m and
c,eF. [}

Theorem 15 can be proved by using Corollary 4, and then applying induction

on m. However, we shall not prove it in this course, but will apply it in several
situations. Let us consider an example.

Example 10: Write f(X) = x—4Xx as a product of irreducible polynomials in
R[x], and in C[x].

Solution: Now f(X) = X°—4x = x(x*=4) = x(x*= 2)(x*+ 2)

= X(X = v2)(X +/2)(*+ 2). ..(2)
Since X* +2 has no real roots, f(X) = X(X —v2)(X ++2)(x*+2) is a
factorisation in R[X], as required.

However, in C[X], X*+2 = (X +iv2)(X —iv/2).

So (2) gives us f(x) = x(x —\/E)(X +\/§)(X + i\/E)(X - i\/§), as a product of
irreducible polynomials in C[x].

***x

You should solve the following exercises now.

E32) Show that 3x°+ 4x+ 3 € Z.[x] factors as (3x +2)(x +4) and as

(4x + 1)(2x + 3). Does this contradict Theorem 15(ii)? Give reasons for
your answer.

E33) Write 2X*+ x>+ 4x°+ X + 2 as a product of irreducible polynomials in

QIx].

E34) Write 2x*—3x’-8x°+9x +6 as a product of irreducible polynomials in
R[X].

E35) If f(x) € R[x] such that deg f(x) =5, how many real roots can f(x)

have? Give examples to justify your answer.
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E36) Show that the factorisation in Theorem 15 need not be unique, upto
order, in Zg[X]. Note that Z, is not a field.

(Thus, Theorem 15 need not be true if F is not a field.)

With this we come to the end of our discussion on factorisation and
irreducibility in F[x], where F is a field. Let us summarise what we have

discussed in this unit.

16.6 SUMMARY

In this unit, you have studied the following points.

1.  The definition of a root (or a zero), and the multiplicity of a root, of a
polynomial over aring R.

2. (Remainder Theorem): Let F be a field. If f(X) e F[X] and b eF, then
there exists a unique polynomial g(x) € F[x] such that

f(x) = (x—b)q(x) +f(b).

3. Let F be afield and let f(x) eF[x], with deg f(x) >1. Then aeF isa
root of f(x) iff (x —a)|f(x).

4. A non-zero polynomial of degree n over a field F has at the most n
roots in F.

5. A non-zero polynomial of degree n in D[x], where D is an integral
domain, has at the most n roots in D.

6. Let f(x) and g(Xx) be two non-zero polynomials of degree n over a field

F (respectively, a domain D). If there exist n +1 distinct elements
a,,...,a,, in F (respectively, D) such that f(a;)=g(a;) Vi=1..,n+1,
then f(x) = g(x).

7. The definition, and examples, of an irreducible polynomial over a field F,
and over Z.

8. Let F be afield and let p(x) e F[x], with deg p(x)>2. If p(xX) is
irreducible in F[x], then p(x) has no roots in F.

9. Let F be afield, and let p(X) be a quadratic or a cubic polynomial over
F. If p(x) has no roots in F, then p(X) is irreducible in F[x].

10. Fundamental Theorem of Algebra: A polynomial of degree n>1 in
C[x] has all of its roots in C, counted with their respective multiplicities.

11. If p(x) € R[x] is irreducible, then p(X) is a linear or a quadratic
polynomial.

12. If f(x) € Z[X] is irreducible in Z[X], then it is irreducible in Q[X].

13. Eisenstein’s Criterion: Let f(x) =a,+a,x +---+a,X" € Z[X]. Suppose
that for some prime number p,
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14.

15.

16.

17.

18.

i) plag,play,....p|a,,, and
ii) pz)(ao.
Then f(X) is irreducible in Z[x] (and hence, in Q[X]).

Let F be afield and let f(x) € F[x] be irreducible. Then <f(x) > is a
maximal ideal of F[x].

