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BLOCK INTRODUCTION 
 
This block is a continuation of Block 1, where we discussed various groups and their 
subgroups. In this block, we start by looking at certain subsets of a group which are 
closely linked with a given subgroup of the group. These are called cosets of the 
subgroup in the group. In Unit 5, you will study the cosets of a subgroup in a finite 
group, in particular. The focus is on an extremely useful theorem, called Lagrange’s 
theorem. 
 
In the next unit, Unit 6, you will study a particular kind of subgroup, called a normal 
subgroup. Here you will study many examples and properties of these subgroups. In 
this unit, you will also study the reason for the creation of such subgroups. This is 
closely linked with the next unit. 
 
In Unit 7, you will really see the importance of normal subgroups. You will see that it is 
only the cosets of these subgroups that form a group, called a quotient group. In this 
unit, you will study many examples of quotient groups. You will also find out whether a 
quotient group of a group G  has all the algebraic properties of G  or not. 
 
In the next unit of this block, Unit 8, we will introduce you to group homomorphisms, 
which are functions between groups that preserve the algebraic structure of their 
domains. Then you will study about bijective homomorphisms, called isomorphisms. 
This will lead us to the concept of algebraically indistinguishable systems. We say that 
such systems are isomorphic. This word was first used in 1870 by the French group 
theorist, Camille Jordan, to describe two groups that are not equal but have exactly the 
same algebraic behaviour. Finally, we will discuss the important Fundamental Theorem 
of Homomorphism, and its applications. 
 
In Unit 9, you will study groups of permutations, which you were introduced to in Unit 2. 
Permutation groups give you a concrete basis for the abstract group theory that you 
are studying. These groups are also important because of the fact that every group is 
isomorphic to a permutation group, as you will see. In fact, the beginnings of group 
theory lie in the study of permutations. 
 
With this block we end the study of group theory. In the next two blocks, you will study 
another algebraic system, namely, a ring. You will see that this system is also a group. 
And hence, you will continue to use the concepts that you have studied in this block, 
and the previous one. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1: M. E. Camille  
           Jordan 
          (1838-1922) 
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NOTATIONS AND SYMBOLS (used in Block 2) 
 
Please review the notations and symbols given in Block 1 also. 
 

fKer   kernel of the homomorphism f  
fIm   image of the homomorphism f  

~−   is isomorphic to  
)xH(Hx   the right (left) coset of H  with representative x  

nA   the alternating group on n  symbols 
)G(Z   the centre of the group G  

H    G   H  is normal in G  
HG   the quotient group of G  by H  

G],G,G[ ′   the commutator subgroup of G  
GAut   the group of automorphisms of G  
GInn   the group of inner automorphisms of G  
KH×   the internal direct product of the subgroups H  and K  
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  UNIT 5                                  

                  LAGRANGE’S THEOREM 

Structure       Page Nos. 
 
5.1 Introduction            149  

Objectives 
5.2 Cosets             150  
5.3 Lagrange’s Theorem           157  
5.4 Some Applications           159 
5.5 Summary            164 
5.6 Solutions / Answers           164          
 

5.1 INTRODUCTION 
 
In Unit 3, you have studied different kinds of subgroups. Also, in Unit 1 you 
have studied about the partitions formed by an equivalence relation. Here, we 
put these two ideas together. It turns out that given any group G  and a 
subgroup H  of the group, we can define an equivalence relation on G  using 

.H  In this unit, we will discuss this equivalence relation and consider the 
partition of G  given by the equivalence classes concerned. 
 
In Sec.5.2, you will study about the equivalence relations defined on a group, 
corresponding to each of its subgroups. You will also study the importance of 
the partitioning of a group into the equivalence classes, called cosets.  
 
In Sec.5.3, we will use cosets to prove a very useful theorem about the order 
of a finite group vis-à-vis the order of any of its subgroups. The beginnings of 
this result were made in a research paper, on the solvability of algebraic 
equations, by the famous French mathematician, Lagrange (pronounced la-
graunj). This is why this elementary theorem is known as Lagrange’s theorem, 
though Lagrange only proved it for subgroups of ,Sn  it seems. 
 
In Sec.5.4, you will get a feel of the importance of Lagrange’s theorem. Here 
you will study some of its applications and consequences. 
 
While studying the other units of this block, you will be using Lagrange’s 
theorem frequently. So, study this unit carefully, towards meeting the following 
learning objectives, around which it has been created. 

Fig.1: Joseph Louis 
Lagrange (1736-1813) 

 



 

 

150 

 
Block 2                                                      Normal Subgroups and Group Homomorphisms

Objectives 
After studying this unit, you should be able to:  

• define, and give examples of, left and right cosets of a subgroup; 

• partition a group into disjoint cosets of a subgroup; 

• state, prove and apply, Lagrange’s theorem; 

• disprove the converse of Lagrange’s theorem. 
 

5.2 COSETS 
 
In Sec.3.4, Unit 3, you studied the product of two subsets of a group. We will 
now look at the case when one of the subsets is a singleton. In fact, we will 
look at the situation },Hhhx{}x{H ∈=  where H  is a subgroup of a group G  
and .Gx∈  We will denote H{x}  by .Hx  
 
For example, if ><== )21(H,SG 3  and ),321(x =  then 

)}.32(),321{()}321()21(),321{()321(HHx === o  This is an example of 
a right coset, as you will now see. 
 
Definitions: Let H  be a subgroup of a group ,G  and let .Gx∈   

i) The set }Hhhx{Hx ∈=  is called a right coset of H  in .G  The 
element x  is called a representative of .Hx  

ii) The set }Hhxh{ ∈=xH  is called a left coset of H  in G,  
represented by .x  

 
Note that if the group operation is commutative, say ,+  then the right and left 
cosets of H  in ),,G( +  represented by ,Gx∈  are }Hhxh{ ∈+=+ xH  and 

},Hhhx{ ∈+=+Hx  respectively. 
 
The term ‘coset’ was probably first used by the mathematician, G. A. Miller, in 
1910. However, according to historical sources, it was the famous young 
French mathematician, Galois, who invented the concept in 1830. Let us look 
at some examples of this algebraic object. 
 
Example 1: Show that H  is a right as well as a left coset of a subgroup H  in 
a group .G  
 
Solution: Consider the right coset of H  in G  represented by ,e  the identity of 

.G  Then .H}Hhh{}Hhhe{He =∈=∈=   
Hence, H  is a right coset of H  in .G  
Similarly, ,HeH =  so that H  is a left coset of H  in ,G  represented by .e  

*** 
 
Example 2: What are the right cosets of Z4  in ?Z  
 
Solution: Here }.,12,8,4,0,4,8,{4H KK −−== Z  
The right cosets of H  are  

,H0H =+  using Example 1. 



 

 

151

 
Unit 5                                                                            Lagrange’s Theorem

},,13,9,5,1,3,7,11,{1H KK −−−=+  
},,14,10,6,2,2,6,10,{2H KK −−−=+  

},,15,11,7,3,1,5,9,{3H KK −−−=+  
.H},12,8,4,0,4,8,{4H =−−=+ KK  

Similarly, you can write out the elements of ,,6H,5H K++  and see that 
,2H6H,1H5H +=++=+  and so on. 

You can also check that ,1H3H,2H2H,3H1H +=−+=−+=−  and so on. 
Thus, the distinct right cosets are 2H,1H,H ++  and .3H +  

*** 
 
Consider an important comment here. 
 
Remark 1: Note that xH0 +∈  in Example 2 if and only if .Hx∈  Thus, xH +  
is not a subgroup of G  unless .Hx∈  For example, 1H +  and 2H +  are not 
subgroups of .G  
 
Before giving more examples of cosets, let us discuss some properties of 
cosets. You have seen some of these in Example 2. These properties will 
make it easier for us to find the distinct right (or left) cosets of H  in .G  
 
Theorem 1: Let H  be a subgroup of a group G  and let .Gy,x ∈  Then 

i) ,Hxx∈  

ii) ,HxHHx ∈⇔=  

iii) .HxyHyHx 1∈⇔= −  
 
Proof: For any }.Hhhx{Hx,Gx ∈=∈  
i)  Since ,Hxex,He ∈∈  that is, .Hxx∈  
 
ii) First, let us assume that .HHx =  Then, since .Hx,Hxx ∈∈  
  
 Conversely, let us assume that .Hx∈  We will show that HHx ⊆  and 

.HxH ⊆  
 Now any element of Hx  is of the form ,hx  where .Hh∈  Since Hh∈  

and .Hhx,Hx ∈∈   
 Thus, .HHx ⊆         …(1) 
 Again, for any ,Hxx)hx(h,Hh 1 ∈=∈ −  since Hh∈  and .Hx 1∈−    
 .HxH ⊆∴        …(2) 
 From (1) and (2), you can see that .HHx =  
 
iii) Let .HyHx =  Since Hh,HyHxx ∈∃=∈  s.t. .hyx =   
 Therefore, .Hhhyyxy 11 ∈== −−  
 Conversely, let .Hxy 1∈−  Then, by (ii), .HHxy 1 =−   
 So, for  any hhxy,Hxhx 1 ′=∈ −  for some .Hh ∈′  Thus, .Hyyhhx ∈′=  

So .HyHx ⊆        …(3)  
 Similarly, you can prove that .HxHy ⊆    …(4)   
 By (3) and (4), .HyHx =    
 
The properties listed in Theorem 1 are not only true for right cosets. Consider 
the following observation. 

 .HxHHx ∈∀=  
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Remark 2: Along the lines of the proof of Theorem 1, you can prove that if H  
is a subgroup of G  and ,Gy,x ∈  then  

i) ,xHx∈  

ii) ,HxHxH ∈⇔=  

iii) .HyxyHxH 1 ∈⇔= −  
 
Let us now look at a few more examples of cosets. First we shall take 
Example 2 further, using Theorem 1 to generalise it. You know that any 
subgroup of Z  is of the form ,nZ  where .n Z∈  Let’s see what the cosets of 
Zn  are. 

 
Example 3: For ,n N∈  show that the distinct right cosets of Zn  in Z  are 

1).(nn,1,n,n −++ ZZZ K  Similarly, the distinct left cosets of Zn  in Z  are 
.n)1n(,,n2,n1,n ZZZZ +−++ K  

 
Solution: Let us write ,Hn =Z  for convenience. Now H  is one coset, as you 
have seen in Example 1. Then )1n(H,,2H,1H −+++ K  are also right 
cosets. Also, from Theorem 1, you know that for ,m,m 21 Z∈  

21 mHmH +=+  iff ,nHmm 21 Z=∈−  i.e., iff ).mm(n 21 −  

Now, for n,ji,nj,i0 ≠<≤   ),ji( −  since .nji0 <−<  
Thus, )1n(H,,2H,1H,H −+++ K  are distinct right cosets of H  in .Z  
However, since .H0HnH),0n(n =+=+−  
Similarly, ,1H)1n(H +=++  and so on. 
In fact, for any Z∈m  s.t. nm ≥  or ,0m <  by the division algorithm ,r,q Z∈∃  
such that .nr0,rqnm <≤+=  Then ).rm(n −  
Thus, rHmH +=+  for some .1n,,1,0r −= K  
Hence, )1n(n,,1n,n −++ ZZZ K  are all the distinct right cosets of Zn  in .Z  
 
Similarly, you can prove that ZZZ n)1n(,,n1,n +−+ K  are all the distinct left 
cosets of Zn  in .Z  
We denote Znm +  or mn +Z  by ,m  where .m Z∈  

*** 
 
From Example 3, in particular, you know that the right cosets of Z4  in Z  are 

,3,2,1,0  as you discovered in Example 2. For example, 
,114574 =+=+ ZZ  since ).4(mod157 ≡  Similarly, ,224264 =+≡− ZZ  

since ).4(mod2)26( ≡−  
 
In Examples 2 and 3, you have looked for cosets in the abelian group .Z  Let 
us now consider the cosets in a non-abelian group. 
 
Example 4: Let )}231(),321(),32(),31(),21(,I{SG 3 ==  and let H  be 
the cyclic subgroup of G  generated by ).321(  Obtain the left cosets of H  in 

.G  (You will see, in Unit 9, that H  is ,A3  the alternating group on 3  
symbols.) 
 
Solution: Two left cosets are  

)}231(),321(,I{H =  and  

Note that m is an element 
of ,Z  while m  is a 
subset of .Z  
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)}231()21(),321()21(),21{(H)21( oo=  
           )}.31(),32(),21{(=  
Now, from Unit 2 you know that ).32()32(),31()31(),21()21( 111 === −−−  
Also .H)231()31)(21()31()21( 1 ∈==−  
So, you can apply Theorem 1 to see that .H)31(H)21( =  
Similarly, you can show that H)31(H)32( =  and .H)231(HH)321( ==  
Thus, the distinct left cosets of H  are H  and .H)21(  

*** 
 
A brief comment here about the example above. 
 
Remark 3: Note that .H)21(HS3 ∪=   
You can also verify that .H)32(HH)31(HS3 ∪=∪=  
Further, ,H)31(H,H)21(H «« =∩=∩  and so on.  
What do you see if you connect this information with ‘partitions’, which you 
studied about in Unit 1? 
 
Let us now look at the cosets of a very important group, the quaternion 
group. In E29, Unit 2, you have seen that 

}.BA,BA,AB,B,A,A,A,I{Q 3232
8 =  We can also write 

},C,B,A,I{Q8 ±±±±=  where 

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

i0
0i

C,
0i
i0

B,
01
10

A,
10
01

I  and .1i −=   

Here the following relations hold between the elements of :Q8  

,ICBA,I)I( 2222 −====−  
.ACBCA,CBABC,BACAB −==−==−==  

Note that 8Q  is a non-abelian group under matrix multiplication. With this 
recap of ,Q8  consider the following example. 
 
Example 5: Show that the subgroup ><= AH  has only two distinct right 
cosets in .Q8  How many distinct left cosets does it have in ,Q8  and why? 
 
Solution: },A,I,A,I{}A,A,A,I{AH 32 −−==><=  since .4)A(o =  
Therefore, },C,B,C,B{HB −−=  using the relations given above. 
Using Theorem 1(ii), you can see that  

).A(H)I(HHAHIH −=−===  
Now .AAA 31 −==−  Similarly, .CC,BB 11 −=−= −−  So, .HABCBC 1 ∈−=−=−  
Hence, using Theorem 1(iii), you can see that .HCHB =   
 
On the same lines, verify that ).C(H)B(HHB −=−=  
 
Therefore, H  has only two distinct right cosets in ,Q8  namely, H  and .HB  
Note that ,HCHHBHQ8 ∪=∪=  and so on. 
Here .HCHHBH ∩==∩ «   
 
Similarly, you should verify that any two distinct right cosets of H  in 8Q  are 
disjoint. 
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Along the same lines as above, you should show that H  and CH  (or )BH  
are the only two distinct left cosets of H  in .Q8  

*** 
 
Try solving the following exercises now. 
 
 
E1) Obtain all the left and right cosets of ><= )21(H  in .S3  Show that 

xHHx ≠  for some .Sx 3∈  
 
E2) Prove that if G  is an abelian group and ,GH ≤  then every left coset of 

H  is a right coset of H  in ,G  and vice-versa. 
 
E3) Show that }I,I{K −=  is a subgroup of .Q8  Obtain all its left and right 

cosets in .Q8  
 
E4) i) Is every coset of a subgroup of a group G  also a subgroup of ?G  

Give reasons for your answer.  

 ii) Prove that if G  is a group and ,GH ≤  then GxH ≤  iff .Hx∈  
 
E5) Let G  be a group and .GH ≤  Show that for ,Gc,b,a ∈ HbHa =  iff 

.HbcHac =  
 
 
In the examples above, you may have noted that each group can be written as 
the union of disjoint cosets of the subgroup concerned. This is true for any 
subgroup of any group. To see this, we define an equivalence relation on the 
elements of .G  (This is what we had hinted at in Remark 3!) 
 
Theorem 2: Let H  be a subgroup of a group .G  The relation ∼, defined by 

y~x'  iff Hxy 1 ′∈−  on the elements of ,G  is an equivalence relation. The 
equivalence classes are precisely the right cosets of H  in .G  
 
Proof: We need to prove that ∼ is reflexive, symmetric and transitive. 
Firstly, for any .Hexx,Gx 1 ∈=∈ −  ,x~x∴  that is, ∼ is reflexive. 
Secondly, if y~x  for any ,Gy,x ∈  then .Hxy 1∈−  

.Hyx)xy( 111 ∈=∴ −−−  Thus, .x~y  That is, ∼ is symmetric. 
Finally, if Gz,y,x ∈  such that y~x  and ,z~y  then Hxy 1 ∈−  and .Hyz 1 ∈−  

,H)yz)(xy( 11 ∈∴ −−  i.e., ,z~x.Hxzz)yy(x 111 ∴∈= −−−  that is, ∼ is transitive. 
Thus, ∼ is an equivalence relation. 
 
The equivalence class of Gx∈  is 

},HyHxGy{}HyxGy{}x~yGy{]x[ 1 =∈=∈∈=∈= −  by Theorem 1. 
 
Now, we will show that .Hx]x[ =  So, let ].x[y∈  Then .HxHy =   
Since .Hxy,Hyy ∈∈  This is true for any ].x[y∈  
Therefore, .Hx]x[ ⊆        …(5) 
Now, consider any element hx  of .Hx  Then .Hhhxx)hx(x 1111 ∈== −−−−  
Therefore, .x~hx  That is, ].x[hx∈  This is true for any .Hxhx∈   

If Hg,GH ≤  need not 
be equal to .GggH ∈∀  
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Therefore, ].x[Hx ⊆        …(6) 
Thus, (5) and (6) tell us that .Hx]x[ =  
Hence, each equivalence class is a right coset of H  in .G  
 
Using Theorem 2 above, and Theorem 9, Unit 1, we have the following result. 
 
Corollary 1: Let G  be a group and .GH ≤  If Hx  and Hy  are two right 
cosets of a subgroup H  in ,G  then HyHx =  or .HyHx «=∩  Further, any 
subgroup H  of a group G  partitions G  into disjoint right cosets. 
 
Proof: The relation in Theorem 2 is an equivalence relation, with the 
equivalence classes being .GxHx ∈∀  Using Theorem 9, Unit 1, we see that 
this equivalence relation partitions G  into disjoint cells. Note that any two cells 
are either equal or disjoint. Hence the result. 
 
On exactly the same lines as above, you can prove that  

i) any two left cosets of H  in G  are identical or disjoint, and  

ii) G  is the disjoint union of the distinct left cosets of H  in .G  
 
So, for instance, in Example 4 you saw that 

.)321()21()321(S3 ><∪><=   
Also, in Example 5, you saw that .ABAQ8 ><∪><=   
 
Consider another example. 
 
Example 6: Verify Corollary 1 for the group 15G Z=  and .3H ><=  
 
Solution: Here }.12,9,6,3,0{H =  

Now }.13,10,7,4,1{1H =+  Similarly, find .,3H,2H K++  
Note that yHxH +=+  iff ,Hyx ∈−  i.e., iff .Hyx ∈−  
Also, by the division algorithm, for any ,rq3n,n +=∈Z  for some .3r0,r <≤   

Hence ,rHrq3HnH +=++=+  since .Hq3 ∈   
Thus, the only right cosets of H  in G  are .2H,1H,H ++  
Verify that these three sets are disjoint and that ).2H()1H(HG +∪+∪=  

*** 
 
You should solve the following exercises now. 
  
 

E6) Let H  be a subgroup of a group .G  Show that there is a one-to-one 
correspondence between the elements of H  and the elements of each 
right or left coset of .H  

 (Hint: Show that the mapping hx)h(f:HxH:f =→  is a well-defined 
bijection.) 

 
E7) Write Z  as a union of the disjoint cosets of .5Z  
 
E8) Write 8Z  as a union of the disjoint cosets of .4 ><  

 
E9) For a group G  and 21 HgHg,GH =≤  implies .gg 21 =  True, or false?  

Why? 
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E10) Let G  be a group and Ga∈  be of order .15  Find all the left cosets of 
>< 5a  in .a ><  

 
E11) Let 1SH =  (see Example 5 of Unit 3). Give a geometric description of the 

cosets of H  in .∗C  
 

 
Using E6, you can see that if H  is a finite subgroup of a group ,G  then the 
number of elements in every coset of H  is the same as the number of 
elements in .H  
 
There is another interesting fact about cosets. Consider Example 4. You know 
that H  has two distinct right cosets in ,S3  and the same number of distinct left 
cosets in .S3  In fact, for any finite group G  and ,GH ≤  the number of left 
cosets of H  in G  is the same as the number of right cosets of H  in .G  Let us 
see why. 
 
Theorem 3: Let G  be a group and H  be a subgroup of .G  The function ,f  
defined by ,Hx)Hx(f:}GyyH{}GxHx{:f 1−=∈→∈  is a bijection. 
Thus, the number of distinct right cosets of H  in G  equals the number of 
distinct left cosets of H  in .G   
 
Proof: Firstly, we must check that f  is well-defined. 
For ,Hyx)xy(HxyHyHx,Gy,x 1111 ∈=⇔∈⇔=∈ −−−−  since .GH ≤  

                                    ,Hx)y( 111 ∈⇔ −−−  since .y)y( 11 =−−  

                                    HyHx 11 −− =⇔  (from Remark 2). 
Thus, f  is well-defined. In fact, since we have used the two-way implication 
throughout the argument above, we have simultaneously shown that f  is 
injective. (How?) You should now check that f  is a bijection. 
 
Hence, there is a one-to-one correspondence between the set of right cosets 
of H  in G  and the set of left cosets of H  in .G   
 
If, in Theorem 3, H  has infinitely many left cosets in ,G  then H  has infinitely 
many right cosets in .G  If H  has a finite number of left cosets in ,G  say ,n  
then H  has n  right cosets in .G  This leads us to the following definition. 
 
Definition: Let H  be a subgroup of a group .G  The number of distinct left 
cosets (or of distinct right cosets) of H  in G  is called the index of H  in ,G  
and is denoted by .H:G  
 
So, Example 3 tells us that .nn: =ZZ  From Example 4, you find that 

.2H:S3 =  Similarly, from Example 5 you know that .2A:Q8 =><  
 
Try solving the following exercises now. 
 
 

E12) Let }3,2,1{S =  and }.2,1{T =  Show that ).S()T( ℘≤℘  Also find 
.)T(:)S( ℘℘  

 
E13) For any finite group ,G  show that ).G(o}e{:G =  
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E14) Find .S: 1∗C  
 
E15) If G  is an infinite group, and ,GH ≤  must H:G  be infinite? Why, or 

why not? 
 

 
So far we have considered the cosets of both finite and infinite groups. Now 
we shall focus on finite groups only. We will use Theorem 3 to prove a very 
important theorem about the number of cosets of a subgroup of a finite group 
in the next section. 
 

5.3 LAGRANGE’S THEOREM 
 
Consider the examples of finite groups discussed in the previous section. In all 
of them, you will find that .H:G)H(o)G(o =  You will soon see why this is true 
in general. 

Also, in Unit 4, you have seen that if G  is a finite cyclic group, and ,GH ≤  
then ).G(o)H(o  In this section, you shall see that this is true for any finite 
group. This fact is part of a fundamental theorem about finite groups. Its 
beginnings appeared in a paper in 1770, written by Lagrange. He proved the 
result, though, for permutation groups only. The general result, that we will 
state and prove, is said to have been proved by Evariste Galois in 1830, at the 
early age of 19! However, it is still named after Lagrange only. Let us see what 
this pivotal theorem is. 
 
Theorem 4 (Lagrange): Let H  be a subgroup of a finite group .G  Then 

.H:G)H(o)G(o =   

In particular, )H(o  divides ),G(o H:G  divides ),G(o  and .
)H(o
)G(oH:G =  

 
Proof: In the previous section you have seen that we can write G  as a union 
of finitely many disjoint right cosets of H  in .G  So, if r21 Hx,,Hx,Hx K  are all 
the distinct right cosets of H  in ,G  we have  

,HxHxHxG r21 ∪∪∪= K       …(7) 
and .rH:G =  

From E6, you know that ).H(oHxHxHx r21 ==== L  
Thus, the total number of elements in the union on the right hand side of (7) is 

.r)H(o)timesr()H(o)H(o)H(o ⋅=+++ L  
Therefore, (7) says that r)H(o)G(o ⋅=  
    .H:G)H(o=  

Thus, ),G(o)H(o  and ).G(oH:G   

Further, .
)H(o
)G(oH:G =  

 
As you can see, Lagrange’s theorem immediately limits the possibilities of 
subgroups of any given finite group. For instance, any finite group of order 25  
can only have subgroups of orders 5,1  or .25  It cannot have a subgroup of 
order ,10  for example, since .2510  
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Consider another example. 
 
Example 7: What are the possible orders of a subgroup of a group of order 

?30  Further, what would the corresponding number of left cosets be? 
 

Solution: Let G  be a group of order .30  Any subgroup of G  can only be of 
order 15,10,6,5,3,2,1  or .30  

Next, the number of cosets of any subgroup H  of G  is .
)H(o
)G(oH:G =  

So, the index of a subgroup of order 30,15,10,6,5,3,2,1  would be 

,30
30,15

30,10
30,6

30,5
30,3

30,2
30,1

30  respectively, i.e., ,1,2,3,5,6,10,15,30  

respectively. 
*** 

 
Here is an important comment about Lagrange’s theorem. 
 
Remark 4: Note that Lagrange’s theorem cannot be generalised to infinite 
groups since the concept of )H(o  dividing )G(o  is meaningful only for finite 
groups.  
However, note that an infinite group can have a finite subgroup, and an infinite 
group can have subgroups of finite index.  
For example, consider ),,( ⋅∗R  which is an infinite group. )},1,1({ ⋅−  is a finite 
subgroup of ).,( ⋅∗R  
Also, you have seen that Z  is infinite, but the index of Zn  in Z  is finite, 
namely, .n   
 
Now consider an example that we referred to in Unit 4. 
 
Example 8: Give an example of a non-cyclic group of which every proper 
subgroup is cyclic. 
 

Solution: Consider ,K4  the Klein 4-group given in Example 6, Unit 4. Over 
there you saw that 4K  is not cyclic. Any proper subgroup of 4K  is of order 1 
or ,2  by Lagrange’s theorem. }e{  is the only subgroup of order ,1  and it is 
cyclic. 
Similarly, the only subgroups of order 2  are .ab,b,a ><><><  
Thus, 4K  is a required example. 

*** 
 

Try solving some exercises now. 
 
 

E16) Let G  be a group, GH ≤/  and .HK ≤/  If 30)K(o =  and ,300)G(o =  
what are the possible orders of ?H  What would the corresponding 
indices of H  in G  be? 

 
E17) If H  and K  are subgroups of a group G  of orders 12  and ,35  

respectively, then find .KH∩  
 
E18) If H  and K  are proper subgroups of a finite group ,G  with 

),K(o)H(o ≠  must ?}e{KH =∩  Why, or why not? 
 
E19) Find the possible orders of a non-trivial proper subgroup of  
 i)   ,S4      ii)   ,D10      iii)   ,Q8      iv)   .n),( n32 NZM ∈×  
 

‘Indices’ is the plural of 
‘index’. 
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You have, by now, got some idea of the power and beauty of Lagrange’s 
theorem. You may wonder if its converse is also true. Consider the following 
remark about this. 
 
Remark 5: The converse of Lagrange’s theorem: if G  is a finite group and  

),G(om  then G  has a subgroup of order .m   
Is this true? If G  is cyclic, you know from Theorem 7, Unit 4, that this is true. 
But, if G  is not cyclic, the converse of Lagrange’s theorem is not true. In Unit 
9, you will study about the subgroup 

),342(),432(),341(),241(),431(),231(),421(),321(,I{A4 =    
       )}32)(41(),42)(31(),43)(21(  
of .S4  You will see that 4A has no subgroup of order ,6  though ).A(o126 4=  
 
We can prove quite a few nice results by applying Lagrange’s theorem. In the 
next section, we shall look at some of these results. 
 

5.4 SOME APPLICATIONS 
 
As you have seen, Lagrange’s theorem is extremely useful for finding the 
possible subgroups of finite groups. In this section we shall look at some 
specific applications of this theorem. 
 
In Unit 4, you have seen that if G  is a finite cyclic group, the order of each 
element divides ).G(o  Now consider all the examples of non-cyclic finite 
groups that you have worked on in this unit, and in other units. You can see 
that for each ,Gg∈  )g(o  divides ),G(o  in each case. This is true, in general, 
as you will now see. 
 
Theorem 5: Let G  be a finite group, and .Gg∈  Then ).G(o)g(o  

Hence, .Ggeg )G(o ∈∀=  
 
Proof: Since .Gg,Gg ≤><∈  
Hence, ),G(o)g(o ><  by Lagrange’s theorem. 

Thus, ).G(o)g(o  
 
Now, let Gg∈  and let .n)g(o =  Then ,nm)G(o =  for some .m N∈  
So mnnm)G(o )g(gg ==  
   .e=  
 
By Theorem 5, we know that, for example, )(G 732 ZM ×=  cannot have an 

element of order n5  for any ,n N∈  since .6)G(o 7=  
 
Next, let us look at a consequence of Theorem 5  for groups of prime order. It 
turns out that such groups are forced to be cyclic, and hence abelian. 
 
Theorem 6: Let G  be a group of prime order. Then G  has no proper non-
trivial subgroup. Further, G  is cyclic. 
 
Proof: Let G  be a group of prime order, .p  Let }.e{H,GH ≠≤  Then 

),G(o)H(o  i.e., .p)H(o  



 

 

160 

 
Block 2                                                      Normal Subgroups and Group Homomorphisms

1)oH =∴  or .p  But }.e{H ≠   
Hence, ).G(op)H(o ==   
Thus, .GH =  
 
Next, since Ga,1p ∈∃≠  s.t. .ea ≠   
So, Ga ≤><  s.t. }.e{a ≠><   
Therefore, ,Ga =><  that is, G  is cyclic. 
 
Let us consider an example of the usefulness of Theorem 6. 
 
Example 9: Check whether or not all the proper subgroups of a group ,G  of 
order 35, are cyclic.  
 
Solution: By Lagrange’s theorem, any subgroup of G  is of order 5,1  or .7   
Since ,e}e{ ><=  and 5  and 7  are prime numbers, all the subgroups of G  
are cyclic, by Theorem 6. 

*** 
 
Now, what about groups of composite order? Can we generalise what you 
have seen in Example 9? If so, to what extent? Let’s see. 
 
Theorem 7: If G  is a finite group such that )G(o  is neither 1 nor a prime, 
then G  has a non-trivial proper subgroup. 
 
Proof: If G  is not cyclic, then any ,ea,Ga ≠∈  generates a proper non-trivial 
subgroup ,a ><  and we are through. 
Now, suppose G  is cyclic, say ,xG ><=  where ).1n,m(mn)x(o ≠=  

Then, from Unit 4, you know that .n
)m,mn(

mn)x(o m ==  

Also ).G(on <  

Thus, >< mx  is a proper non-trivial subgroup of .G  
 
Now, you should solve the following exercises. 
 
 
E20) Give the possible orders of a non-trivial element of a non-cyclic group of 

order .28  
 
E21) Obtain two non-trivial proper subgroups of .D8  
 
E22) State the converse of Theorem 6. Prove, or disprove, it. 
 
E23) Let G  be a finite group of order .n  Let / }.e{H,GH ≠≤  Must n  be 

composite? Why, or why not? 
 
E24) Can we generalise from Example 9 that if )G(o  is composite, then every 

proper subgroup of G  must be cyclic? Give reasons for your answer. 
 
 
We will now prove certain important number theoretic results which follow from 
Lagrange’s theorem. To begin with, let us prove a result that gives us 
examples of subgroups of ∗

nZ  for every .2n ≥  
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Theorem 8: Let { },1)n,r(rG n =∈= Z  where ,2n ≥  and )n,r(  is the g.c.d of 

r  and .n  Then ),G( ⋅  is a group, where .s,rrssr n
∗∈∀=⋅ Z   

Further, ),n()G(o φ=  where φ  is the Euler phi-function (see Sec.4.3, Unit 4). 
 
Proof: Let us first check that G  is closed under multiplication. 
For 1)n,r(,Gs,r =∈  and .1)n,s( =  So .1)n,rs( =  Thus, .Grs∈   
Therefore, · is a binary operation on .G  
 
You know, from Unit 1, that multiplication is associative in .nZ  Hence, it is 
associative in .G  
 
Next, ,G1∈  and is the multiplicative identity. 
 
Finally, for any ,Gr∈  

1)n,r( =  
1bnar =+⇒  for some Z∈b,a  (by Theorem 5 of Unit 1). 

)1ar(n −⇒  

)n(mod1ar ≡⇒  

1ra =⇒  in .nZ  

.ra 1−=⇒  
Further, ,Ga∈  because if ,d)n,a( =  then ),bnar(d +  i.e., ,1d  so that .1d =  
Thus, every element in G  has a multiplicative inverse. 
 
Therefore, ),G( ⋅  is a group. 
 
Since G  consists of all those nr Z∈  such that nr <  and ,1)n,r( =  

).n()G(o φ=  
 
In the theorem above, G  is the group of the elements of nZ  that have 
multiplicative inverses. In Block 3, you will see that we call this the unit group 
of ,nZ  and denote this by ).(U nZ  
 
Now let us see where Theorem 8 and Lagrange’s theorem, put together, take 
us. Consider the following result due to the mathematicians Leonhard Euler 
and Pierre Fermat (pronounced fair-maa). It is very useful when dealing with 
large numbers. This theorem is a generalisation of Fermat’s little theorem (see 
E26). It was proved by Leonhard Euler. 
 
Theorem 9 (Euler-Fermat): Let N∈a  and 2n ≥  such that .1)n,a( =  Then 

).n(mod1a )n( ≡φ  
 
Proof: Since na Z∈  and Ga,1)n,a( ∈=  (of Theorem 8).  
Since ),n()G(o φ=  from Theorem 5 we see that .1a )n( =φ  
Thus, ).n(mod1a )n( ≡φ  
 
Consider an example of the application of Theorem 9. 
 
Example 10: Find the remainder obtained on dividing 416  by .55  Use the fact 
that if ,1)n,m( =  then ).n()m()mn( φφ=φ  

Fig. 2: Pierre de Fermat 
(1601-1665) was a very 
important French 
mathematician. 
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Solution: We can apply Theorem 9 to 6a =  and ,55n =  since .1)55,6( =  

So ).55(mod16 )55( ≡φ  
Now, you know that .1)11,5( =  So ).11()5()55( φφ=φ  
Also, from Unit 4 you know that .10)11(,4)5( =φ=φ  Hence, .40)55( =φ  

Thus, ).55(mod1640 ≡  Hence, ).55(mod6666 4041 ≡⋅=  

Therefore, on dividing 416  by ,55  the remainder is .6  

*** 
 
Now you can use Theorem 9 to solve the following exercises. 
 
 
E25) What is the remainder obtained on dividing 473  by ?23   
 
E26) Let N∈a  and p  be a prime. Show that ).p(modaap ≡  (This result is 

called Fermat’s little theorem.) 
 [Hint: Recall the properties of the Euler phi-function from Unit 4.] 
 
 
Let us now consider another important application of Lagrange’s theorem, this 
time to permutations of a set )X(S,X  (see Unit 2). But first we need to 
introduce you to a couple of related concepts. 
 
Definitions: Let ).),X(S(G o≤  For each ,Xx∈  

1) the stabiliser of x  in G  is the set },x)x(G{)x(StabG =σ∈σ=  i.e., the 
set of all permutations of X  that fix .x  

2) the orbit of x  under G  is the set }.G)x({ ∈σσ=(x)OrbG  
 
Here are a couple of important comments about these objects. 
 
Remark 6: i) Note that G)x(StabG ⊆  and .X)x(OrbG ⊆   
 
ii) We can define an equivalence relation on the elements of ,X  using ,G  

in which the equivalence class of Xx∈  is .xOrbG  So, X  is a disjoint 
union of the orbits of .Xx,x ∈   

 
To get you used to these algebraic objects, let us consider an example. 
 
Example 11: Let },3,2,1{X =  and 

)}.231(),321(),32(),31(),21(,I{SG 3 ==   
Find )1(StabG  and ),2(StabG  as well as )1(OrbG  and ).2(OrbG  
 
Solution: )},32(,I{}1)1(S{)1(Stab 3G ==σ∈σ=  and  

)}.31(,I{}2)2(S{)2(Stab 3G ==σ∈σ=  

,X}3,2,1{}S)1({)1(Orb 3G ==∈σσ=  since )21(,1)1(I =  moves 1 to )31(,2  
moves 1 to .3  
Similarly, .X}3,1,2{}S)2({)2(Orb 3G ==∈σσ=  

If there is no confusion 
about G, we often 
write Stab(x) instead 
of ),x(StabG  and 

)x(Orb  instead of 

).x(OrbG  
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Here, note that ,)1(Orb)1(Stab6)G(o ==  and  

.)2(Orb)2(Stab)G(o =  

*** 
 
The relationship between ),G(o )x(StabG  and ,)x(OrbG  that you see in the 
example above, is true for any finite ,G  as we shall show now. This is a very 
important application of Lagrange’s theorem, as we had mentioned earlier. But 
first, a lemma. 
 
Lemma 1: Let X  be a non-empty set and ).X(SG ≤  Then 

.XxG)x(StabG ∈∀≤  
 
Proof: Since ).x(StabI,x)x(I G∈=  Hence, .)x(Stab «≠  

Next, if ),x(Stab, G∈βα  then ,x)x(1 =αβ−  so ).x(StabG
1 ∈αβ−  

Thus, by the subgroup test, .XxG)x(StabG ∈∀≤  
 
Now let us prove the theorem we had mentioned above. 
 
Theorem 10 (Orbit-Stabiliser Theorem): Let X  be a non-empty set and G  
be a finite subgroup of ).X(S  Then, for any ,Xx∈  

)).x(Stab(o)x(Orb)G(o GG=  
 
Proof: Let ,Xx∈  and let ).x(StabH G=  Then ,GH ≤  by Lemma 1. 

Define ).x()H(f:)x(Orb}GH{:f G σ=σ→∈σσ  

Let us check that f  is well-defined and 1-1.  
For HHH,G, 1 ∈σφ⇔φ=σ∈φσ − ).x()x(x)x(1 φ=σ⇔=σφ⇔ −  Note that at 
each stage we have used the two-way implication (if and only if). So we have 
proved two things – one, f  is well-defined, and two, f  is 1-1. 
 
Next, f  is a surjection because for any ),x(Orb)x( G∈σ  there is the coset 

Hσ  in G  such that ).x()H(f σ=σ  
 
Hence, f  is a bijection between the set of (left) cosets of )x(StabG  in G  and 

).x(OrbG  

Hence, .)x(Orb)x(Stab:G GG =  

Thus, by Lagrange’s theorem, .)x(Orb))x(Stab(o)G(o GG=  
 
Try solving a related exercise now. 
 
 
E27) Let .S)}42)(31(),32)(41(),43)(21(,I{VG 44 ≤==  Verify the orbit-

stabiliser theorem for 3,1x =  in .}4,3,2,1{X =  
 
 
With this we end the discussion focussed on cosets and on Lagrange’s 
theorem. Let us summarise what you have studied in this unit. 
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5.5 SUMMARY 
 
In this unit, you have studied about the following points. 
 
1. The definition, and examples, of right and left cosets of a subgroup of a 

group. 
 
2. Two left (or right) cosets of a subgroup are disjoint or identical. 
 
3. Any subgroup partitions a group into disjoint left (or right) cosets of the 

subgroup. 
 
4. The proof of Lagrange’s theorem, which states that if H  is a subgroup of 

a finite group ,G  then .H:G)H(o)G(o =   

But, the converse is not true, that is, if G  is a finite group and ),G(om  
then G  need not have a subgroup of order .m  

 
5. The following consequences of Lagrange’s theorem: 

 i) The order of a subgroup H  of a finite group ,G  and the index of 
H  in ,G  divide the order of the group. 

 ii) The order of any element of a finite group divides the order of the 
group. 

iii) Every group of prime order is cyclic. 

iv) A group of prime order has no proper non-trivial subgroup.  

 v) Every group of composite order has a non-trivial proper subgroup. 

 vi) Euler-Fermat Theorem: ),n(mod1a )n( ≡φ  where 
1)n,a(,n,a =∈N  and ,2n ≥  and φ  is the Euler phi-function. 

 vii) Orbit-Stabiliser Theorem: Let X  be a non-empty set and G  be a 
finite subgroup of ).X(S  Then, for any ,Xx∈  

)).x(Stab(o)x(Orb)G(o GG=  
 

5.6 SOLUTIONS / ANSWERS 
 
E1) )}.21(,I{H =  
 Its left cosets are .H)231(,H)321(,H)32(,H)31(,H)21(,H  
 Now, HH)21( =  since .H)21( ∈   
 Also, using Theorem 1, ,H)32(H)231(,H)31(H)321( ==  since 

H)321()31( 1 ∈−  and .H)231()32( 1 ∈−  

 Thus, the distinct left cosets of H  in 3S  are .H)32(,H)31(,H  

 Similarly, verify that the distinct right cosets of H  in 3S  are 
).32(H),31(H,H  

 Now, )}321(),31{(H)31( =  and )}.231(),31{()31(H =  
 ).31(HH)31( ≠∴  
 You can also see that ).32(HH)32( ≠  
 
E2) Consider a left coset of H  in ),,G( +  
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 }Hhhx{Hx ∈+=+  

          },Hhxh{ ∈+=  since .Hhxhhx ∈∀+=+  
         ,xH +=  a right coset of H  in .G  
 
 Similarly, you can prove that every right coset is a left coset. 
 