Let F be afield and let f(x) € F[x] be a prime element. Then f(X) is
irreducible in F[x].

Rational root theorem: Let f(x) =a,+a,Xx+---+a,X" e Z[x], a, #0. If

%e@ is a root of f(x), where (p, q) =1, then pla, and qla,.

(Mod p Irreducibility Test): Let f(x) =a,+a,x+---+a,X" € Z[x]. If
there is a prime p s.t. p)(an ands.t. f(x)=a,+ax+---+a,X" is
irreducible in Z[x], then f(x) is irreducible in Q[x].

Unique factorisation: Let F be a field, and let f(x) e F[x],

deg f(x) =n>1.

i) There exist irreducible polynomials p,(X), p,(X),...,p,(X) in F[X]
such that f(x) = p,(X)p,(X)...p,(X).

i) If f(X) =0q,(x)q,(x)...q,(x) also, where q;(x) eF[X] is irreducible
Vi=1...,r, then m=r and each p, = ¢,q; for some j=1....m

and ¢, e F.

16.7 SOLUTIONS / ANSWERS

E1)

E2)

a e F is aroot of f(x) e HXx]

iff f(@)=0

iff f(x)=(x—-2a)q(x), for some q(x) e {x], by Theorem 1.
Iff (x—a)|f(x), by definition.

i) By the quadratic formula, the roots are 3 and 2, each with
multiplicity 1. Thus, the given polynomial is the same as

%(x —3)(x—2) € Q[X]. You should check this.

iy X’+x+1=(x-1)%,since —2=1in Z,.
Thus, 1 is the only zero. Its multiplicity is 2 since (x—1)? is a
factor, and (x —1)? is not a factor, of the given polynomial

iiiy By trial-and-error, one zero is 1. Now, applying long division, we
get

X'+ 2x°=2x —1=(x-1)(x*+ 3x°+ 3x +1).
Again, by trial and error, we find that x +1 is a factor of
X3+ 3x*+3x+1.
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Applying long division, we see that x*+ 3x°+ 3x+1 = (x+1)®
Thus, X*+2x*-2x-1=(x -1)(x+1)%

This shows that 1 is a root of multiplicity 1 and — 1 (= 4) is a root
of multiplicity 3.

iv)  Note that 5x +3=5(x +%), V2 -4x= (—4)(X—%) and

242
(ix +1—iv/3) =i[x — (+/3 +0)].

-3 1 : . .
So —, —— and \/§+| are the roots of the given polynomial.
PN

Since the polynomial is given as a product of these linear
polynomials, you can see that their multiplicities are 2, 3, 11,

respectively.

E3) For example, X}(x —10)? e Z[x].
Here 0 has multiplicity 3 and 10 has multiplicity 2, and these are the
only roots. There can be several other examples.

E4) i) Prove this as you have done in Unit 13.

i) Since b is a constant polynomial, its value doesn’t change by
substituting a for X.

iy f(x) e Ker ¢ iff p(f(x))=0 iff f(a) =0 iff a is a zero of f(x).
Now, by Corollary 1, f(x) € Ker ¢
iff (x—a)|f(x)
iff f(X)e <x—-a>.
Thus, Ker g =<x-a>.

The Fundamental Theorem of Homomorphism says that
(F[x]/<x-a>)=F.

E5) By E4, F[X%X 1. =F and F[X%X >: F. Hence the result.

E6) Let f(x)=a,+a,X+---+a,X".
Then a,+a,a+:--+a,a" =0, as aeF" is aroot of f(x).
So a"(aa"+aa"+---+a,)=0.
Since a" #0 and F is a domain,
a,+a,a +---a,@")" " +a,(@’)" =0, noting that a"=(a™)" V meZ.
satisarootof a,+a, X+-+aXx"" +a,X"e F[x].
No, as a* may not lie in D. For example, 2 is a root of X*—4 e Z[x].
But 4x’—~1e Z[x] has no root in Z.