E3) Since ,Kb,aKab 1 ∈∀∈−  we can apply Theorem 2 of Unit 3 to say that 
.QK 8≤  

 Now, ).I(KKIK −==  Also },A,A{)A(KKA −=−=  since 
.KI)A(A 1 ∈−=− −  

 Similarly, },B,B{)B(KKB −=−=  and }.C,C{)C(KKC −=−=  
 Hence, its right cosets are .KC,KB,KA,K  Similarly, you should verify 

that its left cosets are .CK,BK,AK,K  
 
E4) i) No, read Remark 1. 
 
 ii) ,xhexHeGxH =⇒∈⇒≤  for some .HhxHh 1 ∈=⇒∈ −  

Conversely, by Theorem 1, .GHxH ≤=  
 

E5) .HbcHacH)bc)(ac(HabHbHa 11 =⇔∈⇔∈⇔= −−  
 
E6) Let Hx  be a coset of H  in .G  Consider the function 

.hx)h(f:HxH:f =→  
 Check that f  is well-defined. 
 Now, for ,hhxhhx,Hh,h ′=⇒′=∈′  by cancellation. 
 Therefore, f  is 1-1. 
 Also f  is surjective. (Why?)  
 Thus, f  is a bijection. 
 And hence, there is a one-to-one correspondence between the elements 

of H  and those of .Hx    
  
 Similarly, the map xh)h(g:xHH:g =→  is a bijection. 
 Thus, the elements of H  and xH  are in one-to-one correspondence. 
 
E7) The distinct cosets of Z5  in Z  are .45,35,25,15,5 ++++ ZZZZZ  
 Now, given any ZZ ∈∃∈ r,q,m  s.t. .4r0,rq5m <≤+=  
 Since ),r5(m,5q5 +∈∈ ZZ  for some .4,,1,0r K=  
 ).45()35()25()15(5 +∪+∪+∪+∪=∴ ZZZZZZ  
 

E8) As in Example 6, you should show that the distinct cosets of >< 4  in 8Z  

are .34,24,14,4 +><+><+><><  Also verify that 8Z  is the union 
of these disjoint subsets. 

 

E9) False. For example, in E8, ,5414 +><=+><  but 51 ≠  in .8Z  
 

E10) Since ,15)a(o =  we find that .3)a(o 5 =  
 Let }.a,a,e{aH 1055 =><=  
 Then },a,a,a{aH 116=  },a,a,a{Ha},a,a,a{Ha 1383312722 ==  

}.a,a,a{Ha 14944 =  
 Since >< a  is the union of ,Ha,,aH,H 4K  these are all the left cosets of 

H  in .a ><  
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E11) }.1zz{S ||1 =∈= ∗C  

 Since ∗C  is abelian, every left coset is a right coset. 
 Any coset is ,wS1  where .w ∗∈C  

 }.w{}1zzw{}Szzw{wS ||||||11 =α∈α===∈= ∗C  

 This is because any C∈α  s.t. |w||| =α  can be written as ww 1−α=α  

(since ),0w ≠  with ,1
w

w
||
||1 =

α
=α −  so that .Sw 11 ∈α −  

 Hence, wS1  is geometrically given by the circle in the plane with centre 
)0,0(  and radius .w||  Look at Fig.3. Each of the infinitely many 

concentric circles shown in it represents a distinct coset of 1S  in .∗C  
 
 
 
 
 
 
 
 
 
 
   
   
 
 
   
 

 
 

 
 Fig.3: A geometric representation of the infinitely many cosets of 1S  in ,∗C     
                  each circle representing a coset. 

 
E12) Since any subset of T  is a subset of ).S()T(,S ℘⊆℘  Also, you have 

seen in Unit 2 that both are groups w.r.t. the same operation .Δ   
 Hence, ).S()T( ℘≤℘  
 Now let ),T(H ℘=  then }}.2,1{},2{},1{,{H «=  

 So }}3{}2,1{},3{}2{},3{}1{},3{{}3{H ΔΔΔΔ= «  
             }}.3,2,1{},3,2{},3,1{},3{{=  
 Now, check that ).S(}3{HH ℘=∪  

 Hence, .2)T(:)S( =℘℘  
 
E13) The right cosets of }e{  in G  are .Gg}g{g}e{ ∈∀=  
 Hence, the number of distinct right cosets is ).G(o  
 Thus, ).G(o}e{:G =  
 
E14) In E11 you have shown that 1S  has infinitely many cosets in .∗C  Hence, 

1S:∗C  is infinite. 
 
E15) No. For example, Z  is infinite but ,nn: =ZZ  is finite. 

 

w  

Y 

X 1 O 
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E16) Since / )H(o)K(o,HK ≤  and ).H(o)K(o ≠  

 Since / )G(o)H(o,GH ≤  and ).G(o)H(o ≠  

 Also 30)K(o =  and .300)G(o =  
 Thus, )H(o  is a factor of 300  which is a multiple of ,30  greater than 30  

and less than .300  Hence, it can be 60  or .150  

 The corresponding index would be ,
)H(o
)G(o

 i.e., 60
300  or ,150

300  

respectively, that is 5  or ,2  respectively. 
 
E17) Since HKH ≤∩  and )KH(o,KKH ∩≤∩  is a factor of 12  and .35  

But .1)35,12( =  Hence, .1)KH(o =∩  Hence, }.e{KH =∩  
 
E18) No. For instance, take ><= )4321(H  and ><= )42)(31(K  in .S4  

Then },e{KKH ≠=∩  since .)4321()42)(31( 2=  
 
E19) i) .24)S(o 4 =  Hence, the possible orders are .12,8,6,4,3,2  
 
 ii) .10)D(o 10 =  Hence, the possible orders are .5,2  
 
 iii) .8)Q(o 8 =  Hence, the possible orders are .4,2  
 
 iv) .6))((o n

n32 =× ZM  Hence, the possible orders are any factor of 

,6n  apart from 1 and .6n  
 
E20) .7228)G(o 2 ×==  
 Hence, for any Gg∈  s.t. .14,7,4,2)g(o,eg =≠  Note that no Gg∈  

has order ,28  since G  is not cyclic. 
 
E21) .}rR,rR,rR,r,R,R,R,I{D 3232

8 =  
 Here .2)r(o,4)R(o ==  Hence, >< R  and >< r  are two non-trivial 

proper subgroups of .D8  
 
E22) The converse is: If G  is a finite cyclic group, G  is of prime order.  
 This is false since we have infinitely many counterexamples –            

,nZ  for all composite .n N∈  
 
E23) Yes. Because if n  is prime, then, by Theorem 6, H  does not exist. 
 
E24) No. For example, consider ,S4  and  
 ),42)(31(),43)(21(,I{V4= )}.32)(41(   
 Then ,SV 44 ≤  and 4V  is not cyclic since its non-trivial elements are all of 

order .2  
 
E25) You know that in .1)3(, )23(

23 =φZ   
 Also, from Unit 4, you know that ,22)23( =φ  since 23  is a prime. 
 So .1322 =  .1344 =∴  
 .273333 344347 ===∴  
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 Thus, ).23(mod4)23(mod27347 ≡≡  
 Therefore, on dividing 473  by ,23  the remainder obtained is .4  
 
E26) If ,1)p,a( =  i.e., p   ,a  then ).p(mod1a )p( ≡φ   
 Since ,1p)p( −=φ  ),p(mod1a 1p ≡−  i.e., ).p(modaap ≡  
 If ,ap  then ),p(mod0a ≡  and hence ).p(mod0ap≡   

 So, in this case too, ).p(modaap ≡  
 
E27) },I{)1(Stab =  since each G∈σ  moves ,1  except .I  
 Similarly, }.I{)3(Stab =  
 Now ).2(Orb}4,3,2,1{)1(Orb ==  
 Hence, ),G(o441)1(Orb))1(Stab(o ==×=  and  

         ).G(o441)2(Orb))2(Stab(o ==×=  
 Thus, Theorem 10 is verified for these cases.  
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  UNIT 6                                  

                  NORMAL SUBGROUPS 
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6.3 Criteria for Normal Subgroups         172  
6.4 Properties of Normal Subgroups         176 
6.5 Summary           183 
6.6 Solutions / Answers           183        
 

6.1 INTRODUCTION 
 
In the previous unit you studied about cosets of a subgroup. In this unit we 
shall focus on subgroups H  for which each left coset xH  is some right coset 

.Hy  Such subgroups were introduced by the great French mathematician, 
who died very young, Evariste Galois (pronounced gal-waa). These subgroups 
are called ‘normal’ subgroups. 
 
In Sec.6.2, you will study what a normal subgroup is. You will also look at 
several examples of such subgroups. 
 
Is every subgroup a normal subgroup? How does one decide whether a 
subgroup is normal or not? These questions will be the focus of Sec.6.3. 
 
If a subgroup of a group is normal, does this confer any extra ‘strength’ to the 
subgroup? Are there any useful properties that a normal subgroup has? 
Answers to these questions will be discussed in Sec.6.4. 
 
As we have noted in previous units, it is important that you study this unit 
carefully. Only then will you be able to achieve the following learning 
expectations, around which this unit has been built. 
 
Objectives 
After studying this unit, you should be able to:  

• define, and give examples of, a normal subgroup of a group; 

• prove, and apply, the criteria for a subgroup to be normal; 

 Fig.1: Galois 
           (1811-1832) 
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• define, and give examples of, a simple group; 

• prove, and apply, basic properties of normal subgroups. 
 

6.2 WHAT IS A NORMAL SUBGROUP? 
 
In Unit 5, you showed that a left coset of a subgroup ,aH,H  need not be the 
same as the right coset .Ha  But there are certain subgroups of a group for 
which the right and left cosets represented by the same element are equal, for 
every element of the group concerned.  
For instance, consider .n ZZ ≤  For each ,m Z∈  

},rnrm{}rmnr{mn ZZZ ∈+=∈+=+  since +  is commutative   

            .nm Z+=  
Thus, every right coset of Z  is a left coset of ,Z  with the same representative. 
 
On the other hand, consider the non-abelian group ,S3  and the subgroup 

)}21(,I{H =  of .S3  Then )},231(),31{()31(H =  and 
)}.321(),31{(H)31( =  

Thus, .H)31()31(H ≠  
Through this discussion, we are leading up to the following definition. 
 
Definition: A subgroup N  of a group G  is called a normal subgroup, or an 
invariant subgroup, of G  if ,GxxNNx ∈∀=  and we denote this by N    .G  
 
For example, any group G  has two normal subgroups, namely, }e{  and G  
itself. Can you see why?  
Well, }e{x}x{x}e{ ==  and ,xGGGx ==  for any .Gx∈  
 
Similarly, as you noted above, Zn     ,n ZZ ∈∀  while )}21(,I{H =  is not a 
normal subgroup of ,S3  i.e., H    .S3  
 
Let us consider other examples. 
 
Example 1: Show that every subgroup of nZ  is normal in .n,n NZ ∈  
 

Solution: From Unit 4, you know that if H  is a subgroup of ,nZ  then 
,mH nZ=  for some .m nZ∈   

    .}m)1n(,,m2,m,0{ −= K  

So, for any ,z nZ∈  

}rzmr{zH nZ∈+=+  

         },rmrz{ nZ∈+=  since +  is commutative. 

         .Hz +=  
H∴    .nZ  

*** 
 
Example 1 is a special case of the fact that every subgroup of a commutative 
group is a normal subgroup.  We will prove this later (in Corollary 1). Now let 
us consider some non-abelian groups. 

H     G denotes ‘H is not 
a normal subgroup of G’. 
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Example 2: Check whether or not }A,I{H ±±=  is normal in ,Q8  the group of 

quaternions, where .
01
10

A,
10
01

I ⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=  

 
Solution: In Example 5, Unit 5, you saw that H  has exactly 2  right cosets in 

H,Q8  and ,HB  where .
0i
i0

B ⎥
⎦

⎤
⎢
⎣

⎡
=  

Similarly, its left cosets are H  and .BH  
Now, since .HHB,HB ≠∉  Similarly, .HBH ≠  
Also BHHHBHQ8 ∪=∪=  (both being disjoint unions).  …(1) 
Hence, ,BHH\QHB 8 ==  that is, .BHHB =   
Now, by (1), for any ,Q8∈α  H∈α  or .HB∈α   
Let us, now, apply Theorem 1, Unit 5.  
If ,H∈α  then .HHH α==α   
If ,HB∈α  then .HBHHBH α===α   
Since ,HBHQ8 ∪=  we find that .QHH 8∈α∀α=α  
Hence, H    .Q8  

*** 
 
Example 3: Check whether or not )}43)(21(,I{H =  is normal in .S4  
 
Solution: First, note that ,SH 4≤  since .)43)(21(H ><=  
Now )}.342(),321{()}321()43)(21(),321{()321(H == o  
Similarly, )}.143(),321{(H)321( =  
Since )143()342( ≠  (why?), .H)321()321(H ≠  
Hence, H    .S4  

*** 
 
A word of caution here! 
 
Remark 1: When H    .GggHHg,G ∈∀=  This does not mean that 

Hhghhg ∈∀=  and .Gg∈  For instance, in Example 2 above, ,BHHB =  but 
,BAAB ≠  as you have seen in Unit 5, and earlier.  

gHHg =  means that for Hh,Hh ∈′∃∈  s.t. .hghg ′=  
  
Try solving the following exercises now. 
 
 

E1) Check whether or not >< r  and >< 90R  are normal in 8D  (see 
Sec.2.4.3). 

 
E2) Show that ><= )321(H    3S  (see Example 4 of Unit 5).  
 
E3) Show that any subgroup of 30U  is a normal subgroup. 
 
E4) Let G  be a cyclic group and .GH ≤  Check whether H    G  or not. 
 
E5) Let GH ≤  such that for each GyGx ∈∃∈  s.t. .HyxH =  Is H    ?G  

Why, or why not? 
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Before looking at more examples and non-examples of normal subgroups, let 
us discuss some normality tests. 
 

6.3 CRITERIA FOR NORMAL SUBGROUPS 
 
In the previous section, you saw that to check whether a subgroup H  is a 
normal subgroup of G  or not requires an elementwise check of Hx  and ,xH  
for each .Gx∈  Is there a better way of checking for normality? To answer 
this, let’s consider the following conditions for a subgroup to be normal. 
 
Theorem 1: Let H  be a subgroup of a group .G  The following statements are 
equivalent. 

i) H  is normal in .G  

ii) .GgHHgg 1 ∈∀⊆−  

iii) .GgHHgg 1 ∈∀=−  
 
Proof: We will show that ).i()iii()ii()i( ⇒⇒⇒  This will show that the three 
statements are equivalent, since ''⇒  is a transitive relation on the set of all 
true statements (see E17, Unit 1). 
 

(ii)(i)⇒ : Since (i) is true, .GggHHg ∈∀=  We want to prove (ii). For this, 
consider Hgg 1−  for .Gg∈  Let .Hgghgg 11 −− ∈  
Since Hh,gHHghg 1∈∃=∈  s.t. .ghhg 1=  

.Hhghghgg 11
11 ∈==∴ −−  

Since hgg 1−  was an arbitrary element of ,Hgg 1−  we conclude that  
,HHgg 1 ⊆−  for any .Gg∈  

)ii(∴  is true. 
 

(iii)(ii)⇒ : Now, we know that (ii) holds, i.e., for .HHgg,Gg 1 ⊆∈ −  To prove 
(iii), we need to show that .HggH 1−⊆   
Let .Hh∈  Then  

)gg(h)gg(eheh 11 −−==  
   .g}hg)g{(gg)ghg(g 111111 −−−−−− ==   
Now put .xg 1 =−  Then ,Gx∈  so that ,HHxx 1 ⊆−  by (ii). 

.Hggg)hxx(gh 111 −−− ∈=∴  
Since h  was an arbitrary element of ,H  we conclude that .HggH 1−⊆  
Hence, .GgHHgg 1 ∈∀=−  
 

(i)(iii)⇒ : For any ,Gg∈  we are given that .HHgg 1 =−  We want to prove 
that .gHHg =  
So, let .Hghg∈  

Then ).hgg(ghg 1−=  Also, .HHgghgg 11 =∈ −−   

.Hhgg 1 ∈∴ −   

Thus, .gH)hgg(ghg 1 ∈= −   
.gHHg ⊆∴  

Similarly, you can show that .HggH ⊆  

}Hhhgg{Hgg 11 ∈= −−  
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Thus, .gHHg =  

H∴    ,G  that is, (i) is true. 
 
Consider the following remark about Theorem 1, similar to Remark 1. 
 
Remark 2: Theorem 1 says that H    .GgHHggG 1 ∈∀=⇔ −  This does not 
mean that Hhhhgg 1 ∈∀=−  and .Gg∈  
For instance, in Example 2 you have seen that H    .Q8  Therefore, by 

Theorem 1, ,HHCC 1 =−  where .
i0

0i
C ⎥

⎦

⎤
⎢
⎣

⎡
−

=  But 

.AA
i0

0i
01
10

i0
0i

ACC 1 ≠−=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡−
=−  

 
We now prove a simple result that we mentioned after Example 1. It is actually 
a corollary to Theorem 1. (You have proved this in E2, Unit 5, also.) 
 
Corollary 1: Every subgroup of a commutative group is normal. 
 
Proof: Let G  be an abelian group, and .GH ≤  For any Gg∈  and ,Hh∈  

.Hhh)gg(hgg 11 ∈== −−   
.GgHHgg 1 ∈∀⊆∴ −   

Thus, H    .G  
 
Corollary 1 says that if G  is abelian then all its subgroups are normal. Is the 
converse true? It is not. There are non-commutative groups whose subgroups 
are all normal. We will give you an example that uses another criterion for 
normality. So we will give the example after proving this criterion. For now, let 
us consider an example of the application of Corollary 1. 
 
Example 4: Let G  be a cyclic group of order .10  How many normal 
subgroups does G  have, and why? 
 
Solution: Let ,gG ><=  where .10)g(o =  Then, from Unit 4, you know that 
the subgroups of G  are .G,g,g,e 52 ><><><   
Since G  is abelian, all these are normal in .G  
Thus, G  has 4  normal subgroups. 

*** 
 
Now consider an example of applying Theorem 1. 
 
Example 5: Let 1G  and 2G  be two groups. Check whether or not      

}e{G 21 ×    ,GG 21 ×  where 2e  is the identity of 2G  (see Sec.2.4.6, Unit 2). 
 
Solution: Note that the direct product },Gg,Gg)g,g({GG 22112121 ∈∈=×  

and }.Gg)e,g({}e{GH 112121 ∈=×=  

Consider ).g,g(H)g,g()g,g(H)g,g( 21
1

2
1

121
1

21
−−− =  

Any element of this set is of the form ),g,g)(e,g)(g,g( 212
1

2
1

1
−−  where .Gg 1∈  

Now ,H}e{G)e,ggg()geg,ggg()g,g)(e,g)(g,g( 2121
1

122
1

21
1

1212
1

2
1

1 =×∈== −−−−−  
since .Gggg 11

1
1 ∈−  
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Thus, by Theorem 1(ii), }e{G 21 ×    .GG 21 ×  
You can, similarly, prove that 21 G}e{ ×    ,GG 21 ×  where 1e  is the identity of 

.G1  
*** 

 
Try solving the following exercises now. 
 
 
E6) Consider the subgroup }1)Adet()(GLA{)(SL 22 =∈= RR  of )(GL2 R  

(see Example 8 of Unit 3). Using the facts, )Bdet()Adet()ABdet( =  and 

,
)Adet(

1)Adet( 1 =−  prove that )(SL2 R    ).(GL2 R  

 

E7) Check whether or not 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= Cc,b,a

c0
ba

H  is a normal subgroup of 

).),(GL( 2 ⋅C  
 
E8) Check whether or nor the centre of a group G  is normal in .G  
 
E9) Let G  be a group and H  be an abelian subgroup of .G  Is H    ?G  

Why, or why not? 
 
E10) Show that >< )32(  is not normal in .S3  
 
E11) Consider the group of all diagonal matrices in )(GL *

2 R  (see Sec.2.4.4, 
Unit 2), with respect to multiplication. How many of its subgroups are 
normal? 

 
E12) If H  is a subgroup of a group G  s.t. ,GggHgHgg 11 ∈∀= −−  is ?GH     

Why, or why not? 
 
 
In E2, you proved that >< )321(    .S3  Did you note that ?2)321(:S3 =><  
Maybe not. But the following criterion relates this to the result in E2. 
 
Theorem 2: Every subgroup of a group G  of index 2 is normal in .G  
 
Proof: The argument we will give here is essentially the one we gave in 
Example 2 to show that .BHHB =  
Let GN ≤  such that .2N:G =  Let the two right cosets of N  be N  and ,Nx  
and the two left cosets be N  and .yN  
Now, ,yNNG ∪=  a disjoint union. Hence, .N\GyN =  
Similarly, .NxNG ∪=  Hence, .yNN\GNx ==  
So, by E5, .xNNx =  Hence, N    .G  
 
Theorem 2 gives us another criterion for normality of a subgroup. We will use 
this criterion very often, but particularly in Unit 9 to show that, for any nS,2n ≥  
has a subgroup of index ,2  which is therefore, a normal subgroup. For now, 
consider the following example that will disprove the converse of Corollary 1. 
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Example 6: Show that the converse of Corollary 1 is not true. 
 
Solution: Remember, from Unit 2 of the course ‘Real Analysis’, that to 
disprove a statement, one counterexample is enough. So, consider the 
quaternion group ,Q8  which we discussed in Example 2.   
Any subgroup of 8Q  has to be of order 4,2,1  or ,8  by Lagrange’s theorem. 
The only subgroups of orders 1 and 8  are }I{  and ,Q8  respectively. 
You know that they are normal in .Q8   
Using Theorem 2, you can see that any subgroup of order 4  is normal in .Q8  
Further, from Unit 5 you know that any subgroup of order 2  is cyclic, and it 
must be generated by an element of order .2  The only such element in 8Q  is 

.I−  Thus, the only subgroup of 8Q  of order 2  is }.I,I{H −=  
By actual multiplication, you can see that  

.QgHHgg 8
1 ∈∀⊆−  H∴    .Q8  

Therefore, all the subgroups of 8Q  are normal. 
But, you know that 8Q  is non-abelian (for instance, ).BABAAB ≠−=  

*** 
 
Try solving some exercises now. 
 
 
E13) Consider the dihedral group .D n2  Show that the set of rotations in n2D  

is a normal subgroup. 
 
E14) State the converse of Theorem 2. Further, prove or disprove it. 
 
E15) Let }n,,2,1{S K=  and },1n,,2,1{T −= K  for .n,2n N∈≥  Show that 

)T(℘    ).S(℘  
 
E16) Let ),X(SG ≤  for some finite set .X  Let },x,1{)x(OrbG =  where .Xx∈  

Show that )x(StabG    .G  
 
 
So far you have seen examples of groups with non-trivial proper normal 
subgroups. However, not every group has such a subgroup; in fact, there are 
a large number of such groups. Let us define them. 
 
Definition: A non-trivial group G  is called a simple group if its only normal 
subgroups are G  and }.e{  
 
Let us consider an example. 
 
Example 7: Let G  be a group of prime order. Show that G  is simple. 
 
Solution: From Theorem 6, Unit 5, you know that G  has no non-trivial proper 
subgroup. Hence, G  has no such normal subgroup. Hence, G  is simple. 

*** 
 
From Example 7, you can see that there are a huge number of simple groups 
– all those of prime order. Now, you may wonder if every simple group is of 
prime order. In Unit 9, you will see a counterexample to this – an example of a 
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simple non-abelian group of order .60  However, for abelian groups we have 
the following theorem. 
 
Theorem 3: Any finite abelian simple non-trivial group must be cyclic, and of 
prime order. 
 
Proof: Let G  be a finite abelian simple group, with .1n)G(o >=   
Let .ex,Gx ≠∈  Then .Gx ≤><   
Since G  is abelian, by Corollary 1, >< x    .G   
Since }.e{x,ex ≠><≠   
Hence, ,xG ><=  since G  is simple. 
Thus, G  is cyclic of order .n  
Let p  be a prime factor of .n  Then G  has a subgroup H  of order ,p  as you 
have seen in Unit 4.  
Since G  is abelian, H    .G  But G  is simple. Thus, .GH =   
Hence, ,p)H(o)G(o ==  a prime. 
 
Try solving the following exercises now. 
 
 
E17) For which N∈n  is nU  simple? Why? 
 
E18) Give an example, with justification, of two groups of the same order of 

which one is abelian and one non-abelian. Can either of these groups be 
simple? Why, or why not? 

 
E19) Does there exist an infinite abelian simple group? Why, or why not? 
 
E20) Is the direct product of two simple groups simple? Give reasons for your 

answer. 
 
E21) Let G  be a group and .n N∈  Let }.n)g(oGg{H =∈=  If ,GH ≤  show 

that H    .G  Further, give an example of a group ,G  where .GH </  
 
E22) Let H  be a proper normal subgroup of a group G  s.t. .2)H(o =  Show 

that ).G(ZH ≤  
 
 
With this we end this section on normality tests. Let us now consider some 
properties of normal subgroups. 
 

6.4 PROPERTIES OF NORMAL SUBGROUPS 
 
In Unit 3, you studied several properties of subgroups. In this section we shall 
see if normal subgroups satisfy similar properties. 
 
One of the properties you discovered in Sec.3.3 was that  ‘≤ ’ is a transitive 
relation. Does the same hold if ‘≤ ’ is replaced by ‘    ’? If the group is abelian, 
of course     will be transitive. (Why?) What happens if the group G  is non-
abelian? If H    N  and N    ,G  we know that  

i) NnHhnn 1 ∈∀∈−  and ,Hh∈  

ii) GgNngg 1 ∈∀∈−  and .Nn∈  
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From these two facts we cannot conclude that GgHhgg 1 ∈∀∈−  and .Hh∈  
Thus, it is not necessary that H    .G  You will study an example that shows      
‘    ’ is not transitive, in Unit 9. However, we do have the following result. 
 
Theorem 4: Let G be a group and .HK,GH ≤≤  If K   ,G  then K    .H  
 
Proof: Since K   .GgKKgg,G 1 ∈∀=−  Thus, .HgKKgg 1 ∈∀=−  
Hence, K   .H  
 
By Theorem 4, you know that, for example, )(SL2 R    H  for any subgroup H  
of )(GL2 R  that contains ).(SL2 R   
 
Theorem 4 will come into play in Unit 7, while discussing subgroups of 
quotient groups. 
 
Try solving a related exercise now. 
 
 

E23) Let G  be a group and H    .G  Let .HK ≤  Is K    ?G  Why, or why not? 
 

 
Now let us see how normal subgroups behave w.r.t. the set operations of 
intersection, union and product. 
 
Theorem 5: Let H  and K  be normal subgroups of a group .G  Then    

KH∩    .G  
 
Proof: From Unit 3, you know that .GKH ≤∩  To show that KH∩    ,G  we 
have to show that KHxKHxgg 1 ∩∈∀∩∈−  and .Gg∈  
Now, let KHx ∩∈  and .Gg∈  Then Hx∈  and H    .G  .Hxgg 1 ∈∴ −  
Similarly, .Kxgg 1 ∈−  .KHxgg 1 ∩∈∴ −  
Thus, KH∩    .G  
 
Note that the whole argument of Theorem 5 can be used to prove that the 
intersection of any family of normal subgroups of G  is a normal 
subgroup of .G  
 
Next, let us consider the union of two normal subgroups. From Unit 3, you 
know that if GK,GH ≤≤  then KH∪  need not be a subgroup of .G  Hence, 
H    K,G    G  does not imply that KH∪    ,G  except in some particular 
cases. Which cases are these? In the following exercises, we ask you to 
answer this, and prove other important properties of normal subgroups. 
 
 

E24) Let G  be a group and H    K,G    ,G  with .GKH ≤∪  Under what 
conditions on H  and K  is KH∪    ?G  

 
E25) If G  is a group, K,GH ≤    ,G  will KH∩    ?H  Why, or why not? 
 
E26) Let 1G  and 2G  be two groups, and H    K,G1    .G2  Is                  

KH×    ?GG 21×  Why, or why not? 
 

 
Let us now look at the product of subgroups. Recall, from Unit 3, that if 

,GK,H ≤  then GHK ≤  iff .KHHK =   
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Now consider a group you are familiar with, .D n2  From Unit 4, you know that 

8D  is generated by r  and ,R90  where r  is a reflection in the plane. In E1 you 
have seen that >< 90R     8D  but >< r     .D8  Let us now see what happens 
in .3n,D n2 ≥  
 
Example 8: Take ,3n,D n2 ≥  the group you studied in Sec.2.4, Unit 2. 

Let ><= rH  and ,RK ><=  where .n
360,RR =θ= θ   

Show that K    ,D n2 H    n2D  and .HKD n2 =  
 
Solution: Let us write xr =  and .yR =  Then, from Unit 4 you know that the 
elements of n2D  are of the form ,yx ji  where 1,0i =  and 

,3n)y(o,2)x(o,1n,,1,0j ≥==−= K  and .xyxyxy 1n1 −− ==  
,xKK}xy,,xy,xy,y,,y,y,x,e{D 1n21n2

n2 ∪==∴ −− KK  and .Kx∉  
.2K:D n2 =∴   

Thus, by Theorem 2, K    .D n2  (You have already shown this in E13.) 
Note that we can’t apply Corollary 1, since n2D  is non-abelian (as xyxy 1−=  
and ).yy 1−≠  
Now let us see if H    .D n2  
Consider .xyy 1−  Now ,xyxyy 21 =−  because .xyxy 1 =−  
If Hxy2 ∈ , then exy2 =  or xxy2 = .  (Remember 2)x(o = , so that xx 1 =− .) 
If ,exy2 =  then xxy 12 == − xyxyy 13 −==⇒ .xy4 =⇒   
Continuing in this way, a pattern emerges – for odd ,m  we find ,xyy 1m −=  
and for even .xy,m m =   
In either case ,eym ≠  since ex ≠  and .yx ≠   
So ,eyn ≠  which is a contradiction. Hence, .exy2 ≠  
 
If ,xxy2 =  then ,ey2 =  a contradiction since .3)y(o ≥  
 

,Hxyxyy 21 ∉=∴ −  and hence, H    .G   
 
Finally, note that },e{KH =∩  so that .1)KH(o =∩   

So, from Unit 3, we get, .n2
)KH(o
)K(o)H(o)HK(o =

∩
=   

Also n2)D(o n2 =  and .DHK n2⊆  
Hence, .HKD n2 =  

*** 
 
What you have seen in Example 8 is that ,GHK =  so HK  is a subgroup of 

.G  Thus, .KHHK =  Is this true whenever one of H  or K  is normal in ?G  
You will find the answer while doing the following exercises about the product 
of subgroups. 
 
 
E27) i) Prove that if H    G  and GK ≤ , then .GHK ≤  
  (Hint: Use Theorem 7 of Unit 3.) 
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 ii) Prove that if H    K,G    ,G  then HK    .G  (Note that this is false if 

‘    ’ is replaced by '.)'≤   

 iii) Is the converse of (ii) above true? Give reasons for your answer. 
 
E28) i)  If H  and K  are normal abelian subgroups of a group, and if 

},e{KH =∩  show that HK  is abelian. 

 ii) If the condition on KH∩  is removed in (i) above, will HK  still be 
abelian? Why, or why not? 

 
 
From E27(ii), you know that if H  and K  are normal subgroups of a group ,G  
then HK  is a normal subgroup of .G  What happens when HK  is the whole of 

?G  We get a special, and very important, situation similar to the external 
direct product that you studied in Sec.2.4.6. To understand this situation, 
consider the following definition. 
 
Definition: Let H  and K  be normal subgroups of a group .G  Then G  is 
called the internal direct product of H  and K  if  
 

HKG =  and }.e{KH =∩  
We denote this fact by .KHG ×=  
 
Let us consider some examples. 
 
Example 9: Consider the Klein 4-group, },ab,b,a,e{K4 =  where 

eb,ea 22 ==  and .baab =  Show that 4K  is the internal direct product of 
>< a  and .b ><  

 
Solution: Let ><= aH  and .bK ><=  Then }.e{KH =∩   
Also, you can see that .HKK4 =  

.KHK4 ×=∴  
*** 

 
Example 10: Check whether or not 10Z  is the internal direct product of its 

subgroups 105Z  and .2 10Z  
 
Solution: Let }5,0{H =  and }.8,6,4,2,0{K =  Then   

i) ,KH10 +=Z  since any element of 10Z  is the sum of an element of H  
and an element of ,K  and  

ii) }.0{KH =∩  
Thus, .KH10 ×=Z  

*** 
 
Both the examples above were of abelian groups. However, consider the next 
example, which is a generic example.  
 
Example 11: Show that, for any two groups 1G  and ,G2 21 GG × is the internal 
direct product ).G}e({})e{G( 2121 ×××  
 
Solution: Let }e{GH 21 ×=  and .G}e{K 21 ×=  You have already seen that 
H  and K  are normal in .GG 21 ×  
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We need to show that any element of 21 GG ×  is of the form ,hk  where Hh∈  
and .Kk∈  
Now, any element of 21 GG ×  is ),y,e()e,x()y,x( 12=  with  

.K)y,e(,H)e,x( 12 ∈∈  
.HKGG 21 =×∴  

Now, let .KH)y,x( ∩∈  
Since .ey,H)y,x( 2=∈  Since .ex,K)y,x( 1=∈  

).e,e()y,x( 21=∴  )}.e,e{(KH 21=∩∴  
).G}e({})e{G(GG 212121 ×××=×∴  

*** 
  
We would like to make a remark about terminology here. 
 
Remark 3: Let H  and K  be normal subgroups of a group .G  Then the 
internal direct product of H  and K  is essentially the same as the external 
direct product of the groups H  and .K  Therefore, when we talk of an internal 
direct product of subgroups, we often drop the word ‘internal’, and just say 
‘direct product of subgroups’. 
 
The definition of the internal direct product of two subgroups can be extended 
to that of several subgroups, as you will find if you study more advanced 
mathematics. In fact, this concept is the basis of the algebraic structure of any 
finitely generated abelian group. 
 
Now, you may ask: can every group be written as an internal direct product of 
two or more of its proper normal subgroups? To answer this, consider the 
following theorem. It gives conditions under which a group is an internal direct 
product of its subgroups. 
 
Theorem 6: Let a group G  be the internal direct product of its normal 
subgroups H  and .K  Then  

i) each Gx∈  can be uniquely expressed as ,hkx =  where 
,Kk,Hh ∈∈  and  

ii) .Kk,Hhkhhk ∈∈∀=  
 
Proof: We know that HKG =  with }.e{KH =∩   

i) Let .Gx∈  Then ,hkx =  for some .Kk,Hh ∈∈   

 Now suppose 11khx =  also, where Hh1 ∈  and .Kk1 ∈     
 Then .khhk 11=      …(2) 

 .kkhh 1
1

1
1

−− =∴   
 Now .Hhh 1

1 ∈−  
 Also, since .Khh,Kkkhh 1

1
1

1
1

1 ∈∈= −−−  }.e{KHhh 1
1 =∩∈∴ −  

 ,ehh 1
1 =∴ −  which implies that .hh 1=  

 And then, by cancellation in (2), .kk 1=  
 Thus, the representation of x  as the product of an element of H  and an 

element of K  is unique. 
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ii) The best way to show that two elements x  and y  commute is to show 

that xyyx 11 −−  is identity.  So, let Hh∈  and ,Kk∈  and consider 
hkkh 11 −− .   

 Since K   .Khkh,G 11 ∈−−  
 .Khkkh 11 ∈∴ −−  
 By similar reasoning, .Hhkkh 11 ∈−−   
 }.e{KHhkkh 11 =∩∈∴ −−  
 ,ehkkh 11 =∴ −−  that is, .khhk =  
 
Now, a word of caution! 
 
Remark 4: If you consider ,S3  you will find that ,HKS3 =  where 

,)321(K,)21(H ><=><=  and }.I{KH =∩  So, you may think 
.KHS3 ×=  But ).21)(321()321)(21( ≠   

So, what is not okay? H    .S3  
The point is that you must make sure every condition of the definition is 
satisfied before concluding that .KHG ×=  
 
Consider another observation about Theorem 6. 
 
Remark 5: Note that Theorem 6(ii) is a very helpful tool to decide that 

.KHG ×≠  Also, note that (ii) says that elements of H  commute with 
elements of .K  It does not say that H  is abelian, or K  is abelian. For 
instance, in Example 11, if 1G  and 2G  are non-abelian, then so are H        
and .K  
 
Let us consider an example now, to answer the question raised before 
Theorem 6. 
 
Example 12: Check whether or not Z  is a direct product of its subgroups. 
 
Solution: Suppose ,KH×=Z  where K,H  are subgroups of .Z  From Unit 3, 
you know that ><= mH  and ,nK ><=  for some .n,m Z∈   
Then .KHmn ∩∈  Hence, },0{KH ≠∩  unless 0m =  or .0n =   
 
Now, if ,0m =  then Z∈1  cannot be written as ,hk  with 0h =  and .Kk∈  
Similarly, if ,0n =  we conclude that Theorem 6(i) does not hold here. Thus, 
we reach a contradiction. 
Hence, Z  cannot be written as a direct product of its subgroups. 

*** 
 
Try solving the following exercises now. 
 
 
E29) Prove a partial converse of Theorem 6, namely, if H  and K  are normal 

subgroups of G  which satisfy (i) of Theorem 6, then .KHG ×=  
 
E30) If G  is a finite group, GK,GH  such that ,KHG ×=  show that 

).K(o)H(o)G(o ⋅=  
 
E31) Check if, in Example 2, ><×><= BAQ8  or not. 
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E32) Show that ∗R  is the internal direct product of +R  and },1,1{ −  where 
+R  is the set of positive real numbers. 

 
 
Now, as you have seen, a non-abelian group has many subgroups that are not 
normal. Is there some way to decide how “near” to being normal, in some 
sense, a subgroup is? You know that if H    ,G  then Hgg 1−  is not H  for at 
least one .Gg∈  So, if we know for how many ,HHgg,Gg 1 =∈ −  does this 
give us some meaningful measure? In this context, consider the following 
definition. 
 
Definition: Let G  be a group and H  be a subgroup of .G  The set 

}HHggGg{)H(N 1 =∈= −  is called the normaliser of H  in .G  
 
Note that H    G  iff .GN(H) =  
Also note that ),H(NH ⊆  since .GH ≤  
 
Consider an example. 
 
Example 13: Show that if ,S)21(H 3≤><=  then .H)H(N =  
 
Solution: )}.21(,I{H =  You know that H    .S3   

Here }.HHS{)H(N 1
3 =σσ∈σ= −  

Firstly, ).H(NH ⊆   
Also, since ).H(N)31(,H)32()31)(21)(31( ∉∉=   
Similarly, verify that .H)H(N ∉σ∀∉σ  
Hence, .H)H(N =  

*** 
 
So, you can see that )H(N\G  gives us a measure of how far H  is from 
being normal in .G  The set )H(N  is actually a group, as you will now see. 
 
Theorem 7: Let G  be a group and .GH ≤  Then .G)H(NH ≤≤  
 
Proof: Firstly, ).H(NH ⊆  Thus, ).H(NH ≤  
So ).H(Ne∈  
Also, if ),H(Ng∈  then ).H(NgHHg)g(HHgg 11111 ∈⇒=⇒= −−−−−  
Finally, if ),H(Ng,g 21 ∈  then you should show that ).H(Ngg 21 ∈  
Thus, .G)H(N ≤  
 
Now, the question is: Is )H(N    ?GHG ≤∀  Does Example 13 answer this? 
It does. Since )H(NH =  there, and H    ,S3  we see that )H(N    .S3  
Hence, N(H)  need not be normal in .G  
 
Try doing the following related exercises now. 
 
 

E33) Prove that H    G  iff .G)H(N =  
 
E34) If ,GH ≤  check whether or not  H    ).H(N  
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E35) If G  is a group and ,Gg∈  find )g(N ><  and )).G(Z(N  
 
E36) If G  is a non-trivial group and ,GH ≤  can ?}e{)H(N =  Why? 
 
E37) Find ),r(N ><  where r  is a reflection in .D8  
 

 
With this we come to the end of this discussion on normal subgroups. In the 
next unit, we shall focus on a related concept. This concept is actually the 
reason for which Galois defined, and developed, the idea of normal 
subgroups. 
 
Let us now summarise what we have discussed in this unit. 
 

6.5 SUMMARY 
 
In this unit, you have studied about the following points. 
 
1. The definition, and examples, of a normal subgroup of a group. 
 
2. H    G  iff .GgHHgg 1 ∈∀=−  
 
3. Every subgroup of an abelian group is a normal subgroup. 
 
4. }e{G 21 ×  and 21 G}e{ ×  are normal subgroups of the direct product 

.GG 21 ×  
 
5. Every subgroup of index 2  is normal, but the converse is not true. 
 
6. The definition, and examples, of a simple group. 
 
7. Every group of prime order is simple. 
 
8. Every finite abelian simple non-trivial group is cyclic, of prime order. 
 
9. If H    ,G  then H    ,K  where GK ≤  s.t. .KH ⊆  
 
10. If H    K,G    ,G  then KH∩    .G  
 
11. If H    G  and ,GK ≤  then .GHK ≤  Further, if K    G  also, then     

.GHK     
 
12. The definition, and examples of the internal direct product of normal 

subgroups. 
 
13. Let a group G  be the internal direct product of its normal subgroups H  

and .K  Then  

 i) each Gx∈  can be uniquely expressed as ,hkx =  where 
,Kk,Hh ∈∈  and  

 ii) .Kk,Hhkhhk ∈∈∀=  
 
14. The definition, examples and basic properties of the normaliser of a 

subgroup of a group. 
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6.6 SOLUTIONS / ANSWERS 
 
E1) From Unit 4, you know that }R,r{ 90  generates ,D8  where 

4)R(o,2)r(o 90 ==  and .rRrR 1
9090
−=  

 Let }r,I{rH =><=  and }.R,R,R,I{RK 2701809090 =><=  

 Then }rR,R{HR 909090 =  and }.rR,R{HR 909090 =  
 Since 9090 RrR ≠  and .HRHR,rRrR 90909090 ≠≠  
 Thus, H    .D8  

Now, .KRRKKKR ∈∀==  
Also, you should use the Cayley table of 8D  in Unit 2 to show that 

.rKKr =  
Hence, .DxxKKx 8∈∀=  
Thus, .DK 8   

 
E2) )},231(),321(),3,2(),31(),21(,I{S3=   
 )}.231(),321(,I{H =  
 Now, .HHH,H σ==σ∈σ∀  

You should check that 
 .H)32()32(H,H)31()31(H,H)21()21(H ===  

 H∴    .S3   
 
E3) Let .UH 30≤  From Unit 4, you know that >ζ<= iH  for some i  s.t. 

,30)(o iζ  where ζ  is a primitive th30  root of unity.  