E7) By Theorem 2, f(X) has at most n roots in F. Hence, f(x) has at most
n distinct roots in F.

E8) Statement: Let f(x) and g(x) be two non-zero polynomials of degree
n over an integral domain D. If there exist n +1 distinct elements
a,,...,4,,, in D suchthat f(a;,)=9(a;) V i=1..,n+1 then f(x) =g(x).

Proof: Follow the reasoning in the proof of Theorem 3, applying

990 Theorem 4 and E7 to get the result.



E9)

E10)

E11)

E12)

E13)

E14)

E15)

E16)

Show how this follows from Corollary 1 and Theorem 2.

) Youknow that (Z,, -) is a group, and 0(Z,) =p—1.
Thus, from Unit 4, you know that XT=1V xe Z;,
i.e., each of the p—1 elements of Z; is aroot of X1 —1.
Therefore, (x—1)....(X —p_—1)| (X -1).
Since X" —1 can have at most p —1 roots in Z, (by Theorem 2),
we find that the (p—1) elements of Z; are the only roots of
xPt -1,
Now, comparing the leading coefficients and degrees of x"* —1
and ﬁ(x —1), we see that X" =1 =(x-1)(x-2)...(x—p-1).

i=1

i) Substituting 0 for X in (i), we get — 1 =(-1)"*(p-1)!, i.e.,
p-1=(-1)"*(p-1)!, since p~1=-1 in Z,
i.e., (<1)"*(p-2)!=1(modp).
Now, (—1)**=1(modp), for every prime p. (Why?)
Hence, we get the result.

The polynomial x“+ 4 is the same as X'~1 in Z[x], since 4=-1.
Thus, applying the result in E10, we get
X'+4=(x=1)(x=2)(x-3)(x—4).

Recall, from your study of group theory, the group U(n) of the nth roots

of unity. Each nth root of unity is a zero of x"—1 in C. Also, X"—1 has
at most n zeros in C. Hence, the elements of U(n) are all the zeros of

X"-1in C.
i) No, since X’'—2x+1=(x-1)(x -1).

i)  No, since X’ + X +1= (X —0)(X—®’), where o is a non-real cube
root of unity.

i) Yes, by Example 2.

iv)  No, since x'+3x° +2= (x> +1)(X* +2).

v)  No, by Theorem 6.

Let f(x) = X’+ 3x*+ 2. Since f(x) is a cubic, by Theorem 6 you need to
see if f(a) = 0 for any a € Z,. You will find that f(a) =0 V a € Z,.
Thus, f(x) is irreducible over Z.

False. For example, a linear polynomial over F is irreducible, and its
root is in F. However, it is true for the other cases, by Theorem 5.

Let f(x) = x*+x*+x* —x+1in Z[X].
Then f(~2) =16 -8+ 4+ 2 +1=15.
Thus, f(-2) =0 in Z,[x] for p=3 or p=5.

~(x+2)|f(x) in Z,[x] if p=3 or p=5.
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E17) X'—1=(X-D)(X""+ X" ?+--+x+) V n=>2.
Thus, X"—1 is reducible ¥V n > 2.
However, for n =1, X -1 is irreducible, by Example 2.

E18) Since p(X) is irreducible over F, itis prime in F[x], by Corollary 4.
You need to prove P(n) istrue V ne N, where
P(n): if p(x)[f,(x)...f,(x), then p(x)|f,(x) for some i=1,...,n.
P() is trivially true. (Why?)
Assume that the statement P(m) is true for some m e N.
You should prove that P(m+1) is true. (You can write

f.(X)... T (X) =[f,(X)...T . (X)]f,..(X), and use the definition of a prime
element.)
Hence, P(n) istrue V neN.

E19) i) e.g., take x*~5 in Q[x], and in R[x]. Use Example 4 and
Theorem 6 to show why the statement is false.
i) This is false. Since 1 is a zero in Zg, the given polynomial is
reducible, and hence, not prime in Z[x].
i)  Nottrue; e.g., X is a prime element of F[X], but X is zero in
F[x]/< x >, and hence, not a prime element.

E20) If p(x) is linear, it is irreducible. However, if it is quadratic it need not be
irreducible. e.g., xX*~1 is quadratic and reducible in R[x].

E21) By Theorem 9, p(x) has 6 linear factors in C[x], not necessarily
distinct.

For p(x) € R[x], we have the following cases.

i) All the roots of p(x) are in R. Then p(X) has 6 irreducible
(linear) factors in R[x].

ii) p(x) has 4 rootsin R and 2 in C\R. Then p(x) has 5
irreducible factors in R[x], 4 linear and 1 quadratic, as in
Theorem 10.

i)  p(x) has 2 rootsin R and 4 in C\RR. Then p(x) has 4
irreducible factors in R[x], 2 linear and 2 quadratic.

iv)  p(X) has no real roots, and 6 roots in C\RR. Then p(x) has 3
irreducible factors in R[], all of them being quadratic.

E22) The coefficients in X"—p are a,=1a, ,=0=---=a,, a, =—p.
~.pla; fori=0,1...,n-1, p){an and pz)(ao.
Hence, by Eisenstein’s criterion, X" — p is irreducible in Z[x], and
hence, in Q[x].

E23) Not so; (X* +1) is a counterexample. (Why?)

E24) i) It is irreducible, since its roots are not in (Q (or show this by using

299 Eisenstein’s criterion with p =3).



i)  This is irreducible, using Eisenstein’s criterion with p = 3.
iii)  This is irreducible, since it is a linear polynomial.

iv)  Note that this is reducible over Z, since itis 5(x* +1). ltis
irreducible over Q as it has no roots in Q.

E25) Since (Z,, -) is a group of order p—1,
a'=1vaei,
.a’=avaeZ,
Also 0° =0.
~a’=avaei,
Sop-a +a=p-a+ta=p=0vack,
Thus, p—a is azero of X" +13 in Z,.

. XP +3 is reducible over Z,.

E26) From Example 6, you know that if n is a prime, this is irreducible in

QIx].

g -
However, if you take an odd composite integer, say n =9, then Zx'
i=0
has (-1) as a root.
.. Itis reducible in Q[x].

E27) False. For example, 3(x +5) is irreducible over Q, but not over Z.

E28) X isirreducible over Z. However, Z[X%X >: Z, which is not a field.

Hence, < X > is not maximal in Z[X].

E29) i) Show that by Eisenstein’s criterion, X'+ 7x° —14 is irreducible over
Z[X], and hence, over Q[X].

o <X +7x°=14 > is maximal in Q[x].
Hence, the given quotient ring is a field.
i) By Theorem 10, X'+ 7x°* —14 is reducible in R[x].
Hence, < X'+ 7x%—14 > is not maximal in R[x].
Hence, the given quotient ring is not a field.
iy  False. Use the Mod p Irreducibility Test, with p = 2, to show that
21x°—3x*+ 2x + 9 is irreducible over Q.

E30) Take, for example, x'°~11. Explain why this example works.

E31) i) Eisenstein’s criterion can’t be applied here. Let's apply Theorem
14 for p =3. We get the polynomial 2x*+ 2 over Z,[x].
But this has a root, 2.
So taking p =3 doesn't help.
Let us try p =5. Then the polynomial we get is

2%+ 3%+ X + 2 € Zg[X].
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You should check that this has no zero in Z. Thus, it is irreducible
over Zs.

Hence, by Theorem 14, 2x>+3x°+6x + 2 is irreducible over Q[X].
ii) Similarly, apply Theorem 14 here, with p =5.

i)  Apply Theorem 14, with p =3, to conclude that this has no linear
factors in Z,[x]. Then check for quadratic factors.
Suppose X*+ax + b € Z,[x] is such a factor.
Then it should not have a zero in Z,. So the only possibility for
such factors are X*+1, X'+ X+ 2 and X"+ 2X + 2.
By long division, you should check that none of these divide
X+ 2x+1 in Zg[X].
5 X+ 2x+ 1 is irreducible in Z,[x].
Therefore, the given polynomial is irreducible over Q.

iv)  If p(X) =8x’—6x +1, then you can show this is irreducible over Q
by using Eisenstein’s criterion on p(x +1). You can also use
Theorem 14, with p =5, to prove this.