Then, for any ,U30
j ∈ζ  

.H}m{}m{H jimjjimj ζ=∈ζ⋅ζ=∈ζ⋅ζ=ζ ZZ  

Hence, H    .U30  
 
E4) Let .gG ><=  Then, from Unit 4, you know that ><= mgH  for some 

.m Z∈  Hence, as in E3, you can show that H    .G  
 
E5) Yes. Since .Hyx,xHx ∈∈  So .HyHx «≠∩  

Then, from Corollary 1, Unit 5, .HyHx =   
Hence, HxxH =  for each .Gx∈  Hence, H    .G  

 
E6) For any )(GLA 2 R∈  and ),(SLB 2 R∈  
 )Adet()Bdet()Adet()BAAdet( 11 −− =  

           ),Adet(
)Adet(

1
=  since .1)Bdet( =  

           .1=  
 .)(SLBAA 2

1 R∈∴ −  
 )(SL2 R∴    ),(GL2 R  by Theorem 1(ii). 
 

E7) It is not. For example, )(GL
12
01

2 C∈⎥
⎦

⎤
⎢
⎣

⎡
 and .H

i0
21
∈⎥
⎦

⎤
⎢
⎣

⎡
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 But ,H
12
01

i0
21

12
01 1

∉⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

 which you should verify. 

 Hence H    ).(GL2 C  
 
E8) Let Gg∈  and ).G(Zx∈  Then  
 ,gxgxgg 11 −− =  since ).G(Zx∈  

).G(Zx∈=  
 .Gg)G(Zg)G(Zg 1 ∈∀⊆∴ −  
 )G(Z∴    .G  
 
E9) No. For example, ><= )21(H  is an abelian subgroup of .S3   

But, as you have seen in Sec.6.2, H    .G  
 
E10) Since ><><∉=− )32(,)32()21()321)(32()321( 1     .S3  
 
E11) All, since this group is abelian (which you should verify). 
 
E12) No. For example, take ><= rH  in .D8  
 You have seen that >< r    ,D8  in E1. 

 However, you should check that .DggHgHgg 8
11 ∈∀= −−  

  
E13) ,R,rD n2 ><=  where }1n,,1,0iR{H i −== K  is the set of rotations. 

 Now ,n)H(o =  since .RH ><=  Also, .n2)D(o n2 =  
 Hence, .2H:D n2 =  Thus, by Theorem 2, H    .D n2  
 
E14) Converse: If G  is a group and H    ,G  then .2H:G =  
 Consider Z3  in .Z  Since Z  is abelian, Z3    .Z  
 However, ,33: =ZZ  as you know from Unit 5. 
 Thus, the converse of Theorem 2 is false. 
 
E15) You have seen earlier that ).S()T( ℘≤℘  
 Now 1n2))T((o −=℘  and .2))S((o n=℘  

 Hence .22
2)T(:)S( 1n

n
==℘℘ −  

 Thus, )T(℘    ).S(℘  
 
E16) By Theorem 10, Unit 5, you know that .)x(Orb))x(Stab(o)G(o GG=  

So, )).x(Stab(o2)G(o G=  

Hence, .2)x(Stab:G G =  

Thus, by Theorem 2, )x(StabG    .G  
 
E17) For any prime ,p ,pUp =  a prime. Hence, by Example 7, pU  is simple. 

Further, since nU  is cyclic, from Unit 4 you know that it will be simple 
only if .pn =  

 
E18) For instance, 6Z  and 3S  are both of order .6  Neither is simple. 
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 In general, if 1G  and 2G  are groups of order ,n  where 1G  is abelian 

and 2G  is not, then n  cannot be prime. This is because every group of 
prime order is cyclic, and hence, abelian. Hence, by Theorem 3, 1G  
cannot be simple. However, 2G  could be simple – as you will see in Unit 
9. 

 
E19) Since such a group is abelian, it will have proper cyclic subgroups, which 

will be normal. Hence, it won’t be simple. 
 
E20) Let 1G  and 2G  be simple groups. Then }e{G 21 ×    ,GG 21 ×  as you 

have seen in Example 5. Also }e{G 21 ×  is not trivial, since 1G  is not 
trivial. 
Hence, 21 GG ×  is not simple. 

 
E21) We are given that .GH ≤  
 Since .Hhgg,Hh,Gg)h(o)hgg(o 11 ∈∈∈∀= −−  
 Hence, H    .G  
 If G  is finite and n   ),G(o  then .H «=  Hence, ,GH </  trivially. 
 If ,1n =  then .G}e{H ≤=  
 So, to give an example, we need to think of some .2n ≥  But now, see 

what happens. Since Ge∈  is of order He,1 ∉  for any .2n ≥  Hence, 
GH </  for any .2n ≥  

 
E22) Since },h,e{hH,2)H(o =><==  where .eh 2 =  
 Since H    GgHhgg,G 1 ∈∀∈−  and .Hh∈  
 So, for any ehgg,Gg 1 =∈ −  or .hhgg 1 =−  
 If ,ehgg 1 =−  then ,eh =  a contradiction to the fact that .2)h(o =  
 Thus, ,hhgg 1 =−  i.e., .Ggghhg ∈∀=  So ).G(ZH ⊆  
 Hence, ).G(ZH ≤  
 
E23) HK ≤  and .GH ≤  Thus, from Unit 3, you know that .GK ≤  However, 

K  need not be normal in .G  

 For example, consider .a
10
a1

K
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
= R  Then you should check that 

).(SLK 2 R≤  Also, you know that )(SL2 R    ).(GL2 R  

 Now, take )(GL
43
21

A 2 R∈⎥
⎦

⎤
⎢
⎣

⎡
=  and .K

10
11
∈⎥
⎦

⎤
⎢
⎣

⎡
 

 Then ,KA
10
11

A 1 ∉⎥
⎦

⎤
⎢
⎣

⎡−  which you should check. 

 Hence, K    .G  
 
E24) Firstly, GKH ≤∪  if and only if KH ≤  or ,HK ≤  as you know from  

Unit 3. 
 So HKHGKH =∪⇒≤∪  or .KKH =∪  
 Thus, given that H  and K  are normal in ,G KH∪    G  iff ,GKH ≤∪  

i.e., iff KH ≤  or .HK ≤   
 
E25) Yes. To see why, take KHx ∩∈  and .Hh∈   
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 Now HxKHx ∈⇒∩∈  and .Kx∈  
 So ,Hxhh 1 ∈−  since .Hh,x ∈   

Also, K    .KxhhG 1 ∈⇒ −  
 Hence, .KHxhh 1 ∩∈−  
 Thus, KH∩    .H  
 
E26) Yes. Firstly, in Unit 3 you have seen that .GGKH 21 ×≤×  
 Next, let KH)k,h( ×∈  and .GG)g,g( 2121 ×∈  Then 

,KH)kgg,hgg()g,g)(k,h()g,g( 2
1

21
1

121
1

21 ×∈= −−−  since H    1G  and    
K    .G2  

 Hence, KH×    .GG 21 ×  
 
E27) i) Let .HKhk∈  Since H    ,Hhkk,G 1 ∈−  say .hhkk 1 ′=−  
  Then .KHhkhk ∈′=  Thus, .KHHK ⊆  
  Similarly, show that .HKKH ⊆  
  Thus, .KHHK =  
  Hence, from Theorem 7, Unit 3, you know that .GHK ≤  
 
 ii) Since H    G  and K    ,GHK,G ≤  by (i) above. 
  Now, for any Gg∈  and ,HKhk∈  
  ,HK)kgg)(hgg(hkgg 111 ∈= −−−  since H    K,G    .G  
  Thus, HK    .G  
 
 iii) No, as you have seen in Example 8. 
 
E28) i) Consider hk  and 11kh  in .HK  
  Then consider .)kh()hk(khkh 1

11
1

11
−−  If we show that this is in 

,KH∩  then ),hk)(kh()kh)(hk( 1111 =  i.e., HK  will be abelian. 
  Now, 1

1
1

1
11

11 hkhkkhkh −−−−  
  ,hkhkkhkh 1

1
1

1
1

1
1

1
−−−−=  since K  is abelian.  

  Since .Hh)khk)(kkh(h,Hh,khk,kkh,h 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1 ∈∈ −−−−−−−−  

  So .Hhkhkkhkh 1
1

1
1

11
11 ∈−−−−  

  Also, 1
1

1
1

11
11 hkhkkhkh −−−−  

  1
1

1
1

1
1

1
1

1
11

1 hkh)hh(kkh)hh(hk −−−−−−=  

  ,hkh)hh(kkhh)hkh( 1
1

1
11

1
1

1
11

1 −−−−−=  since H  is abelian. 
  .K∈  
  Hence the result. 
 
 ii) No. For instance, consider the quaternion group ,Q8  and 

.BK,AH ><=><=  Then }.I{KH ±=∩  
  Also, ,QHK 8=  which is not abelian. 
  Note that both H  and K  are normal abelian subgroups of .Q8  
 
E29) We know that each Gx∈  can be expressed as ,hk  where Hh∈  and 

.Kk∈  
 .HKG =∴  
 We need to show that }.e{KH =∩   
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 Let .KHx ∩∈  
 Then Hx∈  and .Kx∈   
 HKxe∈∴  and .HKex∈  
 So, x  has two representations, xe  and ,ex  as a product of an element 

of H  and an element of .K  But we have assumed that each element 
must have only one such representation. So the two representations, 
xe  and ,ex  must coincide, that is, .ex =   

 }.e{KH =∩∴  
 .KHG ×=∴  
 
E30) Since G  is finite, so are H  and .K  
 Now ,HKG =  with }.e{KH =∩  
 So ),K(o)H(o)HK(o)G(o ⋅==  from Unit 3. 
 
E31) Since .BAQ},I{BA 8 ><×><≠±=><∩><  
 
E32) First, verify that +R  and }1,1{ −  are subgroups of .∗R  
 Since ∗R  is abelian, they are normal subgroups. 
 Next, for any 0r,r >∈ ∗R  or .0r <  
 Hence, .1rr || +>−∈<±= R  
 Also, }.1{1 =∩>−< +R  
 Thus, .1 +∗ ×>−<= RR  
 
E33) H    GgHHggG 1 ∈∀=⇔ −  
    Gg)H(Ng ∈∀∈⇔  
    .G)H(N =⇔  
 
E34) }.HHggGg{)H(N 1 =∈= −  

 Hence, .HHgg),H(Ng 1 =∈∀ −  Hence, H    ).H(N  
 
E35) i1 ggxxGx{)g(N =∈=>< −  for some }.i Z∈  
 
 )}.G(Zg)G(ZgGg{))G(Z(N 1 =∈= −  
 Since )G(Z    .G))G(Z(N,G =  
 
E36) No. If },e{H =  then }.e{G)H(N ≠=  
 If },e{H ≠  then ).H(NH ≤  Thus, }.e{)H(N ≠  
 
E37) }.r,I{r =><  
 Since IR4 =  and .rrRrRR,rRrRR 422i2ii === −−  
 So ).r(NR2 ><∈  
 Since )r(NrR,rRrRR)rR(r)rR( 2i2iii1i ><∈== −− also. 
 Also, for iR,3,1i =  and irR  are not in )r(N ><  since .rrR i2 ><∉  
 So }.rR,R,r,I{)r(N 22=><  
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UNIT 7                                  

                     QUOTIENT GROUPS 

Structure    Page Nos. 
 
7.1 Introduction           189  

Objectives 
7.2 When the Cosets Form a Group         190 
7.3 Properties of Quotient Groups         196 
7.4 Summary           205 
7.5 Solutions / Answers           205 
 

7.1 INTRODUCTION 
 
In this block, so far, you have studied different aspects of left and right cosets 
of subgroups. However, we have not discussed any binary operation on the 
set of cosets of a subgroup. In this unit, we will define one such operation, and 
see if the set is a group under this operation. 
 
In Sec.7.2, you will see how the binary operation on a group G  can be used to 
define a binary operation on the set of cosets of a normal subgroup of .G  
However, this definition doesn’t work if the subgroup concerned is not normal, 
as you will see. Further, you will see why the set of cosets of a normal 
subgroup is a group with respect to this operation. We call this group a 
quotient group. Interestingly, normal subgroups were actually defined by 
Galois in a manner that the cosets would form a group. 
 
In the next section, Sec.7.3, you will study several properties of quotient 
groups. These properties will help you realise the potential strength of the 
concept of a quotient group. 
 
The purpose of having a unit focussed completely on quotient groups is to give 
you a chance to spend more time on digesting this concept. This is because 
many people find the idea of a quotient group not easy to grasp in the first go. 
Please study this unit carefully, to help you achieve the learning expectations 
given below. 
 

Objectives 
After studying this unit, you should be able to: 

• define, and give examples of, a quotient group; 
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• explain why the formation of a quotient group, ,NG  requires N    ;G  

• prove, and apply, some basic properties of quotient groups. 
 

7.2 WHEN THE COSETS FORM A GROUP 
 
Let us begin with considering 3S  and )}.21(,I{H =  The set of right cosets of 
H  in 3S  is )}.32(H),31(H,H{A =  Now, it seems natural to define an 
operation ∗  on ,A  using the composition on ,S3  i.e., for ρσ H,H  in ,A  define 

.A)(HHH ∈ρσ=ρ∗σ o  Is this operation well-defined? Let’s see.   
 
The way ∗  is defined, it is closed on .A  
However, note that )231(H)31(H =  since .H)231)(31( 1 ∈−  Similarly, 

).321(H)32(H =   
So, if ∗  were well-defined, )32(H)31(H ∗  should be ).321(H)231(H ∗  
But =∗ )32(H)31(H ))31()21((H)312(H))32()31((H oo == ),31(H=  since 

;H)21( ∈  and  
.HHI))321()231((H)321(H)231(H ===∗ o   

Also ,H)31(H ≠  since .H)31( ∉  
Hence, ∗  is not well-defined. 
 
Now consider )}231(),321(,I{)321(K =><=  in .S3  
Consider the operation ∗  on the set of cosets of K  in ,S3  given by 

.S,)(KKK 3∈ρσ∀ρσ=ρ∗σ o  
By definition, ∗  is closed on the set of cosets of .K  
Let us see if 21 KK σ=σ  and ,KK 21 ρ=ρ  then is )(K)(K 2211 ρσ=ρσ oo  or 
not, for .S,,, 32121 ∈ρρσσ  
Here, if K1 ∈σ  or ,K1 ∈ρ  there is nothing to check really. (Why?) 
Now, if )21(1 =σ  and ),32(2 =σ  and ),21(),31( 21 =ρ=ρ  then 

.K,K 2211 ∈ρσ∈ρσ oo  
So ).(KK)(K 2211 ρσ==ρσ oo  You will find this happening for every 

2121 ,,, ρρσσ  not in .K  
Thus, in this case ∗  is well-defined. 
The difference between H  and ,K in this context, is that H    3S while K    .S3  
 
So, it appears that if K    ,G  then we can define a binary operation on the set 
of cosets of K  in G  with respect to which this set could possibly be a group.  
Let’s see if this is actually so. 
 
Let H  be a normal subgroup of a group .G  Then HggH =  for every .Gg∈   
Consider the set of all cosets of H  in .G  We denote this set by .HG   
(Note that since H    ,G  we need not write ‘left coset’ or ‘right coset’, simply 
‘coset’ is enough.) 
Now, let us define ,HxyHyHx:HGHGHG: =∗→×∗  where xy  is the 
product in .G  
Then ∗  is closed on .HG  Let us check if ∗  is well-defined.  
Let 1HxHx =  and ,HyHy 1=  for .Gy,y,x,x 11 ∈  Then .Hyy,Hxx 1

1
1

1 ∈∈ −−  
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1

1
1

1
1

1
1

1
1

11 x)yy(x)xy)(xy()yx)(xy( −−−−− ==∴  
         H)xx(x)yy(x 1

1
11

1 ∈= −−− , since Hyy,xx 1
1

1
1 ∈−−  and H    .G  

So, .H)yx)(xy( 1
11 ∈−  

,yHxHxy 11=∴  i.e., ∗  is well-defined. 
 
So, you have seen that if H    ,G  then ∗  is a well-defined binary operation on 

.HG  You have also seen an example to show if H    ,G  then ∗  is not well-
defined. Thus, to ensure that ∗  is well-defined, H  must be normal in .G  
 
Before going further, consider this remark on notation.  
 
Remark 1: We shall usually denote the operation on HG  by multiplication, 
unless we specify another operation. 
 
We will now show that ),HG( ⋅  is a group. This theorem is due to the German 
mathematician Otto Hölder, who proved it in 1889. 
 
Theorem 1: Let H  be a normal subgroup of a group .G  Then HG  is a group 
under multiplication, defined by ,HxyHyHx =⋅  for .Gy,x ∈  The coset 

HeH =  is the identity of HG  and the inverse of Hx  is the coset .Hx 1−  
 
Proof: Firstly, HG  is a non-empty set, since .HGH∈  
 
Next, by definition, multiplication is closed in .HG  
This multiplication is also associative, since  

)Hz()Hxy()Hz())Hy)(Hx(( =  
          z)xy(H=   
          )yz(Hx= , as the product in G  is associative. 
          )Hyz)(Hx(=  
          ))Hz)(Hy)((Hx(=  for .Gz,y,x ∈  
Now, if e  is the identity of ,G  then ,HxHxeHeHx ==⋅  for every .Gx∈   
Also,  HHe =  since .He∈  Thus, .GxHxHHx ∈∀=⋅  
 
Finally, for any .HHeHxx)Hx)(Hx(,Gx 11 ===∈ −−  
 
Hence, ),HG( ⋅  satisfies 3G,2G,1G ′′′  of Unit 2. Thus, it is a group with 
identity .H  Further, the inverse of Hx  is .GxHx 1 ∈∀−  
 
So, we have proved that ,HG  the set of all cosets of a normal subgroup H  
in ,G  is a group with respect to multiplication defined by .HxyHyHx =⋅  This 
leads us to the following definition. 
 
Definition: Let G  be a group and let H    .G  The group ),HG( ⋅  is called the 
quotient group (or factor group) of G  by .H  
 
For example, you have seen that KS3  is a quotient group, where 

.)321(K ><=  Note that the number of elements in KS3  is ,2  the 

elements being K  and ).21(K  Thus, .K:S)KS(o 33 =  In this context, 
consider the following observation. 

Note that the 
elements of HG  
are subsets of .G  

Fig.1: Hölder 
          (1859-1937) 
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Remark 2: The cardinality of HG  is the number of distinct cosets of H  in .G  
As you know from Unit 5, this number is ,H:G  the index of H  in .G  

Thus, if HG  is finite, then .H:G)HG(o =   
Hence, if G  is a finite group and H    G , then by Lagrange’s theorem 

.
o(H)
o(G))HGo( =  

 
Now, let us consider a couple of observations related to the operation on 

.HG  
 
Remark 3: i) Note that if H    .GxHxxH,G ∈∀=  So 

xyHHxyHyHx)yH()xH( ==⋅=⋅  in .HG  

ii) If ),G( +  is an abelian group and ,GH ≤  then you know that H    .G   
 In this case, the operation on HG  is defined by 

).yx(H)yH()xH( ++=+++  
 
Let us now look at a few examples of quotient groups. 
 
Example 1: Obtain the group ,HG  where 3SG =  and .SH 3=  
 
Solution: Firstly, note that 3S    .S3  Hence, 33 SS  is a group. The only coset of 

3S  in 3S  is .S3  Hence, the only element in this factor group is ,S3  the identity 
element. Hence, 33 SS  is the trivial group. 

*** 
 
What you have seen in Example 1 is true for any group. Consider the following 
important remark. 
 
Remark 4: Given any group GG,G  is the trivial group. This is true 
regardless of whether G  is finite or infinite, abelian or non-abelian, cyclic or 
non-cyclic. 
 
Now consider an example of an infinite cyclic group, whose quotient group is a 
finite cyclic group. 
  
Example 2: Show that the group ZZ n  is of order .n  
 
Solution: You know that ,1><=Z  an infinite cyclic group. 
In Unit 5, you have seen that all the cosets of Zn  in Z  are of the form 

},kkna{na ZZ ∈+=+  where .1n,,1,0a −= K  Thus, 

},1n,,2,1,0{n −= KZ
Z  where i  denotes the coset .ni Z+   

Now, the operation in ZZ n  is given by .baba +=+  Hence, for any 

.1m)timesm(111m,nm ⋅=+++=∈ LZ
Z   

Thus, ,1n ><=Z
Z  where n)1(o =  since 01n =⋅  in Z

Z
n  and 01.m ≠  for 

.nm0 <<   
So, .n)n(o =ZZ  

*** 
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In the example above, note that the elements of ZZ n  are precisely the 
congruence classes modulo ,n  that is, the elements of .nZ      
 
Next, let us consider an example of a non-cyclic abelian group, and see if its 
quotient group is always non-cyclic. 
 
Example 3: Consider the group ,Q8  and its subgroup }A,I{H ±±=  (of 
Example 2, Unit 6). Obtain the elements of ,HQ8  and the order of each 
element. Also obtain the Cayley table of ,KQ8  where }.I{K ±=  
 
Solution: In Unit 6, you have seen that H    .Q8  In Unit 4, you have seen that 

8Q  is not cyclic. 

Now ,2
4
8

)H(o
)Q(o)HQ(o 8

8 ===  by Remark 2.  

Hence, from Unit 4 you know that HQ8  is cyclic, and is generated by an 
element of order .2  
In Example 2, Unit 6, you have also seen that },HB,H{HQ8 =  where 

.
0i
i0

B ⎥
⎦

⎤
⎢
⎣

⎡
=   

Here ,1)H(o =  since H  is the identity of .HQ8   

Also ,2)HB(o =  since ,HBHBHB 2=⋅  and .HIB2 ∈−=  
Thus, .HBHQ8 ><=  
So, though 8Q  is non-cyclic, HQ8  is cyclic. 
 
Next, KQ8  is of order .4  You should check that its distinct non-trivial 
elements are ,KAB,KB,KA  each of order .2  So, the Cayley table is as 
below. 

                

KKAKBKABKAB
KAKKABKBKB
KBKABKKAKA

KABKBKAKK
KABKBKAK•

 

From the table, you can see that this is the same as the Klein 4-group (see 
Example 3, Unit 2). 

*** 
 
Before going to the next example, consider an important remark emerging out 
of Example 3. 
 
Remark 5: In Example 3, you have seen that .2)HB(o =  This is the order of 
HB  as an element of the group .HG  Of course, HB  is also the subset 

}AB,B{ ±±  of ,Q8  which has cardinality .4  Do not confuse this cardinality 
with the order of ,HB  as an element of .HQ8  
 
Let us now consider some examples where HG  is infinite. 
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Example 4: Show that HG  is an infinite group, where )(GLG 2 R=  and 

).(SLH 2 R=  How many elements of finite order does HG  have, and what 
are the possible finite orders? 
 

Solution: You know that )(SL2 R    )(GL2 R  (see E6, Unit 6). 

Any element of HG  is of the form ),(SLA 2 R⋅  where ).(GL
dc
ba

A 2 R∈⎥
⎦

⎤
⎢
⎣

⎡
=  

Also, note that, for ),(GLB,A 2 R∈ )(SLB)(SLA 22 RR ⋅=⋅  iff ),(SLAB 2
1 R∈−  

i.e., iff ,1)ABdet( 1 =−  i.e., iff .0BdetAdet ≠=  

Further, for each .n
10
0n

det,n =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∈Z  Hence, there are at least as many 

distinct elements in HG  as there are non-zero integers. Thus, HG  is an 
infinite group. 
 

Next, for ),(SLA 2 R∉  
)(SLA 2 R⋅  is of finite order m  

)(SL)(SLA 22
m RR =⋅⇔  

)(SLA 2
m R∈⇔  

1)A(det m =⇔  
,1Adet −=⇔  since )(SLA 2 R∉  and .Adet R∈  

 

You can check that there are infinitely many matrices in )(GL2 R  with 

determinant ).1(−  For example, ⎥
⎦

⎤
⎢
⎣

⎡
−1b1
b1

 is one such type, for each .b R∈  

Further, note that 
⇒−= 1Adet .2))(SLA(o)(SLA1Adet 22

22 =⋅⇒∈⇒= RR  
Thus, if )(SLA 2 R⋅  is of finite order, the order must be 1 or .2  

*** 
 

Example 5: Consider 1{G m =α∈α= C  for some }.m Z∈  Show that G  is a 

subgroup of .∗C  Also show that 10U    ,G  and find .U:G 10  
 

Solution: Firstly, .G «≠  (Why?) 
Secondly, the multiplicative identity, .G1∈  (Why?) 
Thirdly, if ,G∈α  then 1m =α  for some .m Z∈  So .1)( m1 =α−  Thus, .G1∈α−  
Finally, if ,G, ∈βα  then nm 1 β==α  for some .n,m Z∈   
So .1)( mnmnmn =βα=αβ  Hence, .G∈αβ   
Thus, .G ∗≤ C  
Now, ∗∗ ≤=α∈α= CC }1{U 10

10  and .GU10 ⊆  Thus, .GU10 ≤  

Since G  is abelian, 10U    .G  
 

Now, for each prime p  s.t. p  ,10  let ζ  be a primitive pth  root of unity. Then 
,UU 1010 ≠ζ  as .110 ≠ζ  

 Also 102101 UU ζ=ζ  iff ,1)( 101
21 =ζζ −  i.e., iff .10

2
10
1 ζ=ζ   

 

So, if 1ζ  is a primitive thp1  root of unity and 2ζ  is a primitive thp2  root of 
unity, for two distinct primes 21 p,p  not dividing ,10  then .UU 102101 ζ≠ζ  (Here  
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note that ,p)(o i
10
i =ζ  for ).2,1i =   

Thus, 10U:G  is at least as large as the number of primes in ,N  except for 2  
and .5  Hence, it is infinite. 

*** 
 
Now consider another ‘finite example’. 
 
Example 6: Obtain the orders of all the factor groups of .U15  Also find the 
distinct elements of any one non-trivial factor group. 
 
Solution: From Unit 4, you know that the subgroups of 15U  are 

,H,H,eH 3
321 >ζ<=>ζ<=><=  ,H 5

4 >ζ<=  where ζ  is a primitive th15  
root of unity. 
The orders of these groups are as follows: 

.3)H(o,5)H(o,15)H(o,1)H(o 4321 ====  

Thus, the orders of the corresponding factor groups are ,
)H(o
)G(o)HG(o
i

i =  i.e., 

,
3

15,
5

15,
15
15,

1
15

 respectively, i.e., ,5,3,1,15  respectively. 

Consider 3HG  now.  
Note that )HG(o 3  is prime. Hence, 3HG  is cyclic. In fact, 

}.H,H,H{HHG 3
2

3333 ζζ=>ζ<=  

*** 
 
Consider the following comment related to the example above. 
 
Remark 6: We can generalise what you have seen in Example 6 (and 
Example 2).  
If ><= gG  and ,><= ngH  then ,nH)Go( =  and 

.><== − gHH}g,gH,{H,HG 1nK  
 
Now, another example. 
 
Example 7: Consider ,D8  and .RH 90 ><=  You have shown, in Unit 6, that   
H    .D8  Find the elements of .HD8  
 

Solution: First, .24
8)HD(o 8 ==  Also, ,Hr∉  where r  is a reflection in a 

diagonal of the square. 

So }.Hr,H{HD8 =  
*** 

 
Try doing some exercises now. 
 
 

E1) Let .S)}32)(41(),42)(31(),43)(21(,I{V 44 ≤=  Show that 
)}43)(21(,I{H =    ,V4  and find ).HV(o 4  Also obtain two distinct  

elements of ,HV4  with justification. 
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E2) Let }c,b,a{S =  and }.b,a{T =  You have shown, in Unit 6, that       

)T(℘    ).S(℘  Find the elements of ).T()S( ℘℘  
 
E3) Find the order of )83( ><+  in ,8 2020 ZZ  and of )93( ><+  in 

.9 2020 ZZ  
 
E4) Construct the Cayley table for .155 ZZ  
 
E5) Give an example, with justification, of a finite group G  with H    G  and 

y,x  in G  s.t. HyHx =  in HG  but ).y(o)x(o ≠  
 
E6) For any group ,G  determine the factor groups corresponding to G  and 

to .}e{  
 
E7) Let G  be a group and GH ≤  such that ),HG( ⋅  is a group, where ‘ ’ is 

defined as in Theorem 1. Will H  be normal in ?G  Why, or why not? 
 
E8) Let G  be a finite group, H    G  and Ga∈  s.t. 3)Ha(o =  and 

.10)H(o =  Find all possible orders a  can have. 
 
E9) If G  is a finite group and H    ,G  prove that )Hg(o  in HG  must divide 

.G)g(o ∈∀  
 
E10) Show that ZR  has elements of every order. Does every element of 

ZR  have finite order? Why? 
 
E11) Is QC  a group? Why, or why not?  
 Further, if QC  is a group, give two distinct non-trivial elements of ,QC  

with justification. If it isn’t a group, find a non-trivial proper normal 
subgroup of .C   

 
E12) i) Let }.:f{ RR→=F  You have seen, in Unit 2, that F  is a group 

with respect to pointwise addition. Let 
,rc)r(f:f{C RRR ∈∀=→=  where }c R∈  be the set of 

constant functions. Show that C    .  What do the elements of 
C  look like? Is C  finite or infinite? Is C abelian or non-

abelian? 
 
 ii) Let ff{Cont F∈=  is continuous on }.R  Show that ContF  is a 

well-defined group. Does it have an element of order ?2  Why, or 
why not?  

 

 
By now you would have developed some familiarity with quotient groups. Let 
us move on to look at some algebraic properties of these algebraic objects. 
 

7.3 PROPERTIES OF QUOTIENT GROUPS 
 
In this section we will consider questions like: do G  and HG  have the same 
algebraic properties? For instance, if G  is abelian, will its factor groups be 

·
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abelian? And, conversely, if H    G  such that HG  is abelian, will G  be 
abelian? 
 
Let us begin with a theorem. 
 
Theorem 2: If G  is an abelian group, then every factor group of G  is abelian. 
 
Proof: Let H    G  and .HGyH,xH ∈   
Then ,yxHxyH)yH)(xH( ==  since G  is abelian 
        ).xH()yH(=   
Hence, HG  is abelian. 
 
By Theorem 2, you know that ZZ n  is abelian (which you already know, of 
course!). You now also know that H)(nm CM ×  is abelian, for every subgroup 
H  of ).),(( nm +× CM  
 
Now, what about the converse of Theorem 2? If HG  is abelian for some     
H    ,G  must G  be abelian? If HG  is abelian for every non-trivial normal 
subgroup of ,G  must G  be abelian? Think about these questions while 
solving the following exercises. 
 
 

E13) Give an example to show that even if HG  is abelian H∀    ,G  
G},e{H ≠ need not be abelian. 

 
E14) If G  is a cyclic group, must HG  be cyclic H∀    ?G  Further, is the 

converse true, i.e., if HG  is cyclic for some H    ,G  must G  be cyclic? 
Give reasons for your answers. 

 
E15) i) If G  is a finite group, must HG  be finite H∀    ?G   

 ii) If G  is a group, H    G  and HG  is finite, must G  be finite?  
 Give reasons for your answers. 
 

 
Let us go a little further in our discussion on when HG  is abelian. 
 
You may be surprised to know that given a group ,G  we can always define a 
normal subgroup ,H  such that HG  is abelian. Let us define this subgroup.  
 
Definition: Let G  be a group and .Gy,x ∈   

i) The element xyyx 11 −−  is called the commutator of x  and ,y  and is 
denoted by .y][x,  

ii) The subgroup of G  generated by the set of all commutators in G  is 
called the commutator subgroup of .G  It is denoted by G][G,  or .G′  

 
For example, if G  is a commutative group, then 

.Gy,xeyxyxxyyx 1111 ∈∀== −−−−  }.e{]G,G[ =∴  
In particular, if G  is cyclic, then }.e{G =′  
 
Consider the following remark about .G′  

The commutator subgroup 
was introduced by the 
British mathematician       
G. A. Miller, in 1898. 
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Remark 7: Note that the set }Gy,xxyyx{C 11 ∈= −−  generates ].G,G[  

Thus, from Unit 4, you know that any element of ]G,G[  is of the form ∏
=

m

1i

n
i ,a i  

where ii
1

i
1

ii yxyxa −−=  for some Gy,x ii ∈  and .m,ni NZ ∈∈  
What you must note here is that C  itself may not be a group. So ]G,G[  
may not be ,C  but .C]G,G[ ><=  
 
Let us consider some non-trivial examples of a commutator subgroup. 
 
Example 8: Find the commutator subgroup of .S3  
 
Solution: Note that, for any 2-cycle )ji(  in .I)ji)(ji(,S3 =  So, ).ji()ji( 1 =−  

Also ).231()321( 1 =−   
Since ,6)S(o 3 =  there are 15C2

6 =  commutators in ,S3  not necessarily 

distinct. For instance, III 11 =σσ−−  is a commutator. So is 
).321()31)(21)(31)(21( =   

Another one is ).231()321)(21)(231)(21()321)(21()321)(21( 1 ==−   
You can check that the set of commutators is )}.231(),321(,I{  
Thus, ]S,S[ 33  is generated by )321(  and .)321()231( 2=  
Thus, ,)321(]S,S[ 33 ><=  and you know that this is normal in .S3   

Note that ]S,S[
S

33

3  is of order ,2  and hence is abelian. 

*** 
 
Example 9: Find ],G,G[  where .DG 8=  
 

Solution: },rR,rR,rR,R,R,R,r,I{D 3232
8 =  where 24 rIR ==  and 

.rRrR 1−=  
For each ,Dy,x 8∈  you should check that Ixyyx 11 =−−  or .R2  

Thus, .R}R,I{]G,G[ 22 ><=><=  

Note that }rR,R,r,I{]G,G[
G =  is the Klein 4-group, .Rr ><×><  

*** 
 
In the examples above it turns out that the set of commutators is a subgroup. 
However, this need not be so. You will come across such examples if, and 
when, you study advanced algebra. 
 
Now, let us state the reasons for the importance of the commutator subgroup. 
 
Theorem 3: Let G  be a group. Then ]G,G[  is a normal subgroup of .G  
Further, ]G,G[G  is commutative. 
 
Proof: ]G,G[  is a subgroup, by definition.  
Now, for any commutator xyyx 11 −−  and for any ,Gg∈  

].G,G[)ygg()xgg()ygg()xgg(g)xyyx(g 111111111 ∈= −−−−−−−−−  
Also, any element of ]G,G[  is of the form ∏=

i

n
i ,aa i  where ii

1
i

1
ii yxyxa −−=  

for some Gy,x ii ∈  and .ni Z∈  
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Hence, ∏ ∈= −−

i

n
i

11 ],G,G[)gag(agg i  since .i]G,G[gag i
1 ∀∈−  

]G,G[∴    .G  
 
For proving the second part of the theorem, let us denote ]G,G[  by ,H  for 
convenience. 
Now, HG  will be abelian iff ∀⋅=⋅ HxHyHyHx  .Gy,x ∈  Also, 

HyxHxyHxHyHyHx =⇔⋅=⋅  
           H)yx)(xy( 1∈⇔ −   
           .Hyxxy 11 ∈⇔ −−   
Since ,Gy,xHxHyHyHx,Gy,xHyxxy 11 ∈∀⋅=⋅∈∀∈−−   
that is, HG  is abelian. 
 

]G,G[  tells us how far, in a sense, G  is from being commutative. The larger 
]G,G[  is, the further G  is from being abelian.  

 
Now, not only is ]G,G[

G  abelian, you will see that ]G,G[  is the smallest 

normal subgroup H  of G  that has the property that HG  is abelian.  
 
Theorem 4: Let G  be a group. If N    G  such that NG  is abelian, then 

.N]G,G[ ≤  
 
Proof: Since NG  is abelian, .Gy,xNxNyNyNx ∈∀⋅=⋅  Thus, 

,Gy,xNyxNxy ∈∀=  so that .Gy,xN)yx)(xy( 1 ∈∀∈−  
Thus, .Gy,xNyxyx 11 ∈∀∈−−  
Hence, ,N]G,G[ ⊆  and hence, .N]G,G[ ≤  
 
Let us see how Theorem 4 can be of help in finding the commutator subgroup 
of a group. We will use it for finding a shorter route than you used in Example 
9, to reach the same goal. 
 
Example 10: Find ],G,G[H =  where .DG 8=  
 
Solution: You know that .rRrR,IR,IrR,rD 142

8 >===<= −   

Now, certainly .HI∈  Also, ].G,G[RRrRr 211 ∈=−−  
So, ].G,G[R2 ≤><  
Since ><=><= 222

8 R},R,I{R)D(Z  is normal in .G   

Also rRRrrRrRrRRr 31 ===== −  in ,RG 2 ><   
so that >< 2RG  is abelian.  
Hence, by Theorem 4, .R]G,G[ 2 ><=  

*** 
 
Why don’t you try some exercises now? 
 
 

E16) Find the commutator subgroup of .D10   
 
E17) Find the commutator subgroup of ,]G,G[G  for any group .G  
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E18) Find the commutator subgroup, and the centre, of a simple  

 i) abelian group, 

 ii) non-abelian group. 
 
E19) Find ,G′  where .QG 8=  
 
 
Let us now discuss some interesting properties of the quotient group ).G(ZG  
You know that if G  is abelian, then .G)G(Z =  So )G(ZG  is the trivial group, 
and hence, it is abelian.  
Now look at .Q8  You know that }.I{)Q(Z 8 ±=  So )Q(ZQ 88  is abelian (see 
Example 3). But 8Q  is non-abelian.  
So if )G(ZG  is abelian, we can’t say if G  is abelian or not. However, if 

)G(ZG  is cyclic, it turns out that G  has to be abelian, according to the 
following theorem. 
 
Theorem 5: If G  is a group s.t. )G(ZG  is cyclic, then G  is abelian. 
 
Proof: Let ,)G(gZ)G(ZG ><=  and let .Gy,x ∈  
Then ),G(Zg)]G(gZ[)G(xZ mm ==  and ),G(Zg)G(yZ n=  for some .n,m Z∈  
So ).G(Zgy),G(Zgx nm ∈∈   

Therefore, 2
n

1
m zgy,zgx ==  for some ).G(Zz,z 21 ∈  

Then ,z)zg(g)zg)(zg(xy 21
nm

2
n

1
m ==  since ).G(Zz1∈  

              ),zg)(zg(zzgzzg 1
m

2
n

12
nm

21
nm === ++  as ).G(Zz2 ∈  

              .yx=  
Hence, G  is abelian.   
 
Note that one way in which we can apply Theorem 5 is that if G  is not abelian, 
then )G(ZG  cannot be cyclic. Thus, for example, we know that )S(ZS 33  is 
not cyclic.  
Similarly, we know that )D(ZD n2n2  is not cyclic, since n2D  is not abelian. 
 
Let us consider another example of the application of Theorem 5. 
 
Example 11: Let G  be a non-abelian group of order ,pq  where p  and q  are 
distinct primes. Then }.e{)G(Z =  
 
Solution: Since G  is non-abelian, ).G(ZG ≠   
By Lagrange’s theorem p,1))G(Z(o =  or .q   
If ))G(Z(o  is p  or ,q  a prime, then ( ))G(ZGo  is q  or ,p  respectively, a 
prime. So )G(ZG  must be cyclic, which is not the case since G  is not 
abelian. 
Hence, ,1))G(Z(o =  that is, }.e{)G(Z =  

*** 
 
From Example 11, you know, for example, that },e{)D(Z p2 =  where p  is an 
odd prime. 
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Try solving some related exercises now. 
 
 

E20) If G  is a group s.t. )G(ZG  is not cyclic, must G  be non-abelian? Why, 
or why not? 

 

E21) i) Let G  be a non-abelian group of order ,p3  where p  is a prime. If 
},e{)G(Z ≠  then find )).G(Z(o  

 ii) Use (i) above to find ),G(Z  for .DG 8=  Hence, find the relation 
between )D(Z 8  and .D8′  

 

 
Consider a general remark here, about solution strategies. 
 
Remark 8: E21 gives another example of many different strategies being 
available for finding ).G(Z  We should use whatever is most suitable for the 
given conditions. 
 
Let us now consider what the subgroups of factor groups look like. Are they at 
all related to the subgroups of the original group? Let’s see. 
 
Theorem 6: Let G  be a group and H    .G   
i) For any subgroup K  of ,G  H    HK  and .H

G
H

HK ≤   

ii) Conversely, any subgroup of HG  is of the form ,HT  for some 
subgroup T  of G  containing .H  

 
Proof: i) From Unit 6, you know that since H    GHK,G ≤  and H    .HK   

Now, let ,HHKHy,Hx ∈  where .HKy,x ∈  Then  
,HHKHxy)Hy)(Hx( 11 ∈= −−  since .HKxy 1∈−  

Hence, by the subgroup test, .H
G

H
HK ≤  

 
ii) Let ,HGS ≤  and }.SgHGg{T ∈∈=   

Then ,Te∈  since ,SH∈  as S  is a subgroup. 
Also, for ,Ty,x ∈  we have ,SyH,xH ∈  so that ,S)yH)(xH( 1 ∈−  i.e., 

,SH)xy( 1 ∈−  that is, .Txy 1 ∈−   
Hence, .GT ≤  
 
Next, for any .SHhH,Hh ∈=∈  Hence .Th∈  
Thus, .TH ⊆   
Since H    ,G  H    .T  Thus, HT  is well-defined. 
 
Finally, note that SgH∈  iff .HTgH∈  Thus, .HTS =  

 
Now that you know what the subgroups of a quotient group look like, can you 
guess what its normal subgroups look like? Does your answer match the 
following statement? 
 
Theorem 7: If G  is a group and H    ,G  then any normal subgroup of HG  is 
of the form ,HT  where T    G  and .TH ⊆  
 
We leave the proof of this to you (see E22).  
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Now it is time to solve some exercises. 
 
 
E22) Prove Theorem 7. 
 
E23) Let G  be a group. Let N  be a maximal normal subgroup of ,G  i.e.,         

N    ,GN,G ≠  and if H    G  s.t. ,GH ≠  then .HN ⊂/  
 Show that NG  is a simple group. 
 Conversely, if N  is a proper normal subgroup of G  s.t. NG  is simple, 

then show that N  is a maximal normal subgroup of .G  
 
E24) Let G  be a group generated by a set ,S  and let H    .G  Find a set of 

generators of .HG  
 
E25) Find all the normal subgroups, and maximal normal subgroups, of 

.2n,n ≥ZZ  
 
E26) If G  is a group and H    ,G  which of the following statements is true? 