E32) You should check that
(3X+2)(x+4) =3x°+4x + 3= (4x + 1)(2x + 3).
Also note that X + 4 = 4(4x + 1) and 3x + 2 = 4(2x + 3), where 4 €Z;.
Hence, this exemplifies Theorem 15(ii); it doesn’t contradict the theorem.

E33) Inspection works here. You should check that the given polynomial is
(2X°+ X +2)(x*+1), as a product of irreducible polynomials over Q.

E34) By trial-and-error, using Theorem 13 as an aid, we get (x—2) as a
linear factor.
Then, by long division, you will get
2x = 3x°—8X°+ 9x + 6 = (X - 2)(2X°+ X* —6X - 3)
= (x—2)(2X +D)(X —/3)(x +/3),
applying Theorem 13 again, or by inspection.
This is the required factorisation.

5,
E35) All 5 canbe real, asin [[(x-a;), a, € R.
i=1
It can have 3 real roots and 2 non-real roots, as in (x*+1)(x +1)°,

or it can have only 1 real root, as in (X*+1)*(X +1).

E36) For instance, (2x + 3)(4x + 1) =3(2x + 1).
Here 3 is a unitin Zg, since (3, 8) =1.

So the LHS is a product of two irreducible polynomials, while the RHS
has only one irreducible polynomial.
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MISCELLANEOUS EXAMPLES AND EXERCISES

As in the previous blocks, the few examples and exercises, given below cover
the concepts and processes you have studied in this block. Studying the
examples, and solving the exercises, will give you a better understanding of
the concepts concerned. This will also give you more practice in solving such
problems.

Example 1: Find all the prime ideals, and maximal ideals, of Z.

Solution: The ideals of Z,, are of the form MZ,,, where m|16.

So m=1, 2,4, 8, 16.

Thus, the proper ideals are {0}, <2 >, <4 >, <8 >.

Since 16 is not a prime, Z,, is not a domain. So {0} is not a prime ideal.

Next, by the isomorphism theorems, Z%ﬁ >‘—“Zz, a field.

So < 2 > is a maximal ideal of Z,,, and hence a prime ideal of Z;.

Now, let us consider < 4 >. Since 4e<4 > iss.t. (4)2=16=0, and 4 =0,
< 4> is not a prime ideal of Z,.

Similarly, show why < 8 > is not a prime ideal of L.

Thus, the only prime ideal of Z,, is < 2 >, which is also the only maximal
ideal.

*k*k

Example 2: Prove that the prime ideals of Z, correspond to the prime ideals
of Z containing nZ, where n € N.

Solution: We have the natural epimorphism n:Z — Z, : t(m) = m+nZ = m.
Here Ker m=nZ.
By E47(iii), Unit 14, you get the result now.

**k*

Example 3: If R and S are two rings and f:R — S is a homomorphism, then

f(M) is a maximal ideal of S for every maximal ideal M of R. True, or false?

Why?

. . . 7,
Solution: Consider the natural map n:7Z — AZ'
Now, 57 is maximal in Z, but n(57Z) :%Z, since (5,6) =1

Hence, m(5Z) is not a proper ideal. Thus, it is not a maximal ideal of Z/67Z.
Thus, the given statement is false.

*k*k

Example 4: If R is a commutative ring with unity, can R[x] be a field? Why,
or why not?

Solution: Suppose R[x] is a field. Then x™* € R[x], say x* =f(X) € R[X].
So xf(x)=1. ..(1)
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Also, since R[X] is without zero divisors, R is without zero divisors.
Thus, by (1), 1+ deg f(x) =0, a contradiction.
Thus, R[X] is not a field.