Give reasons for your answers. 

 i) If H  and HG  are abelian, so is .G  

 ii) If H  and HG  are cyclic, so is .G  

 iii) If G  is non-abelian, so is .HG  

 iv) If G  is a finite group and HG  contains an element of order ,n  
then G  contains an element of order .n  

 
E27) Construct the Cayley table of .)Q(ZQ 88  Hence decide if )Q(ZQ 88  and 

4Z  have the same algebraic structure or not. 
 

 
In E26 you have seen that though a normal subgroup H  of a group ,G  and 

,HG  both share a certain algebraic property, it does not follow that G  has 
the same algebraic property. However, now we shall prove a very important 
theorem which shows how we can sometimes use the properties that H  and 

HG  have, to obtain a certain property of .G   
 
Consider any finite abelian group, say .10Z  This is of order 10  and the primes 

dividing it are 2  and .5  Also, 105 Z∈  is of order 2  and 102 Z∈  is of order .5  
Thus, 10Z  has elements of order 2  and of order .5   
So, the question is, does any finite abelian group have the property you have 
seen above for ?10Z  That is, if G  is a finite abelian group and p),G(op  a 
prime, will G  have an element of order ?p  It turns out that this is true. This 
amazing result is due to the famous French mathematician, Cauchy. To prove 
it, let us first prove a lemma (that is, a result required for proving the main 
theorem). For proving this lemma, we are going to use results you have 
studied in Unit 4.  
 
Lemma 1: If G  is a finite group of order ),1(n >  then G  has an element of 
order p  for some prime s.t. .np  
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Proof: If n  is a prime, then you know that G  is cyclic, say ,xG ><=  where 

.n)x(o =   
So, let us assume that n  is not a prime, and let .eg,Gg ≠∈   
Then you know that ,m)g(o =  for some )1(m ≠  such that .nm   
If m  is a prime, then g  is the element we are looking for. 
If m  is not a prime, let ,mp  where p  is a prime. Then ,prm =  for some 

.r N∈  
So p)g(o r =  and .Ggr ∈   
 
Let us use this lemma to prove the result mentioned earlier, namely, Cauchy’s 
theorem for finite abelian groups. 
 
Theorem 8: Let G  be a finite abelian group of order .2n ≥  For each prime p  
dividing ,n G  has an element of order .p  
 
Proof: We will prove the statement by using the strong form of the principle of 
mathematical induction (see Theorem ,3′  Unit 1). 
 
Now, if ,2n =  then you know from Unit 4 that G  is cyclic. Hence, ,xG ><=  
with ,2)x(o =  and 2  is the only prime factor of .2  So, the theorem is true for 

.2n =  
 
Now, assume that the theorem is true for any abelian group of order ,nm <  
where ,2n >  i.e., if A  is an abelian group of order ,nm <  and a prime ,mq  
then A  has an element of order .q  
Now consider ,G  a finite abelian group of order ,n  and let ,np  where p  is a 

prime. By Lemma 1, G  has an element x  of order ,q  for some prime .nq   
If ,qp =  then x  is the element we are looking for. 
If ,qp ≠  consider .xGG ><=  Note that >< x    ,G  since G  is abelian.  

Now nq
n

)x(o
)G(o)G(o <=
><

=  and )qn(p  since 1)q,p( =  and .np   

Thus, by induction, G  has an element >< xg  of order ,p   
i.e., .xgp ><∈      …(1) 
Note that ,eg ≠  since .1p)xg(o ≠=><  
Now, either ,egp =  or .egp ≠  
If ,egp =  then Gg∈  of order ,p  and we are through. 
If ,egp ≠  let .r)g(o p =   
Since >∈< xgp  and .qr,q)x(o =><   

But q  is a prime. Hence, ,qr =  i.e., .q)g(o p =  
.egpq =∴  .pq)g(o∴  )g(o∴  is q,p,1  or .pq  

Since .1)g(o,eg ≠≠  
If ,p)g(o =  we are through. 
If ,q)g(o =  then .xxg)xg( qq ><=><=><  Therefore, .q)xg(o ><   
But, from (1), ,p)xg(o =><  a prime distinct from .q  So we reach a 
contradiction. Hence, .q)g(o ≠  

.pq)g(o =∴   

In fact, Cauchy’s 
theorem is true for any 
finite group, whether it is 
abelian or not. However, 
we shall only prove it for 
abelian groups. 
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Hence, from Unit 4 you know that,  

.p
)q,pq(

pq)g(o q ==  

Ggq ∈∴  is of order .p  
Thus, in all the cases, G  has an element of order ,p  i.e., the theorem is true 
for .n  
Hence, by the strong form of the principle of induction, it is true for any finite 
abelian group. 
 
In the proof above, you would have noted that we have used a property of 

,x ><  and a property of ,xG ><  to prove a property of .G  So, quotient 
groups can be used very gainfully in such ways also. 
 
As an immediate corollary to Theorem 8, consider the following result. 
 
Corollary 1: Any abelian group of order pq  is cyclic, where p  and q  are 
distinct primes. 
 
Proof: Let G  be an abelian group of order .pq  By Cauchy’s theorem 

Gy,x ∈∃  s.t. .q)y(o,p)x(o ==  
Now ,)y()x()xy( pqqppq =  since G  is abelian 
                  .e=  

.pq)xy(o∴  Hence, q,p,1)xy(o =  or .pq  

If ,1)xy(o =  then .yx 1−=  ),y(o)y(o)x(o 1 ==∴ −  which is a contradiction. 
.1)xy(o ≠∴  

Suppose .p)xy(o =  Then ,pqeye)xy( pp ⇒=⇒=  a contradiction.  
Hence, .p)xy(o ≠  

Similarly, .q)xy(o ≠  

Hence, ).G(opq)xy(o ==  

.xyG ><=∴  
 
Using Theorem 8, you know that any abelian group of even order has an 
element of order .2  Similarly, you know that an abelian group of order 110  
has an element of order ,11  because of Cauchy’s theorem.  
Again, because of Corollary 1, you know that any abelian group of order ,6  or 

,15  or 21  must be cyclic. These results are, therefore, extremely useful tools 
for studying finite groups. 
 
Now, it’s time for you to solve some related exercises. 
 
 
E28) Verify Cauchy’s theorem for })a,a,a({ 321℘  and .64 ZZ ×  
 
E29) Verify Cauchy’s theorem for ,HD10  where ].D,D[H 1010=  
 
E30) Prove that if G  is a finite abelian group of order ,2n ≥  then G  has a 

subgroup of order p  for each prime p  dividing .n  
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Let us stop our focussed discussion on factor groups for the time being. You 
will, of course, be using these algebraic objects in the next unit. You will also 
use similar ‘quotient objects’ in Blocks 3 and 4 of this course, and in the 
course ‘Linear Algebra’.  
 
Let us now summarise what we have discussed in this unit. 
 

7.4 SUMMARY 
 
In this unit, you have studied the following points. 
 
1. The definition, and examples, of a quotient group (also called a factor 

group). 
 
2. For any group G  and H    ,G  the cardinality of HG  is .H:G  In 

particular, if G  is a finite group, then .
)H(o
)G(o)HG(o =  

 
3. If G  is an abelian group, then so is HHG ∀    .G  But the converse is 

not true. 
 
4. If G  is a cyclic group, then so is HHG ∀    .G  But the converse is not 

true.   
 
5. For any group ,G  the commutator subgroup ]G,G[    ,G  and ]G,G[

G  

is abelian. 
 
6. If G  is a group s.t. )G(ZG  is cyclic, then G  is abelian. 
 
7. If G  is a group, H    ,GK,G ≤  then H    HK  and .H

G
H

HK ≤  

Conversely, any subgroup of HG  is of the form HT  for some 
subgroup T  of G  containing .H   

 
8. Any normal subgroup of the quotient group HG  is of the form ,HN  

where N  is a normal subgroup of G  containing .H  
 
9. The proof, and applications, of Cauchy’s theorem for finite abelian 

groups, the statement of which is:  
If G  is a finite abelian group and p  is a prime dividing ),G(o  then G  
has an element of order .p    

 

7.5 SOLUTIONS / ANSWERS 
 
E1) By actual multiplication you can see that each element of 4V  is of order 

.2  Hence, .V)43)(21(H 4≤><=  

 Since ,2
)H(o
)V(oH:V 4

4 ==  by Theorem 2 of Unit 6, H    .V4  

 Two distinct cosets of H  in 4V  are H  and .H)42)(31(  
 They are distinct since .H)42)(31( ∉  
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E2) Since ).T()T(}c{),T(}c{ ℘≠℘℘∉   

Also .2
2
2

))T((o
)S((o)T(:)S( 2

3

==
℘
℘

=℘℘   

Thus, )T(℘  and )T(}c{ ℘  are the elements of the quotient group.  
 

E3) Note that ( ) .4
5
20

)8(o
)(o8o 20

2020 ===
ZZZ  

 So 2,1)83(o =><+  or .4   
Since ,83 >∉<  and .4)3(o,8632 =>∉<=⋅  

 So .838 20

20 >><+<=Z
Z  

 Now consider ( ) ,1
20
20

)9(o
)(o9o 20

2020 ===
ZZZ  since .1)20,9( =  (This 

says that .)920 ><=Z  

 Hence, .1)93(o 20 =+ Z  In fact, ,993 2020 ZZ =+  since .93 20Z∈  
 
E4) .5}nn15{15},nn5{5 ZZZZZ ≤∈=∈=  
 So Z15    .5Z  
 Now, by the division algorithm, for ,n Z∈  

rq15n5 +=  for some .15r0,r,q <≤∈Z   
Since n55  and ,q155  we find ,r5  say ,r5r ′=  where .3r0 <′≤  

 So ,r5n5 ′=  where 1,0r =′  or ,2  going modulo .15  
 Hence, ).1510()155(155 ZZZZ +∪+∪=  

So .315:5 =ZZ  
 Thus, the Cayley table is as below: 

      

501010
01055

10500
1050+

 

 
E5) Consider .Iy),321(x,)321(H,SG 3 ==><==  
 Then ,HHyHx ==  since .Hy,x ∈  But .1)y(o,3)x(o ==  
 
E6) Regarding ,GG  see Remark 4. 
 }.Gg}g{{}Gg}e{g{}e{G ∈=∈=  Each element of this factor group is 

a singleton. 
 Also }g{}g{ 21 =  iff .gg 21 =  
 Hence, }e{:G  is the cardinality of .G  
 
E7) If H  is a subgroup of ,G  then the product of cosets of H  is defined only 

when H    .G   
This is because if ,Gy,xHxyHyHx ∈∀=⋅  then, in particular,  

.GxHHexHx)Hx)(Hx( 11 ∈∀=== −−  
Therefore, for any .H)Hx()Hx(hxexhxx,Hh 111 =⋅∈=∈ −−−  
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That is, HHxx 1 ⊆−  for any .Gx∈  
H∴    .G  

 
E8) Since Ha,3)Ha(o 3 ∈=  but .Ha,Ha 2∉∉   
 Since ,1)a(,10)H(o 103 ==  i.e., .1a30 =  So .30)a(o  
 Thus, )a(o  can be 15,10,6,5,3,2,1  or .30  
 However, ,1)a(o ≠  since ea ≠  as .Ha∉  
 Again, ,2)a(o ≠  since ea 2 =  would mean ;Ha2∈  but .Ha2∉  
 Similarly, if ,5)a(o =  then .ea5 =  So ,H)Ha( 5 =  i.e., ,HHa2 =  as 

.HHa3=  So ,Ha2∈  again a contradiction. So .5)a(o ≠  
 In this way you should check that .10)a(o ≠  
 Hence, 15,6,3)a(o =  or .30  
 
E9) Let r)g(o =  and .m)Hg(o =  
 Since .H)Hg(,eg rr ==  Thus, .rm  
 

E10) For each RN ∈∈ n
1,n  s.t. Z+n

1  has order .n  

 Hence, ZR  has elements of order .nn N∈∀  
 However, every element of ZR  is not of finite order. 

 For instance, consider .2 Z+  There is no N∈n  s.t. .2n Z∈  
 
E11) Verify that .CQ ≤  Hence, Q    .C  Hence, QC  is a group. 

 Consider Q+2  and .i Q+  Since ,i2 Q∉−  these elements are 

distinct. Since Q∉2  and ,i Q∉  these are non-trivial elements of the 
factor group. 

 
E12) i) Verify that if ,Cg,f ∈  then .Cgf ∈−  So .C ≤  
  Since  is abelian, C    .  
  }.fCf{C ∈+=  

  For CfCf,f,f 2121 +=+∈  iff 21 ff −  is a constant function. 
  Now, for each ,n N∈  define ∈nf  by .rnr)r(f 2

n R∈∀=  
  Then C+≠+ mn fCf  for .mn ≠  
  Hence, there are at least as many cosets of C  in  as the 

number of elements in ,N  which is infinite. Hence, C  is infinite. 
  Next, you should check that C  is abelian. 
 
 ii) Since Cont,ContgfContg,f ∈−⇒∈    .  
  Hence, ontC  is well-defined. 
  Now, for any ∈f  s.t. f  is not continuous, f2ff =+  cannot be 

continuous, as you know from the course, Calculus. 
  Hence, Cont has no element of order .2  
 
E13) Consider ,QG 8=  the quaternion group. 
 You know that H    .GHG ≤∀  Also )HQ(o 8  is 2  or .4  
 If  )HQ(o 8  is ,2  then HQ8  is cyclic. 
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 Also, HQ8  is of order 4  only for }.I{H ±=  And then, from Example 3, 

you know that HQ8  is abelian. 
 Hence, HQ8  is abelian H∀    }.e{H,G ≠  
 But 8Q  is not abelian. 
 
E14) Let ><= xG  and HG  be a quotient group of .G  Any element of HG  

is of the form ,)Hx(Hx nn =  since any element of G  is of the form .xn  
.HxHG ><=∴  Thus, HG  must be cyclic. 

 
 From E13, you know that >< AQ8  is cyclic, but 8Q  is not cyclic. So 

the converse is not true. 
 
E15) i) Let }.g,,g,g{G n21 K=  Then }.n,1iHg{HG i K==  

  Hence, HG  is finite. 
 
 ii) No. For example ,nZZ  is finite, but Z  is not.  
 
E16) .rRrR,IR,IrR,rD 152

10 >===<= −  

 You know that >< R     10D  and >< RD10  is abelian. 
 Hence, by Theorem 4, .RD10 ><≤′  

 Also .R]R,r[ 3 =  Hence, .DR 10′∈  
 Thus, .RD 01 ><=′  
 
E17) Let us write .H]G,G[ =  By Theorems 2 and 3, }.H{]HG[ =′  
 
E18) i) If G  is abelian, then G)G(Z =  and },e{G =′  regardless of 

whether G  is simple or not. 
 
 ii) If G  is non-abelian, G)G(Z ≠  and }.e{G ≠′  Since G  is simple 

and )G(Z    G,G ′    ,G  we must have }e{)G(Z =  and .GG =′  
 
E19) Since every subgroup of 8Q  is normal in 8Q  and HQ8  is abelian 

88 Q},e{H,QH ′≠≤∀  has to be the smallest of these, by Theorem 4. 
Hence, }.I{Q8 ±=′  

 
E20) Yes. If G  is abelian, then ,G)G(Z =  and hence, )G(ZG  is trivially 

cyclic. 
 
E21) i) p))G(Z(o =  or ,p2  by Lagrange’s theorem, since ).G(ZG ≠  
  If ,p))G(Z(o 2=  then ( ) .p)G(ZGo =  Hence, )G(ZG  is cyclic, so 

that G  is abelian, a contradiction. Thus, .p))G(Z(o 2≠  
  Hence, .p))G(Z(o =  
 
 ii) By (i), .2))G(Z(o =  We know that )G(ZI∈  and )G(Zr∉  (since 

).RrrR ≠  The only other element of order 2  in G  is .R2  Hence, 
.R}R,I{)G(Z 22 ><==  
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  Thus, from Example 10, G)G(Z ′=  in this case. 
 
E22) Let N    .HG  Then HTN =  for some ,TH,GT ⊆≤  by Theorem 6. 
 Now, for any .NHt,Tt ∈∈   
 So, for ,N)Hg)(Ht()Hg(,Gg 1 ∈∈ −  i.e., ,HT)tgg(H 1 ∈−  i.e., .Ttgg 1 ∈−  
 Hence, T    .G  
 Thus, ,HTN =  where T    .TH,G ⊆   
 
E23) Suppose S    .NG  Then NTS =  for some T    .TN,G ⊆  
 Since N  is maximal, GT =  or .NT =  Hence, }e{S =  or ,NGS =  that 

is, NG  is simple. 
 
 Conversely, if NG  is simple and S    ,G  s.t. ,SN ⊆  then by Theorem 

7, N
S     .N

G  Hence, }e{N
S =  or .N

G
N

S =   

 Thus, NS =  or ,GS =  that is, N  is a maximal normal subgroup of .G  
 

E24) .r,n,SssSG ii

r

1i

n
i

i

⎭
⎬
⎫

⎩
⎨
⎧

∈∈∈=><= ∏
=

NZ  

 So .r,n,Ss)Hs(H
G

ii
n

r

1i
i

i

⎭
⎬
⎫

⎩
⎨
⎧

∈∈∈= ∏
=

NZ  

 Thus, .}SsHs{H
G >∈<=  

 
E25) Since Z

Z
n  is abelian, every subgroup is a normal subgroup. By 

Theorem 7, any normal subgroup is of the form ,n
m

Z
Z  where 

,mn ZZ ⊆  i.e., .nm  

 By E23, a maximal normal subgroup will be of the form ,n
p

Z
Z  where 

p,np  a prime. 
 
E26) i) False. For example >< RD8  is abelian, and ,R ><  being cyclic, 

is abelian, but 8D  is not abelian. 
 
 ii) False. The same example as in (i) is a counterexample. (Why?) 
 
 iii) False. Again, 8D  is a counterexample. (Why?) 
 
 iv) True. Let H

GHx∈  s.t. .n)Hx(o =  Then, by E9, ).x(on  Let 

.m,mn)x(o N∈=  
  Then, from Unit 4, you know that ,n)x(o m =  and .Gxm ∈  
 

E27) },C,B,A,I{Q8 ±±±±=  where ,
0i
i0

B,
01
10

A ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

=  

AB
i0

0i
C =⎥

⎦

⎤
⎢
⎣

⎡
−

=  and .
10
01

I ⎥
⎦

⎤
⎢
⎣

⎡
=  
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 Since ,CAAC,BAAB ≠≠ }.I{)Q(Z 8 ±=  

 So }.AB,B,A,I{)Q(ZQ 88 =  
 The Cayley table is as given in Example 3.  
 Thus, )Q(ZQ 88  has no element of order .4  Hence, it is not cyclic. On 

the other hand, ><= 14Z  is cyclic.  
 Thus, )Q(ZQ 88  and 4Z  have different algebraic structures. 
 
E28) Let .}a,a,a{X 321=  Then .8))X((o =℘  The only prime dividing 8  is .2  

Now, for any .YY,Y,XY «« =Δ≠⊆  Thus, .2)Y(o =  Hence, every 
non-zero element of )X(℘  is of order .2  

 
 .24)(o)(o)(o 6464 =⋅=× ZZZZ  The primes concerned are 2  and .3  

 Then )0,2(  and )2,0(  are of orders 2  and ,3  respectively, because 
)60,42(2)0,2(2 ZZ ++=  

             )60,44( ZZ ++=  
             )60,40( ZZ ++=  
             )0,0(=  
 (Note that the first element in )0,0(  is the zero of ,4Z  and the second is 

the zero of .)6Z  

 Similarly, ).0,0()66,40()62,40(3)2,0(3 =++=++= ZZZZ  
 
E29) You have seen, in E16, that .RD10 ><=′  Hence, 1010 DD ′  is of order 

,2  and is generated by an element of order .r,2  Thus, Cauchy’s 
theorem is verified. 

 
E30) By Cauchy’s theorem, Gx∈∃  s.t. .p)x(o =  
 Then ><= xH  is a subgroup of G  of order .p    
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UNIT 8                                  

                GROUP HOMOMORPHISMS 

Structure    Page Nos. 
 
8.1 Introduction           211  

Objectives 
8.2 Homomorphisms           212 
8.3 Isomorphisms           225  
8.4 The Isomorphism Theorems          231 
8.5 Automorphisms           239 
8.6 Summary           244 
8.7 Solutions / Answers           244 
 

8.1 INTRODUCTION 
 
So far, in this course, we have not discussed functions from one group to 
another. As you have seen in the course, Calculus, there can be many 
different functions from a set 1G  to a set .G2  In this unit, we will study 
functions from a group ),G( 11 ∗  to a group ),G( 22 ∗  which preserve certain 
algebraic properties of .G1   
 
In Sec.8.2, we will discuss various properties of those functions between 
groups which preserve the algebraic operation of their domain groups. These 
functions are called group homomorphisms, a term introduced by the 
mathematician Klein in 1893. While studying them, you will often need to refer 
to what you have studied in Units 6 and 7. So it may be useful to quickly 
review those units before studying this unit. 
 
In Sec.8.3, we will introduce you to a very important mathematical idea, an 
isomorphism. You will see that an isomorphism is a bijective homomorphism. 
The importance of isomorphisms lies in the fact that two groups are 
isomorphic if and only if they have exactly the same algebraic properties. 
 
In Sec.8.4, we will prove a very basic theorem of group theory, namely, the 
Fundamental Theorem of Homomorphism. You will also study some of its 
important consequences in this section. This theorem was formulated, in its 
most general form, by the ‘Mother of Algebra’, Emmy Noether, in 1827. 
However, for groups specifically, it seems to have first been published some 
years later, in a textbook on abstract algebra by the mathematician, Van der 
Waerden. 
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Finally, in Sec.8.5, we will discuss automorphisms, which are isomorphisms of 
a group onto itself. We shall look at a certain subgroup of automorphisms, in 
particular. As you will see, this subgroup allows us to have an insight into the 
structure of the quotient group of G  by its centre, for any group .G  
 
The concepts of ‘homomorphism’ and ‘isomorphism’ are crucial for 
understanding group theory. You will study analogous concepts in Block 3, as 
well as in the course, Linear Algebra. So it is important for you to be clear 
about these concepts. This requires you to work towards achieving the 
following learning expectations, around which this unit is built. 
 
Objectives 
After studying this unit, you should be able to 

• check whether a function between groups is a homomorphism or not; 

• obtain the kernel and image of any homomorphism; 

• check whether a function between groups is an isomorphism or not; 

• state, prove and apply the Fundamental Theorem of Homomorphism for 
groups; 

• state, prove and apply the second and third isomorphism theorems for 
groups; 

• prove, and apply, some important properties of the set of automorphisms 
of a group. 

 

8.2 HOMOMORPHISMS 
 
Let us start our discussion of functions from one group to another with an 
example. Consider the Cayley tables of ><= 14Z  and of 

.1i,iU4 −=><=  

        Table 1: Cayley table of 4Z              Table 2: Cayley table of 4U  

  

21033
10322
03211
32100
3210+

                

1i1ii
i1i11
1i1ii
i1i11
i1i1

−−−
−−−

−−
−−
−−•

 

 
Now, consider .i)m(f:U:f m

44 =→Z  Look at the following table, Table ,1′  
where every entry ba +  of Table 1 is replaced by ).ba(f +  (Note that     
Table 1′  is not an operation table. In it we are just showing )x(f  for the 
corresponding x  in Table 1.) 

 

Table 1′ : Each entry x  of Table 1 replaced by f(x)  

)2(f)1(f)0(f)3(f)3(f
)1(f)0(f)3(f)2(f)2(f
)0(f)3(f)2(f)1(f)1(f
)3(f)2(f)1(f)0(f)0(f
)3(f)2(f)1(f)0(f
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Next, consider Table ,2′  the Cayley table for )}3(f),2(f),1(f),0(f{  with 
respect to multiplication. 

Table :2′  Operation table for ))},3f(),2f(),1f(),0({f( •  

)3(f)3(f)2(f)3(f)1(f)3(f)0(f)3(f)3(f
)3(f)2(f)2(f)2(f)1(f)2(f)0(f)2(f)2(f
)3(f)1(f)2(f)1(f)1(f)1(f)0(f)1(f)1(f
)3(f)0(f)2(f)0(f)1(f)0(f)0(f)0(f)0(f

)3(f)2(f)1(f)0(f

⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

•

 

 
If you put the value of )m(f  in Table ,2′  for ,3,2,1,0m =  you find that it is the 
same as Table 2. Also, on comparing the entries of Tables 1′  and ,2′  you can 
see that .b,a)b(f)a(f)ba(f 4Z∈∀⋅=+   
Hence, we conclude that .b,a)b(f)a(f)ba(f 4Z∈∀⋅=+  
  
Now consider the Cayley table of },ab,b,a,e{K4 =  the Klein 4-group. 
 

Table 3: Cayley table of 4K  

eababab
aeabbb
babeaa
abbaee
abbae•

 

 
Consider ,ab)3(g,b)2(g,a)1(g,e)0(g:K:g 44 ====→Z  and go through 
the same process as for f  above. You would note that, for example, 

.b)2(g)11(g ==+  
Now 11 +  is at the intersection of the 2nd row and the 2nd column of Table 1, 
but the element in the corresponding position in Table 3 is ,e  not .b  So, 

).1(g)1(g)11(g ⋅≠+  
 
These examples lead us to the following definitions. 
 
Definitions: i) We say that a function f  from a group ),G( 11 ∗  to a group 

),G( 22 ∗  preserves the operation if .Gy,x)y(f)x(f)yx(f 121 ∈∀∗=∗  
 Such a function is called a group homomorphism (or simply, a 

homomorphism). 

ii) A homomorphism from a group G  to itself is called an endomorphism. 
 
iii) A group homomorphism that is injective is called a monomorphism. 
 
iv) A group homomorphism that is surjective is called an epimorphism. 
 
For example, 44 U:f →Z  (given above) is a group homomorphism, while 

44 K:g →Z  is not. 
Further, from Tables 11 ′,  and ,2 you should verify that f  is 1-1 and onto. 
Hence, f  is a monomorphism as well as an epimorphism. 

The word ‘homomorphism’ 
is derived from the two 
Greek words ‘homos’, 
meaning ‘like’ or ‘similar’, 
and ‘morphe’, meaning 
‘form’ or ‘structure’. 
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Let us consider another example. 
 
Example 1: Consider the groups ),( +Z  and ).},1,1({ ⋅−  Let us define  

:}1,1{:f −→Z
⎩
⎨
⎧
−

=
,oddisnif,1

evenisnif,1
)n(f    and 

⎩
⎨
⎧

<−
≥

=−→
.0n,1

0n,1
)n(g:}1,1{:g Z  

Show that f  is a group homomorphism, but g  is not. Is f  a monomorphism? 
Is f  an epimorphism? Give reasons for your answers. 
 
Solution: If a  and b  are both even, or both odd, then ba +  is even. 
So, in these cases ).b(f)a(f1)ba(f ⋅==+  
If a  is odd and b  is even, then ba +  is odd. So ).b(f)a(f1)ba(f ⋅=−=+  
Similarly, if a  is even and b  is odd, ).b(f)a(f)ba(f ⋅=+  
Thus, f  preserves the operation in all cases.  
Hence, .b,a)b(f)a(f)ba(f Z∈∀⋅=+   
 
Now, ,1)4(f)2(f ==  and .42 ≠  So f  is not 1-1, i.e., f  is not a 
monomorphism. 
Since 1)0(f =  and f,1)1(f −=  is surjective. Hence, f  is an epimorphism. 
 
Next, if ,2b,2a −==  then .1)0(g)ba(g ==+  But .1)1)(1()b(g)a(g −=−=⋅  
So )b(g)a(g)ba(g ≠+  in this case. 
Thus, g  is not a group homomorphism. 

*** 
 
Consider the following general remark that is related to the example above. 
 
Remark 1: To show that a function h  from a group 1G  to a group 2G  is not a 
homomorphism, it suffices to show one pair of elments Gb,a ∈  s.t. 

).b(h)a(h)ab(h ≠  
 
Before discussing more examples, let us define two key sets related to a given 
homomorphism. 
 
Definition: Let ),G( 11 ∗  and ),G( 22 ∗  be two groups and 21 GG:f →  be a 
homomorphism. Then  
i) the image of f  (also called the homomorphic image of )1G  is defined 

to be the set }.Gx)x(f{ 1∈=fIm  

ii) the kernel of f  is defined to be the set },e)x(fGx{ 21 =∈=fKer  

where 2e  is the identity of .G2  
 
As you will see later, the image and kernel of a homomorphism help us 
understand the homomorphism’s behaviour. 
 
Now let us consider some more examples of homomorphisms. 
 
Example 2: Consider the groups ),( +R  and ).,( * ⋅R  Show that the map 

r* e)rexp(:),(),(:exp =⋅→+ RR  is a group homomorphism.  Also find expIm  
and .expKer  

Note that ,2GfIm ⊆  and 

.G})e({ffKer 12
1 ⊆= −  
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Solution: First, let us check that exp  is well-defined. If 21 rr =  in ,R  then 
21 rr ee =  in ,∗R  i.e., ).rexp()rexp( 21 =  Hence, exp  is well-defined. 

Now, for any ,r,r 21 R∈  you know that .eee 2121 rrrr ⋅=+  

).rexp()rexp()rrexp( 2121 ⋅=+∴   
Hence, exp  is a homomorphism from the additive group of real numbers to 
the multiplicative group of non-zero real numbers. 
Now, ,}re{}r)rexp({expIm r +=∈=∈= RRR  the group of positive real 
numbers. 
Also, },1er{expKer r =∈= R  since 1 is the identity in ).,( ⋅∗R  

    }.0{=   
Note that exp  takes the identity 0  of R  to the identity 1 of .∗R  The function 
exp  also carries the additive inverse )r(−  of r  to the multiplicative inverse re−  
of ).rexp(  

*** 
 
Example 3: Consider the groups ),( +R  and ).,( +C  Define 

),(),(:f +→+ RC  by ,x)iyx(f =+  the real part of .iyx +  Show that f  is a 
homomorphism. What are fIm  and ?fKer  
 
Solution: First, is f  well-defined? You should check that it is. 
Next, take any two elements iba +  and idc +  in .C  Then, 

).idc(f)iba(fca))db(i)ca((f))idc()iba((f +++=+=+++=+++  
Therefore, f  is a group homomorphism. 

.}xx{}y,x)iyx(f{fIm RRR =∈=∈+=  

So, f  is a surjective function.  

}0xiyx{}0)iyx(fiyx{fKer =∈+==+∈+= CC  

          }yiy{ R∈=  

          ,iR=  the set of purely imaginary numbers and .0  

Note that f  carries the additive identity of C  to the additive identity of R  and 
)z(−  to ),z(f−  for any .z C∈  

*** 
 
Example 4: Check whether or not the following functions are group 
homomorphisms from 1G  to .G2  For any function that is so, further decide 
whether or not it is a monomorphism and/or an epimorphism. 

i) ,
m00
0m0
00m

)m(f:)(:f 3

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=→ RMZ  

ii) ,0)I(f,2)R(f,1)r(f:D:f 9088 ===→Z  where ,R,rD 908 ><=  

iii) .|z|)z(f::f =→ ∗∗ RC  
 
Solution: For each of the functions given above, you must first check that it is 
well-defined. 
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i)  Here 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+

+
=+

s00
0s0
00s

r00
0r0
00r

sr00
0sr0
00sr

)sr(f  

             .s,r)s(f)r(f Z∈∀+=  
 Hence, f  is a homomorphism. 

 Now, take ).(
100
010
011

3 RM∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 Then 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≠

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

r00
0r0
00r

100
010
011

 for any 

,r R∈  since the elements in the th)2,1(  place are different.  

Thus, )r(f
100
010
011

≠
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 for any .r R∈   

).(fIm 3 RM≠∴  
Hence, f  is not surjective. 

Next, if )s(f)r(f =  for some .
s00
0s0
00s

r00
0r0
00r

,s,r
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∈R   

Hence, .sr =   
Thus, f  is 1-1,  and hence, a monomorphism. 

 

ii) Any element of 8D  is of the form ,Rr j
90

i  where 

.IR,Ir,rRrR 4
90

21
9090 === −  

 Suppose f  is a homomorphism. Then )r(f)r(f)r(f 2 +=  in .8Z   

But ,Ir2 =  so that .0)r(f 2 =   
On the other hand, .211)r(f)r(f =+=+  Since ,20 ≠  we reach a 
contradiction. Therefore, f  is not a homomorphism. 

 
iii) Note that ,zzzz)zz(f 212121 ==  as you know from Calculus. 

                                     ).z(f)z(f 21=  

 Thus, f  is a homomorphism. 
  

Now, consider .1 *R∈−  There is no ∗∈Cz  s.t. ,1|z|)z(f −==  since 
.0|z| >  

 Hence, f  is not surjective. 
 
 You should check that f  is not a monomorphism either. 

*** 
 

Example 5: Show that ,
A

)A(f:)()(:f 332 ⎥
⎦

⎤
⎢
⎣

⎡
=→× 0

CMCM  where 0  is the row 

vector ),0,0,0(  is a well-defined monomorphism. Also find .fKer  
 
Solution: First, let us understand f  through a particular case. Let  

).(
2i9i1

i32
A 32 CM ×∈⎥

⎦

⎤
⎢
⎣

⎡
−−

π
=  
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Then ).(
A

000
2i9i1

i32
)A(f 3 CM∈⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

π
=

0
 

If f  is clear to you now, you should verify that if BA =  in ),(32 CM ×  then 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
00
BA

in ),(3 CM  i.e., ).B(f)A(f =  Hence, f  is well-defined. 

Next, ,
BABA

)BA(f ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +
=+

000
 since .000 =+  

      ).B(f)A(f +=  

Now suppose ),B(f)A(f =  where ].b[B],a[A ijij ==  Then .
BA
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
00

  

Hence, .3,2,1j,2,1iba ijij ==∀=  So .BA =  
Thus, f  is 1-1, and hence, a monomorphism. 

Finally, },
A

)(A{fKer 32 30
0

=⎥
⎦

⎤
⎢
⎣

⎡
∈= × CM  where 30  is the zero in ).(3 CM  

    },A)(A{ 32 320 ×× =∈= CM  where 320 ×  is the zero in ).(32 CM ×  

    }.{ 320 ×=  
*** 

 
Example 5 can be generalised to show that there is a monomorphism from 

)(nm CM ×  into .npm,r)(pr ≥≥∀× CM  In this sense, we can say that, for 

example, ,0m,n)()( mnn ≥∀≤ + CMCM  by adding m  rows and columns of 
zeroes to each ).(A n CM∈  
We shall refer to this again in Remark 3, following Example 8. 
 
Now you should solve the following exercises. This will help you to see if you 
have understood what you have studied so far.  
 
 
E1) Check whether or not g)g(I:GG:I =→  is an endomorphism, for any 

group .G  Is it a monomorphism? 
 
E2) Show that ,xln)x(f:),(),(:f =+→⋅+ RR  the natural logarithm of ,x  is 

a group homomorphism.  Find fKer  and fIm  also. 
 
E3) Is )Adet()A(f:),()),(GL(:f *

2 =⋅→⋅ RR  a homomorphism?  If yes, 
obtain fKer  and .fIm  Otherwise, explain why f  is not a 
homomorphism. 

 
E4) Which of the following statements are true? Give reasons for your 

answers. 

 i) z5)z(f::f =→ZZ  is a monomorphism. 

 ii) z5)z(f::f =→ ∗∗ RR  is a monomorphism. 

 iii) 2x)x(f::f =→RR  is a homomorphism. 

 iv) 2x)x(f::f =→ ∗∗ RR  is a homomorphism. 
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 v) If G  is a group and ,GH ≤  then there can be no homomorphism 

from G  to .H    
 
 
In the context of E4 above, consider the following comment. 
 
Remark 2: Look at f  in E4(i) and (ii). It is defined in the same way. But, in (i) it 
is a homomorphism, and not in (ii). What makes this difference? It is the 
operations of the domain group and the codomain group. If the operation 
concerned changes, f  may not preserve it. So, always be careful about noting 
the operations in the domain group and codomain group you are working with 
when you are defining a homomorphism. 
 
If you look at the examples above, you would note that the homomorphism 
carries the identity to the identity and the inverse to the inverse. In fact, this 
property is true for any group homomorphism, as you will now see. 
 
Theorem 1: Let ),G(),G(:f 2211 ∗→∗  be a group homomorphism. Then 

i) ,e)e(f 21 =  where 1e  is the identity of 1G  and 2e  is the identity of .G2  

ii) ,)]x(f[)x(f 11 −− =  for all x in .G1  
 
Proof: We know that .Gy,x)y(f)x(f)yx(f 121 ∈∀∗=∗  

i) Let .Gx 1∈  Now, .xxe 11 =∗  Hence, 
 ).x(f)e(f)xe(f)x(f 2111 ∗=∗=    
 Also )x(fe)x(f 22 ∗=  in .G2  
 Thus, ).x(fe)x(f)e(f 2221 ∗=∗  
 So, by the right cancellation law in .e)e(f,G 212 =  
 
ii) For any ,e)e(f)xx(f)x(f)x(f,Gx 21

1
1

1
21 ==∗=∗∈ −−  from (i). 

 Hence, .Gx)]x(f[)x(f 1
11 ∈∀= −−  

 
You have just seen that if 21 GG:f →  is a homomorphism, then f  maps the 
identity of 1G  to the identity of ,G2  and the inverse of 1Gg∈  to the inverse of 

.G)g(f 2∈  Do you expect the converse to be true? That is, if 21 GG:f →  is a 
function such that 21 e)e(f =  and ,Gx)x(f)]x(f[ 1

11 ∈∀= −−  then will f  be a 
homomorphism? Let’s see. 
 
Example 6: Show that the converse of Theorem 1 is false. 
 

Solution: Consider 0)0(f::f =→ZZ  and 
⎩
⎨
⎧

<∀−
>∀+

=
.0n1n
,0n1n

)n(f  

Since f),1(f)1(f)11(f +≠+  is not a homomorphism.   

But 21 e)e(f =  since .0ee 21 ==  So (i) of Theorem 1 holds for .f  
Also, if .)n(f)1n(1n)n(f,0n −=+−=−−=−>   
Similarly, you should check that if ,0n <  then ).n(f)n(f −=−  
So (ii) of Theorem 1 is satisfied also by .f  
Thus, f  is a counterexample of the converse of Theorem 1. Hence, the 
converse is false. 

*** 
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Let us look at a few more examples of homomorphisms now. We can get one 
important class of homomorphisms from quotient groups. 
 
Example 7: Let H    .G  Consider the mapping .Hx)x(p:HGG:p =→  
Show that p  is an epimorphism. What is ?pKer  
 
Solution: First, note that p  is a well-defined mapping since 

).y(p)x(pHyHxyx =⇒=⇒=  
Now, for ).y(p)x(pHyHxHxy)xy(p,Gy,x =⋅==∈   
Therefore, p is a homomorphism. 
Here, .HG}GxHx{}Gx)x(p{pIm =∈=∈=   
Therefore, p  is surjective. 
Hence, p  is an epimorphism. 

}H)x(pGx{pKer =∈=  (Remember, H  is the identity of .)HG  

         }HHxGx{ =∈=  

         },HxGx{ ∈∈=  by Theorem 1 of Unit 5. 
         HG∩=  
         .H=   

*** 
 
In Example 7 you can see that pKer    .G  You should also verify that 
Theorem 1 is true here.  
 
Another class of examples of homomorphisms concerns the inclusion map. 
 
Example 8: Let H  be a subgroup of a group .G  Show that the map 

h)h(i:GH:i =→  is a monomorphism. Also find iKer  and .iIm  
 
Solution: Since i,Hh,h)h(i)h(ihh)hh(i 21212121 ∈∀==  is a group 
homomorphism.  

Also, if )h(i)h(i 21 =  for some ,Hh,h 21 ∈  then .hh 21 =  Hence, i  is 1-1. 

Now, },e{}ehHh{iKer ==∈=  and  

.H}Hhh{}Hh)h(i{iIm =∈=∈=  

*** 
 
Consider the following remark in the context of Example 8. 
 
Remark 3: When GH =  in Example 8, we get the identity function ,I  which 
you have shown to be a monomorphism in E1. 
 
Now consider another class of examples related to functions. 
 
Example 9: Let F  be the group of all functions from R  to R  w.r.t. pointwise 
addition. Let .r R∈  Define ).r(f)f(:: rr =φ→φ RF  Show that rφ  is a 
homomorphism. Also find rIm φ  and .Ker rφ  
 
Solution: First, let us check that rφ  is well-defined. If gf =  in ,F  then 

)r(g)r(f =  in ,R  so that ).g()f( rr φ=φ  Hence, rφ  is well-defined. 

,p  in Example 7, is called 
the natural, or canonical, 
group homomorphism. 
The reason this is called 
‘natural’ will become clear 
to you in Sec.8.4. 

,i  in Example 8, is called 
the inclusion map. We 
sometimes denote the 

GH:imap →  by  

,rφ in Example 9, is called 
the evaluation 
homomorphism at the point 
.r  

⊂→ .GH i  
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Next, since rrrr ),g()f()r(g)r(f)r)(gf()gf( φφ+φ=+=+=+φ  is a 
homomorphism. 
Now, for any ,c R∈  define .c)x(f::f =→RR   
Then F∈f  s.t. .c)r(f)f(r ==φ  So .Imc rφ∈  Hence, .Im r R=φ  

}.0)r(ff{}0)f(f{Ker rr =∈==φ∈=φ FF  

*** 
 
Try solving the following exercises now.   
 
 
E5) Consider the natural homomorphism p  from 3S  to ,AS 33  where 

.)321(A3 ><=  Does ?pKer)21( ∈  Does ?pIm)21( ∈  
 
E6) Let },1|z|z{S1 =∈= C  the unit circle. 

 Define .e)x(f:),S(),(:f ix21 =⋅→+R  Is f  a homomorphism?  If so, find 
.fKer  If not, change the definition of f  so that f  becomes a 

homomorphism. 
 
E7) Let G  be a group and H    .G  Show that there exists a group 1G  and a 

homomorphism 1GG:f →  such that .HfKer =  
 (Hint: Does Example 7 help?) 
 