*k*k

Example 5: Prove that if a ring has characteristic zero, then it must be infinite.

Solution: Let R be a ring with characteristic zero.
If there is an a € R s.t. 0(a) is infinite, then {na|n € 7} is an infinite subset of

R. Thus, R must be infinite.

Now consider the case that every element of R has finite order. Suppose, if
possible, that R is finite, say R ={a,, a,,...,a,}-

Let o(a;,)=m\Vi=1...,n.

Then, for m=mm,...m_,, ma, =0V i=1...,n.

So char R is finite, a contradiction to our hypothesis.

Hence, R must be infinite.

*k*k

Example 6: Construct a field with 8 elements, using an appropriate
irreducible polynomial over Z,.

Solution: We are looking for a field with 2° elements. So we use Theorem 6

Notgitnat the ficldfiy and Corollary 3 of Unit 16, and look for an irreducible cubic polynomial over

Example 6 has p' 7
elements, where p =2 2 _ \
and r = 3. Let us consider f(x)=Xx"+x+1.
You should check that f(x) is irreducible over Z,.
Hence, Zy[x] ={ax’ +bx+c+<x*+x+1>[a, b, ceZ,} is a field.
<X +X+1>
Since each of a, b, ¢ can take 2 values, the number of elements in this field
is 8.

Hence, this is the required field.

**k*k

Example 7: Let F be afield and f(x) e<x>. Let K={a e F|f(oc) =0}. Is K
a subring of F? Give reasons for your answer.

Solution: Consider f(x) = Xx(x —1) € R[x]. Here K={0, 1}. So K is not a
subring of R.

*kk

Miscellaneous Exercises

E1) If R and S are rings with identity, and f:R — S is a monomorphism,
show that char R =char S.

E2) Let F be afieldand R be aring s.t. f:F— R is a ring homomorphism.
Show that f is the zero map or f is 1-1.
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E3)

E4)

ES5)

E6)

E7)

E8)

E9)

Let R be a domain. Show that o(r) =0(s) V r, s € R, where 0(X)
denotes the order of X as an element of (R, +).

Let R be a commutative ring s.t. the order of (R, +) is 10. Can R be
an integral domain? Why, or why not?

Let R be an integral domain. If char R =0, show that the order of every
non-zero element is infinite. If char R = p, show that every non-zero
element has order p.

Is 3x° +15x* — 20x%+10x + 20 irreducible over Q[x]? Is it irreducible
over R[x]? Give reasons for your answers.
Let F be afield, f(x) e F[x] and a=0, aeF.

i) If af (x) is irreducible over F, prove that f(X) is irreducible over
F.

iy If f(ax) isirreducible over F, prove that f(X) is irreducible over
F.

iy If f(x+a) isirreducible over F, prove that f(X) is irreducible over
F.

Construct a field of with 25 elements.

Check whether the following polynomials are irreducible or not.

: 5,5,9.,4,15 3, 3,2, 6 3
|) EX +ZX +TX +§X +7X+E over @,

iy  X*+x+4 over Z,,,
iy x*+1 over Z,,,
iv)  x*+15x°+7 over Q,

v) X+ (Bm+1D)x+(5n+1) over Z, where m, neZ.

E10) Let f(X) € F[x], F being a field. Show that for any a e F,

(x—a)|[f (x) - (@)].

E11l) Let f(X) € Z[X] be a monic polynomial. Let o € Q s.t. f(a) =0. Show

that a € Z.

E12) Let F be a finite field. Find a polynomial over F which has no root in F.
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SOLUTIONS / ANSWERS

E1l) Let f:R —S be a monomorphism, and let char R =m, char S=n.
Now, m is the least positive integer s.t.

m-1=0 in R. (2

Also f (1) is the identity in S. Hence, by definition, n is the least positive
integer s.t.

n-f(1)=0 in S. ..(3)

(2) givesus m-f(1)=f(0)=0, in S. ...(4)

From (3) and (4), we get m>n.
Similarly, you should see why n>m.
Thus, m=n.