E8) Consider .)21()(:)21(S: 1

3
−σσ=σφ><→φ  Is φ  a homomorphism? If 

it is, then find .Ker φ  If φ  is not a homomorphism, find a subgroup K  of 

3S  and a homomorphism .KS: 3 →ψ  
 
 
Now let us consider the composition of two homomorphisms. Let us first look 
at an example related to .Z  
 
Example 10: Consider the homomorphisms z5)z(f::f =→ZZ  and 

.z)z(p:15:p =→ ZZZ  Is fp o  a well-defined homomorphism? Why, or why 
not?  
 
Solution: If 21 zz =  in ,Z  then ,z5z5 21 =  and .15z515z5 21 ZZ +=+   
So ).z(fp)z(fp 21 oo =  Thus, fp o  is well-defined.  
Also, )15z5()15z5(15)zz(5)zz(fp 212121 ZZZ +++=++=+o   

           ).z(fp)z(fp 21 oo +=   
Thus, fp o  is a homomorphism. 

*** 
 
What you have seen in Example 10 is not specific to .Z  It is true in general. 
Let us see why. 
 
Theorem 2:  If 21 GG:f →  and 32 GG:g →  are two group homomorphisms, 
then 31 GG:fg →o  is also a group homomorphism. 
 
Proof: First, note that fg o  is well-defined since ⊆fIm  Domain .g  
Now, let .Gy,x 1∈  Then  
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))xy(f(g)xy(fg =o  

              )),y(f)x(f(g=  since f  is a homomorphism. 
      )),y(f(g))x(f(g=  since g  is a homomorphism.  
      ).y(fg)x(fg oo ⋅=  
Thus, fg o  is a homomorphism. 
 
Try a related exercise now. 
 
 
E9) Show that the composition of y)iyx(f::f =+→RC  and 

ir)r(g::g =→CR  is a homomorphism. What are )fg(Ker o  and 
?)fg(Im o  Is ?gKer)fg(Ker ⊆o  Is ?fKer)fg(Ker ⊆o  Give 

reasons for your answers.  
 
 
So far you have seen that the kernel and image of a homomorphism are 
subsets of groups. In the examples you have studied so far you may have 
noticed that these subsets are actually subgroups. We will now prove that the 
kernel of a homomorphism is a normal subgroup, and the image is a 
subgroup. 
 
Theorem 3: Let 21 GG:f →  be a group homomorphism. Then  

i) fKer  is a normal subgroup of ,G1  and  

ii) fIm  is a subgroup of .G2  
 
Proof: i) .}e)x(fGx{fKer 21 =∈=   
 Since .fKere,e)e(f 121 ∈=  .fKer «≠∴  
 Now, if ,fKery,x ∈  then 2e)x(f =  and .e)y(f 2=  
 .e)]y(f[)x(f)y(f)x(f)xy(f 2

111 ===∴ −−−  
 .fKerxy 1∈∴ −  
 Therefore, by the subgroup test of Unit 3, .GfKer 1≤   
 Next, for any 1Gy∈  and ,fKerx∈  
 )y(f)x(f)y(f)xyy(f 11 −− =  
       ),y(fe)]y(f[ 2

1−=  since .e)x(f 2=  
       .e2=  

fKer∴    .G1  
 
ii) ,fIm «≠  since .fIm)e(f 1 ∈  
 Now, let .fImy,x 22 ∈  Then 111 Gy,x ∈∃  such that 21 x)x(f =  and 

.y)y(f 21 =  Then ).y(fy 1
1

1
2

−− =  
 .fIm)yx(f)y(f)x(fyx 1

11
1

11
1

22 ∈==∴ −−−  
 .GfIm 2≤∴  
 
In Theorem 3 you have seen that .GfIm 2≤  Consider the following remark in 
this context. 
 
Remark 4: Consider ,SH:i 4→  the inclusion map, where )}.21(,I{H =   
Here .HiIm =   
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Now, take .S)42( 4∈  Then .iIm)41()42)(21)(42()42)(21()42( 1 ∉==−  
Thus, iIm    .S4  
This example shows that fIm  need not be normal in 2G  (in Theorem 3). 
However, if 2G  is abelian, then you know that fIm    .G2  
 
Let us consider some immediate outcomes of Theorem 3. 
 
Example 11: Show that }xix{ R∈  is a normal subgroup of .C  
 
Solution: From Theorem 3 and Example 3, we see that }xix{ R∈  is a 
normal subgroup of .C  

*** 
 
Example 12: Consider .xsinixcos)x(:),(),(: * +=φ⋅→+φ CR  Find φKer  
and .Im φ  Hence show that >π< 2     R  and 1S    ,∗C  where 1S  is the unit 
circle. 
 
Solution: You can show that ).y()x()yx( φφ=+φ  Thus, φ  is a group 
homomorphism.  
Now 1)x( =φ  iff n2x π=  for some .n Z∈   

Thus, .2}nn2{Ker >π<=∈π=φ Z   

Hence, by Theorem 3, >π< 2     .R  
In this case, φIm  is a subgroup of ,*C  which is abelian. So φIm    .∗C    
Note that φIm  is the set of all the complex numbers with absolute value ,1  
i.e., the set of all the complex numbers on the circle with radius 1 unit and 
centre ),0,0(  i.e., .S1   
So, 1S    .*C  

*** 
 
In the context above, consider the following general comment about solutions. 
 
Remark 5: In the example above, note the wording of the question. In the last 
part it says ‘Hence show that …’. So, you need to prove that >π< 2  and 1S  
are normal subgroups of the respective groups using what you have done in 
the previous stage of the solution. 
You could have directly shown that >π< 2  and 1S  are normal subgroups too, 
but then you would not have been answering what the question has asked. 
 
Now let us look at the kernel of a homomorphism. You may have noticed that 
sometimes it is }e{  (as in Example 2), and sometimes it is a large subgroup 
(as in Example 3).  Does the size of the kernel indicate anything?  In fact, as 
you will now see, the larger the kernel, the further away is the homomorphism 
from becoming a monomorphism. 
 
Theorem 4: Let 21 GG:f →  be a group homomorphism. Then f  is injective iff 

},e{fKer 1=  where 1e  is the identity element of the group .G1  
 
Proof: First, let us assume that f  is injective.  
Let .fKerx∈  Then ,e)x(f 2=  i.e., ).e(f)x(f 1=  But f  is 1-1.  .ex 1=∴  
Thus, }.e{fKer 1=  
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Conversely, suppose }.e{fKer 1=   

Let 1Gy,x ∈  such that ).y(f)x(f =  Then  

.e)]y(f)[y(f)]y(f[)x(f)y(f)x(f)xy(f 2
1111 ==== −−−−  

}.e{fKerxy 1
1 =∈∴ −  .exy 1

1 =∴ −  Hence, .yx =  

This shows that f  is injective. 
 
Theorem 4 is very useful. For example, by using Theorem 4 and Example 8, 
we can immediately see that any inclusion GH:i →  is 1-1, since }.e{iKer =  
 
Let us consider some other examples. 
 
Example 13: Consider the situation in Example 7. Under what conditions on 
H  is p  1-1? 
 
Solution: .Hx)x(p:H

GG:p =→  You know that .HpKer =  

Thus, p  is 1-1 iff }.e{H =  

*** 
 
Example 14: Consider the group T  of translations of 2R  (see Example 7, 
Unit 2).  Define a map ),T(),(: 2 o→+φ R  by ,f)b,a( b,a=φ  where 

).by,ax()y,x(f b,a ++=  Show that φ  is an epimorphism, which is also 1-1. 
 
Solution: In Unit 2, you have seen that ,fff d,cb,adc,ba o=++  for )d,c(),b,a(  in 

,2R  i.e., )).d,c(())b,a(())d,c()b,a(( φφ=+φ o  
Thus, φ  is a homomorphism of groups. 
Now, any element of T  is )).b,a((f b,a φ=  Therefore, φ  is surjective.   
 
Let us now see why φ  is also injective. Note that 0,0f  is the identity of .T  
Let .Ker)b,a( φ∈  Then  

0,0f))b,a(( =φ  

0,0b,a ff =⇒  

),0,0(f)0,0(f 0,0b,a =⇒  

)0,0()b,a( =⇒  
)},0,0{(Ker =φ∴  i.e., φ  is 1-1, by Theorem 4. 

 
So we have proved that φ  is a homomorphism, which is bijective. 

*** 
 
Try solving the following exercises now. 
 
 
E10) For any ,1n >  consider nZ  and ,Un  the group of nth roots of unity. Let 

ζ  denote a primitive nth root of unity.  Then .Un >ζ<=  Show that  
r

nn )r(f:U:f ζ=→Z  is a group homomorphism. Find fKer  and .fIm  
Hence decide if f  is injective and/or surjective.  
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E11) Let G  be a group, and H  and K  be normal subgroups of .G  Consider 

).Kg,Hg()g(f:)KG()HG(G:f =×→  Show that f  is a 
homomorphism. Also find fKer  and .fIm   

 Further, under what conditions on H  and K  will f  be a 
monomorphism? Is f  surjective? 

 
 
And now let us look at a very useful property of an epimorphism. 
 
Theorem 5: If 21 GG:f →  is an epimorphism and S  is a set that generates 

,G1  then )S(f  generates .G2  
 
Proof: From Unit 4, you know that if S  generates ,G1  then    

ZN ∈∈∈=><= ii
r
m

r
2

r
11 r,Sx,mxxx{SG m21 K  for all }.i   

We need to show that .)S(fG2 ><=  
Now, since .G)S(f,GS 21 ⊆⊆  
Hence, .G)S(f 2≤><   
To show that ,)S(fG2 ><≤  let .Gx 2∈  Since f  is surjective, 1Gy∈∃  such 
that .x)y(f =   
Since ,xxy,Gy m1 r

m
r
11 K=∈  for some ,m N∈   Sxi ∈  and .mi1,ri ≤≤∈Z  

Thus, )xx(f)y(fx m1 r
m

r
1 K==  

     ,))x(f())x(f( m1 r
m

r
1 K=  since f  is a homomorphism. 
,)S(fx ><∈⇒  since )S(f)x(f i ∈  for every .m,,2,1i K=  

Thus, .)S(fG2 ><≤  
Hence, .)S(fG2 ><=  
 
Let us use Theorem 5 to state some important properties of homomorphisms; 
in fact, these are immediate corollaries of Theorem 5. 
 
Corollary 1: The homomorphic image of a cyclic group is cyclic. 
 
In E12, we ask you to prove this, and the next corollary. 
 
Corollary 2: The homomorphic image of a finitely generated group is finitely 
generated. 
 
Let us now consider a particular case in which Theorem 5 is used. 
 
Example 15: Let GD:f 10 →  be a group epimorphism. What do the elements 
of G  look like? 
 
Solution: You know that 10D  is generated by r  and ,R  where IR,Ir 52 ==  

and .rRrR 1−=  So )}R(f),r(f{  generates .G  Also, since f  is a 
homomorphism, 52 )]R(f[I)]r(f[ ==  and ).r(f)]R(f[)R(f)r(f 1−=  
Hence, the elements of G  are of the form ,)R(f)r(f nm  where 1,0m =  and 

.4,3,2,1,0n =  
*** 

 
In the context of Theorem 5, consider the following remark. 
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Remark 6: Note that if f (in Theorem 5) is not surjective, )S(f  need not 
generate .G2  For example, take the inclusion map .S)21(:i 3→><  Then 

.S)21())21((i 3≠><=><  
 
Now let us consider another basic result that shows how certain algebraic 
properties of a group are preserved by a group homomorphism. 
 
Theorem 6: Let 21 GG:f →  be a group homomorphism, where 1G  is abelian. 
Then )G(f 1  is abelian. 
 
Proof: Let ).G(fb,a 1∈  Then 1Gy,x ∈∃  such that ).y(fb),x(fa ==  So 

),yx(f)xy(f)y(f)x(fab ===  since 1G  is abelian 
    )x(f)y(f=  
    .ba=  
Hence, )G(f 1  is abelian. 
 
While solving the following exercises, you will prove some important properties 
of homomorphic images of groups. 
 
 
E12) Prove Corollary 1 and Corollary 2.  
 State the converse of Corollary 1. Is it true? Why, or why not? 
 
E13) State the converse of Theorem 6. Is it true? Give reasons for your 

answer. 
 
E14) Use Theorem 5 to prove that the quotient group of a cyclic group is 

cyclic. 
 

 
So far you have seen examples of various kinds of homomorphisms –   
injective, surjective and bijective. From Theorems 5 and 6, you can already 
see how a homomorphism preserves certain algebraic properties, like being 
abelian or being finitely generated. Now you will see how bijective 
homomorphisms preserve every bit of algebraic information of the groups 
concerned. 
 

8.3 ISOMORPHISMS  
 
In this section we will discuss an important class of homomorphisms, namely, 
those that are 1-1 and onto. So, let’s go back to Tables 1 and 2, at the 
beginning of Sec.8.2. Over there you saw that not only is 44 U:f →Z  a 
homomorphism, but it is 1-1 and onto. You also saw that Table 2 looked 
exactly like Table 1, with 1m ⋅  replaced by .3,2,1,0m,im =  Thus, f  was not 
just preserving the operation, but also telling us that the elements in 4Z  and 

4U  behave exactly the same way w.r.t. their respective operations. And 
hence, ),( 4 +Z  and ),(U4 ⋅  have exactly the same algebraic structure. The 
f  there is an example of what we now define. 
 
Definitions: Let 1G  and 2G  be two groups.   

i) A group homomorphism 21 GG:f →  is called a group isomorphism  
(or simply, an isomorphism) if f  is 1-1 and onto. 

The word ‘isomorphism’ 
is derived from the 
Greek word ‘isos’, 
meaning ‘equal’. 
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In this case, we say that the group 1G  is isomorphic to the group 

,2G  or that 1G  and 2G  are isomorphic. We denote this fact by 

,21 G~G  or .~
21 GG =  (We shall use '~'−  to denote ‘is isomorphic to’.) 

 
ii) An isomorphism of a group G  onto itself is called an automorphism of 

.G   
 
For example, the identity function, ,x)x(I:GG:I GG =→  is an automorphism 
of ,G  and 4U~−4Z  (as discussed above).  

Also, from Example 13 you know that ,}e{
G~G −  for any group .G  

Further, from Example 14 you know that ,T~2 −R  the group of translations of 
.2R  

 
Note that an isomorphism is a monomorphism and an epimorphism. 
 
Let us now look at some more examples of isomorphic groups. 
 

Example 16: Show that 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
−

= Rb,a
ab
ba

G  is a subgroup of ).(2 RM  

Then show that iba
ab
ba

f:G:f +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

→C  is an isomorphism. 

 

Solution: Since .G,G
00
00

«≠∈⎥
⎦

⎤
⎢
⎣

⎡
  

Now, if ,G
ab
ba

A ∈⎥
⎦

⎤
⎢
⎣

⎡
−

=  then .G
ab
ba

)A( ∈⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=−   

Also, check that, for any .GBA,GB,A ∈−∈   
Hence, ).(G 2 RM≤  
 
Now, consider the second part. Let us verify that f  is well-defined. If 

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
− cd

dc
ab
ba

 in ,G  then .db,ca ==  So idciba +=+  in ,C  i.e., 

.
cd
dc

f
ab
ba

f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

 Therefore, f  is well-defined. 

Next, for ⎥
⎦

⎤
⎢
⎣

⎡
− ab

ba
 and ⎥

⎦

⎤
⎢
⎣

⎡
− cd

dc
 in ,G  

)db(i)ca(
ca)db(
dbca

f
cd
dc

ab
ba

f +++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
++−
++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

+⎥
⎦

⎤
⎢
⎣

⎡
−

 

                                       )idc()iba( +++=  

                                       .
cd
dc

f
ab
ba

f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

=  

Therefore, f  is a homomorphism. 
Now, 

.
00
00

0b,0aG
ab
ba

0ibaG
ab
ba

fKer
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==∈⎥
⎦

⎤
⎢
⎣

⎡
−

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=+∈⎥
⎦

⎤
⎢
⎣

⎡
−

=  
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Therefore, by Theorem 4, f  is 1-1. 
 
Finally, to check that ,fIm C=  take .z C∈  Then ibaz +=  for some 

.b,a R∈   

Thus, .
ab
ba

fz ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

=  Hence, f  is surjective. 

 
Therefore, f  is an isomorphism. Thus, ).(G~

2 RMC ≤−  

*** 
 
Example 17: Show that  

i) ,mnSS nm ≥∀≤  and  

ii) )(nm CM ×    .np,mr)(pr ≥≥∀× CM  

iii) mR    .nmn ≤∀R  
 

Solution: i) ,)(i:SS:i nm σ′=σ→  where 
⎩
⎨
⎧

+=
=σ

=σ′
.n,,1mxfor,x
,m,,1xfor),x(

)x(
K

K
  

You should check that i  is a homomorphism. 
 Hence, .S)S(i nm ≤  

 Also, since i  is 1-1, ).S(i~S mm −  

 Thus, we can treat )S(i m  and mS  as the same, and say .SS nm ≤  
 
ii) Along the lines of Example 5, define 

,
A

)A(i:)()(:i prnm ⎥
⎦

⎤
⎢
⎣

⎡
=→ ××

32

1

00
0

CMCM  where 21 0,0  and 30  are zero 

matrices of orders n)mr(),np(m ×−−×  and ),np()mr( −×−  
respectively.  
By using the argument in (i) above, you can see that 

).()( prnm CMCM ×× ≤  

 Since )(pr CM ×  is an abelian group, every subgroup is normal. Hence 
the result. 

 
iii) )0,,0,a,,a,a()a,,a(i::i

times)mn(

m21m1
nm

321KKK
−

=→ RR  is a well-defined 

monomorphism.  
As in (ii) above, mR    ,nR  since nR  is abelian. 

*** 
 
Before going further, consider the following important remark about the power 
of an isomorphism. 
 
Remark 7: If 21 GG:f →  is a group isomorphism, then f  preserves not just 
the operation, but the complete algebraic structure of .G1  Thus, 1G  and 2G  
must have exactly the same algebraic properties. If 1G  is infinite, so must 2G  
be. If 1G  is abelian, so must 2G  be. If 1G  has an element of order ,n  then 2G  
must have an element of order ,n  and so on. 

Two isomorphic groups 
are algebraically the 
same systems. 
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Let us now help you understand what is noted in the remark above, through 
some more examples. 
 
Example 18: If 1G  and 2G  are two groups of the same finite order, then they 
are isomorphic. True, or false? Give reasons for your choice. 
 
Solution: Consider Table 1 and Table 3 given at the beginning of Sec.8.2. 
Here ),K(o4)(o 44 ==Z  but their Cayley tables are very different. For 
instance, Table 1 shows that 4Z  has two elements of order .4  But Table 3 
shows that 4K  has no element of order .4  Thus, their algebraic structures are 
different. 
In fact, 4Z  is cyclic, but 4K  is not. Hence, they are not isomorphic. Thus, the 
given statement is false. 

*** 
 
Example 19: Show that / .~ QZ −  
 
Solution: You know that Z  is cyclic. Also, from Unit 4, you know that Q  is 
not cyclic. Hence, / .~ QZ −  

*** 
 
What Example 19 tells us is that two infinite groups need not be isomorphic. 
Note that, from your course, Real Analysis, you know that Q  is countable. 
Hence, there is a bijection between Z  and .Q  But this bijection does not 
preserve the operation, as you can see from Example 19. 
 
The following result also clarifies what is noted in Remark 7, i.e., that 
isomorphic groups are algebraically alike. 
 
Theorem 7: If HG:f →  is a group isomorphism and ,Gx∈  then 

.)x(f~x ><><  Further,  

i) if x  is of finite order, then )).x(f(o)x(o =  

ii) if x  is of infinite order, so is ).x(f  
 
Proof: If we restrict f  to any subgroup K  of ,G  we have the function 

).K(fK:f
K

→  Since f  is bijective, so is its restriction .f
K

 Hence, ),K(f~K  
for any subgroup K  of .G   
In particular, for any ,)x(f~)x(f~x,Gx ><><><∈  by Theorem 5. 
 

Now if x  has finite order, then )).x(f(o))x(f(o)x(o)x(o =><=><=   
Hence,  (i) is proved. 
 
To prove (ii), assume that x  is of infinite order. Then >< x  is an infinite 
group. Therefore, >< )x(f  is an infinite group, and hence, )x(f  is of infinite 
order. So, we have proved (ii). 
 
Try the following exercises now. 
 
 

E15) Show that ,n~ ZZ  for each .n Z∈  
 (Hint: Consider .)nk)k(f:),n(),(:f =+→+ ZZ  

‘ /−~ ’ denotes ‘is not 
isomorphic to’. 
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E16) In Example 16, you saw why C  is isomorphic to a subgroup of ).(2 RM  
Can you think of a subgroup of )(GL2 R  to which R  is isomorphic? 

Could it be ?)(GLx
10
x1

2 RR ⊆
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
 

 
E17) Is 0)x(f::f =→ ZZ  a homomorphism? Is f  an isomorphism? 
 
E18) Let G  be a group. Under what conditions on G  will 

1a)a(f:GG:f −=→  be an isomorphism? 
 
E19) If HG: →φ  and KH: →θ  are two group isomorphisms, then show 

that φθ o  is an isomorphism from G  onto .K  
 
E20) Let 21 GG:f →  be a group isomorphism, and let .Gg 11 ∈  Then show 

that the equation 1
k gx =  has exactly the same number of solutions in 

1G  as )g(fx 1
k =  has in ,G2  for .k Z∈  

 
E21) Check whether or not 2

1515 )(f:UU:f ζ=ζ→  is an isomorphism, where 
.U15 >ζ<=  

 
E22) For any group ,G  prove that ,G}e{~G~}e{G ×−−×  where e  is the 

identity of some group. 
 
 
You must have noticed that the definition of an isomorphism just says that the 
homomorphism is bijective, i.e., its inverse map exists.  It does not tell us any 
algebraic properties of the inverse.  The next result does this. 
 
Theorem 8: If 21 GG:f →  is an isomorphism of groups, then 12

1 GG:f →−  is 
also an isomorphism. 
 
Proof: From your course, Calculus, you know that 1f −  is bijective. (Verify this!) 
So, we only need to show that 1f −  is a homomorphism.  
To see this, let 2Gb,a ∈′′  and ).b(fb),a(fa 11 ′=′= −−   
Then a)a(f ′=  and .b)b(f ′=  
Therefore, .ba)b(f)a(f)ab(f ′′==   

On applying ,f 1−  we get ).b(f)a(fab)ba(f 111 ′′==′′ −−−   

Thus, 1f −  is a homomorphism, and hence, an isomorphism. 
 
From Example 14 and Theorem 8, we can immediately say that 

)b,a()f(:T: b,a
121 =φ→φ −− R  is an isomorphism. 

 
Theorem 8 tells us that if ,G~G 21  then .G~G 12  Let us use this result to 
prove the next theorem, which essentially reiterates what was noted in 
Remark 7. 
 
Theorem 9: The relation ,R  given by 21 GRG'  iff ,'G~G 21−  is an equivalence 
relation on the set of all groups. 
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Proof: First, let G  be a group, then x)x(I:GG:I =→  is an isomorphism. 
So .G~G −  Hence, '~'−   is reflexive. 
Next, if 21 G,G  are groups such that ,G~G 21−  then by Theorem 8, .G~G 12 −  
Hence, '~'−  is symmetric. 
Finally, if 21 G~G −  and ,G~G 32 −  then by E19 you know that .G~G 31−  Hence, 

'~'−  is transitive. 
Thus, '~'−  is an equivalence relation. 
 
From Unit 1, and Theorem 9, you know that ‘isomorphism’ partitions the set of 
all groups into disjoint equivalence classes, called isomorphism classes. A 
lot of research and study in group theory is about finding the isomorphism 
class of a given group. This is because if we know which class a group G  lies 
in, then G  has all the algebraic properties of any group in that class. This 
helps us to understand .G  
 
Now, as you have already seen, groups in the same isomorphism class have 
to have the same algebraic properties. For instance, 3S  and 6Z  are both of 
order ,6  but they are not in the same isomorphism class, i.e., ].[]S[ 63 Z≠  
(Why?). Also, Example 19 tells us that ].[][ QZ ≠  Consider a related example. 
 
Example 20: Give an element of ],[ 6Z  apart from .6Z  Also, check if 

][][ QR =  or not.  
 
Solution: Define ,)1(g:U:g 66 ζ=→Z  where ζ  is a primitive 6th root of 
unity. Extend g  to all the elements of 6Z  so that it becomes a 

homomorphism, i.e., .)1(mg)m(g mζ==  Then you should show that g  is an 
isomorphism.  
So, ].[U 66 Z∈  
 
Next, you have seen in Unit 6, that every element of Q  has finite order but not 
every element of R  has finite order. Hence, ].[][ QR ≠  

*** 
 
Try some related exercises now. 
 
 

E23) List 3  properties that groups in the same isomorphism class must share. 
 
E24) Reference Remark 7, if HG:f →  is an isomorphism of groups and G  

is abelian, then show that H  is also abelian. Is the converse true? Why, 
or why not? 

 
E25) Can a group and its proper subgroup lie in the same isomorphism class? 

Why, or why not? 
 
E26) Check whether or not the relation ,~''  given by 21 G~G'  iff there is a 

group homomorphism from 1G  to 'G2  is an equivalence relation on the 
set of all groups. 

 
E27) Let 2121 B,B,A,A  be groups s.t. 11 B~A −  and .B~A 22 −  Show that 

.BB~AA 2121 ×−×   
 



 

 

231

Unit 8                                                                                                     Group Homomorphisms

So far we have not really considered how to prove that .G~G 21 −/  In Example 
19, you saw one way of disproving an isomorphism. Let us consider another 
way of doing this, using Theorem 7. 
 
Example 21: Show that ),( * ⋅R  is not isomorphic to ).,( * ⋅C  
 
Solution: Suppose they are isomorphic, and **:f RC →  is an isomorphism.  
Then )),i(f(o)i(o =  by Theorem 7. Now .4)i(o =  .4))i(f(o =∴  
However, the order of any real number different from 1±  is infinite, and 

,1)1(o = .2)1(o =−  
So we reach a contradiction.  Therefore, our supposition must be wrong. That 
is, *R  and *C  are not isomorphic. 

*** 
 
In Example 21, we have again used the fact that isomorphic groups have the 
same algebraic properties. Use this to solve the following exercises. 
 
 

E28) Show that ),( * ⋅C  is not isomorphic to ).,( +R  
 

E29) Is ,n~ ZZZ  for any ?2n ≥  Why, or why not? 
 
E30) Check whether or not ).,(~),( ⋅−+ ∗QQ  
 
 
Let us now look at a very important theorem about isomorphism classes, and 
its applications. In Block 3, you will study its analogue in ring theory, and in the 
Linear Algebra course you will study its analogue for linear transformations.  
 

8.4 THE ISOMORPHISM THEOREMS 
 
In Unit 7, you studied about quotient groups. Over there we also told you that 
this concept was very important for group theory. Now you will study the 
reason behind this remark. We shall prove results about the relationship 
between homomorphisms and quotient groups. These theorems will give you 
a feel about the importance of quotient groups, and hence, of normal 
subgroups.   
 
The first result is the Fundamental Theorem of Homomorphism for groups. 
You will see why this result is ‘fundamental’. This result is also called the first 
isomorphism theorem. 
 
First, let us look at a particular example to help you understand what the 
theorem talks about. Consider .m)m(f:6:f =→ ZZZ  
You know that f  is the natural homomorphism, and .6fIm ZZ=  Now, what 
is ?fKer  

.6}6mm{}0mm{fKer ZZZZ =∈∈==∈=  

So, you can see that fIm~)fKer( −Z  in this case; in fact, here 
.fImfKer =Z  

Is this conclusion true only for this case? The following theorem answers this 
question. 
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Theorem 10 (Fundamental Theorem of Homomorphism): Let 1G  and 2G  
be two groups, and let 21 GG:f →  be a group homomorphism. Then 

.fIm~)fKerG( 1 −  

In particular, if f  is surjective, then .G~)fKerG( 21  
 
Proof: Let .HfKer =  You know that H    .G1  Let us define the function 

).x(f)Hx(:fIm)HG(: 1 =ψ→ψ  
At first glance it seems that the definition of ψ  depends on the coset 
representative, .x  If this is so, the function ψ  may not be well-defined. So let 
us check if the definition of ψ  is independent of the coset representative. That 
is, if 1Gy,x ∈  such that ,HyHx =  then is ?)Hy()Hx( ψ=ψ  Let’s see. 
Now, ,e)xy(ffKerHxyHyHx 2

11 =⇒=∈⇒= −−  the identity of .G2  
      )y(f)x(fe)]y(f[)x(f 2

1 =⇒=⇒ −  
      ).Hy()Hx( ψ=ψ⇒  
Therefore, ψ  is a well-defined function. 
 
Now, let us check that ψ  is a homomorphism.  For ,HGHy,Hx 1∈  

)Hxy())Hy()Hx(( ψ=ψ  
    )xy(f=  
    ),y(f)x(f=  since f  is a homomorphism 
    ).Hy()Hx( ψψ=  
Therefore, ψ  is a group homomorphism. 
 
Next, let us see whether ψ  is injective or not. 

1GxHx{Ker ∈=ψ  and }e)x(f 2=  

          }fKerxHx{ ∈=  
          },H{=  since .HfKer =  
Since H  is the identity of ψ,HG1  is injective (by Theorem 4).  
 
Finally, let us see if ψ  is surjective or not.  
Any element of fIm  is ),Hx()x(f ψ=  where .Gx 1∈  

fImIm =ψ∴ . 
 
So, we have proved that ψ  is a bijective homomorphism, that is, an 

isomorphism.  Thus, .fIm~)fKerG( 1  
 
In particular, if f  is surjective, .GfIm 2=  Thus, in this case .G~)fKerG( 21  
 
The situation in Theorem 10 is shown in Fig.1. Here, p  is the natural 
homomorphism. 
 
 
 
 
 
 

 

Fig.1: f.pψ =o  

We shall often abbreviate 
‘Fundamental Theorem of 
Homomorphism’ to ‘FTH’. 

1G  2G  

fKerG1  

f

p ψ
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The diagram says that if you first apply ,p  and then ,ψ  to the elements of ,G1  
it is the same as applying f  to them. That is, .fp =ψ o  
 
Also, note that Theorem 10 says that two elements of 1G  have the same 
image under f  iff they belong to the same coset of .fKer  
 
Let us now look at a few applications of the Fundamental Theorem of 
Homomorphism. 
 
One of the simplest situations we can consider is ,GG:IG →  for any group 

.G  On applying Theorem 10 here, we see that ,~ G{e}
G −  which you have 

already seen in Example 13. We will be using this identification of }e{G  and 
G  quite often. 
 
Now, let us consider some non-trivial examples. 
 
Example 22: You have seen that .~ RC −/  However, is ?~ RR

C −  Why, or why 

not? 
 
Solution: Define .b)iba(f::f =+→ RC  Then, from E9 you know that f  is a 
homomorphism and .fKer R=  Also, you should show that .fIm R=  

Therefore, on applying Theorem 10, we find that .~ RR
C −  

*** 
 

Example 23: Use FTH to prove that ,~ 3
2

5 RR
R −  where mR  is the direct 

product of m  copies of .R  
 
Solution: Define ).c,b,a()]e,d,c,b,a[(:: 35 =φ→φ RR  (We could also 
have defined φ  s.t. ),d,c,b()e,d,c,b,a( =φ  or any other such choice.) 
If )b,b,b,b,b()a,a,a,a,a( 5432154321 =  in ,5R  then .iba ii ∀=  So 

),b,b,b()a,a,a( 321321 =  i.e., )].b,,b[()]a,,a[( 5151 KK φ=φ   
Thus, φ  is well-defined. 
 
Next, )]ba,,ba[()]b,,b()a,,a[( 55115151 ++φ=+φ KKK  

)b,b,b()a,a,a()ba,ba,ba( 321321332211 +=+++=  
)].b,,b[()]a,,a[( 5151 KK φ+φ=   

Thus, φ  is a group homomorphism. 
 
Now )}0,0,0()c,b,a()e,d,c,b,a({Ker 5 =∈=φ R  

                  ,~}y,x)y,x,0,0,0({ 2RR −∈=  as in E22. 

Also, verify that .Im 3R=φ  

Hence, by FTH, .~ 3
2

5
RR

R −  

(Note that as in Example 17, here 2R  can be treated as a subgroup of ,5R  
via .i ) 

*** 
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Example 24: Consider 
⎩
⎨
⎧
−

=⋅−→
.oddisnif,1
,evenisnif,1

)n(f:)},1,1({:f Z  

In Example 1, you saw that f  is a homomorphism. Obtain fKer  and .fIm  
What does FTH say in this case? 

 

Solution: Let EZ  and OZ  denote the set of even and odd integers, 
respectively. Then ZZ 2E =  and .21O ZZ +=  

Here, ,2}1)n(fn{fKer ZZ ==∈=  and  

}.1,1{}n)n(f{fIm −=∈= Z  

Thus, by FTH, }.1,1{~
2 −−Z

Z  

Note that this also tells us that .2)2(o =ZZ  The two cosets of Z2  in Z  are 
Z2  and .21 Z+  

So, ).},1,1({~)},21,2({ ⋅−−++ ZZ  
*** 

 

Example 25: Show that ,~
)(SL

)(GL *

2

2 RR
R −  where 

}.1)Adet()(GLA{)(SL 22 =∈= RR  
 
Solution: From E3 you know that )Adet()A(f:)(GL:f *

2 =→ RR  is a 
homomorphism, and ),(SLfKer 2 R=  .fIm *R=   

Thus, using Theorem 10, .~
)(SL

)(GL *

2

2 RR
R −  

(Note that here we see another example of a non-abelian group G  with an 
abelian quotient group.) 

*** 
 
Example 26: Define .m)m(f::f n =→ ZZ  Show that f  is a homomorphism. 
What does the Fundamental Theorem tell us in this case? 
 
Solution: Since f,s,rsrsr)sr(f Z∈∀+=+=+  is a homomorphism. 
Next, any element of nZ  is ,a  where .a,na0 Z∈<≤  
As .fIm,fIm)a(fa n =∈= Z  
Now, .n}nmm{}0)m(fm{fKer ZZZZ =∈∈==∈=  

Hence, by Theorem 10, .~
n nZZ

Z −  

*** 
 
What Example 26 tells us is that nZ  is the same as the quotient group ZZ n  
algebraically. You have noted this earlier too, in Unit 7. You will often call on 
this fact. 
 
Now consider an important remark about FTH. 
 
Remark 8: From the examples above, you can see that any epimorphism 

21 GG:f →  is actually the natural (or normal) homomorphism. This is 
because, by the FTH, 21 GG:f →  is actually ,)HG(G:p 11 →  where 

fKerH =  and .Hx)x(p =  
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This is why the map in Example 7 is called the ‘canonical’, meaning ‘standard’, 
homomorphism. This is also the reason why Theorem 10 is called the 
Fundamental Theorem of Homomorphism. It tells us that every 
homomorphism is essentially the canonical one.   
  
Try solving the following exercises now. 
 
 

E31) Let G  be a group, and let ,e)g(f:GG:f =→  the identity of .G  Show 
that f  is a homomorphism. What does the Fundamental Theorem of 
Homomorphism say in this case? 

 
E32) What does FTH tell us in Example 2, Example 4(i) and (iii), Example 7 

and Example 12? 
 
E33) Let .n,m N∈  Under what conditions on m  and n  is 

ZZZZ na)ma(:: nm +=+φ→φ  a well-defined homomorphism? And 
then, what does FTH tell us in this situation? 

 
E34) Let 1S  be the circle group }.1|z|z{ =∈C  Show that .S~ 1−Z

R  

 (Hint: See if Example 12 helps you.)  
 

 
Now we will apply the Fundamental Theorem of Homomorphism to prove a 
very important result. This gives us the isomorphism classes of all cyclic 
groups. 
 
Theorem 11: Any cyclic group is isomorphic to ),( +Z  or ),,( n +Z  for .n N∈  
 
Proof: Let ><= xG  be a cyclic group.  
Define .x)n(f:G:f n=→Z  
Check that f  is well-defined.  
Also, f  is a homomorphism because  

.m,n)m(f)n(fxxx)mn(f mnmn Z∈∀=⋅==+ +  
 
You should verify that .GfIm =  
 
Now, we have two possibilities for fKer – either }0{fKer =  or }.0{fKer ≠  
 
Case 1 {0})f(Ker = : In this case f  is 1-1. Therefore, f  is an isomorphism.  
Therefore, by Theorem 8, 1f −  is an isomorphism. That is, ).,(~G +− Z  
Hence, G  is infinite, and the order of x  is infinite. 
 
Case 2 {0})f(Ker ≠ : Since ,fKer Z≤  from Unit 4 you know that 

,nfKer Z=  for some .n N∈  Therefore, by the Fundamental Theorem of 
Homomorphism, .G~n −ZZ  

).,(~)n(~G n +−−∴ ZZZ  
Over here note that since .n)x(o,~x n =−>< Z  So, a finite cyclic group is 
isomorphic to ,nZ  where n  is the order of the group. 
 
Let us consider some important and immediate corollaries of Theorem 11. 
 
Corollary 3: Any two infinite cyclic groups are isomorphic. 



 

 

236 

Block 2                                             Normal Subgroups and Group Homomorphisms
Corollary 4: Any two finite cyclic groups of the same order are isomorphic. 
 
We leave the proof of these corollaries to you, as an exercise (see E35). 
 
And now let us look at an application of Theorem 11 and FTH. 
 
Example 27: If ,1)n,m( =  prove that .~

nmmn ZZZ ×−   
Further, if A  and B  are cyclic groups of orders m  and n , respectively, where 

,1)n,m( =  then prove that BA×  is cyclic of order .mn  
 
Solution: Define ).nr,mr()r(f::f nm ZZZZZ ++=×→  
Note that f  is well-defined because if sr =  in ,Z  then sr =  in mZ  and in .nZ  
Now, f  is a homomorphism because 

)n)sr(,m)sr(()sr(f ZZ ++++=+  
   )ns,ms()nr,mr( ZZZZ +++++=  
   ).s(f)r(f +=  
Next, )}n0,m0()nr,mr(r{fKer ZZZZZ ++=++∈=  

                 }nmrr{ ZZZ ∩∈∈=  
  },mnr|r{ ZZ ∈∈=  since =mn l.c.m of m  and n  (see Unit 4). 
           .mnZ=  
 
Finally, we will show that f  is surjective.  
Let .)nv,mu( nm ZZZZ ×∈++   
Since Z∈∃= t,s,1)n,m(  such that 1ntms =+  (see Unit 1).   
Using this equation, we see that ),nv,mu())nt1(v)ms1(u(f ZZ ++=−+−  
since Zmvms∈  and .nunt Z∈  
i.e., .fIm)nv,mu( ∈++ ZZ  
Thus, f  is surjective. 
 
Now, we apply the Fundamental Theorem of Homomorphism, to find that 

,fIm~)fKer(Z  that is, .~)mn( nm ZZZZ ×   

Hence, .~
nmmn ZZZ ×  

 

Now, let ><= xA  and ,yB ><=  where .n)y(o,m)x(o ==  Then m~A Z  

and ,~B nZ  by Theorem 11. 
Thus, by E27, ,~BA mnZ−×  that is, BA×  is cyclic, of order .mn  

*** 
 
Try solving some exercises now. 
 
 
E35) Prove Corollaries 3 and 4. 
 
E36) Find all possible homomorphisms .U:f 108 →Z  For all such ,f  find 

.fKer  
 

E37) i)  If m  and n  are not coprime integers, is ?~
nmmn ZZZ ×−  Why, or 

why not? 

 ii) Let φ  be the Euler phi-function defined in Unit 4. Prove that if 
Z∈n,m  such that ,1)n,m( =  then ).n()m()mn( φφ=φ  
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We will now discuss the second isomorphism theorem. It is concerned with 
intersections and products of subgroups. Let us first understand what the 
theorem will tell us, through an example of .S3  Let ><= )21(H  and 

.)321(K ><=  Then you know that K    .S3  Therefore, from Unit 6, you 
know that .SHK 3≤  In fact, .SHK 3=  Also }.I{KH =∩  Now )KH(H ∩  and 

)KS(KHK 3=  are both of the same order, 2. Is there any other relation 
between them? It turns out that both these groups are isomorphic, as the 
second isomorphism theorem will tell you.  
 
Theorem 12 (Second Isomorphism Theorem): If H  and K  are subgroups 
of a group ,G  with K  normal in ,G  then .)KHK(~))KH(H( −∩  
 
Proof: We must first verify that the quotient groups )KH(H ∩  and K)HK(  
are well-defined. From E25, Unit 6, you know that KH∩    .H  Also, from 
Theorem 4 and E27 of Unit 6, you know that ,GHK ≤  and that K    .HK  
Thus, the given quotient groups are meaningful. 
 
Now, what we want to do is to find an epimorphism K)HK(H:f →  with 
kernel .KH∩  Then we can apply the Fundamental Theorem of 
Homomorphism to get the required result.   
So, let us define .hK)h(f:K)HK(H:f =→  
You should verify that f  is well-defined. 
Now, for ,Hy,x ∈  

).y(f)x(f)yK()xK(xyK)xy(f ===  
Therefore, f  is a homomorphism. 
 

}.HhhK{}Hh)h(f{fIm ∈=∈=      

We will show that .K)HK(fIm =   
For this, take any element .fImhK∈  Since ,Hh∈  we see that .HKh∈  

.K)HK(hK∈∴   
.K)HK(fIm ⊆∴      …(1)   

On the other hand, any element of K)HK(  is of the form ,hKhkK =  where 
.Kk,Hh ∈∈  

.fIm)h(fhkK ∈=∴   
.fIm)K)HK(( ⊆∴      …(2) 

From (1) and (2), we get .)K)HK((fIm =  
 
Finally, }K)h(fHh{fKer =∈=  

    }KhKHh{ =∈=  

    }KhHh{ ∈∈=  

    .KH∩=  
Thus, on applying the Fundamental Theorem, we get .)KHK(~))KH(H( −∩  
 
We would like to make a comment here about what Theorem 12 says for 
abelian groups. 
 