E2) Let f=0. Since Ker f is anideal of F, and Ker f # F, we get
Ker f ={0}. Thus, f is 1-1.

E3) Let o(r)=m, o(s)=n.
Then mr=0,ns=0, and m and n are the least such positive integers.
Now, mr=0= (mr)s=0

=r(ms)=0

=ms=0, since r=0
-.njm. ...(5)
Similarly, you should show that m|n. ...(6)

(5) and (6) give us m=n, i.e., o(r) =0(s).

E4) Since 2 and 5 are primes dividing 10, by Cauchy’s theorem for finite
abelian groups (see Unit 7), we have a,beR s.t.
o(a)=2 and o(b) =5.
Now, o(a)=2=5a=a=0.
Also, o(b)=5=2b=0.
But (5a)(2b) =10ab =0, since o(R) =10.
Thus, 5a and 2b are zero divisors in R.
Hence, R is not an integral domain.

E5) ByE3, o(f)=o() VreR. (7
If char R =0, then o(2) is infinite.
So, by (7), o(r) isinfinite VreR".

If char R =p, then by (7), o1)=p=o0(r) VreR.

E6) Let p(x)=3x"+15x"*—-20x°+10x + 20.
Now 5 divides each of the coefficients of x*, x*, x?, X', X°, i.e.,
15, — 20, 0, 10, 20.
Also 5/{/3, the leading coefficient, and 5° }r20, the constant term.
Hence, by Eisenstein’s criterion, p(X) is irreducible over Q.

Since deg p(x) > 2, it is reducible over R.
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E7) i) Suppose, to the contrary, that f(x) is reducible over F.

Then f(x) =g(x)h(x) in F[x], where deg g(x)>1, deg h(x) >1.

= af(x) =[ag(x)]h(x), with deg ag(x) >1 and deg h(x) >1.

Thus, af(x) is reducible in F[x], a contradiction.

You can solve (ii) and (iii) along the same lines as (i).

E8) Note that 25=>5% So we can look for an irreducible quadratic polynomial
over Z., to construct a field of order 25. You can see Example 6 for
completing the solution.

E9) i) Let f(X) be the given polynomial, and g(x) =140f (x).
Then g(x) = 350X + 315x" + 525X + 84x*+ 120X + 42.
Now, taking p =3 and applying Eisenstein’s criterion, you should
be able to conclude that g(x) is irreducible over Q.
Hence, f(X) is irreducible over Q (using E7(i)).

ii)  You should check that none of the elements of Z,, is a root of the
given polynomial. Hence, it is irreducible.

iii)  Again, as in (ii), show that this is irreducible.

iv)  Using the mod p test, for p=3, you should show that this is
irreducible.

v)  Apply the mod p test for p=>5, and prove this.
E10) Let g(x)=f(x)—f(a) e F[x]. Then g(a) =0, i.e., a is a root of g(x).
Hence, (X—a)|g(x). Hence the result.

E11) Let f(x)=X"+a, X" +---+a,Xx+a, € Z[x], and let o =, with

(p,q)=1.

Then p" +a,_,p"'q+---+a,pq" " +a,q" =0.

If q==1, then a€Z.

Suppose ( = =*1, and let r; be a prime dividing g. Then r, divides
[-a(a,,p"" +--+a,pq" " +a,q" )] =p".

Hence, 1|p (see Unit 1).

We reach a contradiction because (p, q) =1.

Hence, q has no prime factors.

Hence, q=41, i.e., a eZ.

ol

E12) Let F={a, a,,...,a,}. Then
f(x):1+ﬁ(x—ai)eF[x].

Also f(a,)=1Vi=1...,n.
Thus, no element of F is a root of f(X).

Hence, f(X) fits the given constraints.
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