Remark 9: If H  and K  are subgroups of ),,G( +  then Theorem 12 says that  

)).KH(H(~)K)KH(( ∩−+  
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Let us consider an example of how Theorem 12 is useful. Through this result, 
we look at the relationship between internal direct products and quotient 
groups. 
 
Theorem 13: Let H  and K  be normal subgroups of a group G  such that 

.KHG ×=  Then K~)HG( −  and .H~)KG( −  
 
Proof: By definition, HKG =  and }.e{KH =∩  Therefore,  

.K~}e{KKHK~HHKHG −=∩−=  
You can similarly prove that .H~KG −  
 
We now give a result which immediately follows from Theorem 13. 
 
Corollary 5: Let G  be a finite group and H  and K  be its normal subgroups 
such that .KHG ×=  Then ).K(o)H(o)G(o =  
 
Now, why don’t you use Theorems 12 and 13 to solve the following exercises? 
 
 
E38) Prove Corollary 5. 
  
E39) Let H  and K  be subgroups of a finite group ,G  and H    .G  Use 

Theorem 12 to show that .
)KH(o
)K(o)H(o)HK(o

∩
=  (You have already 

proved this in Unit 3, of course!) 
 
E40) Show that .~

12
3

4ZZ
Z −  

 (Hint: Take ZZ 4K,3H == ). 
 
E41) Prove that if 1G  and 2G  are groups, then  
 .G~}))e{G()GG(( 22121 −××  
 
E42) Prove that .~)( 23 QQQ −  
 
 
And now for the third isomorphism theorem. This is also really an immediate 
application of FTH. 
 
Theorem 14 (Third Isomorphism Theorem): Let H  and K  be normal 

subgroups of a group G  such that .HK ⊆  Then .HG~
)KH(

)KG( −  

 
Proof: First, note that from Theorem 7, Unit 7, you know that )KH(    ).KG(  
So the quotient groups given in the statement of the theorem are well-defined. 
 
Now, to apply Theorem 10, we need to define a homomorphism from KG  
onto ,HG  whose kernel will turn out to be .KH  
Consider an obvious candidate, .Hx)Kx(f:HGKG:f =→   
f  is well-defined because, for ,Gy,x ∈   

KyKx = HyHxHxyHKxy 11 =⇒∈⇒⊆∈⇒ −− ).Ky(f)Kx(f =⇒  
Now we leave the rest of the proof to you (see E43). 
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E43) Show that ,f  defined in the proof of Theorem 14, is an epimorphism and 
.KHfKer =  Hence complete the proof of Theorem 14. 

 
E44) Prove that .~)5( 510 ZZ −><  
 

 
Let us now discuss isomorphisms of a group onto itself. 
 

8.5 AUTOMORPHISMS 
 
Automorphisms are used very often in group theory. In fact, the set of 
automorphisms of a group has some special properties. Hence, we have 
devoted a separate section to discuss them. In this section, you will first see 
why the set of all automorphisms of a group forms a group. Then we shall 
define a special subgroup of this group, and see why it is important. 
 
Automorphisms are not new to you. You are familiar with a basic 
automorphism, ,GG:IG →  for any group .G  You also know that 

1g)g(:GG: −=φ→φ  is an automorphism of G  iff G  is abelian. 
 
Let us now consider the set of automorphisms of a group ,G  

fGG:f{ →=GAut  is an isomorphism}. 

You have just seen that ,GAut «≠  since .GAutIG ∈   
From E19 you know that GAut  is closed under the binary operation of 
composition.  
Also, Theorem 8 says that if ,GAutf ∈  then .GAutf 1∈−   
Thus, we have just proved the following theorem. 
 
Theorem 15: Let G  be a group. The set of automorphisms of ,GAut,G  is a 
group w.r.t. the composition of functions. 
 
Let us look at some examples of .GAut  
 
Example 28: Show that .~Aut 2ZZ −  
 

Solution: Let ZZ→:f  be an automorphism. Let .n)1(f =  We will show that 
1n =  or .1−   

Since f  is an onto function  and ZZ ∈∃∈ m,1  such that ,1)m(f =  i.e., 
,1)1(mf =  i.e., .1mn =  

1n =∴  or 1n −= .   

If ,mm)m(f,1n Z∈∀==  i.e., .If =  

If ,mm)m(f,1n Z∈∀−=−=  i.e., .If −=  
Thus, there are only two elements in I,Aut Z  and .I−  
So ,~IAut 2ZZ −>−<=  by Theorem 11. 

*** 
 
Now, given an element of a group ,G  we will define an automorphism of G  
corresponding to it, in the next example. 
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Example 29: Let G  be a group and .Gg∈  Define .gxg)x(f:GG:f 1
gg

−=→  

Show that gf  is an automorphism of .G  (The element Ggxg 1∈−  is called the 
conjugate of x  by .)g  
 
Solution: We will show that gf  preserves the operation on ,G  and is a 
bijection. 

gf  is well-defined: If yx =  in ,G  then ,gyggxg 11 −− =  i.e., ).y(f)x(f gg =   

Thus, gf  is well-defined. 
 

gf  is a homomorphism: If ,Gy,x ∈  then  
1

g g)xy(g)xy(f −=  

           ,yg)gg(gx 11 −−=  since ,egg 1 =−  the identity of .G  
           )gyg)(gxg( 11 −−=  
           ).y(f)x(f gg=  

Thus, gf  is a homomorphism, .Gg∈∀  
 

gf  is 1-1: }egxgGx{}e)x(fGx{fKer 1
gg =∈==∈= −  

                    }exGx{ =∈=  
                   }.e{=  
Hence, gf  is injective, .Gg∈∀  
 

gf  is surjective: If ,Gy∈  then  

)gg(y)gg(y 11 −−= 11 g)ygg(g −−=  
   ,fIm)ygg(f g

1
g ∈= −  since .Gygg 1 ∈−  

Hence, gf  is an onto function, .Gg∈∀  
 
Thus, gf  is an automorphism of .Gg,G ∈∀  

*** 
 
Consider the following remark in the context of conjugation. 
 
Remark 10: If G  is an abelian group, then .Ggxgxg)x(fg ∈∀=−+=  

Thus, .GgIfg ∈∀=  
 
We give the automorphism in Example 29 a special name. 
 
Definition: Let G  be a group and .Gg∈  The automorphism 

1
gg gxg)x(f:GG:f −=→  is called the inner automorphism of G  induced by 

the element g  in .G   
The subset of ,GAut  consisting of all inner automorphisms of ,G  is denoted 
by .GInn  
 
Let us consider examples of some inner automorphisms. 
 
Example 30: Consider .S3  Compute ))31((f),I(f gg  and )),321((fg  where 

).21(g =  Also verify that 3g SfIm =  and }.I{fKer g =  
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Solution: Note that ).21()21( 1 =−  So .gg 1 =−  
Now, ,IgIg)I(f 1

g == −oo  

),32()21)(31)(21())31((fg ==  

).231()21)(321)(21())321((fg ==  

[In all these cases, note that if 3S∈σ  is a cycle of length 2  (or ),3  then 1gg −σ  
is also a cycle of length 2  (or ,3  respectively). In Unit 9, you will see why this 
is so.] 
Note that }.Sgg{}S)(f{fIm 3

1
3gg ∈σσ=∈σσ= −  

You should verify that )21())21((f),31())32((f gg ==  and ).321())231((fg =  

Hence, ,SfIm 3g =  and  

}.I{}IggS{fKer 1
3g ==σ∈σ= −  

*** 
 
Solving the following exercises will give you some practice in obtaining inner 
automorphisms. 
 
 
E45) Let G  be a group and .Gg∈  Define .gx)x(f:GG:f =→  Does 

?GAutf ∈  Why, or why not? 
 
E46) Is GInn  abelian for every ?G  If G  is non-abelian, is GAut  non-

abelian? Give reasons for your answers. 
 
E47) Let G  be a group and .GH ≤  Show that GgH)H(fg ∈∀⊆  iff H    .G  

In particular, if Gx∈  such that ,Ggx)x(fg ∈∀=  then show that    
>< x    .G   

 
E48) Verify that the image of GInnfg∈  is ,G  where  

 i) )(GLG 2 R=  and ,
01
10

g ⎥
⎦

⎤
⎢
⎣

⎡
−

=  

 ii) Z=G  and ,3g =  

 iii) ZZ 5G =  and ,4g =  

 iv) 8QG =  and ⎥
⎦

⎤
⎢
⎣

⎡
−

=
i0

0i
g  (see Example 5, Unit 5).  

 
E49) Is ?GGInnG|| ∀=  Why? 
 
 
So, we have a subset, ,GInn  of GAut  that seems to be in 1-1 
correspondence with ,G  given by .gfg a  But, you have shown in E49 that 

this is not a 1-1 correspondence. So, the question is – is there any relationship 
between G  and ?GInn  To understand this, let us first see whether GInn  
has any group structure on it. It turns out that not only is GInn  a group, it is 
something more! 
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Theorem 16: For any group ,G GInn  is a normal subgroup of .GAut  
 
Proof: GInn  is non-empty, because ,GInnfI eG ∈=  where e  is the identity 
in .G  
Now, let us see if GInnff hg ∈o  for .Gh,g ∈  

For any )hxh(f)x(ff,Gx 1
ghg

−=∈ o 11 g)hxh(g −−= 1)gh(x)gh( −=  

   )x(fgh=  

Thus, .fff ghhg =o      …(3) 
So, GInn  is closed under composition.   
Also Ge If =  is the identity in .GInn  
Now, for GInnf,GInnf 1gg ∈∃∈ −  such that  

,Iffff Gegggg 11 === −−o  using (3). 

Thus, ,)f(f 1
gg 1

−=−  that is, every element of GInn  has an inverse in .GInn  

Thus, .GAutGInn ≤  
 
Now, to prove that GInn    ,GAut  let GAut∈φ  and .GInnfg ∈   
Then, for any ,Gx∈  

))x((f)x(f g
1

g
1 φφ=φφ −− ooo  

                     )g)x(g( 11 −− φφ=  
                     )g())x(()g( 1111 −−−− φφφφ=  
                     111 )]g([x)g( −−− φφ=  
                     ).x(f

)g(1−φ
=  (Note that .)G)g(1 ∈φ−  

GAutGInnff
)g(g

1
1 ∈φ∀∈=φφ∴ −φ

− oo  and .GInnfg ∈  

GInn∴    .GAut  
 
Let us find GInn  in some cases to give you a better feel about this normal 
subgroup. 
 
Example 31: Find RInn  and .nInn n NZ ∈∀  
 
Solution: Since R  and nZ  are abelian ,n N∈∀  by Remark 10, },I{Inn =R  
and .n}I{Inn n NZ ∈∀=  

*** 
 
Before looking at more examples, let us consider an important theorem that 
will help us find ,GInn  when G  is not abelian. If you go back to Remark 10, it  
seems to suggest that the size of GInn  gives a measure of how far G  is 
from being commutative. Remember, this is also what )G(ZG  tells us, where 

)G(Z  is the centre of .G  So, is there some relationship between the factor 
group )G(ZG  and the group ?GInn  The following theorem will answer this 
question. 
 

Theorem 17: Let G  be a group.  Then .GInn~))G(ZG( −  
 
Proof: As you may have guessed, we will use the powerful Fundamental 
Theorem of Homomorphism to prove this result. To do so, let us define  

,f)g(f:GInnG:f g=→  a natural choice! 
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f  is well-defined: If 21 gg =  in ,G  then .Gxxggxgg 1
22

1
11 ∈∀= −−  So 

,Gx)x(f)x(f
21 gg ∈∀=  i.e., .ff

21 gg =  

 
f  is a homomorphism: For ,Gh,g ∈  

ghf)gh(f =  

  ,ff hg o=  as noted in (3) of the proof of Theorem 16.  

  ).h(f)g(f o=  
 
f  is surjective: .GInn}Ggf{fIm g =∈=  
 
Finding :fKer  }IfGg{fKer Gg =∈=  

                                    }Gxx)x(fGg{ g ∈∀=∈=  

      }GxxgxgGg{ 1 ∈∀=∈= −  

      }GxxggxGg{ ∈∀=∈=  

      .)G(Z=  
 
Therefore, by the Fundamental Theorem of Homomorphism, 

.GInn~))G(ZG( −  
 
So, we had earlier mentioned a possible 1-1 correspondence between G  and 

.GInn  Theorem 17 says this is only possible if }.e{)G(Z =  
 
Now let us use Theorem 17 to consider some non-abelian examples of .G  
 
Example 32: Find 3SInn  and .QInn 8  
 
Solution: You have seen earlier that }.e{)S(Z 3 =  Hence, by Theorem 17  

.S~SInn 33 −  
You have also seen, in Unit 6, that }.I{)Q(Z 8 ±=  Hence, 

),IQ(~QInn 88 >−<−  which is of order .4   

Also, ,QInn)f(f,f,f,f 8CABBAI ∈=  with .ffIf 2
C

2
B

2
A ===   

Hence, ><×><= BA8 ffQInn  is the Klein 4-group. 

*** 
 
Now you should use Theorem 17 to solve the following exercises. 
 
 
E50) Find GInn  for 8DG =  and .DG 10=  More generally, what is ?DInn n2  
 
E51) If G  is infinite, must GInn  be infinite? Why, or why not? 
 
 
With this we come to the end of this discussion on group homomorphisms of 
all kinds! As we said earlier, you will be working with them in later units too. 
 
Let us take a brief look at what you have studied in this unit. 
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8.6 SUMMARY 
 
In this unit, we have discussed the following points. 
 
1. The definition, and examples, of a group homomorphism. 
 
2. Let 21 GG:f →  be a group homomorphism. Then  

i) ,e)e(f 21 =   
ii) ,Gx)x(f)]x(f[ 1

11 ∈∀= −−  
iii) ,GfIm 2≤  
iv) fKer    .G1  

 
3. A homomorphism is 1-1 iff its kernel is the trivial subgroup. 
 
4. The definition, and examples, of a group isomorphism. 
 
5. Two groups are isomorphic iff they have exactly the same algebraic 

structure and properties. 
 
6. The composition of group homomorphisms (respectively, isomorphisms) 

is a group homomorphism (respectively, isomorphism). 
 
7. The proof, and many applications, of the Fundamental Theorem of 

Homomorphism (FTH), which says that if 21 GG:f →  is a group 
homomorphism, then .fIm~)fKerG( 1 −  

 
8. Because of FTH, any group homomorphism 21 GG:f →  is essentially 

the natural homomorphism ).fKerG(G:p 11 →  This is why the map p  
is called the natural, or canonical, map. 

 
9. Any infinite cyclic group is isomorphic to ).,( +Z  Any finite cyclic group 

of order n  is isomorphic to .n),,( n NZ ∈+  
 
10. Let G  be a group, K,GH ≤    .G  Then .K)HK(~)KH(H −∩  
 

11. Let G  be a group, H    K,G    .HK,G ⊆  Then .HG~
)KH(

)KG( −  

 
12. The set of automorphisms of a group ,GAut,G  is a group with respect 

to the composition of functions. 
 
13. The definition, and examples, of an inner automorphism. 
 
14. GInn    ,GAut  for any group .G  
 
15. ,GInn~))G(ZG( −  for any group .G   
 

8.7 SOLUTIONS / ANSWERS 
 
E1) .Gh,g)h(I)g(Igh)gh(I ∈∀==  So I  is an endomorphism. 
 Also .hg)h(I)g(I =⇒=   Hence, I  is 1-1. 
 Thus, I  is a group monomorphism. 
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E2) First, if yx =  in ,+R  then ,ylnxln =  i.e., ).y(f)x(f =  So f  is  
well-defined. 
For any ).y(f)x(fylnxln)xyln()xy(f,y,x +=+==∈ +R  

 f∴  is a group homomorphism. 
 .}1{}0)x(fx{fKer ==∈= +R  

 }.xxln{}x)x(f{fIm +∗ ∈=∈= RR  

         R=  (because for any ).r)eln()e(f,r rr ==∈R  
 
E3) For any )(GLB,A 2 R∈  s.t. ),Bdet()Adet(,BA ==  i.e., ).B(f)A(f =  

Thus, f  is well-defined. 
 
 Next, for ),(GLB,A 2 R∈    

).B(f)A(f)Bdet()Adet()AB(det)AB(f ===  
 f∴  is a homomorphism. 
  

}1)Adet()(GLA{}1)A(f)(GLA{fKer 22 =∈==∈= RR  

  ).(SL2 R=  
 )}(GLA)Adet({fIm 2 R∈=  

        ∗= R  (because for any )(GL
10
0r

A,r 2 RR ∈⎥
⎦

⎤
⎢
⎣

⎡
=∃∈ ∗  such that    

        ).r)Adet( =  
 
E4)  i) For ).z(f)z(fz5z5)zz(5)zz(f,z,z 2121212121 +=+=+=+∈Z  

Also, .zzz5z5)z(f)z(f 212121 =⇒=⇒=  
   Thus, f  is a 1-1 homomorphism. 
 

   So the given statement is true. 
 
  ii) False. Note that ∗R  is a group w.r.t. multiplication.  
   For ).r(f)r(frr5)rr(f,r,r 21212121 ⋅≠=∈ ∗R  
   Hence, f  is not a homomorphism. Hence, it is not a 

monomorphism. 
 
  iii) Check that ).y(f)x(f)yx(f +≠+  Hence, this is false.  
 
  iv) For ,yx)xy()xy(f,y,x 222 ==∈ ∗R  since ∗R  is abelian.  
   Hence, f  is a homomorphism. 
 
  v) False. For example, consider .z5)z(f:5:f =→ ZZ  In (i) you have 

shown that this is a homomorphism.  
 
E5) .xA)x(p:ASS:p 3333 =→  
 Note that )}.231(),321(,I{A3 =  
 Now, from Example 7, you know that .ApKer 3=  .pKer)21( ∉∴  

 }.SxxA{pIm 33 ∈=  .pIm)21( ∉∴  
 
E6) For any iy2ix2)yx(i2 eee)yx(f,y,x ⋅==+∈ +R  
                 ).y(f)x(f ⋅=  
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 f∴  is a homomorphism. 
  

}1ex{}1)x(fx{fKer ix2 =∈==∈= RR  

  },2x2x{ ZR π∈∈=  as you know from Unit 4 of Calculus. 
  .Zπ=  
 
E7) From Example 7, you know that if we take HGG1 =  and take f  to be 

the natural homomorphism ),HG(G:p →  then .HfKer =  
 
E8) φ  is not well-defined. For example, .H)32()31)(21)(31())31(( ∉==φ  

Thus, φ  cannot be a homomorphism from 3S  to .)21( ><  
  
 On the other hand, take K  to be  ,)321( ><  and take ψ  to be defined 

by .)321()( 1−σσ=σψ  You should show that ψ  is a homomorphism. 
 Here you could have taken K  to be }e{  or 3S  also, and defined ψ  

appropriately. Then, too, ψ  would be a homomorphism.  
 
E9) First check that both f  and g  are homomorphisms. 
 
 Now, .iy)iyx(fg::fg =+→ oo CC  So 

)]by(i)ax[(fg)]iba()iyx[(fg +++=+++ oo ibiy)by(i +=+=  
 ),iba(fg)iyx(fg +++= oo  for .b,a,y,x R∈  
 fg o∴  is a homomorphism. 
 
 Check that }0{gKer,fKer =⊆= CR  and .)fg(Ker R=o  
 So fKer)fg(Ker ⊆o  and .gKer)fg(Ker ⊂/o  
 
 Also }.yiy{)fg(Im R∈=o  
 
E10) For any ,s,r nZ∈  

 ).s(f)r(f)sr(f)sr(f srsr ⋅=ζ⋅ζ=ζ=+=+ +  
 f∴  is a homomorphism. 
 }.0{}1r{fKer r ==ζ=  Thus, f  is injective. 

 }r)r(f{fIm nZ∈=  

        }1nr0{ r −≤≤ζ=  

        .Un=   
Hence, f  is surjective.  

 
E11) f  is well-defined: If ,gg 21 =  then 21 HgHg =  and .KgKg 21 =  Thus, 

),Kg,Hg()Kg,Hg( 2211 =  i.e., ).g(f)g(f 21 =  
  

f  is a homomorphism: Let .Gg,g 21 ∈  Then 
)Kg,Hg()Kg,Hg()KgKg,HgHg()gKg,gHg()gg(f 22112121212121 ⋅=⋅⋅==

            ).g(f)g(f 21 ⋅=  
 
 HHgGg{fKer =∈=  and HgGg{}KKg ∈∈==  and }Kg∈      
           .KH∩=  
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 }.Gg)Kg,Hg({}Gg)g(f{fIm ∈=∈=  
 

 f  will be a monomorphism iff },e{fKer =  i.e.,  iff }.e{KH =∩  
 

 f  is not surjective, because for any ,K
G

H
G)Kg,Hg( 21 ×∈  with 

,gg 21 ≠  there may be no Gg∈  s.t. 1HgHg =  and .KgKg 2=  
 For instance, if },e{K},e{H 21 ==  then 1HgHg =  iff .gg 1=  Similarly, 

2KgKg =  iff .gg 2=  
 
E12) Proof of Corollary 1: Let ><= xG  and GG:f ′→  be a 

homomorphism. Then )G(fG:f →  is an onto homomorphism. 
 Therefore, by Theorem 5, ,)x(f)G(f ><=  i.e., )G(f  is cyclic. 
 

Proof of Corollary 2: Let ,SG ><=  where S  is a finite set, and let 
GG:f ′→  be a homomorphism. Then )G(f  is the homomorphic image 

of .G  So, by Theorem 5, ,)S(f)G(f ><=  where )S(f  is a finite set. 
Thus, )G(f  is finitely generated. 
 
Converse of Corollary 1: If the homomorphic image of a group is cyclic, 
then the group is cyclic.  
This is false. For instance, consider .x))0,x((f::f =→× ZZZ   
You have seen that f  is a homomorphism which is surjective. Also, Z  is 
cyclic, but ZZ×  is not (as you have seen in Unit 4). 

 
E13) Statement: If 21 GG:f →  is a group homomorphism such that )G(f 1  is 

abelian, then 1G  is abelian. 
 This is false. Conside the situation in E5. There ,)AS()S(p 333 =  which 

is of order 2. Hence, )S(p 3  is cyclic, and hence, abelian. But, as you 
know, 3S  is not abelian. 

 
E14) Let G  be a cyclic group, and HG  be a quotient group of .G  Then, by 

Example 7 and Corollary 1, HG  is cyclic. 
 
E15) The function nk)k(f:n:f =→ ZZ  is well-defined.  
 Now, .r,m)r(f)m(fnrnm)rm(n)rm(f Z∈∀+=+=+=+  
 f∴  is a homomorphism. 
  
 }.0{fKer =  f∴  is 1-1. 
  
 .nfIm Z=  f∴  is surjective. 
  
 f∴  is an isomorphism, and .n~ ZZ −  
 

E16) First, you should check that ).(GLx
10
x1

G 2 RR ≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
=  

 Now define .
10
x1

)x(f:G:f ⎥
⎦

⎤
⎢
⎣

⎡
=→R  

 Check that f  is a well-defined epimomorphism. 
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 Note that }.0{
10
01

10
x1

xfKer =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
∈= R  So f  is 1-1. 

 Thus, .G~−R  
 
E17) Show that f  is a homomorphism, but not 1-1. f∴  is not an 

isomorphism. 
 
E18) If f  is a homomorphism, ),b(f)a(f)ab(f =  i.e.,  

.Gb,aba)ab( 111 ∈∀= −−−   
 Thus, ,Gb,abaab 1111 ∈∀= −−−−  i.e., G  must be abelian.  
 Check that f  is 1-1 and surjective. 
 Hence, f  is an isomorphism only if G  is abelian. 
 
E19) By Theorem 2, φθ o  is a homomorphism.  
  
 Now let ).(Kerx φθ∈ o  
 Then, 0)x)(( =φθ o  
 0))x(( =φθ⇒  
 ,0)x( =φ⇒  since θ  is 1-1. 
 ,0x =⇒  since φ  is 1-1. 
 }.0{)(Ker =φθ∴ o  φθ∴ o  is 1-1.  
  
 Finally, take any .Kk∈  Then ),h(k θ=  for some ,Hh∈  since θ  is 

onto. 
 Now, ),g(h φ=  for some ,Gg∈  since φ  is onto. 
 ).g(k φθ=∴ o  φθ∴ o  is onto. 
 φθ∴ o  is an isomorphism. 
 

E20) 1G∈α  is a solution of 1
k gx =  

 1
k g=α⇔  

 )g(f)](f[ 1
k =α⇔  

 2G)(f ∈α⇔  is a solution of ).g(fx 1
k =  

 Hence the result. 
 

E21) From Unit 4 you know that .15
)2,15(

15)(o 2 ==ζ  Hence, .U 2
15 >ζ<=  

 Now ).(f)(f)(f srs2r2)sr(2sr ζζ=ζ⋅ζ=ζ=ζζ +  
 So f  is a homomorphism. 
  

 Also, }r215U{}1U{fKer 15
rr2

15
r ∈ζ==ζ∈ζ=  

           },r15U{ 15
r ∈ζ=  since .1)2,15( =  

           }{ 15ζ=  
           }.1{=  
 

 Finally, since ,U 2
15 >ζ<=  any element of 15U  is of the form ),(f rr2 ζ=ζ  

for some .15,,1r K=   
 Hence, .UfIm 15=  
 
 Thus, f  is an isomorphism. 
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E22) Let ).e,x()x(f:}e{GG:f =×→  Then verify that f  is a well-defined 

group homomorphism. 
  
 },e{fKer ′=  where e′  is the identity of .G   
  
 Also, }.e{GfIm ×=  
  
 Hence, f  is an isomorphism. 
  
 Similarly, show that .G~G}e{ −×  
 
E23) For instance, being cyclic, their cardinality, the number of distinct 

subgroups they have. 
 There are many other properties, which you should add. 
 
E24) By Theorem 6, H  is abelian. 
 
 The converse is: If HG:f →  is an isomorphism and H  is abelian, then 

so is .G   
 This is true, since 1f −  is an isomorphism, by Theorem 8. 
 
E25) Yes, as you have seen in E15. 
 
E26) ∼ is reflexive because GG:IG →  is a homomorphism, for any group .G  
 ∼ is symmetric because the zero homomorphism is defined from any 

group to another. 
 ∼ is transitive because the composition of homomorphisms is a 

homomorphism.  
 
E27) Let 11 BA:f →  and 22 BA:g →  be isomorphisms. Define 

)).y(g),x(f())y,x((:BBAA: 2121 =θ×→×θ  
 Check that θ  is a well-defined homomorphism. Also verify that 

gKerfKerKer ×=θ  

   )},e,e{( 21=  where 21 e,e  are the identities of ,A,A 21  respectively.  

 Further, check that .BBgImfImIm 21 ×=×=θ  
 Hence the result. 
 
E28) Suppose RC −~*  and RC →∗:f  is an isomorphism. Then .4))i(f(o =  

But, apart from ,0  every element of ),( +R  is of infinite order; and 
.1)0(o =  So, we reach a contradiction. 

 ∗∴C  and R  are not isomorphic. 
 
E29) Since Z  is infinite and ZZ n  is finite, the two groups can’t be 

isomorphic. 
 
E30) Note that Q∈0  is the only element of finite order, .1  

 However, in )1(, −∗Q  is of order .2  Hence, / .~ ∗−QQ  
 
E31) Note that f  is well-defined. Check that ).g(f)g(f)gg(f 2121 =  
 Further, GfKer =  and }.e{fIm =  

 Thus, }.e{~)GG( −  
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 You have already seen, and applied, the fact that }G{)GG( =  (the 

identity) in Unit 7. 
 
E32) Re Example 2, ,expIm += R  and }.0{expKer =  
 Thus, by the Fundamental Theorem of Homomorphism, and the fact that 

,~})0{( +−RR .~ +−RR  
 

 Re Example 4(i), ,IfIm 3 ><=  where 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

I3  and }.0{fKer =  

 Thus, by FTH, .I~
3 ><−Z  

 
 Re Example 4(iii), ,S}1zz{fKer 1|| ==∈= ∗C  the unit circle. 

 .fIm += R  

 Thus, by FTH, .~)S( 1 +∗ −RC  
 
 Re Example 7, we find ).HG(~)HG( −  
 
 Re Example 12, we see that .S~

2
1−πZ

R  

 
E33) If ,mbma ZZ +=+  for ,b,a Z∈  then ).ba(m −  

 We need )ba(n −  for φ  to be well-defined. This will be true if .mn   

 And then, ba =  in ,nZ  i.e., ).b()a( φ=φ  

 [Note that if nm  this need not be true. Take, for example, .: 62 ZZ →φ  

Then 31 =  in ,2Z  but not in .]6Z  

 So, let us now assume that .mn  Then 

 Zn)ba()ba()ba( ++=+φ=+φ   

                )nb()na( ZZ +++=  

               ).mb()ma( ZZ +φ++φ=  
 Thus, φ  is a homomorphism. 
 
 0ama{Ker =+=φ Z  in }nama{}n ZZZ ∈+=  

  .n mZ=  

 ,Im nZ=φ  since for any ZZ ma,na +∃+  s.t. .na)ma( ZZ +=+φ  

 Hence, by FTH, .~)n( nm ZZ −><  

 Thus, ,n
~

n m

m
Z

Z
Z

Z −  where .mn   

  
E34) Define .e)x(f:S:f ix21 π=→R  Then f  is well-defined because 

,xSe 1ix2 R∈∀∈π  as .1x2sinix2cose ix2 =π+π=π  

 Now ).y(f)x(feee)yx(f yi2xi2)yx(i2 =⋅==+ ππ+π  
 f∴  is a homomorphism. 
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 Note that any element of 1S  is of the form   

 θ+θ sinicos ,2f22sini22cos ⎟
⎠
⎞

⎜
⎝
⎛
π
θ=π

θπ+π
θπ=  where .R∈θ  

 f∴  is onto. 
 
 Also, }1ex{fKer xi2 =∈= πR  

           }1x2sinix2cosx{ =π+π∈= R  

           ,Z=  since 1sinicos =θ+θ  iff .2 Zπ∈θ  

 Therefore, by the Fundamental Theorem of Homomorphism, .S~)( 1−ZR  
 
E35) Proof of Corollary 3: Let A  and B  be infinite cyclic groups. Then, by 

Theorem 11, .~B,~A ZZ −−  Hence, by Theorem 9, .B~A −  
 
 Proof of Corollary 4: Let A  and B  be cyclic groups of order .n  Then 

.~B,~A nn ZZ −−  Thus, by Theorem 9, .B~A −  
 
E36) ,~U 1010 Z−  by Theorem 11. 
 Now, if ,:f 108 ZZ →∃  then by the FTH, .fIm~)fKer( 108 ZZ ≤−  
 So, 5,2,1)fKer(o 8 =Z  or ,10  by Lagrange’s Theorem. 

 Also .
)fKer(o

8)fKer(o 8 =Z  Hence, 4,2,1)fKer(o 8 =Z  or .8   

 Putting both these possibilities together, we get 1)fKer(o 8 =Z  or ,2  
so that 8)fKer(o =  or ,4  respectively. 

 If ,fKer,8)fKer(o 8Z==  i.e., .0)m(f::f 108 =→ ZZ  

 If ,4)fKer(o =  then .2fKer ><=  So fIm  must be generated by an 
element of order .2  Hence, define ),10(mod5))8(mod1(f::f 108 =→ ZZ  
and extend f  to be a homomorphism. You should check that f  is well-
defined, i.e., if yx =  in ,8Z  then y5x5 =  in .10Z  

 Thus, the possibilities are  
 1)m(f:U:f 108 =→Z  and .)m(g:U:g m5

108 ζ=→Z  
 
E37) i)  No. For instance, 22 ZZ ×  is not cyclic. It is generated by )0,1(  

and ).1,0(  But 4Z  is cyclic. 
  Hence, they are not isomorphic. 
 
 ii) From Unit 4, you know that )mn(φ  is the number of distinct 

generators of .mnZ  Also ,~
nmmn ZZZ ×−  by Example 27.  

  Further, for each generator x  of ,mZ  and y  of )}y,0(),0,x{(,nZ  
is a distinct set of generators of .nm ZZ ×  

  Hence, ).n()m()mn( φφ=φ  
 

E38) Since ),K(o)HG(o,K~)HG( =−  i.e., ).K(o
)H(o
)G(o
=  

 ).K(o)H(o)G(o ⋅=∴  
 
E39) By Theorem 12, .))KH(K(~)HHK( ∩−  
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 ,
)KH(o

)K(o
)H(o
)HK(o

∩
=∴  i.e., .

)KH(o
)K(o)H(o)HK(o

∩
=  

 
E40) Let .4K,3H ZZ ==  By Theorem 12 we know that 

.))KH(H(~)K)KH(( ∩−+  
 Now ,43KH ZZZ =+=+  since 1)4,3( = (see Unit 4). 
 Also ,1243KH ZZZ =∩=∩  since l.c.m 12)4,3( =  (see Unit 4). 

 Thus, by Theorem 12, .12
3~

4 Z
Z

Z
Z −  

 You also know that .~
4 4ZZ

Z −  

 .~
12

3
4ZZ

Z −∴  

 
E41) ),G}e({})e{G(~GG 212121 ×××−×  as you have seen in Example 11, 

Unit 6. 
 Thus, by Theorem 13, ,G~G}e{~})e{G()GG( 2212121 −×−××  by E22. 
 
E42) QQQQ ××=3  and .2 QQQ ×=  
 Define ).b,a()]c,b,a[(f::f 23 =→QQ  
 Check that f  is well-defined. 
  
 Now, for )c,b,a(  and )r,q,p(  in ,3Q  

)qb,pa()]rc,qb,pa[(f)]r,q,p()c,b,a[(f ++=+++=+  
                                   )q,p()b,a( +=  
         )].r,q,p[(f)]c,b,a[(f +=  
 Hence, f  is a homomorphism. 
 )}0,0()b,a()c,b,a({fKer 3 =∈= Q  

  }c)c,0,0({ Q∈=  

  ,~ Q−  as in E22. 
 Also ,fIm 2Q=  since for any )].0,q,p[(f)q,p(,)q,p( 2 =∈Q  
 Thus, by Example 17 and FTH, .~)fKer(~)( 233 QQQQ −−  
 
E43) For any Ky,Kx  in ,KG  
 ).Ky(f)Kx(f)Hy)(Hx(Hxy)Kxy(f))Ky)(Kx((f ====  
 f∴  is a homomorphism. 
 Now, any element of HG  is of the form .Hx  And  
 .fIm)Kx(fHx ∈=   
 .HGfIm =∴  
 Finally, }H)Kx(fKGKx{fKer =∈=  

              }HHxKGKx{ =∈=  

              }HxKGKx{ ∈∈=  

              KH=   
 Therefore, by Theorem 10, .HG~)KH()KG( // −   
 
E44) Note that .510 ZZ ≤  

 So, by Theorem 14, Z
Z

ZZ
ZZ

5
~

)105(
)10( −  
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 Also, 510
~

5,~
10 ZZ

ZZZ
Z −−  and .510

5
10ZZ

Z =  

 Hence the result. 
 
E45) If f  is a homomorphism, you know from Theorem 1 that .e)e(f =  But 

here, .g)e(f =  
 Hence, GAutf ∈  iff ,eg =  and then .If G=  
 
E46) If G  is abelian, then }.I{GInn =  Hence, GInn  is trivially abelian. 
 Now, suppose G  is not abelian. Let Gh,g ∈  s.t. .hggh ≠  

 Now .Gx)x(fgghxh)hxh(f)x)(ff( gh
111

ghg ∈∀=== −−−o  

 Hence, ghhg fff =o  and .ffff ghhggh ≠=o  

 Thus, ,ffff ghhg oo ≠  i.e., GInn  is not abelian. 

 Thus, GAut  is not abelian in this case. 
 
E47) For any Hh∈  and ,Gg∈  
 HHghgH)h(f 1

g ⇔∈⇔∈ −    .G    
 

E48) i) 1
g22g g

dc
ba

g
dc
ba

f:)(GL)(GL:f −
⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
→ RR  

  Now, .
01
10

g ⎥
⎦

⎤
⎢
⎣

⎡
−

=  .
01
10

g 1
⎥
⎦

⎤
⎢
⎣

⎡ −
=∴ −  

  .
ab
cd

01
10

dc
ba

01
10

g
dc
ba

g 1
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
∴ −  

 Now, for any )(GL
ab
cd

),(GL
dc
ba

22 RR ∈⎥
⎦

⎤
⎢
⎣

⎡
−

−
∃∈⎥

⎦

⎤
⎢
⎣

⎡
 s.t. 

.
dc
ba

ab
cd

fg ⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

−
  

  ).(GL))(GL(f 22g RR =∴  
  
 ii) .x)g(xg)x(f::f gg =−++=→ ZZ  

  .Ifg =∴  .)(fg ZZ =∴  
 
 iii) Here too, since G  is abelian, .Ifg =  Thus, .5fIm g Z

Z=  

 

 iv) .
i0
0i

CC,
i0

0i
C 31

⎥
⎦

⎤
⎢
⎣

⎡−
==⎥

⎦

⎤
⎢
⎣

⎡
−

= −  

  Now .I)I(fC ±=±  

 Also ,A)A(f,ACAC)A(f C
1

C =−−== −  
.C)C(f,B)B(f CC mm =±=±   

 Hence, .QfIm 8C =  
 
E49) If ,G Z=  then }.I{GInn =  Hence, G  is infinite, but .1GInn =  
 Hence, their cardinalities are not always equal. 
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E50) You have shown that ><= 2
8 R)D(Z  in E21, Unit 7. So .2))D(Z(o 8 =  

 Hence, .4
2

)D(o)QInn(o 8
8 ==  

 Also 8DInn  is not cyclic, since by Theorem 5, Unit 7, )D(ZD 88  is not 
cyclic. You should verify that 8DInn  is the Klein 4-group 

}.f,f,f,I{ 22 rRRr  
 
 }.e{)D(Z 10 =  Hence, .D~DInn 1010 −  
 
 In general, }R,I{)D(Z 2nn2 /=  if n  is even, and }e{)D(Z n2 =  if n  is odd. 
 Thus, if n  is even, n2DInn  is a non-cyclic group of order .n  
 If n  is odd, .D~DInn n2n2 −  
 
E51) No, e.g., }.I{Inn =Z  
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                       PERMUTATION GROUPS  
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9.6 Summary           277 
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9.1 INTRODUCTION 
 
In this unit, we will discuss, in detail, a group that you studied briefly in 
Sec.1.5, Unit 1, and Sec.2.4.2, Unit 2. This is the symmetric group. As you 
have often seen in previous units, the symmetric group ,Sn  as well as its 
subgroups, have provided us with many examples. As you know, the 
symmetric groups and their subgroups are permutation groups. Historically, it 
was the study of permutation groups and groups of transformations that gave 
the foundation to group theory. A lot of work in the study of permutations was 
undertaken by several European mathematicians in the 18th century. 
However, the basis of this theory, and the notation that you will study, are 
mainly due to the French mathematician, Augustin-Louis Cauchy, whose 
partial theorem you also studied in Unit 7. 
 
In Sec.9.2, we will help you recapitulate what you have studied about 
permutations and permutation groups in Units 1 and 2.   
 
In Sec.9.3, we shall look at several properties of elements of .Sn  In particular, 
you will see why every element of nS  is a cycle or a product of disjoint cycles. 
Then you will study why 2-cycles generate ,Sn  for .2n ≥   
 
In Sec.9.4, the focus will be on certain permutations, called even 
permutations. You will see why the set of even permutations in nS  is a normal 
subgroup of ,Sn  called the alternating group. This group has several 
interesting properties, which you will also study.  

Fig.1: Cauchy 
           (1789-1857) 
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Finally, in Sec.9.5, you will study a result by the famous mathematician, 
Cayley, which says that every group is isomorphic to a permutation group. 
Thus, every isomorphism class of groups can be represented by a permutation 
group. This result is what makes permutation groups so important.  
 
Please study this unit carefully, because it gives you a solid basis for studying 
and understanding the theory of groups. We also suggest that you go through 
Sec.1.5 and Sec.2.4.2 again, before beginning work on this unit. 
 
Objectives 
After studying this unit, you should be able to:  

• express any permutation in nS  as a product of disjoint cycles, and as a 
product of transpositions; 

• find out whether an element of nS  is odd or even; 

• prove that the alternating group of degree ,A,n n  is normal in nS  and is 

of order ;
2
!n

 

• prove, and apply, the result that nA  is simple ;5n ≥∀  

• state, and prove, Cayley’s theorem. 
 

9.2 PRELIMINARIES 
 
From Sec.1.5 (Unit 1) and Sec.2.4.2 (Unit 2), you know that a permutation on 
a non-empty set X  is a bijective function from X  onto .X  We denote the set 
of all permutations on X  by ).X(S  
 
Let us now gather some facts that you studied in Sec.2.4.2. 
Suppose X  is a finite set having n  elements.  For simplicity, we symbolise  
these elements by .n,,2,1 K  Then, you know that the set of all permutations 
on these n  symbols is denoted by .Sn  
You also know that we represent any nSf ∈  in a 2-line form as  

.
)n(f)2(f)1(f

n21
f ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

K

K
    …(1) 

How many elements do you think nS  has? To count them, look at f  as in (1) 
above. Now, there are n  possibilities for ),1(f  namely, .n,,2,1 K  Once )1(f  
has been specified, there are )1n( −  possibilities for ),2(f  namely, 

)},1(f{\}n,,2,1{ K  since f  is 1-1 and onto. Thus, there are )1n(n −  choices 
for )1(f  and ).2(f  Continuing in this manner, you can see that there are !n  
different possibilities for .Sf n∈  Therefore, nS  has !n  elements. 
 
Now, let us look at the algebraic structure of ),X(S  for any set .X  From the 
course Calculus, you know that the composition of bijections from X  to X  is 
a bijection from X  to .X  Hence, if ),X(Sg,f ∈  then ).X(Sgf ∈o  So, 
composition is a binary operation on ).X(S  To help you regain practice in 
computing the composition of permutations, consider an example. 
 
Example 1: Find ,gf o  where )3421(f =  and )241(g =  in .S4  
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Solution: From Unit 2, you know that ,
3142
4321

)3421(f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==  and 

.
2314
4321

)241(g ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==  

Then, to get ,gf o  we first apply g  and then apply .f  
,3)4(f))1(g(f)1(gf ===∴ o  

,2)1(f))2(g(f)2(gf ===o  
,1)3(f))3(g(f)3(gf ===o  

.4)2(f))4(g(f)4(gf ===o  

.
4123
4321

gf ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∴ o  

We show this process diagrammatically in Fig. 2. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 2: 2)4(13)42(1 o  in .4S  

*** 
 

Now, let us go back to ),X(S  for any set .X  You have studied the proof of the 
following result in Sec.2.4.2. 
 
Theorem 1: Let X  be a non-empty set. Then )),X(S( o  is a group, called the 
permutation group on .X  
 
Thus, nS  is a group of order !n . Recall, from Unit 2, that nS  is called the 
symmetric group of degree .n   
Now, from Unit 2, you also know that if ,Sf n∈  then  

.
n21

)n(f)2(f)1(f
f 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

K

K
 

 
With the recap above, and the experience that you have gained in previous 
units, you should now solve the following exercises. 
 
 

E1) Show that ),S( n o  is a non-commutative group for .3n ≥  
 
E2) Show that nm SS ≤  if .nm ≤  
 
E3) Let G  be a group and let .Gg∈  Show that gx)x(f:GG:f =→  is in 

).G(S  f(  is called the left regular representation by g  of .)G   
 

gf o

1 

g f 
1 

2 
2 

1 

3 
3 3 

2 

4 
4 

4 
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At this point we would like to make a remark about the terminology and 
notation. 
 
Remark 1: In line with Remark 5 of Unit 2, from now on we will refer to the 
composition of permutations as multiplication of permutations. We will also 
drop the composition sign. Thus, we will write gf o  as ,fg  unless we want to 
stress the operation involved. 
 
The two-line notation that we have used for a permutation of a finite set is 
rather cumbersome. Let us see if there is a shorter notation. In case the 
permutation is a cycle, you know that we can denote it in one line only, as in 
Example 1. 
 
Let us first recall how a cycle is written in one line from a 2-line format. 

Consider the permutation ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2413
4321

f  in .S4  Choose any one of the 

symbols, say 1. 
Now, we write down a left hand bracket followed by 1: 1(  

            Since f  maps 1 to 3 , we write 3  after 1: 31(  

          Since f  maps 3  to 4 , we write 4  after 3 :      431(                             

                  Since f  maps 4  to 2 , we write 2  after 4 : 2431(  

Since f  maps 2  to 1 (the symbol we started with), we  
                 close the brackets after the symbol :2  )2431(  

Now, since no more symbols are left in ,f  we write ).2431(f =   
 
This means that a cycle maps each symbol to the symbol on its right, except 
for the final symbol in the brackets, which is mapped to the first symbol. 
 
If we had chosen 3  as our starting symbol, we would have got ).1243(f =  
Note that this cycle is exactly the same as ),2431(  because both cycles 
show the same value for .4,3,2,1i),i(f =  Hence, they both denote the 
permutation which we have represented diagrammatically in Fig.3. This is an 
example of a 4-cycle, or a cycle of length .4  Fig.3 may give you some 
indication about why we call this function a cycle.  
 

Now consider .
1342
4321

g ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  You should check that ).421(g =  But what 

happened to ?3  Since ,3)3(g =  i.e., g  fixes ,3  we don’t include it in the cycle 
representation of .g    
 
More generally, we have the following definition. 
 
Definition: A permutation nSf ∈  is called an r-cycle (or cycle of length r), 
for ,nr ≤  if there are r  distinct integers r21 x,,x,x K  lying between 1 and n  
such that ,x)x(f,1r,,1ix)x(f 1r1ii =−=∀= + K  and 

}.x,,x,x{\}n,,2,1{kk)k(f r21 KK∈∀=  
Then, we write .)xx(xf r21 K=  
 
In particular, a 2-cycle is called a transposition.   

2 4 

3 1 

Fig. 3: 2).43(1  

If ,s)s(f =  then we 
say f  fixes .s   
If ,s)s(f ≠  we say that 
f  moves .s  
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For example, the permutation 3S)32(f ∈=  is a transposition. Here 
3)2(f,1)1(f ==  and .2)3(f =  

Note that, if we have ,S)32(f 7∈=  then ,2)3(f,3)2(f ==  and k)k(f =  for 
.7,6,5,4,1k =  

 
In the next section you will see that transpositions play a very important role in 
the theory of permutations. 
 
Consider the following important observation about   -cycles. 
 
Remark 2: Consider any  -cycle, say ),3(  in .S4  )3(  maps 3  to itself, and 

maps 2,1  and 4  to 2,1  and ,4  respectively. Thus, ,I
4321
4321

)3( =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

the identity permutation. Thus, any 1-cycle (i) in nS  is the identity 

permutation ,
n21
n21

I ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

K

K
 since it maps i  to i  and the other )1n( −  

symbols to themselves. 
 
You are already familiar with cycles in .S3  You know that there are two          
3-cycles, )321(  and ).231(  There are also three transpositions in ,S3  
namely, )31(),21(  and ).32(  You have worked with these cycles in several 
examples and exercises of previous units. Now you can work with other cycles 
while solving the following exercises. 
 
 
E4) Write down 2 distinct transpositions, 2 distinct 3-cycles and 2 distinct    

7-cycles in .S7  Justify your choices. 
 

E5) Write ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
41325
54321

 as a cycle. 

 
E6) i) Show that )123()321(),21()21( 11 == −−  and 

),2568()8652( 1 =−  in .S8  

 ii) If ,rn,S)iii(f nr21 ≥∈= K  then show that ).iiii(f 121rr
1 K−
− =  

 
E7) Give two distinct elements of ],G,G[  where .SG 4=  
 
 
Now that we have done a quick review of the basic concepts regarding 
permutations, let us discuss important properties of elements of .Sn  
 

9.3 PROPERTIES OF PERMUTATIONS 
 
From what you have studied in the previous section, you may think that we 
can express any permutation as a cycle. However, consider the following 
example from .S5    

Let .
21453
54321

g ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

1

1
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Let us start with the symbol ,1  and apply the procedure for obtaining a cycle to 

.g  We obtain )431(  after three steps, because g  maps 4  to ,1  and hence, 
we close the brackets, even though we have not yet written down all the 
symbols in .g  So, are the leftover symbols, 2  and ,5  fixed by ?g  No. We see 
that 2)2(g ≠  and .5)5(g ≠  
 
So, as the next step, we simply choose any symbol that has not appeared so 
far, say ,2  and start the process of writing a cycle again. Thus, we obtain 
another cycle ).52(  Now, all the symbols in }5,4,3,2,1{  are exhausted. So, 
what is g  in terms of the cycles we have got? Let’s see. 
 
If we write )52()431(  in the two-line format, what do we get? 

,
25143
52431

24351
54321

51423
54321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
o                                  

which is the same as .g  
).52)(431(g =∴  

We call this expression for ,g  as a product of two cycles that move different 
symbols, the cycle decomposition of .g  In Fig.4 we represent this by a 
diagram which shows the decomposition clearly. 
 
 
 
 
 
 
 

 
 
 
 

Fig. 4: 5)(24)3(1g = . 
 
Notice that the symbols in the two cycles that make up g  form disjoint sets, 

}4,3,1{  and }.5,2{  Further, because of the arbitrary choice of the symbol at 
the beginning of each cycle, there are many ways of expressing .g  For 
example,  

).143)(25()431)(52()52)(314(g ===  
However, within each cycle, the same order has to be maintained. For 
instance, we cannot replace )314(  by ),134(  as )52)(134(h =  is a 
different function from .g  Why? Note that ,3)1(g =  but .4)1(h =  
 
So, we can write the product of the separate cycles with disjoint symbols in 
any order. The choice of the starting element within each cycle is arbitrary, 
ensuring that each cycle represents the same function.  
 
So, you see that in this case g  can’t be written as a cycle, but as a product of 
cycles of the kind we now define. 
 
Definition: Two cycles are called disjoint if they have no symbol in common.   
 
Thus, disjoint cycles of length 2  or more move disjoint sets of symbols. 
So, for example, the cycles )21(  and )43(  in 4S  are disjoint. But )21(  and 

)41(  are not disjoint, since they both move .1  

3  

1 4

2  5  
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Now let us consider one more example.   
 

Example 2: Write 5S
45231
54321

h ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  as a cycle, or a product of 

disjoint cycles. 
 
Solution: As we did for g  above, we start with the symbol .1  However, 1 is 
fixed by .h  So, we ignore ,1  and move to .2  We get the cycle ).32(   
Now consider ,4  and we get the cycle ).54(  Now all the symbols in h  have 
been exhausted.  
So ).54)(32(h =  
Note that, by convention, we don’t include the  -cycle in the expression for ,h  
unless we wish to emphasise it, since it is just the identity permutation.  
Thus, we simply write ),54)(32(h =  or ),32)(54(h =  ignoring ).1(  

*** 
 
Let us now generalise what we have noted above about the disjoint cycles. 
 
Theorem 2: If 1σ  and n2 S∈σ  are disjoint cycles, then .1221 σσ=σσ  
 
Proof: Let )aaa( r211 K=σ  and ),bbb( s212 K=σ  with nsr ≤+  and 

.}b,,b{}a,,a{ s1r1 «=∩ KK  

Let }c,,c,c,b,,b,a,,a{}n,,2,1{ k21s1r1 KKKK =  with ,0)sr(nk ≥+−=  and  

.k,,1i)c(c)c( i2ii1 K=∀σ==σ  

Now ),a()a( i1i21 σ=σσ  since .r,,1ia)a( ii2 K=∀=σ  

                      ,r,,1ia 1i K=∀= +  and putting .aa 11r =+  

Also .r,,1ia)a()a( 1i1i2i12 K=∀=σ=σσ ++   
 
Similarly, you can show that ,s,,1i)b()b( i12i21 K=∀σσ=σσ  taking .bb 11s =+  
 
Finally, ii1i21 c)c()c( =σ=σσ  and .k,,1ic)c( ii12 K=∀=σσ  
 
Thus, }.n,,1{x)x()x( 1221 K∈∀σσ=σσ  
Hence, .1221 σσ=σσ  
 
Theorem 2 is why we had noted earlier that ).431)(52()52)(431(g ==  
 
The process we have used earlier, to write g  (and h  in Example 2) as a 
product of disjoint cycles, can be used to write any permutation that moves a 
finite set of symbols in the same way. 
 
Theorem 3 (Cycle decomposition): Every permutation of a finite set is either 
a cycle or a product of disjoint cycles. 
 
Proof: Note that the identity permutation can be trivially seen as a   -cycle, or 
a product of   -cycles. 
Now, )},21(,I{S},I{S 21 ==  and you have also seen that every element of 

3S  is a cycle.  
So, let’s assume 4n ≥  and nS∈σ  is not a cycle. This means .I≠σ  

 1 
1 

1 
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Let }n,,2,1{x1 K∈  s.t. σ  moves ,x1  and let ).x(x 12 σ=  
Then take ),x()x(x),x())x(()x(x 1

3
341

2
123 σ=σ=σ=σσ=σ=  and so on. 

Since }n,,2,1{ K  is finite, by this process symbols will start repeating at some 
point, say )x()x( 1

j
1

i σ=σ  for some .ji <   

If ,ijr −=  then ).x(x 1
r

1 σ=   

Let m  be the least positive integer s.t. .x)x( 11
m =σ   

Then )xxx( m211 K=σ  is a cycle, and .m,,1i)x()x( i1i K=∀σ=σ   

Now take },x,,x,x{\}n,,2,1{y m211 KK∈  where σ  moves .y1  Such a 1y  
exists since σ  is not a cycle. 
Then, using the same process as above, we get  

),yyy( s212 K=σ  for some ,2s ≥  and where )y(y 1
1i

i
−σ=  for .s,,1i K=   

Are 1σ  and 2σ  disjoint? Suppose they are not. Then, for some i  and ,j  we 
get ,yx ji =  i.e., ),y()x( 1

1j
1

1i −− σ=σ  i.e., ,y)x( 11
ji =σ −  i.e., ,xy 1ji1 +−=  a 

contradiction to the way 1y  was chosen. 

So 1σ  and 2σ  are disjoint. 
 
We can continue the process by which we got 1σ  and 2σ  till all the symbols 
moved by σ  are exhausted. Note that for each }n,,2,1{i K∈  s.t. ,i)i( =σ  the      
 -cycle )i(  is .I  Hence, we do not include this in the decomposition.  
So, we finally get t21 σσσ=σ K  as a product of t  disjoint cycles of lengths 
greater than .1  
 
Because of Theorem 3, any permutation in ,Sn  written in the 2-line format, can 
be more conveniently expressed as a cycle decomposition. Do you agree? 
Also, because of Theorem 2, the order in which the cycles in a decomposition 
are written doesn’t matter. 
 
If you have understood the discussion so far, you will be able to solve the 
following exercises.     
 
 
E8) Express each of the following permutations as products of disjoint 

cycles. 

 i) ,
31245
54321
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 ii) ,
56312748
87654321
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 iii) .
21354
54321
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
E9) Write 84 S)13)(4256(,S)32)(41( ∈∈  and 8S)75)(64)(213( ∈  in the 

two-line format. 
 
E10) Do the cycles )31(  and )451(  in 6S  commute? Give reasons for your 

answer. 

1 
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E11) If f  is an r-cycle, then show that r)f(o = , i.e., If r =  and If s ≠ , if .rs <  
 (Hint: If ),iii(f r21 K=  then .)i)i(f,,i)i(f,i)i(f r1

1r
31

2
21 === −K  

 
 
From E11, you know what the order of a cycle is. So, using this, and the cycle 
decomposition of an element of ,Sn  can we obtain the order of an element of 

nS  easily? Consider an example.  
 
Example 3: Find ),g(o  where )52)(431(g =  in .S5  
 
Solution: Let )431(1 =σ  and ).52(2 =σ  
Then ,3))431((o)(o 1 ==σ  and .2))52((o)(o 2 ==σ  
Now, as seen in Theorem 2, .1221 σσ=σσ   
So ,I)(g 2

1
2
2

2
1

2
21

2 ≠σ=σσ=σσ=  since 3)(o 1 =σ  and .2)(o 2 =σ   
Also, 22

3
1

2
1

3 gg σ=σσ=σ=  since .3)(o 1 =σ  
             ,I≠  since .2)(o 2 =σ  
Similarly, you should verify that  

.I)()(g,Ig,Ig 32
2

23
1

6
2

6
1

654 =σσ=σσ=≠≠  
Thus, ))(o),(o(m.c.l6)g(o 21 σσ==  
     m.c.l=  of the lengths of 1σ  and .2σ  

*** 
 
What you have found for ,g  in the example above, is true in general. This is 
what the following theorem tells us, which was proved by the Italian 
mathematician, Paolo Ruffini. 
 
Theorem 4: Let ,Sn∈σ  for .3n ≥  Let ,r21 σσσ=σ K  as a product of disjoint 
cycles. Then )(o σ  is the least common multiple of the lengths of 

.,,, r21 σσσ K  
 
Proof: In E11 you have proved that the order of a cycle of length p  is .p   
Now, consider ,21σσ=σ  where 1σ  and 2σ  are disjoint cycles of lengths r  
and ,s  respectively. Thus, r)(o 1 =σ  and .s)(o 2 =σ  Let t)(o =σ  and 

.m)s,r(m.c.l =   
As mr  and .I,ms m

2
m
1 σ==σ  

,m
2

m
1

m σσ=σ∴  since .1221 σσ=σσ  
      .I=       
Since ),(ot σ=  we see that .mt     …(2) 

Also ,I t
2

t
1

t σσ=σ=  so that .)( t1
2

t
2

t
1

−− σ=σ=σ   
Since 1σ  and 2σ  are disjoint, so are 1σ  and ,1

2
−σ  and hence, t

1σ  and t
2
−σ  are 

disjoint. Thus, they can only be equal if .I t
2

t
1

−σ==σ  
So, .ts,tr   

Thus, .tm       …(3) 
From (2) and (3), we conclude that .tm =  
 
Let us now apply the strong principle of induction on the number of disjoint 
cycles in the product.  

Fig.5: Paolo Ruffini 
           (1765-1822)  
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If σ  is a cycle, or a product of 2  cycles, you have seen that the theorem is 
true.  
Assume that the theorem is true for all permutations written as a product of 

)1r( −  cycles.  
Now, let r21 σσσ=σ K  be a product of r  disjoint cycles. 
Then ,rρσ=σ  where .1r21 −σσσ=ρ K  
Hence, m.c.lm)(o ==ρ  of the lengths 1r21 ,,, −lKll  of ,,,, 1r21 −σσσ K  
respectively. 
Now, let rl  be the length of rσ  and let .t)(o =σ  
Then, as in the case for 2r =  above, you can show that 

).,,,(m.c.l),m(m.c.lt r21r lKlll ==  
Hence, the result is true for a product of r  disjoint cycles.  
Thus, by the principle of induction, it is true in general. 
 
Using Theorem 4, you can easily find the order of elements in .Sn  Let us 
consider an example. 
 

Example 4: Find the order of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=σ

10912436587
10987654321

 in .S10  

 
Solution: Note that ).64)(53)(8271(=σ  
Thus, ),(2)(,4)(, 321321 σ==σ=σσσσ=σ lll  where =σ)(l length ).(σ  
Hence, .4)2,2,4(m.c.l)(o ==σ  

*** 
 
You can see how the cycle decomposition eases the process of finding the 
order of an element of .Sn  Of course, this representation is also an elegant 
representation of a permutation in !Sn  
 
Now consider an important property of a cycle, or a product of disjoint cycles. 
 
Example 5: From Unit 6, you know that nS, ∈βα  are conjugates if nS∈σ∃  
s.t. .1−σβσ=α  For ,Sn∈σ  show that  

i) if )xxx( r21 K=β  in ,Sn  then )).x()x()x(( r21
1 σσσ=σβσ− K   

ii) if s21 σσσ=ρ K  as a product of disjoint cycles in ,Sn  then  

,s21
1 ααα=σρσ− K  a product of disjoint cycles in nS  with 

.s,,1i)(length)(length ii K=∀σ=α  
 

Solution: i) Note that ,r,,1i)x()x())x(( 1iii
1 K=∀σ=σβ=σσβσ +
−  taking 

.xx 11r =+  
 Also, let )}.x(,),x({\}n,,1{y r1 σσ∈ KK  
 Then )z(y σ=  for some ,r,,1ixz i K=∀≠  as σ  is a 1-to-1 map of 

}.n,,1{ K  
 So ),z())z(()y( 11 σ=σσβσ=σβσ −−  as .z)z( =β  
 )),x()x()x(( r21

1 σσσ=σβσ∴ − K  a cycle of length .r  
 

ii) Let ,s21 σσσ=ρ K  as a product of disjoint cycles. Then by Example 29, 
Unit 8, you know that conjugation by σ  is the inner automorphism .fσ  

Example 5(i) shows that 
the conjugate of an r-
cycle is an r-cycle. 
Example 5(ii) tells us 
that conjugation 
preserves the cycle 
structure of a 
permutation. 
 



 

 

265

Unit 9                                                                                                           Permutation Groups

 )())(( 1
s

1
2

1
1

1 −−−− σσσσσσσσσ=σρσ∴ K    …(4) 

 Also, by (i), 1
i

−σσσ  only moves what iσ  moves. 
 Hence, (4) is a representation of 1−σρσ  as a product of disjoint cycles in 

,Sn  with ).(length)(length i
1

i σ=σσσ −  

*** 
 
What is proved in Example 5 is very useful, and will be used several times in 
this unit. 
 
Try solving some related exercises now. 
 
 

E12) Find ),(o σ  where .S
81102974653

10987654321
10∈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=σ  

 
E13) Give an example of cycles 1σ  and ,Sn2 ∈σ  where 

)).(),((m.c.l)(o 2121 σσ≠σσ ll  Does Theorem 4 fail here? Why, or why 
not? 

 
E14) If ,Sn∈σ  must we have ?n)(o ≤σ  Must ?n)(o σ  Give reasons for your 

answers. 
 
 
Now, let us discuss transpositions. Consider the cycle )351(  in .S5  You 
should verify that this is the same as the product ).51)(31(  You should also 
verify that ).35)(51()351( =  Note that the transpositions in either product are 
not disjoint. 
 
The same process can be used to show that any r-cycle 

,)i(i)i(i)i(i)ii(i 211r1r1r21 KK −=  a product of transpositions. 
Also ,)i(i)i)(ii(i)ii(i r1r3221r21 −= KK  again a product of transpositions. 
Note that, since the transpositions aren’t disjoint, they do not commute (see 
E16). Further, as you have seen above, the expression of a cycle as a 
product of transpositions is not unique. 
 
Before discussing the importance of transpositions, try solving the following 
exercises. 
 
 

E15) Express the following cycles in 5S  as products of transpositions: 
 i)   )431( , ii)   ),134(  iii)   ).3542(   
 
E16) Show that )ji)(kj()kj)(ji( ≠  in ,3n,Sn ≥  for any three distinct 

symbols .k,j,i  
 

 
Let us now use the cycle decomposition of a permutation to prove a result 
which shows why transpositions are so important in the theory of 
permutations. 
 
Theorem 5: Every permutation in ,2n,Sn ≥  can be written as a product of 
transpositions. 
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Proof: By Theorem 3, you know that every permutation is a product of one or 
more disjoint cycles. Also, you have just seen how every cycle is a product of 
transpositions. Hence, every permutation is a product of one or more 
transpositions. 
Note that ).21)(21(I =  Thus, I  is also a product of transpositions. 
 
Let us see how Theorem 5 works in practice, through an example. 
 

Example 6: Write ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=σ

7521463
7654321

 as a product of transpositions.  

 
Solution: ),562)(431(=σ  as a product of disjoint cycles 
                  ).62)(52)(31)(41(=  

*** 
 
Consider the following important comment here. 
 
Remark 3: Note that if t21 τττ=σ K  as a product of transpositions, you 
cannot conclude that .2)(o =σ  Theorem 4 cannot be applied here. It holds 
only for a disjoint cycle decomposition, and here the iτ  are not disjoint. 
 
Now, in Theorem 5 you have seen that the set of transpositions in nS  
generates .nS  In fact, there is a smaller set that generates .Sn  Recall, from 
Unit 4, that a set S  generates a group G  if every element of G  is of the form 

Ss,sss i
r
n

r
2

r
1

n21 ∈K  and .ri Z∈  
 
Theorem 6: )}n1(,),31(),21{( K  generates .Sn  
 
Proof: From Theorem 5, you know that any nS∈σ  is a product of 
transpositions. Now take any transposition .S)ji( n∈  Then 

).i1)(j1)(i1()ji( =  
Hence, any nS∈σ  is a product of transpositions of the form ),r1(  for some 

}.n,,1{r K∈  
Thus, )}n1(,),31(),21{( K  generates .Sn  
 
In fact, an even smaller set than the one given in Theorem 6 generates 

,3n,Sn ≥  namely, )}.n21(),21{( K  However, we will not prove this here. 
 
Now you can try your hand at solving some exercises.    
 
 
E17) Write the permutation in E8(ii) as a product of transpositions. 
 
E18) Write 8S)862)(75)(431( ∈  as a product of transpositions of the form 

),i1(  for some }.8,,1{i K∈  
 
E19) Show that ).21()91)(101()109()32)(21( KK =  
 
E20) Is the set of all transpositions in nS  a subgroup of ?Sn  Why, or why not? 
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The decomposition given in Theorem 5 leads us to focus on a certain 
important subgroup of nS  that we will now discuss. 
 

9.4 ALTERNATING GROUPS 
 
You have seen that any permutation in nS  can be written as a product of 
transpositions. You have also seen that the factors in the product are not 
uniquely determined. Not only this, even the number of factors in the product 
can vary. For example, in 4S  we have ).23)(41)(32)(43)(21()41)(43)(21( =  
Here the LHS has 3  transpositions, and the RHS has 5  transpositions. Can 
the RHS have ,4  or ,6  transpositions? Try to find any such representation. 
 
Actually, all representations as a product of transpositions have one thing in 
common – if a permutation is the product of an odd number of transpositions 
in one such representation, then it will be a product of an odd number of 
transpositions in any such representation. Similarly, if nSf∈  is a product of an 
even number of transpositions in one representation, then f  will be a product 
of an even number of transpositions in any such representation. To see this 
fact, we first need to define a concept new to you. 
 
Definition: The signature of )2n(Sn ≥∈f  is defined to be  

.
ij

)i(f)j(fn

ji
1j,i

∏
<
= −

−
=fsign  

For example, for ,S)321(f 3∈=  

23
)2(f)3(f

13
)1(f)3(f

12
)1(f)2(ffsign

−
−

⋅
−
−

⋅
−
−

=  

  .1
1

31
2

21
1

23
=⎟

⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

=  

Similarly, if 3S)21(f ∈= , then we still need to include the factors involving 
)3(f  for obtaining the signature of .f   

So, 
23

)2(f)3(f
13

)1(f)3(f
12

)1(f)2(ffsign
−
−

⋅
−
−

⋅
−
−

=  (Note that 3)3(f =  here.)

        .1
1

13
2

23
1

21
−=⎟

⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

=  

 
Try some simple exercises now to get used to the signature of a permutation.  
 
 
E21) What is the signature of ?SI n∈  
 

E22) Find the signature of .S
51234
54321

5∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=σ  

 
 
From the examples you have seen so far, you may have concluded that the 
signature is a function from nS  to .Z  You will see that it is, in fact, a 
homomorphism from nS  to ).},1,1({ ⋅−  Let us first show that sign preserves 
the operation. 

∏ ααα=α
=

n

1i
n21i K  
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Theorem 7: ∗→QnS:sign  is a well-defined homomorphism, where .2n ≥  
 
Proof: By definition, if nSg,f ∈  s.t. ,gf =  then .n,,1i)i(g)i(f K=∀=  

gsignfsign =∴  in .∗Q   
Thus, sign is well-defined.  

Next, ∏
<
= −

−
=

n

ji
1j,i ij

))i(g(f))j(g(f)gf(sign o  

                   .
1j

)i(g)j(g
)i(g)j(g

))i(g(f))j(g(f

ji
j,i

ji
j,i

∏∏
<<

−
−

⋅
−
−

=   …(5) 

Now, as i  and j  take all possible pairs of distinct values from 1 to ,n  so do 
)i(g  and ),j(g  since g  is a bijection. So f  can be thought of as a permutation 

of )}.n(g,),1(g{ K  

.fsign
)i(g)j(g

))i(g(f))j(g(f
ji

=
−
−

∴∏
<

 

∴ (5) tells us that ).gsign)(fsign()gf(sign =o  
 
By Theorem 7, we know that, for instance,  

))43)(32)(21((sign)4321(sign =  ).43(sign)32(sign)21(sign ⋅⋅=   
You may think that this way of finding )4321(sign  seems to be much longer 
than finding it directly. However, the following theorem, with Theorem 7, gives 
us properties of the signature function that shorten the process. Of course, let 
us not forget the crucial role of Theorem 5 in all this! 
 
Theorem 8: Consider .2n,S:sign n ≥→ ∗Q    

i)  If nSt∈  is a transposition, then .1tsign −=  

ii) }.1,1{)sign(Im −=  
 
Proof: i) Let ),qp(t =  where .nqp1 ≤<≤  [To help you understand what is 

going on, you may like to work with ,S)21( n∈  as you go through the 
proof.] 

 Now, only one factor of tsign  involves both p  and ,q  namely, 

 .1
pq
qp

pq
)p(t)q(t

−=
−
−

=
−
−

    …(6) 

 Every factor of tsign  that doesn’t contain p or q  equals ,1  since 

,1
ji
ji

ji
)j(t)i(t

=
−
−

=
−
−

 if .q,pj,i ≠    …(7) 

 The remaining factors contain either p  or q  but not both. These can be 
paired together to form one of the following products. 

 

 ,1
qi
pi

pi
qi

qi
)q(t)i(t

pi
)p(t)i(t

=
−
−

−
−

=
−
−

−
−

 if ,qi >  

 ,1
iq
ip

pi
qi

iq
)i(t)q(t

pi
)p(t)i(t

=
−
−

−
−

=
−
−

−
−

 if ,piq >>   …(8) 

 ,1
iq
ip

ip
iq

iq
)i(t)q(t

ip
)i(t)p(t

=
−
−

−
−

=
−
−

−
−

 if .pi <  
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 Thus, taking the values of all the factors of ,tsign  from (6), (7) and (8) 

you can see that .1tsign −=   
 
ii) Let nSf ∈ .  By Theorem 5, you know that r21 tttf K=  for some 

transpositions r1 t,,t K  in .Sn  
 )ttt(signfsign r21 K=∴  
      ),tsign()tsign()tsign( r21 K=  by Theorem 7. 
      ,)1( r−=  by (i) above. 
 1fsign =∴  or ,1−  depending on whether r  is even or odd. 
 Hence, }.1,1{)sign(Im −⊆  
 You also know that ,1tsign −=  for any transposition ,t  and .1Isign =  
 ).sign(Im}1,1{ ⊆−∴  
 }.1,1{)sign(Im −=∴  
 
So Theorems 7 and 8 tell us that 1}{1,S:sign n −→  is an epimorphism, 

.2n ≥  
 
Now, we are in a position to prove what we said at the beginning of this 
section. 
 
Theorem 9: Let nSf ∈  and let s21r21 ttttttf ′′′== KK  be two factorisations 
of f  into a product of transpositions.  Then either both r  and s  are even 
integers, or both are odd integers. 
 
Proof: Let us apply the function }1,1{S:sign n −→  to .tttf r21 K=  
By Theorem 8, you know that  

.)1()tsign()tsign()tsign(fsign r
r21 −== K    …(9) 

Also .tttf s21 ′′′= K       

So .)1(fsign s−=      …(10) 
From (9) and (10) we get .)1()1( sr −=−  
This can only happen if both s  and r  are even, or both are odd. 
Thus, the number of factors occurring in any factorisation of f  into 
transpositions is always even, or always odd.   
 
The theorem above leads us to the following definition. 
 
Definition: A permutation nSf ∈  is called even if it can be written as a 
product of an even number of transpositions. f  is called odd if it can be 
decomposed as a product of an odd number of transpositions. 
 
For example, 3S)21( ∈  is an odd permutation. In fact, any transposition is an 
odd permutation.  On the other hand, any 3-cycle is an even permutation, 
since ).ji)(ki()kji( =  So .1)1)(1()kji(sign =−−=  
 
Consider the following remark in this context. 
 
Remark 4: What Theorems 8 and 9 tell us is that nSf ∈  is odd iff 

).1(fsign −=  Thus, nSf ∈  is even iff .1fsign =  
 
Now, here’s your chance to work with some odd and even permutations. 
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E23) Which of the permutations in E15 and E18 are odd? 
 
E24) If nSg,f ∈  are odd, then is gf o  odd too? Why? 
 
E25) Is the identity permutation odd or even? Why? 
  
 
Now we will consider an important subset of ,Sn  namely, fSf{ n∈=nA  is 
even}. 
You will see that nA    .Sn  
 
Theorem 10: The set ,An  of even permutations in ,Sn  forms a normal 

subgroup of nS  of order .
2
!n

 

 
Proof: You have already seen that the signature function,  

}1,1{S:sign n −→  is an epimorphism. 
Now }1fsignSf{)sign(Ker n =∈=  

           fSf{ n∈=  is even} 

           .An=  
Thus, nA    .Sn  

Further, by the Fundamental Theorem of Homomorphism,  
}.1,1{~)AS( nn −  

,2)AS(o nn =∴  that is, .2
)A(o
)S(o

n

n =  

.
2
!n

2
)S(o)A(o n

n ==∴  

 
Theorem 10 leads us to make the following important comments. 
 
Remark 5: Note that Theorem 10 tells us that  

i) the number of even permutations in nS  equals the number of odd 
permutations in ,nS  and  

ii) nA  has only 2  cosets in nn A,S  and ,Anσ  where σ  is any odd 
permutation in .Sn  Thus, .A)21(AS nnn ∪=   

 
Theorem 10 leads us to the following definition. 
 
Definition: ,nA  the group of even permutations in ,Sn  is called the 
alternating group of degree .n  

Let us consider what 3A  looks like. Theorem 10 says that .3
2
!3)A(o 3 ==  

Since .A)321(),21)(31()321( 3∈=  Similarly, .A)231( 3∈  Of course, 
.AI 3∈  Also .A)21( 3∉  Similarly, )32(  and )31(  are not in .A3  

)}.231(),321(,I{A3 =∴  
You have already been working with this subgroup of 3S  in several examples 
of the earlier units. 
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Do the following exercises now. 
 
 
E26) Prove that an r-cycle is odd if r is even, and even if r is odd.  
 
E27) Write down all the elements of .A4  Is 4A  abelian? Why? 
 
E28) Give the two elements of .AS 55  
 
E29) Check whether or not all the odd permutations in nS  form a subgroup of 

.3n,Sn ≥  
 

 
Now, for a moment, let us go back to Unit 5 and Lagrange’s theorem. This 
theorem says that the order of the subgroup of a finite group divides the order 
of the group. However, we did not give you an example there to show you why 
the converse is not true. Now that you know what 4A  looks like, we are in a 
position to disprove the converse. 
 
Example 7: Show that ),A(o6 4  but 4A  has no subgroup of order .6   
 
Solution: Suppose, to the contrary, 4A  has a subgroup H  of order .6  Then 

.12)A(o,6)H(o 4 ==   .2H:A4 =∴  H∴    4A  (see Theorem 2, Unit 6).  

Thus, HA4  is a quotient group of order 2, and hence, is cyclic. Let 
.HgHA4 ><=   

Then .AgH)Hg( 4
2 ∈∀=  (Remember H  is the identity of .)HA4  

.AgHg 4
2 ∈∀∈∴  

As ,A)321( 4∈ .H)231()321( 2 ∈=  
Similarly, .H)321()231( 2 ∈=   
By the same reasoning all the 3-cycles in nA  are in .H   
Thus, )342(),432(),431(),341(),421(),241(  are also distinct elements 
of .H   Of course, .HI∈  
Thus, H  contains at least 9 elements. 

.9)H(o ≥∴  This contradicts our assumption that .6)H(o =  
Therefore, 4A  has no subgroup of order 6. 

*** 
 
We will use 4A  to provide another counterexample too. (See how useful 4A  
is!) In Unit 6 you studied that if H    N  and N    ,G  then H  need not be 
normal in .G  Well, here’s an example as an exercise for you (se E30). 
 
 

E30) Consider the subset )}42)(31(),32)(41(),43)(21(,I{V4 =  of .A4  
Show that 4V    .A4  Also show that )}43)(21(,I{H =  is a normal 
subgroup of ,V4  but H    .A4  (Hence, H    44 V,V    4A  but H    .A4 ) 

 
E31) How many elements does 5A  have of order  
 i)   2?  ii)   3? iii)   5?   iv)   15? 
 Give reasons for your answers. 
 

The converse of Lagrange’s 
Theorem for finite groups is 
not true. 

‘     ’ is not a transitive 
relation. 
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Now, let us find a generating set for .An  You have already seen that 

}ni2)i1({S ≤≤=  generates .Sn  Since no transposition lies in 

.AS,A nn «=∩  So, what could a generating set for nA  be, apart from the set 

nA  itself (of course!)?  
 
Theorem 11: The set of 3-cycles in nS  generates .3n,An ≥  
 
Proof: Let S  be the set of all 3-cycles in .Sn  Since any 3-cycle is an even 
permutation, .AS n⊆><  
Now, in Theorem 6, you have seen that }ni1)i1({ ≤<  generates .Sn   

So, let .An∈σ  Then .Sn∈σ   
So ),i1()i1)(i1( r21 K=σ  where the si j  are not necessarily distinct.  

However, m2r =  for some ,m N∈  since .An∈σ   
Also, if ,ii 1jj +=  then .I)i1)(i1( 1jj =+   

So let us assume .1r,,1jii 1jj −=∀≠ + K  

Now, ).ii1()i1)(i1( 1221 =  
Similarly, ).ii1()i1)(i1( 3443 =  
In this way, taking pairs of adjacent transpositions, we get σ  as the product of 
m 3-cycles of the form .ji,n,,2j,i),ji1( ≠= K  
Thus, .S ><∈σ   

.SAn ><=∴  
 
Let us consider an application of Theorem 11. 
 
Example 8: Let H    ,3n,An ≥  and let .H)321( ∈  Show that .H)231( ∈  
Further, show that H)i31)(321)(3i1( ∈  for }.3,1{\}n,,2,1{i K∈  
 
Solution: Since 1)321()231( −=  and .H)231(,AH n ∈≤  
Next, nA)3i1( ∈  and H    .An  Hence, 

.H)i31)(321)(3i1()3i1)(321)(3i1( 1 ∈=−  

*** 
 
Now try solving an exercise which we shall require for proving a very important 
corollary of Theorem 11. 
 
 
E32) Let H    ,3n,An ≥  and let .H)321( ∈  Calculate the following:  

 i) ),i31)(321)(3i1(  

 ii) ),1ij)(2i1)(i1j(  

 iii) ),2k1)(i2j)(k21(  

 where }n,,2,1{k,j,i K∈  are distinct, and are such that all the 3-cycles 
in the products above are defined. 

 Show that all the elements you have just calculated lie in .H  Hence 
show that .AH n=  

 
 



 

 

273

Unit 9                                                                                                           Permutation Groups
Now let us use E32 to prove a corollary of Theorem 11. 
 
Corollary 1: Let H    .3n,An ≥  If H  contains a 3-cycle, then .AH n=  
 
Proof: From Example 5, you know that every conjugate of a 3-cycle is a        
3-cycle, and that conjugation preserves the operation in .An  
Now, let ,H)kji( ∈  and let )tsr(  be any 3-cycle.  
As in E32, taking )ris(),kri( 21 =σ=σ  and ),itj(3 =σ  you should verify 

that ).tsr())(kji( 1
123123 =σσσσσσ −  

Hence, .H)tsr( ∈  
Thus, all the 3-cycles are in .H  Hence, by Theorem 11, .AH n=  
 
Consider the impact of the result above. It says that if any normal subgroup of 

nA  has one 3-cycle, then it must be all of .An  You will see how this is applied 
as we discuss the simplicity of .An  
 
For iA,3,2,1i =  is simple. Why? Well, ,)321(A};I{A};I{A 321 ><===  
which is of order ,3  and hence simple (see Unit 6). 
Also, in E30 you have seen that 4A  is not simple. What about ?A5  The 
following theorem answers this. This theorem was known to the young 
mathematician, Galois. However, the first formal proof was given by the 
French analyst and algebraist, Camille Jordan, in 1870. 
 
Theorem 12: nA  is simple for .5n ≥  
 
Proof: Let .5n ≥  Suppose nA  has a non-trivial normal subgroup .H   
Since .I,H},I{H ≠σ′∈σ′∃≠  Out of all such ,σ′  pick H∈σ  such that σ  
moves the least number of integers from 1 to ,n  say σ  moves k  integers. 
Firstly, ,1k ≠  since if σ  moves one element, it must move at least ,2  being a 
non-identity bijection.  
However, ,2k ≠  since ,An∈σ  and hence, σ  cannot be a transposition. 
If ,3k =  then σ  must be a 3-cycle. Then, by Corollary 1, .AH n=  
 
Next, let ,4k ≥  and suppose ρ=σ )xxx( r21 K  is a disjoint product, where 

.kr3 <≤  
Now, let ),xxx( 321=α  and .11 −− ασασ=β  

Since H    .H,A 1
n ∈ασα−  Hence, .H∈β   

Now, if ρ  moves an element, then it must move more than one element at 
least. 
Assume 1r11r xy)x( ++ ≠=ρ  and ,xy)x( 2r22r ++ ≠=ρ  where 212r1r y,y,x,x ++  
are not any of the .r,,1i,sxi K=  
Then ,y)x( 11r =σ +  and .y)x( 22r =σ +  
Now ),x()x()x( 1r

1
1r

11
1r +

−
+

−−
+ ασσ=ασασ=β  since α  fixes .x 1r+   

 ),y()y( 1
1

1
1 −− σ=ασ=  since α  fixes .y1  

 .x 1r+=  

Also .xx)x()x()x()x( 134
1

4
1

3
1

1 ≠=σ=ασ=ασσ=β −−−   
So .I≠β  

Fig.6: Camille Jordan 
           (1838-1922) 



 

 

274 

Block 2                                             Normal Subgroups and Group Homomorphisms
Further, for any t  fixed by }.x,,x,x{t, r21 K∉σ  So t  is also fixed by .β   
So ,H∈β  with β  moving one less element than σ  (since ).x)x( 1r1r ++ =β  This 
is a contradiction to the way we chose .σ  Hence, our assumption that σ  can 
be written as a disjoint product with one factor being a cycle of length 3≥  is 
not possible. 
 
So, now we are left with the possibility of 4k ≥  and σ  is a disjoint product of 
transpositions, say,  

,)xx)(xx( 4321 ρ=σ  
 where ρ  is a product of an even number of disjoint transpositions. 
Take )xxx( 321=γ  and .11 −− γσγσ=δ  Then, you should show why .H∈δ  
Further, you should check that 

).xx)(xx()xxx)(xxx()xxx())x()x()x(( 42131234121233
1

2
1

1
1 ==σσσ=δ −−−

So .H)xx)(xx( 4213 ∈  
Now, since 4321 x,x,x,xi, ≠∃≥ 5n  in }.n,,2,1{ K  

Let ).ixx( 31=μ  Then ).xxi( 13
1 =μ−  

Again, you should check that .H1 ∈δμδμ−  
Now )xx)(xx))(x()x())(x()x(( 42134

1
2

1
1

1
3

11 −−−−− μμμμ=δμδμ                     
                   )xx)(xx)(xx)(ix( 4213421=  

 )ixx()xx)(ix( 31311 ==  
 .μ=  

Thus, .H∈μ   
Hence, as in the case .AH,3k n==  
 
Hence, in all the cases if H    }I{H,An =  or .AH n=  
Thus, nA  is simple for .5n ≥  
 
Though the proof above may seem a bit involved, please study it carefully, 
doing each step yourself.  
 
Using Theorem 12, we can now show what the non-trivial normal subgroups of 

nS  look like. You have already seen that },I{S1 =  and that )}21(,I{S2 =  is 
simple. You also know that the only non-trivial normal subgroup of 3S  is .A3   
You have seen that 4S  has at least two normal subgroups, 4V  and .A4   
What about nS  for ?5n ≥  You know that nA   .nSn N∈∀  Are there any other 
normal subgroups, as in ?S4  Consider the following result. 
 
Theorem 13: nA  is the only non-trivial proper normal subgroup of .5nSn ≥∀  
 
Proof: Let H  be a non-trivial normal subgroup of .5n,Sn ≥   
Then .AAH nn∩   
Hence, by Theorem 12, }I{AH n =∩  or .AAH nn =∩   
If .SHA,AAH nnnn ⊆⊆=∩   
So )AH( n    ,)AS( nn  and .2)AS(o nn =   
Hence, }I{)AH( n =  or ).AS()AH( nnn =  
Thus, nAH =  or .SH n=  
 
If },I{AH n =∩  then H  has no even permutation, apart from .I   
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Hence, if σ≠σ∈σ ,I,H  is an odd permutation.  
Now, suppose H  has two distinct non-trivial elements ., 21 σσ  Then both are 
odd. So 21σσ  is even. Also ,H21 ∈σσ  since .SH n≤   
Hence, }.I{AH n21 =∩∈σσ  
Thus, .1

12
−σ=σ  Hence, ,H 1 >σ<=  where .2)(o 1 =σ  Say, ).ji(1 =σ  

Since }.j,i{\}n,,1{k,5n K∈∃≥  
Then, since H    ,H)ki)(ji)(ki(,S 1

n ∈−  i.e., ,H)kj( ∈  a contradiction, since 
}.,I{H 1σ=  Hence },I{AH n ≠∩  i.e., .AAH nn =∩  

 
Thus, the only proper normal subgroups of nS  are }I{  and .An  
  
In the proofs of both Theorems 12 and 13, we have left several steps for you 
to check. So please do every step yourself.  
 
Let us consider an example of how Theorems 12 and 13 are of help. 
 
Example 9: Find all possible group homomorphisms from 6S  to .7Z  
 
Solution: Let 76S:f Z→  be a homomorphism. 
Then fKer    .S6  Hence, },I{fKer =  or ,AfKer 6=  or .SfKer 6=  
If },I{fKer =  then .fIm~S 76 Z≤−  But ).(o7)S(o 76 Z=>  
Hence, we reach a contradiction. }.I{fKer ≠∴  
If ,AfKer 6=  then .fIm~AS 766 Z≤−  Here .2)AS(o)f(Imo 66 ==  But      
2   ).(o 7Z  Hence, we reach a contradiction. .AfKer 6≠∴  
 

Thus, the only possibility is ,SfKer 6=  i.e., ,S0)(f 6∈σ∀=σ  i.e., f  is the 
zero map. 

*** 
 
Try solving the following exercises now. 
 
 
E33) Let GA:f 7 →  be a group homomorphism. Show that 2520)G(o ≥  or 

.Axe)x(f 7∈∀=  
 
E34) What are the possible group homomorphisms from 5S  to ,U5  and why? 
 (Hint: Analyse the possibilities of ,fKer  for each such .)f  
 
 
And now let us see why permutation groups are so important in group theory. 
 

9.5 CAYLEY’S THEOREM 
 
In this course you have studied all kinds of groups – finite, infinite, abelian, 
non-abelian, cyclic, non-cyclic. You have studied subgroups of C  and ,∗C  
subgroups of ),(nm CM ×  those of ,U,S,D nnn2  and of so many other groups. 
You have also seen that there are infinitely many isomorphism classes of 
groups. Yet, it turns out, amazingly, that each of these isomorphism classes 
has a permutation group in it. This was noticed, and proved, by Arthur Cayley, 
the English mathematician by whose name we also call the group operation 
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tables that you have used again and again. Let us see what Cayley’s theorem 
precisely says.  
 
Theorem 14 (Cayley): Any group G  is isomorphic to a subgroup of the 
permutation group ).G(S  Thus, G  can be viewed as a permutation group. 
 
Proof: For ,Ga∈  we define the left regular representation   

.ax)x(f:GG:f aa =→  
In E3, you have shown that .Ga)G(Sfa ∈∀∈   
Now let us define a function .f)a(f:)G(SG:f a=→  
 
f  is well-defined: If ba =  in ,G  then .Gxbxax ∈∀=  So ba ff =  in ).G(S  
 
f  is a homomorphism: To prove this, we note that 

.Gb,a)x(fabx)bx(f)x()ff( ababa ∈∀===o  
.Gb,a)b(f)a(ffff)ab(f baab ∈∀===∴ oo  

 
f  is 1-1: To prove this, consider  

}IfGa{fKer Ga =∈=  

          }Gxx)x(fGa{ a ∈∀=∈=  

          }GxxaxGa{ ∈∀=∈=  
          },e{=  by left cancellation. 
Thus, by the Fundamental Theorem of Homomorphism, 

),G(SfIm~fKerG ≤−  
i.e., ),G(SfIm~G ≤−  since }).e{G(~G −  
i.e., G  is isomorphic to a subgroup of ).G(S  
 
The importance of Theorem 14 needs to be stressed. Consider the following 
comment in this regard. 
 
Remark 6: If we put Theorem 14 above, together with Theorem 9, Unit 8, what 
do you see? We find that there are as many non-isomorphic groups as the 
number of non-isomorphic permutation groups, i.e., infinite. Each isomorphism 
class is ],H[  where )X(SH ≤  for some .X  
 
Let us consider an example of representing a group using Cayley’s theorem. 
 
Example 10: Find a subgroup of 4S  to which the Klein 4-group 4K  is 
isomorphic. 
 
Solution: Consider the multiplication table for :K4  

 

eabcc
aecbb
bceaa
cbaee
cbae•

 

Now using the left representation function, let us see what fIm  (in Theorem  
14) gives us. Using this table, you can see that ,Ife =  since  

Recall that )G(S  is the group 
of all bijections from G  to .G  
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.Gxx)x(fe ∈∀=  
Next, looking at the second row of the table, we see that 

.b)c(f,c)b(f,e)a(f,a)e(f aaaa ====   
So ).cb)(ae(fa =  
Similarly, you should show that )ca)(be(fb =  and ).ba)(ce(fc =  

Hence, )}.ba)(ce(),ca)(be(),cb)(ae(,I{~K4   
Now, just replace the symbols c,b,a,e  by ,4,3,2,1  and you’ll get 4VfIm =  
(in E30), sitting in .S4  

.V~K 44∴  
*** 

 
The example above leads us to make the following observation. 
 
Remark 7: Note that a subgroup of )G(S  need not have all the algebraic 
properties of ).G(S  So, for example, if G  is abelian of order ,6  )G(S  would 
be non-abelian, but the subgroup of 6S)(G(S =  here) to which G  is isomorphic 
must be abelian. Thus, in Example 10, 4S  is non-abelian, but ,V~K 44 −  which 
is abelian. 
 
Try solving the following exercises now. 
 
 

E35) Obtain the subgroup of 4S  to which 4Z  is isomorphic.  Is ?A~ 44Z  
Why, or why not? 

 
E36) If G  is a finite group of order ,n  then show that G  is isomorphic to a 

subgroup of .Sn  
 
E37) For each of the following groups, find a subgroup of 8S  to which it is 

isomorphic: 

 i)   ,D8  ii)   ,8Z  iii)   ,U8  iv)   .Q8  
 

 
With this we wind up our discussion on permutation groups. We also close our 
discussion on group theory.  In the next block you will start studying ring 
theory.  Of course, you will keep using what you have learnt in the first two 
blocks, because every ring is a group also, as you will see.  
 
So, let us see what you have studied in this unit. 
 

9.6 SUMMARY 
 
In this unit, we have discussed the following points. 
 
1. A brief recap about permutations, in general, with the focus on the group 

),,S( n o  in particular. nS  is a finite  non-abelian group of order ,!n  for 
.3n ≥  

 
2. The definition, and some properties, of cycles and transpositions. 
 
3. Any non-identity permutation in nS  can be expressed as a disjoint 

product of cycles. 
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4. The set of all transpositions generates .2n,Sn ≥  Also, 

)}n,1(,),31(),21{( K  generates .2n,Sn ≥  
 

5. For ,2n ≥  the function ∏
<
= −

σ−σ
=σ−→

n

ji
1j,i

n )ij(
)i()j()(sign:}1,1{S:sign        

is an epimorphism. 
 
6. Odd and even permutations. 
 
7. ,An  the set of even permutations in ,Sn  is a normal subgroup of nS  of 

order ,
2
!n

 for .2n ≥  

 
8. nA  is generated by the set of 3-cycles in ,Sn  for .3n ≥  
 
9. nA  is simple for .5n ≥  
 
10. The only non-trivial proper normal subgroup of )5n(Sn ≥  is .An   
 
11. Cayley’s Theorem: Each group is isomorphic to some permutation 

group. 
 

9.7 SOLUTIONS / ANSWERS 
 
E1) In Unit 2, you have seen that ),S( n o  is a group .n N∈∀   

Since },I{S1 =  and ,2)S(o 2 =  these groups are abelian. Now let us look 
at .S3  

Since ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
231
321

123
321

132
321
o  and  

 ,
231
321

312
321

132
321

123
321

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≠⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
o  these two 

permutations don’t commute. 

 3S∴  is non-abelian. 
 Now, consider any .3n,Sn ≥  Since )321(  and )31(  are in ,Sn  the 

same argument above shows that nS  is non-abelian .3n ≥∀  
 
E2) See Example 17, Unit 8. 
 
E3) If yx =  in ,G  then ,gygx =  i.e., ).y(f)x(f =  So f  is well-defined. 
 Next, f  is 1-1 because ,yxgygx)y(f)x(f =⇒=⇒=  by the left 

cancellation law. 
 Also, for any .x)xg(f,Gx 1 =∈ −  So f  is surjective. 
 Hence, ).G(Sf∈  
 
E4) There can be several answers. 
 Our answer is )21(  and )531(),42(  and )7654321(),321(  and 

).7654312(   
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Note that ),42()21( ≠  since )21(  takes 2  to 1 and )42(  takes 2  to 

.4   
Similarly, explain why the permutations in your answer are distinct.  

 
E5) Here .33,22,14,45,51 →→→→→  Thus, this is the cycle ).451(  
 

E6) i) ,
84321
84312

)21(,
84312
84321

)21( 1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

K

K

K

K

 

 
 i.e., ).21()12()21( 1 ==−  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

854213
854321

854132
854321

)123()321(
K

K
o

K

K
o

       .I
8321
8321

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

K

K
 

  Hence, ).123()321( 1 =−  
 
 ii) 1kk i)i(f +=  and ,ixx)x(f k≠∀=  where ,r,,1k K=  putting 

.ii 11r =+  
  So k1k

1 i)i(f =+
−  and ,ixx)x(f k

1 ≠∀=−  where .r,,1k K=  
  Thus, ).iiii(f 121rr

1 K−
− =  

 
E7) Consider ,ghhg 11 −−  where )31(h),21(g ==  and ).42(h),32(g ==  
 Then you should verify that ),213()31)(21)(31)(21( =  and 

).324()42)(32)(42)(32( =  
 Note that ),324()213( ≠  since, for example, )213(  takes 4  to ,4  

and )324(  takes 4  to .2  
 
E8) i) ).42351(  
 
  ii) Here .1581 →→→  All the symbols haven’t been covered as yet, 

for instance, 2  is left. So we look at .2  We get .242 →→   
   Still all the symbols haven’t been covered, one of them being .3   
   So we look at .3  We get .3673 →→→   
   Now all the symbols are covered. Hence, the permutation is the 

product ).673)(42)(581(  
 
 iii) ).52)(41(  
 

E9) ,
2314
3241

)32)(41( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,

87316425
87134256

)13)(4256( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 .
85746132
87564321

)75)(64)(213( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 

E10) No, because ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

643125
654321

)451)(31(  and  

 .
641523
654321

)31)(451( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  
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 Since, for example, )451)(31(  takes 3  to 1 and )31)(451(  takes 3  to 

,5  the two are different. 
 
E11) Let ).iii(f r21 K=  Then, as you have seen in the proof of Theorem 3,  

,i)i(f,,i)i(f)i(f,i)i(f r1
1r

31
2

221 ==== −K .i)i(f)i(f 1r1
r ==  

 Similarly, .r,,2ki)i(f kk
r K=∀=  

 .If r =∴  
 Also, for .ii)i(f,rs 11s1

s ≠=< +  .If s ≠∴  
 .r)f(o =∴  
 
E12) ).108)(752)(9631(=σ  
 )2,3,4(m.c.l)(o =σ∴  
    .12=  
 
E13) Consider ,)21( 21 σ==σ  in .S3  Then .I21 =σσ  
 So .1)(o 21 =σσ  
 But .2)2,2(m.c.l =  
 Theorem 4 doesn’t fail here because it doesn’t apply here. It only applies 

to a product of disjoint cycles. Here 1σ  and 2σ  are not disjoint. 
 
E14) No, e.g., see E12 for both questions. 
 
E15) i) ).31)(41(  
 
 ii) )).43)(41()(34)(14( =  
 
 iii) ).42)(52)(32(  
 
E16) )kji()kj)(ji( =  and ).kji()jki()ji)(kj( ≠=  
 
E17) ).73)(63)(42)(81)(51(  
 
E18) ),51)(71)(51()75(),31)(41()431( ==  

),21)(61)(81)(21()21)(61)(21)(21)(81)(21()62)(82()862( ===  
since .I)21)(21( =  

 ).21)(61)(81)(21)(51)(71)(51)(31)(41()862)(75)(431( =∴  
 
E19) For any three symbols j,i  and ,k  
 ).kji()kj)(ji( =  
 Then, if m  is yet another symbol, 
 ),mkji()mk)(kji( =  and so on. 

 )109()32)(21( K∴  

 )109()43)(321( K=  

 )109()4321( K=  

 )10321( K=  

 ).21()91)(101( K=  
 
E20) No. Since I  is not a transposition, it doesn’t lie in this set. 
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E21) .1
ij
ij

1j
)i(I)j(IIsign

n

ji
1j,i

n

ji
1j,i

=
−
−

=
−
−

= ∏∏
<
=

<
=

 

 

E22) 
24

)2()4(
34

)3()4(
23

)2()3(
13

)1()3(
12

)1()2(sign
−
σ−σ

⋅
−
σ−σ

⋅
−
σ−σ

⋅
−
σ−σ

⋅
−
σ−σ

=σ  

 
15

)1()5(
25

)2()5(
35

)3()5(
45

)4()5(
14

)1()4(
−
σ−σ

⋅
−
σ−σ

⋅
−
σ−σ

⋅
−
σ−σ

⋅
−
σ−σ

⋅  

 .1
4

45
3

35
2

25
1

15
3

41
2

31
1

21
1

32
2

42
1

43
=

−
⋅

−
⋅

−
⋅

−
⋅

−
⋅

−
⋅

−
⋅

−
⋅

−
⋅

−
=  

 
E23) The permutation in E15(iii) is odd, because it is a product of 3  

transpositions.  
Similarly, explain why the others are odd or not odd. 

 
E24) .1)g(sign)f(sign −==  

 .1)1)(1()gf(sign =−−=∴ o  

 gf o∴  is even. 
 
E25) .1Isign =  I∴  is even. 
 You could also have argued that ),21)(21(I =  and hence I  is even. 
 
E26) You have seen that ),ii()ii)(ii()iii( r1r3221r21 −==σ KK  a product of 

)1r( −  transpositions.  
Thus, σ  is odd if r  is even, and σ  is even if r  is odd. 

 

E27) You know that .12
2
!4)A(o 4 ==   

Now .AI 4∈  Then all the 3-cycles are in .A4   
So )342(),432(),341(),431(),241(),421(),231(),321(  are in 

.A4  
Then all the possible disjoint products of two transpositions lie in .A4  
They are ).32)(41(),24)(31(),43)(21(  

 So we have obtained all the 12  elements of .A4  
 
 Regarding commutativity, note that  

)42)(31()421)(321( =  and ).32)(41()321)(421( =  
 Thus, )321(  and )421(  don’t commute. Hence, 4A  is not abelian. 
 
E28) .2)AS(o 55 =  One element is the coset ,A5  another is ,A)21( 5  since 

.A)21( 5∉   

Note that 55 AA)21( σ=  for any odd σ  in ,Sn  since .A)21( 5
1 ∈σ−  

 
E29) )21(  and )31(  are odd permutations in ,Sn  but )31)(21(  is an even 

permutation.  
 Hence, this set is not a subgroup of .Sn  
 
 You could also have argued this by noting that I  is even, and hence 

doesn’t lie in this set. Hence, this set is not a subgroup of .Sn  
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E30) From Example 5, you know that 1−σνσ  has the same disjoint cycle 
decomposition structure as that of 4V∈ν∀ν  and .A4∈σ   
Also 4V  contains all elements that are products of two disjoint 
transpositions in .S4   
Hence, .V,AV 444

1 ∈ν∈σ∀∈σνσ−  
 Thus, 4V    .A4  
 Since ,2H:V4 =  H    .V4  

 Now .H)32)(41()321)(43)(21)(321( 1 ∉=−  Hence, H    .A4  
 
E31) We will use a counting argument to find this. The elements in 5A  are    

3-cycles, 5-cycles and products of 2  disjoint transpositions. 
 
 i) The only even permutations of order 2  in 5S  are those of the form 

),43)(21(  using 4  distinct symbols. 
  Also )12()21( =  and ).12)(43()43)(21( =   
  Hence, the total number of such elements in 5A  is 

.15
2

23
2

45
2
1

=⎥⎦
⎤

⎢⎣
⎡ ××

 

 
 ii) The only even permutations of order 3  are 3-cycles. 
  Also ).213()132()321( ==   

  Hence, the number of distinct 3-cycles in 5S  is .20)345(
3
1

=××  

 
 iii) This is the number of distinct 5-cycles in ,S5  i.e., 

.24)12345(
5
1

=××××  

  
  iv) Since we have already found 59  elements of ,A5  and ,60)A(o 5 =  

these are all the non-trivial elements of .A5  Hence, 5A  has no 
element of order .15  

 
E32) We will use Example 5 to calculate the elements. 
 
 i) Let .2i ≠  If ),3i1(1 =σ  then the given element is 

)),3()2()1(()321( 1
11 σσσ=σσ −  from Example 5. 

    ,H)12i( ∈=  since H    ,An  and .An1∈σ  
  If ,2i =  then ).321(1 =σ  Hence, .H)321()321( 1

11 ∈=σσ −  
 
 ii) Here ),i1j(2 =σ  and the given element is 

,H)2ji()2i1( 1
22 ∈=σσ −  using (i) above, and since .An2 ∈σ  

  Here we have assumed .2,1j ≠  
  As in (i), if ,2j =  then ),2i1(2 =σ  so that 

.H)2i1()2i1( 1
22 ∈=σσ −  

 
 iii) Here ),k21(3 =σ  and the given element is 

,H)kji()2ji( 1
33 ∈=σσ −  using (ii), and since .An3 ∈σ  
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  Here too .2,1k,j,i ≠  
 
 Hence, for any ,A)kji( n∈  (i), (ii), (iii) tell us 

.H))(321)(()kji( 1
123123 ∈σσσσσσ= −  

 Thus, every 3-cycle is in .H  Hence, by Theorem 11, .AH n=  
 
E33) fKer    .A7  Hence, }I{fKer =  or .AfKer 7=  
 If },I{fKer =  then f  is 1-1, and ,G)A(f 7 ≤  where 

.2520)A(o))A(f(o 77 ==  
 .2520)G(o ≥∴  
 If ,AfKer 7=  then .AxI)x(f 7∈∀=  
 
E34) Let 55 US:f →  be a group homomorphism. 
 Then fKer    .S5  So },I{fKer =  or ,AfKer 5=  or .SfKer 5=  
 If },I{fKer =  then .UfIm~S 55 ≤−   
 But then !5)f(Imo =  and .5)U(o 5 =   
 So we reach a contradiction. 
 Hence, }.I{fKer ≠  
 
 If ,AfKer 5=  then ).AS(~fIm 55−  Hence, 5UfIm ≤  of order .2  But     

2   ).U(o 5  So, by Lagrange’s theorem, this case is not possible.  
  
 Hence, the only possibility is ,SfKer 5=  i.e., .1)(f:US:f 55 =σ→  
 
E35) You know that ><= 14Z  and .4)1(o =  Therefore, the subgroup of 4S  

isomorphic to 4Z  must be cyclic of order .4  
 Further, it is generated by the permutation .f1  

 Now .xx1)x(f 41 Z∈∀+=  

),0321(f1 =∴  which is the same as the cycle ).4321(  
 ,)4321(~

4 ><−∴Z  which is certainly not isomorphic to ,A4  as 
.A)4321( 4∉  Also note that 4A  is not cyclic. (Why?) 

 
E36) Let }.g,,g,g{G n21 K=  Then )G(S  is the set of permutations on n  

symbols. Hence, .S)G(S n=  
 Thus, ,SfIm~G n≤−  where f  is as in the proof of Cayley’s theorem. 
 
E37) i) .}rRrR,IR,IrR,r{D 142

8 >===<= −  

 Hence, 8D  must be isomorphic to a subgroup generated by 

}.,I,I,{ 1
1

221
4
2

2
121 σσ=σσ=σ=σσσ −  

 Recall also, from Unit 2, that if we take r  and R  to be the 
reflection and rotation shown in Fig.3 there, then )42(1 =σ  and 

).4321(2 =σ   
You should also check that all the required conditions are satisfied. 

 So .S)4321(),42(~D 88 ≤><−  
 
  ii) As in E35, .S)87654321(~

88 ≤><−Z  
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  iii) Since .S)821(~U,~U 8888 ≤><−− KZ  
 
  iv)  Verify that the Cayley table of 8Q  is as below. 

   

IIAABBCCC
IIAABBCCC
AAIICCBBB
AAIICCBBB
BBCCIIAAA

BBCCIIAAA
CCBBAAIII
CCBBAAIII
CCBBAAII

−−−−−
−−−−
−−−−−

−−−−
−−−−−

−−−−
−−−−−

−−−−
−−−−•

 

 

  So, by looking at each row of the table, you can see that ;If GI =  
.Qxx)x(f 8I ∈∀−=−  So, ).CC)(BB)(AA)(II(f I −−−−=−  

  If we replace C,C,B,B,A,A,I,I −−−−  by ,8,,1K  respectively, 
in ,f I−  we get ).87)(65)(43)(21(f I =−  

  Similarly, you should check that  

  ,)8675)(4231(
56871243
87654321

fA =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

  ),7685)(3241(f A =−  
  ),7483)(6251(fB =  
  ),8473)(5261(f B =−  
  ),6453)(8271(fC =  
  ).5463)(7281(f C =−  

  .S}Qxf{~Q 88x8 ≤∈−∴  
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MISCELLANEOUS EXAMPLES AND EXERCISES 
 

As in the previous block, the few examples and exercises given below cover 
the concepts and processes you have studied in this block. Studying the 
examples, and solving the exercises, will give you a better understanding of 
the concepts concerned. This will also give you more practice in solving such 
problems. 
 
Example 1: Find the largest possible order an element of 7S  can have. 
 

Solution: Every non-identity element of 7S  is a product of disjoint cycles, 
each cycle being of length 6,5,4,3,2  or .7  
Also, if n321 ,,,, σσσσ K  are disjoint cycles of lengths ,,,, n21 lKll  
respectively, then )(o n21 σσσ K  is the m.c.l  of .,,, n21 lKll   
Further, since there are only 7  symbols, the sum of the lengths of disjoint 
cycles is at most .7  
You should look at all possible such products. You will find that the maximum 
order possible is that of ,21σσ  where ,3,4 21 == ll  i.e., .1234)(o 21 =×=σσ  

*** 
 
Example 2: Show that every element of ZQ  is of finite order. 
 

Solution: Any element of ZQ  is of the form ,q
p Z+  where .1)q,p( =  

Now, ,pq
pq ZZZ =+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  since .p Z∈  

.qq
po ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+∴ Z  

Z+∴ q
p

 is of finite order. 

*** 
 
Example 3: Let )n(U  denote the set of elements in nZ  that have an inverse 
w.r.t. multiplication. (In Unit 10 you will study more about such sets.) Show that 

)),n(U( ⋅  is a group. 
Further, show that if ,1)n,m( =  then ).n(U)m(U~)mn(U ×−  
 
Solution: Firstly, since .)n(U),n(U1 «≠∈  
Note that )n(Ux∈  iff .1)n,x( =  (Why?) 
Now, show that multiplication is a well-defined binary operation on ).n(U  
Next, since multiplication is associative in ,nZ  it is so in ).n(U  
Fourthly, show that 1  is the multiplicative identity of ).n(U  
Finally, the way )n(U  is defined, each element has an inverse. 
Hence, )),n(U( ⋅  is a group. 
 
Next, define 

)).n(modx),m(modx())mn(modx(:)n(U)m(U)mn(U: =φ×→φ  
Now, )mn(Ux∈  

1)x,mn( =⇒  
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1)x,m( =⇒  and ,1)x,n( =  as 1)b,a( =  iff 1bsar =+  for some .s,r Z∈  

)m(U)m(modx ∈⇒  and ).n(U)n(modx ∈  
Also, if yx =  in ),mn(U  then ).yx(mn −  So )yx(m −  and ).yx(n −  

yx =∴  in )m(U  and yx =  in ).n(U  
Thus, φ  is a well-defined function. 
 
Next, you should show that φ  is a group homomorphism. 
 
Now, to see why φ  is a monomorphism, let Z∈y,x  s.t. 

))mn(mody())mn(modx( φ=φ  
)m(mody)m(modx =⇒  and ).n(mody)n(modx =  

)yx(m −⇒  and ).yx(n −  
),yx(mn −⇒  as .1)n,m( =  

).mn(mody)mn(modx =∴  
Thus, φ  is .1-1  
 
Finally, to see why φ  is surjective let ).n(U)m(U))n(mody),m(modx( ×∈  
Then 1)x,m( =  and .1)y,n( =  
Since Z∈∃= s,r,1)n,m(  s.t. .1nsmr =+     …(1) 
Now )).n(modmry),m(modnsx()mrynsx( =+φ  
Also, by (1), ),m(modnsxnsxmrxx ≡+=  and ).n(modmrynsymryy ≡+=  

).mrynsx())n(modmry),m(modnsx())n(mody),m(modx( +φ==∴  
Thus, φ  is onto. 
 
Hence, ).n(U)m(U~)mn(U ×−  

*** 
 
Example 4: Find the order of the quotient group .)9,2()10(U( 10 ><×Z  
 
Solution: If ,m)9,2(o =  then  

)1,0()9,m2( m
=  and .)1,0()9,)1m(2( 1m

≠−
−

 

Now K,15,10,5m0m2 =⇒=  
K,8,6,4,2m19 m =⇒=  

So the least m  s.t. 0m2 =  and 19 m =  is .10m =  
,10)9,2(o =∴  and hence, .10))9,2((o =><  

Also, the order of ,40410)10(U10 =×=×Z  since .4))10(U(o =  

∴ the order of the given quotient group is .410
40 =  

*** 
 
Example 5: Check whether or not there is a non-trivial group homomorphism 
from pZ  to ,qZ  where q,p,pq >  are primes.  
 

Solution: Suppose qp:f ZZ →  is a non-trivial homomorphism. 
Let a  denote )p(moda  for .a Z∈  
Now, ),q(mod0)0(f =  as f  is a homomorphism. 
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Note that f is determined by ),1(f  since .1p ><=Z  

Let ),q(mod0)q(modm)1(f ≠=  since .f 0≠  
Then )q(mod0)0(f)p(f ==  

)q(mod0)1(pf =⇒  
)q(mod0)q(modpm =⇒  

pmq⇒  

,mq⇒  as .1)q,p( =  
)q(mod0)q(modm =⇒  

),q(mod0)1(f =⇒
v

 a contradiction. 
∴ No such f  exists.  

*** 
 
Example 6: Find all the possible group homomorphisms from 20Z  to .30Z  
 
Solution: Let 3020:g ZZ →  be a group homomorphism. 

Since g,120 ><=Z  is determined by ).1(g   

Now .20)1(o =  So .20))1(g(o  

Also, as .30))1(g(o,)1(g 30Z∈  

)1(g∴  is an element of 30Z  whose order is a common divisor of 20  and ,30  
i.e., 5,2,1  or .10  
Accordingly, we have the following 4  cases: 
 
i) :1))1(g(o =  Here ,0)1(g =  i.e., ,g 0=  the trivial homomorphism. 
 
ii) :2))1(g(o =  Here )1(g  generates a subgroup of 30Z  of order .2  So 

}15,0{gIm =  in .30Z   

 Now, 15  is the only generator of ,15 ><  and ,x)1(g =  where x  is a 

generator of .15 ><  
 15)1(g::g 3020 =→∴ ZZ  is the only homomorphism in this case. 
 
iii) :5))1(g(o =  Here )1(g  generates a subgroup of 30Z  of order .5  So 

}.24,18,12,6,0{gIm =  
 Now )1(g  generates .6 ><   
 So ,x)1(g =  where x  is a generator of .6 ><   
 You also know that .5)6(o =  So >< 6  has 4)5( =φ  generators, where 

φ  is the Euler phi-function (see Unit 4).  

 These generators are 18,12,6  and .24  
 Thus, in this case g  can be one of four homomorphisms: 

,6)1(g::g 130201 =→ZZ  or  

 ,12)1(g::g 230202 =→ ZZ  or  

 ,18)1(g::g 330203 =→ ZZ  or  

 .24)1(g::g 430204 =→ ZZ  
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iv) :10))1(g(o =  Here )1(g  generates a group of order .10  

 So }.27,24,21,18,15,12,9,6,3,0{gIm =  

 So )1(g  has 4)10( =φ  possibilities, namely, .27,21,9,3  
 Accordingly, g  can be one of 4  homomorphisms, ,g,g,g,g 4321  given 

by .27)1(g,21)1(g,9)1(g,3)1(g 4321 ====  
 
Thus, there can be a total of 104411 =+++  homomorphisms from 20Z  to 

.30Z  
 
Example 7: Give an example, with justification, of an infinite abelian group 
which cannot be written as a direct product of two proper subgroups. 
 
Solution: For example, take .Q  Suppose, if possible, Q  can be written as 

,KH×  where H  and K  are proper subgroups of .Q  Then, neither H  nor K  
can be trivial. Also, by definition, }.0{KH =∩  
Now, let Ky,Hx ∈∈  s.t. .0y,0x ≠≠  

Then t
sy,q

px ==  for .t,s,q,p Z∈  

Then .ptypsqsx ==  
Also Hqsx∈  and .Kptyqsx ∈=  So .KHqsx ∩∈   
Since }.0{KH,0qsx ≠∩≠  
This is a contradiction. 
Hence, our assumption is wrong, and hence, .KH×≠Q  

  ***  
 
Example 8: Show that if G  is a group s.t. },e{)G(Z =  then GAut  has a 
trivial centre. 
 
Solution: Since .GAutGInn~G},e{)G(Z ≤−=  
Let ).GAut(Z∈φ  
Now, let .Ga∈  Then the inner automorphism .GAutfa∈  
So .ff aa φ=φ  

Gxa)x(a)axa( 11 ∈∀φ=φ⇒ −−  
Gxa)x(a)]a()[x()a( 11 ∈∀φ=φφφ⇒ −−  
.Gx)a(a)x()x()a(a 11 ∈∀φφ=φφ⇒ −−  

Since .G)G(,GAut =φ∈φ  So, we find that )a(a 1φ−  commutes with every 
element of ,G  i.e., },e{)G(Z)a(a 1 =∈φ−  i.e., .a)a( =φ  This is true for each 

.Ga∈  
Hence, ,I=φ  the identity map, i.e., },I{)GAut(Z =  the trivial group. 

*** 
 

 
Miscellaneous Exercises 
 
E1)  Give two distinct non-trivial elements of the group .)ix(x]x[ 2 >+<C  
 
E2) If G  is a group and H    ,G  must every element of HG  have finite 

order? Why? 



 

289

 

Block 1                                                        Solutions/Answers
E3) Check whether or not there is a non-trivial group homomorphism from 

pZ  to ,S4  where p  is a prime. 
 
E4) Give an example, with justification, of two distinct cosets of the subgroup 

>< )31(  in .S5  
 

E5) Show that }11,7,5,1{G =  is a group w.r.t. multiplication modulo .12  
Apply Cayley’s theorem to find a permutation group isomorphic to .G  

 

E6) Show that },1,1{~ −×− +∗ RR  where .}0rr{ >∈=+ RR  
 
E7) Let G  be a non-abelian group. Can GAut  be cyclic? Why? 
 
E8) Check whether or not the greatest integer function, 

],x[)x(f::f =→ RR  is a homomorphism. 
 
E9) Check whether or not )10(modx2)x(f::f 105 =→ ZZ  is a 

monomorphism. 
 
E10) i) Prove that ∑ φ=φ

md
),m()d(  where N∈m  and φ  is the Euler-phi 

function. 

 ii) Using (i), prove that the number of group homomorphisms from 
mZ  into nZ  is the g.c.d of m  and ,n  where .n,m N∈   

  [Hint: See Example 6.] 

 iii) Show that the number of group homomorphisms from mZ  into nZ  
is the same as the number of homomorphisms from nZ  into ,mZ  
where .n,m Z∈  

 
E11) Prove that 2σ  is an even permutation for every .n,Sn N∈∈σ  
 
E12) Let G  be a group and H   G  s.t. ,pH:G =  a prime. For any subgroup 

K  of ,G  show that either HK ≤  or .HKG =  In the second case, also 
show that .pKH:K =∩  

 
E13) Among the following groups, find those pairs that are isomorphic. Justify 

your answers. 

 i)    ),,( 4 +Z      ii)  ),,S( 2 o     iii)  ),,Q( 8 ⋅     iv)  ),,( 5 ⋅∗Z    v)  ,Aut 6Z     

 vi)  ,SInn 3      vii)  ),,( ⋅+R    viii)  ),,S( 3 o    ix)  ),,( +R    x)  ).,D( 8 o  
 
E14) How many epimorphisms are there from 11Z  to ?8Z  Why? 
 
E15) Show that 8D  cannot be expressed as a direct product of two proper 

subgroups. 
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SOLUTIONS / ANSWERS 
 
E1) As you know, there are infinitely many such elements. For instance, two 

of them are >+<+ ixx2 3  and .ixxx 3 >+<+  
 Since neither 2  nor x  are in ,ixx3 >+<  both the cosets are non-trivial. 

Further, since 1)2x(deg =−  and .ixx2x,3)ixx(deg 33 >+<∉−=+  
 Hence, these cosets are distinct. 
 
E2) No. For instance, from Unit 7 you know that ZR  is a counter-example. 
 
E3) Suppose 4p S:f →Z  is a group homomorphism s.t. .f 0≠  

 Then fKer  is a proper normal subgroup of .pZ  

 Since pZ  is simple, },0{fKer =  i.e., f  is .1-1  

 So 4p S)(f ≤Z  which satisfies all the properties that pZ  satisfies. 

 In particular, let .S)1(f 4∈σ=  
 Then ,I)0(f)p(f)1(fp ===⋅  as f  is a homomorphism. 
 Thus, .Ip =σ  So ,p)(o =σ  as p  is a prime.  
 σ∴  is a cycle-p or a disjoint product of cycles.-p  
 If 2p =  or 42 S:f,3 →Z  and ,S:g 43→Z  defined by )21()1(f =  and 

),321()1(g =  are homomorphisms from pZ  to .S4  
 However, for any prime ,3p >  there is no non-trivial homomorphism 

from pZ  to ,S4  since 4S  has no cycles.-p  
 
E4) For instance, >< )31()321( o  and .)31()41( ><o  
 Show why they are distinct. 
 
E5) The Cayley table for ),G( ⋅  is  

   

1571111
511177
711155

117511
11751•

 

 Using the table, you should prove that G  satisfies all the axioms for 
being a group. 

 Let ,)x(:SG: xG φ=φ→φ  where .Gyxy)y(x ∈∀=φ  

 Then I)1( =φ  (from the first row of the table above), 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=φ

71115
11751)5(  (you can see this from Row 2  of the table), 

 ,
51117

11751)7( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=φ  

 .
15711
11751)11( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=φ  
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 So ).75)(111()11(),115)(71()7(),117)(51()5(,I)1( =φ=φ=φ=φ  

 Thus, if we change the symbols in GS  from 11,7,5,1  to ,4,3,2,1  we find 
)}32)(41(),42)(31(),43)(21(,I{~G −  

             .V4=  
 
E6) First, for .r,r 1 +−+ ∈∈ RR  Also, .rss,r 1 +−+ ∈⇒∈ RR  
 So, .∗+ ≤ RR  
 Similarly, check that .}1,1{ ∗≤− R  
 Since ∗R  is abelian, both these subgroups are normal in .∗R  
 Also, }.1{}1,1{ =−∩+R  
 }1,1{ −×∴ +R  is a well-defined internal direct product of .∗R  
 

 Next, define 
⎩
⎨
⎧

<−−
>

=φ−×→φ +∗

.0rif),1,r(
,0rif),1,r(

)r(:}1,1{: RR  

 Check that φ  is well-defined. 
 Now, for ,s,r ∗∈R  four cases arise: 
 i) ).s()r()1,s)(1,r()1,rs()rs(:0s,0r φφ===φ>>  
 ii) ).s()r()1,s)(1,r()1,rs()rs(:0s,0r φφ=−−−−==φ<<  
 iii) ).s()r()1,s)(1,r()1,rs()rs(:0s,0r φφ=−−=−−=φ><  
 iv) :0s,0r <>    Do it as in (iii) above. 
 Thus, φ  is a group homomorphism. 
 
 Also, for any ).r()1,r(},1,1{)1,r( φ=−×∈ +R  
 Similarly, ).r()1,r( −φ=−  
 φ∴  is surjective. 
 
 Finally, )}1,1()r(r{Ker =φ∈=φ ∗R  

                               )}1,1()1,r(r{ =∈= +R  
                               }.1{=  
 φ∴  is ,1-1  and hence an isomorphism. 
 
E7) Suppose GAut  is cyclic. Then GInn  will be cyclic. So )G(ZG  will be 

cyclic. This contradicts Theorem 5 of Unit 7. GAut∴  is not cyclic. 
 
E8) First check that f  is well-defined. 

 Next, 02
1f )( =  and .1)1(f =  

 So .2
1f2

1f12
1

2
1f )()( +≠=⎟

⎠
⎞

⎜
⎝
⎛ +  

 Hence, f  is not a homomorphism. 
 
E9) Check that f  is well-defined. 
 Next, )10(mody2)10(modx2)yx(f)yx(f +=+=+  
                                ).y(f)x(f +=  
 Thus, f  is a homomorphism. 
 Now, 10x{fKer 5Z∈=  divides x2  in }Z  
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                            5x{ 5Z∈=  divides x  in }Z  

                            }.0{=  
 f∴  is .1-1  
 
E10) i) Let G  be a cyclic group of order .m  For each G,md  has a 

unique subgroup of order .d  Further, any such subgroup has )d(φ  
distinct generators. Counting all these elements covers all the 
elements of ,G  since each element of G  generates some 
subgroup of .G   

  Hence, ∑ =φ
md

.m)d(  

 
 ii)  As in Example 6, if nm:f ZZ →  is a group homomorphism, then 

))1(f(o  must be a common divisor of m  and ,n  and hence, must 
divide ).n,m(  

 

  Now, if c  is a common divisor of m  and ,n  then c  divides ).n,m(  
Also, then nZ  has a unique subgroup of order ,c  since nZ  is 
cyclic. This subgroup will have )c(φ  distinct  generators, where φ  
is the Euler-phi function. 

  So, as in Example 6, there will be )c(φ  distinct homomorphisms 
from mZ  into ,nZ  for each ).n,m(c  

 
  So, the total number of group homomorphisms from mZ  into nZ  is 

∑ =φ
)n,m(c

).n,m()c(  

 
 iii) This follows immediately from (ii). 
 
E11) For any ,AS,S nnn ∈σ∈σ  and ,2)AS(o nn =  since .2A:S nn =  

 Id2 =σ∴  in ,AS nn  i.e., .An
2 ∈σ  

 
E12) Suppose .HK</  Then .HHK ≠  
 Also GHK ≤  s.t. .GHKH ≤≤  
 .H:HKHK:GH:G =∴  

 Since H:G  is a prime, either 1HK:G =  and ,pH:HK =  or 

pHK:G =  and .1H:HK =  
 Since ,HHK ≠  the second case is not possible. 
 Hence, ,1HK:G =  i.e., .HKG =  

 Further, if ,HKG =  then ( ) ( ),KH
K~

H
HK

∩−  by the nd2  isomorphism 

theorem. 
 Hence, .pH:HKKH:K ==∩   

 
E13) (i) and (iv) are isomorphic, both being cyclic of order .4  
 (ii) and (v) are isomorphic, since },,I{Aut 6 φ=Z  where 

.5)1(:: 66 =φ→φ ZZ  
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 (vi) and (viii) are isomorphic, since 3
3

3 SInn~
)S(Z

S −  and }.I{)S(Z 3 =  

 / ,D~Q 88 −  as every non-trrivial element of 8Q  is of order ,2  but 8D  has 
elements of order 4  also. 

 
E14) Let φ  be an epimorphism from 11Z  to .8Z  

 Then .~
Ker 8

11 ZZ −φ  

 Since 11Z  is simple, }0{Ker =φ  or .Ker 11Z=φ  

 Accordingly, ⎟
⎠
⎞⎜

⎝
⎛

φKero 11Z  is 11 or .1  

 )(o 8Z∴  is 11 or ,1  which is a contradiction. 
 ∴ There is no epimorphism from 11Z  to .8Z  
 
E15) Suppose H,KHD8 ×=    K,D8   }.e{KH,D8 =∩  
 Since 2)H(o,8)H(o =  or .4  And then, 4)K(o =  or .2  
 Take the first case, viz., .4)K(o,2)H(o ==  
 If ,}yxyx,ey,exy,x{D 124

8 >===<= −  then .xK ><=  
 Since H,2)H(o =  is abelian. 
 Also, in a direct product of H  and ,K  elements of H  and K  commute. 
 So 8D  is abelian, a contradiction. 
 Similarly, if we take the case ,2)K(o,4)H(o ==  we reach a 

contradiction. 
 .KHD8 ×≠∴  
 
 
 


